R. L. Smyth and P. J. Openshaw, Bronchiolitis. Lancet, vol.368, issue.9532, pp.69077-69083, 2006.

R. Janssen, L. Bont, C. L. Siezen, H. M. Hodemaekers, M. J. Ermers et al., Genetic susceptibility to respiratory syncytial virus bronchiolitis is predominantly associated with innate immune genes, J Infect Dis, vol.196, issue.6, pp.826-860, 2007.

L. Lambert, A. M. Sagfors, P. J. Openshaw, and F. J. Culley,

, Early-Life. Front Immunol, vol.5, 2014.

S. A. Cormier, D. You, and S. Honnegowda, The use of a neonatal mouse model to study respiratory syncytial virus infections, Expert Rev Anti Infect Ther, vol.8, issue.12, pp.1371-80, 2010.

I. M. De-kleer, M. Kool, M. J. De-bruijn, M. Willart, J. Van-moorleghem et al.,

M. Schuijs, R. Plantinga, E. Beyaert, P. G. Hams, H. Fallon et al.,

N. Lambrecht, Perinatal Activation of the Interleukin-33 Pathway Promotes Type 2 Immunity in the Developing Lung, Immunity, vol.45, issue.6, pp.1285-1298, 2016.

S. Saluzzo, A. D. Gorki, B. M. Rana, R. Martins, S. Scanlon et al.,

A. Hladik, O. Korosec, J. M. Sharif, H. Warszawska, I. Jolin et al., First-Breath-Induced Type 2 Pathways Shape the Lung Immune Environment, Cell Rep, vol.18, issue.8, pp.1893-1905, 2017.

C. Drajac, D. Laubreton, S. Riffault, and D. Descamps, Pulmonary Susceptibility of Neonates to Respiratory Syncytial Virus Infection: A Problem of Innate Immunity?, J Immunol Res, vol.8734504, 2017.

F. J. Culley, J. Pollott, and P. J. Openshaw, Age at first viral infection determines the pattern of T cell-mediated disease during reinfection in adulthood, J Exp Med, vol.196, issue.10, pp.1381-1387, 2002.

J. S. Tregoning and J. Schwarze, Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology, Clin Microbiol Rev, vol.23, issue.1, pp.74-98, 2010.

X. Roux, A. Remot, A. Petit-camurdan, M. A. Nahori, H. Kiefer-biasizzo et al.,

M. Marchal, S. Lagranderie, and . Riffault, Neonatal lung immune responses show a shift of

B. K. Giersing, R. A. Karron, J. Vekemans, D. C. Kaslow, and V. S. Moorthy, Meeting report: WHO consultation on Respiratory Syncytial Virus (RSV) vaccine development, pp.25-26, 2016.

H. Nair, D. J. Nokes, B. D. Gessner, M. Dherani, S. A. Madhi et al., Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis, Lancet, vol.375, issue.10, pp.60206-60207, 2010.

T. Shi, D. A. Mcallister, K. L. O'brien, E. A. Simoes, S. A. Madhi et al., Lancet Lond. Engl, vol.390, issue.17, pp.30938-30946, 2017.

P. J. Openshaw, Y. Yamaguchi, and J. S. Tregoning, Childhood infections, the developing immune system, and the origins of asthma, J. Allergy Clin. Immunol, vol.114, pp.1275-1277, 2004.

R. E. Blount, J. A. Morris, and R. E. Savage, Recovery of cytopathogenic agent from chimpanzees with coryza, Proc. Soc. Exp. Biol. Med. Soc. Exp. Biol. Med. N. Y, vol.92, pp.544-549, 1956.

R. Chanock, B. Roizman, and R. Myers, Recovery from infants with respiratory illness of a virus related to chimpanzee coryza agent (CCA). I. Isolation, properties and characterization, Am. J. Hyg, vol.66, pp.281-290, 1957.

R. Chanock and L. Finberg, Recovery from infants with respiratory illness of a virus related to chimpanzee coryza agent (CCA). II. Epidemiologic aspects of infection in infants and young children, Am. J. Hyg, vol.66, pp.291-300, 1957.

W. P. Glezen, L. H. Taber, A. L. Frank, and J. A. Kasel, Risk of primary infection and reinfection with respiratory syncytial virus, Am. J. Dis. Child, vol.140, pp.543-546, 19601986.

, Haute Autorité de Santé Conférence de consensus Haute Autorité de Santé -Management of bronchiolitis in infants Available online, 2014.

E. A. Simoes, Respiratory syncytial virus infection, Lancet, vol.354, pp.847-852, 1999.

J. Murray, A. Bottle, M. Sharland, N. Modi, P. Aylin et al., Medicines for Neonates Investigator Group Risk factors for hospital admission with RSV bronchiolitis in England: a population-based birth cohort study, PloS One, vol.9, p.89186, 2014.

E. Grimprel, Epidemiology of infant bronchiolitis in France, Arch. Pédiatrie Organe Off. Sociéte Fr. Pédiatrie, vol.8, issue.1, pp.83-92, 2001.

F. Freymuth, M. Quibriac, J. Petitjean, F. Daon, and M. L. Amiel, Les virus responsables d'infections respiratoires en pédiatrie: bilan de 3480 aspirations nasales réalisées chez l'enfant en une période de six ans, Sem. Hôp, vol.63, pp.3593-3601, 1987.

F. Freymuth, A. Vabret, S. Gouarin, J. Petitjean, P. Charbonneau et al., Epidemiology and diagnosis of respiratory syncitial virus in adults, Rev. Mal. Respir, vol.21, pp.35-42, 2004.

M. Beem, Repeated Infections with Respiratory Syncytial Virus, J. Immunol, vol.98, pp.1115-1122, 1967.

C. B. Hall, J. M. Geiman, R. Biggar, D. I. Kotok, P. M. Hogan et al., Respiratory syncytial virus infections within families, N. Engl. J. Med, vol.294, pp.414-419, 1976.

C. B. Hall, E. E. Walsh, C. E. Long, and K. C. Schnabel, Immunity to and Frequency of Reinfection with Respiratory Syncytial Virus

, J. Infect. Dis, vol.163, pp.693-698, 1991.

C. B. Hall, C. E. Long, and K. C. Schnabel, Respiratory syncytial virus infections in previously healthy working adults, Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am, vol.33, pp.792-796, 2001.

D. Che, J. Nicolau, J. Bergounioux, T. Perez, and D. Bitar, Bronchiolitis among infants under 1 year of age in France: epidemiology and factors associated with mortality] Bronchiolite aiguë du nourrisson en France : bilan des cas hospitalisés en 2009 et facteurs de létalité. Arch, vol.19, pp.700-706, 2012.

L. Chevret, B. Mbieleu, S. Essouri, P. Durand, S. Chevret et al., Bronchiolitis treated with mechanical ventilation: prognosis factors and outcome in a series of 135 children, vol.12, pp.385-390, 2005.

H. Puente, M. López-herce-cid, J. Bellón-cano, J. M. Villaescusa, J. U. Santiago-lozano et al., Prognostic factors for bronchiolitis complications in a pediatric intensive care unit] Factores pronósticos de evolución complicada en la bronquiolitis que requiere ingreso en cuidados intensivos pediátricos. An. Pediatría Barc, vol.70, pp.27-33, 2003.

D. Prais, T. Schonfeld, and J. Amir, Israeli Respiratory Syncytial Virus Monitoring Group Admission to the intensive care unit for respiratory syncytial virus bronchiolitis: a national survey before palivizumab use, Pediatrics, vol.112, pp.548-552, 2003.

T. Cherian, E. A. Simoes, M. C. Steinhoff, K. Chitra, M. John et al., Bronchiolitis in tropical south India, Am. J. Dis. Child, vol.144, pp.1026-1030, 19601990.

N. M. Scheltema, A. Gentile, F. Lucion, D. J. Nokes, P. K. Munywoki et al.,

B. D. Gessner, A. Sutanto, A. Mejias, O. Ramilo, N. Khuri-bulos et al., Global respiratory syncytial virus-associated mortality in young children (RSV GOLD): a retrospective case series, Lancet Glob. Health, vol.5, issue.17, pp.30344-30347, 2017.

P. M. De-graaff, E. C. De-jong, T. M. Van-capel, M. E. Van-dijk, P. J. Roholl et al., Respiratory syncytial virus infection of monocytederived dendritic cells decreases their capacity to activate CD4 T cells, J. Immunol. Baltim. Md, vol.175, pp.5904-5911, 1950.

S. Makris, M. Bajorek, F. J. Culley, M. Goritzka, and C. Johansson, Alveolar Macrophages Can Control Respiratory Syncytial Virus Infection in the Absence of Type I Interferons, J. Innate Immun, vol.8, pp.452-463, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01602871

J. Schlender, V. Hornung, S. Finke, M. Günthner-biller, S. Marozin et al., Inhibition of Toll-Like Receptor 7-and 9-Mediated Alpha/Beta Interferon Production in Human Plasmacytoid Dendritic Cells by Respiratory Syncytial Virus and Measles Virus, J. Virol, vol.79, pp.5507-5515, 2005.

B. Resch, P. Manzoni, and M. Lanari, Severe respiratory syncytial virus (RSV) infection in infants with neuromuscular diseases and immune deficiency syndromes, Paediatr. Respir. Rev, vol.10, pp.148-153, 2009.

P. K. Munywoki, D. C. Koech, C. N. Agoti, N. Kibirige, J. Kipkoech et al., Influence of age, severity of infection, and co-infection on the duration of respiratory syncytial virus (RSV) shedding, Epidemiol. Infect, pp.1-9, 2014.

C. B. Hall, R. G. Douglas, and J. M. Geiman, Respiratory syncytial virus infections in infants: quantitation and duration of shedding, J. Pediatr, vol.89, pp.11-15, 1976.

H. Hishiki, N. Ishiwada, C. Fukasawa, K. Abe, T. Hoshino et al., Incidence of bacterial coinfection with respiratory syncytial virus bronchopulmonary infection in pediatric inpatients, J. Infect. Chemother. Off. J. Jpn. Soc. Chemother, vol.17, pp.87-90, 2011.

K. Thorburn, S. Harigopal, V. Reddy, N. Taylor, and H. K. Van-saene, High incidence of pulmonary bacterial co-infection in children with severe respiratory syncytial virus (RSV) bronchiolitis, Thorax, vol.61, pp.611-615, 2006.

D. M. Weinberger, K. P. Klugman, C. A. Steiner, L. Simonsen, and C. Viboud, Association between Respiratory Syncytial Virus Activity and Pneumococcal Disease in Infants: A Time Series Analysis of US Hospitalization Data, PLOS Med, vol.12, p.1001776, 2015.

V. Avadhanula, C. A. Rodriguez, J. P. Devincenzo, Y. Wang, R. J. Webby et al., Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species-and cell type-dependent manner, J. Virol, vol.80, pp.1629-1636, 2006.

M. Chan, J. J. Park, T. Shi, F. Martinón-torres, L. Bont et al., Respiratory Syncytial Virus Network (ReSViNET) The burden of respiratory syncytial virus (RSV) associated acute lower respiratory infections in children with Down syndrome: A systematic review and metaanalysis, J. Glob. Health, vol.7, p.20413, 2017.

T. Shi, E. Balsells, E. Wastnedge, R. Singleton, Z. A. Rasmussen et al., Risk factors for respiratory syncytial virus associated with acute lower respiratory infection in children under five years: Systematic review and meta-analysis, J. Glob. Health, vol.5, p.20416, 2015.

M. T. Caballero, F. P. Polack, and R. T. Stein, Viral bronchiolitis in young infants: new perspectives for management and treatment, J. Pediatr, 2017.

S. F. Thomsen, S. Van-der-sluis, L. G. Stensballe, D. Posthuma, A. Skytthe et al., Exploring the association between severe respiratory syncytial 144 virus infection and asthma: a registry-based twin study, Am. J. Respir. Crit. Care Med, vol.179, pp.1091-1097, 2009.

R. Janssen, L. Bont, C. L. Siezen, H. M. Hodemaekers, M. J. Ermers et al., Genetic susceptibility to respiratory syncytial virus bronchiolitis is predominantly associated with innate immune genes, J. Infect. Dis, vol.196, pp.826-834, 2007.

A. E. Alvarez, F. A. Marson, C. S. Bertuzzo, J. C. Bastos, E. C. Baracat et al., Association between single nucleotide polymorphisms in TLR4, TLR2, TLR9, VDR, NOS2 and CCL5 genes with acute viral bronchiolitis, Gene, 2017.

M. T. Caballero, M. E. Serra, P. L. Acosta, J. Marzec, L. Gibbons et al., TLR4 genotype and environmental LPS mediate RSV bronchiolitis through Th2 polarization, J. Clin. Invest, vol.125, pp.571-582, 2015.

A. Réseau-respiratoire-d'aquitaine-bronchiolite and -. Aquibronchio, Bronchiolite du Nourrisson Available online, 2014.

G. Dutau, A. Juchet, J. L. Rittié, F. Rancé, F. Brémont et al., Aspects thérapeutiques conflictuels au cours des bronchiolites aiguës du nourrisson. Arch. Pédiatrie, vol.4, pp.86466-86470, 1997.

A. Deschildre, C. Thumerelle, B. Bruno, F. Dubos, C. Santos et al., Bronchiolite aiguë du nourrisson. Arch. Pédiatrie, vol.7, pp.88814-88818, 2000.

A. Bourrillon, S. David, C. L. Vanhuxem, J. C. Dubus, and B. Chabrol, À propos des bronchiolites aiguës du nourrisson. Arch. Pédiatrie, vol.11, pp.709-711, 2004.

