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GERMÁN LEIVA

Composition du Jury :

M. Jean-Daniel Fekete

Directeur de Recherche, Inria Saclay, AVIZ Présidente

M. Björn Hartmann

Associate Professor, UC Berkeley, Department of EECS Rapporteur

M. Nicolai Marquardt

Associate Professor, UCL Interaction Centre, Department of CS Rapporteur

Mme. Fanny Chevalier

Assistant Professor, University of Toronto, Department of CS Examinateur

M. Jan Borchers

Professeur, RWTH Aachen University, Media Computing Group Examinateur

M. Michel Beaudouin-Lafon
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A B S T R A C T

Prototyping is essential in any design process. During the early stages,
designers rely on rapid prototyping to explore ideas. Current rapid
prototyping tools and techniques focus on paper representations and
their disposability. However, while these throwaway prototypes are
quick to create they are difficult to iterate over. I argue that rapid
prototyping tools can effectively support reusable as well as throwaway
artifacts for sketching interaction in early-stage design.

First, I investigate tools in the context of video prototyping. Design-
ers experience two main barriers to use video in interaction design:
the time to capture and edit the video artifacts. To aid during the
capturing-phase of video prototyping I created VideoClipper. This
tool embodies an integrated iterative design method that rewards
discipline but permits flexibility for video prototyping. The tool pro-
vides a storyboard-style overview for each project, with TitleCards
and thumbnail images, video capture for steady-state and rough stop-
motion filming, editable, reusable TitleCards, and the ability to display
different paths through the video or recombine videos in new ways
for redesign.

I present field studies with interaction design students using Video-
Clipper in three design courses. Results suggest that participants
spend less time capturing and editing in VideoClipper than with
other video tools. However, designers sometimes find it tedious to
create stop-motion videos for continuous interactions and to re-shoot
clips as the design evolves. Participants continuously try to reduce re-
shooting by reusing backgrounds or mixing different levels of fidelity.

Inspired by this behavior, I created Montage, a prototyping tool
for video prototyping that lets designers progressively augment paper
prototypes with digital sketches, facilitating the creation, reuse and
exploration of dynamic interactions. Montage uses chroma keying
to decouple the prototyped interface from its context of use, letting
designers reuse or change them independently. I describe how Mon-
tage enhances video prototyping by combining video with digital
animated sketches, encourages the exploration of different contexts of
use, and supports prototyping of different interaction styles.

Second, I investigate how early designs start being implemented
into interactive prototypes. Professional designers and developers of-
ten struggle when transitioning from the illustration of the design
to the actual implementation of the system. In collaboration with
Nolwenn Maudet, I conducted three studies that focused on the de-
sign and implementation of custom interactions to understand the
mismatches between designers’ and developers’ processes, tools and
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representations. We find that current practices induce unnecessary
rework and cause discrepancies between design and implementation
and we identify three recurring types of breakdowns: omitting critical
details, ignoring edge cases, and disregarding technical limitations.

I propose four design principles to create tools that mitigate these
problems: Provide multiple viewpoints, maintain a single source of truth,
reveal the invisible and support design by enaction. We apply these princi-
ples to create Enact, an interactive live environment for prototyping
touch-based interactions. We introduce two studies to assess Enact

and to compare designer-developer collaboration with Enact versus
current tools. Results suggest that Enact helps participants detect
more edge cases, increases designers’ participation and provides new
opportunities for co-creation.

These three prototyping tools rely on the same underlying theoreti-
cal principles: reification, polymorphism and reuse, and information
substrates. Also, the presented tools outline a new prototyping ap-
proach that I call Takeaway Prototyping. In contrast to throwaway
prototypes, instead of emphasizing disposability, tools for takeaway
prototyping support design by enaction and reify design artifacts to
materialize the lessons learned.

R É S U M É

Le prototypage est une étape essentielle du processus de design. Pen-
dant les premières phases du processus de conception, les designers
utilisent le prototypage rapide pour explorer diverses idées. Les outils
et techniques actuels de prototypage se concentrent en particulier sur
des représentations papier et donc destinées à être jetées. Or, alors que
ces prototypes jetables peuvent être créés rapidement, ils se prêtent
mal au processus d’itération. Je propose donc de créer des outils de
prototypage rapide qui puissent efficacement supporter la création
d’artéfacts à la fois jetables et réutilisables pour esquisser de nouvelles
interactions dans les première phases du processus de design.

La première partie porte sur le prototypage vidéo. Les designers
font face à deux écueils majeurs à l’utilisation de la video en design
d’interaction : le temps nécessaire pour filmer et celui nécessaire
pour éditer. J’ai développé VideoClipper pour aider le processus de
création de video. Cet outil intègre une méthode de design itérative
qui encourage la planification et permet une vraie flexibilité pendant
la création de prototypes.

Je présente les résultats de trois études sur le terrain avec des étu-
diants en design d’interaction. Les résultats suggèrent que les partici-
pants passent moins de temps à capturer et éditer avec VideoClipper

qu’avec les autres outils vidéos. En revanche, ils trouvent parfois
difficile de créer des stop-motions pour représenter des interactions
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continues et de re-filmer de nouveaux segments lorsque le design
évolue.

J’ai ensuite crée Montage, un outil de prototypage video qui permet
aux designers de progressivement augmenter leurs prototypes papier
avec des maquettes numériques pour faciliter la création, la réutili-
sation et l’exploration d’interactions dynamiques. Montage utilise
l’incrustation video pour découpler l’interface du prototype de son
contexte d’utilisation, permettant aux designers de les réutiliser ou
de les modifier indépendamment. Je décris comment Montage amé-
liore le prototypage vidéo en combinant la vidéo avec des maquettes
numériques animées et encourage l’exploration d’autres contextes
d’utilisation tout en permettant le prototypage de styles d’interaction
différents.

La deuxième partie porte sur l’implémentation de prototypes in-
teractifs. Les designers et développeurs professionnels ont souvent
du mal à effectuer la transition de la représentation du design à son
implémentation concrète. Avec N. Maudet, j’ai mené trois études sur
la conception et l’implémentation d’interactions non-conventionnelles
pour comprendre l’écart entre les processus, les outils et les représen-
tations des designers et des développeurs. Nous avons découvert que
les pratiques actuelles entraînent des redondances entre le travail des
designers et celui des développeurs et des divergences entre le design
et son implémentation. Nous identifions trois types de problèmes :
l’omission de détails critiques, l’ignorance des cas extrêmes et la non
prise en compte des limitations techniques.

Je propose quatre principes de design pour créer des outils qui
limitent ces problèmes. Ces principes sont utilisés pour créer Enact,
un environnement interactif de prototypage d’interactions tactiles. Les
résultats de deux études suggèrent que Enact aide les participants à
détecter plus de cas extrêmes, augmente la participation des designers
et offre de nouvelles possibilités de co-création.

Ces trois outils de prototypage reposent sur les mêmes principes
théoriques sous-jacent : réification, polymorphisme, réutilisation et
substrats d’information. De même, les outils présentés mettent en
œuvre une approche du prototypage que je nomme "Takeaway Proto-
typing" ou prototypage recyclable. Par contraste avec les prototypes
jetables, les outils pour le prototypage recyclable permettent le design
par énaction et réifient des artefacts de conception pour matérialiser
la progression du design.

ix





P U B L I C AT I O N S

Germán Leiva1, Nolwenn Maudet1, Wendy E. Mackay, and Michel
Beaudouin-Lafon (2018). “Enact: Reducing Designer-Developer
Breakdowns when Prototyping Custom Interactions.” In: ACM

Transactions on Computer-Human Interaction (TOCHI).

doi : 10.1145/3310276

Germán Leiva, Nolwenn Maudet, and Michel Beaudouin-Lafon
(2018). “Towards Collaborative Prototyping Tools for Interac-
tion Design.” In: Workshop on Digital Tools in Collaborative Creative

Work at NordiCHI 2018.

Germán Leiva and Michel Beaudouin-Lafon (2018). “Montage: A
Video Prototyping System to Reduce Re-Shooting and Increase
Re-Usability.” In: Proceedings of the 31st Annual ACM Symposium

on User Interface Software and Technology - UIST ’18. Berlin, Ger-

many: ACM Press.

doi : 10.1145/3242587.3242613

Nolwenn Maudet1, Germán Leiva1, Michel Beaudouin-Lafon, and
Wendy E. Mackay (2017). “Design Breakdowns: Designer-Developer
Gaps in Representing and Interpreting Interactive Systems.” In:
Proceedings of the 2017 ACM Conference on Computer Supported

Cooperative Work and Social Computing - CSCW ’17.

doi : 10.1145/2998181.2998190

Carla Griggio, Nam Giang, Germán Leiva, and Wendy Mackay
(2016). “The UIST video browser: Creating shareable playlists of
video previews.” In: UIST 2016 Adjunct - Proceedings of the 29th

Annual Symposium on User Interface Software and Technology.

doi : 10.1145/2984751.2985703

1 The first two authors contributed equally to this work.

xi

http://dx.doi.org/10.1145/3310276
http://dx.doi.org/10.1145/3242587.3242613
http://dx.doi.org/10.1145/2998181.2998190
http://dx.doi.org/10.1145/2984751.2985703




A C K N O W L E D G M E N T S

This dissertation and my research were possible thanks to the support
of many people.

I want to thank my supervisor Michel Beaudouin-Lafon for believing
in me at the beginning of this journey, giving me freedom but also
a lot of support to work on a topic so dear to my heart. Thank you
very much for sharing your experience, having interesting discussions
and helping me in this sometimes challenging journey. I also want to
give a huge thanks to Wendy Mackay. I learned so much from you;
thank you for sharing your vast knowledge about conducting research
and all your experience. I will always be grateful to both of you for
bringing Human-Computer Interaction into my life.

I would also like to thank the members of my jury: Jean-Daniel
Fekete, Björn Hartmann, Nicolai Marquardt, Fanny Chevalier, and Jan
Borchers. Thanks to the reviewers for their insightful reports and all
the jury members for the helpful questions during the presentation. I
hope to see you all at the upcoming conferences.

I also want to thank many people from the ex)situ group and
friends. First, this dissertation would not have been possible without
the collaboration that I had with Nolwenn Maudet. We started working
together in 2015, studying designer-developer collaboration for at least
four years. Let’s say that Nolwenn was the voice of the designer and
I was the voice of the developer. I think both of us got a deeper
understanding of these communities, not only from our observations
but also due to our collaboration. Thank you very much for being a
fantastic person to work with and a great friend, I hope to see you
soon in Tokyo.

Marianela Ciolfi, thanks for your infinite altruism, for those es-
sentials breaks and chitchats but also your invaluable feedback and
comments every time that I needed them. Jessalyn Alvina thanks for
the long talks, sometimes about research, sometimes about life. You
were both great office-mates.

Ignacio Avellino, we missed you in the lab. I am happy to have met
you. Thank you very much for your kindness and your friendship.
Hanging around with you in little Argentina was terrific.

To the "third-year students": Michael Wessely and Abby Wanyu
Liu. It was great to have those mini holidays in Berlin, even if I was
running with the thesis. We did it.

Thank you Yujiro Okuya for sharing these three years with me and
being our Japan connection.

Thanks to the "old members" of the lab: Jean-Baptiste Louvet, Alex
Zinenko, Ghita Jalal, and many more. Thanks to the new members –at

xiii



least from my perspective– Philip Tchernavskij, Stacy Hsueh and Jean-
Philippe Rivière. For the post-doc view of the world: John MacCallum
and Andrew Webb.

Thanks to Lai Linghua for being my first co-supervised master
student in the topic of video prototyping. Thank you for conducting
the studies that made the basis for Section 3.2.

Thanks to Jiannan Li and Viktor Gustafsson for being so cool and
giving me feedback on earlier versions of the Enact paper. Thank you,
Viktor, for taking care of the iPads.

To all the interns, master students and collaborators: Midas Nouwens,
Téo Sanchez, Brennan Jones, Cheng Cheng Qu, Diana Lipcanu, Nam
Giang, Francesco Vitale, Jingyi Li, Jiali Liu, Alexander Eiselmayer,
Krishnan Chandran, and many more. Thanks to all the people that
helped with Montage: Miguel Renom, Tong Xue, Dimitrios Christaras
and Pierre Dragicevic.

Thanks Alexandra Merlin for helping me navigate the bureaucratic
waters of France, it would have been impossible without your help.
Thank you to the permanents: Theophanis Tsandilas, Cédric Fleury,
Sarah Fdili Alaoui, Baptiste Caramiaux. Thank you Joanna McGrenere
for your insightful comments and your positive energy. Nicolas Taffin,
you are a remarkable human being, thank you for the book.

Thanks to the people from other labs and organizations that in one
way or another helped me: Caroline Appert, Anastasia Bezerianos,
Evanthia Dimara, Arnaud Prouzeau, Rafael Morales Gonzalez, María-
Jesús Lobo, Hugo Romat, Bruno Le Dantec, and many more.

Thanks to all the students, designers, and developers that shared
their stories and used our tools.

I would also like to thank the STIC Doctoral School, Université Paris-
Saclay, Université Paris-Sud and Inria for supporting this research.

I want to thank all my friends from Argentina; they were always
there for me even if I was so far away. I want to thank my family for
their unconditional affection and support.

Finally and most importantly, I would like to thank the love of my
life. Carla Griggio, mi Líder. Thank you for so much. We survived.

xiv



C O N T E N T S

1 introduction 1

1.1 Thesis Contributions 2

1.2 Outline 3

2 background : prototyping in interaction design 5

2.1 A Brief History of Design and Prototyping 5

2.2 Software Process Models 9

2.2.1 Waterfall model 9

2.2.2 Agile Methodologies 12

2.2.3 Participatory Design 12

2.3 Prototyping and Prototypes 14

2.3.1 Prototyping as a process 14

2.3.2 Prototypes as artifacts 18

2.3.3 Low vs High Fidelity Prototypes 20

2.3.4 Prototyping Dimensions 22

i video prototyping

3 why video prototyping? 27

3.1 Related Work: Early-stage Prototyping Tools and Tech-
niques 28

3.1.1 Commercial tools 29

3.1.2 Video-based Tools 30

3.1.3 Video Prototyping Systems 42

3.2 How do interaction designers use video today? 44

3.2.1 Method 44

3.2.2 Results and Discussion 45

4 videoclipper : planning video capture on an in-
teractive storyboard 51

4.1 A Typical Video Prototyping Session 51

4.2 Design Goals 56

4.3 Video Prototyping with VideoClipper 57

4.3.1 Implementation 61

4.4 Field studies 62

4.4.1 First contact with real users 62

4.4.2 Comparing mobile iMovie with VideoClipper 64

4.4.3 Using VideoClipper in a longer course 66

4.5 Limitations and Future Work 68

5 montage : combining video prototypes to provide

reuse 71

5.1 Decoupling context and interface with Montage 71

5.2 Limitations when combining paper and video 72

5.3 Montage Mirror: Prototyping continuous feedback 74

5.4 Montage Chroma: Reusing captured interactions 76

xv



xvi contents

5.4.1 Exploring design alternatives and multiple con-
texts of use 77

5.4.2 Supporting multiple interaction styles 78

5.5 Implementation 80

5.6 Limitations and Future Work 81

5.7 Conclusion 82

ii interactive prototyping

6 why designer-developer collaboration? 85

6.1 Motivation and Methodology 87

6.1.1 Methods standardization 88

6.1.2 Boundary objects 89

6.1.3 Our approach 89

6.2 Related Work: Designer-Developer Practices and Tools 90

6.2.1 Studies of designer-developer practices 90

6.2.2 Prototyping tools 91

6.2.3 Summary 93

7 studying designer-developer collaboration 95

7.1 Study One: Understanding Designer-Developer Collab-
oration Practices 95

7.1.1 Method 95

7.1.2 Results and Discussion 96

7.1.3 Summary 104

7.2 Study Two: Analyzing Designer-Developer Breakdowns 104

7.2.1 Method 104

7.2.2 Results and Discussion 105

7.2.3 Summary 107

7.3 Study Three: Exploring Design Solutions 107

7.3.1 Results and Discussion 109

7.3.2 Summary 112

8 a principled prototyping tool 113

8.1 Design Principles for Designer-Developer Collaborative
Tools 113

8.1.1 Principle One: Provide multiple viewpoints 114

8.1.2 Principle Two: Maintain a single source of truth 115

8.1.3 Principle Three: Reveal the invisible 116

8.1.4 Principle Four: Support design by enaction 116

8.1.5 Summary 118

8.2 Enact: A Tool for Collaborative Prototyping of Touch-
based Interactions 119

8.2.1 Overview 119

8.2.2 Use scenario 120

8.2.3 Drawing the user interface 122

8.2.4 Providing concrete input examples 123

8.2.5 Generating an animation from the storyboard 124

8.2.6 Programming interaction 124



contents xvii

8.2.7 Target device and mirror 129

8.2.8 Assisted testing 129

8.2.9 System Implementation 130

8.2.10 Limitations and Future Work 131

8.3 Study Four: Assessing Enact 132

8.3.1 Method 133

8.3.2 Results and Discussion 134

8.4 Study Five: Comparing Enact with Traditional Tools 135

8.4.1 Method 135

8.4.2 Results and Discussion 138

8.5 Conclusion 144

9 from throwaway prototypes to takeaway proto-
typing 147

9.1 Reification, Polymorphism, and Reuse 147

9.1.1 Reification 147

9.1.2 Polymorphism 148

9.1.3 Reuse 148

9.2 Information Substrates 149

9.3 Takeaway Prototyping 151

9.3.1 Design by enaction 152

9.3.2 Reuse design artifacts 152

9.3.3 Supporting Takeaway Prototyping 153

10 conclusions and future work 157

10.1 Implications for Future Research 158

a appendix 161

a.1 Survey about Video in Interaction Design 161

a.2 Questionnaires VideoClipper 168

bibliography 171



L I S T O F F I G U R E S

Figure 2.1 The Levallois technique of flint-knapping by
José-Manuel Benito Álvarez. Licensed under
cba. 6

Figure 2.2 Parthenon by jhadow. Licensed under cb.
7

Figure 2.3 The revolutionary cast iron cooking pot. Copy-
right Ironbridge Gorge Museum Trust. 7

Figure 2.4 1914 Ford Model T. Four Cylinder, Twenty Horse-
power by LibertyGroup25. Licensed under
cba 8

Figure 2.5 The SAGE system. Information is sent to the
direction center (in the middle) from multiple
sources. At the top, from left to right: long-
range radars, airborne early-warning planes,
radar picket ships, gap-filler radars, offshore
air defense radars, air traffic control informa-
tion. At the bottom, instructions can be sent
to missiles and aircraft after processing the in-
formation. Image from the Computer History
Museum (In Your Defense). 9

Figure 2.6 The waterfall process used during the construc-
tion of the SAGE system. Image reproduced
from Benington (1983). 10

Figure 2.7 Incremental vs Iterative. Copyright: Henrik
Kniberg https://blog.crisp.se/2016/01/25/

henrikkniberg/making-sense-of-mvp 11

Figure 2.8 The Waterfall Model has long development
cycles (analysis, design, implementation, test)
while the iterative methods, such as the Spiral
Model, mix these activities in a shorter devel-
opment cycle. XP blends all the activities, a
little at a time, during the entire software de-
velopment process. Figure based on the model
presented in Beck (1999) 13

Figure 2.9 Calculator from Hertzfeld (1982) 14

xviii

https://en.wikipedia.org/wiki/Levallois_technique#/media/File:Levallois_Preferencial-Animation.gif
https://www.flickr.com/photos/jhadow/3958171407
https://commons.wikimedia.org/wiki/File:Ford_Model_T_1914.jpg
https://blog.crisp.se/2016/01/25/henrikkniberg/making-sense-of-mvp
https://blog.crisp.se/2016/01/25/henrikkniberg/making-sense-of-mvp


list of figures xix

Figure 2.10 Horizontal and Vertical prototyping. Horizon-
tal prototyping covers multiple features but
disregards depth of the functionality. On the
other hand, vertical prototyping provides full
depth of functionality of a minimal number
of features. Figure reproduced from Nielsen
(1994) 16

Figure 2.11 The system development life-cycle in mechan-
ical engineering compared with information
system engineering. Figure from Janson and
Smith (1985) 18

Figure 2.12 What do prototypes prototype. Figure from Houde
and Hill (1997) 20

Figure 2.13 Table based on the dimensions presented by Beaudouin-
Lafon and Mackay (2003) for analyzing proto-
types: evolution, representation, precision, and
interactivity. Precision is subdivided into the
three interaction design dimensions presented
by Cooper (1995): content, form and behavior.
A range of precision covers one or more of the
following levels: Low, Medium and High. For
example, LH denotes a range from low to high,
i.e. including medium, while L is only low. Plus
(+) and minus (-) signs highlight small varia-
tions on the precision for that particular tech-
nique, i.e. higher or lower respectively. 24

Figure 3.1 Commercial prototyping tools are ill-equipped
to support rapid prototyping and highly dy-
namic interactions. I want to increase the speed
of video prototyping while at the same time
increasing its power to prototype custom and
dynamic behaviors. 30

Figure 3.2 Simplified version of the design framework pre-
sented by Mackay, Ratzer, and Janecek (2000).
The framework presents two main domains
on the vertical axis: technology and use. The
horizontal axis illustrates that design activities
work on the abstractions and the details of each
of these domains. Each activity has a video
artifact as input and as an output. The four
main considerations in the design framework
are interaction techniques, design principles,
context of use and interaction patterns. 31



xx list of figures

Figure 3.3 Storyboards help designers to organize the se-
quence of events before recording a video pro-
totype. Here, each panel represents the com-
puter interface. The top-left corner illustrates
the user actions, i.e. mouse inputs. The text
below each panel explains the user inputs and
the system responses. Figure from Vertelney
(1989). 34

Figure 3.4 With animated drawings, a background is copied
and reused. Sketches drawn on top of each
background represent the look of the interface
at short time intervals. When successive images
are filmed at 24 frames per second they create
the illusion of motion. Figure from Vertelney
(1989). 35

Figure 3.5 By using cutouts to represent movable objects,
designers avoid laborious stop-motion. The
cutouts represent interface elements, such as
menus, or annotations in the story, such as
speech bubbles. Figure from Vertelney (1989). 36

Figure 3.6 Physical models can represent 3D interactions.
The same stop-motion techniques applied to
2D also work for 3D prototyping. The camera
can even move around the physical space to
prototype navigation alternatives. Figure from
Vertelney (1989). 37

Figure 3.7 A video prototyping of a professor interacting
with a virtual agent. The professor requested
the agent to copy information about "defor-
estation in the Amazon" in the physical card-
storage device. From "The Knowledge Naviga-
tor" by Apple Inc. 39

Figure 3.8 The prototype of an interactive curved desktop
display. Placing objects on the flat area allows
the system to scan the contact area, e.g., to scan
a document. The workstation can be controlled
with a mouse or via voice commands. From
"The Starfire" by Sun Microsystem Inc. 40

Figure 3.9 The Virtual Studio at CAVI (Centre for Ad-
vanced Visualization and Interaction) in Aarhus,
Denmark. 41

Figure 3.10 The miniStudio system uses projections to pro-
totype proxemic interaction. Figure from Kim,
Kim, and Nam (2016). 43



list of figures xxi

Figure 3.11 Distribution of the participants’ design expe-
rience. Half had 1-3 years of experience. The
other half: 29% less than one year, 15% between
4-8 years and 6% between 9-12 years. The aver-
age experience is 6.8 years. 45

Figure 3.12 Amount of design artifacts from the most re-
cent project. Hand-drawn and computer-drawn
sketches are among the most created artifacts.
The least created are video illustrations and
computer animations accompanied by a mix of
tools, such as software mockups –Android and
HTML5–, prototyping tools –InVision–, and
presentation software –Google Slides–. 46

Figure 3.13 How much time was spent creating these de-
sign artifact? For 59% of the participants, the
creation of hand-drawn sketches only took be-
tween 0-20% of the process. Most participants
said that computer-drawn sketches took be-
tween 0-60%. However, one participant re-
sponded that creating the computer-drawn ar-
tifacts took between 80%-100% of the time. An-
other participant reported that video and com-
puter animations took between 60%-80% of the
process. 47

Figure 3.14 We asked participants about their use of video
as a design (Figure 3.14a), communication (Fig-
ure 3.14b) and documentation tool (Figure 3.14c). 48

Figure 3.15 The main barriers to using video are the lack
of time or resources to edit (76%) and the lack
of time or resources to prepare for and record
video (68%). 49

Figure 4.1 A digital User Interface (UI) storyboard created
in Apple Xcode, focused on the user interface
layout and the flow between screens. 52

Figure 4.2 A narrative hand-drawn storyboard that com-
bines sketches with textual descriptions and
sticky notes. 53

Figure 4.3 Designers improvise a background of the Eiffel
Tower by sketching over a whiteboard. 54

Figure 4.4 The designers use transparent paper to mimic
the dragging feedback on top of the paper pro-
totype. 55



xxii list of figures

Figure 4.5 The VideoClipper’s storyboard view organizes
each video prototype as collection of ordered
Lines. Each Line starts with a TitleCard fol-
lowed by the corresponding video clips. De-
signers can open the capture view by pressing
the camera icon on the right. 57

Figure 4.6 VideoClipper TitleCard’s editor. The duration
of the TitleCard can be edited with the button
on the lower right corner. 58

Figure 4.7 VideoClipper’s capture view. On the left, a col-
umn of TitleCards. On the top, the video clips
of the selected Line. In the center, a preview
of the camera, in this case with an active ghost
image. 59

Figure 4.8 Adding a ’ghost’ of the last recorded frame
lets designers align the shots to create rough
"invisible cuts". 60

Figure 4.9 Moving Lines in VideoClipper. 61

Figure 4.10 The VideoClipper data model. 62

Figure 4.11 Reported average times in minutes collected
from 16 students, the error bars represent the
standard deviation. The average capturing time
was 3h28m for iMovie and 2h17m for Video-
Clipper. The average editing time was 1h8m
for iMovie and 42m for VideoClipper. 64

Figure 4.12 Reported times collected from 41 students us-
ing VideoClipper in a longer course. The aver-
age capturing time was 3 hours and the average
editing time was 47 minutes. 67

Figure 4.13 A video prototype of a touch-based drawing
application with vertex recognition. 68

Figure 4.14 A video prototype of a draggable and resizable
lens. 69

Figure 4.15 Students mixed different fidelities to illustrated
multiple aspects of the design. 69

Figure 4.16 A video prototype of an interaction with a real
plant. 70

Figure 4.17 A student presenting on top of the video pro-
totype playing in the background. 70



list of figures xxiii

Figure 5.1 An overview of the Montage video prototyp-
ing system. Here, two designers, a wizard and
a user-actor, collaborate side-by-side. The User-

Cam captures the user-actor enacting user in-
puts in the actual context, i.e. using his phone
at the office. The WizardCam captures the paper
prototype and the Canvas captures the wizard’s
digital sketches. 72

Figure 5.2 OctoPocus with traditional video prototyping.
The designers create a rough stop-motion movie
with only four stages of the interface, result-
ing in a poor representation of the dynamic
interaction. 73

Figure 5.3 Mirror mode: the WizardCam live streams to
both, the Canvas (a) and to the prototyped
device (b) in the context. The UserCam only
streams to the Canvas (c). Finally, the Canvas

sends the sketches to the prototyped device to
complete the mirroring of the interface 75

Figure 5.4 Chroma mode: the UserCam captures the con-

text (a) and the WizardCam captures the paper

prototype (b); Both live-stream video to the Can-

vas. Designers draw digital sketches over the
streamed paper prototype to represent the in-

terface (c). In the Canvas, the green screen is
replaced with a perspective transformation of
the interface to create the final composition (d).
77

Figure 5.5 The Canvas sketching interface: The final com-

position (left) and the interface (right) show the
“user overlay”. Both sides have a list of sketches
and animation controls at the bottom. The in-
/out buttons make the selected sketches ap-
pear/disappear. The sliders control the stroke-
start, now at 0%, and the stroke-end, now at
100%. 78

Figure 5.6 Green screens let designers explore the same
interface in multiple contexts, e.g., stationary
on a desk or walking with a phone or a watch.
79

Figure 5.7 Sketches over the context can represent Augmented
Reality (AR) visual elements. 80



xxiv list of figures

Figure 6.1 An example of a custom interaction in the Pa-
per mobile app from FiftyThree. In the first
screen, the user has selected the scissor tool
and draws a circular area with one finger. In
the second screen, the user drags this area to
move the content to a new position and taps
outside the circular area with another finger to
create a copy of the selected area. In the third
screen, the user drags the selected area to reveal
the copied shape. 86

Figure 7.1 A StoryPortrait has a summary title, a photo-
graph of a key artifact, and a top-to-bottom
timeline to show the successive steps of the
collaboration between designers (on the left)
and developers (on the right). Participant’s
quotes and drawings enrich the story. Here,
P10dv started his story by saying that "the mo-

tion designer sends us a video". The designer
sent the mockup-up, user journey and video
file via email. P10dv translated the video into
code: "[I] try to find the useful information" in the
provided artifacts. He failed to extract the rele-
vant information about the animation, such as
the keyframe timestamps and the interpolation
curves. P10dv finally asked the designer for a
text file with all the animation parameters. The
designer sent by email a the text file created by
hand with all the details of the animation. Cre-
ating this file was "time-consuming and boring

to produce". P10dv finished his story by saying:
"we try to set up standards, but we have not found

the right one so far". 99

Figure 7.2 Key design breakdowns between designers and
developers: Missing information: Designers do
not communicate necessary details. Edge Cases:
Designers do not consider certain problematic
situations. Technical constraints: Designers are
not aware of technical limitations. 101

Figure 7.3 Relationship between interaction type (stan-
dard vs. custom) and developer involvement.
Lack of developer involvement in the early
phase of custom interaction design is correlated
with problematic or impossible implementa-
tion. Nomenclature: P1.a identifies the first
story of participant one, while P1.b identifies
the second story of participant one. 103



list of figures xxv

Figure 7.4 First meeting. The developer interacts with
an existing application to discuss possible in-
teractions with two designers while another
represents it on paper. 106

Figure 7.5 The pinch-to-create interaction is based on the
Clear to-do list mobile app. First the user
puts down two fingers simultaneously. Then,
by spreading them, the new item is revealed
progressively. Finally, the new item is cre-
ated when the user lifts her fingers off the
screen. 109

Figure 7.6 An example of a designer’s representation of
pinch-to-create. The designer depicts a continu-
ous interaction by discretizing key visual states
and adding user input annotations. 110

Figure 7.7 (a) A designer drew a snapshot of the lasso-
fill interaction at four points in time. (b) A
developer created a diagram connecting primi-
tive graphical elements and functions with user
inputs. (c) The designer merged the two repre-
sentations with an example. 111

Figure 8.1 Enact uses a target mobile device and a desk-
top interface with five areas: a storyboard with
consecutive screens, an event timeline with a
handle for each screen, a state machine, a code
editor and a device mirror 119

Figure 8.2 Scenario. The first screen of the storyboard
shows the initial look of the interaction. The
two items created in the first screen (light blue)
propagate to the second screen, where a third
item (in yellow) is added (a). Each screen has
a corresponding handle in the input timeline
(b). The state machine shows the selected tran-
sition in green and the active state in red (c).
State machine actions can be edited in the code
editor (d), either by coding or by linking a sto-
ryboard elements to create design references. In
the third screen of the storyboard, a measure M1

is added between the top and bottom rectangle
(e). 121



xxvi list of figures

Figure 8.3 Recording an input on the target device. The
input events are saved in the timeline (a), the
designer can navigate the recorded inputs by
dragging them or by moving the associated
screen handle in the timeline (b). Current touches
are displayed as translucent grey ellipses on
each screen, the radius of the ellipse represents
the size of the touch (c). 123

Figure 8.4 A state machine for a pinch interaction. The
state machine diagram is interactive: states and
transitions can be added, removed or edited.
The selected state, in green, can be edited in
the code editor. The currently active state and
transition are highlighted in red. 125

Figure 8.5 The editor shows the code of the selected state
or transition. Here, a touchmove transition is
selected. The guard ensures that the transition
triggers only when touch T0 is inside rectangle
R1. In the action, the developer has defined a
mapping between the positions of the touch
and the rectangle. The editor creates design

references around recognized design elements:
$.T0.position, $.R1.position and $.S1.R1.position.y.
The number 237 is a local design reference repre-
senting the y-position of rectangle R1 in screen
S1. If the storyboard changes, this value will
also change. 126

Figure 8.6 The designer created two measures, one be-
tween the touches and the other between the
two rectangles. These measures are invisible
on the target device (left) but they are revealed
in the device mirror (right) and updated in real
time to facilitate debugging. 128

Figure 8.7 Testing in Enact combines the code with the
recorded user inputs. To run the test, the de-
signer presses the Test button (a). Here, the
first and second screen match the test result
and their screen handles are shown in green
(b). The third screen has a mismatch displayed
as a dashed orange line and the screen handle
is shown in yellow (c). 130



Figure 8.8 Visual specification of rules in the earlier ver-
sion of Enact tested in Study Four. Input-
output rules connect one input with one or
more outputs. The first column shows the iden-
tifier of the element (T0 and R1), the second and
third columns refer to the X and Y-axis respec-
tively. This rule maps the touch’s Y-axis trans-
lation (l) to rectangle’s Y-axis scale (m) with a
ratio of 0.5. Each axis transformation can have
a minimum and maximum value taken from
the storyboard. 133

Figure 8.9 Study Five. Each pair consist of one designer
(Pds) and one developer (Pdv). The designer has
10 minutes to create a design artifact for the
initial version of the proposed interaction, then
the developer has 15 minutes to implement it.
Finally, both work together for 15 minutes to
evaluate the current implementation and work
on the final version of the interaction. 136

Figure 8.10 P4ds and P4dv working side-by-side on the final
version of pan-and-stamp. On the left, the devel-
oper performs an off-device mimicking gesture
with his left hand to understand the proposed
design. On the right, the designer performs an
on-device mimicking gesture with both hands
to communicate the design. 138

Figure 8.11 Number of on-device mimicking gestures, ei-
ther on the mobile device or the emulator pro-
vided by the IDE, per participant during the
collaborative side-by-side phase. Designers
and developers performed significantly more
interactions on the device with Enact than
with Traditional tools. This suggests that
with Enact, designers participate more during
the side-by-side phase and developers perform
more contextualized actions on the real device
during implementation. 141

Figure 9.1 Extended version of the table presented in Fig-
ure 2.13. Enact embodies most of the princi-
ples of Takeaway Prototyping in order to pro-
vide rapid as well as iterative prototypes. On
the other hand, VideoClipper (Video Prototyp-
ing) and Montage would need more mecha-
nisms to iterate the prototype to better support
Takeaway Prototyping. 154

xxvii



xxviii acronyms

A C R O N Y M S

UI User Interface

GUI Graphical User Interface

WOz Wizard of Oz

WIMP Windows, Icons, Menus, Pointer

IDE Integrated Development Environment

AR Augmented Reality

DRY Don’t Repeat Yourself

MVC Model-view-controller



1
I N T R O D U C T I O N

Prototyping is an essential activity to support the exploration and
communication of interactive systems (Beaudouin-Lafon and Mackay,
2003). During early-stage prototyping, designers rely on rapid proto-
typing to create throwaway prototypes that are discarded when they
have served their purpose. Throwaway prototypes usually take the
form of paper prototypes made with art supplies such as pen-and-
paper, markers and sticky notes. These low-tech representations are
inexpensive and allow the participation of non-experts (Bødker and
Grønbæk, 1991). However, these static paper representations poorly
support highly customized dynamic interactions (Bailey and Konstan,
2003), such as gesture-based interfaces or AR. Designers need more
time-consuming computer-based tools to prototype in these interaction
styles, thus hindering the participation of non-experts. How can de-
signers prototype highly dynamic interactions without programming
and with the speed of rapid prototyping techniques?

Another shortcoming of current static design artifacts is their lack
of support for an incremental and iterative process. Initial paper rep-
resentations, such as hand-drawn sketches, are quick to create but
force designers to redo their designs when exploring variations of
previously sketched ideas. Also, interaction designers rely on other
design artifacts such as mockups, wireframes and specifications (New-
man and Landay, 2000). Modifying one artifact requires designers to
replicate the changes in all the others to preserve their consistency.
Even more, once an early implementation starts, developers might
need to replicate the whole work with their own tools. What is the
effect of this redundancy among design artifacts? How can we reduce
this repetitive work within and across designer-developer activities?

First, I decided to explore these questions in the context of video

prototyping. Video has been long identified as a powerful medium for
prototyping interactions (Mackay, 1988). Existing video tools support
either the capture or post-production phases (Berthouzoz, Li, and
Agrawala, 2012; Girgensohn et al., 2000). However, we still lack tools
to support the prototyping process, not just the prototyping product,
i.e. improving the quality of the resulting video. Designers can use
video prototypes to explore alternatives, feel the interaction while
acting it out and communicate interaction in context (Mackay, Ratzer,
and Janecek, 2000). However, video is not as widely used in early-stage
design as other prototyping media (Carter and Hundhausen, 2010).
Do designers find video useful for interaction design? What are the

1
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barriers for using video as a rapid prototyping technique? How can
we design tools that facilitate the process of video prototyping?

Sometimes just illustrating the interaction with paper or video
prototyping is not enough, and designers need to collaborate with
developers to create fully interactive prototypes. However, the collabo-
ration between these communities of practice is not smooth (Moffett,
2014). Designers and developers of interactive systems have different
backgrounds and skills (Buxton, 2007) and focus on different aspects
of the design process (Löwgren, 1995). Despite these differences, they
need to collaborate to create interactive systems. The first step to
improve this situation is to understand the causes of the existing
problems to represent, communicate and interpret interaction designs.
Do designers and developers have difficulties reusing previous work?
Does it have an impact on the early implementation of interactions?

Commercial prototyping tools focus on graphical authoring of static
images and offer poor support for dynamic behaviors. These interac-
tions are constrained to a small predefined set of standard inputs and
animated transitions. To prototype more complex behaviors, design-
ers need to "code" using textual representations, visual languages or
parameters hidden behind intricate menus. How can tools provide a
shared sandbox to support these two different disciplines?

thesis statement I argue that rapid prototyping tools can effec-
tively support reusable as well as throwaway artifacts for sketching
interaction in early-stage design.

