, markedly decreased lesion development compared with Poly(I:C) treated WT controls (Fig

, Poly(I:C)-treated mice compared to Poly(I:C)-treated control mice (Fig. S6 A). No change in collagen content was detected (Fig. S6 B). No differences in body weight or serum, Reduction in atherosclerosis was associated with reduction in macrophage infiltration in (Ncr1 iCre R26 lsl-DTA ? Ldlr -/-)

. Hence, NK cells might be proatherogenic when activated in a systemic inflammatory context

L. Borgne, M. Caligiuri, G. Nicoletti, and A. , Once upon a time: The adaptive immune response in atherosclerosis--a fairy tale no more, Mol Med, vol.21, issue.1, pp.13-18, 2015.

P. A. Vanderlaan and C. A. Reardon, Thematic review series: The immune system and atherogenesis. The unusual suspects:An overview of the minor leukocyte populations in atherosclerosis, J Lipid Res, vol.46, pp.829-838, 2005.

G. Trinchieri, Biology of natural killer cells, Adv Immunol, vol.47, pp.187-376, 1989.

E. Vivier, J. A. Nunes, and F. Vely, Natural killer cell signaling pathways, Science, vol.306, pp.1517-1519, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00080580

E. Vivier, D. H. Raulet, A. Moretta, M. A. Caligiuri, L. Zitvogel et al., Innate or adaptive immunity? The example of natural killer cells, Science, vol.331, pp.44-49, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00611585

Y. V. Bobryshev and R. S. Lord, Identification of natural killer cells in human atherosclerotic plaque, Atherosclerosis, vol.180, pp.423-427, 2005.

S. C. Whitman, D. L. Rateri, S. J. Szilvassy, W. Yokoyama, and A. Daugherty, Depletion of natural killer cell function decreases atherosclerosis in low-density lipoprotein receptor null mice

, Arterioscler Thromb Vasc Biol, vol.24, pp.1049-1054, 2004.

P. Allavena, G. Bianchi, D. Zhou, J. Van-damme, P. Jilek et al., Induction of natural killer cell migration by monocyte chemotactic protein-1, -2 and -3, Eur J Immunol, vol.24, pp.3233-3236, 1994.

H. Umehara, E. T. Bloom, T. Okazaki, Y. Nagano, Y. O. Imai et al., Fractalkine in vascular biology: From basic research to clinical disease, Arterioscler Thromb Vasc Biol, vol.24, pp.34-40, 2004.

M. F. Linton, A. S. Major, and S. Fazio, Proatherogenic role for nk cells revealed, Arterioscler Thromb Vasc Biol, vol.24, pp.992-994, 2004.

B. Paigen, P. A. Holmes, E. K. Novak, and R. T. Swank, Analysis of atherosclerosis susceptibility in mice with genetic defects in platelet function, Arteriosclerosis, vol.10, pp.648-652, 1990.

N. K. Schiller, W. A. Boisvert, and L. K. Curtiss, Inflammation in atherosclerosis: Lesion formation in ldl receptor-deficient mice with perforin and lyst(beige) mutations, Arterioscler Thromb Vasc Biol, vol.22, pp.1341-1346, 2002.

R. A. Spritz, Genetic defects in chediak-higashi syndrome and the beige mouse, J Clin Immunol, vol.18, pp.97-105, 1998.

D. M. Ward, G. M. Griffiths, J. C. Stinchcombe, and J. Kaplan, Analysis of the lysosomal storage disease chediak-higashi syndrome, Traffic, vol.1, pp.816-822, 2000.

R. Ross, The pathogenesis of atherosclerosis--an update, N Engl J Med, vol.314, pp.488-500, 1986.

S. Kim, K. Iizuka, H. L. Aguila, I. L. Weissman, and W. M. Yokoyama, In vivo natural killer cell activities revealed by natural killer cell-deficient mice, Proc Natl Acad Sci, vol.97, pp.2731-2736, 2000.

S. Radaev and P. D. Sun, Structure and function of natural killer cell surface receptors, Annu Rev Biophys Biomol Struct, vol.32, pp.93-114, 2003.

S. Kim, Y. J. Song, D. A. Higuchi, H. P. Kang, J. R. Pratt et al., Arrested natural killer cell development associated with transgene insertion into the atf2 locus, Blood, vol.107, pp.1024-1030, 2006.

K. To, A. Agrotis, G. Besra, A. Bobik, and B. H. Toh, Nkt cell subsets mediate differential proatherogenic effects in apoe-/-mice, Arterioscler Thromb Vasc Biol, vol.29, pp.671-677, 2009.

L. Oberg, M. Eriksson, L. Fahlen, and C. L. Sentman, Expression of ly49a on t cells alters the threshold for t cell responses, Eur J Immunol, vol.30, pp.2849-2856, 2000.

E. Tupin, A. Nicoletti, R. Elhage, M. Rudling, H. G. Ljunggren et al., Cd1d-dependent activation of nkt cells aggravates atherosclerosis, J Exp Med, vol.199, pp.417-422, 2004.

B. Ludewig, S. Freigang, M. Jaggi, M. O. Kurrer, Y. C. Pei et al., Linking immune-mediated arterial inflammation and cholesterol-induced atherosclerosis in a transgenic mouse model, Proc Natl Acad Sci U S A, vol.97, pp.12752-12757, 2000.

A. Selathurai, V. Deswaerte, P. Kanellakis, P. Tipping, B. H. Toh et al., Natural killer (nk) cells augment atherosclerosis by cytotoxic-dependent mechanisms, Cardiovasc Res, vol.102, pp.128-137, 2014.
DOI : 10.1093/cvr/cvu016

URL : https://academic.oup.com/cardiovascres/article-pdf/102/1/128/17393597/cvu016.pdf

E. M. Levy, M. P. Roberti, and J. Mordoh, Natural killer cells in human cancer: From biological functions to clinical applications, J Biomed Biotechnol, vol.2011, p.676198, 2011.

F. Deauvieau, A. Fenis, F. Dalencon, N. Burdin, E. Vivier et al., Lessons from nk cell deficiencies in the mouse, Curr Top Microbiol Immunol, vol.395, pp.173-190, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01440235

E. Narni-mancinelli, B. N. Jaeger, C. Bernat, A. Fenis, S. Kung et al.,

M. , H. Sc, E. J. Bertosio, E. Vely, F. Gastinel et al., Tuning of natural killer cell reactivity by nkp46 and helios calibrates t cell responses, Science, vol.335, pp.344-348, 2012.

E. Narni-mancinelli, J. Chaix, A. Fenis, Y. M. Kerdiles, N. Yessaad et al.,

H. Luche, S. Ugolini, E. Tomasello, T. Walzer, and E. Vivier, Fate mapping analysis of lymphoid cells expressing the nkp46 cell surface receptor, Proc Natl Acad Sci, vol.108, pp.18324-18329, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00672199

J. Joffre, S. Potteaux, L. Zeboudj, X. Loyer, A. Boufenzer et al., Ait-Oufella H. Genetic and pharmacological inhibition of trem-1 limits the development of experimental atherosclerosis, J Am Coll Cardiol, vol.68, pp.2776-2793, 2016.

