T. Skt,

, A l'aide du théorème d'Amann, l'existence et l'unicité d'une solutionrégulì ere globale dans le cas triangulaire, après avoir longtempsétélongtempsété limitée soit par la taille des autres coefficients, vol.105, p.154

, Notons que pour l'instant, il n'a ´ eté question que de solutionsrégulì eres

A. Cylindriques,

, Aubin-Lions en domaines non cylindriques Dans cette section nous allons présenter une version du lemme d'Aubin-Lions sur des do

A. 4. Trace-normale-pour-les-champs`achamps`-champs, A DIVERGENCE NULLE 2 div (?) n'est pas anodin : l'espace D div (?) n'est pas dense dans L 2 div (?), son adhérence est un sous-espace strict

E. Acerbi and N. Fusco, An approximation lemma for W 1,p functions, Material instabilities in continuum mechanics, pp.1-5, 1988.

G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes, Arch. Rational Mech. Anal, vol.113, pp.209-259, 1990.

H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z, vol.183, pp.311-341, 1983.

H. Amann, Dynamic theory of quasilinear parabolic equations. I. Abstract evolution equations, Nonlinear Anal, vol.12, pp.895-919, 1988.

, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differential Integral Equations, vol.3, pp.13-75, 1990.

B. Andreianov, Time compactness tools for discretized evolution equations and applications to degenerate parabolic PDEs, Finite volumes for complex applications. VI. Problems & perspectives, vol.1, pp.21-29, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00561344

O. Anoshchenko and A. Boutet-de-monvel-berthier, The existence of the global generalized solution of the system of equations describing suspension motion, Math. Methods Appl. Sci, vol.20, pp.495-519, 1997.

S. N. Antontsev, A. V. Kazhiktov, and V. N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and Its Applications, vol.22, 1989.

C. Bardos, Probì emes aux limites pour leséquationsleséquations aux dérivées partielles du premier ordrè a coefficients réels ; théorèmes d'approximation ; applicationàapplication`applicationà l'´ equation de transport, Ann. Sci. ´ Ecole Norm. Sup, vol.3, issue.4, pp.185-233, 1970.

C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim, vol.30, pp.1024-1065, 1992.

N. Belaribi and F. Russo, Uniqueness for Fokker-Planck equations with measurable coefficients and applications to the fast diffusion equation, Electron. J. Probab, vol.17, issue.84, p.28, 2012.

M. Bendahmane, T. Lepoutre, A. Marrocco, and B. Perthame, Conservative cross diffusions and pattern formation through relaxation, J. Math. Pures Appl, issue.9, pp.651-667, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00368595

S. Benjelloun, Quelquesprobì emes d'´ ecoulement multi-fluide : analyse mathématique, modélisation numérique et simulation, 2012.

E. Bernard, L. Desvillettes, F. Golse, and V. Ricci, A derivation of the VlasovNavier-Stokes model for aerosol flows from kinetic theory, Commun. Math. Sci, vol.15, pp.1703-1741, 2017.

, A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures, Kinet. Relat. Models, vol.11, pp.43-69, 2018.

P. Blanchard, M. Röckner, and F. Russo, Probabilistic representation for solutions of an irregular porous media type equation, Ann. Probab, vol.38, pp.1870-1900, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00279975

V. I. Bogachev, N. V. Krylov, M. Röckner, and S. V. Shaposhnikov, FokkerPlanck-Kolmogorov equations, vol.207, 2015.

V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, On uniqueness of solutions to the Cauchy problem for degenerate Fokker-Planck-Kolmogorov equations, J. Evol. Equ, vol.13, pp.577-593, 2013.

F. Boyer, Trace theorems and spatial continuity properties for the solutions of the transport equation, Differential Integral Equations, vol.18, pp.891-934, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00004420

F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible NavierStokes equations and related models, vol.183, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00777731

H. Brézis and M. G. Crandall, Uniqueness of solutions of the initial-value problem for u t ? ??(u) = 0, J. Math. Pures Appl, vol.58, issue.9, pp.153-163, 1979.