1.1 thesis contributions

This dissertation provides empirical findings from multiple studies,
technical contributions in the form of fully functional prototyping
tools, and theoretical contributions that introduce design guidelines
and a new prototyping approach.

empirical contributions : I found that

• designers’ main barriers to using video for interaction de-
sign are the laborious activities of capturing and editing;

• designers rely on multiple artifacts to communicate interac-
tion to developers with redundant information;

• the translation from interaction design to software devel-
opment requires extensive rework and usually creates mis-
alignments between design and implementation; and

• designer-developer collaboration during the creation of
interactive systems suffers from recurring breakdowns.

technical contributions : I designed and implemented
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• VideoClipper, a tablet-based video prototyping tool inte-
grating planning, recording and lightweight editing with
an interactive storyboard;

• Montage, a video prototyping system that combines paper
prototyping and digital sketches with Wizard of Oz (WOz)
and chroma key compositing; and

• Enact, a principled collaborative prototyping tool that pro-
vides multiple and integrated representations of the inter-
action under construction.

theoretical contributions : I derived

• design principles for the creation of collaborative interaction
prototyping tools aimed at reducing designer-developer
breakdowns; and

• Takeaway Prototyping, a new prototyping approach that ma-
terializes the lessons learned among iterations.

1.2 outline

This dissertation is divided into two parts: video prototyping and
interactive prototyping.

chapter 2 : I present design and prototyping from a historical per-
spective. I review different methodologies for the construction
of interactive systems and the predominant role of prototyping
in all of them. I introduce classifications of prototyping, as a
process, and of prototypes, as products.

chapter 3 : At the beginning of Part 1, I present related work on
video-based prototyping tools. I explore the main barriers to us-
ing video in interaction design. One barrier is the time-consuming
activity of preparing for and capturing video, and the other is
editing.

chapter 4 : I introduce VideoClipper as video prototyping tool to
aid in planning and recording. VideoClipper provides an inter-
active storyboard featuring many reusable elements focused on
capturing on-the-go. I report on four studies with VideoClipper

in multiple design courses.

chapter 5 : I introduce Montage as a video prototyping system to
reduce re-shooting and increase reuse. Montage re-purposes
mobile devices as remote cameras to provide a mobile green
screen studio focusing on combining and reusing video pro-
totypes. I illustrate many uses cases of Montage and how it
supports the prototyping of diverse interaction styles.
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chapter 6 : At the start of Part 2, I present the motivation for study-
ing designer-developer collaboration. I review related work on
collaboration and prototyping tools for interactive prototyping.

chapter 7 : I present three studies to understand current designer-
developer problems. The first study focuses on their previous
projects; the second, on direct observation of participants collab-
orating; and the third, on envisioning potential solutions for the
identified problems.

chapter 8 : Based on the findings in Chapter 7, I introduce four
principles for the creation of interactive prototyping tools to mit-
igate designer-developer breakdowns. I apply these principles
to create a new prototyping tool. Enact features many reusable
artifacts that support both designer and developer representa-
tions. I report on two studies to assess Enact in both individual
and collaborative use.

chapter 9 : I analyze the work presented in the previous chapters
using the theoretical principles of Reification, polymorphism
and reuse, and the concept of information substrates. Supported
by these principles, I present a new prototyping approach called
Takeaway Prototyping.

chapter 10 : I conclude the dissertation with a summary of the main
contributions and directions for future research.
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B A C K G R O U N D : P R O T O T Y P I N G I N I N T E R A C T I O N
D E S I G N

This dissertation investigates how prototyping tools can support reuse
in early-stage design. However, there are different views on what
is prototyping and what is meant by "early" stages. This chapter
introduces these concepts through a brief historical review.

2.1 a brief history of design and prototyping

Human history is tightly linked to the creation of artifacts. Some
of the oldest stone tools found were dated about 3.33 million years
ago (Harmand et al., 2015). The word "design" appeared first as a
verb around the 14th century and later as a noun around 1580 (Online
Etymology Dictionary, 2018a). Design as a verb comes from the Latin
designare "mark out, point out; devise; choose", from de "out" combined
with signare "to mark," from signum "identifying mark, sign". To design
can be seen as the action of choosing, making decisions over anything
that has an impact on the construction of an object. On the other hand,
design as a noun comes from the Middle French word desseign, i.e. "a
scheme or plan in the mind" (Online Etymology Dictionary, 2018b).
In this view, design is deciding what to build, i.e. the form, and how
to build it, i.e. the process. Even though early humans did not have
a word for it, they designed different stone tools, such as hammer-
stones and hand-axes (Figure 2.1). However, these artisans created
artifacts with no clear divide between the design and the construction
of the object (Sparke, 2009). In other words, there was no explicit
materialization of the design, e.g., a specification or a plan, beyond the
created artifact. There is evidence, however, that they trained younger
ones to master the art of creating these tools.

The word prototype comes from the Greek protos "first" and typos

"impression, mold, pattern" (Online Etymology Dictionary, 2018b).
From a reductionist point of view, a prototype is "a first impression" or
"a primitive form", and thus, prototyping is the action of building these
early object samples. If we accept for a moment this broad definition,
prototyping has also always existed alongside humans (Guggenheim,
2010). However, to see the roots of modern product design and more
sophisticated uses of prototypes, we need to move ahead in time to
classical antiquity (Bürdek, 2005).

Some historians believe that the Parthenon (Figure 2.2) and other
buildings of the same era were based on miniature wooden proto-
types or pre-existing buildings (The American Society of Mechanical

5
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(a) (b)

(c) (d)

Figure 2.1: The Levallois technique of flint-knapping by José-Manuel Benito
Álvarez. Licensed under cba.

Engineering, 2018). Following this view, prototypes are more than an
early version of the final object; they can also be a materialization of
the design, a model to gain inspiration or to study ideas.

Prototypes helped ancient designers make informed decisions be-
fore committing to a particular design. One of the oldest documents
talking about design comes from a Roman architect, artist, and military
engineer called Vitruvius (c. 80-10 BC). In his multi-volume book De

architectura, Vitruvius talks about the multidisciplinary mindset of the
architect: "an architect has to be interested in art and science, as well as
being versed in rhetoric and having a good knowledge of history and
philosophy" (Rowland, Howe, and Others, 2001). Vitrivius’ guiding
principle was "all buildings must satisfy three criteria: strength (firmi-

tas), functionality (utilitas), and beauty (venustas)" (Rowland, Howe,
and Others, 2001). In a way, Vitruvius presented the concept of func-
tionalism more than twenty centuries before modernism (Bürdek,
2005).

In the 18th century, during the industrial revolution, the designer
role took a prominent place. Mass production required a more de-
fined division between design and manufacturing (Sparke, 2009). This
divide was the beginning of industrial design: objects were designed
by someone and built by someone else. The inception of assembly

https://en.wikipedia.org/wiki/Levallois_technique#/media/File:Levallois_Preferencial-Animation.gif
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Figure 2.2: Parthenon by jhadow. Licensed under cb.

lines required workers focused on individual tasks to replicate a given
design over and over (Loewy, 2002). For example, the iron pot intro-
duced by Abraham Darby in 1907 was one of the first mass-produced
industrial objects (Figure 2.3). He presented a new way of casting iron
using a master pattern and sticky green sand. The same pattern was
used repeatedly to create multiple molds.

Figure 2.3: The revolutionary cast iron cooking pot. Copyright Ironbridge
Gorge Museum Trust.

On the other hand, the Arts & Crafts movement saw mass-production
as responsible for the deplorable living conditions of some work-
ers (Stansky, 1985). William Morris, a supporter of this movement,
tried to put back the human into the design and manufacturing pro-
cess. Morris opposed mass production and built products based on

https://www.flickr.com/photos/jhadow/3958171407
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craftsmanship and handmade processes. However, this distinction
between handmade and mass-produced was not always clear. For ex-
ample, designers such as Joseph Hoffmann wanted to move away from
the ornaments of the past, so they created objects that looked mod-
ern and geometric. There were sometimes hand built and sometimes
created with the help of machines at low scale batches.

In the early 1900s, people such as Van de Velde from the Art Nou-
veau movement rooted for the individuality of the artist, while others
such as Peter Behrens from AEG focused on designing for the industry
and seeking standardization. A typical example of this "industrial de-
sign" is the development of the car industry for a mainstream audience.
Henry Ford wanted a vehicle that was lighter, simpler to use and inex-
pensive to manufacture. He did not invent the car, but he worked with
a group of designers to create the popular model T (Figure 2.4). Ford
was obsessed with improving the manufacturing process of the car.
For example, constructing a single model T went from 12.5 working
hours to 93 minutes after the introduction of three parallel assembly
lines (Evans, Buckland, and Lefer, 2009). J Mays, former Global Design
Chief at Ford, said in an interview in 2009 that the development of the
car industry created a division between car designers, in charge of the
body, and car engineers, in charge of the chassis (Sparke, 2009).

Figure 2.4: 1914 Ford Model T. Four Cylinder, Twenty Horsepower by
LibertyGroup25. Licensed under cba

Several design movements and trends can be seen throughout his-
tory. For example, the search for standardization and functionalism
gave birth to the Bauhaus School of Design. Technological advances
such as the electrification of the home, the telephone, and the use of
plastic materials gave designers a vast playground for new ideas. For
a more in-depth review see Walker and Attfield (1989).

https://commons.wikimedia.org/wiki/File:Ford_Model_T_1914.jpg
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2.2 software process models

We can draw a parallel between the history of design and prototyping
on the one hand, and the design and prototyping in software engineer-
ing on the other hand. Initially, "software artisans" encompassed the
design and construction of the system, where the user interface was
created as an afterthought (Cooper, 2004). Later on, in the same way
that car designers focused on the car’s body and car engineers focused
on the car’s chassis, a similar dichotomy occurred between user inter-
face design and software development. This led to the introduction of
multiple methodologies to organize the software development process.

2.2.1 Waterfall model

The first software development methodology, the Waterfall Model,
was introduced at a symposium on advanced programming methods
for digital computers in June 1956 (United States. Navy Mathematical
Computing Advisory Panel, 1956). Benington presented how the MIT
Lincoln Laboratory organized the production of the programs for the
SAGE (Semi-Automatic Ground Environment) system (Figure 2.5).

Figure 2.5: The SAGE system. Information is sent to the direction center (in
the middle) from multiple sources. At the top, from left to right: long-range
radars, airborne early-warning planes, radar picket ships, gap-filler radars,
offshore air defense radars, air traffic control information. At the bottom,
instructions can be sent to missiles and aircraft after processing the
information. Image from the Computer History Museum (In Your Defense).

SAGE was an air-defense system used by the United States Air
Force to defend against potential mass jet bomber attacks (In Your

Defense). The system collected data from several radars and calculated
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information about potential enemy aircraft, such as speed, altitude,
and direction.

If the aircraft was identified as hostile by human operators, the
system was able to guide manned interceptors or missiles to the
target (In Your Defense). The construction of such large computer
programs integrated with multiple subsystems required a structured
top-down approach, flowing in one direction like a waterfall. In a
traditional waterfall process, compartmentalized phases are executed
sequentially, forcing one phase to finish in order to start the next one.
For example, the coding only begins after a complete specification is
available (Figure 2.6).

OPERATIONAL PLAN

PROGRAM 

SPECIFICATIONS

CODING  

SPECIFICATIONS

CODING

PARAMETER TESTING 

(SPECIFICATIONS)

ASSEMBLY TESTING 

(SPECIFICATIONS)

SHAKEDOWN

SYSTEM  

EVALUATION

MACHINE SPECIFICATIONS
OPERATIONAL 

SPECIFICATIONS

DESIGN

TESTING

Figure 2.6: The waterfall process used during the construction of the SAGE
system. Image reproduced from Benington (1983).

Benington (1983) republished the original presentation of 1956 but
added some notes with two new interesting pieces of information.
First, he states: "it is easy for me to single out the one factor that
I think led to our relative success: we were all engineers and had
been trained to organize our efforts along engineering lines". This
shows how important it is to share the same value system among the
stakeholders involved in this rigid process. Second, Benington (1983)
clarifies (emphasize mine): "I do not mention it in the attached paper,
but we undertook the programming only after we had assembled an
experimental prototype of 35,000 instructions of code that performed
all of the bare-bone functions of air defense". This illustrates the
importance of prototyping even for proponents of a waterfall-like
process, where coding should not start until a plan is already in place.
Benington (1983) goes even further (emphasize mine): "the biggest
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mistake we made in producing the SAGE computer program was that
we attempted to make too large a jump from the 35,000 instructions
we had operating on the much simpler Whirlwind I computer to
the more than 100,000 instructions on the much more powerful IBM
SAGE computer" (Benington, 1983). This denotes the need not only
for an incremental process, i.e. where the system is built in pieces but
also for an iterative process, i.e. where the system is evolved through
successive refinements (Figure 2.7).

Figure 2.7: Incremental vs Iterative. Copyright: Henrik Kniberg https:

//blog.crisp.se/2016/01/25/henrikkniberg/making-sense-of-mvp

A waterfall model can be successful in the production of software
products when plans are rigid. Architects have been using variants of
this process for centuries, where the plan needs to be finished before
construction starts. In 1968 and 1969, during the NATO Software En-
gineering Conferences, terms such as "software crisis" and "software
engineering" were introduced, with the waterfall model as their flag-
ship process (Buxton and Randell, 1970). The success of this model
relies on the predictability of the requirements and the irrevocability of
the plan. However, when changes are introduced in a later phase, they
have an impact in all the preceding phases. In other words, the more
advanced the process, the higher the cost of introducing a change.

The software medium is more malleable than traditional materials
used by classic designers (Kay, 1984). Software engineers soon realized
that having irrevocable plans was not an easy constraint to enforce.
In the book The Mythical Man-Month: Essays on Software Engineering,
Brooks (1975) says that "the first system built is barely usable [...]
hence plan to throw one away; you will, anyhow". One of the most
popular works about waterfall-like methodologies is Royce (1987).
However, Royce proposed a modified version of the waterfall model
where phases are not only flowing in one direction but "there is an
iteration with the preceding and succeeding steps". In the same line
as Brooks (1975), Royce recommends going through the process twice,

https://blog.crisp.se/2016/01/25/henrikkniberg/making-sense-of-mvp
https://blog.crisp.se/2016/01/25/henrikkniberg/making-sense-of-mvp
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first as a miniature version of the real complete process as a kind of
simulation.

2.2.2 Agile Methodologies

In the late 1980s, there was a generalized concern that the waterfall
model was discouraging well-established engineering practices such
as prototyping and reuse (Brooks and Others, 1987). Boehm (1986)
introduced the Spiral model to overcome these issues by combining
the strengths of other approaches, such as the evolutionary development

model (McCracken and Jackson, 1982) and the transform model (Balzer,
TE Jr, and Green, 1983). In the spiral model, each cycle of the spiral
has the same sequence of steps, with variants for each part of the
product and each level of elaboration.

The first software crisis (Buxton and Randell, 1970) was character-
ized by the inability to construct large and complex programs, e.g.,
with assembly programming languages, that met budget and time
expectations. This crisis was approached from a technical perspective,
with the introduction of better tools such as high-level languages,
e.g., Fortran and C, and from a methodological perspective, with the
widespread adoption of waterfall-like models. The second software
crisis, in the 1980s and 1990s, was characterized by the inability to
maintain and extend these large and complex programs (Glass, 2006).
This new crisis was also addressed with better tools, such as object-
oriented programming (Dahl, 1970; Goldberg and Robson, 1983), and
better software engineer practices, such as design patterns (Gamma
et al., 1994) and agile methodologies (Beck et al., 2001).

In the 1990s, there was a shift from seeing software engineering as a
purely rigid construction process to a more flexible service-oriented
view. Proponents of agile methodologies, such as Beck (1999) with
Extreme Programming or XP (Figure 2.8), wanted software to meet
user expectations while allowing changes to be made more easily
without incurring unsustainable costs. There are several flavors of agile
methodologies, such as XP or Scrum, but it is out of the scope of
this work to review them all. However, the main idea shared among
the various agile methods is the use of an incremental and iterative
approach, generally seeking "small" iterations (Figure 2.7).

2.2.3 Participatory Design

The Xerox Alto was the first personal computer with a tied inte-
gration between an operating system and a Graphical User Inter-
face (GUI) (Thacker, MacCreight, and Lampson, 1979). Until then,
software was mainly designed by developers for developers. The new
personal computer created at Xerox PARC (Palo Alto Research Cen-
ter) focused on another type of users, i.e. secretaries. Designers at
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Figure 2.8: The Waterfall Model has long development cycles (analysis,
design, implementation, test) while the iterative methods, such as the Spiral
Model, mix these activities in a shorter development cycle. XP blends all the
activities, a little at a time, during the entire software development process.
Figure based on the model presented in Beck (1999)

PARC investigated how secretaries worked and how they would use
a futuristic GUI before starting any engineering effort (Smith et al.,
1982). Files, inboxes, and documents were the main objects that the
user would manipulate. In a way, the Alto computer was one of the
largest software prototypes ever built. The Alto was used as a research
prototype for more than seven years before releasing a commercial
version of the personal computer called the Xerox Star (Smith et al.,
1982).

However, the approach taken by these designers was not the most
common approach in the industry. Regardless of the chosen method-
ology, few software projects considered the design and construction of
user interface as an essential part of the development process. Many
examples of bad interfaces have been documented (Johnson, 2000),
where user interface design is as an afterthought or is only delegated
to software developers. For example, Cooper (2004) mentions that
in early Windows systems, one of the reasons for using more dialog
boxes than drag & drop interactions was just because the former re-
quired fewer lines of codes to implement than the latter. When user
interface decisions are only in the hands of developers, the developer’s
convenience will compete with the user needs.

The Co-operative Design Methodology involves actual users early in
the design process. Between 1981 and 1985, researchers from Denmark,
Norway and Sweden worked on a project called UTOPIA (acronym for
"Training, Technology And Product In Quality of work perspective" in
Danish, Norwegian and Swedish) (Bødker et al., 2000). This project
represented an early development of Co-operative Design, the goal of
which was to "give the end user a voice" (Bødker et al., 2000). They
created a "technology laboratory" where different designs could be
materialized with low tech tools such as wooden mice, paper menus
and "a graphic workstation for illustrating prototypes of computer
based tools" (Bødker et al., 2000). In the 1990s these methods became
a success in the United States (Bødker et al., 2000) as Participatory De-
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sign (Greenbaum, 2017; Muller and Kuhn, 1993). Prototyping was no
more dedicated only to expert engineers. Thanks to low-tech methods
a broader audience was able to participate in the design process.

Around the same time, interaction design emerged as a response to
the poor interfaces commonly encountered in computer systems (John-
son, 2000). Interaction design is informed by product design and soft-
ware engineering (Hartmann, 2009). Moggridge and Atkinson (2007)
explain that "in the same way that industrial designers have shaped
our everyday life through objects that they design for our offices and
for our homes, interaction design is shaping our life with interactive
technologies—computers, telecommunications, mobile phones, and
so on". Combining agile methodologies and interaction design is not
an easy task (Silva et al., 2011). Both share similar artifacts and goals,
e.g., how to go from an ill-defined problem to a product that satisfies
the user needs. However, software agile methodologies bring the user
closer to the engineering process while interaction design, and in
particular Participatory Design, brings the user closer to the design
process (Beck and Cooper, 2002). On the other hand, both approaches
agree on having an incremental and iterative process. Regardless of
the selected methodology, carefully selecting the right prototyping
approach and the desired characteristics of the created prototype are
essential.

2.3 prototyping and prototypes

There are multiple processes to guide the production of digital and
interactive products. In this dissertation, I am focusing on the proto-
typing of interactive systems.

2.3.1 Prototyping as a process

Floyd (1984) sees prototyping as a key component of any stage of the
software development methodology. This collides with the approach
proposed by the phase-oriented approaches, such as the Waterfall
model, that have a strict order for the prototyping activity. Floyd
(1984) emphasizes that prototyping for interactive systems "enhance
the communication between developers and users concerning the
suitability of man-machine interfaces".

Figure 2.9:

Calculator from
Hertzfeld (1982)

As an extreme example of how prototyping can improve the com-
munication between stakeholders, Hertzfeld (1982) tells the story of
"the Steve Jobs Roll Your Own Calculator Construction Set". In the
early 1980s, Chris Espinosa was working on the Calculator’s visual
design for the Macintosh:

After playing around for a while, he [Chris] came up with a

calculator that he thought looked pretty good [...] We all gathered
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around as Chris showed the calculator to Steve and then held his

breath, waiting for Steve’s reaction. "Well, it’s a start", Steve

said, "but basically, it stinks. The background color is too dark,

some lines are the wrong thickness, and the buttons are too big.

So, for a couple of days, Chris would incorporate Steve’s sugges-

tions from the previous day, but Steve would continue to find

new faults each time he was shown it. Finally, Chris got a flash

of inspiration.

The next afternoon, instead of a new iteration of the calculator,

Chris unveiled his new approach, which he called "the Steve Jobs

Roll Your Own Calculator Construction Set". Every decision re-

garding graphical attributes of the calculator were parameterized

by pull-down menus. You could select line thicknesses, button

sizes, background patterns, etc. (Hertzfeld, 1982)

Jobs started playing around with this interactive prototype to find
the combination of visuals that satisfied him. The story goes that this
design was the one that shipped with the Macintosh and it remained
the default Calculator for many years (Hertzfeld, 1982).

2.3.1.1 Prototyping steps

Floyd (1984) characterizes four steps in prototyping:

1. Functional Selection, i.e. choosing the functions to prototype;

2. Construction, i.e. implementing the prototype;

3. Evaluation, i.e. analyzing the prototype with relevant user groups;

4. Further Use, i.e. discarding the prototype or using it as part of
the final system.

Functional Selection requires deciding the functional scope of the pro-
totype, i.e. vertical or horizontal prototyping (Figure 2.10). In vertical
prototyping, only a few selected functions are implemented as in the
final system. While in "horizontal prototyping", the selected functions
are not implemented in detail but many functions are demonstrated.
There are many tools for the Construction of prototypes that I will
describe in Section 2.3.3, but the goal should be to reach the Evaluation

step quickly rather than implementing for long-term use.
Floyd (1984) also highlights that the prototyping process should

be designed as a learning process, in order to use the prototypes as
"learning vehicles". For this reason, a prototype should be available
early in the development process "to offer full benefit to all parties
concerned: developers, customers, and users (hence the term ’rapid
prototyping’)" (Floyd, 1984). Another aspect is that the prototype
should work in the context of the user’s task, i.e. "it should involve
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Figure 2.10: Horizontal and Vertical prototyping. Horizontal prototyping
covers multiple features but disregards depth of the functionality. On the
other hand, vertical prototyping provides full depth of functionality of a
minimal number of features. Figure reproduced from Nielsen (1994)

authentic and nontrivial problems" (Floyd, 1984). Finally, a prototype
needs to be easy to modify, i.e. "there should be an easy way of
changing the prototype by revising existing or adding new features as
needed" (Floyd, 1984).

2.3.1.2 Prototyping approaches

Prototyping can have different goals, Floyd (1984) distinguishes be-
tween the following classes of prototyping1:

1. Exploratory Prototyping;

2. Experimental Prototyping; and

3. Evolutionary Prototyping.

Exploratory prototyping is focused on the early stages of the devel-
opment process. This class of prototyping increases the knowledge of
the developers about the domain of the problem and distills the users’
ideas of what a computer system might do for them. This type of
prototyping creates practical demonstrations of future systems that are
very informal in order to explore alternatives and promote a creative
co-operation between all the stakeholders. Floyd (1984) only recom-
mends this class of prototyping "if there are tools available which keep
to a minimum the effort required in constructing the prototype".

1 This is known as the "the triple E model"
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Experimental prototyping refers to the idea of exposing the pro-
totypes to the actual users. According to Floyd (1984), the term "ex-
perimental" should not be taken in a technical sense, because the
conducted experiments are "soft" and not based on rigorous theories.
The main goal is to gather feedback from the user.

Finally, evolutionary prototyping acknowledges that contexts and
requirements will change. The introduction of a new interactive system
in an environment will most likely modify the context of use and
thus require changes in the interactive system itself. To support the
evolution of the prototype to these new changes, Floyd (1984) outlines
an incremental and iterative process similar to the agile methodologies
approach.

2.3.1.3 Prototyping in other disciplines

In the 1980s, prototyping was a recent development in information
system design. Janson and Smith (1985) compared prototyping in
mechanical and electrical engineering with prototyping in systems
engineering (Figure 2.11).

They found that the major differences are "the lack of tightly written
systems design specifications and the short time period required to
provide the user with an initial system for actual ’hands-on’ experi-
ence". They divided the development life-cycle of both, mechanical
engineering and system design into three stages: intelligence, design

and implementation. They also proposed the following categories of
prototypes:

• Real-life, i.e. full-scale representation using finalized materials;

• Simulated, i.e. using a different medium of construction than
the final materials; and

• Real-life/Simulated, i.e. a mix of real-life and simulated parts.

Table 2.1 shows the relationship between the category of prototypes
and its application to the corresponding stage in the development life-
cycle. As expected, prototypes with low to medium relative cost are
used in early stages while more costly prototypes are more adequate at
the end of the design phase and the start of the implementation phase.
According to Janson and Smith (1985), simulation prototypes are the
most applicable when prototyping for design. However, simulation
prototypes require materials different from the final system. Existing
techniques from other fields might provide these alternative mediums
for creating simulation prototypes.

Wong (1992) encourages interface designers to borrow techniques
from graphic design. Wong (1992) argues that coded prototypes are
too time-consuming and do not facilitate early-stage design decisions.
The finalized look of a coded prototype can mislead designers into
thinking that a drafted concept is a nearly finished product. This
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Appraising Prototying 

show that the design processes in engineering 
and information systems design are similar, 

resulting in the transferability of prototype expe- 
rience from one discipline to the other. 

The Design Process 

A simplified version of the mechanical engineer- 
ing design process, proposed by Hubka [8], is 
illustrated in Figure 1. The individual phases of 
this process map into three main stages: (1) 
intelligence, (2) design, and (3) implementation. 

Mechanical Engineering 

The intelligence stage begins with a set of 

requirements that are usually minimally defined, 
often unrealistic, and contradictory. They form 
the input to the phase that elaborates the pro- 
blem assignment. The objective of this part of 
the design process is to specify what the 

engineering system has to accomplish so that 
the outcome is a solution-neutral formulation 
of requirements expressed as design spec- 
ifications. 

The second step uses the design specifications 
to establish functional structures that underlie 
the engineering system. The function the sys- 
tem is to perform can often be broken down into 

Management Information System 
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Post Audit 

- 1. 

Figure 1. The Systems Development Life Cycle 

308 MIS Quarterly/December 1985 

Implementation 

Figure 2.11: The system development life-cycle in mechanical engineering
compared with information system engineering. Figure from Janson and
Smith (1985)

echoes some of the recommendations of Thompson and Wishbow
(1992), which for example propose to use regular computer-based
painting programs as prototyping tools. Stolterman et al. (2009) also
encourage interaction designers to create "designerly tools" in order
to support prototyping with instruments closer to the design activity.

2.3.2 Prototypes as artifacts

While Floyd (1984) presented a process view of prototyping, i.e. steps
and approaches for prototyping, Bäumer et al. (1996) presented a
product view, i.e. a classification of the kinds of prototypes that can
be created:

• Presentation Prototypes focus on the UI to illustrate how the
system solves a problem;
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Prototype Use Where Used
in Life Cycle

Stage

Real-
Life

Simu-
lation

Real-
Life /
Simu-
lation

Relative
Cost

Requirement
Specification

Intelligence
(at the end)

or
Design

(at the start)

+ ++ +++
Low

to
Medium

Design
Selection

Understanding
Test System
Components

Intelligence
or

Design
+ +++ ++ Low

Test
Evaluation
Completed

System

Design
(at the end)

or
Implementation

(at the start)

+++ High

Blank; not applicable
+ Least Applicable

++ Applicable
+++ Most Applicable

Table 2.1: The Application of Prototyping in the Design Process. Table from
Janson and Smith (1985)

• Functional Prototypes implement part of the UI as well as the
functionality of the application;

• Breadboards focus on technical aspects, i.e. they are built to
evaluate the technical risk, not the user interactions;

• Pilot systems are almost finished products that can be deployed
in real contexts of use.

Bäumer et al. (1996)’s product view of prototypes can be linked
with Floyd (1984)’s triple E model. Designers are expected to generate
Presentation or Functional Prototypes for Exploratory Prototyping,
Functional Prototypes and Breadboards for Experimental Prototyping,
and Pilot Systems for Evolutionary Prototyping.

Houde and Hill (1997) argue that we lack a language to talk about
prototypes. They define a prototype "as any representation of a design
idea, regardless of medium" and a designer "as anyone who creates a
prototype in order to design, regardless of job title". They argue that
the prototypes need to be more focused and propose a classification
based on their purpose rather than on the prototype itself. They
propose a three-dimensional space that relates to typical questions
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that designers want to answer when creating prototypes: role, look and
feel, and implementation (Figure 2.12). "Role" refers to questions about
the usefulness of the product in the user’s life, and it usually requires
the context of use to be well established. "Look and feel" refers to
questions about the experience of using the product, i.e. "the concrete
sensory experience" (Houde and Hill, 1997), and it usually requires
a simulation of the experience. "Implementation" refers to questions
about how the product work internally and usually requires a working
system. Different prototypes can be positioned in this triangular space,
closer or farther away from the vertices.

Role

Look and feel

Implementation

Integration

Figure 2.12: What do prototypes prototype. Figure from Houde and Hill
(1997)

Similarly, Buchenau and Suri (2000) introduce "Experience Proto-
typing". While there are similarities with the dimensions presented by
Houde and Hill (1997) and others, "Experience Prototyping" goes be-
yond the concrete sensory experience and tries to transform a passive
audience into active participants. Buchenau and Suri (2000) define "Ex-
perience Prototyping" as "any kind of representation, in any medium,
that is designed to understand, explore or communicate what it might
be like to engage with the product, space or system we are designing".

2.3.3 Low vs High Fidelity Prototypes

One classification that is as popular as controversial is the dichotomy
between low- and high-fidelity prototyping. Fidelity refers to how
accurate the prototype represents the final system for the user. This
contradicts the idea of Exploratory Prototyping: designers should not
be able to asses the fidelity of a system that is still being "discov-
ered". However, in less open-ended scenarios, the universe of potential
designs directions is known beforehand.
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Another critique of the low-high classification is the lack of a clear
dimension of analysis. Cooper (1995) describes three main overlap-
ping concerns in user experience design: form –industrial and graphic
design–, behavior –interaction design–, and content –information ar-
chitecture and copywriting–. For example, a paper prototype (Rettig,
1994) is generally considered a low-fidelity prototype, but it can repre-
sent the content of the system with a high level of fidelity and, at the
same time, have a low level of fidelity for the form.

There is an implicit association between low-fidelity prototyping and
rapid prototyping. Gordon and Bieman (1995) call rapid prototyping
the creation of prototypes early in the software development life
cycle. Also, they found that rapid prototyping can be effectively used
by software developers and can improve the alignment between the
functions of the product and the needs of the users. It is assumed that
the closer the prototype is to the envisioned final product, the more
costly it is to create. For this reason, there is an implicit relationship
between low-fidelity prototypes and rapid prototyping techniques.
The outcome of a rapid prototyping technique is generally considered
a throwaway prototype:

"That’s right. Tear it into little pieces and start again. Don’t
expect it to be right the first time. You don’t know your
audience well enough. You do not fully know the limits
of the prototyping tool. You will not know the application
inside and out, and you don’t know whether the developers
can implement what you have prototyped. Prototyping is
an iterative process, and you are going to learn as you go
along. Leave enough time in your schedule to make radical
changes based on the feedback you receive."

Rudd and Isensee (1994).

Campos and Nunes (2007) surveyed 370 practitioners and found
that low-fidelity were the most used prototypes in every development
process and that there is a trend towards using more informal tools.

Virzi, Sokolov, and Karis (1996) conducted a study to compare the
usability problems found with a low- and high-fidelity prototype of
an electronic book and an Interactive Voice Response (IVR) system.
They found that participants detected the same amount of usability
studies with both types of prototypes. More recently, Lim et al. (2006)
analyzed three prototypes for a mobile messaging application: paper,
computer-based and fully functional prototype. Participants found the
most common usability issues in the three prototypes but some issues,
such as physical handling and performance-related problems, were
only identified on the computer-based and fully functional prototypes.

Both types of prototyping have advantages and disadvantages (Rudd,
Stern, and Isensee, 1996). For example, low-fidelity prototypes are
cheap to create and provide a meaningful range of interaction styles
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with simple techniques (Hall, 2001). However, this same expressive-
ness can generate a "wishful thinking" mindset, making designers
prototype ideas that are impossible to implement or that do not solve
an actual user problem (Holmquist, 2005). Practitioners know that
low and high fidelity should not be considered the only options avail-
able, and mixing different levels of fidelity in the same prototype is a
common practice (McCurdy et al., 2006).

In summary, while practical, the low/high classification of proto-
types is also simplistic and should be used carefully. Designers need
to consider many more dimensions for analyzing the characteristics of
their prototypes.

2.3.4 Prototyping Dimensions

Beaudouin-Lafon and Mackay (2003) propose four dimensions to
analyze prototypes and prototyping tools:

• Representation, i.e. the form of the prototype;

• Precision, i.e. the level of detail to evaluate the prototype;

• Interactivity, i.e. to which extent the user can interact with the
prototype; and

• Evolution, i.e. the life-cycle of the prototype, e.g. iterative or
throwaway.

They divide representation between paper prototypes (off-line) and
software prototypes (on-line). Paper prototypes are inexpensive and
accessible to a wide range of participants, making them more suitable
for the early stages of the design. However, paper prototypes limit
the exploration of certain types of interfaces that are dynamic. To
add interactive to these off-line prototypes, designers use the WOz

technique to simulate the system responses.
Software prototypes provide more interactivity but they often re-

quire coding or they constraint the design alternatives, e.g., by using
a UI Builder only certain widgets are available. Unfortunately, early-
stage prototyping tools should not limit the designers’ options, i.e. the
goal is to explore alternatives.

Precision and fidelity are two related terms; the first means "rele-
vance of details with respect to the purpose of the prototype" (Beaudouin-
Lafon and Mackay, 2003) while the second focuses on the "closeness
to the eventual design" (Houde and Hill, 1997). The purpose of the
prototype defines the correct level of precision: relevant details should
have a high precision while irrelevant details could be left open with
lower precision.

Interactivity refers to the levels of the interaction supported by
the prototype. Beaudouin-Lafon and Mackay (2003) define three lev-
els of interactivity: fixed, fixed-path and open. Fixed prototypes are
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non-interactive, such as a video clip. Fixed-path provides minimal
interactivity, such as using presentation software to simulate with
sequential slides the transition among pre-defined screens. Open pro-
totypes focus on a particular area of the prototype and provide a level
of interaction limited but similar to the final system. For example,
a computer-based prototype created with a scripting language can
provide multiple interactive paths.

Finally, evolution describes the life-cycle of the prototype. Rapid
prototyping generally produces throwaway prototypes that have a
short life-cycle and are discarded once they have served their purpose.
Iterative prototypes are reused to build on top of previous iterations.
A particular case of iterative prototypes is an evolutionary prototype,
which is iterated until it becomes the final system.

Lim, Stolterman, and Tenenberg (2008) present an anatomy of proto-

types that analyzes prototypes along two main dimensions:

"Prototypes are filters that traverse a design space and are
manifestations of design ideas that concretize and exter-
nalize conceptual ideas." (Lim, Stolterman, and Tenenberg,
2008).

I agree with this view of prototypes as filters and manifestations. Lim,
Stolterman, and Tenenberg (2008) mention some filtering dimensions
such as appearance, data, functionally, interactivity and spatial struc-
ture. In this dissertation, I am grouping concerns such as appearance
and spatial structure under the notion of form. Lim, Stolterman, and
Tenenberg (2008) also mention some manifestations dimensions such
as material, resolution and scope. Scope relates to the previously men-
tioned vertical vs. horizontal prototyping (Figure 2.10). Finally, we can
draw a parallel between Beaudouin-Lafon and Mackay (2003) dimen-
sions and Lim, Stolterman, and Tenenberg (2008) manifestations, such
as the similarity between representation and material, and precision
and resolution.

In this dissertation, the main prototype representations that I am
handling are paper and computer-based. To narrow down the preci-
sion of a prototype we need to specify the dimension of interest, i.e.
content, form or behavior (Cooper, 1995). In terms of interactivity, we
can have non-interactive prototypes, fixed-path and open prototypes.
While paper prototypes and video clips are traditionally considered
non-interactive, video provides a higher level of interactivity than
paper when it is not combined with the WOz technique. For this rea-
son, I am adding a fourth category named "only watchable", i.e. the
prototype does not possess the interactivity of the final system but can
be paused/resumed/rewound to mimic certain interactions. In terms
of evolution, I am focusing on rapid/throwaway and iterative proto-
types. I synthesize these dimensions with 14 examples of prototyping
tools and techniques in Figure 2.13. Standalone paper prototyping
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Evolution Representation Interactivity

Rapid 

Prototyping

Paper 

Prototyping

Software 

Prototyping

Software 

Tools

Software 

Environments

Iterative 

Prototyping

none / only watchable

fixed-path / open

-

open

open

PEN AND PAPER

PHYSICAL MOCK-UPS

WIZARD-OF-OZ

VIDEO PROTOTYPING

INTERACTIVE SIMULATIONS

SCRIPTING LANGUAGES

GRAPHICAL LIBRARIES

WINDOW SYSTEMS

UI TOOLKITS

UI BUILDERS

APPLICATION FRAMEWORKS

MODEL-BASED TOOLS

UIDES

Content Form Behavior

L

Precision (Low - Medium - High)

L L

L MH M

M MH LH

MH MH LH

+

++

none

fixed-path / open

none / only watchable

none

(Throwaway)

+

NON-INTERACTIVE SIMULATION

Figure 2.13: Table based on the dimensions presented by Beaudouin-Lafon
and Mackay (2003) for analyzing prototypes: evolution, representation,
precision, and interactivity. Precision is subdivided into the three interaction
design dimensions presented by Cooper (1995): content, form and behavior.
A range of precision covers one or more of the following levels: Low,
Medium and High. For example, LH denotes a range from low to high, i.e.
including medium, while L is only low. Plus (+) and minus (-) signs
highlight small variations on the precision for that particular technique, i.e.
higher or lower respectively.

does not support interactivity. Pen-and-paper can support limited
interaction when it is combined with the WOz technique. To support
more dynamic interactions, designers are forced to either use software
prototyping, usually restricted to certain interaction styles, or program
with code, limiting the participation of non-developers.

In summary, previous research analyzed prototyping from a process
view and a product view. From a process view, prototyping serves
different purposes, ranging from the exploration of ideas to the eval-
uation of functional systems. From a product view, prototypes filter

and manifest different characteristics of the system under design.
This dissertation investigates early-stage software prototyping tools

that let designers:

• reuse previous prototypes to iteratively explore multiple varia-
tions; and

• prototype high levels of interactivity as fast as non-interactive
paper prototyping.
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V I D E O P R O T O T Y P I N G





3
W H Y V I D E O P R O T O T Y P I N G ?

Pen-and-paper is widely used when designing and communicating
interactive systems, especially for rapid prototyping (Beaudouin-Lafon
and Mackay, 2003). Sketching on paper has well-known benefits (Bux-
ton, 2007): it does not require technical skills, is inexpensive –in time
and money– and, as a consequence, is easy to throw away. Paper excels
in representing static visual properties and physical transformations
such as moving paper elements (Greenberg et al., 2012). However,
paper has some limitations; for example, it is difficult or impossible to
create dynamic transformations that continuously re-shape or mod-
ify the design elements, such as re-sizing or stretching elements or
modifying colors and feedback in response to continuous user input.