Z. Mallat, A. Gojova, V. Sauzeau, V. Brun, J. S. Silvestre et al., Rho-associated protein kinase contributes to early atherosclerotic lesion formation in mice, Circ Res, vol.93, pp.884-888, 2003.

S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett et al., The miqe guidelines: Minimum information for publication of quantitative real-time pcr experiments, Clin Chem, vol.55, pp.611-622, 2009.

J. Vandesompele, D. Preter, K. Pattyn, F. Poppe, B. Van-roy et al.,

, Accurate normalization of real-time quantitative rt-pcr data by geometric averaging of multiple internal control genes, Genome Biol, vol.3, p.34, 2002.

E. Vivier, S. Ugolini, and J. A. Nunes, Adapted secretion of cytokines in nk cells, Nat Immunol, vol.14, pp.1108-1110, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01038082

C. K. Glass and J. L. Witztum, Atherosclerosis. The road ahead, Cell, vol.104, pp.503-516, 2001.

U. Lee, K. Santa, S. Habu, and T. Nishimura, Murine asialo gm1+cd8+ t cells as novel interleukin-12-responsive killer t cell precursors, Jpn J Cancer Res, vol.87, pp.429-432, 1996.

J. Trambley, A. W. Bingaman, A. Lin, E. T. Elwood, S. Y. Waitze et al.,

M. , C. Sr, T. C. Pearson, and C. P. Larsen, Asialo gm1(+) cd8(+) t cells play a critical role in costimulation blockade-resistant allograft rejection, J Clin Invest, vol.104, pp.1715-1722, 1999.

R. H. Wiltrout, A. Santoni, E. S. Peterson, D. C. Knott, W. R. Overton et al., Reactivity of anti-asialo gm1 serum with tumoricidal and non-tumoricidal mouse macrophages, J Leukoc Biol, vol.37, pp.597-614, 1985.

S. Kataoka, Y. Konishi, Y. Nishio, K. Fujikawa-adachi, and A. Tominaga, Antitumor activity of eosinophils activated by il-5 and eotaxin against hepatocellular carcinoma, DNA Cell Biol, vol.23, pp.549-560, 2004.

H. Nishikado, K. Mukai, Y. Kawano, Y. Minegishi, and H. Karasuyama, Nk cell-depleting antiasialo gm1 antibody exhibits a lethal off-target effect on basophils in vivo, J Immunol, vol.186, pp.5766-5771, 2011.

J. K. Bando and M. Colonna, Innate lymphoid cell function in the context of adaptive immunity

, Nat Immunol, vol.17, pp.783-789, 2016.

J. A. Dudakov, A. M. Hanash, R. R. Jenq, L. F. Young, A. Ghosh et al., Interleukin-22 drives endogenous thymic regeneration in mice, Science, vol.336, pp.91-95, 2012.

C. Cochain, M. Koch, S. M. Chaudhari, M. Busch, J. Pelisek et al., Cd8+ t cells regulate monopoiesis and circulating ly6c-high monocyte levels in atherosclerosis in mice, Circ Res, vol.117, pp.244-253, 2015.

M. J. Smyth, Nk cells and nkt cells collaborate in host protection from methylcholanthreneinduced fibrosarcoma, Int Immunol, vol.20, p.631, 2008.

G. S. Getz and C. A. Reardon, Natural killer t cells in atherosclerosis, Nat Rev Cardiol, vol.14, pp.304-314, 2017.

I. Vliegen, A. Duijvestijn, G. Grauls, S. Herngreen, C. Bruggeman et al., Cytomegalovirus infection aggravates atherogenesis in apoe knockout mice by both local and systemic immune activation, Microbes Infect, vol.6, pp.17-24, 2004.

N. Sumaria, S. L. Van-dommelen, C. E. Andoniou, M. J. Smyth, A. A. Scalzo et al., The roles of interferon-gamma and perforin in antiviral immunity in mice that differ in genetically determined nk-cell-mediated antiviral activity, Immunol Cell Biol, vol.87, pp.559-566, 2009.

B. G. Winchester, Lysosomal membrane proteins, Eur J Paediatr Neurol, vol.5, pp.11-19, 2001.

G. Alter, J. M. Malenfant, and M. Altfeld, Cd107a as a functional marker for the identification of natural killer cell activity, J Immunol Methods, vol.294, pp.15-22, 2004.

S. Zimmer, M. Steinmetz, T. Asdonk, I. Motz, C. Coch et al.,

G. Hartmann and G. Nickenig, Activation of endothelial toll-like receptor 3 impairs endothelial function, Circ Res, vol.108, pp.1358-1366, 2011.

J. E. Cole, T. J. Navin, A. J. Cross, M. E. Goddard, L. Alexopoulou et al., Unexpected protective role for toll-like receptor 3 in the arterial wall, Proc Natl Acad Sci U S A, vol.108, pp.2372-2377, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00609592

A. Martin-fontecha, L. L. Thomsen, S. Brett, C. Gerard, M. Lipp et al., Induced recruitment of nk cells to lymph nodes provides ifn-gamma for t(h)1 priming, Nat Immunol, vol.5, pp.1260-1265, 2004.

R. Elhage, P. Gourdy, L. Brouchet, J. Jawien, M. J. Fouque et al.,

J. C. Couloumiers, J. F. Arnal, and F. Bayard, Deleting tcr alpha beta+ or cd4+ t lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein e-deficient mice, Am J Pathol, vol.165, pp.2013-2018, 2004.

S. C. Whitman, D. L. Rateri, S. J. Szilvassy, W. Yokoyama, and A. Daugherty, Depletion of natural killer cell function decreases atherosclerosis in low-density lipoprotein receptor null mice, Arterioscler Thromb Vasc Biol, vol.24, pp.1049-1054, 2004.

A. Selathurai, V. Deswaerte, P. Kanellakis, P. Tipping, B. H. Toh et al., Natural killer (nk) cells augment atherosclerosis by cytotoxic-dependent mechanisms, Cardiovasc Res, vol.102, pp.128-137, 2014.
DOI : 10.1093/cvr/cvu016

URL : https://academic.oup.com/cardiovascres/article-pdf/102/1/128/17393597/cvu016.pdf

R. Gazit, R. Gruda, M. Elboim, T. I. Arnon, G. Katz et al., Lethal influenza infection in the absence of the natural killer cell receptor gene ncr1, Nat Immunol, vol.7, pp.517-523, 2006.

J. Bariety, C. Mandet, G. S. Hill, and P. Bruneval, Parietal podocytes in normal human glomeruli, J Am Soc Nephrol, vol.17, pp.2770-2780, 2006.
DOI : 10.1681/asn.2006040325

URL : https://jasn.asnjournals.org/content/17/10/2770.full.pdf

Y. V. Bobryshev and R. S. Lord, Identification of natural killer cells in human atherosclerotic plaque, Atherosclerosis, vol.180, pp.423-427, 2005.

