C. J. Murray and A. D. Lopez, Alternative projections of mortality and disability by cause 1990-­-2020: Global Burden of Disease Study, Lancet, vol.349, issue.9064, pp.1498-504, 1997.

M. Writing-group, Update: A Report From the American Heart Association. Circulation, vol.133, issue.4, pp.38-360, 2016.

R. A. Scott, S. G. Bridgewater, and H. A. Ashton, Randomized clinical trial of screening for abdominal aortic aneurysm in women, Br J Surg, vol.89, issue.3, pp.283-288, 2002.

T. Gordon, Menopause and coronary heart disease. The Framingham Study

, Ann Intern Med, vol.89, issue.2, pp.157-61, 1978.

L. C. Brown and J. T. Powell, Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK Small Aneurysm Trial Participants, Ann Surg, vol.230, issue.3, pp.289-96, 1999.

F. Bayard, Estrogens and atherosclerosis, Ernst Schering Res Found Workshop, issue.46, pp.181-188, 2004.

S. Yusuf, Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-­-control study, Lancet, vol.364, issue.9438, pp.937-52, 2004.

I. Gyarfas, M. Keltai, and Y. Salim, Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries in a case-­-control study based on the INTERHEART study

, Orv Hetil, vol.147, issue.15, pp.675-86, 2006.

A. Abdelfattah, Atherosclerotic cardiovascular disease in Egyptian women: 1570 BCE-­-2011 CE, Int J Cardiol, vol.167, issue.2, pp.570-574, 2013.

H. C. Stary, A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis

, Arterioscler Thromb Vasc Biol, vol.15, issue.9, pp.1512-1543, 1995.

H. C. Stary, A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on

, Thèse De Sciences réalisée par Yacine Haddad Page 135 sur 163

, Vascular Lesions of the Council on Arteriosclerosis, vol.92, issue.5, pp.1355-74, 1995.

S. H. Zhang, Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science, 1992, vol.258, pp.468-71

A. S. Plump, Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-­-deficient mice created by homologous recombination in ES cells, Cell, vol.71, issue.2, pp.343-53, 1992.

R. L. Reddick, S. H. Zhang, and N. Maeda, Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression, Arterioscler Thromb, vol.14, issue.1, pp.141-148, 1994.

M. Tous, Dietary cholesterol and differential monocyte chemoattractant protein-­-1 gene expression in aorta and liver of apo E-­-deficient mice, Biochem Biophys Res Commun, vol.340, issue.4, pp.1078-84, 2006.

S. Ishibashi, Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-­-mediated gene delivery, J Clin Invest, vol.92, issue.2, pp.883-93, 1993.

S. Ishibashi, Massive xanthomatosis and atherosclerosis in cholesterol-­-fed low density lipoprotein receptor-­-negative mice, J Clin Invest, vol.93, issue.5, pp.1885-93, 1994.

J. J. Chiu and S. Chien, Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives, Physiol Rev, vol.91, issue.1, pp.327-87, 2011.

A. M. Malek, S. L. Alper, and S. Izumo, Hemodynamic shear stress and its role in atherosclerosis, JAMA, vol.282, issue.21, pp.2035-2077, 1999.

C. Napoli, Low density lipoprotein oxidation and atherogenesis: from experimental models to clinical studies, G Ital Cardiol, vol.27, issue.12, pp.1302-1316, 1997.

K. J. Williams and I. Tabas, The response-­-to-­-retention hypothesis of early atherogenesis, Arterioscler Thromb Vasc Biol, vol.15, issue.5, pp.551-61, 1995.

G. S. Kansas, Selectins and their ligands: current concepts and controversies, Blood, vol.88, issue.9, pp.3259-87, 1996.

A. Takei, Y. Huang, and M. F. Lopes-­-virella, Expression of adhesion molecules by human endothelial cells exposed to oxidized low density lipoprotein. Influences of Sujet de thèse

H. Suzuki, A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection, Nature, vol.386, issue.6622, pp.292-298, 1997.

M. Febbraio, E. Guy, and R. L. Silverstein, Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis, Arterioscler Thromb Vasc Biol, vol.24, issue.12, pp.2333-2341, 2004.

K. J. Moore, Loss of receptor-­-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice, J Clin Invest, vol.115, issue.8, pp.2192-201, 2005.

Z. Mallat, Expression of interleukin-­-18 in human atherosclerotic plaques and relation to plaque instability, Circulation, vol.104, issue.14, pp.1598-603, 2001.

H. Ohta, Disruption of tumor necrosis factor-­-alpha gene diminishes the development of atherosclerosis in ApoE-­-deficient mice, Atherosclerosis, vol.180, issue.1, pp.11-18, 2005.