During a paper prototyping session (Snyder, 2004), a user interacts
with the prototype, while one or more designers, or wizards, play the
role of the computer. With this technique, the prototype is depicted
by a collection of paper elements ranging from imprecise hand-drawn
sketches to highly refined printed images. When the design changes
or when exploring variants, instead of modifying the existing paper
representations, they are thrown away and new ones are quickly
created. The user can simulate the interaction over the paper prototype
to communicate a rough idea, such as tapping with a finger to simulate
a mouse click instead of using an actual indirect input device. The
Wizard of Oz (WOz) technique (Green and Wei-Haas, 1985) can create
more realistic prototypes when the wizards conceal their actions. The
WOz technique is not limited to paper and can be used, e.g., with a
video projector to create a more compelling setup. While both paper
prototyping and WOz can also be used for user evaluation with real
users, this dissertation only focuses on their application during early-
stage prototyping.

Video prototyping (Mackay, 1988; Mackay, 2002; Mackay and Fa-
yard, 1999) combines paper and video with the WOz technique to
capture interaction, and to communicate and reflect about interaction
design. Videos can range from an inexpensive recording of a traditional
paper prototyping session (Rettig, 1994) to a high-budget video proto-
type (Tognazzini, 1994) requiring specialized equipment (Bardram et
al., 2002). In this work, I focus on using video during early-stage
design (Vertelney, 1989) rather than during other research activi-
ties (Mackay et al., 1988). Video is an extremely flexible medium
that accommodates several aspects of the design, such as the user
interface, the user interactions, and even the context of use. Video
provides additional prototyping capabilities, such as jump cuts for sim-

27
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ple appear/disappear effects or adding shots for contextualizing the
user and the system within a story. However, despite these qualities,
traditional video prototyping has some limitations.

Firstly, while it is reasonably easy to make corrections or discard
paper sketches, video is not as forgiving. Shooting video is a time-
consuming activity: careful planning is required to coordinate multiple
designers working simultaneously as writers, directors, scenographers
and actors. Also, current video digital tools are not specifically targeted
to interaction design, leaving the planning as an ad-hoc process, or
only focusing on post-hoc video editing. In other words, current tools
encourage designers to capture as much as possible and craft the final
artifact in post-production. However, video prototyping belongs to
the rapid prototyping family of techniques and should not rely on a
laborious post-production process to produce a quick prototype. How
can digital video tools for interaction design help designers rapidly
create video design artifacts within a single design session?

Secondly, using video together with paper hinders some of the
benefits of using paper alone. Depending on the audience of the
video, the wizard’s trickery might need to be concealed, increasing
the time and cost to produce a prototype. Introducing changes in
the paper prototype creates inconsistencies with previously recorded
scenes, leaving designers with three choices: sacrificing the consistency
throughout the video, fixing the affected scenes in post-production
editing, or re-shooting all the affected scenes. How can we preserve
the consistency of the design, avoid costly post-production edits and
reduce repetitive re-shooting?

My goal is to provide better support for video prototyping by
creating digital tools that aid during the planning and composition of
the video prototype artifact. First, I present related work on early-stage
prototyping tools and techniques with a focus on video-based tools.
Then, I report on a questionnaire study that investigate the current
barriers that designers encounter when using video for prototyping.

3.1 related work : early-stage prototyping tools and

techniques

In recent years many academic and commercial tools have emerged to
support the prototyping of graphical user interfaces (Silva et al., 2017).
While pen-and-paper is one of "the most widely used prototyping
medium" (Carter and Hundhausen, 2010), some researchers argue that
informal computer-based tools might better support the prototyping
of interactive behaviors (Bailey and Konstan, 2003). In the following
literature review, I am reviewing early-stage commercial tools1 and
then focus on video-based tools.

1 I will cover academic computer-based tools in Part ii.
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3.1.1 Commercial tools

Commercial tools have evolved from the graphic design tradition,
starting from sketching tools but currently focusing more on "pixel-
perfect” designs (Vinh, 2015), with graphic-authoring tools such as
Adobe Illustrator or Bohemian Sketch (Bohemian BV, 2009). However,
most of these tools do not target early-stage design as they focus on the
final look rather than the feel. The few commercial tools that support
custom behaviors require visual or textual programming skills, such
as Origami (Facebook, 2013) or Framer (Framer BV, 2015). Lee et al.
(2017) observe that much of the interactive behavior remains as textual
descriptions due to the cost of creating dynamic prototypes, even for
professionals.

Some tools extend traditional graphics authoring to support anima-
tions and effects, such as Flinto (2010), but they ignore the role of user
inputs and contexts of use. Only a handful of commercial tools sup-
port informal early-stage prototyping, e.g., by using paper-in-screen
techniques (Bolchini, Pulido, and Faiola, 2009). One of these tools is
POP, which lets designers create simple screen-flows by connecting
pictures of paper prototypes through digitally defined hotspots or
"actions points" (Marvel Prototyping Ltd, 2012). However, while POP
supports multiple transition animations, these can only be executed
through discrete actions, e.g., a finger tap.

To mimic dynamic interactions many designers use presentation
software such as Microsoft PowerPoint or Apple Keynote (Khella
Productions Inc, 2013). While this is suitable for some use cases, e.g.,
Windows, Icons, Menus, Pointer (WIMP) and mobile applications, the
predefined animations only include effects and transitions among
slides, thus covering a tiny subset of all the available dynamic effects
that designers might want to explore.

Professional designers also use video editing software, such as
Adobe After Effects, to prototype the look of continuous interactions
with high visual fidelity videos. For example, Luciani and Vistisen
(2017) use animation-based sketching techniques with professional
editing tools, such as Adobe Premiere. However, current approaches to
video editing are complex and time-consuming, which conflicts with
the goals of early-stage prototyping. For example, VideoSketches (Zim-
merman, 2005) uses photos instead of videos just to avoid the high
cost and production issues of creating video scenarios.

The benefits of video as a design tool have been investigated for a
long time (Mackay et al., 1988). More recently, Wong and Mulligan
(2016) have studied the use of concept videos not only to illustrate
future artifacts but also to embed the design in a broader context.
Interestingly, Dhillon et al. (2011) have found no differences in the
quality of feedback between a low-budget fidelity and a high-budget
video prototype.
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In summary, current commercial tools support the creation of re-
fined prototypes, and are therefore more appropriate for mid/late
stages of the design, while early-stage tools lack features to explore
the details of continuous interaction. In this dissertation, I explore how
to provide an enhanced video prototyping workflow as quick as low-
budget video prototyping but also featuring capabilities to illustrate
custom dynamic interfaces found in high-budget video prototyping
(Figure 3.1).
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Figure 3.1: Commercial prototyping tools are ill-equipped to support rapid
prototyping and highly dynamic interactions. I want to increase the speed of
video prototyping while at the same time increasing its power to prototype
custom and dynamic behaviors.

3.1.2 Video-based Tools

HCI research on tools to support video manipulation has different
goals, such as improving video editing or video playback. For video
editing, Laces (Freeman et al., 2014) lets casual video editors create
video effects during capturing. Other tools focus more on professional
workflows, such as rotoscoping2 (Li et al., 2016), i.e. tracing to create a
silhouette to extract an object from a scene and use it in another. This
work aims to reduce editing as much as possible or use it only when
it is relevant for exploring or communicating an interaction.

Video prototyping was introduced in the late 1980s as an effec-
tive medium for prototyping highly interactive systems (Mackay,
1988). Both, video prototyping and WOz are iterative design tech-

2 For an example of the technique see the music video of "A-ha - Take on me" https:
//imvdb.com/video/a-ha/take-on-me

https://imvdb.com/video/a-ha/take-on-me
https://imvdb.com/video/a-ha/take-on-me
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niques (Mackay, 1988; Mackay and Davenport, 1989). Video has been
shown to be useful for a variety of activities such as user research,
teleconferencing, image processing, etc. (Mackay et al., 1988).
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Figure 3.2: Simplified version of the design framework presented by Mackay,
Ratzer, and Janecek (2000). The framework presents two main domains on
the vertical axis: technology and use. The horizontal axis illustrates that
design activities work on the abstractions and the details of each of these
domains. Each activity has a video artifact as input and as an output. The
four main considerations in the design framework are interaction techniques,
design principles, context of use and interaction patterns.

Interaction designers need to navigate between the technology do-
main and the user domain (Figure 3.2). According to Mackay, Ratzer,
and Janecek (2000), "both domains involve an inherent tension be-
tween abstractions, which ensure coherent design, and details, which
ensure that the system actually works in the real world". In this design
framework, the authors show how video artifacts helped a design
team to integrate the abstractions and details of the technology do-
main and use domain. Video artifacts act as the input as well as the
output of each design activity. One of the main benefits of video is
that "they capture not only the basic functions of the software, but also
more subtle considerations of the software as it is used in real-world
contexts" (Mackay, Ratzer, and Janecek, 2000).

3.1.2.1 Video Evaluation and Observation

Designers use video as a medium to persist instances of users in-
teracting with an already existing system, i.e. video observations, or a
functional prototype, i.e. video evaluations. Video observations of user
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interacting with the current system can illustrate usability problems
and help designers choose the appropriate interaction techniques for
the new system. On the other hand, when a design idea is materi-
alized in a functional prototype, it is common to record the session
for a posterior evaluation and to detect interaction patterns. How-
ever, recording a whole session without a clear structure generates
videos that are difficult to organize and that require a time-consuming
process to extract relevant information (Muller, 1991).

Researchers have presented multiple tools to aid video analysis (Mackay
and Beaudouin-Lafon, 1998; Mackay and Davenport, 1989). For exam-
ple, ChronoViz (Fouse et al., 2011) aggregates multiple data sources,
e.g., movement, position and physiological data, with the video data
under analysis to create time-coded annotations. Similarly, SceneSkim (Pavel
et al., 2015) integrates other data sources such as captions, scripts and
movie summaries to navigate the video.

Another approach is to use physical tokens to represent digital
video clips. Video Mosaic (Mackay and Pagani, 1994) combines paper
representations with digital video to layout out time-based representa-
tions in a physical space. Buur and Soendergaard (2000) also explored
this idea with the Video Card Game: video segments are represented
by physical cards that developers can use in design discussions to
highlight relevant information. Sokoler and Edeholt (2002) extended
this idea with VideoCards by adding video playback control using RFID
(Radio Frequency Identification) tags on the cards.

Reflecting over the current user interaction patterns and analyzing
the created prototypes in context are key activities in an iterative
design process. Video can be used to persist user observations with
the new prototypes or existing systems. However, in this dissertation, I
am focusing on the creation rather than the analysis of video artifacts.

3.1.2.2 Video Ideas

According to Greenberg et al. (2012), "design is putting things in
context". Video is a material that allows expressing interaction de-
sign ideas in a contextualized way. For example, video brainstorm-
ing3 (Mackay and Fayard, 1999) extends brainstorming (Osborn, 1963)
with video artifacts, in order to show and act the proposed ideas.
Similarly, Binder (1999) proposes that users become actors and create
improvised scenarios in the context of a participatory design session,
i.e. the goal is to improvise designs "on location". According to Binder
(1999), video is a concrete and open medium that help designers and
users to minimize vocabulary mismatches.

Video flexibility allows for alternative storytelling techniques, such
as interaction relabeling and extreme characters (Djajadiningrat, Gaver,
and Fres, 2000). In interaction relabelling "participants are asked to

3 for a detailed explanation see (Mackay, 2002).
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consider an existing product, and, pretending that it is the product to
be designed" (Djajadiningrat, Gaver, and Fres, 2000). By using extreme
characters, such as designing for the Pope or a drug dealer, designers
are encouraged to go beyond the average user and highlight "issues
such as secrecy, status, and autonomy" (Djajadiningrat, Gaver, and
Fres, 2000).

Video ideas, as well as prototypes, can have different levels of visual
fidelity. In the context of a participatory design session, "quick and
dirty" video ideas might suffice. However, when time and money are
not a limitation, designers can use other professional movie techniques
to create more elaborated "concept videos"4 (Wong and Mulligan,
2016). For example, Vistisen and Poulsen (2017) argue that current
"corporate vision videos" might have a place in participatory design
beyond been only used as persuasive or marketing artifact. Wong and
Mulligan (2016) propose the use of concept videos to create design
fictions where the future artifact can be embedded in a completely
new contextual world or fictional reality.

In terms of storytelling, there are few tools that support the creation
of rich stories without the burden of the high visual fidelity approaches.
For example, Improv Remix (Freeman and Balakrishnan, 2016) is
a sophisticated tool that allows improvisation in combination with
digital video. The system records and reproduces video in a theatrical
stage, where performers can control the system with whole-body
gestures. One actor can record several improvisations that the system
can combine in a final unique presentation.

Another way of reducing the cost to create these video ideas is to
re-purpose existing expressive mediums such as games. For example,
Machinima prototyping (Bardzell et al., 2006) consists of creating a
story by reusing the characters and scenarios of an existing 3D game.
Players can record audio and perform actions that represent a story
within the provided virtual world. Machinima prototyping allows
a quick illustration of ideas but it is constrained to the graphical
elements provided by the selected game, such as the characters, items,
textures, etc.

3.1.2.3 Video Prototypes

Video ideas are aimed at small and focused illustrations, while video
prototypes tell a holistic story of the user interacting with the envi-
sioned design to solve the identified problem. For prototyping, video
becomes not only a substrate where the wizard’s and user’s actions
are persisted but also the material to mold the prototype itself. In this
dissertation, I am focusing on video as a medium to aid during the
prototyping of interactive systems (Vertelney, 1989).

In the early 1990s, the Human Interface Group at Apple used video
as a design tool to create future products; for them, "designing of-

4 For more examples see paragraph 3.1.2.3



34 why video prototyping?

ten meant building" (Vertelney, 1989). Vertelney (1989) differentiates
between five types of video prototyping techniques: storyboards, ani-
mated drawings, cutout animation, animated objects and computer
animations.

Storyboards resemble a comic book, i.e. "juxtaposed pictorial and
other images in deliberate sequence, intended to convey information
and/or to produce an aesthetic response on the viewer" (McCloud,
1993), but they have a different purpose and audience. Filmmakers use
storyboards to outline the sequence of events in the film, the shots and
the scene composition. In a similar way, designers use storyboarding
to guide the recording of the video prototype (Figure 3.3).

Figure 3.3: Storyboards help designers to organize the sequence of events
before recording a video prototype. Here, each panel represents the
computer interface. The top-left corner illustrates the user actions, i.e. mouse
inputs. The text below each panel explains the user inputs and the system
responses. Figure from Vertelney (1989).

stop-motion techniques To transform storyboards from static
representations to dynamic ones, Vertelney (1989) mentions the use
of several stop-motion techniques. For example, animated drawings

use simple paper sketches. A background sketch is multiplied with a
photocopier, and then, interface elements and system responses are
drawn on top of this base sketch (Figure 3.4). The drawing represents
a sequence of actions that are filmed with an overhead camera one
at a time, i.e. trying to reach 24 frames per second, to transmit the
effect of motion to the audience. However, this technique is extremely
time-consuming.

To reduce the workload of filming one frame at a time, designers
can use paper or cardboard cutouts of interface elements, e.g., to
illustrate an object being dragged. The designer places the cutout on
top of the background and makes it react according to the user inputs,
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Figure 3.4: With animated drawings, a background is copied and reused.
Sketches drawn on top of each background represent the look of the
interface at short time intervals. When successive images are filmed at 24

frames per second they create the illusion of motion. Figure from Vertelney
(1989).

e.g., the designer can manipulate the objects in the same way that
a puppeteer moves a stick puppet. Another technique is to use an
acetate paper to overlay a transparent layer over the cutouts, in order
to represent elements such as the mouse’s cursor moving on top of the
UI (Young and Greenlee, 1992). Using cutouts reduces the burden of
pausing, filming, rearranging, resuming by recording a continuous film
sequence without interruptions (Figure 3.5). An interesting tool that
supports this type of animation with paper cutouts but augmented
with digital video is Video Puppetry (Barnes et al., 2008). However, this
tool is targeted at artists and not interaction design, e.g., it does not
allow quick iteration and the workflow emphasizes live performances.
Also, this technique simplifies the simulation of movements such as
translations and rotations but does not easily support deformable
transformations, such as scaling a window or manipulating three-
dimensional objects.

For 3D interactions, designers can create a physical model, e.g.,
with foam core, to prototype 3D spaces and minimize the burden
of highly detailed stop-motion techniques (Figure 3.6). For example,
Bonanni and Ishii (2009) propose the use of stop-motion to prototype
tangible interfaces. Vertelney (1989) suggests concealing the wizard’s
movement of the objects by using transparent fishing lines or magnets
attached to the objects and hidden from the camera. However, this
technique only supports transformations that are actually possible to
perform in the physical world.
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Figure 3.5: By using cutouts to represent movable objects, designers avoid
laborious stop-motion. The cutouts represent interface elements, such as
menus, or annotations in the story, such as speech bubbles. Figure from
Vertelney (1989).

computer animations The previous techniques provide differ-
ent "prototyping speeds" –some more time-demanding than others–
but all had a low threshold (Myers, Hudson, and Pausch, 2000), mak-
ing them easy to use. However, all of them lack mechanisms to support
iteration and organization of the design, i.e. they just focus on the
artifact creation and not on the design process. Making modifications
to the design forces designers to re-shoot or completely change the
prototype without any help from the tools. For example, a modifi-
cation of the background affects all the frames using that particular
background.

To overcome these iteration issues, Vertelney (1989) proposes com-

puter animations and computer scripting. One of the first systems to
create animated sketches was Genesys (Baecker, 1969). Genesys is
a remarkable system that introduced many techniques for creating
animations by examples using an electronic stylus5. For example, an
animation could be created by drawing individual sketches or by mak-
ing a shape follow a drawn path. Motion behaviors could be reused
across sketches, and individual keyframes could be modified as well
as interpolation curves.

More recent desktop animation software, such as Adobe Flash or
Adobe Director (formerly Macromedia Director, formerly MacroMind
VideoWorks) commoditized the creation of computer animations on
personal computers. Initially, VideoWorks only supported black and
white non-interactive animations, but subsequent versions added sup-
port for interactivity through the GUI or scripting languages. These

5 https://www.youtube.com/watch?v=GYIPKLxoTcQ

https://www.youtube.com/watch?v=GYIPKLxoTcQ
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Figure 3.6: Physical models can represent 3D interactions. The same
stop-motion techniques applied to 2D also work for 3D prototyping. The
camera can even move around the physical space to prototype navigation
alternatives. Figure from Vertelney (1989).

systems typically use timelines to create keyframe animations with
drawings, images and text. Mainstream professional video editing
software, such as Adobe After Effects or Apple Final Cut Pro, include
some of these features on their video editing workflows, blurring the
lines between animation and video editing (Vistisen, 2016).

Another popular tool was HyperCard (Goodman, 1998): a system
for non-developers to create interactive information following the
metaphor of stackable virtual cards. In HyperCard, each card contains
graphics, text and buttons. User interactions on the cards, e.g., pressing
a button, can bring another card to the front or execute extra actions,
such as playing a sound or running a database search. Besides pro-
viding WIMP widgets to set up the relationships among the cards for
non-programmers, HyperCard provides a scripting language, called
HyperTalk, for further customizations (Listing 3.1). HyperTalk influ-
enced ActionScript, the scripting language used in Adobe Flash. More
sophisticated prototyping tools that allow the creation of animations
emerged in recent years. For a review of those tools see Section 6.2.2.

In order to easily create video prototypes with custom animations,
we need tools that do not require symbolic manipulations and allow a

Listing 3.1: A simple button script written in HyperTalk that reveals the
next card after a mouse press

1 on mouseUp

2 go to next card

3 end mouseUp
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higher prototyping speed than programming-based tools. For example,
K-Sketch (Davis, Colwell, and Landay, 2008) lets amateurs create
animations by drawing their motion paths. In order to animate the
sketch of a rock sliding down a slope, the designers activate the
recording mode and drag the sketched rock following the slope line.
K-Sketch records the motion path and after pressing play, the sketch
moves according to that path. To make the rock roll at the same that
it slides, the designer reactivates the recording mode and rotates the
rock from its center anchor. Unfortunately, K-Sketch assumes that the
new recorded motion path, i.e. the roll, should override the previous
one, i.e. the slide, leaving the rock rolling but not sliding. To fix this,
the designer presses "Fix last motion" and the system provides three
alternatives, one being roll while sliding.

I believe that this type of informal animation interfaces can be ap-
propriate for creating video prototypes. However, few tools combine
animation and video with direct manipulation. One exception is Di-
rectPaint (Santosa et al., 2013), a system that lets illustrators sketch
over video by using trajectory-based interaction techniques and opti-
cal flow6. DirectPaint takes a different approach than timeline-based
mainstream animation tools that decouple time and space. Instead,
DirectPaint combines time and space manipulation in the context
of the current sketch with motion trajectories. DirectPaint uses the
trajectory of the sketch as an object that can be manipulated to change
animatable properties, such as position, size or opacity. While this
tool is targeted at creative artists, I am interested in using similar
techniques to enable interaction designers to quickly video prototype
custom behaviors.

high-budget video prototyping While computer animations
increase the ease of adding modifications to the design, they also
increase the time to create the prototype. Even worse, computer ani-
mations increase the entry threshold for non-expert users by requiring
programming knowledge to prototype custom behaviors.

Another alternative, particularly when the designers expect a pol-
ished visual look, is high-budget video prototyping. Two popularIn this dissertation, I

use the term video

prototyping and

low-budget video

prototyping as

synonyms unless

stated differently.

examples in the literature are the "The Knowledge Navigator" (Dub-
berly and Mitsch, 1992) and "The Starfire" (Tognazzini, 1994) videos.
"The Knowledge Navigator"7 tells the story of a professor using a vir-
tual agent to organize his day. The professor interacts with the agent
through voice commands while the system is running on a tablet-like
foldable device (Figure 3.7). Other technologies illustrated in the video
include remote collaboration, shared simulations, and hypertext. The
producers of the ∼5 minutes movie "had about six weeks to write,

6 a video analysis technique that generates a vector field of the apparent motion of the
selected pixels between frames

7 https://www.youtube.com/watch?v=mE2Z30pyw8c
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shoot, and edit the video—and a budget of about $60,000" (Dubberly
and Mitsch, 1992). It is important to note that "these pieces were mar-
keting materials": the intention was not to create a new interface but to
increase computer sales "by suggesting that a company making them
has a plan for the future" (Dubberly and Mitsch, 1992).

Figure 3.7: A video prototyping of a professor interacting with a virtual
agent. The professor requested the agent to copy information about
"deforestation in the Amazon" in the physical card-storage device. From
"The Knowledge Navigator" by Apple Inc.

"The Starfire"8 video prototype illustrates an "integrated computing-
communication interface" (Tognazzini, 1994). Designers turned to
high-budget video prototyping, instead of just computer animations,
because they wanted to show the experience of using the system. "The
Starfire" is mainly shown in a "curved desktop display" that has a
blue-screen replaced with the interface in post-production (Figure 3.8).

Tognazzini (1994) wanted to highlight not only how well the sys-
tem worked but also how to recover from unexpected situations. For
example, in "The Knowledge Navigator" the intelligent agent never
misinterpreted the voice commands of the professor. "The Starfire"
included instances of unrecognized vocal commands and unintended
actions, such as scanning a sandwich laying on top of the desk. Tog-
nazzini (1994) makes several observations about high-budget video
prototyping:

1. "Interaction techniques most easily accomplished on film may be diffi-

cult or even impossible to actually implement on the computer."

2. "The actors in a video prototype will show no distress in using the

interface, regardless of its quality."

8 https://www.asktog.com/starfire/
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Figure 3.8: The prototype of an interactive curved desktop display. Placing
objects on the flat area allows the system to scan the contact area, e.g., to
scan a document. The workstation can be controlled with a mouse or via
voice commands. From "The Starfire" by Sun Microsystem Inc.

3. "In real life, things do not always work as planned. In film, they will

unless you are very careful."

4. "Hardware in video prototypes can be complex to the point of impossi-

bility and still appear to be easy to fabricate."

5. "In the film medium, the simpler and less direct the physical interaction

with the interface is, the less expensive it is to film it."

6. "The first goal in a video prototype is to communicate a vision to the

viewing audience. The second goal is to design a usable system."

7. "Video prototyping offers the opportunity to explore social, as well as

technical issues."

These types of video prototypes require a massive amount of plan-
ning. Multiple locations, actors and visual effects are needed to com-
municate all the details of an interactive system within a story with
high visual requirements. In the case of "The Starfire", the video in-
cluded locations such as an airport with dozens of extras, an outdoor
scene with a car filmed with a professional camera crane, and a con-
ference room with a video conferencing system based on holograms.

Some researchers encourage high-budget techniques to emphasize
the context of use in the prototype. For example, Bardram et al. (2002)
and Halskov and Nielsen (2006) propose using virtual video artifacts cre-
ated in a recording studio (Figure 3.9) with blue screens and theatrical
props to mix physical and digital 3D objects.
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Figure 3.9: The Virtual Studio at CAVI (Centre for Advanced Visualization
and Interaction) in Aarhus, Denmark.

Halskov and Nielsen (2006) say that a "general estimate of the
resources put into the various productions is as follows: first, creation
of the story line and the 3D models, 10 days; second, production in
studio and on location, 8 days; last, post-production including voice
over: 2 days". This is a lengthy process when compared with rapid
prototyping techniques. However, once the virtual video prototype
is created, modifying the prototype might be faster than with rapid
prototyping, particularly when dealing with large physical objects.

Another problem with these "virtual" techniques is the decoupling
between actual experience and acting. In some cases, actors interact
with a blue screen that does not respond to the user inputs during
recording, i.e. the interface is embedded in post-production. However,
using a monitor with a preview of the final composition helped partici-
pants. Thanks to this monitor, the actors had a sense of the prototyped
environment and remembered being on the envisioned set rather than
in the recording studio (Halskov and Nielsen, 2006).

These high-budget techniques require bulky equipment and large
studios. However, the advent of mobile interaction allowed video
tools to move from the studio and into the wild (Jokela, Karukka,
and Mäkelä, 2007). For example, Motif (Kim et al., 2015) is a mobile
storytelling tool that combines story patterns from curated videos to
facilitate the creation of stories by amateur users. Mobile phones also
opened the door to inexpensive ways of exploring new technologies,
such as AR. For example, Sá et al. (2011) describe an exploratory
experiment to video prototype an AR experience, a location-based
social application called The Friend Radar. Most participants that
watched the 30 seconds video prototype "thought that it was easy or
very easy to understand the concept" (Sá et al., 2011). Berning et al.
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(2013) presented an AR tool that extends the cameras of mobile devices
with a lens to record panoramic video. The recorded 360° videos can
be edited and played on the mobile device (Berning et al., 2013).

In summary, there are two main approaches to video prototyping:
low- and high-budget. Low-budget techniques, i.e. rapid video proto-
typing, often lack the means to prototype non-idiomatic interactions."When the design

situation handles

technologies or

interactions with few

or no conventions

the design situation

becomes

non-idiomatic, and

design idioms often

become insuffi-

cient." (Vistisen,

2016)

Stop-motion techniques paired with digital video editors, such as
Adobe Premiere or Final Cut Pro, provide an interesting balance be-
tween low- and high-budget techniques (Löwgren and Jonas, 2004).
However, mainstream video editors are not targeted at interaction
design and stop-motion is a laborious and time-consuming process.
Digital tools, such as scripting languages and computer-based anima-
tions, help designers prototype dynamic interactions, i.e. they increase
the ceiling; however, they also demand designers with programming
skills or vast expertise with these tools, i.e. they increase the entry
threshold. The more realistic techniques, such as high-budget video
prototyping, are only implementable with the right equipment and
they generally require the intervention of professional videographers
and editors. Also, these realistic approaches usually serve a more per-
suasive role rather than an exploratory one, diminishing the incentives
to generate multiple alternatives.

Dhillon et al. (2011) conducted a case study comparing video proto-
types with low and high visual fidelity. Their results suggest that there
are no differences between these video prototyping styles "regarding
the amount or quality of feedback one should expect from a low or a
high visual fidelity video" (Dhillon et al., 2011). For this reason, I want
to create video prototyping systems that support dynamic interactions
but maintain the sketchiness of early-stage techniques to encourage
exploration.

3.1.3 Video Prototyping Systems

There are few examples in the literature of video prototyping systems
targeted explicitly at interaction design. miniStudio (Kim, Kim, and
Nam, 2016) is a prototyping toolkit that lets designers explore ubiq-
uitous computing spaces (Figure 3.10). A camera-projector system
detects hidden markers on small paper figures and projects digital
images on top of them. Similarly to the physical models shown in
Figure 3.6, designers manipulate the miniature physical model to
modify the layout. Each tracked element has an identification that
the system uses to trigger certain events, such as location, distance,
motion and orientation. The system is well suited for designers be-
cause it is integrated into Adobe Photoshop. System visual outputs
are coordinated with the programmatic events by following an ad-hoc
naming convention in the exported graphics folders and files. The
manipulation space, i.e. the miniature physical model, and the creation
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space, i.e. the software on the desktop computer, are decoupled, thus
generating indirections and extra work not suitable for a "quick and
dirty" process.

Figure 3.10: The miniStudio system uses projections to prototype proxemic
interaction. Figure from Kim, Kim, and Nam (2016).

My goals are similar to those of DART (MacIntyre et al., 2004),
i.e. supporting early design stages and recording synchronized data.
DART is a rapid prototyping system that overlays graphics on top
of the user’s view by using a see-through display. The DART system
consists of a plugin for Macromedia Director and preloaded code
snippets, i.e. Director behaviors. The plugin integrates the information
from the cameras, the trackers and other sensors. The default behaviors
can be dragged onto the sprites in the scene but new behaviors require
additional coding. Also, the AR experience can be extended by adding
multimedia content, such as video or audio. However, DART assumes
that the designers are expert in Director. In a later study "interviewees
consistently expressed a desire for a tool to support prototyping
without coding" (Gandy and MacIntyre, 2014). Also, DART is focused
on AR interactions but I want to support multiple interaction styles
without requiring coding skills in an early-stage process.

Finally, Remote Paper Prototype Testing or RPPT (Chen and Zhang,
2015) is used to run live testing sessions with real users. A wizard
records a paper prototype with a smartphone camera positioned above
the surface, e.g., a smartphone attached to a bookstand. This video
feed is streamed with an existing video call software, e.g., Google
Hangouts, to the tester’s device. The tester interacts with this video
feed as if it were an interactive UI. At the same time, the tester wears
smartglasses with a camera, e.g., Google Glass, that stream back to
the wizard the user’s view and its location. With this information,
the wizard can give instructions to the tester and update the paper
prototype accordingly. Like RPPT, I believe that live streaming of
paper prototypes is an interesting approach for combining physical
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and digital artifacts. However, RPPT does not let designers iterate over
the recorded video because it is targeted at testing rather than design.
By contrast, I want to help designers create reusable video prototypes
and explore alternatives.

In summary, these systems propose interesting mechanisms but
they either require complex setup or they do not easily support the
modification of the original idea being prototyped. I believe that video
prototyping tools should help interaction designers organize the video
session by themselves and manipulate the video material to create
non-idiomatic interactions.

3.2 how do interaction designers use video today?

This section presents

work done in

collaboration with

Lai Linghua and

Wendy Mackay

I was introduced to the video prototyping technique during my master
program in Human-Computer Interaction and Design at Université
Paris-Sud. Wendy Mackay taught a course on Designing Interactive
Systems and the final assignment was the presentation of a video
prototype. After this hands-on experience, it was clear to me that
video is a powerful medium for prototyping. However, I had worked
in software companies and design agencies before and I had never
seen video used as a rapid prototyping technique. Was this a general
phenomenon? If so, what are the barriers that designers encounter
when using video for prototyping?

3.2.1 Method

To answer the previous questions we decided to conduct a ques-
tionnaire study. We decided to distribute an online questionnaire to
collect information about current and professional uses of video for
prototyping from interaction design students, professionals and HCI
researchers.

3.2.1.1 Participants

We distributed the questionnaire through our professional networks,
the university communication channels, and public organizations such
as the Interaction Design Association9. In total, we collected responses
from 34 participants in 11 countries. Most participants have between 1

and 3 years of design experience (Figure 3.11).

3.2.1.2 Procedure

The questionnaire (see Appendix Section A.1) focused on how inter-
action designers and HCI researchers prototype interactive systems
during an early-stage design process. The questions follow the criti-
cal incident interview technique, i.e. concrete questions about recent

9 https://www.linkedin.com/groups/3754

https://www.linkedin.com/groups/3754
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Figure 3.11: Distribution of the participants’ design experience. Half had 1-3
years of experience. The other half: 29% less than one year, 15% between 4-8
years and 6% between 9-12 years. The average experience is 6.8 years.

events are prioritized (Mackay, 2002). Towards the end of the ques-
tionnaire, more open questions enable us to collect richer answers.

3.2.1.3 Data Collection

We distributed the questionnaire online and the answers were auto-
matically saved on an online spreadsheet file.

3.2.2 Results and Discussion

Participants’ work environments are distributed between academic
research in HCI (20 cases) and industry (17 cases), i.e. freelancers,
startups, design firms, and large companies. Some participants had
more than one job, e.g., being a researcher and a freelancer or working
for a startup and a design firm.

We asked participants to reflect on the amount and type of artifacts
used during their most recent project (Figure 3.12). Our results echo
the findings of Carter and Hundhausen (2010): the most widely used
tools are hand-drawn sketches. All participants but one (97%) said
that they used at least one hand-drawn sketch in their project and
30% used more than ten. However, and as a close second place, we
found that computer-drawn sketches are widely used as well. 97%
of the participants said that they used at least one computer-drawn
sketch on their project but only 13% said that they used more than ten
computer-drawn artifacts. The least used design artifacts were video
illustrations (10%), followed by computer animations (9%).

We were also interested in how much time did designers spend cre-
ating these artifacts (Figure 3.13). Only 6% spent more than half of the
design process creating hand-drawn sketches. This is not surprising
due to its value as a rapid prototyping technique. However, 41% spent
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How many design artifacts did you create to explore and express your design  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Figure 3.12: Amount of design artifacts from the most recent project.
Hand-drawn and computer-drawn sketches are among the most created
artifacts. The least created are video illustrations and computer animations
accompanied by a mix of tools, such as software mockups –Android and
HTML5–, prototyping tools –InVision–, and presentation software –Google
Slides–.

half or more of the design process creating computer-drawn artifacts.
Two participants reported spending more than 80% of the design time
creating static digital drawings.

Not many participants reported the time spent when creating com-
puter animations and video illustrations. However, from the 12 partici-
pants that reported their time spent while creating video illustration: 4

spent 0-20%, 3 spent 20%-40%, 4 spent 40%-60% and 1 spent 60%-80%.
One participant reported spending more than 80% of the design time
creating computer animations.

The answers were varied when we asked about how they used
these artifacts to explore designs. However, most participants reported
that the most time-consuming activities were the creation of refined
computerized design artifacts:

Most of the time I have spent with high fidelity prototypes

Most participants described a simple progression from hand-drawn
sketches to computer-drawn sketches, while others tried to avoid
digital sketches:

I start with hand-drawn sketches, to quickly ideate what the

prototype will look like and how it will act. Then I usually

translate that directly to the high definition prototype. I rarely

do computer drawn sketches - mostly when I’m not sure about
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How much time did you spend to create these artifacts? [% of the whole design process]
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Figure 3.13: How much time was spent creating these design artifact? For
59% of the participants, the creation of hand-drawn sketches only took
between 0-20% of the process. Most participants said that computer-drawn
sketches took between 0-60%. However, one participant responded that
creating the computer-drawn artifacts took between 80%-100% of the time.
Another participant reported that video and computer animations took
between 60%-80% of the process.

the interaction, I would prototype 3-10 iterations of the same

module, until I get it right. This is either in computer-drawn

sketches and wireframes or in high definition prototypes.

In terms of video usage as an early-stage tool, a participant said:

In the beginning, when brainstorming about the idea, I used

papers and pen. And then we wanted to make a paper prototype

(videotaped) so we needed to make the physical mock-ups. I

needed to make the computer-drawn and animations when I had

to present the idea to other people in a semi-formal presentation.

That took quite long to make. And finally, I started coding the

application prototype, from which I could already make the video

illustration. That took the longest, of course, but once I had it

it’s easier for me to keep working on it so it evolved into the real

implementation rather than just a prototype.

We asked participants about their use of video. In general and
beyond their most recent project, 62% of the participants (21/34) used
video for interaction design (Figure 3.14a). Most of them used video
to illustrate the step-by-step details of the interaction (47%) and to
figure out how a user moves from one state to another (38%).

We also asked if they used video to communicate specific user
interactions to different stakeholders (Figure 3.14b). Only 21% of the
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In general, I use video to: 

To illustrate the step-by-step details of the interaction

I do not use video

To figure out how a user moves from one state to another

To compare alternative types of interaction

To give a better understanding to other people of how it would work in real life

Make the story line and customer journey clarified 
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To communicate the 'story' of a product
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(a) 47% of the participants (15/34) use video to illustrate details of the interaction and
38% (13/34) to figure out how to transition from one state to another.

I use video to communicate specific user interactions to ... 

Clients or potential funders

Users

Other designers

Management
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I do not use video to communicate to others
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(b) 79% of the participants (27/34) communicate specific user interactions through
video with clients, potential funders, and users.

I use video to document: 

 

I do not use video to document my design

Final design

Alternative design possibilities

Intermediate design stages

During the brainstorming

0 % 25 % 50 % 75 % 100 %

3 %

21 %

24 %
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(c) 44% of the participants (15/34) do not use video to document designs. Of the rest,
41% (14/34) use video to document the final design.

Figure 3.14: We asked participants about their use of video as a design
(Figure 3.14a), communication (Figure 3.14b) and documentation tool
(Figure 3.14c).
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participants (7/34) do not use video to communicate interaction to
others. The vast majority used video to communicate with the clients
(53%) and final users (47%) and, to a lesser extent, to communicate
with other designers (35%), managers (32%) and software developers
(24%).

Additionally, we asked if they used video as a documentation arti-
fact (Figure 3.14c). 44% of the participants (15/34) do not use video
for documentation. From those who did, most documented the final
design (44%), but only a few documented alternative design (24%)
or intermediate designs (21%). It is surprising to see that only one
participant explicitly mentioned using video as an ideation tool.