M. David, C. Luc-vanuxem, A. Loundou, E. Bosdure, P. Auquier et al., Application de la Conférence de consensus sur la bronchiolite aiguë du nourrisson en médecine générale : évolution entre, Arch. Pédiatrie, vol.17, pp.125-131, 2003.

, World Health Organization Immunization, Vaccines and Biologicals. Global vaccine action plan 2011-2020; World Health Organization, 2013.

H. W. Kim, J. G. Canchola, C. D. Brandt, G. Pyles, R. M. Chanock et al., Respiratory Syncytial Virus Disease in Infants Despite Prior Administration of Antigenic Inactivated Vaccine, Am. J. Epidemiol, vol.89, pp.422-434, 1969.

C. L. Afonso, G. K. Amarasinghe, K. Bányai, Y. Bào, C. F. Basler et al., Arch. Virol, vol.161, pp.2351-2360, 2016.

R. Mitra, P. Baviskar, R. R. Duncan-decocq, D. Patel, and A. G. Oomens, The human respiratory syncytial virus matrix protein is required for maturation of viral filaments, J. Virol, vol.86, pp.4432-4443, 2012.

D. Vanover, D. V. Smith, E. L. Blanchard, E. Alonas, J. L. Kirschman et al., RSV glycoprotein and genomic RNA dynamics reveal filament assembly prior to the plasma membrane, Nat. Commun, vol.8, p.667, 2017.

M. Rameix-welti and E. Gault, Le virus respiratoire syncytial (VRS) : état actuel des connaissances, Feuill. Biol, 2017.

C. E. Jeffree, G. Brown, J. Aitken, D. Y. Su-yin, B. Tan et al., Ultrastructural analysis of the interaction between F-actin and respiratory syncytial virus during virus assembly, Virology, vol.369, pp.309-323, 2007.

M. K. Pastey, T. L. Gower, P. W. Spearman, J. E. Crowe, and B. S. Graham, A RhoA-derived peptide inhibits syncytium formation induced by respiratory syncytial virus and parainfluenza virus type 3, Nat. Med, vol.6, pp.35-40, 2000.

J. Jans, H. Elmoussaoui, R. De-groot, M. I. De-jonge, and G. Ferwerda, Actin-and clathrindependent mechanisms regulate interferon gamma release after stimulation of human immune cells with respiratory syncytial virus, Virol. J, vol.13, 2016.

A. Gutiérrez-ortega, C. Sánchez-hernández, and B. Gómez-garcía, Respiratory syncytial virus glycoproteins uptake occurs through clathrin-mediated endocytosis in a human epithelial cell line, Virol. J, vol.5, p.127, 2008.

A. A. Kolokoltsov, D. Deniger, E. H. Fleming, N. J. Roberts, J. M. Karpilow et al., Small Interfering RNA Profiling Reveals Key Role of Clathrin-Mediated Endocytosis and Early Endosome Formation for Infection by Respiratory Syncytial Virus, J. Virol, vol.81, pp.7786-7800, 2007.

M. A. Krzyzaniak, M. T. Zumstein, J. A. Gerez, P. Picotti, and A. Helenius, Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein, PLoS Pathog, issue.9, p.1003309, 2013.

E. Burke, L. Dupuy, C. Wall, and S. Barik, Role of Cellular Actin in the Gene Expression and Morphogenesis of Human Respiratory Syncytial Virus, Virology, vol.252, pp.137-148, 1998.

E. Burke, N. M. Mahoney, S. C. Almo, and S. Barik, Profilin is required for optimal actindependent transcription of respiratory syncytial virus genome RNA, J. Virol, vol.74, pp.669-675, 2000.

D. Blocquel, J. Bourhis, J. Éléouët, D. Gerlier, J. Habchi et al., Transcription et réplication des Mononegavirales : une machine moléculaire originale, Virologie, vol.16, pp.225-57, 2012.

V. M. Cowton, D. R. Mcgivern, and R. Fearns, Unravelling the complexities of respiratory syncytial virus RNA synthesis, J. Gen. Virol, vol.87, pp.1805-1821, 2006.

S. Shahriari, J. Gordon, and R. Ghildyal, Host cytoskeleton in respiratory syncytial virus assembly and budding, Virol. J, vol.13, 2016.

J. García, B. García-barreno, A. Vivo, and J. A. Melero, Cytoplasmic inclusions of respiratory syncytial virus-infected cells: formation of inclusion bodies in transfected cells that coexpress the nucleoprotein, the phosphoprotein, and the 22K protein, Virology, vol.195, pp.243-247, 1993.

A. Radhakrishnan, D. Yeo, G. Brown, M. Z. Myaing, L. R. Iyer et al., Protein Analysis of Purified Respiratory Syncytial Virus Particles Reveals an Important Role for Heat Shock Protein 90 in Virus Particle Assembly, Mol. Cell. Proteomics MCP, vol.9, pp.1829-1848, 2010.

R. L. Crim, S. A. Audet, S. A. Feldman, H. S. Mostowski, and J. A. Beeler, Identification of Linear Heparin-Binding Peptides Derived from Human Respiratory Syncytial Virus Fusion Glycoprotein That Inhibit Infectivity, J. Virol, vol.81, pp.261-271, 2007.

S. A. Feldman, R. M. Hendry, and J. A. Beeler, Identification of a linear heparin binding domain for human respiratory syncytial virus attachment glycoprotein G, J. Virol, vol.73, pp.6610-6617, 1999.

S. A. Feldman, S. Audet, and J. A. Beeler, The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate, J. Virol, vol.74, pp.6442-6447, 2000.

L. Bar-on, T. Birnberg, K. L. Lewis, B. T. Edelson, D. Bruder et al., CX3CR1+ CD8alpha+ dendritic cells are a steady-state population related to plasmacytoid dendritic cells, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.14745-14750, 2010.

P. L. Delputte, N. Vanderheijden, H. J. Nauwynck, and M. B. Pensaert, Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages, J. Virol, vol.76, pp.4312-4320, 2002.

J. T. Gallagher, M. Lyon, and W. P. Steward, Structure and function of heparan sulphate proteoglycans, Biochem. J, vol.236, pp.313-325, 1986.

T. Imai, K. Hieshima, C. Haskell, M. Baba, M. Nagira et al., Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion, Cell, vol.91, pp.521-530, 1997.

V. Lories, J. J. Cassiman, H. Van-den-berghe, and G. David, Differential expression of cell surface heparan sulfate proteoglycans in human mammary epithelial cells and lung fibroblasts, J. Biol. Chem, vol.267, pp.1116-1122, 1992.

M. Nishimura, H. Umehara, T. Nakayama, O. Yoneda, K. Hieshima et al., Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression, J. Immunol. Baltim. Md, vol.168, pp.6173-6180, 1950.

F. Tayyari, D. Marchant, T. J. Moraes, W. Duan, P. Mastrangelo et al., Identification of nucleolin as a cellular receptor for human respiratory syncytial virus, Nat. Med, vol.17, pp.1132-1135, 2011.

A. G. Hovanessian, F. Puvion-dutilleul, S. Nisole, J. Svab, E. Perret et al., The cell-surface-expressed nucleolin is associated with the actin cytoskeleton, Exp. Cell Res, vol.261, pp.312-328, 2000.

T. Chirkova, S. Lin, A. G. Oomens, K. A. Gaston, S. Boyoglu-barnum et al., CX3CR1 is an important surface molecule for respiratory syncytial virus infection in human airway epithelial cells, J. Gen. Virol, vol.96, pp.2543-2556, 2015.

R. A. Tripp, L. P. Jones, L. M. Haynes, H. Zheng, P. M. Murphy et al., CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein, Nat. Immunol, vol.2, pp.732-738, 2001.

P. S. Mcnamara, B. F. Flanagan, A. M. Selby, C. A. Hart, and R. L. Smyth, Pro-and antiinflammatory responses in respiratory syncytial virus bronchiolitis, Eur. Respir. J, vol.23, pp.106-112, 2004.

P. S. Mcnamara, B. F. Flanagan, C. A. Hart, and R. L. Smyth, Production of Chemokines in the Lungs of Infants with Severe Respiratory Syncytial Virus Bronchiolitis, J. Infect. Dis, vol.191, pp.1225-1232, 2005.

W. I. Shedden and J. L. Emery, IMMUNOFLUORESCENT EVIDENCE OF RESPIRATORY SYNCYTIAL VIRUS INFECTION IN CASES OF GIANT CELL BRONCHIOLITIS IN CHILDREN, J. Pathol. Bacteriol, vol.89, pp.343-347, 1965.

K. A. Neilson and E. J. Yunis, Demonstration of respiratory syncytial virus in an autopsy series, Pediatr. Pathol, vol.10, pp.491-502, 1990.

J. E. Johnson, R. A. Gonzales, S. J. Olson, P. F. Wright, and B. S. Graham, The histopathology of fatal untreated human respiratory syncytial virus infection, Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc, vol.20, pp.108-119, 2007.

T. P. Welliver, R. P. Garofalo, Y. Hosakote, K. H. Hintz, L. Avendano et al., Severe human lower respiratory tract illness caused by respiratory syncytial virus and influenza virus is characterized by the absence of pulmonary cytotoxic lymphocyte responses, J. Infect. Dis, vol.195, pp.1126-1136, 2007.

T. P. Welliver, J. L. Reed, and R. C. Welliver, Respiratory syncytial virus and influenza virus infections: observations from tissues of fatal infant cases, Pediatr. Infect. Dis. J, vol.27, pp.92-96, 2008.

P. J. Openshaw, C. Chiu, F. J. Culley, and C. Johansson, Protective and Harmful Immunity to RSV Infection, Annu. Rev. Immunol, vol.35, pp.501-532, 2017.

J. L. Reed, T. P. Welliver, G. P. Sims, L. Mckinney, L. Velozo et al., Innate immune signals modulate antiviral and polyreactive antibody responses during severe respiratory syncytial virus infection, J. Infect. Dis, vol.199, pp.1128-1138, 2009.

J. Heidema, M. V. Lukens, W. W. Van-maren, M. E. Van-dijk, H. G. Otten et al., CD8+ T cell responses in bronchoalveolar lavage fluid and peripheral blood mononuclear cells of infants with severe primary respiratory syncytial virus infections, J. Immunol. Baltim. Md, vol.179, pp.8410-8417, 1950.

P. Smith, S. Wang, K. Dowling, and K. Forsyth, Leucocyte populations in respiratory syncytial virus-induced bronchiolitis, J. Paediatr. Child Health, vol.37, pp.146-151, 2001.

R. J. Geerdink, J. Pillay, L. Meyaard, and L. Bont, Neutrophils in respiratory syncytial virus infection: A target for asthma prevention, J. Allergy Clin. Immunol, vol.136, pp.838-847, 2015.

M. A. Gill, A. K. Palucka, T. Barton, F. Ghaffar, H. Jafri et al., Mobilization of plasmacytoid and myeloid dendritic cells to mucosal sites in children with respiratory syncytial virus and other viral respiratory infections, J. Infect. Dis, vol.191, pp.1105-1115, 2005.

C. B. Hall, R. G. Douglas, R. L. Simons, and J. M. Geiman, Interferon production in children with respiratory syncytial, influenza, and parainfluenza virus infections, J. Pediatr, vol.93, pp.28-32, 1978.

K. Mcintosh, H. B. Masters, I. Orr, R. K. Chao, and R. M. Barkin, The immunologic response to infection with respiratory syncytial virus in infants, J. Infect. Dis, vol.138, pp.24-32, 1978.

J. Zhu and W. E. Paul, CD4 T cells: fates, functions, and faults, Blood, vol.112, pp.1557-1569, 2008.

V. Brinkmann, T. Geiger, S. Alkan, and C. H. Heusser, Interferon alpha increases the frequency of interferon gamma-producing human CD4+ T cells, J. Exp. Med, vol.178, pp.1655-1663, 1993.

C. E. Demeure, C. Y. Wu, U. Shu, P. V. Schneider, C. Heusser et al., In vitro maturation of human neonatal CD4 T lymphocytes. II. Cytokines present at priming modulate the development of lymphokine production, J. Immunol. Baltim. Md, vol.152, pp.4775-4782, 19501994.

K. Chen and J. K. Kolls, Cell-Mediated Host Immune Defenses in the Lung, Annu. Rev. Immunol, vol.31, pp.605-633, 2013.

N. A. Carter, R. Vasconcellos, E. C. Rosser, C. Tulone, A. Muñoz-suano et al., Mice Lacking Endogenous IL-10-Producing Regulatory B Cells Develop Exacerbated Disease and Present with an Increased Frequency of Th1/Th17 but a Decrease in Regulatory T Cells, J. Immunol, vol.186, pp.5569-5579, 2011.

F. Flores-borja, A. Bosma, D. Ng, V. Reddy, M. R. Ehrenstein et al., CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation, Sci. Transl. Med, issue.5, pp.173-196, 2013.

N. A. Carter, E. C. Rosser, and C. Mauri, Interleukin-10 produced by B cells is crucial for the suppression of Th17/Th1 responses, induction of T regulatory type 1 cells and reduction of collagen-induced arthritis, Arthritis Res. Ther, vol.14, p.32, 2012.

J. H. Aberle, S. W. Aberle, M. N. Dworzak, C. W. Mandl, W. Rebhandl et al., Reduced interferon-gamma expression in peripheral blood mononuclear cells of infants with severe respiratory syncytial virus disease, Am. J. Respir. Crit. Care Med, vol.160, pp.1263-1268, 1999.

T. R. Kollmann, J. Crabtree, A. Rein-weston, D. Blimkie, F. Thommai et al., Neonatal innate TLR-mediated responses are distinct from those of adults, J. Immunol. Baltim. Md, vol.183, pp.7150-7160, 1950.