T. S. Lee, The role of interleukin 12 in the development of atherosclerosis in ApoE-­-deficient mice, Arterioscler Thromb Vasc Biol, vol.19, issue.3, pp.734-776, 1999.

S. C. Whitman, P. Ravisankar, and A. Daugherty, Interleukin-­-18 enhances atherosclerosis in apolipoprotein E(-­-/-­-) mice through release of interferon-­-gamma

, Circ Res, vol.90, issue.2, pp.34-42, 2002.

I. Pineda-­-torra, Isolation, Culture, and Polarization of Murine Bone Marrow-­-Derived and Peritoneal Macrophages, Methods Mol Biol, vol.1339, pp.101-110, 2015.

D. M. Mosser, The many faces of macrophage activation, J Leukoc Biol, vol.73, issue.2, pp.209-221, 2003.

G. Chinetti-­-gbaguidi, S. Colin, and B. Staels, Macrophage subsets in atherosclerosis, Nat Rev Cardiol, vol.12, issue.1, pp.10-17, 2015.

C. F. Anderson, J. S. Gerber, and D. M. Mosser, Modulating macrophage function with IgG immune complexes, J Endotoxin Res, vol.8, issue.6, pp.477-81, 2002.

A. V. Finn, Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques, J Am Coll Cardiol, vol.59, issue.2, pp.166-77, 2012.

J. J. Boyle, Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection, Circ Res, vol.110, issue.1, pp.20-33, 2012.

A. Kadl, Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2, Circ Res, vol.107, issue.6, pp.737-783, 2010.

C. A. Gleissner, CXC chemokine ligand 4 induces a unique transcriptome in monocyte-­-derived macrophages, J Immunol, vol.184, issue.9, pp.4810-4818, 2010.
DOI : 10.4049/jimmunol.0901368

URL : http://europepmc.org/articles/pmc3418140?pdf=render

B. U. Schraml and C. Reis-e-sousa, Defining dendritic cells, Curr Opin Immunol, vol.32, pp.13-20, 2015.

C. Waskow, The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues, Nat Immunol, vol.9, issue.6, pp.676-83, 2008.

M. Greter, GM-­-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells, Immunity, vol.36, issue.6, pp.1031-1077, 2012.

E. Kopp and R. Medzhitov, Recognition of microbial infection by Toll-­-like receptors, Curr Opin Immunol, vol.15, issue.4, pp.396-401, 2003.

J. Banchereau, Immunobiology of dendritic cells, Annu Rev Immunol, vol.18, pp.767-811, 2000.

N. Romani, Presentation of exogenous protein antigens by dendritic cells to T cell clones. Intact protein is presented best by immature, epidermal Langerhans cells, J Exp Med, vol.169, issue.3, pp.1169-78, 1989.

D. N. Hart, Dendritic cells: unique leukocyte populations which control the primary immune response, Blood, vol.90, issue.9, pp.3245-87, 1997.

B. M. Carreno and M. Collins, The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses, Annu Rev Immunol, vol.20, pp.29-53, 2002.

C. Heufler, Interleukin-­-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-­-gamma production by T helper 1 cells

, Eur J Immunol, vol.26, issue.3, pp.659-68, 1996.

C. S. Hsieh, H. M. Lee, and C. W. Lio, Selection of regulatory T cells in the thymus, Nat Rev Immunol, vol.12, issue.3, pp.157-67, 2012.

D. Mathis and C. Benoist, Back to central tolerance, Immunity, vol.20, issue.5, pp.509-525, 2004.
DOI : 10.1016/s1074-7613(04)00111-6

URL : https://doi.org/10.1016/s1074-7613(04)00111-6

L. Klein, Antigen presentation in the thymus for positive selection and central tolerance induction, Nat Rev Immunol, vol.9, issue.12, pp.833-877, 2009.

C. Cochain, Programmed cell death-­-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-­-prone mice, PLoS One, vol.9, issue.4, p.93280, 2014.

R. Elhage, Deleting TCR alpha beta+ or CD4+ T lymphocytes leads to opposite effects on site-­-specific atherosclerosis in female apolipoprotein E-­-deficient mice, Am J Pathol, vol.165, issue.6, pp.2013-2021, 2004.

T. Kyaw, Cytotoxic and proinflammatory CD8+ T lymphocytes promote development of vulnerable atherosclerotic plaques in apoE-­-deficient mice, Circulation, vol.127, issue.9, pp.1028-1067, 2013.

C. Cochain, CD8+ T Cells Regulate Monopoiesis and Circulating Ly6C-­-high
DOI : 10.1161/circresaha.117.304611

, Monocyte Levels in Atherosclerosis in Mice, Circ Res, vol.117, issue.3, pp.244-53, 2015.