C. L. Bris and P. Lions, Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Communications in Partial Differential Equations, vol.33, pp.1272-1317, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00667315

S. Campanato, Sul problema di Cauchy-Dirichlet per equazioni paraboliche del secondo ordine, non variazionali, a coefficienti discontinui, Rend. Sem. Mat. Univ. Padova, pp.153-163, 1968.

C. Cancès, C. Chainais-hillairet, A. Gerstenmayer, and A. Jüngel, Convergence of a Finite-Volume Scheme for a Degenerate Cross-Diffusion Model for Ion Transport, 2018.

K. Carrapatoso and M. Hillairet, On the derivation of a Stokes-Brinkman problem from Stokes equations around a random array of moving spheres, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01779091

M. Chae, K. Kang, and J. Lee, Global existence of weak and classical solutions for the Navier-Stokes-Vlasov-Fokker-Planck equations, J. Differential Equations, pp.2431-2465, 2011.

A. Chambolle, B. T. Desjardins, M. J. Esteban, and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech, vol.7, pp.368-404, 2005.

J. Chemin and I. Gallagher, On the global wellposedness of the 3-D Navier-Stokes equations with large initial data, Ann. Sci. ´ Ecole Norm. Sup, issue.4, pp.679-698, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00008043

L. Chen and A. , Analysis of a multidimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal, vol.36, pp.301-322, 2004.

L. Chen and A. , Analysis of a parabolic cross-diffusion population model without self-diffusion, J. Differential Equations, vol.224, pp.39-59, 2006.

X. Chen, E. S. Daus, and A. Jüngel, Global existence analysis of cross-diffusion population systems for multiple species, Archive for Rational Mechanics and Analysis, vol.227, pp.715-747, 2018.

X. Chen and A. , A note on the uniqueness of weak solutions to a class of cross-diffusion systems, to appear in, J. Evol. Eqs, 2018.

X. Chen, A. Jüngel, and J. Liu, A note on Aubin-Lions-Dubinski? ? lemmas, Acta Appl. Math, vol.133, pp.33-43, 2014.

X. Chen and J. Liu, Appl. Math. Lett, vol.25, pp.2252-2257, 2012.

B. Choi and Y. Kim, Diffusion of biological organisms ; fickian and fokker-planck type diffusions, 2018.

Y. Choi and B. Kwon, Global well-posedness and large-time behavior for the inhomogeneous Vlasov-Navier-Stokes equations, Nonlinearity, vol.28, p.3309, 2015.

Y. S. Choi, R. Lui, and Y. Yamada, Existence of global solutions for the ShigesadaKawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst, vol.10, pp.719-730, 2004.

D. Cioranescu and F. Murat, Un termé etrange venu d'ailleurs, in Nonlinear partial differential equations and their applications, Colì ege de France Seminar, vol.II, pp.389-390, 1979.

C. Conca, J. San-martín, H. , and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations, vol.25, pp.1019-1042, 2000.

F. Conforto and L. Desvillettes, Rigorous passage to the limit in a system of reaction-diffusion equations towards a system including cross diffusions, Communications in Mathematical Sciences, vol.12, pp.457-472, 2014.

G. Crippa and C. De-lellis, Estimates and regularity results for the DiPerna-Lions flow, J. Reine Angew. Math, vol.616, pp.15-46, 2008.

R. Danchin, Fluides incompressiblesàincompressiblesà densité variable, Séminairé Equations aux dérivées partielles, pp.1-16, 2002.

E. S. Daus, L. Desvillettes, and H. Dietert, About the entropic structure of detailed balanced multi-species cross-diffusion equations, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02014656

E. S. Daus, L. Desvillettes, and A. Jüngel, Cross-diffusion systems and fastreaction limits, 2017.

P. Degond, Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions, Ann. Sci. ´ Ecole Norm. Sup, vol.19, issue.4, pp.519-542, 1986.

P. Degond, S. Génieys, and A. Jüngel, Symmetrization and entropy inequality for general diffusion equations, C. R. Acad. Sci. Paris Sér. I Math, vol.325, pp.963-968, 1997.

P. Degond and S. Mas-gallic, The weighted particle method for convection-diffusion equations. I. The case of an isotropic viscosity, Math. Comp, vol.53, pp.485-507, 1989.