J. P. Legg, I. R. Hussain, J. A. Warner, S. L. Johnston, and J. O. Warner, Type 1 and type 2 cytokine imbalance in acute respiratory syncytial virus bronchiolitis, Am. J. Respir. Crit. Care Med, vol.168, pp.633-639, 2003.

L. Bont, C. J. Heijnen, A. Kavelaars, W. M. Van-aalderen, F. Brus et al., Monocyte IL-10 production during respiratory syncytial virus bronchiolitis is associated with recurrent wheezing in a one-year follow-up study, Am. J. Respir. Crit. Care Med, vol.161, pp.1518-1523, 2000.

L. Bont, C. J. Heijnen, A. Kavelaars, W. M. Van-aalderen, F. Brus et al., Local interferongamma levels during respiratory syncytial virus lower respiratory tract infection are associated with disease severity, J. Infect. Dis, vol.184, pp.355-358, 2001.

A. J. Stoppelenburg, V. Salimi, M. Hennus, M. Plantinga, R. Huis-in-'t-veld et al., Local IL-17A potentiates early neutrophil recruitment to the respiratory tract during severe RSV infection, PloS One, issue.8, p.78461, 2013.

A. J. Stoppelenburg, S. De-roock, M. P. Hennus, L. Bont, and M. Boes, Elevated Th17 response in infants undergoing respiratory viral infection, Am. J. Pathol, vol.184, pp.1274-1279, 2014.

A. F. Christiaansen, M. A. Syed, . .;-ten, P. P. Eyck, S. M. Hartwig et al., Altered Treg and cytokine responses in RSV-infected infants, Pediatr. Res, 2016.

C. Bartholdy, W. Olszewska, A. Stryhn, A. R. Thomsen, and P. J. Openshaw, Gene-gun DNA vaccination aggravates respiratory syncytial virus-induced pneumonitis, J. Gen. Virol, vol.85, pp.3017-3026, 2004.

T. Ostler, W. Davidson, and S. Ehl, Virus clearance and immunopathology by CD8(+) T cells during infection with respiratory syncytial virus are mediated by IFN-gamma, Eur. J. Immunol, vol.32, pp.2117-2123, 2002.

A. Jozwik, M. S. Habibi, A. Paras, J. Zhu, A. Guvenel et al., RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection, Nat. Commun, vol.6, p.10224, 2015.

M. V. Lukens, A. C. Van-de-pol, F. E. Coenjaerts, N. J. Jansen, V. M. Kamp et al., A systemic neutrophil response precedes robust CD8(+) T-cell activation during natural respiratory syncytial virus infection in infants, J. Virol, vol.84, pp.2374-2383, 2010.

T. Hussell, C. J. Baldwin, A. O'garra, and P. J. Openshaw, CD8+ T cells control Th2-driven pathology during pulmonary respiratory syncytial virus infection, Eur. J. Immunol, vol.27, pp.3341-3349, 1997.

W. H. Alwan, F. M. Record, and P. J. Openshaw, CD4+ T cells clear virus but augment disease in mice infected with respiratory syncytial virus. Comparison with the effects of CD8+ T cells, Clin. Exp. Immunol, vol.88, pp.527-536, 1992.

W. H. Alwan, W. J. Kozlowska, and P. J. Openshaw, Distinct types of lung disease caused by functional subsets of antiviral T cells, J. Exp. Med, vol.179, pp.81-89, 1994.

B. S. Graham, L. A. Bunton, P. F. Wright, and D. T. Karzon, Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice, J. Clin. Invest, vol.88, pp.1026-1033, 1991.

G. Taylor, L. H. Thomas, S. G. Wyld, J. Furze, P. Sopp et al., Role of T-lymphocyte subsets in recovery from respiratory syncytial virus infection in calves, J. Virol, vol.69, pp.6658-6664, 1995.

D. Burbulla, P. S. Günther, J. K. Peper, G. Jahn, and K. M. Dennehy, Human CD8+ T Cells Target Multiple Epitopes in Respiratory Syncytial Virus Polymerase, Viral Immunol, vol.29, pp.307-314, 2016.

H. Shao, Y. Lin, S. Yu, H. Lin, E. Chitra et al., Immunoprotectivity of HLA-A2 CTL Peptides Derived from Respiratory Syncytial Virus Fusion Protein in HLA-A2 Transgenic Mouse, PLOS ONE, 2011.

C. Chiu, A. H. Ellebedy, J. Wrammert, and R. Ahmed, B cell responses to influenza infection and vaccination, Curr. Top. Microbiol. Immunol, vol.386, pp.381-398, 2015.

S. Chávez-bueno, A. Mejías, R. A. Merryman, N. Ahmad, H. S. Jafri et al., Intravenous palivizumab and ribavirin combination for respiratory syncytial virus disease in high-risk pediatric patients, Pediatr. Infect. Dis. J, vol.26, pp.1089-1093, 2007.

B. J. Helmink, C. E. Ragsdale, E. J. Peterson, and K. G. Merkel, Comparison of Intravenous Palivizumab and Standard of Care for Treatment of Respiratory Syncytial Virus Infection in Mechanically Ventilated Pediatric Patients, J. Pediatr. Pharmacol. Ther. JPPT, vol.21, pp.146-154, 2016.

T. Lacaze-masmonteil, J. Rozé, and B. Fauroux, French Pediatricians' Group of Sunagis Patients' Name-Based Programs Incidence of respiratory syncytial virus-related hospitalizations in high-risk children: follow-up of a national cohort of infants treated with Palivizumab as RSV prophylaxis, Pediatr. Pulmonol, vol.34, pp.181-188, 2002.

R. Malley, J. Devincenzo, O. Ramilo, P. H. Dennehy, H. C. Meissner et al., Reduction of respiratory syncytial virus (RSV) in tracheal aspirates in intubated infants by use of humanized monoclonal antibody to RSV F protein, J. Infect. Dis, vol.178, pp.1555-1561, 1998.

X. Sáez-llorens, M. T. Moreno, O. Ramilo, P. J. Sánchez, F. H. Top et al., MEDI-493 Study Group Safety and pharmacokinetics of palivizumab therapy in children hospitalized with respiratory syncytial virus infection, Pediatr. Infect. Dis. J, vol.23, pp.707-712, 2004.

H. Y. Chu, M. C. Steinhoff, A. Magaret, K. Zaman, E. Roy et al., Respiratory syncytial virus transplacental antibody transfer and kinetics in mother-infant pairs in Bangladesh, J. Infect. Dis, vol.210, pp.1582-1589, 2014.

K. Mcintosh, J. Mcquillin, and P. S. Gardner, Cell-free and cell-bound antibody in nasal secretions from infants with respiratory syncytial virus infection, Infect. Immun, vol.23, pp.276-281, 1979.

C. J. Sande, P. A. Cane, and D. J. Nokes, The association between age and the development of respiratory syncytial virus neutralising antibody responses following natural infection in infants, vol.32, pp.4726-4729, 2014.

J. J. Shinoff, K. L. O'brien, B. Thumar, J. B. Shaw, R. Reid et al., Young infants can develop protective levels of neutralizing antibody after infection with respiratory syncytial virus, J. Infect. Dis, vol.198, pp.1007-1015, 2008.

P. S. Mcnamara, A. M. Fonceca, D. Howarth, J. B. Correia, J. R. Slupsky et al., Respiratory syncytial virus infection of airway epithelial cells, in vivo and in vitro, supports pulmonary antibody responses by inducing expression of the B cell differentiation factor BAFF, Thorax, vol.68, pp.76-81, 2013.

J. Jans, M. Pettengill, D. Kim, C. Van-der-made, R. De-groot et al., Human newborn B cells mount an interferon-?/? receptor-dependent humoral response to respiratory syncytial virus, J. Allergy Clin. Immunol, vol.139, 1997.

G. Taylor, Animal models of respiratory syncytial virus infection, vol.35, pp.469-480, 2017.

D. B. Anh, P. Faisca, and D. J. Desmecht, Differential resistance/susceptibility patterns to pneumovirus infection among inbred mouse strains, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.291, pp.426-435, 2006.

C. A. Bonville, N. J. Bennett, C. M. Percopo, P. J. Branigan, A. M. Vecchio et al., Diminished inflammatory responses to natural pneumovirus infection among older mice, Virology, vol.368, pp.182-190, 2007.

C. A. Bonville, C. Ptaschinski, C. M. Percopo, H. F. Rosenberg, and J. B. Domachowske, Inflammatory responses to acute pneumovirus infection in neonatal mice, Virol. J, vol.7, p.320, 2010.

P. M. Cook, R. P. Eglin, and A. J. Easton, Pathogenesis of pneumovirus infections in mice: detection of pneumonia virus of mice and human respiratory syncytial virus mRNA in lungs of infected mice by in situ hybridization, J. Gen. Virol, pp.2411-2417, 1998.

E. R. Watkiss, P. Shrivastava, N. Arsic, and S. Gomis, van Drunen Littel-van den Hurk, S. Innate and Adaptive Immune Response to Pneumonia Virus of Mice in a Resistant and a Susceptible Mouse Strain, Viruses, vol.5, pp.295-320, 2013.

J. B. Domachowske, C. A. Bonville, K. D. Dyer, A. J. Easton, and H. F. Rosenberg, Pulmonary eosinophilia and production of MIP-1alpha are prominent responses to infection with pneumonia virus of mice, Cell. Immunol, pp.98-104, 0200.

C. A. Bonville, N. J. Bennett, M. Koehnlein, D. M. Haines, J. A. Ellis et al., Respiratory dysfunction and proinflammatory chemokines in the pneumonia virus of mice (PVM) model of viral bronchiolitis, Virology, vol.349, pp.87-95, 2006.

R. P. Garofalo, J. Patti, K. A. Hintz, V. Hill, P. L. Ogra et al., Macrophage inflammatory protein-1alpha (not T helper type 2 cytokines) is associated with severe forms of respiratory syncytial virus bronchiolitis, J. Infect. Dis, vol.184, pp.393-399, 2001.

R. C. Welliver, R. P. Garofalo, and P. L. Ogra, Beta-chemokines, but neither T helper type 1 nor T helper type 2 cytokines, correlate with severity of illness during respiratory syncytial virus infection, Pediatr. Infect. Dis. J, vol.21, pp.457-461, 2002.

M. Connors, N. A. Giese, A. B. Kulkarni, C. Y. Firestone, H. C. Morse et al., Enhanced pulmonary histopathology induced by respiratory syncytial virus (RSV) challenge of formalin-inactivated RSV-immunized BALB/c mice is abrogated by depletion of interleukin-4 (IL-4) and IL-10, J. Virol, vol.68, pp.5321-5325, 1994.

M. E. Waris, C. Tsou, D. D. Erdman, S. R. Zaki, and L. J. Anderson, Respiratory synctial virus infection in BALB/c mice previously immunized with formalin-inactivated virus induces enhanced pulmonary inflammatory response with a predominant Th2-like cytokine pattern, J. Virol, vol.70, pp.2852-2860, 1996.

M. F. Delgado, S. Coviello, A. C. Monsalvo, G. A. Melendi, J. Z. Hernandez et al., Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease, Nat. Med, vol.15, pp.34-41, 2009.

S. A. Cormier, D. You, and S. Honnegowda, The use of a neonatal mouse model to study respiratory syncytial virus infections, Expert Rev. Anti Infect. Ther, vol.8, pp.1371-1380, 2010.

F. J. Culley, J. Pollott, and P. J. Openshaw, Age at first viral infection determines the pattern of T cell-mediated disease during reinfection in adulthood, J. Exp. Med, vol.196, pp.1381-1386, 2002.

J. Mestas and C. C. Hughes, Of Mice and Not Men: Differences between Mouse and Human Immunology, J. Immunol, vol.172, pp.2731-2738, 2004.

R. Medzhitov, Recognition of microorganisms and activation of the immune response, Nature, vol.449, pp.819-826, 2007.

C. Johansson, Respiratory syncytial virus infection: an innate perspective, vol.5, 2016.

L. Lambert, A. M. Sagfors, P. J. Openshaw, and F. Culley, J. Immunity to RSV in Early-Life. Front. Immunol, vol.5, 2014.

T. H. Kim and H. K. Lee, Innate immune recognition of respiratory syncytial virus infection, BMB Rep, vol.47, pp.184-191, 2014.

M. Vareille, E. Kieninger, M. R. Edwards, and N. Regamey, The airway epithelium: soldier in the fight against respiratory viruses, Clin. Microbiol. Rev, vol.24, pp.210-229, 2011.

R. Zeng, Y. Cui, Y. Hai, and Y. Liu, Pattern recognition receptors for respiratory syncytial virus infection and design of vaccines, Virus Res, vol.167, pp.138-145, 2012.

K. , E. A. Popova, L. Kwinn, L. Haynes, L. M. Jones et al., Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus, Nat. Immunol, vol.1, pp.398-401, 2000.

K. A. Shirey, L. M. Pletneva, A. C. Puche, A. D. Keegan, G. A. Prince et al., Control of RSV-induced lung injury by alternatively activated macrophages is IL-4R alpha-, TLR4-, and IFN-beta-dependent, Mucosal Immunol, vol.3, pp.291-300, 2010.

L. M. Haynes, D. D. Moore, E. A. Kurt-jones, R. W. Finberg, L. J. Anderson et al., Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus, J. Virol, vol.75, pp.10730-10737, 2001.

S. Ehl, R. Bischoff, T. Ostler, S. Vallbracht, J. Schulte-mönting et al., The role of Toll-like receptor 4 versus interleukin-12 in immunity to respiratory syncytial virus, Eur. J. Immunol, vol.34, pp.1146-1153, 2004.

M. R. Murawski, G. N. Bowen, A. M. Cerny, L. J. Anderson, L. M. Haynes et al., Respiratory syncytial virus activates innate immunity through Tolllike receptor 2, J. Virol, vol.83, pp.1492-1500, 2009.