K. Y. Chyu, CD8+ T cells mediate the athero-­-protective effect of immunization with an ApoB-­-100 peptide, PLoS One, vol.7, issue.2, p.30780, 2012.

J. Zhou, CD8(+)CD25(+) T cells reduce atherosclerosis in apoE

, Biochem Biophys Res Commun, vol.443, issue.3, pp.864-70, 2014.

H. J. Kim, Inhibition of follicular T-­-helper cells by CD8(+) regulatory T cells is essential for self tolerance, Nature, vol.467, issue.7313, pp.328-360, 2010.

M. Haury, The repertoire of serum IgM in normal mice is largely independent of external antigenic contact, Eur J Immunol, vol.27, issue.6, pp.1557-63, 1997.

N. Baumgarth, The double life of a B-­-1 cell: self-­-reactivity selects for protective effector functions, Nat Rev Immunol, vol.11, issue.1, pp.34-46, 2011.

W. Palinski, ApoE-­-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-­-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-­-lysine in serum, Arterioscler Thromb, vol.14, issue.4, pp.605-621, 1994.

D. Tsiantoulas, B cells and humoral immunity in atherosclerosis, Circ Res, vol.114, issue.11, pp.1743-56, 2014.

M. J. Lewis, Immunoglobulin M is required for protection against atherosclerosis in low-­-density lipoprotein receptor-­-deficient mice, Circulation, vol.120, issue.5, pp.417-443, 2009.

J. Su, Antibodies of IgM subclass to phosphorylcholine and oxidized LDL are protective factors for atherosclerosis in patients with hypertension

, Atherosclerosis, vol.188, issue.1, pp.160-166, 2006.

J. Karvonen, Immunoglobulin M type of autoantibodies to oxidized low-­-density lipoprotein has an inverse relation to carotid artery atherosclerosis, Circulation, vol.108, issue.17, pp.2107-2119, 2003.

M. F. Lopes-­-virella, The uptake of LDL-­-IC by human macrophages: predominant involvement of the Fc gamma RI receptor, Atherosclerosis, vol.135, issue.2, pp.161-70, 1997.

P. A. Kiener, Immune complexes of LDL induce atherogenic responses in human monocytic cells, Arterioscler Thromb Vasc Biol, vol.15, issue.7, pp.990-999, 1995.

T. Kyaw, B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions, Circ Res, vol.109, issue.8, pp.830-870, 2011.

H. Ait-­-oufella, B cell depletion reduces the development of atherosclerosis in mice, J Exp Med, vol.207, issue.8, pp.1579-87, 2010.

T. Kyaw, Depletion of B2 but not B1a B cells in BAFF receptor-­-deficient ApoE mice attenuates atherosclerosis by potently ameliorating arterial inflammation, PLoS One, vol.7, issue.1, p.29371, 2012.

A. P. Sage, BAFF receptor deficiency reduces the development of atherosclerosis in mice-­--­-brief report, Arterioscler Thromb Vasc Biol, vol.32, issue.7, pp.1573-1579, 2012.

I. Hilgendorf, Innate response activator B cells aggravate atherosclerosis by stimulating T helper-­-1 adaptive immunity. Circulation, vol.129, pp.1677-87, 2014.

B. G. Chousterman and F. K. Swirski, Innate response activator B cells: origins and functions, Int Immunol, vol.27, issue.10, pp.537-578, 2015.

M. O. Hengartner, The biochemistry of apoptosis, Nature, vol.407, issue.6805, pp.770-776, 2000.

M. E. Peter and P. H. Krammer, The CD95(APO-­-1/Fas) DISC and beyond, vol.10, pp.26-35, 2003.

C. Scaffidi, Two CD95 (APO-­-1/Fas) signaling pathways, EMBO J, vol.17, issue.6, pp.1675-87, 1998.

H. Li, Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis, Cell, vol.94, issue.4, pp.491-501, 1998.

D. R. Green, Apoptotic pathways: paper wraps stone blunts scissors, Cell, vol.102, issue.1, pp.1-4, 2000.

J. C. Martinou and D. R. Green, Breaking the mitochondrial barrier, Nat Rev Mol Cell Biol, vol.2, issue.1, pp.63-70, 2001.

J. Rodriguez and Y. Lazebnik, Caspase-­-9 and APAF-­-1 form an active holoenzyme, Genes Dev, vol.13, issue.24, pp.3179-84, 1999.

R. Virmani, Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions, Arterioscler Thromb Vasc Biol, vol.20, issue.5, pp.1262-75, 2000.

Z. Mallat and A. Tedgui, Apoptosis in the vasculature: mechanisms and functional importance, Br J Pharmacol, vol.130, issue.5, pp.947-62, 2000.

L. M. Cancel and J. M. Tarbell, The role of apoptosis in LDL transport through cultured endothelial cell monolayers, Atherosclerosis, vol.208, issue.2, pp.335-376, 2010.