A. Tedgui and Z. Mallat, Cytokines in atherosclerosis: pathogenic and regulatory pathways, Physiol Rev, vol.86, issue.2, pp.515-81, 2006.
DOI : 10.1152/physrev.00024.2005

URL : https://hal.archives-ouvertes.fr/hal-01589451

M. A. Ruffer, On arterial lesions found in Egyptian mummies (1580 B.C.-525 A.D.). The Journal of Pathology and Bacteriology, vol.15, pp.453-462, 1911.
DOI : 10.1002/path.1700150403

L. Borgne, M. , G. Caligiuri, and A. Nicoletti, Once Upon a Time: The Adaptive Immune Response in Atherosclerosis--a Fairy Tale No More, Mol Med, 1921.

R. Ross and L. Harker, Hyperlipidemia and atherosclerosis, vol.193, pp.1094-100, 1976.

G. A. Fishbein and M. C. Fishbein, Arteriosclerosis: rethinking the current classification, Arch Pathol Lab Med, vol.133, issue.8, pp.1309-1325, 2009.

, Classics in arteriosclerosis research: On experimental cholesterin steatosis and its significance in the origin of some pathological processes by, Arteriosclerosis, vol.3, issue.2, pp.178-82, 1913.

R. Ross and J. A. Glomset, The pathogenesis of atherosclerosis (first of two parts), N Engl J Med, vol.295, issue.7, pp.369-77, 1976.

R. Ross, Atherosclerosis--an inflammatory disease, N Engl J Med, vol.340, issue.2, pp.115-141, 1999.

L. Jonasson, Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque, Arteriosclerosis, vol.6, issue.2, pp.131-139, 1986.

B. Dahlof, Cardiovascular disease risk factors: epidemiology and risk assessment, Am J Cardiol, issue.105, pp.3-9, 2010.

K. Tolfrey, Intraindividual variability of children's blood lipid and lipoprotein concentrations: a review, Prev Cardiol, vol.5, issue.3, pp.145-51, 2002.

E. Falk, Pathogenesis of atherosclerosis, J Am Coll Cardiol, vol.47, issue.8, pp.7-12, 2006.

, Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report, Circulation, vol.106, issue.25, pp.3143-421, 2002.

P. R. Hebert, Cholesterol lowering with statin drugs, risk of stroke, and total mortality. An overview of randomized trials, Jama, vol.278, issue.4, pp.313-334, 1997.

L. Mazzolai, Endogenous angiotensin II induces atherosclerotic plaque vulnerability and elicits a Th1 response in ApoE-/-mice. Hypertension, vol.44, pp.277-82, 2004.

A. Tedgui and Z. Mallat, Hypertension: a novel regulator of adaptive immunity in atherosclerosis? Hypertension, vol.44, pp.257-265, 2004.

, Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III), Jama, vol.285, pp.2486-97, 2001.

G. J. Blake and P. M. Ridker, Novel clinical markers of vascular wall inflammation, Circ Res, vol.89, issue.9, pp.763-71, 2001.

P. M. Ridker and D. A. Morrow, C-reactive protein, inflammation, and coronary risk, Cardiol Clin, vol.21, issue.3, pp.315-340, 2003.

P. A. Sakkinen, Clustering of procoagulation, inflammation, and fibrinolysis variables with metabolic factors in insulin resistance syndrome, Am J Epidemiol, vol.152, issue.10, pp.897-907, 2000.

G. Winkler, Elevated serum TNF-alpha level as a link between endothelial dysfunction and insulin resistance in normotensive obese patients, Diabet Med, vol.16, issue.3, pp.207-218, 1999.

A. Singhal, Influence of leptin on arterial distensibility: a novel link between obesity and cardiovascular disease? Circulation, vol.106, pp.1919-1943, 2002.

S. Uemura, Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress, Circ Res, vol.88, issue.12, pp.1291-1299, 2001.

J. Danesh, R. Collins, and R. Peto, Chronic infections and coronary heart disease: is there a link?, Lancet, vol.350, issue.9075, pp.430-436, 1997.

I. D. Del-rincon, High incidence of cardiovascular events in a rheumatoid arthritis cohort not explained by traditional cardiac risk factors, Arthritis Rheum, vol.44, issue.12, pp.2737-2782, 2001.

Y. Sherer and Y. Shoenfeld, Mechanisms of disease: atherosclerosis in autoimmune diseases, Nat Clin Pract Rheumatol, vol.2, issue.2, pp.99-106, 2006.

M. A. Gonzalez-gay, Endothelial dysfunction, carotid intima-media thickness, and accelerated atherosclerosis in rheumatoid arthritis, Semin Arthritis Rheum, vol.38, issue.2, pp.67-70, 2008.

A. J. Wilhelm, Dysregulated CD4+ T cells from SLE-susceptible mice are sufficient to accelerate atherosclerosis in LDLr-/-mice, Ann Rheum Dis, vol.74, issue.4, pp.778-85, 2015.

Y. S. Chatzizisis, Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior, J Am Coll Cardiol, vol.49, issue.25, pp.2379-93, 2007.

P. Libby, Inflammation in atherosclerosis, Nature, vol.420, issue.6917, pp.868-74, 2002.

T. Asakura and T. Karino, Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries, Circ Res, vol.66, issue.4, pp.1045-66, 1990.

D. N. Ku, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis, vol.5, issue.3, pp.293-302, 1985.

J. J. Wentzel, Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions, Cardiovasc Res, vol.96, issue.2, pp.234-277, 2012.

G. Millonig, Network of vascular-associated dendritic cells in intima of healthy young individuals, Arterioscler Thromb Vasc Biol, vol.21, issue.4, pp.503-511, 2001.

C. F. Dewey and . Jr, The dynamic response of vascular endothelial cells to fluid shear stress, J Biomech Eng, vol.103, issue.3, pp.177-85, 1981.

P. A. Vanderlaan, C. A. Reardon, and G. S. Getz, Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators, Arterioscler Thromb Vasc Biol, vol.24, issue.1, pp.12-22, 2004.

D. C. Chappell, Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium, Circ Res, vol.82, issue.5, pp.532-541, 1998.

H. B. Peng, P. Libby, and J. K. Liao, Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B, J Biol Chem, vol.270, issue.23, pp.14214-14223, 1995.

M. Uematsu, Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress, Am J Physiol, vol.269, issue.6, pp.1371-1379, 1995.

P. W. Shaul, Endothelial nitric oxide synthase, caveolae and the development of atherosclerosis, J Physiol, vol.547, pp.21-33, 2003.

H. C. Stary, A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, Circulation, vol.89, issue.5, pp.2462-78, 1994.

H. C. Stary, A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, Circulation, vol.92, issue.5, pp.1355-74, 1995.

R. Virmani, Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions, Arterioscler Thromb Vasc Biol, vol.20, issue.5, pp.1262-75, 2000.