Finally, we asked about the barriers to using video, in order to
understand why the majority of the participants (67%) did not use
it as a design tool (Figure 3.15). They two main barriers are the lack
of time or resources to edit video (76%) and to record video (68%).
Other barriers included the difficulty of finding relevant video clips
(21%) and the lack of access to video equipment (21%). Only 15%
of the participants (5/34) did not find video useful for exploring or
expressing the design.

What are the barriers for using video?

 

Lack of time or resources to edit video

Lack of time or resources to prepare for and record video

Too hard to find relevant video clips

Lack of access to video equipment

Video is not useful for exploring or expressing the design

Video quality is not sufficient

Difficult to analyse the recordings

Too much data generated via video
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Figure 3.15: The main barriers to using video are the lack of time or
resources to edit (76%) and the lack of time or resources to prepare for and
record video (68%).

Many participants believe that having dynamic artifacts is critical
to explore and refine interaction design ideas, yet few chose video
as an early-stage tool. Due to the cost of creating a video artifact,
most participants only use video to document the final design rather
than to explore early-stage ideas. In terms of interaction prototyping,
participants are forced to learn complex prototyping tools or directly
code interactive prototypes, due to the barriers to using video.

This study helps to identify the main barriers to using video, i.e.
recording and composing video is a time- and resource-intensive task.
In the following chapters, I present two video prototyping tools created
specifically to reduce these two barriers in early-stage prototyping.
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V I D E O C L I P P E R : P L A N N I N G V I D E O C A P T U R E O N
A N I N T E R A C T I V E S T O RY B O A R D

This chapter presents

work done in

collaboration with

Wendy Mackay.

First, I briefly illustrate how a typical video prototyping session un-
folds with a concrete example. Afterwards, I introduce VideoClipper

as a tool to support planning in video prototyping.

4.1 a typical video prototyping session

This example is

based on a real group

of students creating

a video prototype in

the context of a

design course

Initially, an ideation session usually precedes the video prototyping.
Let us consider a group of designers working together. The starting
point could be a problem or need from a potential user group, e.g.,
organizing a night out with some friends. In this case, the design-
ers follow a Participatory Design methodology (Muller and Kuhn,
1993). Mackay (2002) proposes interviewing target users about their
particular problem domain to gather more information. The goal is
to understand more about the problem that the user is facing. Oster-
walder et al. (2014) proposes distilling the job to be done, i.e. what is the
user trying to achieve?, the pains, i.e. what is annoying or troubling for
the user?, and the gains, i.e. what would make the user happier? For
example, for organizing a night out with friends the job to be done is de-
ciding which locations and activities are part of the itinerary. However,
satisfying the preferences of every friend might be time-consuming
and painfully stressful. Finally, users could gain some time by finding
more efficient ways to create the itinerary.

After this analysis, the designers have a better picture of the problem
to solve. Now, they can start proposing potential solutions. In order
to generate ideas, they decide to do a brainstorming (Osborn, 1963).
Brainstorming is a fairly popular technique with two basic goals: defer
judgment and aim for quantity rather than quality. The designers
present several ideas and rank them with a simple majority vote. Once
the team agrees on which ideas should be pursued, they need to
explore them in more detail. This is referred to as "sketching" (Buxton,
2007) or prototyping for exploration (Floyd, 1984). They decide to
create a video prototype to explore the five selected ideas.

The team needs to define a scenario (Carroll, 1995), create a story-
board (Lelie, 2006) and record the prototype in context. A scenario
contextualizes the user’s activities in a real-world setting (Mackay,
2002), it identifies the user, e.g., by using Personas (Cooper, 1995), and
makes explicit the sequence of actions to be performed. For example,
the scenario can describe a group of friends deciding where to go while
they are walking outside or while they are communicating through

51
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Figure 4.1: A digital UI storyboard created in Apple Xcode, focused on the
user interface layout and the flow between screens.

social media. The scenario can also illustrate breakdowns (Mackay,
2002). Social breakdowns, such as a friend disliking a location or
being allergic to a certain food, or technical breakdowns, such as hav-
ing problems with the Internet connection or running out of battery.
Adding these edge cases in the scenario pushes the design to handle
these situations.

The storyboard is a materialization of the proposed scenario, i.e.
a blueprint of the video that the team is about to shoot. There are
different storyboarding techniques, some focused solely on the user
interface (Figure 4.1) while others, as in film-making, are more focused
on the narrative and the overall story (Figure 4.2). In a rapid video
prototyping session, the storyboard is usually drawn by hand, contains
sketches that illustrate the scene and text descriptions working as the
movie script. In our example, one idea was to create an interactive
and collaborative visualization with the potential activities and the
constraints of every friend, in order to facilitate the organization of
the itinerary.
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Figure 4.2: A narrative hand-drawn storyboard that combines sketches with
textual descriptions and sticky notes.
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Figure 4.3: Designers improvise a background of the Eiffel Tower by
sketching over a whiteboard.

Finally, the team starts shooting the video. Designers can record with
a professional camera or with a mobile device. Whichever recording
device is used, it is important to have a firm stand, such as a tripod or a
chair to facilitate re-shooting a similar clip if needed. Designers use art
supplies to illustrate the envisioned idea, such as pen and paper, sticky
notes, markers, etc. They also need to create the scenography for the
video according to the script depicted in the storyboard. Sometimes
it is easy to prepare the "filming set", e.g., when the current location
is the final environment, such as being at the office. Other times
designers need to improvise some props, e.g., designers can draw an
Eiffel Tower on a whiteboard to create a "quick and dirty" background
to illustrate a touristic environment (Figure 4.3).

During recording, it is common to see designers facing unexpected
situations. For example, the designers decided to prototype an inter-
active graph diagram, where each node is an event and the edges
represent, from top to bottom, an ordered sequence of activities. How-
ever, one of the brainstormed ideas was to have edges that "behave like
a rope" instead of straight lines. They decide to illustrate these "curvy
connections" by re-purposing the cable cord of one of the designer’s
earphones (Figure 4.4a).

Designers also wanted to create a sibling relationship between events
by dragging these curvy edges. This might sound too detailed for an
early-stage prototype but the designers really care about the feel of
the interface, i.e., its interactivity. The owner of the earphones was
not happy about cutting the cable to mimic this behavior. Instead,
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(a) Designers re-purpose an earphone’s
cord to prototype the curvy edges.

(b) A transparent paper with a drawing
is positioned below the user’s hands.

(c) Transparent paper is moved to
illustrate the dragging feedback.

(d) The same technique with a mirrored
drawing is used to show the final result.

Figure 4.4: The designers use transparent paper to mimic the dragging
feedback on top of the paper prototype.

the designers decided to use a transparent paper to draw a red line
representing the segment of the edge and drag it on top of the interface.
To make the dragging feedback appear, designers pause the recording
as soon as the actor starts to drag the selected edge. The actor keeps
her hands in this position while the other designers position the
transparent paper with the red edge accordingly, under the user’s
hand (Figure 4.4b). Misalignments with the previous shot can create
an abrupt transition and holding the same position for a long time can
also become a burden for the actor. To show the dragging feedback, the
actor moves the transparent paper alongside her finger (Figure 4.4c).
Designers rely on the same technique to illustrate other changes. For
example, when the actor drags the edge far away from the origin node,
the edge changes its shape, e.g., in this case the drawing is mirrored
(Figure 4.4d).

We just described a simple video prototyping process for one of
the ideas selected after the brainstorming. During the shooting of
the remaining ideas, designers can find scenes that should share the
same background or that have segments of clips similar to previously
recorded scenes. Because they are filming with the camera application
of a smartphone, there is no easy way to reuse these props and
scenes without post-production video editing. Even more, current
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video tools generally see video as a linear stream of data. In order
to present or share their final video prototype, they need to import
all their video files into a video editing tool, such as Apple iMovie
or Adobe After Effects. However, these tools organize the video clips
as a unidimensional stream, which hinders the reorganization of the
clips by their semantic purpose, e.g., repositioning a group of clips
introducing the Personas or showing multiple alternatives to recover
from the same technical breakdown. We believe that videos should be
grouped "as you shoot", to help designers quickly find and organize
the scenes without a context switch to a separate and complex editing
software.

4.2 design goals

In our survey (Section 3.2), the main barriers for video usage in
interaction design are the time-consuming activities of recording and
editing the material. However, the video prototyping process already
features solutions to these problems. The goal is to materialize a design
in the context of a concrete scenario instead of creating a polished
movie aimed at persuading the audience into buying a product. As
illustrated in Section 4.1, capturing during video prototyping should
happen "on the go" and video editing should be avoided as much
as possible (Mackay, 2002). Unfortunately, mainstream video tool
interfaces preclude designers from following these simple guidelines.
Video prototyping exists as a methodology but there is a lack of
tooling.

We want to provide a video tool specifically designed to support
a rapid and mobile video prototyping process. Since the most pop-
ular camera is now a smartphone1, this tool should be compatible
with mobile devices. However, a design team will have difficulty ma-
nipulating multiple videos on a smartphone’s small screen. For this
reason, we think that a tablet device, such as an iPad, provides a good
compromise between mobility and screen real estate.

From previous experience, we observed that designers are generally
more efficient during video capturing when they start with a con-
crete storyboard. However, slightly modifying the storyboard while
shooting is not uncommon, e.g., inconsistencies are detected, new
ideas pop-up, and others are discarded. Pen-and-paper is the default
medium for storyboarding, however, when the final video changes
this specification is rarely updated. We think that a digital storyboard
can complement the shortcomings of the paper-based version.

Finally, we want designers to connect shots without complex video
editing, i.e. we want them to use straight cutting. However, designers
usually want to make objects appear/disappear or move according to

1 iPhone takes top rank as Flickr’s most used camera (2017) https://www.cnet.com/
news/iphone-top-camera-flickr-2017-report/

https://www.cnet.com/news/iphone-top-camera-flickr-2017-report/
https://www.cnet.com/news/iphone-top-camera-flickr-2017-report/
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direct or indirect user interactions. In film-making, creators use tech-
niques such as "invisible cuts" (Bolchini, Pulido, and Faiola, 2009) or
stop-motion (Shaw, 2017) to create these simple effects. In an "invisible
cut"2, shots with slightly different content are edited to look contin-
uous, in such a way that objects can magically appear, disappear or
change. In stop-motion3, pictures with small increments of the action
are recorded sequentially, i.e. frame-by-frame; when the sequence is
played back at a regular speed, e.g., 24 frames per second, the illusion
of fluid motion is created. However, these techniques are prohibitively
laborious for rapid video prototyping.

In summary, current tools encourage designers to capture too much
video and waste time editing it later. We want to take advantage of the
capabilities of digital cameras by providing a structure that supports
disciplined video capture, limits editing, and facilitates reuse.

4.3 video prototyping with videoclipper

Figure 4.5: The VideoClipper’s storyboard view organizes each video
prototype as collection of ordered Lines. Each Line starts with a TitleCard
followed by the corresponding video clips. Designers can open the capture
view by pressing the camera icon on the right.

VideoClipper is a mobile, tablet-based tool that supports both
planning and last-minute video capturing to create a finished, reusable
video artifact at the end of a design session. With VideoClipper

each video prototyping session is organized as a two-dimensional

2 Zach King - Back to school problems (2016) https://www.youtube.com/watch?v=

ApnBwW--188

3 Stop Motion in King Kong (2005) http://www.criticalcommons.org/Members/pcote/
clips/king-kong-stop-motion.mov/view

https://www.youtube.com/watch?v=ApnBwW--188
https://www.youtube.com/watch?v=ApnBwW--188
http://www.criticalcommons.org/Members/pcote/clips/king-kong-stop-motion.mov/view
http://www.criticalcommons.org/Members/pcote/clips/king-kong-stop-motion.mov/view
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interactive storyboard (Figure 4.5). In the same way that a presentation
software, such as Keynote or PowerPoint, organizes the content into
slides, VideoClipper organizes the content into Lines. By default, each
Line starts with a TitleCard, i.e. an editable video frame composed
of text and images that explains the scenario illustrated with the
subsequent shots. While TitleCards provide the context along the
vertical dimension, the horizontal dimension is composed of video
clips. After each TitleCard, the designer can add the corresponding
clips following the description of the TitleCard.

The TitleCard has a dual function: it guides designers during the
capturing process and it explains the scenario to the spectator of the
final video prototype. Designers can edit TitleCards by tapping on
them. VideoClipper provides a simple TitleCard editor that allows
direct manipulation of visual elements, such as text labels and images.
These elements can be moved and resized with the provided handles
(Figure 4.6a). Designers can also change the font size and the align-
ment of the text. Creating a TitleCard for each scene in the paper-based
storyboard lets designers quickly transition from paper to VideoClip-
per. VideoClipper can import images taken with the tablet’s camera
directly into the TitleCard to reuse drawings and annotations from the
paper prototype (Figure 4.6a). VideoClipper automatically transforms
each static TitleCard into a video clip, in the same way as title cards
were used in old silent films. Each TitleCard has a default duration of
two seconds that can be modified.

(a) Text can be align, resized and
moved.

(b) Hand-drawn sketches can be
imported.

Figure 4.6: VideoClipper TitleCard’s editor. The duration of the TitleCard
can be edited with the button on the lower right corner.

To start recording, designers use the capturing view (Figure 4.7).
During capturing VideoClipper shows the storyboard information in
a compressed layout surrounding the camera preview. On the left, only
the initial TitleCards is shown in a single column. At the top, the linear
sequence of clips from the currently selected Line are shown with
an insertion marker, depicted by a blue vertical line. Designers can
change the selected Line by tapping on the corresponding TitleCard
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Figure 4.7: VideoClipper’s capture view. On the left, a column of TitleCards.
On the top, the video clips of the selected Line. In the center, a preview of
the camera, in this case with an active ghost image.

thumbnail on the left. At the center of the screen, VideoClipper

displays a preview of what the camera is currently capturing.
VideoClipper helps designers create simple and rough "invisible

cuts" without video editing. If an object should appear after the user
presses a button, designers first record a clip showing the button press,
then add the new object in the scene, and shoot a second clip with
the hand starting in the same position. We call this technique "rough
stop-motion" when it involves more than two clips. In both cases,
VideoClipper can display a "ghost image" (Figure 4.8) of the last
frame of the clip before the insertion marker. This ghost image helps
designers align the new clip by positioning every object –including
the user’s hands– in the same place as they were at the end of the first
clip. The opacity of the ghost image can be controlled with a slider at
the bottom of the screen. If the designers want to deactivate the ghost
image, tapping the ghost icon toggles it. The ghost image, therefore,
helps designers align two shots live without requiring them to do any
post-editing.

In the storyboard view, video clips and Lines can be moved to
reflect changes in the prototype. For example, to move a clip from
one Line to another, designers can drag the desired clip directly.
Also, if a Line should take place earlier in the final movie, designers
can drag a complete Line (Figure 4.9), i.e. with all the associated
video clips, to the new desired position. These actions can be seen
as video editing, however, this approach is different than working
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Figure 4.8: Adding a ’ghost’ of the last recorded frame lets designers align
the shots to create rough "invisible cuts".

with a paper storyboard and a video editing software. Unlike paper
sketches, VideoClipper automatically reflects changes made on the
interactive storyboard directly into the final movie, which can be
played at any time. Unlike video editing, VideoClipper lets designers
make semantic changes, such as moving a complete scene, instead
of repositioning individual clips. We think this approach encourages
designers to think in terms of a narrative instead of the technical
aspects of video editing.

There are several examples of reusable artifacts in VideoClipper.
The ghost image reuses the last recorded frame as an alignment guide
for a newly recorded clip. Designers can use this translucent view
to create rough "invisible cuts" that depict the interaction, e.g., a
tap of a finger that brings up a new window. One complete Line
is also reusable to create ad-hoc alternatives in the prototype. In
VideoClipper, Lines can be duplicated to create variations of the
scenario or the user’s interactions. In such a branched story, one
parent Line sets the scene while subsequent Lines depict alternative
designs. Complete storyboards can also be cloned. This is useful to
save alternative or intermediate versions or to compare prototypes
after a re-design session.

At the end of the video prototyping session, VideoClipper facilitates
exporting the complete movie. When designers press play, all the
TitleCards and clips are saved into an in-memory video file. Playing
this video file starts from the timestamp corresponding to the selected
Line in the storyboard. This lets designers evaluate the current context
and move backward or forward in time to see the previous or next
scenes. Like any other media file on the device, the created movie can
be shared through any available file-transfer or streaming service.
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(a) Dragging the second Line down. (b) Lines float while being dragged.

(c) 2nd and 3rd Lines are swapped. (d) When dropped the change is saved.

Figure 4.9: Moving Lines in VideoClipper.

In summary, VideoClipper embodies an integrated iterative design
method that rewards discipline but permits flexibility for video proto-
typing. The tool provides a storyboard-style overview for each project,
with TitleCards and thumbnail images, video capture for steady-state
and rough stop-motion filming, editable, reusable TitleCards, and
the ability to display different paths through the video or recombine
videos in new ways for redesign.

4.3.1 Implementation

VideoClipper is an iOS application designed for an iPad tablet. Video-
Clipper uses Core Data to persists the data model (Figure 4.10) in
an SQLite database. VideoClipper relies on the AVFoundation frame-
work (Apple Inc., 2018a) to manage time-based audiovisual media. Key
uses of the framework include: transforming still images –screenshots
of the TitleCards– into video tracks, composing video and audio tracks
in memory to create a preview of the resulting video, and saving video
files into the default Photo Album outside the application.

VideoClipper includes four main screens (Figure 4.1): a list of
Projects, a Storyboard view, a Capture view, and an Edit view –for
TitleCards and video clips–. The Projects view lists the current projects,
which can be played or opened into the Storyboard view. The Story-
board view displays a list of Lines, each with a TitleCard (on the left)
and any number of video clips. Designers can prepare TitleCards in
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Figure 4.10: The VideoClipper data model.

advance to guide what to shoot next; new video clips appear at the
end of the current Line. Lines may be added, cloned, rearranged, or
deleted, and video clips may be dragged from one Line to another,
as needed. Inspecting a video element opens a video player, with a
non-destructive trimming tool, a trash button for deleting videos and
four colored tag buttons to bookmark important frames. The vertical
bar on the right has three buttons: The camera icon opens the Capture
screen, the play button plays the current movie and the eye icon hides
or shows the selected Line from the resulting video.

4.4 field studies

We deployed VideoClipper during three intensive one-week design
courses called Bootcamps, two 7-week design courses and several
one-day interaction design workshops. I briefly summarize the post-
analysis of three of these instances, highlight the most interesting
findings and illustrate some of the video prototypes created by the
participants.

4.4.1 First contact with real users

We first evaluated VideoClipper in an intensive one-week Interac-
tion Design Bootcamp with 34 students. This was the first time that
VideoClipper was put in the hands of real users. Also, this was the
first introduction to video prototyping for these students. In this one-
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week course, only two days are dedicated to video prototyping. As
expected, users found many bugs, e.g., they dragged video elements
to unexpected regions, crashing the application, and they captured
video in multiple device orientations, breaking the final composition.
We collected important feedback to improve the tool.

About four months after the Bootcamp, the same group of students
participated in another design course that required the creation of a
video prototype. On this occasion, we did not give them VideoClipper,
instead, we gave them a tablet device, i.e. an Apple’s iPad, and let them
pick the video tool of their choice. After their final presentation, we
distributed a questionnaire to collect feedback (Appendix Section A.2).
Our goal was to compare VideoClipper with their tool of choice.

The students formed 8 groups of 4 or 5 members. Half of the
groups captured video with the tablet device and its default camera
application (4/8). The rest used their own DSLR cameras (3/8) or
action cameras, such as the GoPro (1/8). The selected mobile video
tools for the tablet groups were Apple iMovie (3/8) and Photodex
ProShow Gold (1/8). The other groups imported their video files
from their external cameras into a desktop application, such as Final
Cut Pro (2/8), Adobe Premiere (1/8) and iMovie for desktop (1/8).
Students chose video tools based on their previous experience, i.e.
they preferred tools that they already knew.

We asked if they followed the paper storyboard that they created.
Only one group followed the storyboard completely while the rest
either "mostly followed the storyboard and only made a few changes"
(5/8) or heavily modified the storyboard because "they changed their
minds a lot" (2/8). One participant put it simply: "While shooting

we realized a few things were not clear". Another explained that the
storyboard focuses on the user interactions but sometimes the viewer
does not understand what is happening; for this reason, changes in
the story are required to clarify what is the overall task that the user
is trying to achieve. We asked this group how satisfied they were with
the final result: "Not that satisfied, because it’s not easy to fake a precise

interaction. We want to show the feedback of every action but it takes too

much time." Only half of the groups were satisfied with their final
result.

Finally, we asked the students to reflect on their previous experi-
ence during video prototyping with VideoClipper. We asked "Would
VideoClipper have helped you? If so, how?". Most of the groups (6/8)
replied that they missed the "ghost image": "The main benefit [of Video-
Clipper ] is the ’transition’ functionality [ghost image], so you can easily

shoot stop-motion, without ’shaking too much’. Also, it makes the process

much faster. In Premiere Pro you get lost in all the possibilities it offers and

spend too much (most of the time) on unimportant details". Other students
expressed the problem of gathering and editing video files instead of
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(b) Reported editing times

Figure 4.11: Reported average times in minutes collected from 16 students,
the error bars represent the standard deviation. The average capturing time
was 3h28m for iMovie and 2h17m for VideoClipper. The average editing
time was 1h8m for iMovie and 42m for VideoClipper.

capturing on-the-go: "[With VideoClipper there is] no need to gather the

videos and then edit".
By contrast, other people mentioned that editing is easier on a

laptop computer: "Editing on [a] laptop is easier than on iPad. So it will

be nice if we can do the cuts and edits on a computer." We agree with
this problem but not with the solution, since the goal of rapid video
prototyping is to reduce the editing instead of encouraging it. Some
students preferred editing with desktop tools because they provide a
higher level of visual fidelity: "The fading picture [ghost image] is useful

but without VideoClipper you have nicer TitleCards, it’s easier to shoot in

a different order if necessary." However, video prototyping should focus
on the user’s interactions rather than on the quality of the visuals.
This reinforces the idea that VideoClipper is a tool that supports the
values of rapid prototyping rather than professional video editing.
VideoClipper should not be seen as a standalone video editing tool
but as a video tool that supports a rapid video prototyping process.

4.4.2 Comparing mobile iMovie with VideoClipper

In a 7-week course on Designing Interactive System, 20 students pro-
totyped two interactive systems, an captured both designs in a video
prototype. We provided the students with a tablet and the mobile ver-
sion of iMovie as a tool for their first video prototype. For their second
video prototype, we asked the students to use VideoClipper. After
they finalized the course we distributed a questionnaire (Appendix
Section A.2).
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The students formed 6 groups of 3 or 4 members. One of the groups
did not complete the questionnaire so we are only reporting the results
from the remaining 16 students. We asked participants how much
time they spent during capturing, i.e. recording video, and editing, i.e.
creating effects, trimming and moving clips (Figure 4.11).

Students reported that they spent more time capturing video with
iMovie (M = 208.13 minutes, SD = 100.68) than with VideoClipper

(M = 136.89 minutes, SD = 43.13). They also reported that they spent
more time editing video with iMovie (M = 67.50 minutes, SD = 34.21)
than with VideoClipper (M = 42 minutes, SD = 26.14). As expected,
participants tended to spend more time capturing and editing with
iMovie.

When we asked them about the biggest problem they encountered
with iMovie, participants complained about collecting the meaningful
clips from all the unordered recordings:

"The most difficult part is actually before the shooting. Writing

scripts and drawing storyboards that made sense and explain

the design perfectly. But there are lots of wasted clips [...] It was

really annoying to pick out valid ones from so many clips."

"Sometimes we need to shoot a scene more than 1 time. In that

case, it could take a while for us to find the right video clip for

editing."

They also mentioned some other important problems with iMovie
during editing:

"When I had to move the clips from one side to any other side.

There is only one queue and it is super time-consuming to hold

one piece of clip and wait until it goes to the other end then

realize it."

"I cannot group the pieces. It leads to that I have to change the

order one by one, although the pieces should stay together."

"Rework of paper prototype to keep consistency."

"Realizing something on your interfaces was misplaced."

We also asked about their biggest difficulties with VideoClipper. Be-
sides some unexpected crashes, participants complained about finding
clips in the interactive storyboard:

"It’s not easy to get the general idea of every clip just by the

[thumbnail] picture from the clip. Because the neighboring clips

look really similar. And I have to play the clip to know which one

it is."
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Some participants missed editing features, such as cutting a clip:

"Having forgotten to add a clip between an action, no split

possible".

Students generally reported that "the storyboard overview is really

helpful" and, similarly to the first study, that the "ghost image" was
highly appreciated:

"We are extremely satisfied by the final result. We especially

appreciate the ’ghost feature’ it was so efficient and helped us

saving time an make good quality of transitions."

While editing activities were present in both VideoClipper and
iMovie, it is important to observe that students considered any change
in the final video as editing. For example, editing with iMovie includes
moving clips but also trimming, cutting or adding effects. VideoClip-
per features minimal video editing capabilities such as non-destructive
trimming and moving clips. However, we consider moving Lines in the
storyboard to be a narrative form of editing, much different from mov-
ing individual clips in iMovie. We asked students what type of editing
they performed in VideoClipper: 30% used trimming, 35% moved
TitleCards, 40% moved Lines, and 60% moved clips. Re-organization
of video clips is still the most common edit, both in iMovie and Video-
Clipper, however, moving Lines was extremely appreciated and was
ranked as the second most used type of edit.

4.4.3 Using VideoClipper in a longer course

Finally, we assessed VideoClipper in the context of a 7-week design
course. The students formed 12 groups, one group of 2 and 5 members
while the rest had 3 or 4 members. In this case, the allocated time
for video prototyping was one week, while the previous intensive
courses only dedicated two days to video prototyping. Similarly to
the previous examples, after their final presentation, we distributed a
questionnaire to collect feedback (Section A.2).

We observed similar trends in capture and editing time even though
students had more total time for finishing the video prototyping
activity. In terms of capturing time, 65% of the students spent less
than 3 hours recording but 35% spent between 3 hours and 9 hours
(Figure 4.12a). In terms of editing time, 88% of the students spent less
than 3 hours modifying the video and all of them (100%) spent less
than 4 hours 30 minutes (Figure 4.12b). It seems that regardless of
the extra time, designers did not spend more time editing in the long
course than in the short course.

We detected recurring patterns while creating video prototypes
with VideoClipper. First, participants tried to avoid re-shooting by
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Figure 4.12: Reported times collected from 41 students using VideoClipper

in a longer course. The average capturing time was 3 hours and the average
editing time was 47 minutes.

re-purposing continuous physical actions as the system visual outputs.
For example, a group hid a pen under the actor’s sleeve to illustrate
the inking feedback of a touch-based drawing interface (Figure 4.13).
In this way, designers can represent the inking feedback with only
one shot without the need to use rough stop-motion. To illustrate the
detection of vertices, they added an invisible cut at the end of the
scene (Figure 4.13d).

Participants also created reusable backgrounds to represent the static
aspects of the interface. This can be seen in the previous example,
where the whiteboard includes static interface elements, such as the
menu bar and a side toolbar (Figure 4.13a). Then, changes to the
interface are only made in the center of the whiteboard. Another
group prototyped an interaction with a draggable and resizable lens
(Figure 4.14). Designers created a map as the background, where
the paper prototype of the lens can be freely moved (Figure 4.14a).
However, they wanted to reduce the size of the lens with a pinch
gesture (Figure 4.14b). To create this effect, designers created a new
paper prototype of a smaller lens and introduced an invisible cut after
performing the pinch gesture (Figure 4.14c).

Finally, designers created mix-fidelity representations according
to the aspects of the prototype that they wanted to highlight. One
group created a paper prototype of the background needed for their
desktop application. Afterwards, they displayed a picture of this paper
prototype on a laptop to create a background for their video prototype
(Figure 4.15a). Another group was prototyping a video application.
Showcasing dynamic video with paper sketches was difficult, so they
used a smartphone screen as a way to illustrate video playback. They
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(a) The actor hides a pen on his sleeve
to draw with continuous feedback.

(b) The actor simulates drawing a
straight line with the index finger.

(c) The actor maintains the final
position.

(d) An invisible cut adds the vertex
recognition feedback.

Figure 4.13: A video prototype of a touch-based drawing application with
vertex recognition.

cut a rectangle in their paper prototype and positioned a smartphone
with a video player right underneath this opening (Figure 4.15b).

Following the same idea of mix-fidelity prototyping, another group
was prototyping an interaction with a plant (Figure 4.16). They mixed
in the same prototype a real plant (Figure 4.16a) and a paper prototype
of the connected system (Figure 4.16a). When the user touches a plant’s
branch the system retrieves information associated with the time when
the branch had the size indicated by the user’s touch position.

Finally, all the groups reused the video prototypes for two activities:
re-design and presentation. For re-design, students shared their video
prototypes, within and across groups, in order to get feedback, discuss
design directions or ask for clarifications. For presentation, at the end
of the course, each group presented a design brief and did a voice
over during the projection of their video prototype (Figure 4.17). This
enabled all the students in the course to see the results of the design
session and enabled everyone to have concrete and rich discussions.

4.5 limitations and future work

In terms of technical limitations, VideoClipper is only available for the
iOS platform. This restricts the participation of impromptu designers
with other devices and platforms. An interesting direction for the
future is to evaluate how to support web-based video technologies.

VideoClipper was conceived as a lightweight tool, i.e. it supports a
limited amount of professional video editing workflows. However, I
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(a) A hand-drawn map shows the
background.

(b) The paper lens is pinched.

(c) A new and smaller paper lens. (d) The lens is dragged.

Figure 4.14: A video prototype of a draggable and resizable lens.

(a) A high-fidelity laptop experience
with a picture of a paper prototype.

(b) A low-fidelity paper menu on top of
a high-fidelity screen.

Figure 4.15: Students mixed different fidelities to illustrated multiple aspects
of the design.

see this limitation as a strength: VideoClipper is more aligned with a
rapid video prototyping process than with a video editing activity.

VideoClipper was generally manipulated by a group of designers
but the tool itself is restricted to a single user. This limits the paral-
lelization of tasks and the simultaneous exploration of multiple ideas.
While video files can be recorded with other cameras and imported
into VideoClipper, supporting multiple users could provide extra
benefits, such as the inclusion of remote designers and the synchro-
nization with multiple devices.

Even though we saw instances of reuse, the tool only supports a
few reusable objects. VideoClipper supports ephemeral reuse, e.g.,
with the ghost image, and reuse by copy, e.g., by letting users clone
Lines. However, this type of reuse does not support the automatic
propagation of changes in the original object to the copies. We could
use references between Lines to indicate an inheritance relationship,
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(a) The user-actor interacts with an
actual plant.

(b) The system outputs are represented
with a paper prototype.

Figure 4.16: A video prototype of an interaction with a real plant.

Figure 4.17: A student presenting on top of the video prototype playing in
the background.

e.g., when a Line illustrates the context and subsequent Lines illustrate
alternatives. Reuse by reference could simplify the propagation of
changes from the context to all the alternatives. However, it would
also introduce extra complexity during rapid prototyping.

Finally, users exhibited recurrent patterns to reduce the amount
of re-shooting needed. For example, by generalizing the common
background and only changing the interface or by mixing different
levels of fidelity. I think that digital tools could be combined with low-
tech prototyping to minimize the need for re-shooting and increase
reuse.
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M O N TA G E : C O M B I N I N G V I D E O P R O T O T Y P E S T O
P R O V I D E R E U S E

VideoClipper focused on the capturing phase and provides a sim-
ple model for compiling the final video prototype, i.e. just straight
cutting of the recorded video clips. I identified two main barriers to
using video in interaction design: time to capture and time to edit
(Section 3.2). VideoClipper supports planning as an interactive sto-
ryboard to streamline the capturing process and reduce the need for
editing.

However, VideoClipper’s users constantly asked for more facilities
to reduce unnecessary work. They created layered ad-hoc approaches
to reuse artifacts. For example, they established a background that was
repeatedly reused with different user actions changing on top of it.
Another technique was mixing paper representations with other props,
just as mobile screens and laptops devices. Also, in the questionnaires
participants asked for more digital support to facilitate changes over
their design.

These user behaviors inspired me to explore a new type of tool, one
that already supported this layered approach to decouple background,
i.e. context of use, and user interface.

5.1 decoupling context and interface with montage

Montage is composed of a central device –the Canvas– connected to
two mobile devices –UserCam and WizardCam– with video streaming
and recording capabilities (Figure 5.1). These devices, typically phones
or tablets, are used as remote cameras. They stream, either in parallel
or independently, the context of use where the user could interact
with the prototype and the prototyped user interface itself. The Canvas

lets designers organize and compose the video segments, and aug-
ment them with digital drawings that can be re-shaped and modified.
Interaction designers can compose, draw and modify the prototype
during rehearsal, during recording, or after filming. Montage focuses
on low-budget video recording but provides designers with features
currently only available in high-budget video prototyping, such as
layering and tracking. Interaction designers can start with traditional
paper prototyping and progressively move towards modifiable and
re-usable digital representations without the need for professional
video editing software.

Montage targets interactions that require continuous feedback,
such as scaling a picture with a pinch or selecting objects with a lasso,

71
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Figure 5.1: An overview of the Montage video prototyping system. Here,
two designers, a wizard and a user-actor, collaborate side-by-side. The
UserCam captures the user-actor enacting user inputs in the actual context,
i.e. using his phone at the office. The WizardCam captures the paper
prototype and the Canvas captures the wizard’s digital sketches.

which are often challenging to perform with traditional paper and
video prototyping. I first illustrate the approaches and challenges of
prototyping continuous feedback with traditional video prototyping,
and then present an enhanced approach using Mirror, a mode of
Montage that mixes streamed physical elements (such as a paper pro-
totype) captured by a camera, with digital elements created remotely
by a wizard. Finally, I present Montage Chroma to reduce re-shooting
while exploring alternative designs.

5.2 limitations when combining paper and video

Imagine a group of designers prototyping an interaction technique
with dynamic guides, similar to OctoPocus (Bau and Mackay, 2008).
OctoPocus provides continuous feedback (inking) and feedforward
(potential options) of the gestures as a user performs them1. The
designers want to illustrate the use of this technique in the office,
when interacting with the profile picture of a friend on a phone: when
dwelling on the picture, OctoPocus should show three gestures for
calling, messaging or finding directions to the friend. The designers
print an image to use as the profile picture and attach it to the screen
of a phone, used as a theatrical prop, to contextualize the prototyped
interaction. The user-actor draws on the profile picture to mimic the
continuous feedback of a gesture. She uses a black pen hidden as well
as possible in his palm, while a wizard draws the feedforward, i.e.
three colored curved lines.

1 See https://vimeo.com/2116172

https://vimeo.com/2116172
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Figure 5.2: OctoPocus with traditional video prototyping. The designers
create a rough stop-motion movie with only four stages of the interface,
resulting in a poor representation of the dynamic interaction.

This approach to prototyping continuous feedback and feedforward
has three main drawbacks:

• The hand and pen of the wizard appear in the video;

• The profile picture has drawings on it that might not be easy to
erase, so in case of mistakes or changes, it requires a new picture
or at least re-recording the whole video; and

• Illustrating the use of the same technique in different contexts (on
the profile picture of other friends, or in a completely different
scenario) also requires re-shooting.

The designers take a different approach to avoid these problems.
They create four sketches with transparent paper to represent the
different stages of the OctoPocus interaction (Figure 5.2): They plan to
reveal the feedforward and feedback progressively by overlaying the
sketches on top of the profile picture, one sketch at a time. They use a
mobile device on a tripod to record a rough stop-motion video of the
interaction.

With this approach, the designers reduce the presence of the wizard
in the video, as they place the sketches on top of the profile picture
in-between the stop-motion takes. Because the sketches are drawn over
transparent paper instead of the profile picture, the designers can reuse
their prototype props to illustrate other contexts of use. Nevertheless,
this approach also comes with limitations and drawbacks:

• While it is possible to reuse the sketches in other contexts, the
whole interaction needs to be re-shot;

• A sequence of four sketches will poorly communicate the highly
continuous nature of the interaction; and
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• Making a stop-motion video shifts the designers’ attention from
experiencing and reflecting on their design to coordinating se-
quences of extremely brief video shots.

A third approach is to use video editing software instead of paper
sketches to add a digital overlay with the user interface on top of a
previously recorded shot of the user actions. This approach has the
disadvantage of creating a disruptive context switch, from a design
session that does not require specialized skills to a video editing
session requiring trained editors. Also, with paper prototyping the
user interface is partially hidden by the user’s hands, so a simple
digital overlay will not produce the same effect. An experienced video
editor could simulate the fact that the interface is below the user’s
fingers by creating a mask of the user’s hands at several keyframes,
e.g., by rotoscoping or using specialized software.

In summary, with current approaches to video prototyping, design-
ers struggle to represent continuous feedback and to reuse prototype
props and previously captured interactions. The tools that address
these problems require video editing skills and extra effort in post-
production, interrupting the flow of the design process. I want to better
support video prototyping without disrupting the design process nor
requiring specialized video editing skills.

5.3 montage mirror : prototyping continuous feedback

Montage Mirror mixes physical elements captured by a WizardCam

(Figure 5.3a and Figure 5.3b), with digital sketches drawn remotely
in the Canvas (Figure 5.3d). The user-actor’s phone displays a video
stream of the paper prototype combined with the digital sketches
—the interface. As the user-actor interacts with the phone, the wizards
provide live feedback by editing the digital sketches on the Canvas or
by manipulating the paper prototype captured by the WizardCam.

For example, to prototype OctoPocus, the user-actor sees the profile
picture on his phone, captured by the WizardCam. As she performs a
gesture on the screen, she sees the feedback and feedforward sketched
remotely by the wizard on the Canvas. In this way, the user-actor can
experience the prototyped interaction without the hands of the wizard
getting in the way. The UserCam captures the interaction over the
interface and the context of use to create the final video prototype.

Designers can animate changes in position, size, rotation angle,
color, and thickness of the digital sketches without the tedious co-
ordination required by stop-motion videos. Digital sketches can be
grouped to create compound objects that have semantic meaning in
the story. Moreover, thanks to the WizardCam stream, traditional pa-
per prototyping techniques are still available if necessary: physical
sketches and props added to the paper prototype are directly streamed
to the user-actor’s phone. For example, after the user-actor performs
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Figure 5.3: Mirror mode: the WizardCam live streams to both, the Canvas (a)
and to the prototyped device (b) in the context. The UserCam only streams to
the Canvas (c). Finally, the Canvas sends the sketches to the prototyped
device to complete the mirroring of the interface

a gesture with OctoPocus, the wizard can add a sticky note with the
text “Calling Barney” on top of the profile picture.