T. Ishii, K. Hosoki, Y. Niikura, T. Nagase, and N. Yamashita, The Activation of Pulmonary Type2 Innate Lymphoid Cells Through Toll-Like Receptors, C35

, International Conference Abstracts, pp.5284-5284, 2017.

B. D. Rudd, E. Burstein, C. S. Duckett, X. Li, and N. W. Lukacs, Differential role for TLR3 in respiratory syncytial virus-induced chemokine expression, J. Virol, vol.79, pp.3350-3357, 2005.

L. Guillot, R. L. Goffic, S. Bloch, N. Escriou, S. Akira et al., Involvement of Toll-like Receptor 3 in the Immune Response of Lung Epithelial Cells to Double-stranded RNA and Influenza A Virus, J. Biol. Chem, vol.280, pp.5571-5580, 2005.

F. Qi, D. Wang, J. Liu, S. Zeng, L. Xu et al., Respiratory macrophages and dendritic cells mediate respiratory syncytial virus-induced IL-33 production in TLR3-or TLR7-dependent manner, Int. Immunopharmacol, vol.29, pp.408-415, 2015.

N. W. Lukacs, J. J. Smit, S. Mukherjee, S. B. Morris, G. Nunez et al., Respiratory virus-induced TLR7 activation controls IL-17-associated increased mucus via IL-23 regulation, J. Immunol. Baltim. Md, vol.185, pp.2231-2239, 1950.

S. Phipps, C. E. Lam, S. Mahalingam, M. Newhouse, R. Ramirez et al., Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus, Blood, vol.110, pp.1578-1586, 2007.

V. Hornung, J. Ellegast, S. Kim, K. Brzózka, A. Jung et al., 5'-Triphosphate RNA is the ligand for RIG-I, Science, vol.314, pp.994-997, 2006.

K. Takahasi, M. Yoneyama, T. Nishihori, R. Hirai, H. Kumeta et al., Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses, Mol. Cell, vol.29, pp.428-440, 2008.

T. Demoor, B. C. Petersen, S. Morris, S. Mukherjee, C. Ptaschinski et al., IPS-1 signaling has a nonredundant role in mediating antiviral responses and the clearance of respiratory syncytial virus, J. Immunol. Baltim. Md, vol.189, pp.5942-5953, 1950.

M. Goritzka, S. Makris, F. Kausar, L. R. Durant, C. Pereira et al., Alveolar macrophage-derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes, J. Exp. Med, vol.212, pp.699-714, 2015.

Y. Loo, J. Fornek, N. Crochet, G. Bajwa, O. Perwitasari et al., Distinct RIG-I and MDA5 Signaling by RNA Viruses in Innate Immunity, J. Virol, vol.82, pp.335-345, 2008.

A. Sabbah, T. H. Chang, R. Harnack, V. Frohlich, K. Tominaga et al., Activation of innate immune antiviral response by NOD2, Nat. Immunol, vol.10, pp.1073-1080, 2009.

V. G. Bhoj, Q. Sun, E. J. Bhoj, C. Somers, X. Chen et al., MAVS and MyD88 are essential for innate immunity but not cytotoxic T lymphocyte response against respiratory syncytial virus, Proc. Natl. Acad. Sci, vol.105, pp.14046-14051, 2008.

A. Isaacs and J. Lindenmann, Virus interference. I. The interferon, Proc. R. Soc. Lond. B Biol. Sci, vol.147, pp.258-267, 1957.

D. K. Wijesundara, Y. Xi, and C. Ranasinghe, Unraveling the Convoluted Biological Roles of Type I Interferons in Infection and Immunity: A Way Forward for Therapeutics and Vaccine Design, Front. Immunol, vol.5, 2014.

K. M. Spann, K. Tran, B. Chi, R. L. Rabin, and P. L. Collins, Suppression of the induction of alpha, beta, and lambda interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages

, J. Virol, vol.78, pp.4363-4369, 2004.

P. Yang, J. Zheng, S. Wang, P. Liu, M. Xie et al., Respiratory syncytial virus nonstructural proteins 1 and 2 are crucial pathogenic factors that modulate interferon signaling and Treg cell distribution in mice, Virology, vol.485, pp.223-232, 2015.

V. Fensterl, S. Chattopadhyay, and G. C. Sen, No Love Lost Between Viruses and Interferons, Annu. Rev. Virol, vol.2, pp.549-572, 2015.

N. A. De-weerd and T. Nguyen, The interferons and their receptors--distribution and regulation, Immunol. Cell Biol, vol.90, pp.483-491, 2012.

M. Mordstein, E. Neugebauer, V. Ditt, B. Jessen, T. Rieger et al., Lambda Interferon Renders Epithelial Cells of the Respiratory and Gastrointestinal Tracts Resistant to Viral Infections, J. Virol, vol.84, pp.5670-5677, 2010.

T. Sheahan, N. Imanaka, S. Marukian, M. Dorner, P. Liu et al., Interferon lambda alleles predict innate antiviral immune responses and hepatitis C virus permissiveness, Cell Host Microbe, vol.15, pp.190-202, 2014.

C. Sommereyns, S. Paul, P. Staeheli, and T. Michiels, IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo, PLoS Pathog, 2008.

S. A. Cormier, B. Shrestha, J. Saravia, G. I. Lee, L. Shen et al., Limited Type I Interferons and Plasmacytoid Dendritic Cells during Neonatal Respiratory Syncytial Virus Infection Permit Immunopathogenesis upon Reinfection, J. Virol, vol.88, pp.9350-9360, 2014.

T. Okabayashi, T. Kojima, T. Masaki, S. Yokota, T. Imaizumi et al., Type-III interferon, not type-I, is the predominant interferon induced by respiratory viruses in nasal epithelial cells, Virus Res, vol.160, pp.360-366, 2011.

L. B. Ivashkiv and L. T. Donlin, Regulation of type I interferon responses, Nat. Rev. Immunol, vol.14, pp.36-49, 2014.

J. Dhar, R. A. Cuevas, R. Goswami, J. Zhu, S. N. Sarkar et al., 2'-5'-Oligoadenylate Synthetase-Like Protein Inhibits Respiratory Syncytial Virus Replication and Is Targeted by the Viral Nonstructural Protein 1, J. Virol, vol.89, pp.10115-10119, 2015.

R. González-sanz, M. Mata, J. Bermejo-martín, A. Álvarez, J. Cortijo et al., Martínez, I. ISG15 Is Upregulated in Respiratory Syncytial Virus Infection and Reduces Virus Growth through Protein ISGylation, J. Virol, vol.90, pp.3428-3438, 2016.

D. J. Groskreutz, M. M. Monick, L. S. Powers, T. O. Yarovinsky, D. C. Look et al., Respiratory syncytial virus induces TLR3 protein and protein kinase R, leading to increased double-stranded RNA responsiveness in airway epithelial cells, J. Immunol. Baltim. Md, vol.176, pp.1733-1740, 1950.

M. E. Lindquist, B. A. Mainou, T. S. Dermody, and J. E. Crowe, Activation of protein kinase R is required for induction of stress granules by respiratory syncytial virus but dispensable for viral replication, Virology, vol.413, pp.103-110, 2011.

L. I. Ravi, L. Li, R. Sutejo, H. Chen, P. S. Wong et al., A systems-based approach to analyse the host response in murine lung macrophages challenged with respiratory syncytial virus, BMC Genomics, vol.14, 2013.

A. Remot, D. Descamps, L. Jouneau, D. Laubreton, C. Dubuquoy et al., Flt3 ligand improves the innate response to respiratory syncytial virus and limits lung disease upon RSV reexposure in neonate mice, Eur. J. Immunol, vol.46, pp.874-884, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01533877

J. W. Schoggins, D. A. Macduff, N. Imanaka, M. D. Gainey, B. Shrestha et al., Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity, Nature, vol.505, pp.691-695, 2014.

W. Zhang, L. Zhang, Y. Zan, N. Du, Y. Yang et al., Human respiratory syncytial virus infection is inhibited by IFN-induced transmembrane proteins, J. Gen. Virol, vol.96, pp.170-182, 2015.

S. Balachandran, P. C. Roberts, L. E. Brown, H. Truong, A. K. Pattnaik et al., Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection, Immunity, vol.13, pp.129-141, 2000.

K. Malathi, J. M. Paranjape, E. Bulanova, M. Shim, J. M. Guenther-johnson et al., A transcriptional signaling pathway in the IFN system mediated by 2'-5'-oligoadenylate activation of RNase L, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.14533-14538, 2005.

R. M. Krug, M. Shaw, B. Broni, G. Shapiro, and O. Haller, Inhibition of influenza viral mRNA synthesis in cells expressing the interferon-induced Mx gene product, J. Virol, vol.56, pp.201-206, 1985.

K. Turan, M. Mibayashi, K. Sugiyama, S. Saito, A. Numajiri et al., Nuclear MxA proteins form a complex with influenza virus NP and inhibit the transcription of the engineered influenza virus genome, Nucleic Acids Res, vol.32, pp.643-652, 2004.

C. Petes, N. Odoardi, and K. Gee, The Toll for Trafficking: Toll-Like Receptor 7 Delivery to the Endosome, Front. Immunol, vol.8, 2017.

S. E. Ewald, B. L. Lee, L. Lau, K. E. Wickliffe, G. Shi et al., The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor, Nature, vol.456, pp.658-662, 2008.

S. E. Ewald, A. Engel, J. Lee, M. Wang, M. Bogyo et al., Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase, J. Exp. Med, vol.208, pp.643-651, 2011.

A. Garcia-cattaneo, F. Gobert, M. Müller, F. Toscano, M. Flores et al., Cleavage of Toll-like receptor 3 by cathepsins B and H is essential for signaling, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.9053-9058, 2012.

S. Maschalidi, S. Hässler, F. Blanc, F. E. Sepulveda, M. Tohme et al., Asparagine endopeptidase controls anti-influenza virus immune responses through TLR7 activation, PLoS Pathog, 2012.

B. Park, M. M. Brinkmann, E. Spooner, C. C. Lee, Y. Kim et al., Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9, Nat. Immunol, vol.9, pp.1407-1414, 2008.

S. M. Horner, C. Wilkins, S. Badil, J. Iskarpatyoti, and M. Gale, Proteomic analysis of mitochondrial-associated ER membranes (MAM) during RNA virus infection reveals dynamic changes in protein and organelle trafficking, PloS One, vol.10, p.117963, 2015.

H. M. Liu, Y. Loo, S. M. Horner, G. A. Zornetzer, M. G. Katze et al., The mitochondrial targeting chaperone 14-3-3? regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity, Cell Host Microbe, vol.11, pp.528-537, 2012.

M. U. Gack, Y. C. Shin, C. Joo, T. Urano, C. Liang et al., TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity, Nature, vol.446, pp.916-920, 2007.

T. Ohman, J. Rintahaka, N. Kalkkinen, S. Matikainen, and T. A. Nyman, Actin and RIG-I/MAVS signaling components translocate to mitochondria upon influenza A virus infection of human primary macrophages, J. Immunol. Baltim. Md, vol.182, pp.5682-5692, 1950.

J. Babdor, D. Descamps, A. C. Adiko, M. Tohmé, S. Maschalidi et al., IRAP(+) endosomes restrict TLR9 activation and signaling, Nat. Immunol, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606972

S. R. Keller, H. M. Scott, C. C. Mastick, R. Aebersold, and G. E. Lienhard, Cloning and Characterization of a Novel Insulin-regulated Membrane Aminopeptidase from Glut4 Vesicles, J. Biol. Chem, vol.270, pp.23612-23618, 1995.

S. R. Keller, A. C. Davis, and K. B. Clairmont, Mice deficient in the insulin-regulated membrane aminopeptidase show substantial decreases in glucose transporter GLUT4 levels but maintain normal glucose homeostasis, J. Biol. Chem, vol.277, pp.17677-17686, 2002.

S. Mizutani, Physiological roles of placental proteases in feto-placental homeostasis, Nagoya J. Med. Sci, vol.61, pp.85-95, 1998.

A. L. Albiston, G. R. Peck, H. R. Yeatman, R. Fernando, S. Ye et al., Therapeutic targeting of insulin-regulated aminopeptidase: heads and tails?, Pharmacol. Ther, vol.116, pp.417-427, 2007.

N. J. Bryant, R. Govers, and D. E. James, Regulated transport of the glucose transporter GLUT4, Nat. Rev. Mol. Cell Biol, vol.3, pp.267-277, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01478407

Y. Hirata, T. Hosaka, T. Iwata, C. T. Le, B. Jambaldorj et al., Vimentin binds IRAP and is involved in GLUT4 vesicle trafficking, Biochem. Biophys. Res. Commun, vol.405, pp.96-101, 2011.

H. Tojo, I. Kaieda, H. Hattori, N. Katayama, K. Yoshimura et al., The Formin family protein, formin homolog overexpressed in spleen, interacts with the insulin-responsive aminopeptidase and profilin IIa, Mol. Endocrinol. Baltim. Md, vol.17, pp.1216-1229, 2003.

H. Liao, S. R. Keller, and J. D. Castle, Insulin-regulated aminopeptidase marks an antigenstimulated recycling compartment in mast cells, Traffic Cph. Den, vol.7, pp.155-167, 2006.

A. Nikolaou, B. Stijlemans, D. Laoui, E. Schouppe, H. T. Tran et al., Presence and regulation of insulin-regulated aminopeptidase in mouse macrophages, J. Renin-Angiotensin-Aldosterone Syst, 2014.

L. Saveanu, O. Carroll, M. Weimershaus, P. Guermonprez, E. Firat et al., IRAP identifies an endosomal compartment required for MHC class I cross-presentation, Science, vol.325, pp.213-217, 2009.