, The weighted particle method for convection-diffusion equations. II. The anisotropic case, Math. Comp, vol.53, pp.509-525, 1989.

B. Desjardins, Global existence results for the incompressible density-dependent navierstokes equations in the whole space, Differential Integral Equations, vol.10, pp.587-598, 1997.

B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal, vol.146, pp.59-71, 1999.

, On weak solutions for fluid-rigid structure interaction : compressible and incompressible models, Comm. Partial Differential Equations, vol.25, pp.1399-1413, 2000.

B. Desjardins, M. J. Esteban, C. Grandmont, and P. L. Tallec, Weak solutions for a fluid-elastic structure interaction model, Rev. Mat. Complut, vol.14, pp.523-538, 2001.

L. Desvillettes, K. Fellner, M. Pierre, and J. Vovelle, Global existence for quadratic systems of reaction-diffusion, Adv. Nonlinear Stud, vol.7, pp.491-511, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00364787

L. Desvillettes, F. Golse, and V. Ricci, The mean-field limit for solid particles in a Navier-Stokes flow, J. Stat. Phys, vol.131, pp.941-967, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00134812

L. Desvillettes and A. Trescases, New results for triangular reaction cross diffusion system, Journal of Mathematical Analysis and Applications, vol.430, pp.32-59, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01058014

P. Deuring, An initial-boundary value problem for a certain density-dependent diffusion system, Math. Z, vol.194, pp.375-396, 1987.

R. J. Diperna and P. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math, vol.98, pp.511-547, 1989.

R. L. Dobrushin, Vlasov equations, Functional Analysis and Its Applications, vol.13, pp.115-123, 1979.

M. Dreher and A. , Compact families of piecewise constant functions in L p (0, T ; B), Nonlinear Anal, vol.75, pp.3072-3077, 2012.

J. Droniou and R. Eymard, Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations, Numerische Mathematik, vol.132, pp.721-766, 2016.

J. Droniou, R. Eymard, T. Gallouet, and R. Herbin, Gradient schemes : a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations, Math. Models Methods Appl. Sci, vol.23, pp.2395-2432, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00751551

J. Droniou, R. Eymard, and R. Herbin, Gradient schemes : generic tools for the numerical analysis of diffusion equations, ESAIM Math. Model. Numer. Anal, vol.50, pp.749-781, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01150517

J. Droniou, R. Eymard, and K. S. Talbot, Convergence in C 0 t (L 2 x ) of weak solutions to perturbed doubly degenerate parabolic equations, Journal of Differential Equations, vol.260, pp.7821-7860, 2016.

Y. A. , Dubinski? ?, Weak convergence for nonlinear elliptic and parabolic equations. (in russian)., Matematicheskii Sbornik, vol.109, pp.609-642, 1965.

M. Duerinckx, Mean-field limits for some Riesz interaction gradient flows, SIAM J. Math. Anal, vol.48, pp.2269-2300, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01252661

E. Feireisl, M. Hillairet, and V. S. Ne?asová, On the motion of several rigid bodies in an incompressible non-Newtonian fluid, Nonlinearity, vol.21, pp.1349-1366, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00635182

A. Figalli, Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients, J. Funct. Anal, vol.254, pp.109-153, 2008.

J. Fischer, Global existence of renormalized solutions to entropy-dissipating reactiondiffusion systems, Arch. Ration. Mech. Anal, vol.218, pp.553-587, 2015.

F. Flandoli, M. Leocata, and C. Ricci, The Vlasov-Navier-Stokes equations as a mean field limit, 2018.

J. Fontbona and S. Méléard, Non local lotka-volterra system with cross-diffusion in an heterogeneous medium, Journal of mathematical biology, vol.70, pp.829-854, 2015.

A. Friedman, Partial differential equations of parabolic type, N.J, 1964.

H. Fujita and N. Sauer, On existence of weak solutions of the Navier-Stokes equations in regions with moving boundaries, J. Fac. Sci. Univ. Tokyo Sect. I, vol.17, pp.403-420, 1970.

G. Galiano, M. L. Garzón, and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model, Numer. Math, vol.93, pp.655-673, 2003.