Montage Mirror augments video prototyping with live digital
sketches. In the Canvas, designers use the stylus to draw sketches
and perform simple actions, such as pressing a button. Designers
can move, resize and rotate sketches with the standard pan, pinch
and rotate gestures. Unlike stop-motion videos, digital sketches allow
prototyping continuous feedback interactions that look fluid and al-
lows designers to focus on the design process instead of coordinating
complex wizard actions. For example, to prototype the drawing of
a question mark and the inking feedback, the wizard draws at the
same time that the user-actor is gesturing. The designer rewinds the
recorded video to the point where she wants the dynamic guides to
appear and draws them. After pressing play, she uses a slider of the
sketch interface to make the stroke progressively disappear as the
video plays (Figure 5.5).

Mirror mode supports the prototyping of dynamic interfaces and
continuous feedback. Nevertheless, it still requires re-shooting when
exploring alternative designs or contexts, e.g., showing OctoPocus on
something else than a mobile phone. Designers have to record the
whole video again even for small changes, such as changing the color
of the dynamic guides.
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5.4 montage chroma : reusing captured interactions

To help designers reuse previously captured interactions and reduce
re-shooting, the Chroma mode takes advantage of a well-known video
editing technique called chroma key compositing. With chroma keying,
the subject is recorded in front of a solid background color, generally
green or blue, and this background is replaced in post-production with
the desired content. This technique is commonly used by weather pre-
senters on television, to replace a green background with an animated
map with weather information. In our example, the user drawing
a question mark is recorded over a phone showing a green screen,
which is later replaced with the prototype interface. Achieving a clean
chroma keying requires special attention to proper lighting conditions
and using the right shade of green. However, I am not concerned with
achieving a perfect result during an early-stage low-fidelity prototype.
I can also use a different color than green, as long as it is distinct
enough from the rest of the scene, by selecting it in the video feed
with Montage’s color picker.

In order to replace only the portion of the screen that contains
the interface, I display a green screen on the user-actor’s phone. The
UserCam records the final video prototype, but in Chroma mode
Montage also tracks the four corners of the green screen and sends
this data to the Canvas. Then, the Canvas performs a perspective
transformation of the current frame of the interface and replaces the
green area with the transformed interface. Montage Chroma not only
performs this composition in post-production, i.e. after recording, but
also during recording, in the final composition live preview.

Designers simply need to rewind the recorded video to add new
sketches or modify existing ones. They can draw or modify the
sketches over the interface or over the context to annotate the story,
e.g., with user reactions or speech bubbles. Designers do not need to
re-shoot the context to make small changes to the interface, or vice versa.
In the OctoPocus example, after recording a version of the prototype,
designers can add new dynamic guides without re-shooting by simply
drawing over the recorded video. The new changes are immediately
available in the Canvas final composition live preview.

The setup of the system in Chroma mode (Figure 5.4) has just one
difference from the setup in Mirror mode. The UserCam still captures
the context but the phone now shows a green screen (Figure 5.4a).
The final composition preview in the Canvas shows the chroma keyed
result, positioning the interface correctly under the user’s hands and
following the phone’s boundaries. When the designers modify the
paper prototype or the digital sketches, i.e. add, remove, move, rotate,
scale, or color change the sketches, Montage Chroma shows these
modifications immediately in the final composition live preview, but not
on the actual phone.
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Figure 5.4: Chroma mode: the UserCam captures the context (a) and the
WizardCam captures the paper prototype (b); Both live-stream video to the
Canvas. Designers draw digital sketches over the streamed paper prototype to
represent the interface (c). In the Canvas, the green screen is replaced with a
perspective transformation of the interface to create the final composition (d).

When possible, I recommend using Montage Mirror during re-
hearsal and Montage Chroma during recording. If the interface is
to be placed on a screen-based device with streaming capabilities,
using Montage Mirror lets the user-actor experience the prototype
directly. During recording, using Montage Chroma allows to create
composable video segments and lets the interface and the context to be
changed independently. Montage Chroma provides a “user overlay”
to assist wizards sketch in relation with user inputs. For example,
when the user-actor places a finger over the green screen, the wizard
can see a translucent image of this finger over the drawing area of
the Canvas; this helps wizards better coordinate spatially and tempo-
rally the drawings with respect to the user inputs. Montage uses the
inverse perspective transformation of the green screen to correct the
placement of the overlay.

5.4.1 Exploring design alternatives and multiple contexts of use

With chroma keying, the recorded interface videos and context videos
can be changed independently. This flexibility reduces the cost of
exploring different design alternatives and multiple contexts of use.
For example, once an interface video of the OctoPocus technique is
prototyped, it can be embedded in multiple contexts (Figure 5.6):
different videos can show the user-actor using OctoPocus in the metro,
in a park or at a party without having to re-shoot the interaction
technique. The other way around is also possible: Several alternative
designs of the interface can be embedded in the same context, with
different videos showing the original context of the actor-user in his
office using OctoPocus on a social media profile, an email client or the
camera app.

Besides recording with the UserCam in different places, i.e. in a park
or an office, the context can be changed by using a different device.
Montage Chroma works with any device that can display a solid
color in a rectangular frame, such as watches, phones, tablets, laptops
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Figure 5.5: The Canvas sketching interface: The final composition (left) and the
interface (right) show the “user overlay”. Both sides have a list of sketches
and animation controls at the bottom. The in/out buttons make the selected
sketches appear/disappear. The sliders control the stroke-start, now at 0%,
and the stroke-end, now at 100%.

and even wall-size displays, enabling designers to explore multiple
display alternatives.

5.4.2 Supporting multiple interaction styles

Montage Chroma is not limited to displays such as a phone’s screen.
Designers can video prototype over other rectangular surfaces, such
as boxes, books and whiteboards with a solid color. Montage can
prototype gesture-based interactions over a green sticky note or a t-
shirt stamp. This allows the exploration of stationary as well as mobile
contexts, e.g., sitting in front of an interactive table or walking with a
phone.

Montage’s digital sketches can depict 2D widgets common in WIMP

interaction such as buttons, sliders and menus. Toggling the visibility
of sketches on or off (Figure 5.5) at precise moments in the video is
ideal for prototyping interactive transitions of the interface states, e.g.
idle/hover/press states of a button or the screen-flow of a mobile app.
Static sketches can depict discrete feedback, e.g. adding an object after
pressing a button, while animated sketches can depict continuous
feedback, e.g. inking, dragging or resizing with a pinch.

Montage also supports prototyping interactions that involve in-
direct input devices. By using a green screen on a laptop’s display
designers can still see the mouse cursor, facilitating the positioning
of interface elements. For example, to prototype a marking menu,
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�23

(a) A mobile phone with a green screen
to illustrate a stationary context.

�43

(b) The interface replaces the green area
with the user inputs on top.

�47

(c) A green screen over the phone is
replaced with the same interface.

�48

(d) The user-actor explores the same
interface over a green screen in a watch.

Figure 5.6: Green screens let designers explore the same interface in multiple
contexts, e.g., stationary on a desk or walking with a phone or a watch.

designers create a simple paper prototype of the menu. When the
user clicks, designers pause the recording and introduce the paper
prototype under the WizardCam. Designers resume recording and
when the user moves, the wizard adds digital sketches to illustrate the
feedback. Finally, when the user selects an item, the wizard highlights
the corresponding item and modifies the paper prototype to show the
response of the system.

With Montage designers can even prototype interactions that use
the spatial relationship between the devices and the users, such as
Proxemic Interaction (Greenberg et al., 2011). For example, a user can
walk closer or farther away from a device tracking her location, while
the wizard manipulates the sketches to react to the user’s position.

Prototyping multimodal interfaces, e.g., voice interaction and body
movement, is possible with Montage. For example, to re-create the
foundational Put-that-there interaction (Bolt, 1980), both cameras
record video and audio so that designers can enact the voice interac-
tions that will be recorded. After the actor utters a voice command,
the wizard pauses the recording, adds the necessary digital sketches
and resumes recording. The video can then be modified, without re-
shooting, to transition from paper to digital sketches or to add more
details, such as the on-screen cursor. In more complex scenarios, the
designers can sketch annotations on the context to indicate the user’s
voice commands or the system’s audio responses, or to represent
haptic feedback from the system, such as vibrations.
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�58

(a) The head-mount holds the UserCam.
Focus on the pillow shows a selection.

�59

(b) An on-hand menu is sketched with
four options. The copy item is selected.

�60

(c) Animated sketches represent hand
tracking, e.g., a mid-air pinch to zoom.

�62

(d) A rough stop-motion illustrates the
creation of a new pillow.

Figure 5.7: Sketches over the context can represent AR visual elements.

Video prototyping AR systems is also easy with Montage (Figure
Figure 5.7). The designer attaches the UserCam to a headset, simulating
the use of smart-glasses. With this setup, the user-actor has his hands
free to interact with the overlaid images created by the wizard. In
many cases, there is no need to use Chroma mode because the interface
elements are overlaid over the camera feed. For example, to prototype
a menu that follows the user’s hand, the wizard only needs to sketch
over the context and move the sketches to follow the hand’s movements
. The final video prototype will show the interaction from the point of
view of the user-actor, i.e. the UserCam.

5.5 implementation

Montage currently runs on iOS version 11.2. In our preferred setup,
the Canvas runs on an iPad Pro 12.9 inches (2nd generation) with an
Apple Pencil stylus. Generally, the UserCam runs on an iPhone 6S
and the WizardCam on an iPad Mini 3. Other wireless devices are also
suitable as cameras and mirrors. I tested Montage Mirror with an
Apple Watch 1st gen. (42mm case) and a MacBook Pro (13-inch, 2015).

I use AVFoundation (Apple Inc., 2018a) to capture video, inter-
cept frame buffers, and create movie files. The frame buffers are
processed with Core Image (Apple Inc., 2018b) to clean the images be-
fore detecting rectangular areas, to perform perspective and correction
transformations, and to execute the chroma keying.

I use a zero-configuration network where the Canvas acts as a server
browsing for peers that automatically connect to the system. Each
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camera records its own high-quality movie, currently 1280x720 pix-
els. However, the video stream is sent at a lower quality (480x360

pixels) to maintain an acceptable latency during rehearsal and record-
ing (M=180ms, SD=60ms)2. The devices’ clocks are synchronized to
start, pause, and end the recording at the same time. Due to delays
introduced by the wireless connection, I created a protocol to let the
devices synchronize: When the designer presses Record on the Canvas

the screen displays a “3, 2, 1, go” animation. This delay lets devices
prepare for recording and synchronize their capture start time. I use
the same mechanism when the designer resumes the recording after
pausing.

In order to create a movie combining the dynamic sketches with
the captured video, Montage saves the designers’ inputs during the
manipulation of the digital sketches. Montage uses this information
to create keyframe animations at different points of the video playback.
I added a synchronization layer on top of both to link these animated
sketches with the underlining movie player. This new layer coordinates
the animation playback with the movie file playback.

5.6 limitations and future work

I have observed that Chroma mode works best with flat surfaces,
and rectangle tracking works poorly with flexible or shape-changing
surfaces. Also, excessive user occlusion can prevent proper screen
tracking. As a workaround, when the device is not moving, designers
can lock the last tracked rectangle. Montage Chroma can also replace
any solid-color area, regardless of its shape, with the interface. How-
ever, without position tracking, the perspective transformation of the
interface is lost, resulting in a “naive” chroma keying.

Future work involves evaluating Montage with professional inter-
action designers, improving screen tracking and exploring the reuse
of video prototypes beyond early-stage design, e.g. by supporting the
transition to high-fidelity prototypes.

One drawback of chroma keying is that the user-actor interacts with
a green screen, not the final prototype. Using Mirror mode during
rehearsal mitigates this problem. In Chroma mode, the user-actor
should see the Canvas in order to monitor the state of the interface in
relation to his inputs.

Finally, Montage only supports interaction styles that can be mim-
icked with video. Currently, Montage cannot illustrate complete
immersive virtual worlds, e.g., VR applications or 3D games. How-
ever, Montage can still video prototype particular aspects of these
examples, such as hand tracking.

2 for this benchmark, I used 20 samples taken randomly during a 30 minutes recording
session



82 montage : combining video prototypes to provide reuse

5.7 conclusion

Current approaches to video prototyping make it difficult to represent
continuous feedback and reuse previously captured interactions. The
tools that address these problems require video editing skills and extra
effort in post-production, interrupting the flow of the design process.
Therefore we need to better support video prototyping without dis-
rupting the design process nor requiring specialized video editing
skills.

I presented Montage, a distributed mobile system that supports
video prototyping in the early stages of design. Our technical contri-
bution is a novel tool integrating multiple live video streams, screen
tracking, chroma keying, digital sketches and physical prototyping in
one fully mobile video prototyping system. While these individual
techniques are not new, Montage combines them in a novel way
to support an enhanced video prototyping process: rehearsal with
Mirror mode and recording with Chroma mode. Montage Mirror
augments video prototypes with remote digital sketches, while Mon-
tage Chroma supports the reuse of previously recorded videos to
explore alternative interfaces and contexts of use. I described a sce-
nario that demonstrates the limitations of traditional paper and video
techniques, and showed how Montage addresses them. Finally, I
illustrated how Montage can prototype a variety of interaction styles,
including touch-based (OctoPocus), WIMP (marking menu), AR (on-
hand menu), multimodal (Put-that-there), and ubiquitous computing
(Proxemic Interaction).
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3 Part of this work is in submission to ACM Transactions on Computer-Human In-
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execution and analysis of all the studies, as well as the design of the Enact tool.
Nolwenn created all the StoryPortraits used during analysis. I was the principal
developer of the Enact tool.





6
W H Y D E S I G N E R - D E V E L O P E R C O L L A B O R AT I O N ?

Interactive software development in the 1970s and 1980s involved
traditional software engineering processes, with limited interdisci-
plinary collaboration between developers and graphic designers. By
the 1990s, the advent of full color, high-resolution displays enabled
high-quality interactive graphics, with a corresponding need for pro-
fessional designers. Today, graphic designers, interaction designers
and user experience specialists are routinely part of the teams creating
interactive software, together with software developers. However, inte-
grating designers’ and developers’ work practices has proven difficult,
often leading to friction between them (Ferreira, Sharp, and Robinson,
2011) and negatively affecting both the process and the final interactive
system (Moffett, 2014).

Designers and developers of interactive systems have different back-
grounds and skills (Buxton, 2007) and focus on different aspects of the
design process (Löwgren, 1995). Despite these differences, they need
to collaborate in order to create interactive systems. However, while
individuals often work closely together, their tools and artifacts do
not.

This is particularly true when the design involves custom inter-
actions and non-standard dynamic behaviors such as animations:
Designers find it much easier to communicate the static visual appear-
ance of the design than the dynamic aspects (Myers et al., 2008). By
custom we mean interactions that current designer and developer tools
do not provide out-of-the-box (Figure 6.1). This includes completely
new interface widget as well as interactions that rely on non-standard
system output, such as a highly crafted animation, or a non-standard
use of user inputs, such as using a pinch gesture to delete an object.

Designers are trained to communicate visually. They use graphical
editors, e.g. Bohemian Sketch or Adobe Illustrator, to create static de-
sign artifacts such as wireframes and mockups (Newman and Landay,
2000). However, common designer tools, such as vector and raster
graphics, are not designed to handle interactions and animations. De-
signers usually prioritize visual design (Cooper, Reimann, and Cronin,
2007) over the rules and data structures that govern the software.

Complementary, developers need to create working interactions
from the design specification. Developers are trained to work with
abstractions, generally manipulated through textual representations.
They use tools such as text editors and Integrated Development En-
vironments (IDEs) to create functional systems. They prioritize the

85
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Figure 6.1: An example of a custom interaction in the Paper mobile app
from FiftyThree. In the first screen, the user has selected the scissor tool and
draws a circular area with one finger. In the second screen, the user drags
this area to move the content to a new position and taps outside the circular
area with another finger to create a copy of the selected area. In the third
screen, the user drags the selected area to reveal the copied shape.

translation of design artifacts into implementable formats over the
details of visual design and user interaction.

Addressing the gap between designers and developers, and more
precisely the gap between the tools that they use to create interactive
systems thus remains an open research question. In this work we
identify problems faced by designers and developers as they collab-
orate, with a particular emphasis on the representation, communica-
tion and interpretation of custom interactions. Our goal is to inform
the design of new collaborative prototyping tools that reduce these
problems, without forcing professionals to abandon their preferred
representations. We want to facilitate the transition from design to
implementation, as well as the transition from implementation back
to the design when changes occur. More specifically, we address the
following research questions:

• What are the most common and critical problems that impair
designer-developer collaboration when creating interactive soft-
ware that involves custom interactions?

• How can prototyping tools help mitigate these problems?

We start by describing the motivation and methodology of the
project, and review relevant related work. We then describe three
studies that we conducted to better understand designer-developer
practices, leading to a set of design principles to reduce the break-
downs they encounter. We introduce Enact, a prototyping tool for
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touch-based mobile interaction based on these principles, and report
on two studies that we conducted to assess Enact.

6.1 motivation and methodology

In this work, we define an interaction as the set of rules that coordinate
the system outputs with the user inputs, i.e. when and how the system
reacts to certain user inputs. For example, on a mobile phone, user
inputs include finger touches captured by the capacitive touchscreen,
user movements captured by the accelerometer, facial expressions cap-
tured by the camera, or voice commands captured by the microphone.
The system outputs include both the feedback in the user interface,
such as highlighting a button, and the corresponding operations to be
executed by the underlying system, such as modifying a database or
sending a request to a server. This paper focuses on visual outputs,
but the system outputs can also include tactile or auditory feedback.

Designing, communicating and implementing interaction is com-
plex. Fernaeus and Sundström (2012) report that “creating a fully work-

ing interactive system is not merely a matter of ‘translating’ a static sketch

into its dynamic gestalt”. Similarly, Ozenc et al. (2010) argue that de-
signers currently “struggle to have a conversation with the material”. Park,
Myers, and Ko (2008) report on a laboratory study that highlights
the different uses of text to represent interaction. Designer tools in-
fluenced “their natural expression of behaviors”, while developers used
more verbose descriptions.

Designers and developers often coordinate their work through a so-
called handoff phase. The handoff includes all the design artifacts that
designers send to developers in order to construct the user interface.
However, the name “handoff” is misleading, because these artifacts
are not delivered and forgotten. Designers and developers refine these
artifacts collaboratively and iteratively, requiring a back-and-forth
work between them. This is especially true when the design includes
custom interactions that lack a standard user interface vocabulary to
describe them.

A number of collaborative prototyping tools have emerged to sup-
port the handoff phase1. For example, InVision2 lets designers and de-
velopers communicate with text annotations and create click-through
prototypes from static design artifacts. However, developers cannot
manipulate this prototype with their existing tools and the available
user inputs are limited to standard discrete interactions such as button
clicks. This type of tool focuses more on the information architecture
of the system and the communication among practitioners, rather
than on the design of custom interactions and its communication with
the immaterial domain of software (Ozenc et al., 2010). Indeed, few

1 See, e.g., http://www.prototypingtools.co
2 https://www.invisionapp.com/

http://www.prototypingtools.co
https://www.invisionapp.com/
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commercial tools let designers prototype custom interactions, usually
forcing them to work with developer representations, such as code3 or
visual programming4. Grigoreanu et al. (2009) suggest that designers
needs, such as “reusing code and designs” or “automating redundant
steps”, are not well supported by current software.

In order to address this gap between designers and developers,
we need a better understanding of cross-disciplinary collaborative
work. In their study of collaboration among different communities
of practice, Star and Griesemer (1989) found two main factors that
contributed to a successful collaborative work: the use of methods

standardization and the creation of boundary objects.

6.1.1 Methods standardization

Standardization can facilitate the designer-developer collaboration by
providing a shared vocabulary to describe an interaction. All major
software vendors provide their own guidelines and standards for in-
teraction, such as Google’s material design5 and Apple’s iOS Human
Interface Guidelines6. Practitioners’ prototyping tools such as InVi-
sion7 also provide a limited and standardized interaction vocabulary
to activate transitions between screens. These standards are widely
used and they do facilitate the communication between designers
and developers. However, they limit the vocabulary of interactions to
a predefined set and therefore they cannot solve the representation
issues that occur when creating custom interactions.

Another aspect of method standardization is to extend engineering
representations to encompass interaction design. For example, UML8

diagrams have been extended to describe interactive behaviors (Silva
and Paton, 2000) and to serve as a communication tool between de-
signers and developers. But as reported by Shipman and Marshall
(1999), such a level of formalism is not well received by the design
community, as it does not match the types of representations used by
designers.

Inspired by the popularity of software design patterns (Gamma et al.,
1994), Borchers (2001) proposed the creation of catalogs of interaction
design patterns, and Wiemann (2016) proposed using them as the
Lingua Franca (Erickson, 2000) between designers and developers.
Expanding the shared vocabulary among designers and developers
can certainly facilitate collaboration. However, this language should
not be limited to predefined interactions. Instead, it should enable

3 https://framer.com

4 https://origami.design/

5 https://material.io/design/

6 https://developer.apple.com/design/human-interface-guidelines

7 https://www.invisionapp.com/

8 http://www.uml.org

https://framer.com
https://origami.design/
https://material.io/design/
https://developer.apple.com/design/human-interface-guidelines
https://www.invisionapp.com/
http://www.uml.org
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the description of custom interactions and be understandable by both
designers and developers.

6.1.2 Boundary objects

Boundary objects (Star, 1989) are shared artifacts used by different
communities of practice to satisfy the information needs of each of them.
Star was motivated “by a desire to analyze the nature of cooperative
work in the absence of consensus” (Star, 2010). Boundary objects are
both flexible in collaborative use and structured in individual use. A
key feature of boundary objects is interpretive flexibility (Orlikowski,
1992), i.e. the fact that the same boundary object can have different
meanings for different communities of practice. For example, the
ambiguity and incompleteness of a sketch (Buxton, 2007) provide
flexibility when collaborating. The same sketch can be precise enough
to describe a particular design choice when practitioners work alone.

During the design of an interaction, the most common boundary
objects are design artifacts. For example, Newman and Landay (2000)
analyzed the specificities of intermediate artifacts such as sitemaps, sto-
ryboards, mockups and prototypes. This network of boundary objects
establish what Bowker and Star (2000) call a boundary infrastructure.

However, few studies have focused on designer-developer collabora-
tion with respect to design artifacts. An exception is Brown, Lindgaard,
and Biddle (2011) who established twelve categories of artifacts used
between designers and developers. They found that regardless of the
form of organization, all the designer-developer collaborations were
mediated around the use of artifacts. In their study, the four most com-
monly used artifacts were design ideas, design questions, interface proxies

and stories. However, the interactivity of these artifacts is limited or
non existent, thus requiring designers and developers to envision the
interaction instead of experiencing it.

6.1.3 Our approach

We argue that the tools used to create interactive representations, such
as visual and functional prototypes, are not yet equipped to support
the collaborative practices of designers and developers, especially
when they create custom interactions. Therefore we seek to create new
boundary objects, in the form of shared, interactive representations of
the interaction being worked on. These new representations should be
useful both for the collaborative process and the individual work of
designers and developers.

In order to ground our work in existing practices, we started by
conducting three studies to better understand the collaboration chal-
lenges of professional designers and developers. In the first study,
we collected stories and identified three common designer-developer
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collaboration issues. In the second study, we observed how a group of
designers and developers worked around these recurring breakdowns.
In the third study, we conducted a participatory design session to
explore the limitations of current interaction representations.

Based on these findings, we identified four design principles to
reduce designer-developer breakdowns and facilitate the collabora-
tive construction of custom interactions. In order to demonstrate the
validity of these principles, we created Enact, a prototyping tool for
touch-based mobile interaction based on these principles. Enact fea-
tures novel representations of interactions that cater to the respective
needs of designers and developers within a single environment. We
conducted two studies to assess Enact: a structured observation of
designers and developers using Enact, and a study comparing the
use of Enact with traditional tools in a collaborative setting.

6.2 related work : designer-developer practices and tools

We grouped the related work on designer-developer collaboration
in two areas. First, we review descriptive research focused on the
processes and artifacts currently used during the designer-developer
collaboration. Second, we review research on novel prototyping tools
for creating interactive systems.

6.2.1 Studies of designer-developer practices

Researchers have studied collaboration among communities of prac-

tice (Wenger, 1998), such as designers and developers of interactive
systems, from multiple perspectives. Some seek to understand the im-
plications of combining software development processes, such as agile
methodologies9, with design methodologies, such as user-centered
design.

Although user-centered design methods for interactive systems
emerged in the 1980s (Norman and Draper, 1986), their integra-
tion with software engineering processes is challenging. By the mid-
1990s, Poltrock and Grudin (1994) found that large corporations’ “de-

velopment practices blocked the successful application of accepted principles

of interface design”. Agile methodologies were created to address a
number of software engineering issues, with an emphasis on deliver-
ing working software as quickly as possible. However, Ferreira, Sharp,
and Robinson (2011) showed how this approach is often at odds with
the user-centered design tradition of iterating the design from the
user’s perspective, before development begins. Letting developers
understand what they are expected to implement, as soon as possible,
remains one of the most important challenges of integrating these
methodologies (Salah, Paige, and Cairns, 2014).

9 http://www.agilemanifesto.org

http://www.agilemanifesto.org
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In the context of agile methodologies, Brown, Lindgaard, and Biddle
(2011) analyzed two major aspects of the designer-developer collab-
oration process: collaboration events and artifacts. Their study of
collaboration events shows that designers and developers constantly
perform alignment work (Brown, Lindgaard, and Biddle, 2012) and
that the collaboration process is organized around the use of arti-
facts (Brown, Lindgaard, and Biddle, 2008). However, the transition
from design to implementation is not only a translation from sketches
to dynamic behaviors (Fernaeus and Sundström, 2012). Most of the
joint work of designers and developers is focused on managing the
tensions between them. Brown, Lindgaard, and Biddle (2012) intro-
duce the term alignment work as the activity of aligning designers
and developers in order to seek, expose and resolve tensions. These
tensions can result in breakdowns, which are considered to be a normal
part of the collaborative work. However, even if breakdowns are com-
monly found in designer-developer work, we are interested in whether
the limitations of the artifacts themselves are responsible or not for
some of these breakdowns. Our goal is to identify current designer-
developers breakdowns and propose actionable design principles that
will help mitigate them.

6.2.2 Prototyping tools

Researchers have explored a number of novel tools for prototyping
interactions, but most are targeted at a single community of practice
rather than the collaborative work of designers and developers. Inter-
esting approaches, such as programming by demonstration (Myers,
McDaniel, and Wolber, 2000) or the use of state machines and inference
engines, have not been studied in a collaborative context.

Outside the research community, practitioners have acknowledged
the gap between design artifacts and their subsequent implementa-
tion, leading to a number of commercial tools. Within the past few
years, over 40 commercial prototyping tools have appeared10, and
a 2015 survey of 4,000 designers found that 53% of them use such
tools (Vinh, 2015). These commercial tools focus on supporting remote
communication between communities, assisting the extraction of de-
sign information, and helping to prototype standard and recurrent
interactions. However, they do not support co-located collaboration,
ignore the back-and-forth interplay between activities, and disregard
the creation of non-standard interactions.

6.2.2.1 Tools for interaction developers

Code-oriented artifacts can be enhanced with other representations
such as notations, diagrams and test-cases. For example, InterState (Oney,

10 http://www.cooper.com/prototyping-tools

http://www.cooper.com/prototyping-tools
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Myers, and Brandt, 2014) combines constraints and state machines
to facilitate reuse. InterState provides a live editor where developers
can edit a program and visualize the states as they interact with the
interface. Proton (Kin et al., 2012b) and Proton++ (Kin et al., 2012a)
let developers use Regular Expressions to express multi-touch inter-
actions. Juxtapose (Hartmann et al., 2008) lets developers create code
alternatives and modify variables at run-time to facilitate the explo-
ration of multiple alternatives. CodePilot (Warner and Guo, 2017)
supports novice programmers by integrating coding, testing, bug re-
porting, and version control management into a collaborative system.

While these tools are heavily inspired by developer practices, we
believe that they provide representations and enhancements that could
also be suitable for designers. We are interested in how these mecha-
nisms might be adapted to meet the needs of both audiences.

6.2.2.2 Tools for interaction designers

Another approach focuses on augmenting traditional design artifacts.
For example, SILK (Landay and Myers, 1995) lets designers quickly
create interactions using interactive sketches and envisioned “a future

in which the user interface code will be generated by user interface designers

using tools”. More than 20 years later, however, the most common
approaches still require the collaboration with developers to create
user interface code.

DEMAIS (Bailey, Konstan, and Carlis, 2001) provides an interactive
multimedia storyboard also based on sketches. The designers’ strokes
and text annotations are used as an input design vocabulary to trans-
form static sketches into working examples. Similarly, FrameWire (Li
et al., 2010) infers interaction flows from paper-prototype videos to de-
tect hot spots and generate page-based prototypes. Forsyth and Martin
(2014) use tagged digital storyboards to infer behavioral information,
such as states and actions. These representations and mechanisms
are closer to current practices of designers, and need to be present
during the collaboration. However, we also want to bridge designer-
friendly representations with more abstract representations, such as
code, without excluding the participation of either community of
practice.

While these tools support standard discrete interactions such as
button clicks and menu selection, a few let designers prototype con-
tinuous, non-standard interactions. Monet (Li and Landay, 2005) lets
designers prototype continuous widgets by demonstrating interac-
tions on top of sketches. Designers explicitly define interaction states
and the system infers the correct state through multiple examples.
Using inference improves informal prototyping, but these interaction
descriptions are opaque and are of limited use to the developer for
the final implementation.
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Other tools use intermediate representations to allow non-programmers
to create interactions. EventHurdle (Kim and Nam, 2013) is a visual
authoring tool for prototyping gestural interactions designed to facili-
tate designers’ understanding and generate code automatically. While
we want to provide similar mechanisms to facilitate the transition
from design to development, we also want developers to be part of
the prototyping process. Our work is closer to d.tools (Hartmann
et al., 2006), which brings test-driven development benefits to physical
prototypes. d.tools lets designers rapidly test their design and analyze
results, for example to identify the most frequently used interaction.
Testing is a great intersection for the design and implementation of a
prototype, and it can work as a “hinge” between the two activities.

6.2.2.3 Tools for interactive illustrators

Recently, several authors have proposed integrating graphical and
symbolic vocabularies to create dynamic graphics. Kitty (Kazi et al.,
2014) is a dynamic drawing tool supporting the creation of animated
scenes through functional relationships between graphical entities.
Kitty relies on direct manipulation of graphics but also supports indi-
rect manipulation of input-output functions. Apparatus (Schachman,
2017) is a graphics editor that combines direct manipulation with
data-flow programming. This combination of representations, with
direct and indirect manipulation, enables users to think both spatially
and symbolically.

While these tools provide authoring capabilities based on various
representations, they focus on the creation of dynamic drawings, il-
lustrations and diagrams, not on prototyping interactions. For this
reason, user input follows a fixed path, e.g., a constrained drag and
drop, and does not take into account all the input capabilities of the
target device. Victor (2013) proposes a tool that lets artists interac-
tively create dynamic drawings with behavior simulations. The tool
provides designer-friendly direct manipulation of graphics but also
relies heavily on developer-friendly concepts such as linear algebra,
parameterization and recursion. We are building on this trend of tools
that bridge the worlds of visual output and dynamic input, but with
a particular focus on the creation of interactions instead of dynamic
graphics.

6.2.3 Summary

Designer-developer collaboration has been studied from two main
perspectives: processes and artifacts. With respect to processes, practi-
tioners and researchers both apply iterative methodologies for creating
interactive systems. One of the challenges of this iterative process is
to manage tensions and breakdowns in the collaboration. Some re-
searchers see these breakdowns as a normal part of the collaborative
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work. We argue that we need to better understand these collaborative
tensions to determine which can be mitigated by new design artifacts.

With respect to design artifacts, most of the literature describes their
use in a collaborative context, but does not provide guidelines for
building new collaborative tools that reduce breakdowns. Researchers
proposed myriad prototyping tools, but they have been studied with a
single community of practice, either designers or developers. Involving
designers and developers in the construction of interaction requires
tools to support both design and development activities (Chatty et
al., 2004). Such tools do not exist yet, to the best of our knowledge,
especially for the collaborative creation of custom interactions.

Our goal is to create better tools that support designer-developer
collaboration during the prototyping of custom interaction. To do so,
we must first better understand how designers currently represent
interactive behaviors to developers, as well as which aspects of these
representations hinder collaboration.



7
S T U D Y I N G D E S I G N E R - D E V E L O P E R
C O L L A B O R AT I O N

We conducted three studies to better understand how designers cur-
rently represent interactive behaviors to developers, as well as which
aspects of these representations hinder collaboration. The following
studies are presented in more detail in Maudet et al. (2017b).

7.1 study one : understanding designer-developer col-
laboration practices

The goal of this study is to examine the existing practices of profes-
sional designers and developers in diverse settings with a particularly
interested in:

• How designers represent and communicate a design;

• How developers interpret the design; and

• How designers and developers identify and overcome breakdowns
that occur during the process.

We thus focus on understanding the difficulties that designers face
when trying to express interaction to developers and the difficulties
that developers face when trying to actually implement the designers’
specifications.

7.1.1 Method

We conducted critical object interviews (Mackay, 2002) about recent
design projects in order to obtain specific, detailed stories of their
successes and failures targeting the collaborative aspect of the work.
We focus on their most recent projects and use recent artifacts to
prompt rich stories. We are particularly interested in the problems
they encounter when representing and communicating interactions
with each other.

7.1.1.1 Participants

We recruited 16 professional designers and developers (7 women,
ages 24-46) from France (8), Sweden (3), Argentina (2), the USA (1),
Canada (1) and China (1), who create web sites, mobile applications
or interactive installations. Their work environments include: digital
agency (6), design studio (4), start-up (2), freelance (2), and software
factory (1).

95
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Participants P1ds–P8ds are designers (ds), self-described as UX De-
signer, Visual Designer, Interaction Designer, or Graphic Designer.
Participants P9dv–P16dv are developers (dv), self-described as Mobile
Developer, Web Developer, Front-End Developer, or Creative Coder.
Their experience in collaborating across disciplines, i.e. from design
to development or from development to design, ranges from 1.5 to
20 years (mean 8). Half of them typically collaborate remotely and
none of the participants have worked with each other. All participants
reported that they were following agile methodologies during their
projects.

7.1.1.2 Procedure

We interviewed participants in their studio or office for approximately
90 minutes. We asked designers to choose recent projects in which they
collaborated with a developer, and developers to choose recent work
in which they collaborated with a designer. For each project, we asked
them to show us their tools and the specific artifacts they created,
and to describe, step-by-step, the details of how they communicated
the design or implementation. We probed for both successful and
unsuccessful collaboration examples.

7.1.1.3 Data Collection

We collected 25 stories (one or two per participant) from different
projects. During the interviews, we recorded audio and video of the
participants manipulating the artifacts they created. We also pho-
tographed the final products and took notes.

7.1.2 Results and Discussion

We analyzed the 25 project stories using Thematic Analysis (Braun
and Clarke, 2006). We first illustrated each project with a StoryPortrait,
first introduced in (Jalal, Maudet, and Mackay, 2015), to represent the
most interested stories from the interviews (Figure 7.1). A StoryPortrait
includes a summarizing title, a photograph of the interactive system or
a key artifact created during the project, and a top-to-bottom timeline
illustrating the key steps in the collaboration process with drawings
and quotes. A vertical line separates the actions of the designers from
those of the developers. Arrows crossing the timeline signify a handoff
between the two groups.

We studied the projects with a particular focus on breakdowns
related to creating or interpreting the design documents. Then, we
selected examples that formed natural categories, looking for higher-
level concepts that emerged from the details of each projects. We iter-
ated and mapped each story to one or more categories. We identified
three main issues encountered by the participants during designer-
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developer collaboration: reworking and redundancy, design break-
downs and late developer involvement.

7.1.2.1 Reworking and Redundancy

The first and most salient finding is the pervasive presence of rework-
ing in the process and redundancy in the artifacts, not only within,
but also across these communities.

designers produce multiple design documents Designers
communicate with developers using three primary types of artifacts:
design documents represent the system to be implemented; guidelines

communicate higher level information (e.g. color codes, measure-
ments) and corrections describe the misalignments with the envisioned
design.

All designers create multiple documents to communicate different
aspects of their designs. Designers create additional design documents
when the original design documents lack specificity or lead to confu-
sion. Unfortunately, much of the information in these extra documents
is redundant. Designers felt they spent too much time recreating the
same information across separate documents. For example, P2ds cre-
ated five documents to communicate the design of a small application:
UxPin “for sharing mockups”; Pixate “for detailed animations that cannot

be expressed with words”; InVision “for interactive mockups with basic

interactions and annotations for non-obvious features”; Photoshop because
“these developers are used to work with .psd files”; and Illustrator, “the

software we actually use to produce the screens.” She also used email
to communicate additional design details to the development team.
Unfortunately, even by using all these documents, this designer was
unable to clearly communicate the design.

In addition to using images of “screens” to represent the visual design
of the interface, designers also used video or computer-generated
animations (24% of the projects) to communicate custom and dynamic
effects. However, designers take more time to produce videos than
static images, and developers have difficulties manipulating these
dynamic representations, e.g. extracting relevant information from
them. Finally, designers occasionally create interactive mockups (12% of
the projects) using the built-in set of interactions in the tool of choice.
These communicate how the interaction should feel, but only when
the tool has the right set of pre-defined interactions.

developers recreate design documents The most common
activities mentioned by the developers include interpreting the design
documents and recreating them with developer tools. For example,
P9dv received an informal text description of a custom animation, but
had to ask for a visual representation in order to fully understand the
design.
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We were surprised by the amount of time that developers spent
recreating design documents. Some developers came up with interest-
ing strategies to increase their productivity. One challenge is copying
with different types of media: the designer’s mock-ups, the code rep-
resentation, and the current visual view of the system. For example,
P11dv created a setup with two monitors. To implement the visual
design, he places the mockups on the smaller screen to assess them
and he splits the other screen between a coding view and the current
state of the implemented website.

Similarly, when developing a mobile radio application, P14dv in-
serted the provided image as the background of her corresponding
view in the Integrated Development Environment (IDE)’s Interface
Builder. She then positioned the UI components on top of the im-
age provided by the designer, to recreate the expected layout. She
could then “figure out the [layout] constraints” of the screen to make
it responsive, such as determining that some elements were center
aligned.

Developers used different strategies to recreate the interactions
described on the design documents. For example, in an interactive
installation project, P10dv struggled to implement the animations pro-
vided by the motion designer (Figure 7.1). He first unsuccessfully
tried to use Adobe After Effects to extract the keyframes and curve
types. Then, he asked the designer to create a text file with the needed
information. This was time-consuming and boring for the designer:
“We try to set up standards, but we haven’t found the right one so far”.

developers misinterpret designs Many design decisions are
lost, as developers struggle to interpret and implement the designer’s
original intent. In fact, none of the initial implementations exactly
matched the original design. P1dv felt that the developer “used our

design as an inspiration, then he made many design decisions that he did not

have to make”. Similarly, P3ds provided a video that showed the devel-
oper how to vary a text-box color according to the background picture.
He later realized that the developer had only partially implemented
his idea by sampling a single pixel, instead of generating an average
color based on several pixels.