M. A. Freyberg, Proatherogenic flow conditions initiate endothelial apoptosis via thrombospondin-­-1 and the integrin-­-associated protein, Biochem Biophys Res Commun, vol.286, issue.1, pp.141-150, 2001.

J. D. Marmur, Identification of active tissue factor in human coronary atheroma, Circulation, vol.94, issue.6, pp.1226-1258, 1996.

M. C. Clarke, Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis, Nat Med, vol.12, issue.9, pp.1075-80, 2006.

D. T. Bolick, G2A deficiency in mice promotes macrophage activation and atherosclerosis, Circ Res, vol.104, issue.3, pp.318-345, 2009.

E. Thorp, Brief report: increased apoptosis in advanced atherosclerotic lesions of Apoe-­-/-­-mice lacking macrophage Bcl-­-2, Arterioscler Thromb Vasc Biol, vol.29, issue.2, pp.169-72, 2009.

E. Thorp, Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe-­-/-­-and Ldlr-­-/-­-mice lacking CHOP, Cell Metab, vol.9, issue.5, pp.474-81, 2009.

B. Feng, Niemann-­-Pick C heterozygosity confers resistance to lesional necrosis and macrophage apoptosis in murine atherosclerosis, Proc Natl Acad Sci, vol.100, issue.18, pp.10423-10431, 2003.

E. L. Gautier, Macrophage apoptosis exerts divergent effects on atherogenesis as a function of lesion stage, Circulation, vol.119, issue.13, pp.1795-804, 2009.

B. J. Van-vlijmen, Macrophage p53 deficiency leads to enhanced atherosclerosis in APOE*3-­-Leiden transgenic mice, Circ Res, vol.88, issue.8, pp.780-786, 2001.

N. Holler, Fas triggers an alternative, caspase-­-8-­-independent cell death pathway using the kinase RIP as effector molecule, Nat Immunol, vol.1, issue.6, pp.489-95, 2000.

A. Degterev, Identification of RIP1 kinase as a specific cellular target of necrostatins, Nat Chem Biol, vol.4, issue.5, pp.313-334, 2008.

D. M. Moujalled, TNF can activate RIPK3 and cause programmed necrosis in the absence of RIPK1, Cell Death Dis, vol.4, p.465, 2013.

L. Sun, Mixed lineage kinase domain-­-like protein mediates necrosis signaling downstream of RIP3 kinase, Cell, vol.148, issue.1, pp.213-240, 2012.

D. Karunakaran, Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis, Sci Adv, vol.2, issue.7, p.1600224, 2016.

C. Peter, Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells, Apoptosis, vol.15, issue.9, pp.1007-1035, 2010.

I. K. Poon, M. D. Hulett, and C. R. Parish, Molecular mechanisms of late apoptotic/necrotic cell clearance, Cell Death Differ, vol.17, issue.3, pp.381-97, 2010.

K. S. Ravichandran, Find-­-me and eat-­-me signals in apoptotic cell clearance: progress and conundrums, J Exp Med, vol.207, issue.9, pp.1807-1824, 2010.
DOI : 10.1084/jem.20101157

URL : http://jem.rupress.org/content/207/9/1807.full.pdf

D. M. Schrijvers, Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis, Arterioscler Thromb Vasc Biol, vol.25, issue.6, pp.1256-61, 2005.

E. Thorp and I. Tabas, Mechanisms and consequences of efferocytosis in advanced atherosclerosis, J Leukoc Biol, vol.86, issue.5, pp.1089-95, 2009.

R. Hanayama, Identification of a factor that links apoptotic cells to phagocytes, Nature, vol.417, issue.6885, pp.182-189, 2002.

H. Ait-­-oufella, Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation, vol.115, pp.2168-77, 2007.

R. S. Scott, Phagocytosis and clearance of apoptotic cells is mediated by MER, Nature, vol.411, issue.6834, pp.207-218, 2001.

H. Ait-­-oufella, Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis

, Arterioscler Thromb Vasc Biol, vol.28, issue.8, pp.1429-1460, 2008.

S. J. Gardai, Cell-­-surface calreticulin initiates clearance of viable or apoptotic cells through trans-­-activation of LRP on the phagocyte, Cell, vol.123, issue.2, pp.321-355, 2005.

P. Boucher and J. Herz, Signaling through LRP1: Protection from atherosclerosis and beyond, Biochem Pharmacol, vol.81, issue.1, pp.1-5, 2011.
DOI : 10.1016/j.bcp.2010.09.018

URL : https://hal.archives-ouvertes.fr/hal-00642415

L. I. Gold, Calreticulin: non-­-endoplasmic reticulum functions in physiology and disease, FASEB J, vol.24, issue.3, pp.665-83, 2010.