T. Gallouët, Discrete Functional Analysis Tools for Some Evolution Equations, Comput. Methods Appl. Math, vol.18, pp.477-493, 2018.

T. Gallouët and J. Latché, Compactness of discrete approximate solutions to parabolic PDEs-application to a turbulence model, Commun. Pure Appl. Anal, vol.11, pp.2371-2391, 2012.

A. Gerstenmayer and A. , Analysis of a degenerate parabolic cross-diffusion system for ion transport, J. Math. Anal. Appl, vol.461, pp.523-543, 2018.

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, vol.224, 1983.

M. E. Gilpin and F. J. Ayala, Global models of growth and competition, Proceedings of the National Academy of Sciences, vol.70, pp.3590-3593, 1973.

M. E. Gilpin and K. E. Justice, Reinterpretation of the invalidation of the principle of competitive exclusion, Nature, vol.236, p.273, 1972.

V. Girault and P. Raviart, Finite element methods for Navier-Stokes equations, vol.5, 1986.

O. Glass, C. Lacave, A. Munnier, and F. Sueur, Dynamics of rigid bodies of various sizes dand masses in a two dimensional incompressible perfect fluid

O. Glass, C. Lacave, and F. Sueur, On the motion of a small body immersed in a two-dimensional incompressible perfect fluid, vol.142, pp.489-536, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00589499

W. B. Gordon, On the diffeomorphisms of Euclidean space, Amer. Math. Monthly, vol.79, pp.755-759, 1972.

T. Goudon, P. Jabin, and A. Vasseur, Hydrodynamic limit for the VlasovNavier-Stokes equations. I. Light particles regime, Indiana Univ. Math. J, vol.53, pp.1495-1515, 2004.

T. Goudon, P. Jabin, and A. Vasseur, Hydrodynamic limit for the VlasovNavier-Stokes equations. II. Fine particles regime, Indiana Univ. Math. J, vol.53, pp.1517-1536, 2004.

C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal, vol.40, pp.716-737, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00166319

K. Hamdache, Global existence and large time behaviour of solutions for the VlasovStokes equations, Japan J. Indust. Appl. Math, vol.15, pp.51-74, 1998.

M. Hauray and P. Jabin, N-particles approximation of the Vlasov equations with singular potential, Archive for Rational Mechanics and Analysis, vol.183, pp.489-524, 2007.

M. Hauray and P. Jabin, Particle approximation of Vlasov equations with singular forces : propagation of chaos, Ann. Sci. ´ Ec. Norm. Supér, issue.4, pp.891-940, 2015.

M. Hillairet, On the homogenization of the Stokes problem in a perforated domain, Rational Mech. Anal, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01302560

L. T. Hoang, T. V. Nguyen, and T. V. Phan, Gradient estimates and global existence of smooth solutions to a cross-diffusion system, SIAM Journal on Mathematical Analysis, vol.47, pp.2122-2177, 2015.

R. M. Höfer, The inertialess limit of particle sedimentation modeled by the VlasovStokes equations, 2018.

N. Hungerbühler, Quasi-linear parabolic systems in divergence form with weak monotonicity, Duke Math. J, vol.107, pp.497-520, 2001.

M. Iida, M. Mimura, and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction, Journal of mathematical biology, vol.53, pp.617-641, 2006.

P. Jabin, Large time concentrations for solutions to kinetic equations with energy dissipation, Comm. Partial Differential Equations, vol.25, pp.541-557, 2000.

P. Jabin and F. Otto, Identification of the dilute regime in particle sedimentation, Comm. Math. Phys, vol.250, pp.415-432, 2004.

P. Jabin and Z. Wang, Mean field limit and propagation of chaos for Vlasov systems with bounded forces, J. Funct. Anal, vol.271, pp.3588-3627, 2016.

A. , Diffusive and nondiffusive population models, in Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol, pp.397-425, 2010.

, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, vol.28, pp.1963-2001, 2015.

A. Jüngel and N. Zamponi, Qualitative behavior of solutions to cross-diffusion systems from population dynamics, J. Math. Anal. Appl, vol.440, pp.794-809, 2016.