During the implementation phase, designers create correction doc-

uments to show the location of the mismatches and what should be
modified. For example, to correct a vertical misalignment, P3ds created
a video. He first traced a segmented line to highlight the misalignment
and then animated the correct repositioning of the elements. In the
context of a real estate website project, P6ds discovered several visual
mismatches including wrong margins, colors and fonts. Even though
he was a designer, he decided to modify the CSS code and correct the
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Figure 7.1: A StoryPortrait has a summary title, a photograph of a key
artifact, and a top-to-bottom timeline to show the successive steps of the
collaboration between designers (on the left) and developers (on the right).
Participant’s quotes and drawings enrich the story. Here, P10dv started his
story by saying that "the motion designer sends us a video". The designer sent
the mockup-up, user journey and video file via email. P10dv translated the
video into code: "[I] try to find the useful information" in the provided artifacts.
He failed to extract the relevant information about the animation, such as
the keyframe timestamps and the interpolation curves. P10dv finally asked
the designer for a text file with all the animation parameters. The designer
sent by email a the text file created by hand with all the details of the
animation. Creating this file was "time-consuming and boring to produce".
P10dv finished his story by saying: "we try to set up standards, but we have not
found the right one so far".
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mistakes by himself, using the web browser Developer Tools1. Because
these changes were local to P6ds’s browser, he screencaptured the
new website’s look and added some annotations linking the modified
CSS code to the visual result. From these images, the developer then
recreated all of these steps with his own tools.

strategies to avoid rework and redundancy We found
cases of rework and redundancy in all the interviews, but only two
developers and one designer explicitly mentioned strategies to avoid
them. P14dv had a simple solution: “Designers should just create their

interfaces directly in Xcode”, referencing the Interface Builder within
the IDE. P5ds designed a complex casino website with many similar
UI components. To avoid recreating them each time, she “was inspired

by the developers’ way of working”: she created a modular styleguide
that served as a shared visual library. She could then copy modules
from the styleguide to create each new screen, gradually adding new
modules or missing information such as the color of the hyperlinks,
as requested by the developers. P12dv set up a different approach. He
initially received mockups and specifications for a web-based interac-
tive advertisement builder. He built the architecture of the interface in
Flash and he “wrote the code so that the designer could very easily touch

it”. The designer was able to fine tune the look (e.g. the particular
images assets to be used) and feel (e.g. type of animation, time delays
and duration) by directly modifying the code. This workflow helped
him avoid unnecessary translation and reproduction of the designer’s
intentions, reducing the back and forths.

7.1.2.2 Design Breakdowns

The second main finding is the identification of three recurrent types
of design breakdowns related exclusively to the collaboration between
designers and developers (Figure 7.2). We use the term "design break-
down" to describe an impediment that must be fixed before the design
can be implemented. We observed many design breakdowns such as
misinterpretations, file formatting issues, mistakes introduced after
modifying the original design, disagreement among the stakeholders,
etc. Based on the 25 projects we analyzed, we found that the most
frequent breakdowns could be categorized in three types: missing

information, edge cases, and technical constraints.

missing information A missing information breakdown occurs
when the designer makes a decision without communicating it to the
developer. Two designers and four developers reported cases of missing

information. For example, P9dv received an interactive mockup of a
webpage. He could not determine whether the page’s calendar widget

1 Developer Tools are a set of tools to inspect and modify the web content of a browser
window
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Figure 7.2: Key design breakdowns between designers and developers:
Missing information: Designers do not communicate necessary details. Edge
Cases: Designers do not consider certain problematic situations. Technical
constraints: Designers are not aware of technical limitations.

was interactive or simply the output of another interaction. P9dv also
lacked the design rationale: “What did they create that calendar for?”

Similarly, P12dv received only static mockups for a sports application,
and could not determine how to move from one screen to another.

Designers sometimes found it difficult to represent and communi-
cate dynamic behavior to the developers. For example, P8ds wanted
to create an animation of a blossoming flower but did not know how
to represent her idea in After Effects. She ended up drawing a few
sketches and then sat next to the developer as they worked out how
to implement her idea directly in code.

Surprisingly, in two cases, the designers explicitly did not com-
municate the interaction at all, or only partially. They relied on the
developer, especially because they wanted off-the-shelf interactions.
This supports Myers et al. (2008)’s argument that designers find in-
teractions hard to represent. For example, P6ds provided static design
documents without representing some transitions, even if they were
simple: “I let the developer pick the interaction between the screens, since

they are very basic.”

edge cases An edge case breakdown occurs when the designer
only focuses on typical scenarios and does not consider extreme or
problematic situations. Developers are trained to think about edge
cases; designers are not. All developers reported that designers omit
important edge cases from their design documents, and that they had
to decide how to handle these situations themselves. P13dv received
only mockups to develop a sports application. Because the designer
had only specified the “sunshine cases”, P13dv had to make design
decisions for each of the different edge cases. For example, the client
asked him to include advertisements, so he modified the original
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design to accommodate the ads. Similarly, P16dv prepared a responsive
grid for a cruise company website. The original mockup only featured
the desktop version of the website. P16dv did not know how to handle
large elements that did not fit within the width of the screen of the
mobile version: “Should the rectangle be transformed into a square or should

it take a full row?” For P16dv, designers usually “don’t take into account

the dynamic nature of the data”.
Some designers try to overcome these issues with design guidelines.

For example, P4ds created a 16-page specification with annotated wire-
frames to explain the sign-up functionally of a website. She reported
that “specifications make me think of all the states and exceptions”. She also
used the guideline to capture and communicate the rationale for her
design decisions. Sadly, the client’s API did not support her design
and she had to modify it. Similarly, P3ds created a spreadsheet to help
him think and “explain the rules of the game and the limits” for each
element in the website.

technical constraints A technical constraint breakdown occurs
when the designer lacks awareness of technical limitations, either in
general or with respect to the developer’s skills. Five designers and
four developers reported breakdowns due to such misunderstandings,
which created additional work for the developer. For example, P13dv

received a design for an iPad application that called for horizontal
scrolling when in portrait orientation. But P13dv “could not recycle his

code from the landscape version to create it”. He had to reimplement it
from scratch, since it had already been approved by the client. This
type of misunderstanding leads developers to modify the design
themselves.

Lack of awareness of technical constraints is also a problem for
designers. For example, when working on a complex website, the
developer first told P6ds that “everything was possible”. P6ds soon dis-
covered that the developer was unable to implement many elements
with his tools, even though they had already been validated with the
client. P6ds said: “He should have said it earlier, we would have adapted our

design.” Instead, they were forced to redesign the project several times
to accommodate the developer’s limitations.

Collaboration is usually smoother when the designer is aware of the
developer’s constraints and possibilities. For example, P5ds worked on
a project with two different developers. The first asked her to specify
all the dimensions, such as the distances among all the elements on
the screen, “so we lost a lot of time”. The second developer asked for a
grid specification, which she created with 12 columns, a gutter size
and a maximum size of 1200px. “Now we have the same, each one in our

own tool.” The grid allowed the developer to express dimensions in
percentages, sparing P5ds the need to make additional annotations
and saving a great deal of time.
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Figure 7.3: Relationship between interaction type (standard vs. custom) and
developer involvement. Lack of developer involvement in the early phase of
custom interaction design is correlated with problematic or impossible
implementation. Nomenclature: P1.a identifies the first story of participant
one, while P1.b identifies the second story of participant one.

7.1.2.3 Late developer involvement

The third finding is that late involvement of the developer has a neg-
ative impact on the collaboration, especially when creating custom
interactions. Even though all participants claimed to use agile method-
ologies, only five of the 25 projects (two remote and three co-located)
included face-to-face sessions between designers and developers, dedi-
cated to co-design the initial interaction. For example, P4ds had an idea
for a custom navigation rule so she drew a few ideas and invited all
the designers and developers to help design it. The developer was able
to implement the resulting navigation behavior without additional
instructions or documents: “Nothing was written down, we only had the

screens.”

Other similar examples suggest that involving developers during
the design phase makes it easier to create complex interactions (Fig-
ure 7.3). In such cases, developers gain an understanding of the desired
interaction during the meeting and designers need not fully represent
it in the design documents. Developers were most likely to be called
in for the design phase when the project included custom interactions.
In most of these cases (6/8), developers successfully implemented the
desired custom interaction, as in the aforementioned example of P8ds’s
flower animation in paragraph 7.1.2.2.

However, when the project required a custom interaction and the
developer was not involved at the design stage, most developers were
not able to implement the proposed interaction (5/7). For example,
P7ds reported that the developer “just did not implement” the custom
transition he had proposed. One of the remaining cases was still
problematic: P13dv was frustrated with the proposed interaction: “I
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could not recycle my code, but as the design had already been validated by

the client I still had to implement it. I lost a lot of time.”

7.1.3 Summary

We identified three primary issues when designers and developers
collaborate on the creation of interactive systems: reworking and re-
dundancy, design breakdowns and late developer involvement. Both
designers and developers spent too much time reworking, i.e. redoing
previous work in the same or another representation, primarily due to
redundancies within and across their artifacts. Designers struggle to
represent interactions and dynamic behaviors with current tools and
use multiple design documents to communicate different aspects of
their design. Developers spend an excessive amount of time recreat-
ing the designer’s documents and correcting their misinterpretations.
During the implementation phase, developers face three types of de-
sign breakdowns — missing information, edge cases and technical
constraints — that undermine the collaboration process. Our data
also suggests that projects requiring custom interaction benefit greatly
from the early involvement of the developer, during the design phase.

7.2 study two : analyzing designer-developer breakdowns

To further understand the breakdowns identified in the first study
and how they are addressed, we conducted a case study of a team of
designers and one developer. Unlike the first study, where interviews
were based on the participants’ recollection of recent projects, we ob-
served a team during the entire duration of a one-month project. The
goal of the project was to create a website for a crowd-sourced direc-
tory of companies. We were interested in whether design breakdowns
still appear when a developer is involved early in the project, and, if
so, which strategies are used to avoid or mitigate these breakdowns.

7.2.1 Method

7.2.1.1 Participants

We studied three designers and one developer (ages 24-25, one woman).
This was the first time that this group of designers had collaborated
with this developer. This grouping occurred naturally, the authors did
not intervene in any of the details of the setup. One of the designers
was P1ds from Study One.

7.2.1.2 Procedure

We observed the two face-to-face design meetings that involved all the
designers and the developer. The first two-hour meeting (Figure 7.4)
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focused on the design of the website. The second meeting lasted
an hour and focused on implementation. We also interviewed the
designers separately, prior to the second meeting, to learn more about
their design tools.

7.2.1.3 Data Collection

We video recorded both meetings and took notes. We took pictures
of collaborative actions, i.e. exchanges between the designers and the
developer, and their manipulation of artifacts such as drawings, notes
and software.

7.2.2 Results and Discussion

We used Chronoviz (Fouse et al., 2011) to annotate relevant, interesting
events during the meetings. Two coders marked and analyzed the
times when a participant asked a question, or when a designer sought
confirmation from a developer or vice versa. We correlated these
annotations with the classification of design breakdowns from Study
One.

We focus our analysis on the two face-to-face meetings.

7.2.2.1 First Meeting - Accounting for design breakdowns

The main benefit of the early face-to-face meeting was to let partici-
pants seek validation from each other and to avoid potential problems.
We identified examples of avoiding missing information, considering
edge cases, and clarifying technical constraints.

In order to avoid missing information (12 occurrences), the developer
often encouraged the designers to specify concrete details about their
design ideas. The mere presence of the developer pushed the designers
to be more explicit about certain design issues. The developer also
pushed the designers to think about edge cases (5 occurrences).

Similarly, when the designers proposed adding a gesture for dese-
lecting a category on the mobile version, the developer asked them
to consider how this design decision would affect the desktop ver-
sion of the website. Given the developer’s warning, the designers
decided to skip the feature. Designers often sought validation, con-
firmation or information about technical constraints (17 occurrences).
This echoes the “considering implementability” category observed by
Brown, Lindgaard, and Biddle (2012).

In order to make informed decisions, they asked the developer about
the complexity of implementing certain designs. When the designers
proposed a search feature for companies, the developer asked them
to specify exactly what should be searchable. The designers idea was
to search within all company-related information, including their
descriptions. The developer replied: “Everything is possible... but if you
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Figure 7.4: First meeting. The developer interacts with an existing
application to discuss possible interactions with two designers while another
represents it on paper.

really want to make a search inside the description, it will be a bit more

complex.” He suggested only looking up names and tags, but with an
autocompletion feature; the designers agreed.

7.2.2.2 Second Meeting - Fixing design breakdowns

Even though they were able to handle many design breakdowns dur-
ing the first meeting, new ones appeared during the implementation
process. The developer found new edge cases (4 occurrences). For ex-
ample, he noticed that a company card with multiple subcategories
would occlude the company’s name. The designer responded: “Maybe

we can put three dots and display the extra ones only on [mouse] hover.” The
developer also requested missing information that he could not infer
(8 occurrences). For example, when reviewing the search feature, the
designer asked for a clarification: “In which order are the items shown

when they are displayed as results?” Designers also questioned some of
the developer’s decisions: “Why do we need pagination?” The developer
proposed an alternative: “We should [be able to] put the maximum number

of items on the page without loading problems.”

7.2.2.3 Vocabulary mismatch between designers and developers

In both meetings, differences in the vocabulary used by designers
and developers led to miscommunication. Sometimes, designers and
developers used different terms for the same concept. For example,
during the second meeting the developer talked about a “fixed” ele-
ment, referring to the CSS terminology. The designer, who tried to
take the user’s perspective, referred to the same object as a “moving”

element, an element that scrolls with the page. It took some time for
them to discover that they were talking about the same behavior.
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We observed several strategies for overcoming these issues (5 occur-
rences). Developers and designers tried to bridge the vocabulary gap
by adopting each other’s terminology. For example, when discussing
whether an item should appear in several categories, one designer
started using mathematical concepts when communicating with the
developer: “Is it the union or the intersection of these two categories?” The
same designer gave a specific use-oriented story to explain their deci-
sion to the other designers: “imagine if you click here [on a category] ...
and then if you click here [on another category], it deselects automati-
cally that first one.” The developer also reformulated the example in
terms of UI widgets: “It is either a radio button or a checkbox.” On several
occasions, designers and developers looked up specific interaction
techniques on a particular website or found examples from a mobile
application on a smartphone to show the others. This “communication-
by-example” helped them verify that they were talking about the same
interaction technique.

7.2.3 Summary

Involving the developer at the beginning of the design process helped
the team reduce the amount of missing information, handle edge cases

and set clear technical constraints for the scope of the design. This
echoes the recommendations of Salah, Paige, and Cairns (2014) about
the benefits of developer early knowledge. However, new design
breakdowns occurred during the implementation phase and had to
be solved collaboratively. Vocabulary mismatches also created several
collaboration issues, especially when discussing interactive behavior.

Most of the work of the designers and developer was alignment
work (Brown, Lindgaard, and Biddle, 2012), to manage tensions. The
design breakdowns classification allowed us to analyze these tensions
more finely. We found that both designers and developers actively try
to mitigate design breakdowns when meeting face-to-face. However, it
is still unclear which of these breakdowns are inherent to the designer-
developer collaboration and which are a consequence of limitations in
the design artifacts.

7.3 study three : exploring design solutions

In order to find out whether some breakdowns could be alleviated
by using appropriate representations of the design, we used a trian-
gulation approach (Mackay and Fayard, 1997) and conducted a third,
participatory design study. We were interested in whether design
breakdowns are simply a natural result of the collaboration process,
or if they are also by-products of the limitations in the representations
used to describe interactive systems. Since these representations are
traditionally the product of designers, we wanted to elicit new kinds
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of representations by asking designers and developers to create them
together.

7.3.0.1 Participants

We recruited two designers and two developers (all men, ages 24-
33). Two of them (one designer and one developer) participated in
Study One and were invited due to their interest in this research. The
other two professionals were recommended by participants from the
previous studies. The developers had not previously worked with
the designers. They had 1.5 to 10 years of experience collaborating
across disciplines. Besides the four active participants, the authors
of this paper attended the workshop: two as observers and two as
participant-observers.

7.3.0.2 Procedure

The workshop lasted three hours and featured two activities designed
to examine how designers represent and communicate existing custom
interaction behaviors. We selected two unfamiliar interaction tech-
niques from two mobile applications that rely heavily on continuous
gestures. Participants were given the opportunity to explore these tech-
niques for themselves on a mobile device we provided. The techniques
were:

• Pinch-to-create: The Clear to-do list mobile app2 uses a pinch
out gesture to progressively split apart two items and create
a new one between them; lifting the fingers creates the item
(Figure 7.5).

• Pan-and-stamp: The Paper note-taking mobile application3 uses a
lasso technique to select an area of the canvas to be cut, which
can then be moved with a panning gesture. While moving it, a
tap with another finger copies it at that particular location.

• Lasso-fill: The Paper app also uses a lasso selection to specify
an area to fill with a color previously selected. When the lasso
crosses itself, the area is colored with the so-called even-odd
winding rule, leading to unexpected results (Figure 7.7a shows
a sketch of the interaction).

Activity 1 (1h): Designers and developers were divided into two
pairs, grouped by roles. Designers received pinch-to-create and develop-
ers received pan-and-stamp. We made sure that none of the participants
knew these interactions beforehand. We asked the designers to de-
scribe the interaction as they would ideally communicate it and asked
the developers how they would like to receive a description from a

2 http://www.realmacsoftware.com/clear/

3 http://www.fiftythree.com/paper

http://www.realmacsoftware.com/clear/
http://www.fiftythree.com/paper
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Figure 7.5: The pinch-to-create interaction is based on the Clear to-do list
mobile app. First the user puts down two fingers simultaneously. Then, by
spreading them, the new item is revealed progressively. Finally, the new
item is created when the user lifts her fingers off the screen.

designer. We asked them to give as complete a description as possible,
and gave them access to all the tools and means they use in their daily
work practices. When participants were satisfied with their representa-
tion, they gave the resulting artifacts to the other pair. Each pair then
tried to describe what they understood from the representation. We
also asked them to try to find the interaction in the real application.
Afterwards, participants discussed the issues they encountered when
creating and interpreting the representations.

Activity 2 (2h): The two designer-developer pairs were shown the
lasso-fill interaction. We asked each pair to come up with strategies or
new representations that fully communicate the original interaction.
We asked them to create representations that satisfy both members of
the pair.

7.3.0.3 Data Collection

We collected all artifacts created by the participants: sketches, dia-
grams, text descriptions, paper prototypes and stop-motion videos.
We took photographs and videos as they manipulated these artifacts,
and took notes during the discussions.

7.3.1 Results and Discussion

The workshop provides clear evidence that current design artifacts
are not adequate to provide complete descriptions and avoid design
breakdowns. Designers and developers had to collaboratively combine
different types of representations, such as sketches and diagrams, to
create complete and general descriptions from concrete and specific
examples.
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Figure 7.6: An example of a designer’s representation of pinch-to-create. The
designer depicts a continuous interaction by discretizing key visual states
and adding user input annotations.

7.3.1.1 Current representations do not encourage completeness

Participants took approximately 15 minutes each to create and be
satisfied with their representations in the first activity. Even though
they were given a fully functioning interaction and instructed to create
complete descriptions, the four proposed representations were clearly
incomplete. This suggests that some design breakdowns are a by-
product of inadequate representations.

The designers relied primarily on visual representations based on
drawings and annotations. Developers felt that these were effective
in communicating the overall idea, but left too many unanswered
questions for a correct implementation. For example, the designers did
not communicate certain types of feedback, such as the gesture spread
threshold or the animated transition that placed new items at the top
of the list. During the discussion, one of the developers explained that
a picture requires more translation steps than a text description for
implementation: “If I receive a picture, I first need to translate it into text

and then I need to translate it into code.”

Developers relied mainly on text, including programming vocabu-
lary such as conditionals and loops, complemented by a few visual
elements. Text descriptions provided specific information for the im-
plementation but did not clearly convey the look and feel of the
interaction to the designers. For example, when trying to represent
the pan-and-stamp interaction, developers did not communicate the in-
creased opacity outside the selection and the flash effect when pasting
the copied area.

7.3.1.2 Strategies for creating complete representations

During activity 2, the two pairs explored seven different strategies to
fully represent and communicate the interaction. The most promising
strategies were:

a. Pair 1 decomposed the lasso-fill interaction using examples from
other applications: the lasso tool from Photoshop combined
with the paint bucket from Illustrator. The designer from Pair 1

proposed recording videos to demonstrate the use of these tools
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Figure 7.7: (a) A designer drew a snapshot of the lasso-fill interaction at four
points in time. (b) A developer created a diagram connecting primitive
graphical elements and functions with user inputs. (c) The designer merged
the two representations with an example.

and combine them. He argued that this strategy would avoid
misunderstandings as well as provide a complete description of
the interaction.

b. The developer from Pair 1 proposed a shared “lexicon” describ-
ing the objects of the program, their characteristics and the tools
that can interact with them. Pair 1 thought that a common vo-
cabulary would facilitate the discussion about how to extract
common components.

In order to reach a shared and complete representation, both pairs
refined their representations through multiple iterations. They started
with a visual example, and then added rules and annotations to pro-
duce a more complete description. For example, the designer from
Pair 1 drew a snapshot of the interaction at four points in time: touch,
move, release, and create closed shape (Figure 7.7a). Next, the develop-
ers and designers collaborated to gradually generalize the description
of the interaction. The developer, inspired by the designer’s represen-
tation and his knowledge of “flow programming”, drew a diagram
representing the different components of the interaction (Figure 7.7b):
finger, shape, line and closed shape. Based on the developer’s rep-
resentation, the designer built a new representation that combined
the strengths of both proposals (Figure 7.7c). He color-coded a visual
example and mapped each graphical element to a detailed description
of the expected behavior.
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7.3.2 Summary

Even when provided with an existing and complete interaction, both
designers’ and developers’ representations suffered from missing in-

formation and edge cases. This suggests that current representations
are limited and may result in design breakdowns. To create complete
representations, designers and developers gradually added rules in
addition to concrete examples. This way of working helped designers
and developers to mitigate breakdowns. We argue that computer-
based prototyping tools supporting this workflow between designers
and developers could also mitigate collaborative breakdowns.
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These three studies show that breakdowns occur routinely during
designer-developer collaboration and can result in severe mismatches
between the system originally envisioned by the designers and its
final implementation. To avoid such consequences, we should help
designers and developers identify these breakdowns and solve them
as early as possible.

A key source of designer-developer breakdowns is the lack of an
infrastructure supporting the boundary objects used to represent in-
teraction. Designer tools generate isolated representations that are
rarely updated when the system implementation changes. Designers
are also responsible for manually keeping the design consistent across
multiple design documents, often in different formats, e.g., images, di-
agrams and video. By contrast, developer tools work with precise and
“executable” representations. These representations govern the actual
system and developers must ensure that they are up-to-date with the
expected design. In such a workflow, when changes emerge during
iterations, the design specification is rarely materialized outside of the
final implementation due to the high costs of updating multiple and
unconnected representations. We believe that tools for the design and
implementation of interactive systems must accommodate the skills,
values and practices of both designers and developers, and support
an integrated workflow.

8.1 design principles for designer-developer collabo-
rative tools

Based on these findings, we propose four principles for the design of
computer-based tools that support designer-developer collaborative
prototyping and reduces breakdowns:

1. Provide multiple viewpoints;

2. Maintain a single source of truth;

3. Reveal the invisible; and

4. Support design by enaction.

These design principles address the following questions:

• How can we encourage early participation by developers?

• How can we reduce reworking and redundancy?

113
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• How can we mitigate design breakdowns?

• How can we support a workflow from example-based to rule-
based descriptions?

8.1.1 Principle One: Provide multiple viewpoints

A collaborative prototyping tool should provide multiple rep-

resentations of the interaction in order to support the different

viewpoints of each community of practice involved in the process.

In order to encourage early developer involvement in the design pro-
cess, we need to provide a designer-developer "sandbox" that supports
both designer- and developer-friendly representations for manipu-
lating the system under construction. In other words, if we want
designers and developers to, e.g., “sketch” an interaction together, we
should embrace the needs and perspectives of both communities. In
the following, we use the word viewpoint to characterize a representa-
tion of the design targeted to a particular community of practice or
activity.

Today’s design and development practices do not encourage the
use of multiple viewpoints concurrently. Our studies show that in
the early stages of a project, tools tend to focus on rapid prototyping,
disregarding the developer’s view; in later stages, tools tend to focus
on development, disregarding the designer’s view. From the start and
throughout the entire design process, designers and developers should
be able to manipulate the interactive system under construction with
their own representations and tools. By providing multiple viewpoints,
we can leverage the existing skills and knowledge of both designers
and developers.

These viewpoints should provide rich interactions to manipulate
the design, similar to those in the current individual tools. For con-
structing the user interface, IDEs such as Eclipse or Xcode feature a
user interface builder as their “design view” and a code editor as their
“code view”. However, they provide limited authoring capabilities
compared to existing vector and raster graphics software. UI builders
focus on assembling predefined elements, dragged from a catalog
of interface components, rather than creating or exploring custom
interactions. These “design views” are used differently than graphical
authoring tools; designers can only assemble canned interfaces within
a constrained environment, while graphical authoring tools let them
explore new ideas in an unrestricted environment.

During the workshop, designers and developers started with spe-
cific, concrete examples, and then, through several iterations, gener-
alized these examples to create more abstract representations. This
suggests that designers and developers would benefit from viewpoints

at different levels of abstraction: some more concrete to represent exam-
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ples and some more abstract to describe rules. We believe that the
ability to transition from specific examples to higher-level abstractions
would help designers create more complete descriptions.

8.1.2 Principle Two: Maintain a single source of truth

A collaborative prototyping tool should keep the multiple repre-

sentations of the interaction synchronized, i.e. changes in one

representation should be reflected in the others as quickly as

possible.

In order to reduce rework and redundancy, prototyping tools should
not only provide multiple viewpoints, but also keep these represen-
tations in sync. The previous studies showed the fluid and iterative
nature of designer-developer work, and the need to modify the rep-
resentations during the process (P4ds, P13dv, P16dv). Some graphical
tools support “symbols” or “smart objects” that are referenced across
documents instead of being copied. Designers can modify these smart
objects and see the changes reflected wherever they are used, alle-
viating the need for manual synchronization. However, while this
encourages modularity it also requires planning: “smart objects” must
be created before being used. Such planning is at odds with the fluidity
of the design and implementation process.

We argue that design tools should support objects that are con-
sistent across representations, minimizing the need for planning. To
foster collaboration and understanding across activities, changes in
one representation should be instantly reflected in the others, sim-
ilar to live programming (Tanimoto, 2013). One strategy is to use
automatic transformations among representations. For example and
when possible, changes to a designer-friendly representation would be
made available to implementation representations and vice versa. This
approach encourages reuse across activities and reduces redundancy
by leveraging shared entities.

In practice however, some information might not be transformable
among representations. For example, a representation focused on the
look might not be able to represent the behavior of an interaction. Also,
it is usually impossible to transform among representations working at
different levels of abstractions. In such cases, users should be notified
that changes have been made, even if they cannot be automatically
transformed into the target representation. In addition, the system
should help users regain a synchronized state.
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8.1.3 Principle Three: Reveal the invisible

A collaborative prototyping tool should reveal information only

available in one representation in the other representations; when

not possible, intermediate representations should be provided.

In order to reduce cases of missing information it is not enough to
maintain multiple viewpoints synchronized. Unlike in current work-
flows, where some elements are only visible and manipulable in
certain representations, we need to augment or create new interme-
diate representations to expose information that is not available in
existing design artifacts.

In our studies, developers often lacked access to important elements
of the design such as measures (P5ds), colors (P6ds) or animation time
values (P7ds). Some of these elements were available in design doc-
uments, but developers did not have access to them and had to ask
the designer to send them explicitly (P5ds) or in a specific format
(P2ds). In some cases, the visual elements used to communicate extra
information, such as annotations, measures or user inputs, were misin-
terpreted as actual visual elements that were part of the user interface.
For example, in the second study the developer misinterpreted a cross
in the corner of a widget for an annotation, when in fact it was a close
button. Prototyping tools should reveal this design information to the
developers without adding noise to the design being communicated.

Conversely, designers lacked access to information hidden in the
code. For example, measures or equations used as parameters of an
interaction exist in code but do not have a manipulable visual counter-
part in the design representations, therefore designers cannot modify
them by themselves. Even worse, designers needed to produce extra
documents to communicate the appropriate request to the developer.
Prototyping tools should reveal these interaction parameters to the
designers in a form compatible with their viewpoints.

Ideally, all entities and concepts should be available in all representa-
tions. When this is not possible, hints or links should be made explicit
to understand these invisible relationships among representations. For
example, missing information could be more easily detected when a
design decision is not available on the developer’s view. Developer
concepts such as parameters and conditions should be manipulable
by the designer, especially if they are linked to concrete aspects of the
design, such as distances, relative positions or extreme values.

8.1.4 Principle Four: Support design by enaction

A collaborative prototyping tool should support the design and

implementation of an interaction through enactments of the

interaction as a rapid, active and contextualized medium for

design.
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In order to find edge cases, the prototyping environment should
let designers and developers experience the interaction being cre-
ated in context as early as possible. In the same way as we infor-
mally communicate an interaction idea by gesturing with our hands,
computer-based tools should take as inputs enactments of the inter-
action performed with our own body, including hand gestures, voice
commands or gaze.

According to Bruner:

“Any domain of knowledge [...] can be represented in three
ways: by a set of actions appropriate for achieving a certain
result (enactive representation); by a set of summary im-
ages or graphics that stand for a concept without defining
it fully (iconic representation); and by a set of symbolic or
logical propositions drawn from a symbolic system that is
governed by rules or laws for forming and transforming
propositions (symbolic representation)”
–—Bruner 2006.

Victor (2013) calls these three modes of representation interactive

(enactive), visual (iconic) and symbolic. In our studies, we observed that
designers create visual representations of interactions and dynamic
behaviors as screen flows with different levels of precision, such as
sketches, wireframes or mockups. Designers typically describe how
the system reacts to an imprecisely specified user input. Based on
these designs, developers create symbolic representations of the in-
teraction in the form of code that they run in the target environment,
or in an emulator. Developers then assess the extent to which the
implementation follows the specified design.

This process restricts the use of interactive devices for testing, rather
than a full-fledge design medium. We argue that interactivity should
be used during the entire design and development process, not only
at the testing stage. For example, in the second study, the developer
interacted with existing mobile applications to show different design
possibilities to the designers. In the first study, P4ds organized a co-
creation session so that she and the developers could “act” over some
drawings to show how the interaction should behave.

User inputs, not just visual outputs, should be manipulable. They
should be created in context on the target environment to inform the
design and encourage “learning by doing”. Also, the relationships
created between user inputs and visual outputs should be “tweakable”
and explorable. In all three studies, we observed that designers were
less likely than developers to specify edge cases, even though their early
identification can avoid significant problems later on. However, they
paid more attention to edge cases during the workshop, when designers
and developers were encouraged to work with the target device.

Current practices do not encourage enaction: designers typically
work during the entire process with graphical editors and do not
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explore their design on the final device until an implementation starts
working. Supporting design by enaction lets creators play an active role
as the final user; finding edge cases becomes part of the construction
itself.

8.1.5 Summary

The goal of these four principles is to minimize designer-developer
breakdowns due to the limitations of their design artifacts:

• Provide multiple viewpoints of the designers and developers needs
and practices, to help developers participate early in the design
process;

• Maintain a single source of truth to keep all these viewpoints in
sync and reduce reworking and redundancies;

• Reveal the invisible information, either hidden from the design-
ers in the code or sheltered from the developers in the design
artifacts, to avoid missing information in the design descriptions;
and

• Design by enaction to find more edge cases by experiencing the
design in context as soon as possible.

These design principles are also tightly interconnected. Each prin-
ciple targets a particular breakdown but can also help mitigate other
breakdowns. For example, providing multiple viewpoints encourages
the early participation of developers, and should also reduce missing

information. Maintaining a single source of truth reduces reworking and
redundancy, which should also facilitate early developer participation.
Revealing the invisible reduces missing information, and can also make
edge case more visible. Finally, supporting design by enaction can help
find edge cases, but can also reveal technical constraints by reducing the
time-to-interaction.

Taken together, these principles lead to the definition of a network

of inter-related design artifacts for prototyping interactive systems,
instead of the current situation where the design artifacts are loosely
connected. However, we acknowledge that applying these principles
is not sufficient to guarantee successful collaborative work. Indeed,
some designer-developer breakdowns are not directly related to the
artifacts that they use: Interpersonal relationships, different styles
of communication and technical knowledge, just to mention a few,
also have an important impact on designer-developer collaboration.
Nevertheless, these design principles, which are grounded in our
in-depth studies, can help researchers and practitioners create new
prototyping tools that significantly reduce avoidable breakdowns, as
we now illustrate.
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8.2 enact : a tool for collaborative prototyping of touch-
based interactions

In order to validate the above design principles, we need to use them
in real collaborative scenarios. One option is to start with existing
designer and developer tools, but this requires integrating proprietary
software from different vendors and potentially incompatible data
representations. Instead, we chose to create a new tool, called Enact,
which gave us more freedom to explore the use of the design principles
in an unrestricted environment.

8.2.1 Overview

Enact is a live environment for prototyping custom touch-based inter-
actions that supports collaboration between designers and developers.
Among the many interaction styles that can benefit from collaborative
support, we decided to focus on multi-touch interaction for mobile
devices. As we have observed in the participatory workshop, multi-
touch interactions are familiar yet challenging for professionals to
describe and prototype. Enact lets users work graphically and with
concrete examples, but also exposes low-level touch events through
an interactive state machine.

There are many aspects of the construction of an interactive system
that are outside the scope of Enact. Our focus is on supporting
designer-developer collaboration when creating custom interactions
rather than supporting the creation of a complete interactive system.
Therefore Enact does not cover back-end integration for networking,
storage, application distribution, etc. It also does not have means to
specify the navigation among multiple screens. While Enact could
be extended to support these features and allow the creation of full-

Figure 8.1: Enact uses a target mobile device and a desktop interface with
five areas: a storyboard with consecutive screens, an event timeline with a
handle for each screen, a state machine, a code editor and a device mirror
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fledged touch-based interfaces, the current version only supports the
definition of a single interaction on a single screen.

Enact addresses the main collaboration issues identified in the
first three studies by applying the four previously described design
principles:

• The desktop interface is organized in five areas providing mul-

tiple viewpoints of the interaction (Figure 8.1): a storyboard, an
input timeline, a state machine, a code editor and a device mir-
ror;

• The single source of truth is the interaction under construction,
maintained automatically across viewpoints or manually with
the assisted testing;

• The device mirror reveals invisible information such as measures
and touches; and

• The target device supports design by enaction by letting users
perform gestures and test the interaction in real time.

We first illustrate Enact through a use scenario. Then, we describe
the main features of Enact and provide their design rationale.

8.2.2 Use scenario

Anton, a designer, and Petra, a developer, want to prototype a custom
interaction to create items in a to-do list application using a continuous
spread gesture, or “pinch apart”, i.e. the reverse of a pinch gesture
(Figure 7.5).

8.2.2.1 Representing the visual design

To communicate the visual design to Petra, Anton first draws the look

of the interface at different stages, similar to the sketches presented in
the third study (Figure 7.6).

Anton starts by drawing the to-do items as rectangles in the first
screen of the storyboard. When Anton adds a second screen, Enact

duplicates all the elements from the previous screen, a feature called
storyboard automatic propagation (Figure 8.2a). In the second screen,
Anton adds a 6-vertex polygon as the new item and adjusts its size
to fill the space between the two existing items. He then creates
a third screen where he moves the items apart and increases the
size of the new item in between by modifying the vertices. Finally,
Anton decides to tweak the color and the size of the first two items.
He only needs to modify these in the first screen because changes
automatically propagate to the following screens. This propagation
reduces redundancies and ensures consistency across the design.
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Figure 8.2: Scenario. The first screen of the storyboard shows the initial look
of the interaction. The two items created in the first screen (light blue)
propagate to the second screen, where a third item (in yellow) is added (a).
Each screen has a corresponding handle in the input timeline (b). The state
machine shows the selected transition in green and the active state in red (c).
State machine actions can be edited in the code editor (d), either by coding
or by linking a storyboard elements to create design references. In the third
screen of the storyboard, a measure M1 is added between the top and bottom
rectangle (e).

8.2.2.2 Specifying user inputs

To communicate the interaction design to Petra, Anton records a
spread gesture directly on the mobile device, mimicking how the user
should interact with the system (Figure 8.3). The recorded input events
are stored in the timeline which features a handle for each screen in
the storyboard (labelled S1, S2 and S3 in Figure 8.2b). Anton can move
the screen handles along the timeline to position the screen at the
moment in time that corresponds to the right distance between the
finger touches of the recorded gesture. He can also adjust the items
in screen S2 to better match the gesture. Since these items are in a
different position in screen S3, the automatic propagation does not
apply. By interacting with the device and by seeing the user inputs
on top of the screens, Anton can make informed decisions about the
layout of the interface with respect to the position of the user touches.

8.2.2.3 Making the design interactive

Petra receives Anton’s design and examines the screens. Enact auto-
matically generates an animation combining the storyboard screens
and the recorded user inputs. She watches the animation to better
understand the behavior of the interface.

Enact uses a state machine (Appert and Beaudouin-Lafon, 2006;
Oney, Myers, and Brandt, 2014) to specify the interaction behavior.
When creating a new interaction, a default state machine is provided.
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As Petra interacts with the target device, she can visualize the tran-
sitions among states in real time. She decides to add a new Pinch

state to create the custom pinch apart gesture (Figure 8.2c). During
the pinch, the user touches should control the position of the top and
bottom items. To do so, Petra selects the touchmove transition of the
Pinch state and programs a new action in the code editor (Figure 8.2d).
She can write code but she can also drag touches, visual elements, and
properties from the storyboard to automatically insert a reference to
these objects, called a design reference. After adding this new action,
Petra can directly test the interaction on the mobile device.

8.2.2.4 Revisiting the interaction

Petra notices that the new item, in the middle of the other two, is not
being resized. To control the positions of the new item’s vertices, she
needs to know the distance between the top and bottom items. Instead
of writing an equation in the code editor, Petra creates a measure (M1)
in the storyboard: She drags a line between the two original items
with the measurement tool (Figure 8.2e). Now, she can drag the new
measure into the code to create two mappings between M1’s distance
and the positions of the new item’s vertices. She is satisfied with the
result and sends the design back to Anton.