P. Boucher, LRP: role in vascular wall integrity and protection from atherosclerosis, Science, vol.300, issue.5617, pp.329-361, 2003.
DOI : 10.1126/science.1082095

C. D. Overton, Deletion of macrophage LDL receptor-­-related protein increases atherogenesis in the mouse, Circ Res, vol.100, issue.5, pp.670-677, 2007.

P. G. Yancey, Macrophage LRP-­-1 controls plaque cellularity by regulating efferocytosis and Akt activation, Arterioscler Thromb Vasc Biol, vol.30, issue.4, pp.787-95, 2010.
DOI : 10.1161/atvbaha.109.202051

URL : https://www.ahajournals.org/doi/pdf/10.1161/ATVBAHA.109.202051

Y. Kojima, CD47-­-blocking antibodies restore phagocytosis and prevent atherosclerosis, Nature, vol.536, issue.7614, pp.86-90, 2016.
DOI : 10.1038/nature18935

URL : http://europepmc.org/articles/pmc4980260?pdf=render

S. Akira, S. Uematsu, and O. Takeuchi, Pathogen recognition and innate immunity, vol.124, pp.783-801, 2006.

T. Kawai and S. Akira, Pathogen recognition with Toll-­-like receptors, Curr Opin Immunol, vol.17, issue.4, pp.338-382, 2005.

K. Takeda and S. Akira, Toll-­-like receptors in innate immunity, Int Immunol, vol.17, issue.1, pp.1-14, 2005.

T. Kawasaki and T. Kawai, Toll-­-like receptor signaling pathways. Front Immunol, vol.5, p.461, 2014.

K. Takeda, T. Kaisho, and S. Akira, Toll-­-like receptors, Annu Rev Immunol, vol.21, pp.335-76, 2003.

M. Yamamoto, Role of adaptor TRIF in the MyD88-­-independent toll-­-like receptor signaling pathway, Science, vol.301, issue.5633, pp.640-643, 2003.

H. Bjorkbacka, Reduced atherosclerosis in MyD88-­-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways, Nat Med, vol.10, issue.4, pp.416-437, 2004.

K. S. Michelsen, Lack of Toll-­-like receptor 4 or myeloid differentiation factor apolipoprotein E, Proc Natl Acad Sci U S A, vol.101, issue.29, pp.10679-84, 2004.

T. A. Seimon, Atherogenic lipids and lipoproteins trigger CD36-­-TLR2-­-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress, Cell Metab, vol.12, issue.5, pp.467-82, 2010.

C. Monaco, Toll-­-like receptor-­-2 mediates inflammation and matrix degradation in human atherosclerosis, Circulation, vol.120, issue.24, pp.2462-2471, 2009.

T. H. Flo, Differential expression of Toll-­-like receptor 2 in human cells, J Leukoc Biol, vol.69, issue.3, pp.474-81, 2001.

K. Edfeldt, Expression of toll-­-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation, Circulation, vol.105, issue.10, pp.1158-61, 2002.

S. Dunzendorfer, H. K. Lee, and P. S. Tobias, Flow-­-dependent regulation of endothelial Toll-­-like receptor 2 expression through inhibition of SP1 activity, Circ Res, vol.95, issue.7, pp.684-91, 2004.

A. E. Mullick, P. S. Tobias, and L. K. Curtiss, Modulation of atherosclerosis in mice by Toll-­-like receptor 2, J Clin Invest, vol.115, issue.11, pp.3149-56, 2005.

M. Higashimori, Role of toll-­-like receptor 4 in intimal foam cell accumulation in apolipoprotein E-­-deficient mice, Arterioscler Thromb Vasc Biol, vol.31, issue.1, pp.50-57, 2011.

L. Oliveira-­-nascimento, P. Massari, and L. M. Wetzler, The Role of TLR2 in Infection and Immunity. Front Immunol, vol.3, p.79, 2012.

A. H. Schoneveld, Toll-­-like receptor 2 stimulation induces intimal hyperplasia and atherosclerotic lesion development, Cardiovasc Res, vol.66, issue.1, pp.162-171, 2005.

J. J. Manning-­-tobin, Loss of SR-­-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice

, Arterioscler Thromb Vasc Biol, vol.29, issue.1, pp.19-26, 2009.

S. H. Choi, Lipoprotein accumulation in macrophages via toll-­-like receptor-­-4-­-dependent fluid phase uptake, Circ Res, vol.104, issue.12, pp.1355-63, 2009.

K. W. Howell, Toll-­-like receptor 4 mediates oxidized LDL-­-induced macrophage differentiation to foam cells, J Surg Res, vol.171, issue.1, pp.27-31, 2011.

