Skip to Main content Skip to Navigation
Theses

Tackling pedestrian detection in large scenes with multiple views and representations

Abstract : Pedestrian detection and tracking have become important fields in Computer Vision research, due to their implications for many applications, e.g. surveillance, autonomous cars, robotics. Pedestrian detection in high density crowds is a natural extension of such research body. The ability to track each pedestrian independently in a dense crowd has multiple applications: study of human social behavior under high densities; detection of anomalies; large event infrastructure planning. On the other hand, high density crowds introduce novel problems to the detection task. First, clutter and occlusion problems are taken to the extreme, so that only heads are visible, and they are not easily separable from the moving background. Second, heads are usually small (they have a diameter of typically less than ten pixels) and with little or no textures. This comes out from two independent constraints, the need of one camera to have a field of view as high as possible, and the need of anonymization, i.e. the pedestrians must be not identifiable because of privacy concerns.In this work we develop a complete framework in order to handle the pedestrian detection and tracking problems under the presence of the novel difficulties that they introduce, by using multiple cameras, in order to implicitly handle the high occlusion issues.As a first contribution, we propose a robust method for camera pose estimation in surveillance environments. We handle problems as high distances between cameras, large perspective variations, and scarcity of matching information, by exploiting an entire video stream to perform the calibration, in such a way that it exhibits fast convergence to a good solution. Moreover, we are concerned not only with a global fitness of the solution, but also with reaching low local errors.As a second contribution, we propose an unsupervised multiple camera detection method which exploits the visual consistency of pixels between multiple views in order to estimate the presence of a pedestrian. After a fully automatic metric registration of the scene, one is capable of jointly estimating the presence of a pedestrian and its height, allowing for the projection of detections on a common ground plane, and thus allowing for 3D tracking, which can be much more robust with respect to image space based tracking.In the third part, we study different methods in order to perform supervised pedestrian detection on single views. Specifically, we aim to build a dense pedestrian segmentation of the scene starting from spatially imprecise labeling of data, i.e. heads centers instead of full head contours, since their extraction is unfeasible in a dense crowd. Most notably, deep architectures for semantic segmentation are studied and adapted to the problem of small head detection in cluttered environments.As last but not least contribution, we propose a novel framework in order to perform efficient information fusion in 2D spaces. The final aim is to perform multiple sensor fusion (supervised detectors on each view, and an unsupervised detector on multiple views) at ground plane level, that is, thus, our discernment frame. Since the space complexity of such discernment frame is very large, we propose an efficient compound hypothesis representation which has been shown to be invariant to the scale of the search space. Through such representation, we are capable of defining efficient basic operators and combination rules of Belief Function Theory. Furthermore, we propose a complementary graph based description of the relationships between compound hypotheses (i.e. intersections and inclusion), in order to perform efficient algorithms for, e.g. high level decision making.Finally, we demonstrate our information fusion approach both at a spatial level, i.e. between detectors of different natures, and at a temporal level, by performing evidential tracking of pedestrians on real large scale scenes in sparse and dense conditions.
Complete list of metadatas

Cited literature [192 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02122070
Contributor : Abes Star :  Contact
Submitted on : Tuesday, May 7, 2019 - 9:33:07 AM
Last modification on : Wednesday, October 14, 2020 - 3:55:02 AM

File

71963_PELLICANO_2018_diffusion...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02122070, version 1

Citation

Nicola Pellicanò. Tackling pedestrian detection in large scenes with multiple views and representations. Computer Vision and Pattern Recognition [cs.CV]. Université Paris Saclay (COmUE), 2018. English. ⟨NNT : 2018SACLS608⟩. ⟨tel-02122070⟩

Share

Metrics

Record views

385

Files downloads

181