Anton runs the assisted test, i.e. an automatic comparison of the
storyboard elements with the result obtained after running the code
with the recorded inputs, and notices that the new to-do list item
grows beyond the width of the previous items. Anton decides to fix
the implementation himself. He adds a maximum value to the second
mapping created by Petra. Anton drags the values from the third
screen, and drops them as maximum values in the code (Figure 8.2d).
Since these values are now bound to screen elements, Anton can tweak
the size directly in the storyboard instead of modifying the code by
hand.

8.2.3 Drawing the user interface

The initial studies showed that designers generally depict the different
visual states of the interaction with sketches (Figure 7.6), diagrams,
wireframes or mockups. In the first study, we found that designers
needed to maintain consistency among screens manually, e.g. with
copy-paste, therefore introducing redundancy in the artworks that
later turned into mismatches or inconsistencies.

In Enact’s storyboard, each screen is aware of its past and future
screens (Figure 8.2a). Following the maintain a single source of truth

principle and in contrast to “smart objects”, Enact’s propagation
mechanism is active by default. Whenever a designer creates a new
shape or changes a property of an object, that change propagates to all
future states. Creating a new screen automatically imports the shapes
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Figure 8.3: Recording an input on the target device. The input events are
saved in the timeline (a), the designer can navigate the recorded inputs by
dragging them or by moving the associated screen handle in the timeline (b).
Current touches are displayed as translucent grey ellipses on each screen,
the radius of the ellipse represents the size of the touch (c).

and objects from the previous screen. Changes include transforma-
tions, such as moving, resizing, or changing colors. A change in, e.g.,
Screen2 propagates to subsequent screens (Screen3,4,...), but also stops
propagation from Screen1. To reactivate propagation for an object, the
user simply needs to modify it in the screen where it was changed to
match the same object in the previous screen. Propagation reduces the
amount of redundant information across screens, without modifying
current designers’ practices.

8.2.4 Providing concrete input examples

The first study showed how designers generally describe user input as
annotations on top of the visual design. Following the support design

by enaction principle, we wanted to generate this information on the
fly from actual interactions rather than using static annotations drawn
by the designer. Unlike current design tools, Enact lets designers
associate screens with actual user input events, recorded directly on
the target device. This approach is similar to “programming with
examples” (Kato, Igarashi, and Goto, 2016). First, the designer presses
the record button at the right of the input timeline (Figure 8.3). While
the designer performs the desired input on the target device, real-time
feedback appears on the device mirror. Once all touches have ended,
the recorded input events are saved in the timeline and associated
with the storyboard’s screens.

Touch events are treated as first-class objects: They can be displayed
and manipulated like other graphical elements. This builds on the
existing design practices of annotating sketches with gestures, but
also provides new capabilities. For example, touch inputs can be used
to position other graphical objects or to compare relative sizes. This



124 a principled prototyping tool

helps designers better understand the technical constraints of designing
for mobile, e.g. to determine if an object is big enough to be touched
reliably.

8.2.5 Generating an animation from the storyboard

The first study showed that designers rely on animations or videos
to describe custom interactions. Animation is a simple medium for
illustrating an interaction, but designers currently need specialized
tools to create them. In order to provide multiple viewpoints, Enact au-
tomatically generates animation descriptions based on the storyboard
and the recorded input example. Therefore, designers can create sim-
ple animations in Enact by reusing the storyboard instead of creating
extra documents.

Since each screen is associated with an input event, Enact knows
the time between screens and can therefore animate the visual changes
by using the screens as keyframes. The current implementation uses
linear interpolation, but other interpolation functions could be added.

After pressing the play button, the animation is executed on the
target device and the mirror, displaying both the visual objects, the
touch events and any created measure. These lightweight animations
let designers check the timing between the recorded touch input and
the screens in the context of a real device. While these animations
are not interactive, they provide a stepping stone towards creating an
actual interaction, which requires programming mappings between
user inputs and screen outputs.

8.2.6 Programming interaction

The initial studies showed that the traditional dichotomy between
“design view” and “code view” is not enough to articulate designer-
developer collaborative work. Rather than forcing designers and de-
velopers to abandon their practices, we want to augment them. De-
velopers frequently use diagrams to describe an interaction and think
in terms of states. However, this is rarely reflected in the tools they
use. Enact uses an interactive state machine to represent the code
of an interaction. The state machine reveals invisible details that are
usually buried in the source code. It also organizes the interaction
code as a sequence of transitions that occur over time, as opposed to
the traditional set of event handlers organized by event type.

Enact also leverages the visual representations to support program-
ming. Developers can use design references to connect interface elements
or specific values between the storyboard and the code. They can also
create dynamic measures by direct manipulation instead of defining
symbolic formulas in the code.
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Figure 8.4: A state machine for a pinch interaction. The state machine
diagram is interactive: states and transitions can be added, removed or
edited. The selected state, in green, can be edited in the code editor. The
currently active state and transition are highlighted in red.

8.2.6.1 State Machine

The goal of Enact is to let designers and developers create custom
touch-based interactions. Implementing such interactions typically
requires processing low-level touch events, which is tedious and
error-prone (Kin, 2012). Instead, Enact organizes the interaction code
around a state machine that exposes touch events as transitions (Fig-
ure 8.4).

Previous work has demonstrated the power of state machines to
describe interactions (Appert and Beaudouin-Lafon, 2006; Oney, My-
ers, and Brandt, 2014). State machines also provide multiple viewpoints:
the high-level logic of the state machine, described by its graph, and
the low-level details of transitions and actions, programmed in code.
These viewpoints provide representations that both designers and
developers can manipulate. State machines also gather an entire inter-
action within a single object, providing a single source of truth. Finally,
Enact highlights the active state and transition in real time when
interacting with the mobile device, revealing the invisible inner working
of the interaction.

Enact provides a default state machine, with two states and three
transitions, that supports continuous touches with one finger. To
add multi-touch capabilities, users can create new states by double-
clicking an empty space in the diagram and new transitions by control-
dragging from the source state to the target state. When the user
selects a state or transition, Enact shows its code in the editor as a
plain JavaScript object (Figure 8.5). Transitions are named after their
input event, they have a source and a target state (extracted from the
diagram), an optional guard and an action. Enact only executes the
transition’s action when its input event is detected and the guard is
satisfied. States can also execute actions when activated (on enter) or
deactivated (on exit).

Enact is a live environment: guards and actions are written in
JavaScript and interpreted right away. Because there is no waiting time,
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Figure 8.5: The editor shows the code of the selected state or transition.
Here, a touchmove transition is selected. The guard ensures that the
transition triggers only when touch T0 is inside rectangle R1. In the action,
the developer has defined a mapping between the positions of the touch and
the rectangle. The editor creates design references around recognized design
elements: $.T0.position, $.R1.position and $.S1.R1.position.y. The
number 237 is a local design reference representing the y-position of rectangle
R1 in screen S1. If the storyboard changes, this value will also change.

guards and actions can be edited live and the result is immediately
available. As a result, users can design by enaction by immediately
testing the current design in context.

8.2.6.2 Reusing design elements with design references

For developers, the storyboard not only describes the interaction,
it also provides a repertoire of visual objects ready to be used in
the code. Developers can drag elements from the storyboard to the
code editor to create design references (Figure 8.2d), i.e. code-based
representations of the visual elements manipulated by designers. To
help match the code representations with its visual counterpart, they
share the background color of their linked visual element (Figure 8.5).
Developers can modify them directly with a double-click in the code
editor.

When the developer hovers over a design reference, the storyboard
highlights the corresponding element. As an alternative to dragging
the visual element, users can type $ followed by a dot to use auto-
completion. They can access visual elements such as screens ($.Sn),
rectangles ($.Rn), circles ($.Cn), polygons ($.Pn), touches ($.Tn) and
measures ($.Mn). Position and size labels can also be dragged into
the code. For example, dragging a rectangle’s x-position label into
the code generates $.R1.position.x. Since design references refer to
their associated visual elements, they reduce reworking and ensure a
unique source of truth that is always accessible by both designers and
developers.
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8.2.6.3 Global and local design references

Design references can have a global or a local scope. The global scope
includes the whole storyboard, while the local scope only includes
one particular screen of the storyboard. A global design reference, such
as $.R1.position.x, refers to the x-position of R1 in any screen of
the storyboard, i.e. it refers to that design element property at run
time. However, developers also need to use particular values from the
proposed design, such as an initial color or a particular position or size.
This is achieved by using a local design reference, which targets a value
from a specific screen of the storyboard. By shift-dragging rectangle
R1 y-position from screen S1 to the editor, Enact generates the local

design reference $.S1.R1.position.y. However, instead of displaying
the underlying code as in the global case, a local design reference displays
its current value, e.g. 237 in this case (Figure 8.5, line 12). However, this
value is bound to the visual element in the corresponding storyboard
screen. This lets the designer make changes in the storyboard that are
automatically reflected in the code, maintaining a single source of truth.

Local design references support the story of P12dv in the first study,
when he “wrote the code so that the designer could very easily touch it”.
In Enact, designers, as well as developers, can influence the code by
directly modifying elements in the storyboard. Other use cases for
local design references include creating initial/final screens or thresholds
such as minimum or maximum values, e.g. to return an element to its
original position or to constrain an element’s size to be always smaller
than a certain value.

8.2.6.4 Creating input-output mappings

In order to program interactive behaviors, developers typically de-
fine the rules that connect user inputs with system outputs. To fa-
cilitate programming, Enact provides built-in functions, such as
$.isInside({touch:,shape:}) and $.map({input:,output:}). Users
can also create their own functions to avoid code duplication and use
them on any state machine action.

The map function connects changes in input properties, such as
the position of a touch, to changes in output properties, such as the
position of a graphical object. This alleviates the need for maintain-
ing the initial offset between the touch input and the target shape.
For example, dragging rectangle R1 with finger T0 is achieved by
$.map({input:$.T0.position, output:$.R1.position}) in the touchmove
transition of the default state machine.

The map function takes optional additional parameters for further
customization: min and max set the minimum and maximum values of
the output property, and ratio controls the relationship between the
changes in the input and the changes in the output. By default, there
is no min and max value, and the ratio is one. More generally, devel-
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Figure 8.6: The designer created two measures, one between the touches and
the other between the two rectangles. These measures are invisible on the
target device (left) but they are revealed in the device mirror (right) and
updated in real time to facilitate debugging.

opers have access to the full power of JavaScript, including variable
declarations, control structures and function definitions. Developers
can also create and save functions, to facilitate reuse across projects.

8.2.6.5 Reifying distances with measures

Developers are used to working with expressions and formulas cal-
culated from properties of visual elements, such as when the size of
a rectangle controls the position of another object. Designers, on the
other hand, are more familiar with direct manipulation and visual
properties. Enact makes it possible to reveal invisible relationships by
reifying (Beaudouin-Lafon and Mackay, 2000) them as measures.

Measures are first-class visual objects that can be created between
two points of interest of a shape, touch input or other measure (Fig-
ure 8.6). When a measure starts and ends on the same point, it repre-
sents a point of interest, e.g. the middle of a segment. Measures can
be dragged into the code to create design references, like other visual
elements. For example, a measure can be created between two touches
to represent the spread of a pinch gesture, and used as a parameter of
the map function to control the size of an object.

By making formulas explicit, measures also reduce code duplication
and help create one source of truth for the design. Measures can also
help identify edge cases: instead of having to figure out from the code
why a formula evaluates to a given value, the user can to look at the
device mirror where the measures are visualized in the context of the
interface elements and the user inputs. For example, it is easy to see
on the device mirror if the correct points are being measured or if the
extremities of a segment cross during the interaction.
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8.2.7 Target device and mirror

In the second and third study we observed the use of external devices
as a medium to communicate ideas. Current tools involve the target
device typically only to test an implementation. Enact instead encour-
ages early exploration of interactions during prototyping by giving
the target device a more active role as a design medium, supporting
design by enaction.

By default, Enact shows the first screen on the target device. This
contextualizes the design, letting designers and developers evaluate
decisions on the device where they will be used. Designers can use the
target device to record touch inputs, to see the generated animation in
the early stages of the design, and the actual implementation later on.

Enact features a device mirror that duplicates the visual state of
the target device in real time and augments it with visual information
such as the position and sizes of the touch points and the measures
(Figure 8.6). The mirror therefore reveals invisible but important in-
formation to understand the current state of the interaction and for
debugging purposes. Such information should not appear on the tar-
get device to avoid confusion with the actual interface and additional
information. The target device and the mirror therefore also provide

multiple viewpoints.
Designers and developers are encouraged to design by enaction by

using the target device to try out the interaction as often as possible. In
the process, users sometimes generate an interesting state on the target
device, either because it is an edge case, or because it complements the
storyboard. In such cases, Enact lets them drag a copy of the mirror
and insert it as a new screen in the storyboard.

8.2.8 Assisted testing

Assisted testing helps maintain a single source of truth among multiple

viewpoints. The first study showed that one key challenge in designer-
developer collaboration is to keep the design and the code synchro-
nized. In software engineering, checking the consistency between a
design specification and its implementation involves testing. Enact

supports assisted tests to help designers and developers maintain the
code and the design representations synchronized when mismatches
occur. Assisted testing executes the code with the recorded input and
shows incongruences in the corresponding storyboard screen.

When the user presses the Test button, Enact sets the target device
to match the first screen, then synthesizes input events from the
recorded gesture1 and executes them on the target device, triggering
the same code as if they were actual user inputs. Enact compares

1 Synthetic events are similar to regular browser events but instead of being triggered
by user actions, they are executed programmatically.
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Figure 8.7: Testing in Enact combines the code with the recorded user
inputs. To run the test, the designer presses the Test button (a). Here, the
first and second screen match the test result and their screen handles are
shown in green (b). The third screen has a mismatch displayed as a dashed
orange line and the screen handle is shown in yellow (c).

each screen in the storyboard with the corresponding state of the
target device during the test. If the output matches the screen, the
corresponding screen handle turns green in the timeline (Figure 8.7a
and Figure 8.7b). If there are differences, the screen handle turns
yellow and the output is displayed on top of the original design, with
the differences highlighted in orange (Figure 8.7c).

After the test, users can drag the screen handle along the timeline
and replay the test, as if they were controlling a video of the interaction.
This ability to navigate the test results helps designers and developers
understand the behavior of the interaction and pinpoint the sources
of the differences.

Mismatches between the screens and the test results reveal inconsis-
tencies between the design and its implementation. These inconsisten-
cies break the single source of truth principle, requiring manual changes
to return the multiple viewpoints to a consistent state. Deciding what
needs to be modified, either the storyboard, the code, or both, is up to
the designer and developer. Enact helps match the storyboard with
the code by snapping the visual objects to the test results when they
are moved or resized close to them.

8.2.9 System Implementation

Enact is a client-server web application developed with Vue, Node.js,
Socket.io, CodeMirror and D32. We use reactive data bindings to

2 https://vuejs.org, https://nodejs.org, https://socket.io, https:

//codemirror.net/, https://d3js.org/

https://vuejs.org
https://nodejs.org
https://socket.io
https://codemirror.net/
https://codemirror.net/
https://d3js.org/
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provide liveness within the desktop interface. The target device is
connected through an ad-hoc protocol on top of Socket.io messages.

Design references use CodeMirror’s text markers to style the code
with custom widgets that react to user changes in the storyboard. We
extended the CodeMirror parser with regular expressions to support
definitions of the form $.{screen}.{object}.{property}.{sub-property}.
The map function only accepts properties, such as position and size,
and sub-properties, such as x-position, y-position, width, and height.

To minimize the learning curve for developers, we wanted to han-
dle properties and sub-properties, i.e. objects and primitive values,
uniformly. In particular, these properties and sub-properties needed to
keep a record of both their previous and current value. To overcome
this challenge, we wrapped these objects behind a JavaScript proxy
object that manages delta values, i.e. the difference between the current
and previous value, and a function that transforms these deltas. Using
deltas instead of absolute values simplifies the code by alleviating the
need for offsets, such as the distance from the touch position to the
shape’s origin. The proxy object also adds an interface for the sub-
properties so they behave like primitive values, e.g. numbers. Thanks
to this approach, from the point of view of the user properties are
regular objects and sub-properties are primitive numbers.

8.2.10 Limitations and Future Work

We chose to focus Enact on mobile multi-touch interactions because
of the familiarity of the participants with this interaction style and the
vast opportunities for customization that it provides. The goal was to
illustrate how the design principles informed the design, with the hope
that a similar approach can be used for other types of tools. While
Enact supports the creation of advanced multi-touch interactions, it
lacks proper support for temporal interactions, such as using timeouts
to distinguish between short and long taps, or single and double taps.
These could easily be added to the state machine. Also, we focus on
continuous interaction, not symbolic gestures that use a recognizer.
Such gestures could be implemented by invoking the recognizer at
touch-up in the state machine. More generally, applying Enact to
other types of interactions is left for future work.

Enact uses JavaScript, making it possible to integrate the code into
existing development environments. However, manually exporting the
code will generate the same problems of reworking and redundancies
as with traditional design artifacts. We argue that prototyping tools
such as Enact should be part of an integrated design and develop-
ment environment. This would support the creation of evolutionary
prototypes, a type of prototype “intended to evolve into the final
system” (Beaudouin-Lafon and Mackay, 2003). However, if this tight
integration is not possible, other lightweight mechanisms such as live
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reloading or hot module replacements could maintain a single source of

truth.
Enact should support more powerful graphical editing capabili-

ties. Currently, Enact only provides simple graphical elements but
designers are used to the power features of their current tools, such as
gradients, compound shapes, text, and imported images. Supporting
these features in the context of other viewpoints is an interesting area
for future work.

Enact should also support the design of more than one interaction
at a time. This will increase the likelihood of conflicts, which could
be handled by supporting separate state machines associated with
different objects.

Enact uses a form of programming-by-demonstration but without
sophisticated inferencing so as to provide a simpler user interface for
professional designers and developers Myers, McDaniel, and Wolber,
2000. However, inferencing could open new possibilities to maintain

a single source of truth. Currently, when assisted testing detects a mis-
match between the storyboard and the code, Enact highlights the
difference. However, Enact could provide an inference engine that
suggests the code modification needed to reach the desired visual
state. This type of inferencing could also be bidirectional, i.e. when
changes occur in the code, Enact could suggest the visual modifica-
tions needed on the storyboard to maintain consistency.

Finally, Enact is a single-user application that lets designers and
developers work together when they are co-located, or asynchronously
when they are remote. In order to facilitate asynchronous communica-
tion within the tool, Enact should support annotations and comments
associated with design objects. Enact should also support versioning
system to track changes and to let designers explore and compare
alternatives more easily. Finally, designers and developers often want
to work concurrently. Supporting real-time remote collaboration intro-
duces extra challenges in order to maintain a consistent, executable
design, and is another area for future work.

8.3 study four : assessing enact

To better understand how designers and developers interact with
Enact, we conducted a structured observation study (Garcia et al.,
2014) with an earlier version of the tool. In terms of the evaluation
strategies of Ledo et al. (Ledo et al., 2018), this is a type 2 usage study.
We conducted this study wih an earlier version of the tool that featured
graphical rules to program the interaction (Figure 8.8) instead of the
state machine and code editor. The rules provided a visual template
for the map function presented earlier. Users could fill out the template
by dragging elements from the storyboard. The goal was to enable
designers, not just developers, to “program” the interaction.
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Figure 8.8: Visual specification of rules in the earlier version of Enact tested
in Study Four. Input-output rules connect one input with one or more
outputs. The first column shows the identifier of the element (T0 and R1),
the second and third columns refer to the X and Y-axis respectively. This rule
maps the touch’s Y-axis translation (l) to rectangle’s Y-axis scale (m) with a
ratio of 0.5. Each axis transformation can have a minimum and maximum
value taken from the storyboard.

We observed how designers and developers interacted with En-
act and the strategies they used to individually prototype several
interactions.

8.3.1 Method

8.3.1.1 Participants

We recruited four participants (1 woman, ages 26-34): two professional
developers (P1dv and P2dv) and two professional designers (P3ds and
P4ds), who create web sites, mobile applications or interactive installa-
tions. Their experience collaborating across disciplines ranges from 3

to 8 years.

8.3.1.2 Apparatus

We run Enact in a Macbook Pro 13-inch with a 2,7 GHz Intel Core
i5 processor and 16GB of memory. The target device connected to the
Enact system was an LG Nexus 5X running Android 7.0.

8.3.1.3 Procedure

We gave a short demonstration of Enact’s features and asked partici-
pants to create three different interactions of increasing difficulty: “sim-
ple drag”, “pull down curtain” and “pinch-to-create”. We prompted
the first task orally and presented the last two in the form of rough
sketches. After the three tasks, we gave participants 15 minutes to
experiment freely with Enact. The study used a think-aloud proto-
col and took approximately one hour, after which we asked a set of
post-hoc questions.
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8.3.1.4 Data Collection

We recorded audio and video of the participants’ interactions with
Enact, on the computer and on the target device. We also took notes
during the interviews.

8.3.2 Results and Discussion

We performed a thematic analysis (Braun and Clarke, 2006) of the
collected data to extract common themes across participants, both
during the tasks and the post-hoc interviews. We then revisited the
data to specify the themes and to extract relevant quotes.

All participants were able to create the three proposed interactions.
Participants were not asked to work quickly, and were encouraged
to talk aloud while doing the tasks. Even so, all participants finished
the first task in less than three minutes without prior training. All
participants finished task 2 in less than five minutes and task 3 in less
than 15 minutes.

8.3.2.1 An embodied perception of interaction

Without rules relating touch inputs and shapes, a prototype is not
interactive. We were surprised to see all participants try to interact
with the shapes on the mobile device before they create a rule. Both
designers and developers wanted to immediately explore interactivity
during prototyping. P1dv noted that Enact approaches interaction
from “a sensible point of view, just like the end user would experience it on

the mobile”.
All participants interacted with the target device as soon as they

created rules. Thanks to the live nature of the system, P1dv realized
that one of his rules was incomplete: “Now I realize that it grows only

downwards, I need to move it up.”

Participants also liked the assisted testing. For example, after the
first interaction, P2dv decided to rely exclusively on the assisted testing
to verify the rules. As P4dv could not understand why the interaction
on the target device did not react as expected, he ran the assisted
test and slowly navigated the history of the test results to find the
problem.

8.3.2.2 A pedagogical tool

Both designers and developers saw the value of the tool to help them
collaborate across disciplines. For example, P3ds explained: “Today,

I try to create simple things so that the developer does not have to get

headaches while implementing them”. P3ds added: “What is interesting is

the pedagogical aspect. I am forced to ask myself what I’m gonna ask the

developer.”
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On the developers’ side, P1dv thought that this tool would help
designers better understand custom interactions: “There are not too

many constraints at the beginning. It shows that it can be fun and quick to

create things that are very hard to implement today. But you can also increase

the complexity afterwards”.

8.3.2.3 The need for more power

Participants were able to use Enact’s features but, as they engaged
with the tool, they wanted to manipulate finer details of the interaction.
For example, P1dv wanted more control over the rules: “I want to

add this delta value. I want operators to correct rules.” P2dv also wanted
to be able to link shapes and values in the rules, so that he could
directly modify the latter by moving the corresponding shapes in the
storyboard. These remarks led us to replace the visual rules with the
map function and introduce design references in the current version of
Enact.

8.4 study five : comparing enact with traditional tools

Based on the feedback from the previous study, we created the version
of Enact described in Section 8.2. We replaced the graphical rules
with the interactive state machine diagram and added the augmented
code editor to provide more control.

We then conducted a second study with this new version in order to
better understand how Enact affects designer-developer collaboration.
The goal was to observe and compare the strategies used by designer-
developer pairs to represent, communicate and implement interactions
with their own tools and with Enact. We focused on the issues that
arise from the inability to successfully represent the interaction itself,
rather than those that arise from generating design ideas. We therefore
used the same strategy as in Study Three and provided interaction
examples from existing applications that participants had to describe
and implement. For ecological validity, we organized the study in three
phases that reflect the common collaboration patterns we observed
involving a design hand-off: communication of the initial design
(designer only), initial implementation (developer only), and side-
by-side collaboration (designer and developer, co-located).

8.4.1 Method

8.4.1.1 Participants

We recruited 12 participants (6 women and 6 men, ages 23-35): six
professional developers (P1dv to P6dv) paired with six professional
designers (P1ds to P6ds), who create web sites, mobile applications
or interactive installations. Their experience in collaborating across
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Figure 8.9: Study Five. Each pair consist of one designer (Pds) and one
developer (Pdv). The designer has 10 minutes to create a design artifact for
the initial version of the proposed interaction, then the developer has 15

minutes to implement it. Finally, both work together for 15 minutes to
evaluate the current implementation and work on the final version of the
interaction.

disciplines ranges from 0 to 7 years. P1dv and P6dv reported no signifi-
cant collaboration experience as they were just starting their front-end
developer careers.

8.4.1.2 Apparatus

Participants used their own setup, i.e. laptop, mouse, and pre-installed
software, to work with their Traditional tools. We provided two LG
Nexus 5X running Android 8.0 and an Apple iPhone 6S running iOS
10 as the target mobile devices. We helped participants to connect
these devices to their development environments before starting the
study. We run Enact in a Macbook Pro 13-inch with a 2,7 GHz Intel
Core i5 processor and 16GB of memory. The target device connected
to the Enact system was the LG Nexus 5X. The other LG Nexus 5X
was used to show examples of interactions to the designer.

8.4.1.3 Procedure

The study uses a think-aloud protocol and takes approximately two
hours. After each condition we ask participants to fill out a short ques-
tionnaire. At the end of the session, we conduct a post-hoc interview.

Each pair first creates an interactive prototype of an existing inter-
action with their preferred tools (Traditional condition), then does
the same for a different interaction with Enact (Enact condition). For
the Traditional condition we do not impose any restriction on the
tools they can use. We only let them know that they will work for a
mobile platform supporting multi-touch interactions. To avoid any
influence from Enact on the participants’ usual workflow, they all per-
form the Traditional condition before Enact. Once the Traditional

condition is over, we give a short presentation of Enact and let each
participant individually practice for 10 minutes before performing the
Enact condition.
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For both conditions we follow the same protocol (Figure 8.9). First,
we show the designer an initial version of an interaction preloaded
on one of the mobile devices. Only the designer has access to this
device throughout the study. The designer has 10 minutes to create
a design that communicates all the details he deems relevant for
creating a prototype with the same behavior. Then the designer sends
the document to the developer, who has 15 minutes to create an
interactive prototype based on the received design. During this time,
we show a final version of the interaction to the designer. Finally, we
give the pair another 15 minutes to review the initial implementation
and work together to prototype the final version of the interaction.

For each condition we use a different multi-touch continuous in-
teraction with two versions: initial and final. This lets us study the
introduction of changes in a controlled environment: the initial ver-
sion features the basic interactive functionality while the final version
includes changes and adds complexity to the previous design. We
use two custom interactions already used in the participatory design
workshop (Study Three, Section 7.3): pinch-to-create and pan-and-stamp.
We simplified certain aspects of the visual design such as gradients,
texts and 3D effects to focus on interactivity. Both interactions feature
at least seven edge cases. We expect these interactions to have a similar
level of difficulty.

The first interaction, pinch-to-create, is inspired by the Clear to-do
list mobile app3, which uses a spread gesture to create a new item
between two existing items (Figure 7.5). The initial version lets users
simultaneously move two rectangles with a pinch gesture. The final
version lets users manipulate the size of a third rectangle with the
spread of their fingers. The edge cases include: The interaction should
only work when the fingers are inside the rectangles; The third rect-
angle is always positioned in the middle of the other two; The upper
rectangle cannot move lower than its starting position.

The second interaction, pan-and-stamp, is inspired by the Paper note-
taking mobile application’s4 cut and paste feature, where one finger
drags the object and a tap with another finger copies it. The initial
version lets users pan a rectangle with one finger and copy the rect-
angle with another finger tap. The final version lets users pinch to
resize the rectangle and, with a third finger, tap to create new copies
of it. The edge cases include: New rectangles are centered at the tap
position; The first rectangle needs to be resized from the center, not
the top-left corner; and should also be panned with two fingers. The
two interactions are balanced across pairs: P1, P2 and P4 start with
pinch-to-create while P3, P5 and P6 start with pan-and-stamp.

3 https://www.realmacsoftware.com/clear/

4 https://www.fiftythree.com/paper

https://www.realmacsoftware.com/clear/
https://www.fiftythree.com/paper
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Figure 8.10: P4ds and P4dv working side-by-side on the final version of
pan-and-stamp. On the left, the developer performs an off-device mimicking
gesture with his left hand to understand the proposed design. On the right,
the designer performs an on-device mimicking gesture with both hands to
communicate the design.

8.4.1.4 Data Collection

We recorded audio and video, both over the shoulder and with a
screen recorder. We also took notes during the tasks and the post-hoc
interviews.

8.4.2 Results and Discussion

We performed a thematic analysis (Braun and Clarke, 2006) of the
collected data to extract the prototyping strategies used by the par-
ticipants. After looking for themes, we revisited the data to specify
the classification and extract relevant quotes. We also measured the
number of mimicking gestures in the video data, i.e. when participants
acted out the interaction with their hands, either to understand it or
to communicate it, both away from the device and on the device. In
our initial studies we observed designers and developers using hand
gestures to communicate the interaction. We were therefore interested
in whether Enact encourages participants to use more mimicking
gestures when collaborating.

We focused our analysis on the side-by-side collaborative phase
(not the individual phases) and on on-device mimicking gestures
(Figure 8.10). We also measured the amount of edge cases found by
each pair from the notes and the video data.

8.4.2.1 Tools of choice

traditional condition The six designers chose vector and
raster graphics software: Sketch (5/6) and Photoshop (1/6). The six
developers chose mobile web (3/6) or mobile native (3/6). The de-
veloper web tools included browsers, such as Google Chrome (2/3)
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and Mozilla Firefox (1/3), and code editors, such as Sublime Text
(2/3) and Atom (1/3). The developer native tools were IDEs: Android
Studio (2/3) and Apple Xcode (1/3). All developers used search en-
gines to look for terms such as “JavaScript pinch” or “Android button
onpress”, complemented with inline help when available, such as
Android Studio and Xcode documentation. Pair P1 never used the
provided mobile device and only used the on-screen emulator. Pairs
P2 and P3 used the mobile device but relied almost exclusively on
the on-screen debugger of the web browser, even though it does not
support multi-touch input.

enact condition Participants did not chose a tool on this condi-
tion. We provided a laptop with Enact pre-installed and connected to
a mobile device.

8.4.2.2 Task completion

traditional condition No pair completed the final version
and only one pair (P4) finished the initial version of the provided
interactions. P4 was also the only pair that started the implementation
of the final version of the interaction in the Traditional condition.
Two of the three pairs that started with pinch-to-create implemented
its basic functionality, but none of the pairs that started with pan-and-

stamp finished it.

enact condition All pairs provided the basic interactivity of the
initial version of the interaction. Five out of six pairs provided the
basic interactivity of the final version and one of them implemented
all the details of the final interaction. All pairs implemented the basic
and extended versions of pinch-to-create and the basic interactivity of
pan-and-stamp. Two of the three pairs also implemented the extended
version of pan-and-stamp. Despite our efforts to use interactions with
similar complexity, we found that pan-and-stamp seemed more diffi-
cult to prototype than pinch-to-create. However, this should not pose
a threat to validity because these techniques were counterbalanced
across pairs.

Since Enact is explicitly designed to prototype the type of interac-
tions provided to the participants, we expected a higher completion
rate with Enact than with Traditional tools. On the other hand,
no participant was familiar with Enact and they only had a short
training session. Even so, participants were able to complete much
more with Enact than with their Traditional tools. Since we gave
participants very little time and did not expect them to finish all the
tasks, we concentrate the following points on the their strategies to
prototype the interaction rather than on performance measures.
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8.4.2.3 Transitioning problems

traditional condition All the designers (6/6) used the same
workflow to communicate the design to the developer in the Tradi-
tional condition. Designers created a storyboard document depicting
the visual states of the interface with a graphical software. Then, they
sent it to the developer either in the original format, as a PDF, or
through a specialized tool such as InVision. Designers illustrated the
visual design with different screens and explained the user inputs
with circles, icons, traces, text annotations or a combination of these.
None of the designers used animations nor video to communicate
interactivity. P6ds mentioned her intention of using video but she felt
that it would require too much time with her Traditional tools. None
of the designers updated their design specification at the beginning
of the side-by-side phase to communicate the new design. Rather
than using a design artifact, they described the final version of the
interaction on top of the current implementation, verbally or by using
mimicking gestures.

In the Traditional condition, developers ran into problems when
interpreting the interactivity and reproducing the visual look. De-
velopers expected text annotations. For example, P5dv said “I don’t

understand this” when viewing the design for the first time. When
text annotations were minimal, developers expected more details. For
example, P3dv said “I don’t know if these are multiple interactions or differ-

ent steps of the same interaction” and that she “prefer[s] comments saying

"when this happens then that happens"”. Four developers ignored the
graphic design and used either no visual elements at all (only console
logs), gray buttons or wrongly colored rectangles. Two developers
used external color pickers to extract the right color from the design
and copy the corresponding hexadecimal string. All the developers
ignored the precise size of the rectangles: for pinch-to-create the height
of the rectangle in the design was not replicated and for pan-to-stamp

developers generally used rectangles instead of the square shown in
the design.

enact condition Designers used the animation feature to refine
the storyboard and developers used it to understand the interaction.
Thus, the generated animation worked as a contact point between the
two activities while working asynchronously. Only one designer asked
for icons to represent user input and another expressed the need for
text annotations. Enact does not currently support text annotations
but developers did not mention the lack of this feature. One expla-
nation for this could be the use of Enact’s generated animation as a
communication medium instead of textual descriptions. Developers
also mentioned the usefulness of showing the touch input information
on the device mirror while the animation was being played.
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Figure 8.11: Number of on-device mimicking gestures, either on the mobile
device or the emulator provided by the IDE, per participant during the
collaborative side-by-side phase. Designers and developers performed
significantly more interactions on the device with Enact than with
Traditional tools. This suggests that with Enact, designers participate
more during the side-by-side phase and developers perform more
contextualized actions on the real device during implementation.

In the Traditional condition, all developers used print logs to
confirm the triggering of input events. Enact’s live state machine
diagram provided the same level of confidence to the developer, with-
out extra effort and with more detail. In the Traditional condition,
P4dv finished the basic interactivity of pinch-to-create but had issues to
preserve the right offset between the touch point and the shape during
the interaction. In the Enact condition, while using the map function
to implement pan-to-stamp, he emphatically expressed that “it is really

cool that I don’t have to think about the sh*tty offset”.
The reduction in rework and redundancies was evident throughout

the study. For example, four out of six developers did not follow
correctly the user interface specification with the Traditional tools.
In Enact there is no transition step, eliminating these issues alto-
gether. With Traditional tools all the designers relied on copy-paste
instead of using “smart objects” to create the design specification. In
Enact, the storyboard propagation helps designers maintain consis-
tency between the storyboard visual elements. Moreover, none of the
designers used a design artifact to communicate the second task with
their traditional tools. Instead, they relied on mimicking gestures or
verbal communication. With Enact, the design artifacts are part of the
prototype and were heavily used in both tasks.

8.4.2.4 Increasing participation

Both designers and developers performed significantly more interac-
tions on the device with Enact than with Traditional tools (F=1.4;
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p<.007) (Figure 8.11). This suggest that designers were much more
involved during the side-by-side collaboration with Enact than with
Traditional tools. With Enact, all designers interacted with the tar-
get device (M = 8 times, SD = 3.65) while only three designers did it
with Traditional tools (M = 1.17 times, SD = 1.46).

One reason for the increased participation is that developers were
faster in creating a functional implementation with Enact, which
gave designers and developers time to collaborate on the created
artifact. Also, even if the implementation was not finished, with Enact,
the designer had “something to play with” while with Traditional

tools they usually did not. Nevertheless, we found instances, in both
conditions, where designers and developers where acting out the
interaction on the device even when the implentation was not finished.

Another explanation for this increased interaction with the target
device could be the sense of ownership of the prototype. With Tradi-
tional tools, developers recreate the design with their own tools. It is
not the designer’s design that “comes to life” but a mere replica. With
Enact, developers literally add interactivity to the artifact provided
by the designer. Designers might therefore feel a stronger sense of
ownership over the prototype under construction, thus increasing
participation. P4ds said that “you have the impression to be living in the

same environment, that we share the same language”.

8.4.2.5 Finding more edge cases

traditional condition Only two pairs (2/6) found one and
two of the seven edge cases –remember that only one pair finished the
basic and final version of the interaction in this condition. For example,
while coding pinch-to-create in a text editor, P2dv did not notice that
the to-do list items should only move along the y-axis. He noticed this
edge case only when he tried the interaction in the simulator. However,
the simulator runs on the desktop browser instead of the target device,
so that the mouse cursor events are treated as touches of a single
finger, making it impossible to find edge cases related to the use of
multiple fingers. In contrast, P4ds found an extra edge case because he
was interacting with an actual multitouch device: The Apple Xcode
IDE was connected to a phone, and he noticed that the items moved
beyond their initial position. However, P4dv needed to investigate the
implementation carefully in order to find which piece of code was
in charge of the erroneous behavior. The lack of a clear connection
between the runtime effect and the build-time code hindered P4dv’s
ability to quickly fix the issue.

enact condition Five pairs (5/6) found three or more of the
seven edge cases in the final version of the interaction. For example,
while interacting with her first implementation attempt, P3dv realized
that the shapes where dragged even when her finger was outside of
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them. Similarly, P5ds noticed that pinch-to-create behaved differently
depending on which rectangle was touched first. He shared his find-
ing with P5dv, who added an if statement to determine which touch
should be associated with each rectangle.

Enact interactive representations helped designers and develop-
ers find more edge cases. Enact contextualizes the interaction in the
final device, giving developers and designers insights that are dif-
ficult to find in their indirect Traditional tools: Emulators do not
provide the same experience that the final context of use; IDEs con-
nected with a real device impose a time-consuming build-run-test
cycle; Graphic-authoring tools are focused only in the visual proper-
ties of the interaction. Enact provides a faster design-test cycle, with
more chances to find edge cases on the design by actually interacting
with it. In other words, it is easier to find edge cases because the
whole interaction lives less on the participants’ head and more on
their hands.

8.4.2.6 Opportunities for co-creation

traditional condition Designers took a more passive role and
were often just observing the developer. In the two occasions where
they communicated, the participation of the designer was minimal.
P2dv had an emulator on his screen and P2ds had to stand up every
time she wanted to point to the screen to make a comment. In contrast,
the target device was positioned between P4dv and P4ds, facilitating
their collaboration and participation. Nevertheless, during the side-
by-side phase only the developer modified the interaction, while the
designer only made suggestions.

enact condition Enact creates a kind of “gray area” between
design and development with interesting opportunities to cross bound-
aries. P2ds was not sure she should create an input example: “am I

supposed to do this?”. On the contrary, P5ds was really interested in the
programming capabilities of Enact: he started adding interactivity by
himself and forgot to finish the description of the interaction on the
storyboard. When the developer of the same pair (P5dv) received the
design, he said “What should I do now? This is already coded!”.