A. Castrillo, Crosstalk between LXR and toll-­-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism, Mol Cell, vol.12, issue.4, pp.805-821, 2003.

K. Yang, Toll-­-like receptor 4 mediates inflammatory cytokine secretion in smooth muscle cells induced by oxidized low-­-density lipoprotein, PLoS One, vol.9, issue.4, p.95935, 2014.

G. Pasterkamp, Atherosclerotic arterial remodeling and the localization of macrophages and matrix metalloproteases 1, 2 and 9 in the human coronary artery, Atherosclerosis, vol.150, issue.2, pp.245-53, 2000.

A. W. Orr, The subendothelial extracellular matrix modulates NF-­-kappaB activation by flow: a potential role in atherosclerosis, J Cell Biol, vol.169, issue.1, pp.191-202, 2005.

B. V. Shekhonin, Relative distribution of fibronectin and type I, III, IV, V collagens in normal and atherosclerotic intima of human arteries, Atherosclerosis, vol.67, issue.1, pp.9-16, 1987.

V. R. Babaev, Absence of regulated splicing of fibronectin EDA exon reduces atherosclerosis in mice, Atherosclerosis, vol.197, issue.2, pp.534-574, 2008.

M. H. Tan, Deletion of the alternatively spliced fibronectin EIIIA domain in mice reduces atherosclerosis, Blood, vol.104, issue.1, pp.11-19, 2004.

P. Prakash, Cellular fibronectin containing extra domain A promotes arterial thrombosis in mice through platelet Toll-­-like receptor 4, Blood, vol.125, pp.3164-72, 1920.

P. Doddapattar, Fibronectin Splicing Variants Containing Extra Domain A Promote Atherosclerosis in Mice Through Toll-­-Like Receptor 4, Arterioscler Thromb Vasc Biol, vol.35, issue.11, pp.2391-400, 2015.

Y. Okamura, The extra domain A of fibronectin activates Toll-­-like receptor 4, J Biol Chem, vol.276, issue.13, pp.10229-10262, 2001.

J. E. Cole, Unexpected protective role for Toll-­-like receptor 3 in the arterial wall, Proc Natl Acad Sci, vol.108, issue.6, pp.2372-2379, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00609592

M. R. Richards, The LPS2 mutation in TRIF is atheroprotective in hyperlipidemic low density lipoprotein receptor knockout mice, Innate Immun, vol.19, issue.1, pp.20-29, 2013.

A. M. Lundberg, Toll-­-like receptor 3 and 4 signalling through the TRIF and TRAM adaptors in haematopoietic cells promotes atherosclerosis, Cardiovasc Res, vol.99, issue.2, pp.364-73, 2013.

M. Salagianni, Toll-­-like receptor 7 protects from atherosclerosis by constraining "inflammatory" macrophage activation, Circulation, vol.126, issue.8, pp.952-62, 2012.

K. Drickamer, Two distinct classes of carbohydrate-­-recognition domains in animal lectins, J Biol Chem, vol.263, pp.9557-60, 1920.

K. Drickamer, Demonstration of carbohydrate-­-recognition activity in diverse proteins which share a common primary structure motif, Biochem Soc Trans, vol.17, issue.1, pp.13-18, 1989.

A. M. Kerrigan and G. D. Brown, Syk-­-coupled C-­-type lectins in immunity, Trends Immunol, vol.32, issue.4, pp.151-157, 2011.

N. Kanazawa, Dendritic cell immunoreceptors: C-­-type lectin receptors for pattern-­-recognition and signaling on antigen-­-presenting cells, J Dermatol Sci, vol.45, issue.2, pp.77-86, 2007.

D. Sancho and C. Reis-e-sousa, Signaling by myeloid C-­-type lectin receptors in immunity and homeostasis, Annu Rev Immunol, vol.30, pp.491-529, 2012.

P. R. Taylor, The beta-­-glucan receptor, dectin-­-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages, J Immunol, vol.169, issue.7, pp.3876-82, 2002.

B. Martin, Interleukin-­-17-­-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals, Immunity, vol.31, issue.2, pp.321-351, 2009.

J. A. Willment, The human beta-­-glucan receptor is widely expressed and functionally equivalent to murine Dectin-­-1 on primary cells, Eur J Immunol, vol.35, issue.5, pp.1539-1586, 2005.

T. J. Olynych, D. L. Jakeman, and J. S. Marshall, Fungal zymosan induces leukotriene production by human mast cells through a dectin-­-1-­-dependent mechanism, J Allergy Clin Immunol, vol.118, issue.4, pp.837-880, 2006.

N. C. Rogers, Syk-­-dependent cytokine induction by Dectin-­-1 reveals a novel pattern recognition pathway for C type lectins, Immunity, vol.22, issue.4, pp.507-524, 2005.