M. Weimershaus, S. Maschalidi, F. Sepulveda, B. Manoury, P. Van-endert et al., Conventional dendritic cells require IRAP-Rab14 endosomes for efficient cross-presentation, J. Immunol. Baltim. Md, vol.188, pp.1840-1846, 1950.

H. Cheng, Y. Li, X. Zuo, H. Tang, X. Tang et al., Identification of a missense variant in LNPEP that confers psoriasis risk, J. Invest. Dermatol, vol.134, pp.359-365, 2014.

D. M. Balak, M. B. Van-doorn, R. D. Arbeit, R. Rijneveld, E. Klaassen et al., IMO-8400, a toll-like receptor 7, 8, and 9 antagonist, demonstrates clinical activity in a phase 2a, randomized, placebocontrolled trial in patients with moderate-to-severe plaque psoriasis, Clin. Immunol. Orlando Fla, vol.174, pp.63-72, 2017.

H. Zhu, F. Lou, Q. Yin, Y. Gao, Y. Sun et al., RIG-I antiviral signaling drives interleukin-23 production and psoriasis-like skin disease, EMBO Mol. Med, vol.9, pp.589-604, 2017.

I. K. Pang, P. S. Pillai, and A. Iwasaki, Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I, Proc. Natl. Acad. Sci, vol.110, pp.13910-13915, 2013.

W. Wu, W. Zhang, E. S. Duggan, J. L. Booth, M. Zou et al., RIG-I and TLR3 are both required for maximum interferon induction by influenza virus in human lung alveolar epithelial cells, Virology, vol.482, pp.181-188, 2015.

F. Benmohamed, M. Medina, Y. Wu, S. Maschalidi, G. Jouvion et al., Toll-like receptor 9 deficiency protects mice against pseudomonas aeruginosa lung infection, PloS One, vol.9, p.90466, 2014.

J. C. Schittny, Development of the lung, Cell Tissue Res, vol.367, pp.427-444, 2017.

I. M. De-kleer, M. Kool, M. J. De-bruijn, M. Willart, J. Van-moorleghem et al., Perinatal Activation of the Interleukin-33 Pathway Promotes Type 2 Immunity in the Developing Lung, Immunity, vol.45, pp.1285-1298, 2016.

S. Saluzzo, A. Gorki, B. M. Rana, R. Martins, S. Scanlon et al., First-Breath-Induced Type 2 Pathways Shape the Lung Immune Environment, vol.18, pp.1893-1905, 2017.

M. Guilliams, I. De-kleer, S. Henri, S. Post, L. Vanhoutte et al., Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF, J. Exp. Med, vol.210, 1977.

C. Drajac, D. Laubreton, S. Riffault, and D. Descamps, Pulmonary Susceptibility of Neonates to Respiratory Syncytial Virus Infection: A Problem of Innate Immunity?, J. Immunol. Res, vol.8734504, 2017.

C. Schneider, S. P. Nobs, M. Kurrer, H. Rehrauer, C. Thiele et al., Induction of the nuclear receptor PPAR-? by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages, Nat. Immunol, vol.15, pp.1026-1037, 2014.

D. Kolli, M. R. Gupta, E. Sbrana, T. S. Velayutham, C. Hong et al., Alveolar Macrophages Contribute to the Pathogenesis of hMPV Infection While Protecting Against RSV Infection, Am. J. Respir. Cell Mol. Biol, 2014.

P. K. Pribul, J. Harker, B. Wang, H. Wang, J. S. Tregoning et al., Alveolar Macrophages Are a Major Determinant of Early Responses to Viral Lung Infection but Do Not Influence Subsequent Disease Development, J. Virol, vol.82, pp.4441-4448, 2008.

T. Hussell and T. J. Bell, Alveolar macrophages: plasticity in a tissue-specific context, Nat. Rev. Immunol, vol.14, pp.81-93, 2014.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nat. Rev. Immunol, vol.8, pp.958-969, 2008.

K. M. Empey, J. G. Orend, R. S. Peebles, L. Egaña, K. A. Norris et al., Stimulation of Immature Lung Macrophages with Intranasal Interferon Gamma in a Novel Neonatal Mouse Model of Respiratory Syncytial Virus Infection, PLoS ONE, vol.7, 2012.

K. M. Eichinger, L. Egaña, J. G. Orend, E. Resetar, K. B. Anderson et al., Alveolar macrophages support interferon gamma-mediated viral clearance in RSV-infected neonatal mice, Respir. Res, vol.16, p.122, 2015.

H. Spits, D. Artis, M. Colonna, A. Diefenbach, J. P. Di-santo et al., Innate lymphoid cells--a proposal for uniform nomenclature, Nat. Rev. Immunol, vol.13, pp.145-149, 2013.

A. M. Miller, Role of IL-33 in inflammation and disease, J. Inflamm. Lond. Engl, 2011.

J. Lu, J. Kang, C. Zhang, and X. Zhang, The role of IL-33/ST2L signals in the immune cells, Immunol. Lett, vol.164, pp.11-17, 2015.

G. Gasteiger, X. Fan, S. Dikiy, S. Y. Lee, and A. Y. Rudensky, Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs, Science, vol.350, pp.981-985, 2015.

C. H. Kim, S. Hashimoto-hill, and M. Kim, Migration and Tissue Tropism of Innate Lymphoid Cells, Trends Immunol, vol.37, pp.68-79, 2016.

C. Grégoire, L. Chasson, C. Luci, E. Tomasello, F. Geissmann et al., The trafficking of natural killer cells, Immunol. Rev, vol.220, pp.169-182, 2007.

J. Saravia, D. You, B. Shrestha, S. Jaligama, D. Siefker et al., Respiratory Syncytial Virus Disease Is Mediated by Age-Variable IL-33, PLoS Pathog, vol.11, p.1005217, 2015.

M. L. García-garcía, C. Calvo, A. Moreira, J. A. Cañas, F. Pozo et al., Thymic stromal lymphopoietin, IL-33, and periostin in hospitalized infants with viral bronchiolitis, p.96

M. T. Stier, M. H. Bloodworth, S. Toki, D. C. Newcomb, K. Goleniewska et al., Respiratory syncytial virus infection activates IL-13-producing group 2 innate lymphoid cells through thymic stromal lymphopoietin, J. Allergy Clin. Immunol, vol.138, pp.814-824, 2016.

M. Greter, J. Helft, A. Chow, D. Hashimoto, A. Mortha et al., GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells, Immunity, vol.36, pp.1031-1046, 2012.

X. Roux, A. Remot, A. Petit-camurdan, M. Nahori, H. Kiefer-biasizzo et al., Neonatal lung immune responses show a shift of cytokines and transcription factors toward Th2 and a deficit in conventional and plasmacytoid dendritic cells, Eur. J. Immunol, vol.41, pp.2852-2861, 2011.

J. Han, A. Dakhama, Y. Jia, M. Wang, W. Zeng et al., Responsiveness to respiratory syncytial virus in neonates is mediated through thymic stromal lymphopoietin and OX40 ligand, J. Allergy Clin. Immunol, vol.130, pp.1175-1186, 2012.

M. Croft, T. So, W. Duan, and P. Soroosh, The significance of OX40 and OX40L to T-cell biology and immune disease, Immunol. Rev, vol.229, pp.173-191, 2009.

A. Hoshino, Y. Tanaka, H. Akiba, Y. Asakura, Y. Mita et al., Critical role for OX40 ligand in the development of pathogenic Th2 cells in a murine model of asthma, Eur. J. Immunol, vol.33, pp.861-869, 2003.

S. Salek-ardakani, J. Song, B. S. Halteman, A. G. Jember, .. Akiba et al., OX40 (CD134) Controls Memory T Helper 2 Cells that Drive Lung Inflammation, J. Exp. Med, vol.198, pp.315-324, 2003.

T. J. Ruckwardt, A. M. Malloy, K. M. Morabito, and B. S. Graham, Quantitative and Qualitative Deficits in Neonatal Lung-Migratory Dendritic Cells Impact the Generation of the CD8+ T Cell Response, PLoS Pathog, vol.10, 2014.

M. Goritzka, L. R. Durant, C. Pereira, S. Salek-ardakani, P. J. Openshaw et al., Alpha/beta interferon receptor signaling amplifies early proinflammatory cytokine production in the lung during respiratory syncytial virus infection, J. Virol, vol.88, pp.6128-6136, 2014.

T. R. Johnson, S. E. Mertz, N. Gitiban, S. Hammond, R. Legallo et al., Role for innate IFNs in determining respiratory syncytial virus immunopathology, J. Immunol. Baltim. Md, vol.174, pp.7234-7241, 1950.

D. Zhivaki, S. Lemoine, A. Lim, A. Morva, P. Vidalain et al., Respiratory Syncytial Virus Infects Regulatory B Cells in Human Neonates via Chemokine Receptor CX3CR1 and Promotes Lung Disease Severity, vol.46, pp.301-314, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01604975

S. Sattler, G. Ling, D. Xu, L. Hussaarts, A. Romaine et al., IL-10-producing regulatory B cells induced by IL-33 (Breg(IL-33)) effectively attenuate mucosal inflammatory responses in the gut, J. Autoimmun, vol.50, pp.107-122, 2014.

L. M. Proctor, The Human Microbiome Project in 2011 and beyond, Cell Host Microbe, vol.10, pp.287-291, 2011.

J. Durack, S. V. Lynch, S. Nariya, N. R. Bhakta, A. Beigelman et al., National Heart, Lung and Blood Institute's "AsthmaNet" Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment, J. Allergy Clin. Immunol, vol.140, pp.63-75, 2017.

J. R. Erb-downward, D. L. Thompson, M. K. Han, C. M. Freeman, L. Mccloskey et al., Analysis of the lung microbiome in the "healthy" smoker and in COPD, PloS One, 2011.

M. Hilty, C. Burke, H. Pedro, P. Cardenas, A. Bush et al., Disordered microbial communities in asthmatic airways, PloS One, vol.5, p.8578, 2010.

A. Morris, J. M. Beck, P. D. Schloss, T. B. Campbell, K. Crothers et al., Lung HIV Microbiome Project Comparison of the respiratory microbiome in healthy nonsmokers and smokers, Am. J. Respir. Crit. Care Med, vol.187, pp.1067-1075, 2013.

M. Kostric, K. Milger, S. Krauss-etschmann, M. Engel, G. Vestergaard et al., Development of a Stable Lung Microbiome in Healthy Neonatal Mice, Microb. Ecol, 2017.

E. S. Gollwitzer, S. Saglani, A. Trompette, K. Yadava, R. Sherburn et al., Lung microbiota promotes tolerance to allergens in neonates via PD-L1, Nat. Med, vol.20, pp.642-647, 2014.

C. V. Lal, C. Travers, Z. H. Aghai, P. Eipers, T. Jilling et al., The Airway Microbiome at Birth. Sci. Rep, vol.6, p.31023, 2016.

P. Lohmann, R. A. Luna, E. B. Hollister, S. Devaraj, T. Mistretta et al., The airway microbiome of intubated premature infants: characteristics and changes that predict the development of bronchopulmonary dysplasia, Pediatr. Res, vol.76, pp.294-301, 2014.

S. M. Teo, D. Mok, K. Pham, M. Kusel, M. Serralha et al., The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development, Cell Host Microbe, vol.17, pp.704-715, 2015.

T. Herbst, A. Sichelstiel, C. Schär, K. Yadava, K. Bürki et al., Dysregulation of allergic airway inflammation in the absence of microbial colonization, Am. J. Respir. Crit. Care Med, vol.184, 0205.

M. Cheng, Y. Chen, L. Wang, W. Chen, L. Yang et al., Commensal microbiota maintains alveolar macrophages with a low level of CCL24 production to generate anti-metastatic tumor activity, Sci. Rep, vol.7, p.7471, 2017.

T. Olszak, D. An, S. Zeissig, M. P. Vera, J. Richter et al., Microbial exposure during early life has persistent effects on natural killer T cell function, Science, vol.336, pp.489-493, 2012.

A. Remot, D. Descamps, M. Noordine, A. Boukadiri, E. Mathieu et al., Bacteria isolated from lung modulate asthma susceptibility in mice, vol.11, pp.1061-1074, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595509

Y. Yun, G. Srinivas, S. Kuenzel, M. Linnenbrink, S. Alnahas et al., Environmentally Determined Differences in the Murine Lung Microbiota and Their Relation to Alveolar Architecture, PLoS ONE, vol.9, 2014.

J. Tomas, L. Wrzosek, N. Bouznad, S. Bouet, C. Mayeur et al., Primocolonization is associated with colonic epithelial maturation during conventionalization, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.27, pp.645-655, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01003327

Y. Yu, L. Lu, J. Sun, E. O. Petrof, and E. C. Claud, Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model, Am. J. Physiol. Gastrointest. Liver Physiol, vol.311, pp.521-532, 2016.

J. P. Lynch, M. A. Sikder, B. F. Curren, R. B. Werder, J. Simpson et al., The Influence of the Microbiome on Early-Life Severe Viral Lower Respiratory Infections and Asthma-Food for Thought? Front, vol.8, 2017.

E. S. Gollwitzer and B. J. Marsland, Impact of Early-Life Exposures on Immune Maturation and Susceptibility to Disease, Trends Immunol, vol.36, pp.684-696, 2015.

D. You, N. Marr, J. Saravia, B. Shrestha, G. I. Lee et al., IL-4R? on CD4+ T cells plays a pathogenic role in respiratory syncytial virus reinfection in mice infected initially as neonates, J. Leukoc. Biol, vol.93, pp.933-942, 2013.