We observed that providing multiple viewpoints helped break the
silos between the two communities. With Enact, most of the designers
were intimidated by the code editor but not by the live state machine
diagram. During the side-by-side collaboration, P5dv built on top of
P5ds’s implementation, even extending the storyboard himself. Simi-
larly, P6ds added some interactivity to the pinch-to-create prototype and
P6dv directly started to fix several edge cases in the implementation,
such as checking that the touches are inside the shapes and that the
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rectangle is constrained to a vertical movement. Finally we observed
that intermediary representations, such as state machines, align the
designer-developer vocabulary for abstract concepts, such as transition
events or the state of the interaction.

8.4.2.7 Summary

We observed that Enact reduced rework and redundancies, allowed
designers and developers participate more, helped them find more
edge cases and provided a friendlier environment to co-create with
the other community of practice. Both designers and developers per-
formed significantly more mimicking gestures on the device with
Enact than with Traditional tools, indicating a higher degree of
participation. With Enact, five out of six pairs found three or more of
the seven edge cases in the final version of the interaction. With the
Traditional tools, only two out of six pairs found one or two edge
cases. Finally, Enact helped designers and developers to cross their
boundaries, creating more opportunities to co-create the interaction.
We observed that providing multiple viewpoints while maintaining a

single source of truth helped break the silos that traditionally insulate
the two communities of practice. Designers were able to manipu-
late developer-oriented artifacts, such as the state machine and the
code editor, thanks to the use of design references. On the other hand,
developers also manipulated the storyboard and the target device,
either to modify the recorded inputs, or to reveal touch and measure
information on the device mirror.

8.5 conclusion

Despite their different backgrounds and skills, designers and develop-
ers need to collaborate to create interactive systems. Our goal was to
investigate how better prototyping tools can support their collabora-
tive process.

This work makes three main contributions:

• At the empirical level, we report on three studies to better un-
derstand and classify current collaboration issues;

• At the theoretical level, we introduce a set of principles to design
better collaborative prototyping tools; and

• At the technical level, we present a new tool guided by these prin-
ciples to reduce collaborative breakdowns during the creation of
custom touch-based interactions.

In study one we showed that current workflows and tools induce
unnecessary rework. We found that designers create a multitude of
redundant design documents and developers must recreate them with
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their own tools. This process often introduces mismatches with the
original design. We proposed a classification of key design break-
downs: missing information, when designers do not communicate a
specific detail; edge cases, when designers do not think about a par-
ticular case; and technical constraints, when designers are not aware
of developer’s technical limitations. The interviews also showed that
when developers are not involved in the initial design phase, imple-
mentation tends to be problematic or even impossible.

In study two we found that even if the early involvement of the
developer mitigated design breakdowns, new breakdowns appeared
in subsequent meetings. We also found that the inability of current
design artifacts to represent interaction generates breakdowns.

In study three we observed that the limitations on the representa-
tions used to communicate interaction result in missing information and
ignored edge cases. The successful communication and representation
of interactions required an iterative process, from concrete examples
to more general rules.

Based on this empirical work, we introduce four principles for
collaborative prototyping tools to reduce designer-developer break-
downs: Provide multiple viewpoints, to allow developers to participate
early, maintain a single source of truth, to reduce reworking and redun-
dancies, reveal the invisible, to avoid missing information, and support

design by enaction, to find more edge cases. Collaborative prototyping
tools based on these principles can play the role of a boundary infras-

tructure (Bowker and Star, 2000) that supports the flow of multiple
interconnected objects between designers and developers.

To demonstrate these principles in action, we created Enact: a novel
interaction prototyping tool for touch-based interaction on mobile
devices. Through multiple interconnected representations of the inter-
action under construction, Enact reduces reworking, redundancies
and design breakdowns. Storyboard propagation reduces redundan-
cies within representations while design references reduce redundancies
across representations. The interactive state machine diagram and
the device mirror let designers and developers quickly explore the
interaction under construction and detect edge cases. The connected
target device lets designers and developers enact the interaction at
each stage of the process.

Finally, we conducted two studies of Enact to validate our design
goals, gather feedback from professional designers and developers,
and analyze the impact of Enact during collaborative prototyping. In
the first study, participants adopted design by enaction and appreciated
the pedagogy of the tool to understand the details of the interaction.
Both groups highly appreciated the reduced time-to-interaction, but
wanted more powerful tools to describe the relationships between user
inputs and system outputs. Based on this feedback, we added two
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new viewpoints for finer control: an interactive state machine and a
code editor with design references.

In the second study, we assessed the new version of Enact in a
collaborative setting and compared it with traditional tools. We found
that participants completed more of the proposed interaction with
Enact than with traditional tools. All the pairs finished the initial task
while only one pair finished it with the traditional tools. Participants
not only interacted more but they also found more edge cases in the
design. We also found that with Enact, both designers and developers
performed significantly more mimicking gestures on the device than
with traditional tools, and designers were much more involved during
the side-by-side collaboration. This shows that Enact encourages a
more active role during design and development, compared with the
passive or indirect approach encouraged by traditional tools.

Our future work will focus on improving Enact, studying designer-
developer collaborative prototyping in the wild, and going beyond
touch-based interactions. Evaluating Enact in the wild will let us
study the effects of collaborative prototyping on a long-term project,
and hopefully will provide interesting findings about the use of in-
teractive prototypes to collaborate with other stakeholders, such as
clients, users, testers, and managers. We would also like to apply the
design principles to other interaction styles, such as mid-air gestures,
multimodal interaction or mixed reality.
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F R O M T H R O WAWAY P R O T O T Y P E S T O TA K E AWAY
P R O T O T Y P I N G

Previous chapters analyzed video prototypes and interactive proto-
types in isolation. This chapter discusses the underlying theoretical
principles that grounded the design of the presented tools. It also
outlines a new prototyping approach called Takeaway Prototyping.

9.1 reification, polymorphism , and reuse

The principles of reification, polymorphism, and reuse introduced
by Beaudouin-Lafon and Mackay (2000) strongly influenced this dis-
sertation. Beaudouin-Lafon and Mackay (2000) presented these three
principles to guide the creation of powerful interactive systems. I will
present the principles in the context of interaction design with a par-
ticular focus on how they were applied in the previously presented
prototyping tools.

9.1.1 Reification

To reify is to transform a concept into an object. While this idea
emerged in antique philosophy, it is also a common practice in pro-
gramming. In the context of interaction design, to reify is to transform
a command into an object which the user can manipulate (Beaudouin-
Lafon and Mackay, 2000). Reification is a key concept in Instrumental
Interaction (Beaudouin-Lafon, 2000). Instrumental Interaction is an
interaction model that extends Direct Manipulation (Shneiderman,
1983). It describes, compares and generates user interfaces in terms of
reified instruments, i.e. mediators between the user actions and the ob-
ject of interest (Beaudouin-Lafon, 2000). For example, a WIMP scrollbar
can be seen as an instrument that indirectly controls the positioning
of the document –the object of interest– through manipulations over a
mouse input device –the user actions–. An instrument has a logical
and a physical part, e.g., the logical instrument is the scrollbar widget
on the screen, while the physical part is the mouse input device. Some
examples from the tools I have presented in this dissertation:

in videoclipper I reified the alignment action into the ghost
image of the last recorded frame; Designers can toggle it on or off and
also change its opacity.

147
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in montage I reified the action of selecting an area of the paper
prototype into the viewport tool; Designers can sketch the area of
interest, pan to change its position or pinch to change its size.

in enact I reified the action of calculating the distance between
two objects into the measurement tool; Designers can materialize the
desired distance in the storyboard by just connecting the two objects
of interest. Afterward, the measure is revealed on the device’s mirror
and it is available on the code editor without the need to program an
equation.

9.1.2 Polymorphism

Creating polymorphic entities is a well-known programming tech-
nique. Two or more objects are polymorphic if they have different
types (Cardelli and Wegner, 1985) and another object can use them
indistinctly. Polymorphism and reification are intimately related. With
reification, the number of objects in the system increases as well as
the complexity of manipulating them. Polymorphic objects share a
common communication protocol in order to reduce this complexity.

In the context of interaction design, polymorphism "is the property
that enables a single command to be applicable to objects of different
types" (Beaudouin-Lafon and Mackay, 2000). Some examples from the
tools I have presented:

in videoclipper the moving command is polymorphic for the
TitleCards, the video clips, and the Lines i.e. they can all be dragged
with the same gesture in the interactive storyboard.

in montage the command to open the color palette, i.e. long press,
works polymorphically over the camera preview and the individual
sketches. The former action sets the global color, while the latter only
changes the color of the selected sketch.

in enact the action of creating a design reference, i.e. control-
dragging an object from the storyboard to the code editor, works
over shapes, measures and touches indistinctly.

9.1.3 Reuse

Good developers avoid code duplication. Methods and techniques
to avoid duplication started to be formalized in the 1960s and 1970s
with the introduction of structured programming (Dahl, Dijkstra, and
Hoare, 1972). For example, the Don’t Repeat Yourself (DRY) principle
states that "every piece of knowledge must have a single, unambiguous,
authoritative representation within a system" (Hunt and Thomas,
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1999). If code duplication were a disease then code reuse would be the
cure.

In the context of interaction design, reuse "can involve previous
input, previous output or both" (Beaudouin-Lafon and Mackay, 2000).
With input reuse, previous users inputs are recycled, e.g., the redo

command repeats past actions without the need to perform the actions
again. With output reuse, previous system outputs are recycled, e.g.,
the copy-paste commands replicate existing text or images without the
need to recreate them manually. Some examples from the tools I have
presented:

in videoclipper the ghost image is an example of output reuse.
It reuses the last recorded frame as an alignment guide for creating
rough invisible cuts.

in montage the creation of animation by demonstration is an
example of input reuse. It recycles user inputs over the sketches during
the live WOz, such as moving, scaling and rotating, to create keyframe
animations synchronized with the underlying video clip. The green
screen replacement allows output reuse, i.e. the same context can be
used multiple times to illustrate different interface videos.

in enact supporting design by enaction leads to input reuse. For
example, when the designer act outs the desired gesture, the recorded
input events are reused, e.g., they represent touches on the storyboard
and they guide the execution of the assisted testing.

9.2 information substrates

The previous three principles, i.e. reification, polymorphism, and reuse,
describe desired properties of the interactive objects in the system
under construction. However, what is the underlying structure that
these objects need to have to exhibit these properties? Information
Substrates is an on-going theoretical effort to answer that precise
question:

"A substrate is a digital computational medium that holds
digital information, possibly created by another substrate,
applies constraints and transformations to it, reacts to
changes in both the information and the substrate, and
generates information consumable by other substrates. Sub-
strates are extensible, composable with other substrates,
and they can be shared. They provide the fabric of the
digital world" Beaudouin-Lafon (2017).

The concept started to be explored in music authoring tools (Garcia
et al., 2012), web environments (Klokmose et al., 2015) and graphic
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design (Maudet et al., 2017a). In this dissertation, I explored multiple
information substrates focused on the structured representation of
interactive behaviors. I found various types of information substrates
that I describe as non-visual, visual and interactive. A non-visual infor-
mation substrate represents a structure inaccessible to the user but that
enables objects to support the three principles. A visual information
substrate represents a structure that supports the principles and can
be seen by the user. An interactive information substrate is a visual
substrate that is also manipulable by the user.

In Enact, the main information substrate is the non-visual structure
that allows the integration of multiple viewpoints. For example, the
substrate presents measurements as visual entities in the storyboard
as well as symbolic design references in the code. This is achieved in the
Enact’s internal programming model by having two different view
objects and making them share the same model object –similar to
the approach found in the Model-view-controller (MVC) architectural
pattern (Krasner and Pope, 1988).

This substrate enables the reification, polymorphism, and reuse of
the multiple representations of the measure. The measure reifies the
distance between any two objects, such as touches, shapes, and even
other measures. The measure also acts polymorphically over objects of
different types, i.e. a touch and a shape, a measure and a touch, or a
measure and a shape. Finally, designers reuse measures as a debugging
tool, e.g., to asses the gesture behavior in the device mirror, and as a
programming construct, e.g., to assign it as the input of a mapping
function. However, this substrate is not available to the designers, they
only interact with the objects built on top of this hidden structure, not
the structure itself.

In Montage, the green area in the context videos, i.e. what the
UserCam records, is an example of a visual substrate. The green
area allows context and interface videos to be combined. The same
context video can be composed polymorphically with interface videos
or digital sketches. This substrate is not hidden, however, even if
designers can see the substrate they cannot directly manipulate it; it is
Montage–and not the designer– the one that internally interacts with
this structure during composition.

In VideoClipper, the interactive storyboard is an interactive sub-
strate. Its two-dimensional visual structure organizes TitleCards and
videos in a grid of objects. Lines reify the grouping of TitleCards and
videos to form meaningful narratives. Designers can manipulate these
Lines or the individual elements polymorphically. Also, designers can
clone Lines to reuse previously created scenes.

Video file containers, such as MPEG4 and QuickTime, serve as time-
based information substrates. These file containers treat video as a
collection of time-based tracks. The typical tracks of this structure
are audio and video, but other tracks such as subtitles, event logs
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or additional video tracks, e.g., filmed from other angles, can be
embedded in the same file. This substrate is non-visual, e.g., when the
user opens a video prototype file in a regular video player. However,
this substrate can be interactive, e.g., when the same file is opened on
a video editing software so that designers can see, replace or edit the
individual tracks.

All the presented tools used time-based information substrates. Both
VideoClipper and Montage create video prototypes supported by
a time-based multimedia file. The interaction sequence is fixed; de-
signers can navigate this sequence by manipulating the time forward
or backward. Despite the limited interactivity of video –they are only
watchable–, time enables a simple vocabulary to explore examples
within a design team. For example, instead of referring to an interac-
tion as "when the user picks up the phone, opens the menu and selects
the drawing tool" designers can simple fast-forward to the desired
point in the movie file.

Enact also uses time-based information substrates as a structure
that connects multiple instruments or objects. The timeline saves
the user inputs as they were demonstrated by the designer. Each
screen of the storyboard is associated with one of these timed user
inputs. In order to create an automatic illustration, Enact creates a
keyframe animation. Each keyframe needs an image and a timestamp:
each storyboard screen is the key image and the duration of the
interpolation is the time between each associated user input.

9.3 takeaway prototyping

Besides having the same theoretical foundation, the presented tools
support a similar style of prototyping that I call Takeaway Prototyping.

In all the tools the designers need to put themselves in the shoes of
the user1. This idea is similar to Experience Prototyping:

"an Experience Prototype is any kind of representation,
in any medium, that is designed to understand, explore
or communicate what it might be like to engage with the
product, space or system we are designing" (Buchenau and
Suri, 2000).

However, Experience Prototyping is presented only as an "attitude"
towards prototyping without any tool support (Buchenau and Suri,
2000).

Takeaway Prototyping extends Experience Prototyping towards a
prototyping approach supported by digital tools. In contrast to throw-
away prototypes that emphasize the disposability of the artifacts, the

1 In a Participatory Design session the same instruments used by designers can be
used by actual users but we will call the user of the tools designers as in the previous
chapters
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presented tools emphasize the most important aspect of the prototypes:
the takeaways, i.e. the things that we learn from them. In Takeaway
Prototyping the designers should be able to:

1. Design by enaction; and

2. Reuse design artifacts.

9.3.1 Design by enaction

As introduced in Section 8.1.5, design by enaction proposes that proto-
typing tools should allow designers to describe interaction with their
own body enactments such as hand gestures, voice commands or gaze.
Designers should start designing by enacting the interactions of the
system under design. In Enact, the designer performs the gestures
on the actual device where the final interaction will be executed. This
lets designers feel the interaction during this early prototyping stage.
While designers can start from any of representation, e.g., the code
editor, we encourage designers to starts from the more concrete rep-
resentations, such as the storyboard or the recording of the gesture.
However, Enact is not the only tool that supports design by enaction.

Both VideoClipper and Montage rely on contextual demonstra-
tions of the interaction with the system under design. Apart from
acting the user inputs, the user-actor plays a character in the story.
Contextualizing the use of a system in a story helps designers think
on concrete use scenarios, which pushes them to reflect on detailed
user requirements and technology breakdowns, e.g., what is the over-
all motivation of the user? what is the user trying to achieve? did it
accomplish it?

I presented concrete prototyping tools that use the designers demon-
strations as inputs to sketch representations of the interaction. This
idea is similar to programming by example (Myers, McDaniel, and
Wolber, 2000) but instead of finding or inferring a particular and pre-
defined system behavior, the examples –or enactions– are used to
explore and experiment with the design material.

9.3.2 Reuse design artifacts

These tools not only support design by enaction but they reuse the
generated enactions throughout the prototyping process. The demon-
stration communicates interactive ideas, e.g., the video prototypes
generated by VideoClipper or Montage, or the demonstration itself
evolves into a more general interaction behavior, e.g., in Enact certain
elements of the demonstration –such as the touch identifiers– are
part of a map in the code editor. These demonstrations should have a
"high degree of compatibility" with the final context of use, e.g., when
designers are prototyping an interaction that requires the user to walk
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outside, the designers should be able to give a demonstration in the
same context. This also applies to the physical mediators between user
and computer interaction. The system under design, either a mobile
device, a wearable, a wall-size display, a robot arm, etc., needs to be
part of the design elements, not only as an environment to test the
implementation but as a design tool.

Instead of only focusing on the prototyping speed and the proto-
type’s disposability, I think prototyping tools should be able to ma-
terialize the lessons learned among iterations. Today, iterating over a
throwaway prototype requires designers to persist the lessons learned
only in their minds and replicate them in a new iteration starting from
a blank canvas. Prototyping tools should let designers persist these
ideas in the tool itself in order to work on top of them. For example, in
Enact, the assisted test persists the expected design and the current
computation to maintain both activities in sync.

Takeaway Prototyping differs from iterative prototyping in two main
ways. First, Takeaway Prototyping aims to be closer to the prototyping
speed of rapid techniques by encouraging the use of design by enaction

instead of the use of symbolic representations. Iterative prototyping
techniques provide a higher level of precision than rapid prototypes.
However, they require the use of either visual or textual programming
languages decreasing the prototyping speed of non-programmer de-
signers. Second, Takeaway Prototyping focuses on the materialization
of lessons learned instead of evolving toward the final system. Iterative
prototyping techniques target later stages of the design and are rarely
used to explore contexts of use, i.e. they focus on answering questions
rather than exploring designs (Buxton, 2007). Within the design space
of prototyping tools and techniques, I locate Takeaway Prototyping
in-between rapid and iterative prototyping, i.e. faster than iterative
techniques and more iterative than rapid techniques (Figure 9.1).

In summary, the main idea behind Takeaway Prototyping is to reify
design decisions to support iteration. Even with throwaway prototypes,
the abstract concepts that designers learn during rapid prototyping
are not thrown away. Designers prototype to explore and to evaluate,
but where are the results of that exploration and evaluation? They are
carried out to the next iteration only in the memory of the designer or
in an external artifact. Instead of forcing designers to keep separate
representations of the lessons learned, e.g., in a notebook or with
side-comments over the design artifacts, Takeaway Prototyping seeks
to reify these ideas as a medium for design within computer-based
prototyping tools.

9.3.3 Supporting Takeaway Prototyping

To be able to reuse artifacts first they need to exists as entities in the
prototyping tools. Reification is the mechanism of transforming these
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Evolution Representation Interactivity

Rapid 

Prototyping

Paper 

Prototyping

Software 

Prototyping

Software 

Tools

Software 

Environments

Iterative 

Prototyping

none / only watchable

fixed-path / open

-

open

open

PEN AND PAPER

PHYSICAL MOCK-UPS

WIZARD-OF-OZ

VIDEO PROTOTYPING

NON-INTERACTIVE SIMULATION

INTERACTIVE SIMULATIONS

SCRIPTING LANGUAGES

GRAPHICAL LIBRARIES

WINDOW SYSTEMS

UI TOOLKITS

UI BUILDERS

APPLICATION FRAMEWORKS

MODEL-BASED TOOLS

UIDES

Content Form Behavior

L

Precision (Low - Medium - High)

L L

L MH M

M MH LH

MH MH LH

+

++

none

fixed-path / open

none / only watchable

none

MONTAGE +-
(Throwaway)

? Rapid  + IterativeENACT Takeaway Prototyping

+

Figure 9.1: Extended version of the table presented in Figure 2.13. Enact

embodies most of the principles of Takeaway Prototyping in order to
provide rapid as well as iterative prototypes. On the other hand,
VideoClipper (Video Prototyping) and Montage would need more
mechanisms to iterate the prototype to better support Takeaway Prototyping.

objects into manipulable objects. Next, I outline three examples of how
reification can help prototyping tools reuse design artifacts to support
Takeaway Prototyping.

reifying user needs as a story A story describes a macro task
encompassing the user interactions as well as the broader user goal.
Describing an interactive system just as a collection of features is a
common mistake, as Cooper (1995) says:

"Reducing a product’s definition to a list of features and
functions ignores the real opportunity —- orchestrating
technological capability to serve human needs and goals" (Cooper,
1995).

A story concretizes needs and goals for later analysis. However, these
story artifacts are rarely part of the prototyping tools. This dissertation
presented some examples of how a narrative can be embedded into the
prototype itself. For example, video prototypes connect the interface
with the story to the point that both are indivisible in the final artifact.
Film-making brings a narrative medium to interaction design tools to
explain the user’s journey. I believe that other tools should embrace
this idea of having representations of the interaction but also of the
interaction environment.

reifying user inputs as enactions Design by enaction let
designers express interaction with their own body. This communica-
tion by demonstration is commonly used within the design teams and
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with other stakeholders. However, few tools capture and reify these
enactions in the prototyping tool as a design material.

Takeaway Prototyping relies on design by enaction. However, while
design by enaction focuses on the micro designer-tool interaction,
Takeaway Prototyping outlines a larger process of prototyping. Design
by enaction focuses on how the designer should express interactivity,
i.e. by acting-out the user’s inputs with the actual physical user-
computer mediator, while Takeaway Prototyping focuses on using the
enactions as the starting point of the prototyping process. This allows
designers to start from the concrete and move towards the abstract.

reifying edge-cases as tests Reifying the lessons learned
helps designers iterate within the prototyping tool. When a design
breaks because it did not consider an edge-case, that scenario should
be saved in the tool itself for later use. In Enact, the assisted testing lets
designers and developers record a particularly difficult user gesture to
asses future interaction behaviors over this example. While extending
the interaction code, the same scenario can be played automatically to
detect regressions. In Montage, once a particularly difficult context is
recorded, designers can iterate over multiple interfaces independently
and later evaluate them in that troublesome situation.

In summary, I designed these prototyping tools to support the
early-stage design of dynamic interactions. Many of the features were
inspired by the principles of reification, polymorphism, and reuse. To
apply these principles, I created several information substrates that
are non-visual, visual and interactive. Finally, these tools support a
prototyping style that I call Takeaway Prototyping. Takeaway Proto-
typing materializes the lessons learned to facilitate iteration, embeds
the design in a story to outline user needs and supports design by
enaction to let designers experience the interaction they are creating.





10
C O N C L U S I O N S A N D F U T U R E W O R K

This dissertation addresses the prototyping of interaction in early-
stage design. I introduced prototyping as an essential activity in any
software process model, even in the phase-oriented waterfall model.
According to Houde and Hill (1997), a designer is "anyone who cre-
ates a prototype in order to design". Rapid prototyping takes place in
early-stage design. It usually produces throwaway prototypes, that can
be quickly discarded when they have served their purpose. However,
current rapid prototyping tools and techniques poorly support the de-
sign of highly interactive systems. First, while paper-based prototypes
are inexpensive and easy to produce they lack means to represent
dynamic behaviors. Second, the disposability of throwaway prototypes
might help reduce design fixation (Jansson and Smith, 1991) but does
not support an iterative and incremental process over the design ar-
tifacts. In order to address these issues, I presented guidelines and
explored computer-based tools to bridge the gap between throwaway
prototypes –which are disposable but fast to create– with iterative
prototypes –which are slower to create but reusable.

Video is a familiar medium, suitable for early-stage design and
flexible enough to accommodate dynamic behaviors. However, I found
that video is not as widely used as other prototyping media such as
hand-drawn sketches and digital mockups. Designers’ main barriers
to using video in interaction design are the lack of time or resources
to prepare for and record video, as well as to edit video. Video proto-
typing is a rapid prototyping technique that relies on video as a quick
medium to persist, explore and communicate interactive ideas. Video
prototyping encourages designers to avoid post-production, thus re-
ducing the need for video editing. By contrast, video prototyping
captures video on-the-go, following a previously agreed storyboard.

I developed VideoClipper to support this structured capturing of
video on-the-go with a flexible and interactive storyboard. Besides
planning, VideoClipper also supports typical video prototyping activ-
ities such as aligning shots or re-designing. VideoClipper provides a
reusable "ghost image" of the last recorded frame to help designers
create invisible cuts. Designers can also reuse complete Storyboards
or just Lines during a design iteration to build on top of previously
recorded videos. I studied the use of VideoClipper during real design
activities in several design courses and workshops. All the participants
appreciated the simplicity of the tool and most of them were satisfied
with the final video prototype. The results suggest that participants
spend less time capturing and editing with VideoClipper than with
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other video tools, such as iMovie. However, to minimize the impact
of changing the design, participants rely on ad-hoc methods to avoid
re-shooting. For example, they create static reusable backgrounds or
they sacrifice the consistency across scenes to avoid reworking.

I developed Montage to reduce re-shooting and increase reuse
during video prototyping. Montage decouples the video prototypes
into two video streams: the context of use and the user interface.
During composition, I use green areas as "the glue" between interface
and context videos. This lets designers quickly explore an interface in
multiple contexts or multiple interfaces in the same context. Montage

re-purposes common smartphones as remote cameras providing an
inexpensive setup. The WizardCam captures a paper prototype of the
interface, and the UseCam captures the context of use. Both cameras
record and stream their content to a central tablet device called the
Canvas. On the Canvas, Montage combines these two video streams
with digital sketches to create the final video prototype. Designers
can directly manipulate these sketches alongside the video playback
to create quick and persistent animations. I illustrated the expressive
power of Montage with examples of diverse interaction styles: WIMP,
touch-based, proxemic, voice and AR-based interactions.

Video prototyping is a quick and easy technique to let designers
illustrate an interactive system in context. However, professional de-
signers and developers often struggle when transitioning between the
illustration of the design to the actual implementation of the system.
We conducted three studies that focused on the design and implemen-
tation of custom interactions to understand the mismatches between
designers and developers processes, tools and representations. We
found that current practices induce unnecessary rework and cause
discrepancies between design and implementation. We identified three
recurring types of breakdowns: omitting critical details, ignoring edge
cases, and disregarding technical limitations.

We proposed four design principles to create tools that mitigate
these problems: Provide multiple viewpoints, maintain a single source of

truth, reveal the invisible and support design by enaction. We applied
these principles to create Enact, an interactive live environment for
prototyping touch-based interactions. We conducted two studies to
assess Enact and to compare designer-developer collaboration with
Enact versus current tools. Results suggest that Enact helps partici-
pants detect more edge cases, increases designers’ participation and
provides new opportunities for co-creation.

10.1 implications for future research

My goal has been to help design teams with concrete prototyping tools
that encourage reuse and iteration over previous interaction design
artifacts. The three tools presented in this dissertation target each a
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different type of prototyping. However, I believe in the potential of
combining them. For example, I have started to combine VideoClipper

and Montage to support planning and composition within one tool.
I explored video and interactive prototyping in isolation but the

principles presented in this dissertation can be applied to link both
types of prototyping. Currently, Enact’s UI storyboard represents
different stages of the systems visual outputs. Designers use digital
drawings, demonstrate the user inputs, and associate each storyboard
screen with the corresponding input event. Another possibility is to let
designers start prototyping in VideoClipper. From the created video
prototype, one could extract the events from the user-actor’s recorded
performance and feed them as the inputs to the Enact’s timeline.
Also, instead of drawing the storyboard in Enact with typical WIMP

interactions, one could extract meaningful frames from a video proto-
type created with Montage’s WizardCam, e.g., by selecting different
frames of the video as the Enact’s storyboard screens. Finally, one
could integrate Enact and Montage the other way around. Designers
can start by creating an interactive prototype in Enact, and then in
Montage, it can be embedded into multiple contextual shoots, where
the green area is replaced with an interactive prototype.

One of the goals of the tools I developed was the prototyping of
custom interactions that do not have established guidelines. However,
by materializing common problems and solutions across multiple
design teams, interaction design patterns can emerge (Borchers, 2001).
These patterns could be integrated in the design tool instead of being
just an isolated set of guidelines. For example, in Montage, a set of
context-of-use videos could be provided to illustrate users in multiple
and common situations interacting with "green areas". In the same
way, Enact could have a collection of common system outputs, record-
ings of user inputs and even code templates.

I hope that these tools and principles will inspire others to create
new prototyping tools to support Takeaway Prototyping. Initiatives
such as the Hour of Code (Code.org, 2018) try to spread programming
to a broader audience. Undoubtedly, more and more designers will
know how to code in the future. However, developer-based represen-
tations, such as code or visual programming, are not the only –neither
the most adequate– representation for every aspect of an interaction.
We need to provide integrated and multiple representations, e.g., sym-
bolic, visual and enactive, to create collaborative spaces in which
professionals with different skills, mindsets, and values can work
together. Digital tools need to provide ways of navigating these repre-
sentations in a seamless way, thus reducing reworking and mismatches
between design and implementation. I invite other researchers to test
and extend these tools and design principles to create new ways to
better support the iterative prototyping of interactive systems.
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a.1 survey about video in interaction design
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Video to support interaction design
Thank you for answering this questionnaire!
If you are a professional, researcher or student in Interaction Design, your answers will help us 
develop a new video-based design tool.

* Required

Background

1. Age

Mark only one oval.

 <17

 18-25

 26-35

 36-45

 46-55

 56-65

 >65

2. Gender

Mark only one oval.

 Female

 Male

 Other: 

3. Highest degree

4. Design experience

Mark only one oval.

 <1 year

 1-3 years

 4-8 years

 9-12 years

 >12 years



5. Current job

Check all that apply.

 Student

 Professional designer

 Part-time/Freelance designer

 Design researcher

 Other: 

6. Job environment

Check all that apply.

 Academic research

 Corporate research

 Design firm

 Freelance

 Large company

 Unemployed

 Start-up

7. Country that you work in:

8. Please answer the following questions based on either your

Mark only one oval.

 Current project

 Most recent completed project

9. How many design artefacts did you create to explore and express your design?

Mark only one oval per row.

None 1-3 4-10 >10

Hand-drawn sketches

Hand-made physical mock-ups

Computer-drawn sketches

Computer animations

Video illustrations

Other tools



10. Any other artefacts?

 

 

 

 

 

11. How much time did you spend to create these artefacts?

Mark only one oval per row.

0% 0-20% 20-40% 40-60% 60-80% 80-100%

Hand-drawn sketches

Handmade physical mock-ups

Computer-drawn sketches

Computer animations

Video illustrations

Other tools

12. Please tell us how you used the above artefacts to explore your design:

 

 

 

 

 

13. Was this typical? *

Mark only one oval.

 Yes Skip to question 14.

 No Skip to question 15.

If typical

14. then please describe an unusual example:

for example, you only did coding or drawing for a specific project while you generally go
through many ideation process.
 

 

 

 

 

Skip to question 16.

If not typical



15. then please describe a typical example:

 

 

 

 

 

Skip to question 16.

16. In general, I use video to:

Check all that apply.

 to illustrate the step-by-step details of the interaction

 to compare alternative types of interaction

 to figure out how a user moves from one state to another

 I do not use video

 Other: 

17. I use video to communicate specific user interactions to ...

Check all that apply.

 other designers

 software developers

 clients or potential funders

 users

 management

 I do not use video to communicate to others

 Other: 

18. I use video to document:

Check all that apply.

 I do not use video to document my design

 intermediate design stages

 alternative design possibilities

 final design

 Other: 



19. Comments or explanations?

 

 

 

 

 

20. What are the barriers to using video?

Check all that apply.

 Video is not useful for exploring or expressing the design

 Lack of access to video equipment

 Lack of time or resources to prepare for and record video

 Lack of time or resources to edit video

 Too hard to find relevant video clips

 Video quality is not sufficient

 Other: 

21. Which computer tools do you use?

Check all that apply.

for this project in general

I do not use computer tools

Adobe XD

Axure

BALSAMIQ

Framer

Flinto

HTML/CSS

InVision

Illustrator

Indesign

Pixate

Photoshop

22. List any other computer tools you use.

 

 

 

 

 



Powered by

23. How much do you normally pay for interaction design tools?

Check all that apply.

I only
use free

tools

I only use
cracked
software

Less
than
50€

From
50€ to
100€

From
100€ to
200 €

From
200€ to
500€

More
than
500€

Annual payment

One-time
payment

24. Who usually pays for your design tools?

Check all that apply.

 Company

 University

 Yourself

 Other institution

 Other: 

25. We are interested in any suggestions you have to improve your design tools.

 

 

 

 

 

26. Other comments?

 

 

 

 

 

27. Please provide your email if you would like
to hear more about our video-based design
tool:
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a.2 questionnaires videoclipper



Video Prototyping Questionnaire

This questionnaire will not be part of the course grading

Anonymous Group ID:

White          Yellow          Red          Purple          Maroon          Green          Blue          Black
 

1. How many people are in your group?

2. Which tool (device + capture software) did you use to capture the videos?

A. Tablet (e.g. iPad + default Camera app): _____________________________________  

B. Smartphone: ___________________________________________________________  

C. Other: ________________________________________________________________
 

3. Why did you choose this combination of device + capture software?

4. How much time did you spend capturing the videos?

How many minutes/hours: ___________  

__________% of the whole process (storyboarding+capturing+editing) was dedicated to capturing

#_________ people who worked on capturing video

5. Which tool did you use to edit your video prototype?

A. iMovie  

B. Final Cut Pro  

C. Other: _____________________________________
 

6. Why did you choose this tool?



7. How much time did you spend editing the video?

How many minutes/hours: ___________  

__________% of the whole process (storyboarding+capturing+editing) was dedicated to editing

#_________ people who worked on editing video

8. Does the % in question 4 and % in question 7 add to 100%? If not, explain

9. Did you shoot the video following the storyboard order?  
(only answer this question if you created a storyboard)

A. Yes - We followed the storyboard completely  

B. Mostly - We only made a few changes  

C. Some  - We changed our minds a lot

D. No - We didn’t follow the storyboard

Comments: 

10. How satisfied are you with the final result? Explain

11. Would VideoClipper have helped you? If so, how?  
(We are interested in opinions from different people in your group)

12. Any other comment, problems or ideas:
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Titre : Prototypage interactif d’interactions: des prototypes jetables au prototypage recyclable

Mots clés : Interaction homme-ordinateur, design interactif, prototypage rapide, systèmes informatique, vidéo

Résumé :
Je propose de créer des outils de prototypage ra-

pide qui puissent efficacement supporter la création

d’artéfacts à la fois jetables et réutilisables pour es-

quisser de nouvelles interactions dans les première

phases du processus de design.

Les designers font face à deux écueils majeurs à l’uti-

lisation de la video en design d’interaction : le temps

nécessaire pour filmer et celui nécessaire pour éditer.

J’ai développé VIDEOCLIPPER pour aider le proces-

sus de création de video. Je présente les résultats de

trois études sur le terrain avec des étudiants en de-

sign d’interaction. Les résultats suggèrent que les par-

ticipants passent moins de temps à capturer et éditer

avec VIDEOCLIPPER qu’avec les autres outils vidéos.

J’ai ensuite crée MONTAGE, un outil de prototy-

page video qui permet aux designers de progres-

sivement augmenter leurs prototypes papier avec

des maquettes numériques pour faciliter la création,

la réutilisation et l’exploration d’interactions dyna-

miques. Je décris comment MONTAGE améliore le

prototypage vidéo en combinant la vidéo avec des

maquettes numériques animées et encourage l’explo-

ration d’autres contextes d’utilisation tout en permet-

tant le prototypage de styles d’interaction différents.

Les designers et développeurs professionnels ont

souvent du mal à effectuer la transition de la

représentation du design à son implémentation

concrète. Nous avons découvert que les pratiques

actuelles entraı̂nent des redondances entre le travail

des designers et celui des développeurs et des diver-

gences entre le design et son implémentation. Nous

identifions trois types de problèmes.

Je propose quatre principes de design pour créer des

outils qui limitent ces problèmes. Ces principes sont

utilisés pour créer ENACT, un environnement interac-

tif de prototypage d’interactions tactiles. Les résultats

de deux études suggèrent que ENACT aide les parti-

cipants à détecter plus de cas extrêmes, augmente la

participation des designers et offre de nouvelles pos-

sibilités de co-création.

Les outils présentés mettent en œuvre une approche

du prototypage que je nomme ”Takeaway Prototyping”

ou prototypage recyclable.

Title : Interactive prototyping of interactions: from throwaway prototypes to takeaway prototyping

Keywords : Human-computer interaction, interaction design, rapid prototyping, computer systems, video

Abstract : I argue that rapid prototyping tools can ef-

fectively support reusable as well as throwaway arti-

facts for sketching interaction in early-stage design.

Designers experience two main barriers to use video

in interaction design : the time to capture and edit the

video artifacts. I created VIDEOCLIPPER, a tool that

embodies an integrated iterative design method that

rewards discipline but permits flexibility for video pro-

totyping. I present field studies with interaction de-

sign students using VIDEOCLIPPER in three design

courses. Results suggest that participants spend less

time capturing and editing in VIDEOCLIPPER than with

other video tools.

I created MONTAGE, a prototyping tool for video proto-

typing that lets designers progressively augment pa-

per prototypes with digital sketches, facilitating the

creation, reuse and exploration of dynamic inter-

actions. I describe how MONTAGE enhances video

prototyping by combining video with digital anima-

ted sketches, encourages the exploration of different

contexts of use, and supports prototyping of different

interaction styles.

I investigate how early designs start being implemen-

ted into interactive prototypes. Professional designers

and developers often struggle when transitioning from

the illustration of the design to the actual implemen-

tation of the system. We find that current practices

induce unnecessary rework and cause discrepancies

between design and implementation and we identify

three recurring types of breakdowns.

I propose four design principles to create tools that

mitigate these problems : Provide multiple viewpoints,

maintain a single source of truth, reveal the invisible

and support design by enaction. We apply these prin-

ciples to create ENACT, an interactive live environ-

ment for prototyping touch-based interactions. We in-

troduce two studies to assess ENACT and to compare

designer-developer collaboration with ENACT versus

current tools. Results suggest that ENACT helps parti-

cipants detect more edge cases, increases designers’

participation and provides new opportunities for co-

creation.

The presented tools outline a new prototyping ap-

proach that I call Takeaway Prototyping.

Université Paris-Saclay
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