G. D. Brown, Dectin-­-1: a signalling non-­-TLR pattern-­-recognition receptor, Nat Rev Immunol, vol.6, issue.1, pp.33-43, 2006.

D. Li, Statins modulate oxidized low-­-density lipoprotein-­-mediated adhesion molecule expression in human coronary artery endothelial cells: role of LOX-­-1, J Pharmacol Exp Ther, vol.302, issue.2, pp.601-606, 2002.

H. Zhu, Ox-­-LDL plays dual effect in modulating expression of inflammatory molecules through LOX-­-1 pathway in human umbilical vein endothelial cells, Front Biosci, vol.10, pp.2585-94, 2005.

D. F. Schaeffer, LOX-­-1 augments oxLDL uptake by lysoPC-­-stimulated murine macrophages but is not required for oxLDL clearance from plasma, J Lipid Res, vol.50, issue.8, pp.1676-84, 2009.

A. Pirillo, G. D. Norata, and A. L. Catapano, LOX-­-1, OxLDL, and atherosclerosis. Mediators Inflamm, p.152786, 2013.

L. Perrin-­-cocon, Oxidized low-­-density lipoprotein promotes mature dendritic cell transition from differentiating monocyte, J Immunol, vol.167, issue.7, pp.3785-91, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00136264

T. Nickel, oxLDL uptake by dendritic cells induces upregulation of scavenger-­-receptors, maturation and differentiation, Atherosclerosis, vol.205, issue.2, pp.442-50, 2009.

Y. Sun and X. Chen, Ox-­-LDL-­-induced LOX-­-1 expression in vascular smooth muscle cells: role of reactive oxygen species, Fundam Clin Pharmacol, vol.25, issue.5, pp.572-581, 2011.

H. Eto, Expression of lectin-­-like oxidized LDL receptor-­-1 in smooth muscle cells after vascular injury, Biochem Biophys Res Commun, vol.341, issue.2, pp.591-599, 2006.

C. Hu, LOX-­-1 deletion decreases collagen accumulation in atherosclerotic plaque in low-­-density lipoprotein receptor knockout mice fed a high-­-cholesterol diet, Cardiovasc Res, vol.79, issue.2, pp.287-93, 2008.

H. Kataoka, Oxidized LDL modulates Bax/Bcl-­-2 through the lectinlike Ox-­-LDL receptor-­-1 in vascular smooth muscle cells, Arterioscler Thromb Vasc Biol, vol.21, issue.6, pp.955-60, 2001.

T. Aoyama, LOX-­-1 mediates lysophosphatidylcholine-­-induced oxidized LDL uptake in smooth muscle cells, FEBS Lett, vol.467, issue.2, pp.217-237, 2000.

S. Yamasaki, Mincle is an ITAM-­-coupled activating receptor that senses damaged cells, Nat Immunol, vol.9, issue.10, pp.1179-88, 2008.

A. Bugarcic, Human and mouse macrophage-­-inducible C-­-type lectin (Mincle) bind Candida albicans, Glycobiology, vol.18, issue.9, pp.679-85, 2008.

C. A. Wells, The macrophage-­-inducible C-­-type lectin, mincle, is an essential component of the innate immune response to Candida albicans, J Immunol, vol.180, issue.11, pp.7404-7417, 2008.

S. Yamasaki, C-­-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci, vol.106, issue.6, pp.1897-902, 2009.

R. Kiyotake, Human Mincle Binds to Cholesterol Crystals and Triggers Innate Immune Responses, J Biol Chem, vol.290, issue.42, pp.25322-25354, 2015.
DOI : 10.1074/jbc.m115.645234

URL : http://www.jbc.org/content/290/42/25322.full.pdf

E. Ishikawa, Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-­-type lectin Mincle, J Exp Med, vol.206, issue.13, pp.2879-88, 2009.

H. Schoenen, Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-­-dibehenate, J Immunol, vol.184, issue.6, pp.2756-60, 2010.

M. Clement, Necrotic Cell Sensor Clec4e Promotes a Proatherogenic Macrophage Phenotype Through Activation of the Unfolded Protein Response. Circulation, vol.134, pp.1039-1051, 2016.

J. D. Smith, Decreased atherosclerosis in mice deficient in both macrophage colony-­-stimulating factor (op) and apolipoprotein E, Proc Natl Acad Sci, vol.92, issue.18, pp.8264-8272, 1995.

B. U. Schraml, Genetic tracing via DNGR-­-1 expression history defines dendritic cells as a hematopoietic lineage, Cell, vol.154, issue.4, pp.843-58, 2013.
DOI : 10.1016/j.cell.2013.07.014

URL : https://doi.org/10.1016/j.cell.2013.07.014

D. Sancho, Identification of a dendritic cell receptor that couples sensing of necrosis to immunity, Nature, vol.458, issue.7240, pp.899-903, 2009.