J. F. Bentzon, Mechanisms of plaque formation and rupture, Circ Res, vol.114, issue.12, pp.1852-66, 2014.

D. Velican and C. Velican, Atherosclerotic involvement of the coronary arteries of adolescents and young adults, Atherosclerosis, vol.36, issue.4, pp.449-60, 1980.

S. M. Schwartz, D. , and E. R. O'brien, The intima. Soil for atherosclerosis and restenosis, Circ Res, vol.77, issue.3, pp.445-65, 1995.

A. P. Burke, Coronary risk factors and plaque morphology in men with coronary disease who died suddenly, N Engl J Med, vol.336, issue.18, pp.1276-82, 1997.

M. J. Davies, Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture, Circulation, vol.94, issue.8, pp.2013-2033, 1995.

A. P. Burke, Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology, Circulation, vol.97, issue.21, pp.36-44, 1994.

A. Farb, Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death, Circulation, vol.93, issue.7, pp.1354-63, 1996.

E. Durand, In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation: a clue to the understanding of the mechanisms of thrombotic plaque erosion, Circulation, vol.109, issue.21, pp.2503-2509, 2004.

A. H. Kragel, Morphometric analysis of the composition of atherosclerotic plaques in the four major epicardial coronary arteries in acute myocardial infarction and in sudden coronary death, Circulation, vol.80, issue.6, pp.1747-56, 1989.

P. Constantinides, Plaque fissures in human coronary thrombosis, Journal of Atherosclerosis Research, vol.6, issue.1, pp.1-17

S. Glagov, Compensatory enlargement of human atherosclerotic coronary arteries, N Engl J Med, vol.316, issue.22, pp.1371-1376, 1987.

B. Paigen, Variation in susceptibility to atherosclerosis among inbred strains of mice, Atherosclerosis, vol.57, issue.1, pp.65-73, 1985.

W. Shi, Determinants of atherosclerosis susceptibility in the C3H and C57BL/6 mouse model: evidence for involvement of endothelial cells but not blood cells or cholesterol metabolism, Circ Res, vol.86, issue.10, pp.1078-84, 2000.

V. S. Kashyap, Apolipoprotein E deficiency in mice: gene replacement and prevention of atherosclerosis using adenovirus vectors, J Clin Invest, vol.96, issue.3, pp.1612-1632, 1995.

C. Tenger and X. Zhou, Apolipoprotein E modulates immune activation by acting on the antigen-presenting cell, Immunology, vol.109, issue.3, pp.392-399, 2003.

K. S. Meir and E. Leitersdorf, Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress, Arterioscler Thromb Vasc Biol, vol.24, issue.6, pp.1006-1020, 2004.

J. A. Piedrahita, Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells, Proc Natl Acad Sci, vol.89, issue.10, pp.4471-4476, 1992.

G. S. Getz and C. A. Reardon, Do the Apoe-/-and Ldlr-/-Mice Yield the Same Insight on Atherogenesis?, Arterioscler Thromb Vasc Biol, vol.36, issue.9, pp.1734-1775, 2016.

Y. Nakashima, ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree, Arterioscler Thromb, vol.14, issue.1, pp.133-173, 1994.

R. L. Reddick, S. H. Zhang, and N. Maeda, Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression, Arterioscler Thromb, vol.14, issue.1, pp.141-148, 1994.

A. Daugherty, Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association, Circ Res, 2017.

J. C. Defesche, Low-density lipoprotein receptor--its structure, function, and mutations, Semin Vasc Med, vol.4, issue.1, pp.5-11, 2004.
DOI : 10.1055/s-2004-822993

A. D. Marais, Clin Biochem Rev, vol.25, issue.1, pp.49-68, 2004.

S. Ishibashi, Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery, J Clin Invest, vol.92, issue.2, pp.883-93, 1993.

J. W. Knowles and N. Maeda, Genetic modifiers of atherosclerosis in mice, Arterioscler Thromb Vasc Biol, vol.20, issue.11, pp.2336-2381, 2000.

K. Hartvigsen, A diet-induced hypercholesterolemic murine model to study atherogenesis without obesity and metabolic syndrome, Arterioscler Thromb Vasc Biol, vol.27, issue.4, pp.878-85, 2007.

G. S. Getz and C. A. Reardon, Animal models of atherosclerosis, Arterioscler Thromb Vasc Biol, vol.32, issue.5, pp.1104-1119, 2012.

H. H. Hobbs, The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein, Annu Rev Genet, vol.24, pp.133-70, 1990.

Y. T. Lee, Mouse models of atherosclerosis: a historical perspective and recent advances, vol.16, p.12, 2017.

E. Veseli and B. , A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, Arterioscler Thromb, vol.75, issue.1, pp.120-154, 1992.

P. Libby, P. M. Ridker, and G. K. Hansson, Progress and challenges in translating the biology of atherosclerosis, Nature, vol.473, issue.7347, pp.317-342, 2011.

C. I. Han, G. R. Campbell, and J. H. Campbell, Circulating bone marrow cells can contribute to neointimal formation, J Vasc Res, vol.38, issue.2, pp.113-122, 2001.

M. R. Bennett, S. Sinha, and G. K. Owens, Vascular Smooth Muscle Cells in Atherosclerosis, Circ Res, vol.118, issue.4, pp.692-702, 2016.

H. Wolinsky and S. Glagov, A lamellar unit of aortic medial structure and function in mammals, Circ Res, vol.20, issue.1, pp.99-111, 1967.

S. E. Roselaar, P. X. Kakkanathu, and A. Daugherty, Lymphocyte populations in atherosclerotic lesions of apoE -/-and LDL receptor -/-mice. Decreasing density with disease progression, Arterioscler Thromb Vasc Biol, vol.16, issue.8, pp.1013-1021, 1996.

R. Ross, J. Glomset, and L. Harker, Response to injury and atherogenesis, Am J Pathol, vol.86, issue.3, pp.675-84, 1977.

K. J. Williams and I. Tabas, The response-to-retention hypothesis of early atherogenesis, Arterioscler Thromb Vasc Biol, vol.15, issue.5, pp.551-61, 1995.

J. Berliner, Oxidized lipids in atherogenesis: formation, destruction and action, Thromb Haemost, vol.78, issue.1, pp.195-204, 1997.

K. J. Williams and I. Tabas, The response-to-retention hypothesis of atherogenesis reinforced, Curr Opin Lipidol, vol.9, issue.5, pp.471-475, 1998.

C. K. Glass and J. L. Witztum, Atherosclerosis. the road ahead. Cell, vol.104, issue.4, pp.503-519, 2001.

J. C. Poole and H. W. Florey, Changes in the endothelium of the aorta and the behaviour of macrophages in experimental atheroma of rabbits, J Pathol Bacteriol, vol.75, issue.2, pp.245-51, 1958.