B. E. Chipps, W. F. Sullivan, and J. M. Portnoy, Alpha-2A-interferon for treatment of bronchiolitis caused by respiratory syncytial virus, Pediatr. Infect. Dis. J, vol.12, pp.653-658, 1993.

R. Y. Sung, J. Yin, S. J. Oppenheimer, J. S. Tam, and J. Lau, Treatment of respiratory syncytial virus infection with recombinant interferon alfa-2a, Arch. Dis. Child, vol.69, pp.440-442, 1993.

P. G. Higgins, G. I. Barrow, D. A. Tyrrell, D. Isaacs, and C. L. Gauci, The efficacy of intranasal interferon alpha-2a in respiratory syncytial virus infection in volunteers, Antiviral Res, vol.14, pp.3-10, 1990.

Y. Yamaguchi, J. A. Harker, B. Wang, P. J. Openshaw, J. S. Tregoning et al., Preexposure to CpG protects against the delayed effects of neonatal respiratory syncytial virus infection, J. Virol, vol.86, pp.10456-10461, 2012.

M. S. Boukhvalova, T. B. Sotomayor, R. C. Point, L. M. Pletneva, G. A. Prince et al., Activation of interferon response through toll-like receptor 3 impacts viral pathogenesis and pulmonary toll-like receptor expression during respiratory syncytial virus and influenza infections in the cotton rat Sigmodon hispidus model, J. Interferon Cytokine Res. Off. J. Int. Soc. Interferon Cytokine Res, vol.30, pp.229-242, 2010.

S. Challa, A. Sheri, S. Padmanabhan, B. Korba, T. Chang et al., Prophylactic and therapeutic anti-RSV activity of SB 9200 -a novel agent that activates RIG-I and NOD2. Spring Bank Pharm. Presents Data Immunomodulatory Agent SB 9200 29th Int, Conf. Antivir. Res, 2016.

A. Dakhama, J. Park, C. Taube, A. Joetham, A. Balhorn et al., The Enhancement or Prevention of Airway Hyperresponsiveness during Reinfection with Respiratory Syncytial Virus Is Critically Dependent on the Age at First Infection and IL-13 Production, J. Immunol, vol.175, pp.1876-1883, 2005.

K. K. Tekkanat, H. F. Maassab, D. S. Cho, J. J. Lai, A. John et al., IL-13-induced airway hyperreactivity during respiratory syncytial virus infection is STAT6 dependent, J. Immunol. Baltim. Md, vol.166, pp.3542-3548, 1950.

E. H. De-boever, C. Ashman, A. P. Cahn, N. W. Locantore, P. Overend et al., Efficacy and safety of an anti-IL-13 mAb in patients with severe asthma: a randomized trial, J. Allergy Clin. Immunol, vol.133, pp.989-996, 2014.

G. M. Gauvreau, P. M. O'byrne, L. Boulet, Y. Wang, D. Cockcroft et al., Effects of an anti-TSLP antibody on allergen-induced asthmatic responses, N. Engl. J. Med, vol.370, pp.2102-2110, 2014.

B. Shrestha, D. You, J. Saravia, D. T. Siefker, S. Jaligama et al., IL-4R? on dendritic cells in neonates and Th2 immunopathology in respiratory syncytial virus infection, J. Leukoc. Biol, vol.102, pp.153-161, 2017.

M. J. Ripple, D. You, S. Honnegowda, J. D. Giaimo, A. B. Sewell et al., Immunomodulation with IL-4 Receptor-? Antisense Oligonucleotide Prevents RSV-Mediated Pulmonary Disease, J. Immunol. Baltim. Md, vol.185, pp.4804-4811, 1950.

B. T. Srinivasa, K. H. Restori, J. Shan, L. Cyr, L. Xing et al., STAT6 inhibitory peptide given during RSV infection of neonatal mice reduces exacerbated airway responses upon adult reinfection, J. Leukoc. Biol, 2016.

Y. Lee, N. Miyahara, K. Takeda, J. Prpich, A. Oh et al., IFN-gamma production during initial infection determines the outcome of reinfection with respiratory syncytial virus, Am. J. Respir. Crit. Care Med, vol.177, pp.208-218, 2008.

K. M. Eichinger, E. Resetar, J. Orend, K. Anderson, and K. M. Empey, Age predicts cytokine kinetics and innate immune cell activation following intranasal delivery of IFN? and GM-CSF in a mouse model of RSV infection, vol.97, pp.25-37, 2017.

E. Chiba, Y. Tomosada, M. G. Vizoso-pinto, S. Salva, T. Takahashi et al., Immunobiotic Lactobacillus rhamnosus improves resistance of infant mice against respiratory syncytial virus infection, Int. Immunopharmacol, vol.17, pp.373-382, 2013.

J. Villena, E. Chiba, Y. Tomosada, S. Salva, G. Marranzino et al., Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C), BMC Immunol, vol.13, p.53, 2012.

J. Villena, S. Salva, M. Núñez, J. Corzo, R. Tolaba et al., Probiotics for everyone! The novel immunobiotic Lactobacillus rhamnosus CRL1505 and the beginning of Social Probiotic Programs in Argentina, Int. J. Biotechnol. Wellness Ind, vol.1, pp.189-198, 2012.

Y. Tomosada, E. Chiba, H. Zelaya, T. Takahashi, K. Tsukida et al., Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection, BMC Immunol, vol.14, p.40, 2013.

W. A. De-steenhuijsen-piters, S. Heinonen, R. Hasrat, E. Bunsow, B. Smith et al., Nasopharyngeal Microbiota, Host Transcriptome and Disease Severity in Children with Respiratory Syncytial Virus Infection, Am. J. Respir. Crit. Care Med, 2016.

M. Larance, G. Ramm, J. Stöckli, E. M. Van-dam, S. Winata et al., Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking, J. Biol. Chem, vol.280, pp.37803-37813, 2005.

S. C. Brock, J. R. Goldenring, and J. E. Crowe, Apical recycling systems regulate directional budding of respiratory syncytial virus from polarized epithelial cells, Proc. Natl. Acad. Sci, vol.100, pp.15143-15148, 2003.

T. J. Utley, N. A. Ducharme, V. Varthakavi, B. E. Shepherd, P. J. Santangelo et al., Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.10209-10214, 2008.

Z. Szatmári, V. Kis, M. Lippai, K. Heged?s, T. Faragó et al., Rab11 facilitates cross-talk between autophagy and endosomal pathway through regulation of Hook localization, Mol. Biol. Cell, vol.25, pp.522-531, 2014.

C. Mauvezin, A. L. Neisch, C. I. Ayala, J. Kim, A. Beltrame et al., Coordination of autophagosome-lysosome fusion and transport by a Klp98A-Rab14 complex in Drosophila, J. Cell Sci, vol.129, pp.971-982, 2016.

V. Deretic, T. Saitoh, and S. Akira, Autophagy in infection, inflammation and immunity, Nat. Rev. Immunol, vol.13, pp.722-737, 2013.

H. K. Lee, J. M. Lund, B. Ramanathan, N. Mizushima, and A. Iwasaki, Autophagy-dependent viral recognition by plasmacytoid dendritic cells, Science, vol.315, pp.1398-1401, 2007.
DOI : 10.1126/science.1136880

URL : https://www.mh-hannover.de/fileadmin/institute/immunologie/downloads/pdfs/Anchana_Autophagy_dependent.pdf

S. Morris, M. S. Swanson, A. Lieberman, M. Reed, Z. Yue et al., Autophagy-mediated DC activation is essential for innate cytokine production and APC function with Respiratory Syncytial Virus responses, J. Immunol. Baltim. Md, vol.187, pp.3953-3961, 1950.

S. M. Pokharel, N. K. Shil, S. Bose, and . Autophagy, TGF-?, and SMAD-2/3 Signaling Regulates Interferon-? Response in Respiratory Syncytial Virus Infected Macrophages, Front. Cell. Infect. Microbiol, vol.6, 2016.

A. Kuma, M. Hatano, M. Matsui, A. Yamamoto, H. Nakaya et al., The role of autophagy during the early neonatal starvation period, Nature, vol.432, pp.1032-1036, 2004.

Z. Yue, S. Jin, C. Yang, A. J. Levine, and N. Heintz, Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.15077-15082, 2003.

R. A. Saxton, D. M. Sabatini, and . Mtor, Signaling in Growth, vol.168, pp.960-976, 2017.

M. Reed, S. H. Morris, S. Jang, S. Mukherjee, Z. Yue et al., Autophagy-inducing protein beclin-1 in dendritic cells regulates CD4 T cell responses and disease severity during respiratory syncytial virus infection, J. Immunol. Baltim. Md, 2526.

M. Reed, S. H. Morris, A. B. Owczarczyk, and N. W. Lukacs, Deficiency of autophagy protein Map1-LC3b mediates IL-17-dependent lung pathology during respiratory viral infection via ER stress-associated IL-1, Mucosal Immunol, vol.8, pp.1118-1130, 2015.

Y. Wu, H. Tan, G. Shui, C. Bauvy, Q. Huang et al., Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase, J. Biol. Chem, vol.285, pp.10850-10861, 2010.

A. Petiot, E. Ogier-denis, E. F. Blommaart, A. J. Meijer, and P. Codogno, Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells, J. Biol. Chem, vol.275, pp.992-998, 2000.

E. Aksoy, V. Albarani, M. Nguyen, J. Laes, J. Ruelle et al., Interferon regulatory factor 3-dependent responses to lipopolysaccharide are selectively blunted in cord blood cells, Blood, vol.109, pp.2887-2893, 2007.

B. Danis, T. C. George, S. Goriely, B. Dutta, J. Renneson et al., Interferon regulatory factor 7-mediated responses are defective in cord blood plasmacytoid dendritic cells, Eur. J. Immunol, vol.38, pp.507-517, 2008.

N. Marr, T. Wang, S. H. Kam, Y. S. Hu, A. A. Sharma et al., Attenuation of respiratory syncytial virus-induced and RIG-Idependent type I IFN responses in human neonates and very young children, J. Immunol. Baltim. Md, vol.192, pp.948-957, 1950.

Z. Ling, K. C. Tran, and M. N. Teng, Human Respiratory Syncytial Virus Nonstructural Protein NS2 Antagonizes the Activation of Beta Interferon Transcription by Interacting with RIG-I, J. Virol, vol.83, pp.3734-3742, 2009.

J. Ren, T. Liu, L. Pang, K. Li, R. P. Garofalo et al., A novel mechanism for the inhibition of interferon regulatory factor-3-dependent gene expression by human respiratory syncytial virus NS1 protein, J. Gen. Virol, vol.92, pp.2153-2159, 2011.

K. M. Spann, K. C. Tran, and P. L. Collins, Effects of Nonstructural Proteins NS1 and NS2 of Human Respiratory Syncytial Virus on Interferon Regulatory Factor 3, NF-?B, and Proinflammatory Cytokines, J. Virol, vol.79, pp.5353-5362, 2005.

S. Swedan, A. Musiyenko, and S. Barik, Respiratory Syncytial Virus Nonstructural Proteins Decrease Levels of Multiple Members of the Cellular Interferon Pathways, J. Virol, vol.83, pp.9682-9693, 2009.

K. Jeong, P. A. Piepenhagen, M. Kishko, J. M. Dinapoli, R. P. Groppo et al., CX3CR1 Is Expressed in Differentiated Human Ciliated Airway Cells and Co-Localizes with Respiratory Syncytial Virus on Cilia in a G ProteinDependent Manner, PloS One, vol.10, p.130517, 2015.

G. Subramanian, T. Kuzmanovic, Y. Zhang, C. B. Peter, M. Veleeparambil et al., A new mechanism of interferon's antiviral action: Induction of autophagy, essential for paramyxovirus replication, is inhibited by the interferon stimulated gene, PLoS Pathog, vol.14, p.1006877, 2018.

M. Henjakovic, K. Sewald, S. Switalla, D. Kaiser, M. Müller et al., Ex vivo testing of immune responses in precision-cut lung slices, Toxicol. Appl. Pharmacol, vol.231, pp.68-76, 2008.

S. Switalla, L. Lauenstein, F. Prenzler, S. Knothe, C. Förster et al., Natural innate cytokine response to immunomodulators and adjuvants in human precision-cut lung slices, Toxicol. Appl. Pharmacol, 2010.

M. Rameix-welti, R. Goffic, P. Hervé, J. Sourimant, A. Rémot et al., Visualizing the replication of respiratory syncytial virus in cells and in living mice, Nat. Commun, vol.5, 2014.

J. S. Tregoning, B. L. Wang, J. U. Mcdonald, Y. Yamaguchi, J. A. Harker et al., Neonatal antibody responses are attenuated by interferon-? produced by NK and T cells during RSV infection, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.5576-5581, 2013.

M. C. Abt, L. C. Osborne, L. A. Monticelli, T. A. Doering, T. Alenghat et al., Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity, Immunity, vol.37, pp.158-170, 2012.

J. Wang, F. Li, R. Sun, X. Gao, H. Wei et al., Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages, Nat. Commun, 2013.

H. Chu, A. Khosravi, I. P. Kusumawardhani, A. H. Kwon, A. C. Vasconcelos et al., Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease, Science, vol.352, pp.1116-1120, 2016.

H. Deng, Z. Li, Y. Tan, Z. Guo, Y. Liu et al., A novel strain of Bacteroides fragilis enhances phagocytosis and polarises M1 macrophages, Sci. Rep, vol.6, 2016.

S. Byun, E. Lee, and K. W. Lee, Therapeutic Implications of Autophagy Inducers in Immunological Disorders, Infection, and Cancer, Int. J. Mol. Sci, vol.18, 2017.

R. D. Junkins, C. Mccormick, and T. Lin, The emerging potential of autophagy-based therapies in the treatment of cystic fibrosis lung infections, Autophagy, vol.10, pp.538-547, 2014.