J. U. Kim, Smooth solutions to a quasi-linear system of diffusion equations for a certain population model, Nonlinear analysis, vol.8, pp.1121-1144, 1984.

S. N. Kruzhkov, Results concerning the nature of the continuity of solutions of parabolic equations and some of their applications, Mathematical Notes of the Academy of Sciences of the USSR, vol.6, pp.517-523, 1969.

N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, vol.96, 2008.

N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat, vol.44, p.239, 1980.

D. Le and T. T. Nguyen, Global existence for a class of triangular parabolic systems on domains of arbitrary dimension, Proc. Amer. Math. Soc, vol.133, pp.1985-1992, 2005.

, Everywhere regularity of solutions to a class of strongly coupled degenerate parabolic systems, Comm. Partial Differential Equations, vol.31, pp.307-324, 2006.

D. Lengeler and M. R??i?ka, Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell, Arch. Ration. Mech. Anal, vol.211, pp.205-255, 2014.

T. Lepoutre, Analyse et modélisation de phénomènes de croissance et mouvement issus de la biologie, 2009.

, Contributions en dynamique de populations, HabilitationàHabilitationà diriger des recherches, 2017.

T. Lepoutre, M. Pierre, and G. Rolland, Global well-posedness of a conservative relaxed cross diffusion system, SIAM J. Math. Anal, vol.44, pp.1674-1693, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00683006

J. Leray and J. Lions, Quelques résultats de Vi?ik sur lesprobì emes elliptiques nonlinéaires par les méthodes de Minty-Browder, vol.93, pp.97-107, 1965.

Y. Li and C. Zhao, Global existence of solutions to a cross-diffusion system in higher dimensional domains, Discrete Contin. Dyn. Syst, vol.12, pp.185-192, 2005.

P. Lions, Incompressible Models, Mathematical Topics in Fluid Mechanics, vol.1, 1996.

P. Lions, Compressible models, of Oxford Lecture Series in Mathematics and its Applications, vol.2, 1998.

G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl, vol.86, issue.9, pp.68-79, 2006.

Y. Lou, W. Ni, and Y. Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dynam. Systems, vol.4, pp.193-203, 1998.

Y. Lou and M. Winkler, Global existence and uniform boundedness of smooth solutions to a cross-diffusion system with equal diffusion rates, Communications in Partial Differential Equations, vol.40, pp.1905-1941, 2015.

V. A. and E. Y. Khruslov, Perturbation of a viscous incompressible fluid by small particles, in Theoretical and applied questions of differential equations and algebra (Russian), Naukova Dumka, vol.267, pp.173-177, 1978.

E. Maitre, On a nonlinear compactness lemma in L p (0, T ; B), Int. J. Math. Math. Sci, pp.1725-1730, 2003.

A. J. Majda and A. L. Bertozzi, of Cambridge Texts in Applied Mathematics, vol.27, 2002.

C. Marchioro and M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids, vol.96, 1994.

R. H. Martin and M. Pierre, Nonlinear reaction-diffusion systems, Nonlinear equations in the applied sciences, vol.185, pp.363-398, 1992.

A. Mecherbet and M. Hillairet, Lp estimates for the homogenization of stokes problem in a perforated domain, J. Inst. Math. Jussieu, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01398706

N. G. Meyers, An L p e-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa, vol.17, issue.3, pp.189-206, 1963.

S. Mischler, On the trace problem for solutions of the Vlasov equation, Comm. Partial Differential Equations, vol.25, pp.1415-1443, 2000.

B. Muckenhoupt, Weighted norm inequalities for the hardy maximal function, Transactions of the, pp.207-226, 1972.

B. Muha and S. Canic, A generalization of the aubin-lions-simon compactness lemma for problems on moving domains, 2018.

H. Murakawa, A relation between cross-diffusion and reaction-diffusion, Discrete Contin. Dyn. Syst. Series S, vol.5, pp.147-158, 2012.

F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant, Ann. Scuola Norm. Sup. Pisa Cl. Sci, vol.8, issue.4, pp.69-102, 1981.