P. Libby, P. M. Ridker, and A. Maseri, Inflammation and atherosclerosis, Circulation, vol.105, issue.9, pp.1135-1178, 2002.

R. L. Wilensky and D. Hamamdzic, The molecular basis of vulnerable plaque: potential therapeutic role for immunomodulation, Curr Opin Cardiol, vol.22, issue.6, pp.545-51, 2007.

J. Mestas and K. Ley, Monocyte-endothelial cell interactions in the development of atherosclerosis, Trends Cardiovasc Med, vol.18, issue.6, pp.228-260, 2008.

R. R. Koenen and C. Weber, Chemokines: established and novel targets in atherosclerosis, EMBO Mol Med, vol.3, issue.12, pp.713-738, 2011.
DOI : 10.1002/emmm.201100183

URL : http://embomolmed.embopress.org/content/3/12/713.full.pdf

P. Libby, Changing concepts of atherogenesis, J Intern Med, vol.247, issue.3, pp.349-58, 2000.

J. L. Goldstein, Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition, Proc Natl Acad Sci, vol.76, issue.1, pp.333-340, 1979.

U. P. Steinbrecher, Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids, Proc Natl Acad Sci, vol.81, issue.12, pp.3883-3890, 1984.

B. Chellan, Enzymatically Modified Low-Density Lipoprotein Promotes Foam Cell Formation in Smooth Muscle Cells via Macropinocytosis and Enhances Receptor-Mediated Uptake of Oxidized Low-Density Lipoprotein, Arterioscler Thromb Vasc Biol, vol.36, issue.6, pp.1101-1114, 2016.

G. K. Hansson and A. Hermansson, The immune system in atherosclerosis, Nat Immunol, vol.12, issue.3, pp.204-216, 2011.

K. J. Woollard and F. Geissmann, Monocytes in atherosclerosis: subsets and functions, Nat Rev Cardiol, vol.7, issue.2, pp.77-86, 2010.

C. Napoli, Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions, J Clin Invest, vol.100, issue.11, pp.2680-90, 1997.

R. Ylitalo, Effects of clodronate (dichloromethylene bisphosphonate) on the development of experimental atherosclerosis in rabbits, J Lab Clin Med, vol.123, issue.5, pp.769-76, 1994.

J. D. Smith, Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E, Proceedings of the National Academy of Sciences of the United States of America, vol.92, pp.8264-8268, 1995.

K. J. Woollard, Immunological aspects of atherosclerosis, Clin Sci, vol.125, issue.5, pp.221-256, 2013.

F. K. Swirski, Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata, J Clin Invest, vol.117, issue.1, pp.195-205, 2007.

F. Tacke, Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques, J Clin Invest, vol.117, issue.1, pp.185-94, 2007.

L. Yvan-charvet, ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation, Science, vol.328, issue.5986, pp.1689-93, 2010.

C. Combadiere, Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice, Circulation, vol.117, issue.13, pp.1649-57, 2008.

C. S. Robbins, Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions, Circulation, vol.125, issue.2, pp.364-74, 2012.

P. Libby, A. H. Lichtman, and G. K. Hansson, Immune effector mechanisms implicated in atherosclerosis: from mice to humans, Immunity, vol.38, issue.6, pp.1092-104, 2013.

K. J. Moore, F. J. Sheedy, and E. A. Fisher, Macrophages in atherosclerosis: a dynamic balance, Nat Rev Immunol, vol.13, issue.10, pp.709-730, 2013.

S. Kuchibhotla, Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II, Cardiovasc Res, vol.78, issue.1, pp.185-96, 2008.

J. J. Manning-tobin, Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice, Arterioscler Thromb Vasc Biol, vol.29, issue.1, pp.19-26, 2009.

I. Tabas, Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency, Arterioscler Thromb Vasc Biol, vol.25, issue.11, pp.2255-64, 2005.

T. Gui, Diverse roles of macrophages in atherosclerosis: from inflammatory biology to biomarker discovery, Mediators Inflamm, p.693083, 2012.

M. V. Autieri, Pro-and Anti-Inflammatory Cytokine Networks in Atherosclerosis. ISRN Vascular Medicine, p.17, 2012.

G. J. Randolph, J. Ochando, and S. Partida-sanchez, Migration of dendritic cell subsets and their precursors, Annu Rev Immunol, vol.26, pp.293-316, 2008.

C. Buono and A. H. Lichtman, Co-stimulation and plaque-antigen-specific T-cell responses in atherosclerosis, Trends Cardiovasc Med, vol.14, issue.4, pp.166-72, 2004.

F. Geissmann, Development of monocytes, macrophages, and dendritic cells, Science, vol.327, issue.5966, pp.656-61, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00502972

E. Galkina and K. Ley, Immune and inflammatory mechanisms of atherosclerosis (*), Annu Rev Immunol, vol.27, pp.165-97, 2009.

C. Erbel, Functional profile of activated dendritic cells in unstable atherosclerotic plaque, Basic Res Cardiol, vol.102, issue.2, pp.123-155, 2007.

Y. V. Bobryshev, Evidence that dendritic cells infiltrate atherosclerotic lesions in apolipoprotein E-deficient mice, Histol Histopathol, vol.16, issue.3, pp.801-809, 2001.

A. Niessner, Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque through interferon-alpha. Circulation, vol.114, pp.2482-2491, 2006.

A. Niessner and C. M. Weyand, Dendritic Cells in Atherosclerotic Disease, Clinical immunology, vol.134, issue.1, p.25, 2010.

K. E. Paulson, Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis, Circ Res, vol.106, issue.2, pp.383-90, 2010.

E. L. Gautier, Conventional dendritic cells at the crossroads between immunity and cholesterol homeostasis in atherosclerosis, Circulation, vol.119, issue.17, pp.2367-75, 2009.

A. P. Sage, MHC Class II-restricted antigen presentation by plasmacytoid dendritic cells drives proatherogenic T cell immunity. Circulation, vol.130, pp.1363-73, 2014.

I. T. Daissormont, Plasmacytoid dendritic cells protect against atherosclerosis by tuning T-cell proliferation and activity, Circ Res, vol.109, issue.12, pp.1387-95, 2011.

I. Bot, Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E-deficient mice. Circulation, vol.115, pp.2516-2541, 2007.

P. Libby, History of Discovery: Inflammation in Atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology, vol.32, pp.2045-2051, 2012.

G. K. Hansson, A. K. Robertson, and C. Soderberg-naucler, Inflammation and atherosclerosis, Annu Rev Pathol, vol.1, pp.297-329, 2006.

G. K. Hansson and A. Hermansson, The immune system in atherosclerosis, Nat Immunol, vol.12, issue.3, pp.204-212, 2011.

S. Stemme, J. Holm, and G. K. Hansson, T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1, Arterioscler Thromb, vol.12, issue.2, pp.206-217, 1992.

X. Zhou, Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice, Circulation, vol.102, issue.24, pp.2919-2941, 2000.

S. A. Huber, T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia, Circulation, vol.103, issue.21, pp.2610-2616, 2001.