C. G. Towers and A. Thorburn, Therapeutic Targeting of Autophagy, vol.14, pp.15-23, 2016.

R. E. Blount, J. A. Morris, and R. E. Savage, Recovery of cytopathogenic agent from chimpanzees with goryza, Proceedings of the Society for Experimental Biology and Medicine, vol.92, issue.3, pp.544-549, 1956.

R. Chanock and L. Finberg, Recovery from infants with respiratory illness of a virus related to chimpanzee coryza agent (CCA), American Journal of Epidemiology, vol.66, issue.3, pp.291-300, 1957.

R. Chanock, B. Roizman, and R. Myers, Recovery from infants with respiratory illness of a virus related to chimpanzee coryza agent (CCA). Isolation, properties and characterization, American Journal of Epidemiology, vol.66, issue.3, pp.281-290, 1957.

C. L. Afonso, G. K. Amarasinghe, and K. Bányai, Taxonomy of the order Mononegavirales: update 2016, vol.161, pp.2351-2360, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01911212

M. Connors, P. L. Collins, C. Y. Firestone, and B. R. Murphy, Respiratory syncytial virus (RSV) F, G, M2 (22K), and N proteins each induce resistance to RSV challenge, but resistance induced by M2 and N proteins is relatively short-lived, Journal of Virology, vol.65, issue.3, pp.1634-1637, 1991.

S. Jain, W. H. Self, R. G. Wunderink, and C. Team, Community-acquired pneumonia requiring hospitalization, New England Journal of Medicine, vol.373, issue.24, p.2382, 2015.

A. Jha, H. Jarvis, C. Fraser, and P. J. Openshaw, Respiratory syncytial virus, SARS, MERS and Other Viral Lung, vol.72, pp.84-109, 2016.

T. Shi, D. A. Mcallister, and K. L. O'brien, Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study, The Lancet, vol.390, issue.10098, pp.946-958, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01976733

N. Sigurs, F. Aljassim, and B. Kjellman, Asthma and allergy patterns over 18 years after severe RSV bronchiolitis in the first year of life, Thorax, vol.65, issue.12, pp.1045-1052, 2010.

H. W. Kim, J. G. Canchola, and C. D. Brandt, Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine, American Journal of Epidemiology, vol.89, issue.4, pp.422-434, 1969.

M. Connors, N. A. Giese, A. B. Kulkarni, C. Y. Firestone, H. C. Morse et al., Enhanced pulmonary histopathology induced by respiratory syncytial virus (RSV) challenge of formalin-inactivated RSV-immunized BALB/c mice is abrogated by depletion of interleukin-4 (IL-4) and IL-10, Journal of Virology, vol.68, issue.8, pp.5321-5325, 1994.

M. E. Waris, C. Tsou, D. D. Erdman, S. R. Zaki, and L. J. Anderson, Respiratory synctial virus infection in BALB/c mice previously immunized with formalin-inactivated virus induces enhanced pulmonary inflammatory response with a predominant Th2-like cytokine pattern, Journal of Immunology Research, vol.70, issue.5, pp.2852-2860, 1996.

R. Janssen, L. Bont, and C. L. Siezen, Genetic susceptibility to respiratory syncytial virus bronchiolitis is predominantly associated with innate immune genes, The Journal of Infectious Diseases, vol.196, issue.6, pp.826-834, 2007.

L. Lambert, A. M. Sagfors, P. J. Openshaw, and F. J. Culley, Immunity to RSV in early-life, Frontiers in Immunology, vol.5, p.466, 2014.

S. A. Cormier, D. You, and S. Honnegowda, The use of a neonatal mouse model to study respiratory syncytial virus infections, Expert Review of Anti-Infective Therapy, vol.8, issue.12, pp.1371-1380, 2010.

R. Ochola, C. Sande, and G. Fegan, The level and duration of RSV-specific maternal IgG in infants in Kilifi Kenya, PLoS One, vol.4, issue.12, p.8088, 2009.

C. J. Sande, P. A. Cane, and D. J. Nokes, The association between age and the development of respiratory syncytial virus neutralising antibody responses following natural infection in infants, Vaccine, vol.32, issue.37, pp.4726-4729, 2014.

M. O. Blanken, M. M. Rovers, and J. M. Molenaar, Respiratory syncytial virus and recurrent wheeze in healthy preterm infants, New England Journal of Medicine, vol.368, issue.19, pp.1791-1799, 2013.

F. J. Culley, J. Pollott, and P. J. Openshaw, Age at first viral infection determines the pattern of T cell-mediated disease during reinfection in adulthood, The Journal of Experimental Medicine, vol.196, issue.10, pp.1381-1386, 2002.

A. Dakhama, J. W. Park, and C. Taube, The enhancement or prevention of airway hyperresponsiveness during reinfection with respiratory syncytial virus is critically dependent on the age at first infection and IL-13 production, Journal of Immunology, vol.175, issue.3, pp.1876-1883, 2005.

J. C. Schittny, Development of the lung, Cell and Tissue Research, vol.367, issue.3, pp.427-444, 2017.

S. I. Mund, M. Stampanoni, and J. C. Schittny, Developmental alveolarization of the mouse lung, Developmental Dynamics, vol.237, issue.8, pp.2108-2116, 2008.

E. S. Gollwitzer and B. J. Marsland, Impact of early-life exposures on immune maturation and susceptibility to disease, Trends in Immunology, vol.36, issue.11, pp.684-696, 2015.

C. M. Lloyd and B. J. Marsland, Lung homeostasis: influence of age, microbes, and the immune system, Immunity, vol.46, issue.4, pp.549-561, 2017.

M. Guilliams, I. De-kleer, and S. Henri, Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF, The Journal of Experimental Medicine, vol.210, issue.10, pp.1977-1992, 2013.

C. Schneider, S. P. Nobs, M. Kurrer, H. Rehrauer, C. Thiele et al., Induction of the nuclear receptor PPAR-? by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages, Nature Immunology, vol.15, issue.11, pp.1026-1037, 2014.

I. M. De-kleer, M. Kool, and M. J. De-bruijn, Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung, Immunity, vol.45, issue.6, pp.1285-1298, 2016.

B. L. Manroe, A. G. Weinberg, C. R. Rosenfeld, and R. Browne, The neonatal blood count in health and disease

I. , Reference values for neutrophilic cells, The Journal of Pediatrics, vol.95, issue.1, pp.89-98, 1979.

H. S. Deshmukh, Y. Liu, and O. R. Menkiti, The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice, Nature Medicine, vol.20, issue.5, pp.524-530, 2014.

S. Saluzzo, A. D. Gorki, and B. M. Rana, Firstbreath-induced type 2 pathways shape the lung immune environment, Cell Reports, vol.18, issue.8, pp.1893-1905, 2017.

A. M. Miller, Role of IL-33 in inflammation and disease, Journal of Inflammation, vol.8, issue.1, p.22, 2011.

J. Lu, J. Kang, C. Zhang, and X. Zhang, The role of IL-33/ ST2L signals in the immune cells, Immunology Letters, vol.164, issue.1, pp.11-17, 2015.

H. Spits, D. Artis, and M. Colonna, Innate lymphoid cellsa proposal for uniform nomenclature, Nature Reviews Immunology, vol.13, issue.2, pp.145-149, 2013.
DOI : 10.1038/nri3365

G. Gasteiger, X. Fan, S. Dikiy, S. Y. Lee, and A. Y. Rudensky, Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs, Science, vol.350, issue.6263, pp.981-985, 2015.

C. H. Kim, S. Hashimoto-hill, and M. Kim, Migration and tissue tropism of innate lymphoid cells, Trends in Immunology, vol.37, issue.1, pp.68-79, 2016.

C. Gregoire, L. Chasson, and C. Luci, The trafficking of natural killer cells, Immunological Reviews, vol.220, pp.169-182, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00297259

M. Greter, J. Helft, and A. Chow, GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells, Immunity, vol.36, issue.6, pp.1031-1046, 2012.

X. Roux, A. Remot, and A. Petit-camurdan, Neonatal lung immune responses show a shift of cytokines and transcription factors toward Th2 and a deficit in conventional and plasmacytoid dendritic cells, European Journal of Immunology, vol.41, issue.10, pp.2852-2861, 2011.

J. Han, A. Dakhama, and Y. Jia, Responsiveness to respiratory syncytial virus in neonates is mediated through thymic stromal lymphopoietin and OX40 ligand, The Journal of Allergy and Clinical Immunology, vol.130, issue.5, pp.1175-1186, 2012.
DOI : 10.1016/j.jaci.2012.08.033

URL : http://europepmc.org/articles/pmc3593657?pdf=render

C. M. Sun, E. Deriaud, C. Leclerc, and R. Lo-man, Upon TLR9 signaling, CD5 + B cells control the IL-12-dependent Th1-priming capacity of neonatal DCs, Immunity, vol.22, issue.4, pp.467-477, 2005.

D. Zhivaki, S. Lemoine, and A. Lim, Respiratory syncytial virus infects regulatory B cells in human neonates via chemokine receptor CX3CR1 and promotes lung disease severity, Immunity, vol.46, issue.2, pp.301-314, 2017.
DOI : 10.1016/j.immuni.2017.01.010

URL : https://hal.archives-ouvertes.fr/hal-01604975

E. S. Gollwitzer, S. Saglani, and A. Trompette, Lung microbiota promotes tolerance to allergens in neonates via PD-L1, Nature Medicine, vol.20, issue.6, pp.642-647, 2014.
DOI : 10.1038/nm.3568

A. Remot, D. Descamps, and M. L. Noordine, Bacteria isolated from lung modulate asthma susceptibility in mice, The ISME Journal, vol.11, issue.5, pp.1061-1074, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595509

Y. Yun, G. Srinivas, and S. Kuenzel, Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture, PLoS One, vol.9, issue.12, 2014.

T. Olszak, D. An, and S. Zeissig, Microbial exposure during early life has persistent effects on natural killer T cell function, Science, vol.336, issue.6080, pp.489-493, 2012.
DOI : 10.1126/science.1219328

URL : http://europepmc.org/articles/pmc3437652?pdf=render

T. Gensollen, S. S. Iyer, D. L. Kasper, and R. S. Blumberg, How colonization by microbiota in early life shapes the immune system, Science, vol.352, issue.6285, pp.539-544, 2016.

C. Johansson, Respiratory syncytial virus infection: an innate perspective, F1000Research, vol.5, p.2898, 2016.

T. H. Kim and H. K. Lee, Innate immune recognition of respiratory syncytial virus infection, BMB Reports, vol.47, issue.4, pp.184-191, 2014.

N. Marr, S. E. Turvey, and N. Grandvaux, Pathogen recognition receptor crosstalk in respiratory syncytial virus sensing: a host and cell type perspective, Trends in Microbiology, vol.21, issue.11, pp.568-574, 2013.

R. Zeng, Y. Cui, Y. Hai, and Y. Liu, Pattern recognition receptors for respiratory syncytial virus infection and design of vaccines, Virus Research, vol.167, issue.2, pp.138-145, 2012.

E. A. Kurt-jones, L. Popova, and L. Kwinn, Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus, Nature Immunology, vol.1, issue.5, pp.398-401, 2000.

L. M. Haynes, D. D. Moore, E. A. Kurt-jones, R. W. Finberg, L. J. Anderson et al., Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus, Journal of Virology, vol.75, issue.22, pp.10730-10737, 2001.

S. Ehl, R. Bischoff, and T. Ostler, The role of Toll-like receptor 4 versus interleukin-12 in immunity to respiratory syncytial virus, European Journal of Immunology, vol.34, issue.4, pp.1146-1153, 2004.

L. Armstrong, A. R. Medford, and K. M. Uppington, Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells, American Journal of Respiratory Cell and Molecular Biology, vol.31, issue.2, pp.241-245, 2004.

K. Suzuki, T. Suda, T. Naito, K. Ide, K. Chida et al., Impaired toll-like receptor 9 expression in alveolar macrophages with no sensitivity to CpG DNA, American Journal of Respiratory and Critical Care Medicine, vol.171, issue.7, pp.707-713, 2005.

M. Vareille, E. Kieninger, M. R. Edwards, and N. Regamey, The airway epithelium: soldier in the fight against respiratory viruses, Clinical Microbiology Reviews, vol.24, issue.1, pp.210-229, 2011.

K. A. Shirey, L. M. Pletneva, and A. C. Puche, Control of RSV-induced lung injury by alternatively activated macrophages is IL-4R?-, TLR4-, and IFN-?-dependent, Mucosal Immunology, vol.3, issue.3, pp.291-300, 2010.

M. R. Murawski, G. N. Bowen, and A. M. Cerny, Respiratory syncytial virus activates innate immunity through Toll-like receptor 2, Journal of Virology, vol.83, issue.3, pp.1492-1500, 2009.

G. F. Sonnenberg and D. Artis, Innate lymphoid cells in the initiation, regulation and resolution of inflammation, Nature Medicine, vol.21, issue.7, pp.698-708, 2015.

T. Ishii, K. Hosoki, Y. Niikura, T. Nagase, and N. Yamashita, The activation of pulmonary type2 innate lymphoid cells through toll-like receptors, American Journal of Respiratory and Critical Care Medicine, vol.195, p.284, 2017.

B. D. Rudd, E. Burstein, C. S. Duckett, X. Li, and N. W. Lukacs, Differential role for TLR3 in respiratory syncytial virus-induced chemokine expression, Journal of Virology, vol.79, issue.6, pp.3350-3357, 2005.

L. Guillot, R. L. Goffic, and S. Bloch, Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus, The Journal of Biological Chemistry, vol.280, issue.7, pp.5571-5580, 2005.