F. Nobile, Numerical approximation of fluid-structure interaction problems with applications to haemodynamics, 2001.

P. J. O'rourke, Collective drop effects on vaporizing liquid sprays, 1981.

B. T. Perthame, Parabolic equations in biology, Lecture Notes on Mathematical Modelling in the Life Sciences, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01423552

, Growth, reaction, movement and diffusion

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM J. Math. Anal, vol.28, pp.259-289, 1997.
URL : https://hal.archives-ouvertes.fr/inria-00074038

M. A. Pozio and A. Tesei, Global existence of solutions for a strongly coupled quasilinear parabolic system, Nonlinear Anal, vol.14, pp.657-689, 1990.

R. Redlinger, Existence of the global attractor for a strongly coupled parabolic system arising in population dynamics, J. Differential Equations, vol.118, pp.219-252, 1995.

J. A. San-martí-n, V. Starovoitov, and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal, vol.161, pp.113-147, 2002.

S. Serfaty, Mean Field Limit for Coulomb Flows, 2018.

N. Shigesada, K. Kawasaki, and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol, vol.79, pp.83-99, 1979.

S. Shim, Uniform boundedness and convergence of solutions to cross-diffusion systems, J. Differential Equations, vol.185, pp.281-305, 2002.

J. Simon, Sur les fluides visqueux incompressibles et non homogènes, CR Acad. Sci, vol.309, pp.447-452, 1989.

E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, issue.30, 1970.

D. W. Stroock and S. R. Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften, vol.233, 1979.

L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics : Heriot-Watt Symposium, vol.IV, pp.136-212, 1979.

A. Trescases, On triangular reaction cross-diffusion systems with possible self-diffusion, Bulletin des Sciences Mathématiques, pp.796-829, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01959414

P. V. Tuoc, On global existence of solutions to a cross-diffusion system, J. Math. Anal. Appl, vol.343, pp.826-834, 2008.

D. Wang and C. Yu, Global weak solution to the inhomogeneous navier-stokes-vlasov equations, Journal of Differential Equations, vol.259, pp.3976-4008, 2015.

Y. Wang, The global existence of solutions for a cross-diffusion system, Acta Math. Appl. Sin. Engl. Ser, vol.21, pp.519-528, 2005.

H. F. Weinberger, Variational properties of steady fall in stokes flow, J. Fluid Mech, vol.52, pp.321-344, 1972.

Z. Wen and S. Fu, Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics, J. Comput. Appl. Math, vol.230, pp.34-43, 2009.

M. T. Wereide, La diffusion d'une solution dont la concentration et la température sont variables, Annales de Physique, vol.9, pp.67-83, 1914.

F. A. Williams, Combustion theory, 1985.
URL : https://hal.archives-ouvertes.fr/hal-00014918

P. W. Longest and M. Hindle, Numerical model to characterize the size increase of combination drug and hygroscopic excipient nanoparticle aerosols, Aerosol Science and Technology, vol.45, pp.884-899, 2011.

A. Yagi, Global solution to some quasilinear parabolic system in population dynamics, Nonlinear Anal, vol.21, pp.603-630, 1993.

Y. Yamada, Global solutions for quasilinear parabolic systems with cross-diffusion effects, Nonlinear Anal, vol.24, pp.1395-1412, 1995.

W. Yang, A class of quasilinear parabolic systems with cross-diffusion effects, Commun. Nonlinear Sci. Numer. Simul, vol.4, pp.271-275, 1999.

, A class of the quasilinear parabolic systems arising in population dynamics, Methods Appl. Anal, vol.9, pp.261-272, 2002.

C. Yu, Global weak solutions to the incompressible Navier-Stokes-Vlasov equations, J. Math. Pures Appl, issue.9, pp.275-293, 2013.

V. I. Yudovich, Non-stationary flows of an ideal incompressible fluid, Z. Vy?isl. Mat. i Mat. Fiz, vol.3, pp.1032-1066, 1963.

N. Zamponi and A. , Analysis of degenerate cross-diffusion population models with volume filling, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.34, pp.1-29, 2017.

C. To, Analysis of degenerate cross-diffusion population models with volume filling, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.34, pp.789-792, 2017.