A. K. Robertson and G. K. Hansson, T cells in atherogenesis: for better or for worse?, Arterioscler Thromb Vasc Biol, vol.26, issue.11, pp.2421-2453, 2006.

P. Ponnuswamy, Humoral and cellular immune responses in atherosclerosis: spotlight on B-and T-cells, Vascul Pharmacol, vol.56, pp.193-203, 2012.

S. Gupta, IFN-gamma potentiates atherosclerosis in ApoE knock-out mice, J Clin Invest, vol.99, issue.11, pp.2752-61, 1997.
DOI : 10.1172/jci119465

URL : http://www.jci.org/articles/view/119465/files/pdf

C. Buono, Influence of interferon-gamma on the extent and phenotype of dietinduced atherosclerosis in the LDLR-deficient mouse, Arterioscler Thromb Vasc Biol, vol.23, issue.3, pp.454-60, 2003.

R. Elhage, Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice, Cardiovasc Res, vol.59, issue.1, pp.234-274, 2003.

P. Davenport and P. G. Tipping, The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice, Am J Pathol, vol.163, issue.3, pp.1117-1142, 2003.

A. D. Hauer, Blockade of interleukin-12 function by protein vaccination attenuates atherosclerosis. Circulation, vol.112, pp.1054-62, 2005.

S. C. Whitman, P. Ravisankar, and A. Daugherty, Interleukin-18 enhances atherosclerosis in apolipoprotein E(-/-) mice through release of interferon-gamma, Circ Res, vol.90, issue.2, pp.34-42, 2002.

S. G. Baidya and Q. T. Zeng, Helper T cells and atherosclerosis: the cytokine web, Postgrad Med J, vol.81, issue.962, pp.746-52, 2005.

C. Buono, T-bet deficiency reduces atherosclerosis and alters plaque antigenspecific immune responses, Proc Natl Acad Sci, vol.102, issue.5, pp.1596-601, 2005.
DOI : 10.1073/pnas.0409015102

URL : http://europepmc.org/articles/pmc547865?pdf=render

J. Frostegard, Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines, Atherosclerosis, vol.145, issue.1, pp.33-43, 1999.

S. Taleb, A. Tedgui, and Z. Mallat, Interleukin-17: friend or foe in atherosclerosis?, Curr Opin Lipidol, vol.21, issue.5, pp.404-412, 2010.

H. P. Ng, R. L. Burris, and S. Nagarajan, Attenuated atherosclerotic lesions in apoEFcgamma-chain-deficient hyperlipidemic mouse model is associated with inhibition of Th17 cells and promotion of regulatory T cells, J Immunol, vol.187, issue.11, pp.6082-93, 2011.

S. Taleb, Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis, J Exp Med, vol.206, issue.10, pp.2067-77, 2009.

H. Ait-oufella, B cell depletion reduces the development of atherosclerosis in mice, J Exp Med, vol.207, issue.8, pp.1579-87, 2010.

S. Taleb, A. Tedgui, and Z. Mallat, Regulatory T-cell immunity and its relevance to atherosclerosis, J Intern Med, vol.263, issue.5, pp.489-99, 2008.

O. J. De-boer, Low Numbers of FOXP3 Positive Regulatory T Cells Are Present in all Developmental Stages of Human Atherosclerotic Lesions, PLoS ONE, vol.2, issue.8, p.779, 2007.

A. Mor, Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes, Eur Heart J, vol.27, issue.21, pp.2530-2537, 2006.

A. Mor, Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis, Arterioscler Thromb Vasc Biol, vol.27, issue.4, pp.893-900, 2007.

Z. Mallat, Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice, Circ Res, vol.89, issue.10, pp.930-934, 2001.

Z. Mallat, H. Ait-oufella, and A. Tedgui, Regulatory T-cell immunity in atherosclerosis, Trends Cardiovasc Med, vol.17, issue.4, pp.113-121, 2007.
DOI : 10.1016/j.tcm.2007.03.001

S. Potteaux, Leukocyte-derived interleukin 10 is required for protection against atherosclerosis in low-density lipoprotein receptor knockout mice, Arterioscler Thromb Vasc Biol, vol.24, issue.8, pp.1474-1482, 2004.
DOI : 10.1161/01.atv.0000134378.86443.cd

URL : https://www.ahajournals.org/doi/pdf/10.1161/01.ATV.0000134378.86443.cd

H. Ait-oufella, Natural regulatory T cells control the development of atherosclerosis in mice, Nat Med, vol.12, issue.2, pp.178-80, 2006.

I. Gotsman, Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule, Circulation, vol.114, pp.2047-55, 2006.

E. Maganto-garcia, Foxp3+-inducible regulatory T cells suppress endothelial activation and leukocyte recruitment, J Immunol, vol.187, issue.7, pp.3521-3530, 2011.

J. Lin, The role of CD4+CD25+ regulatory T cells in macrophage-derived foam-cell formation, J Lipid Res, vol.51, issue.5, pp.1208-1225, 2010.

P. S. Olofsson, CD137 is expressed in human atherosclerosis and promotes development of plaque inflammation in hypercholesterolemic mice, Circulation, vol.117, issue.10, pp.1292-301, 2008.

B. Ludewig, Linking immune-mediated arterial inflammation and cholesterol-induced atherosclerosis in a transgenic mouse model, Proc Natl Acad Sci, vol.97, issue.23, pp.12752-12759, 2000.

I. Gotsman, Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice, J Clin Invest, vol.117, issue.10, pp.2974-82, 2007.

L. Jonasson, A. Tompa, and A. Wikby, Expansion of peripheral CD8+ T cells in patients with coronary artery disease: relation to cytomegalovirus infection, J Intern Med, vol.254, issue.5, pp.472-480, 2003.

A. Bendelac, CD1 Recognition by Mouse NK1$^+$ T Lymphocytes. Science, vol.268, pp.863-865, 1995.

J. Tan, Type I natural killer T cells: naturally born for fighting, Acta Pharmacologica Sinica, vol.31, issue.9, pp.1123-1132, 2010.

M. A. Ostos, Implication of natural killer T cells in atherosclerosis development during a LPS-induced chronic inflammation, FEBS Lett, vol.519, issue.1-3, pp.23-32, 2002.

A. S. Major, Quantitative and qualitative differences in proatherogenic NKT cells in apolipoprotein E-deficient mice, Arterioscler Thromb Vasc Biol, vol.24, issue.12, pp.2351-2358, 2004.

Y. Nakai, Natural killer T cells accelerate atherogenesis in mice, Blood, vol.104, issue.7, pp.2051-2060, 2004.

E. Tupin, CD1d-dependent Activation of NKT Cells Aggravates Atherosclerosis, The Journal of Experimental Medicine, vol.199, issue.3, pp.417-422, 2004.

P. A. Vanderlaan, Characterization of the natural killer T-cell response in an adoptive transfer model of atherosclerosis, Am J Pathol, vol.170, issue.3, pp.1100-1107, 2007.