F. Qi, D. Wang, and J. Liu, Respiratory macrophages and dendritic cells mediate respiratory syncytial virus-induced IL-33 production in TLR3-or TLR7-dependent manner, International Immunopharmacology, vol.29, issue.2, pp.408-415, 2015.

T. Demoor, B. C. Petersen, and S. Morris, IPS-1 signaling has a nonredundant role in mediating antiviral responses and the clearance of respiratory syncytial virus, Journal of Immunology, vol.189, issue.12, pp.5942-5953, 2012.

N. W. Lukacs, J. J. Smit, S. Mukherjee, S. B. Morris, G. Nunez et al., Respiratory virus-induced TLR7 activation controls IL-17-associated increased mucus via IL-23 regulation, Journal of Immunology, vol.185, issue.4, pp.2231-2239, 2010.

S. Phipps, C. E. Lam, and S. Mahalingam, Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus, Blood, vol.110, issue.5, pp.1578-1586, 2007.

J. Schlender, V. Hornung, and S. Finke, Inhibition of tolllike receptor 7-and 9-mediated alpha/beta interferon production in human plasmacytoid dendritic cells by respiratory syncytial virus and measles virus, Journal of Virology, vol.79, issue.9, pp.5507-5515, 2005.

Y. M. Loo, J. Fornek, and N. Crochet, Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity, Journal of Virology, vol.82, issue.1, pp.335-345, 2008.

N. Marr, T. I. Wang, and S. H. Kam, Attenuation of respiratory syncytial virus-induced and RIG-I-dependent type I IFN responses in human neonates and very young children, Journal of Immunology, vol.192, issue.3, pp.948-957, 2014.

M. Goritzka, S. Makris, and F. Kausar, Alveolar macrophage-derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes, The Journal of Experimental Medicine, vol.212, issue.5, pp.699-714, 2015.

A. Sabbah, T. H. Chang, and R. Harnack, Activation of innate immune antiviral responses by Nod2, Nature Immunology, vol.10, issue.10, pp.1073-1080, 2009.

V. G. Bhoj, Q. Sun, and E. J. Bhoj, MAVS and MyD88 are essential for innate immunity but not cytotoxic T lymphocyte response against respiratory syncytial virus, Proceedings of the National Academy of Sciences, vol.105, issue.37, pp.14046-14051, 2008.

S. Makris, M. Bajorek, F. J. Culley, M. Goritzka, and C. Johansson, Alveolar macrophages can control respiratory syncytial virus infection in the absence of type I interferons, Journal of Innate Immunity, vol.8, issue.5, pp.452-463, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01602871

A. A. Awomoyi, P. Rallabhandi, and T. I. Pollin, Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in high-risk infants and young children, Journal of Immunology, vol.179, issue.5, pp.3171-3177, 2007.

G. Tal, A. Mandelberg, and I. , Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease, The Journal of Infectious Diseases, vol.189, issue.11, pp.2057-2063, 2004.
DOI : 10.1086/420830

URL : https://academic.oup.com/jid/article-pdf/189/11/2057/11637751/189-11-2057.pdf

M. K. Tulic, R. J. Hurrelbrink, and C. M. Prêle, TLR4 polymorphisms mediate impaired responses to respiratory syncytial virus and lipopolysaccharide, Journal of Immunology, vol.179, issue.1, pp.132-140, 2007.
DOI : 10.4049/jimmunol.179.1.132

URL : http://www.jimmunol.org/content/179/1/132.full.pdf

M. Ramet, M. Korppi, and M. Hallman, Pattern recognition receptors and genetic risk for rsv infection: value for clinical decision-making?, Pediatric Pulmonology, vol.46, issue.2, pp.101-110, 2011.

N. Marr, A. F. Hirschfeld, A. Lam, S. Wang, P. M. Lavoie et al., Assessment of genetic associations between common single nucleotide polymorphisms in RIG-I-like receptor and IL-4 signaling genes and severe respiratory syncytial virus infection in children: a candidate gene casecontrol study, PLoS One, vol.9, issue.6, p.100269, 2014.

M. T. Caballero, M. E. Serra, and P. L. Acosta, TLR4 genotype and environmental LPS mediate RSV bronchiolitis through Th2 polarization, The Journal of Clinical Investigation, vol.125, issue.2, pp.571-582, 2015.
DOI : 10.1172/jci75183

URL : http://www.jci.org/articles/view/75183/files/pdf

T. R. Kollmann, O. Levy, R. R. Montgomery, and S. Goriely, Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly, Immunity, vol.37, issue.5, pp.771-783, 2012.

K. Gabehart, K. A. Correll, J. E. Loader, C. W. White, and A. Dakhama, The lung response to ozone is determined by age and is partially dependent on toll-like receptor 4, Respiratory Research, vol.16, p.117, 2015.

K. Harju, M. Ojaniemi, and S. Rounioja, Expression of tolllike receptor 4 and endotoxin responsiveness in mice during perinatal period, Pediatric Research, vol.57, issue.5, pp.644-648, 2005.

J. S. Tregoning, Y. Yamaguchi, J. Harker, B. Wang, and P. J. Openshaw, The role of T cells in the enhancement of respiratory syncytial virus infection severity during adult reinfection of neonatally sensitized mice, Journal of Virology, vol.82, issue.8, pp.4115-4124, 2008.

A. F. Christiaansen, C. J. Knudson, K. A. Weiss, and S. M. Varga, The CD4 T cell response to respiratory syncytial virus infection, Immunologic Research, vol.59, issue.1-3, pp.109-117, 2014.

T. J. Ruckwardt, A. M. Malloy, K. M. Morabito, and B. S. Graham, Quantitative and qualitative deficits in neonatal lung-migratory dendritic cells impact the generation of the CD8+ T cell response, PLoS Pathogens, vol.10, issue.2, p.1003934, 2014.

S. A. Cormier, B. Shrestha, and J. Saravia, Limited type I interferons and plasmacytoid dendritic cells during neonatal respiratory syncytial virus infection permit immunopathogenesis upon reinfection, Journal of Virology, vol.88, issue.16, pp.9350-9360, 2014.

A. Remot, D. Descamps, and L. Jouneau, Flt3 ligand improves the innate response to respiratory syncytial virus and limits lung disease upon RSV reexposure in neonate mice, European Journal of Immunology, vol.46, issue.4, pp.874-884, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01533877

M. Goritzka, L. R. Durant, C. Pereira, S. Salek-ardakani, P. J. Openshaw et al., Alpha/beta interferon receptor signaling amplifies early proinflammatory cytokine production in the lung during respiratory syncytial virus infection, Journal of Virology, vol.88, issue.11, pp.6128-6136, 2014.

T. R. Johnson, S. E. Mertz, and N. Gitiban, Role for innate IFNs in determining respiratory syncytial virus immunopathology, Journal of Immunology, vol.174, issue.11, pp.7234-7241, 2005.

K. M. Eichinger, L. Egaña, and J. G. Orend, Alveolar macrophages support interferon gamma-mediated viral clearance in RSV-infected neonatal mice, Respiratory Research, vol.16, p.122, 2015.

P. K. Pribul, J. Harker, and B. Wang, Alveolar macrophages are a major determinant of early responses to viral lung infection but do not influence subsequent disease development, Journal of Virology, vol.82, issue.9, pp.4441-4448, 2008.

D. Kolli, M. R. Gupta, and E. Sbrana, Alveolar macrophages contribute to the pathogenesis of human metapneumovirus infection while protecting against respiratory syncytial virus infection, American Journal of Respiratory Cell and Molecular Biology, vol.51, issue.4, pp.502-515, 2014.

T. Hussell and T. J. Bell, Alveolar macrophages: plasticity in a tissue-specific context, Nature Reviews Immunology, vol.14, issue.2, pp.81-93, 2014.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nature Reviews Immunology, vol.8, issue.12, pp.958-969, 2008.

K. M. Empey, J. G. Orend, and R. S. Peebles, Stimulation of immature lung macrophages with intranasal interferon gamma in a novel neonatal mouse model of respiratory syncytial virus infection, PLoS One, vol.7, issue.7, p.40499, 2012.

J. Saravia, D. You, and B. Shrestha, Respiratory syncytial virus disease is mediated by age-variable IL-33, PLoS Pathogens, vol.11, issue.10, 2015.

M. L. Garcia-garcia, C. Calvo, and A. Moreira, Thymic stromal lymphopoietin, IL-33, and periostin in hospitalized infants with viral bronchiolitis, Medicine, vol.96, issue.18, p.6787, 2017.

M. T. Stier, M. H. Bloodworth, and S. Toki, Respiratory syncytial virus infection activates IL-13-producing group 2 innate lymphoid cells through thymic stromal lymphopoietin, The Journal of Allergy and Clinical Immunology, vol.138, issue.3, pp.814-824, 2016.

S. Sattler, G. S. Ling, and D. Xu, IL-10-producing regulatory B cells induced by IL-33 (Breg IL-33 ) effectively attenuate mucosal inflammatory responses in the gut, Journal of Autoimmunity, vol.50, pp.107-122, 2014.

Y. Yamaguchi, J. A. Harker, B. Wang, P. J. Openshaw, J. S. Tregoning et al., Preexposure to CpG protects against the delayed effects of neonatal respiratory syncytial virus infection, Journal of Virology, vol.86, issue.19, pp.10456-10461, 2012.

M. S. Boukhvalova, T. B. Sotomayor, R. C. Point, L. M. Pletneva, G. A. Prince et al., Activation of interferon response through toll-like receptor 3 impacts viral pathogenesis and pulmonary toll-like receptor expression during respiratory syncytial virus and influenza infections in the cotton rat Sigmodon hispidus model, Journal of Interferon & Cytokine Research, vol.30, issue.4, pp.229-242, 2010.

S. Challa, A. Sheri, and S. Padmanabhan, Prophylactic and therapeutic anti-RSV activity of SB 9200 -a novel agent that activates RIG-I and NOD2, Spring Bank Pharmaceuticals Presents Data on Immunomodulatory Agent SB 9200 at the 29th International Conference on Antiviral Research, 2016.

K. K. Tekkanat, H. F. Maassab, and D. S. Cho, IL-13-induced airway hyperreactivity during respiratory syncytial virus infection is STAT6 dependent, Journal of Immunology, vol.166, issue.5, pp.3542-3548, 2001.

G. M. Gauvreau, P. M. O'byrne, and L. P. Boulet, Effects of an anti-TSLP antibody on allergen-induced asthmatic responses, New England Journal of Medicine, vol.370, issue.22, pp.2102-2110, 2014.

E. H. De-boever, C. Ashman, and A. P. Cahn, Efficacy and safety of an anti-IL-13 mAb in patients with severe asthma: a randomized trial, Journal of Allergy and Clinical Immunology, vol.133, issue.4, pp.989-996, 2014.

B. Shrestha, D. You, and J. Saravia, IL-4R? on dendritic cells in neonates and Th2 immunopathology in respiratory syncytial virus infection, Journal of Leukocyte Biology, vol.102, issue.1, pp.153-161, 2017.

M. J. Ripple, D. You, and S. Honnegowda, Immunomodulation with IL-4R? antisense oligonucleotide prevents respiratory syncytial virus-mediated pulmonary disease, Journal of Immunology, vol.185, issue.8, pp.4804-4811, 2010.
DOI : 10.4049/jimmunol.1000484

URL : http://www.jimmunol.org/content/185/8/4804.full.pdf

B. T. Srinivasa, K. H. Restori, and J. Shan, STAT6 inhibitory peptide given during RSV infection of neonatal mice reduces exacerbated airway responses upon adult reinfection, Journal of Leukocyte Biology, vol.101, issue.2, pp.519-529, 2017.

Y. M. Lee, N. Miyahara, and K. Takeda, IFN-? production during initial infection determines the outcome of reinfection with respiratory syncytial virus, American Journal of Respiratory and Critical Care Medicine, vol.177, issue.2, pp.208-218, 2008.

K. M. Eichinger, E. Resetar, J. Orend, K. Anderson, and K. M. Empey, Age predicts cytokine kinetics and innate immune cell activation following intranasal delivery of IFN? and GM-CSF in a mouse model of RSV infection, Cytokine, vol.97, pp.25-37, 2017.

J. P. Lynch, M. A. Sikder, and B. F. Curren, The influence of the microbiome on early-life severe viral lower respiratory infections and asthma-food for thought?, Frontiers in Immunology, vol.8, p.156, 2017.

J. Villena, S. Salva, and M. Núñez, Probiotics for everyone! The novel immunobiotic Lactobacillus rhamnosus CRL1505 and the beginning of social probiotic programs in Argentina, International Journal of Biotechnology for Wellness Industries, vol.1, issue.3, pp.189-198, 2012.

J. Villena, E. Chiba, and Y. Tomosada, Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C), BMC Immunology, vol.13, p.53, 2012.

E. Chiba, Y. Tomosada, and M. G. Vizoso-pinto, Immunobiotic Lactobacillus rhamnosus improves resistance of infant mice against respiratory syncytial virus infection, International Immunopharmacology, vol.17, issue.2, pp.373-382, 2013.

Y. Tomosada, E. Chiba, and H. Zelaya, Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection, BMC Immunology, vol.14, p.40, 2013.
DOI : 10.1186/1471-2172-14-40

URL : https://bmcimmunol.biomedcentral.com/track/pdf/10.1186/1471-2172-14-40

W. A. De-steenhuijsen-piters, S. Heinonen, and R. Hasrat, Nasopharyngeal microbiota, host transcriptome, and disease severity in children with respiratory syncytial virus infection, American Journal of Respiratory and Critical Care Medicine, vol.194, issue.9, pp.1104-1115, 2016.

S. M. Teo, D. Mok, and K. Pham, The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development, Cell Host & Microbe, vol.17, issue.5, pp.704-715, 2015.