D. Sancho, Tumor therapy in mice via antigen targeting to a novel, DC-­-restricted C-­-type lectin, J Clin Invest, vol.118, issue.6, pp.2098-110, 2008.
DOI : 10.1172/jci34584

URL : http://europepmc.org/articles/pmc2391066?pdf=render

C. Huysamen, CLEC9A is a novel activation C-­-type lectin-­-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes, J Biol Chem, vol.283, issue.24, pp.16693-701, 2008.

S. Ahrens, F-­-actin is an evolutionarily conserved damage-­-associated molecular pattern recognized by DNGR-­-1, a receptor for dead cells, Immunity, vol.36, issue.4, pp.635-680, 2012.

J. G. Zhang, The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments, Immunity, vol.36, issue.4, pp.646-57, 2012.

S. Zelenay, The dendritic cell receptor DNGR-­-1 controls endocytic handling of necrotic cell antigens to favor cross-­-priming of CTLs in virus-­-infected mice, J Clin Invest, vol.122, issue.5, pp.1615-1642, 2012.

S. Iborra, The DC receptor DNGR-­-1 mediates cross-­-priming of CTLs during vaccinia virus infection in mice, J Clin Invest, vol.122, issue.5, pp.1628-1671, 2012.

D. Sancho and C. Reis-e-sousa, Sensing of cell death by myeloid C-­-type lectin receptors, Curr Opin Immunol, vol.25, issue.1, pp.46-52, 2013.

I. Caminschi, The dendritic cell subtype-­-restricted C-­-type lectin Clec9A is a target for vaccine enhancement, Blood, vol.112, issue.8, pp.3264-73, 2008.

O. P. Joffre, Efficient and versatile manipulation of the peripheral CD4+ T-­-cell compartment by antigen targeting to DNGR-­-1/CLEC9A, Eur J Immunol, vol.40, issue.5, pp.1255-65, 2010.

S. Yamazaki, CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells, J Immunol, vol.181, issue.10, pp.6923-6956, 2008.
DOI : 10.4049/jimmunol.181.10.6923

URL : http://www.jimmunol.org/content/181/10/6923.full.pdf

K. Kretschmer, Inducing and expanding regulatory T cell populations by foreign antigen, Nat Immunol, vol.6, issue.12, pp.1219-1246, 2005.
DOI : 10.1038/ni1265

M. H. Lahoud, Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype, J Immunol, vol.187, issue.2, pp.842-50, 2011.

J. Li, Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-­-human primates, Eur J Immunol, vol.45, issue.3, pp.854-64, 2015.

Z. Mallat, Protective role of interleukin-­-10 in atherosclerosis, Circ Res, vol.85, issue.8, pp.17-24, 1999.

A. K. Robertson, Disruption of TGF-­-beta signaling in T cells accelerates atherosclerosis, J Clin Invest, vol.112, issue.9, pp.1342-50, 2003.

H. Yin, Syk negatively regulates TLR4-­-mediated IFNbeta and IL-­-10 production and promotes inflammatory responses in dendritic cells, Biochim Biophys Acta, vol.1860, issue.3, pp.588-98, 2016.

E. L. Gautier, Gene-­-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages, Nat Immunol, vol.13, issue.11, pp.1118-1146, 2012.

T. H. Page, Tyrosine kinases and inflammatory signalling, Curr Mol Med, vol.9, issue.1, pp.69-85, 2009.

S. Xu, Activated dectin-­-1 localizes to lipid raft microdomains for signaling and activation of phagocytosis and cytokine production in dendritic cells, J Biol Chem, vol.284, issue.33, pp.22005-22016, 2009.

M. Sanson, Oxidized low-­-density lipoproteins trigger endoplasmic reticulum stress in vascular cells: prevention by oxygen-­-regulated protein 150 expression, Circ Res, vol.104, issue.3, pp.328-364, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00408761

E. C. Slack, Syk-­-dependent ERK activation regulates IL-­-2 and IL-­-10 production by DC stimulated with zymosan, Eur J Immunol, vol.37, issue.6, pp.1600-1612, 2007.

M. Saraiva and A. O'garra, The regulation of IL-­-10 production by immune cells, Nat Rev Immunol, vol.10, issue.3, pp.170-81, 2010.

-. Chavez and L. Sanchez, The activation of CD14, TLR4, and TLR2 by mmLDL induces IL-­-1beta, IL-­-6, and IL-­-10 secretion in human monocytes and macrophages

, Lipids Health Dis, vol.9, p.117, 2010.

Q. Cao, IL-­-10/TGF-­-beta-­-modified macrophages induce regulatory T cells and