G. Caligiuri, Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice, The Journal of Clinical Investigation, vol.109, issue.6, pp.745-753, 2002.

A. S. Major, S. Fazio, and M. F. Linton, B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice, Arterioscler Thromb Vasc Biol, vol.22, issue.11, pp.1892-1900, 2002.

C. J. Binder, IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis, J Clin Invest, vol.114, issue.3, pp.427-464, 2004.

J. Nilsson, G. K. Hansson, and P. K. Shah, Immunomodulation of atherosclerosis: implications for vaccine development, Arterioscler Thromb Vasc Biol, vol.25, issue.1, pp.18-28, 2005.

T. Kyaw, Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis, J Immunol, vol.185, issue.7, pp.4410-4419, 2010.

R. Kiessling, E. Klein, and H. Wigzell, Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype, Eur J Immunol, vol.5, issue.2, pp.112-119, 1975.

E. Vivier, What is natural in natural killer cells?, Immunol Lett, vol.107, issue.1, pp.1-7, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00165603

L. L. Lanier, Natural killer cells: definition of a cell type rather than a function, J Immunol, vol.137, issue.9, pp.2735-2744, 1986.

R. B. Herberman and J. R. Ortaldo, Natural killer cells: their roles in defenses against disease, Science, vol.214, issue.4516, pp.24-30, 1981.

D. Santo and J. P. , Natural killer cell developmental pathways: a question of balance, Annu Rev Immunol, vol.24, pp.257-86, 2006.

E. Vivier, J. D. Santo, and A. Moretta, Natural Killer Cells, 2016.

J. C. Sun and L. L. Lanier, NK cell development, homeostasis and function: parallels with CD8(+) T cells, Nat Rev Immunol, vol.11, issue.10, pp.645-57, 2011.

E. Vivier, Innate or adaptive immunity? The example of natural killer cells, Science, vol.331, issue.6013, pp.44-53, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00611585

M. T. Orr and L. L. Lanier, Natural killer cell education and tolerance, Cell, vol.142, issue.6, pp.847-56, 2010.

C. A. Biron, K. S. Byron, and J. L. Sullivan, Severe herpesvirus infections in an adolescent without natural killer cells, N Engl J Med, vol.320, issue.26, pp.1731-1736, 1989.

J. Koch, Activating natural cytotoxicity receptors of natural killer cells in cancer and infection, Trends Immunol, vol.34, issue.4, pp.182-91, 2013.

W. M. Yokoyama, S. Kim, and A. R. French, The dynamic life of natural killer cells, Annu Rev Immunol, vol.22, pp.405-434, 2004.

N. D. Huntington, C. A. Vosshenrich, and J. P. Di-santo, Developmental pathways that generate natural-killer-cell diversity in mice and humans, Nat Rev Immunol, vol.7, issue.9, pp.703-717, 2007.

J. Yu, A. G. Freud, and M. A. Caligiuri, Location and cellular stages of natural killer cell development, Trends Immunol, vol.34, issue.12, pp.573-82, 2013.

N. Pinhas, Murine peripheral NK-cell populations originate from site-specific immature NK cells more than from BM-derived NK cells, Eur J Immunol, vol.46, issue.5, pp.1258-70, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438547

C. A. Vosshenrich, A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127, Nat Immunol, vol.7, issue.11, pp.1217-1241, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00362040

V. Kumar, Natural killer cells in mice treated with 89strontium: normal target-binding cell numbers but inability to kill even after interferon administration, J Immunol, vol.123, issue.4, pp.1832-1840, 1979.

W. E. Seaman, beta-Estradiol reduces natural killer cells in mice, J Immunol, vol.121, issue.6, pp.2193-2201, 1978.

A. G. Freud and M. A. Caligiuri, Human natural killer cell development, Immunol Rev, vol.214, pp.56-72, 2006.

K. Iizuka, Requirement for membrane lymphotoxin in natural killer cell development, Proc Natl Acad Sci, vol.96, issue.11, pp.6336-6376, 1999.

Q. Wu, Signal via lymphotoxin-beta R on bone marrow stromal cells is required for an early checkpoint of NK cell development, J Immunol, vol.166, issue.3, pp.1684-1693, 2001.

M. Kondo, I. L. Weissman, and K. Akashi, Identification of clonogenic common lymphoid progenitors in mouse bone marrow, Cell, vol.91, issue.5, pp.661-72, 1997.

B. Wang, A block in both early T lymphocyte and natural killer cell development in transgenic mice with high-copy numbers of the human CD3E gene, Proc Natl Acad Sci, vol.91, pp.9402-9408, 1920.

V. Flamand, Delayed maturation of CD4-CD8-Fc gamma RII/III+ T and natural killer cell precursors in Fc epsilon RI gamma transgenic mice, J Exp Med, vol.184, issue.5, pp.1725-1760, 1996.

H. Suzuki, Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain, J Exp Med, vol.185, issue.3, pp.499-505, 1997.

M. K. Kennedy, Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice, J Exp Med, vol.191, issue.5, pp.771-80, 2000.
DOI : 10.1084/jem.191.5.771

URL : http://jem.rupress.org/content/191/5/771.full.pdf

J. P. Lodolce, IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation, Immunity, vol.9, issue.5, pp.669-76, 1998.
DOI : 10.1016/s1074-7613(00)80664-0

URL : https://doi.org/10.1016/s1074-7613(00)80664-0

Y. Yokota, Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2, Nature, vol.397, issue.6721, pp.702-708, 1999.

K. Barton, The Ets-1 transcription factor is required for the development of natural killer cells in mice, Immunity, vol.9, issue.4, pp.555-63, 1998.

S. Kim, In vivo developmental stages in murine natural killer cell maturation, Nat Immunol, vol.3, issue.6, pp.523-531, 2002.

A. O. Dokun, Specific and nonspecific NK cell activation during virus infection, Nat Immunol, vol.2, issue.10, pp.951-957, 2001.
DOI : 10.1038/ni714

E. Narni-mancinelli, Fate mapping analysis of lymphoid cells expressing the NKp46 cell surface receptor, Proc Natl Acad Sci, vol.108, issue.45, pp.18324-18333, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00672199

Y. Hayakawa and M. J. Smyth, CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity, J Immunol, vol.176, issue.3, pp.1517-1541, 2006.
DOI : 10.4049/jimmunol.176.3.1517

URL : http://www.jimmunol.org/content/176/3/1517.full.pdf

Y. Hayakawa, Functional subsets of mouse natural killer cells, Immunol Rev, vol.214, pp.47-55, 2006.

L. Chiossone, Maturation of mouse NK cells is a 4-stage developmental program, Blood, vol.113, issue.22, pp.5488-96, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00407779

M. A. Caligiuri, Human natural killer cells, Blood, vol.112, issue.3, pp.461-470, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00431858

L. L. Lanier, The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes, J Immunol, vol.136, issue.12, pp.4480-4486, 1986.

I. M. Bennett, Definition of a natural killer NKR-P1A+/CD56-/CD16-functionally immature human NK cell subset that differentiates in vitro in the presence of interleukin 12, J Exp Med, vol.184, issue.5, pp.1845-56, 1996.

L. L. Wang, Inducible expression of the gp49B inhibitory receptor on NK cells, J Immunol, vol.164, issue.10, pp.5215-5235, 2000.

C. Gregoire, The trafficking of natural killer cells, Immunol Rev, vol.220, pp.169-82, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00297259

T. Walzer, Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor, Nat Immunol, vol.8, issue.12, pp.1337-1381, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00297257

O. Wald, IFN-gamma acts on T cells to induce NK cell mobilization and accumulation in target organs, J Immunol, vol.176, issue.8, pp.4716-4745, 2006.

S. Chen, Suppression of tumor formation in lymph nodes by L-selectinmediated natural killer cell recruitment, J Exp Med, vol.202, issue.12, pp.1679-89, 2005.

A. Martin-fontecha, Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming, Nat Immunol, vol.5, issue.12, pp.1260-1265, 2004.

E. Vivier, Functions of natural killer cells, Nat Immunol, vol.9, issue.5, pp.503-513, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00294184

M. J. Smyth, New aspects of natural-killer-cell surveillance and therapy of cancer, Nat Rev Cancer, vol.2, issue.11, pp.850-61, 2002.

E. Tomasello, Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells, Semin Immunol, vol.12, issue.2, pp.139-186, 2000.

H. J. Pegram, Activating and inhibitory receptors of natural killer cells, Immunol Cell Biol, vol.89, issue.2, pp.216-240, 2011.

S. Sivori, TLR/NCR/KIR: Which One to Use and When? Front Immunol, vol.5, p.105, 2014.

S. S. Farag, Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect, Blood, vol.100, issue.6, pp.1935-1982, 2002.

S. Heidenreich, Impact of the NK cell receptor LIR-1 (ILT-2/CD85j/LILRB1) on cytotoxicity against multiple myeloma, Clin Dev Immunol, p.652130, 2012.

T. L. Chapman, A. P. Heikeman, and P. J. Bjorkman, The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18, Immunity, vol.11, issue.5, pp.603-616, 1999.

D. Saverino, The CD85/LIR-1/ILT2 inhibitory receptor is expressed by all human T lymphocytes and down-regulates their functions, J Immunol, vol.165, issue.7, pp.3742-55, 2000.

M. Colonna, A novel family of Ig-like receptors for HLA class I molecules that modulate function of lymphoid and myeloid cells, J Leukoc Biol, vol.66, issue.3, pp.375-81, 1999.

H. S. Warren and M. J. Smyth, NK cells and apoptosis, Immunol Cell Biol, vol.77, issue.1, pp.64-75, 1999.

L. L. Lanier, Structural and serological heterogeneity of gamma/delta T cell antigen receptor expression in thymus and peripheral blood, Eur J Immunol, vol.18, issue.12, pp.1985-92, 1988.

Y. T. Bryceson, Activation, coactivation, and costimulation of resting human natural killer cells, Immunol Rev, vol.214, pp.73-91, 2006.

V. Dardalhon, CD226 is specifically expressed on the surface of Th1 cells and regulates their expansion and effector functions, J Immunol, vol.175, issue.3, pp.1558-65, 2005.

S. Seth, Heterogeneous expression of the adhesion receptor CD226 on murine NK and T cells and its function in NK-mediated killing of immature dendritic cells, J Leukoc Biol, vol.86, issue.1, pp.91-101, 2009.

C. J. Chan, DNAM-1/CD155 interactions promote cytokine and NK cellmediated suppression of poorly immunogenic melanoma metastases, J Immunol, vol.184, issue.2, pp.902-913, 2010.

K. Shibuya, Physical and functional association of LFA-1 with DNAM-1 adhesion molecule, Immunity, vol.11, issue.5, pp.615-638, 1999.

C. Bottino, Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule, J Exp Med, vol.198, issue.4, pp.557-67, 2003.

L. Martinet, DNAM-1 expression marks an alternative program of NK cell maturation, Cell Rep, vol.11, issue.1, pp.85-97, 2015.

Z. Zhang, DNAM-1 controls NK cell activation via an ITT-like motif, J Exp Med, vol.212, issue.12, pp.2165-82, 2015.

D. H. Verhoeven, NK cells recognize and lyse Ewing sarcoma cells through NKG2D and DNAM-1 receptor dependent pathways, Mol Immunol, vol.45, issue.15, pp.3917-3942, 2008.

T. Lakshmikanth, NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo, J Clin Invest, vol.119, issue.5, pp.1251-63, 2009.

D. Cho, Cytotoxicity of activated natural killer cells against pediatric solid tumors, Clin Cancer Res, vol.16, issue.15, pp.3901-3910, 2010.

G. Magri, NKp46 and DNAM-1 NK-cell receptors drive the response to human cytomegalovirus-infected myeloid dendritic cells overcoming viral immune evasion strategies, Blood, vol.117, issue.3, pp.848-56, 2011.

G. Matusali, The human immunodeficiency virus type 1 Nef and Vpu proteins downregulate the natural killer cell-activating ligand PVR, J Virol, vol.86, issue.8, pp.4496-504, 2012.

K. Hudspeth, B. Silva-santos, and D. Mavilio, Natural cytotoxicity receptors: broader expression patterns and functions in innate and adaptive immune cells. Front Immunol, vol.4, p.69, 2013.

M. Vitale, NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis, J Exp Med, vol.187, issue.12, pp.2065-72, 1998.

A. Fuchs, Paradoxic inhibition of human natural interferon-producing cells by the activating receptor NKp44, Blood, vol.106, issue.6, pp.2076-82, 2005.

B. Meresse, Reprogramming of CTLs into natural killer-like cells in celiac disease, J Exp Med, vol.203, issue.5, pp.1343-55, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00166286

N. Satoh-takayama, Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense, Immunity, vol.29, issue.6, pp.958-70, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01402754

E. Vivier, H. Spits, and T. Cupedo, Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair?, Nat Rev Immunol, vol.9, issue.4, pp.229-263, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00408427

C. Luci, Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin, Nat Immunol, vol.10, issue.1, pp.75-82, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00403251

S. L. Sanos, RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells, Nat Immunol, vol.10, issue.1, pp.83-91, 2009.

M. Sternberg-simon, Natural killer cell inhibitory receptor expression in humans and mice: a closer look, Front Immunol, vol.4, p.65, 2013.

N. Dimasi and R. Biassoni, Structural and functional aspects of the Ly49 natural killer cell receptors, Immunol Cell Biol, vol.83, issue.1, pp.1-8, 2005.

B. Ljutic, Functional requirements for signaling through the stimulatory and inhibitory mouse NKR-P1 (CD161) NK cell receptors, J Immunol, vol.174, issue.8, pp.4789-96, 2005.

J. G. Aust, The expression and function of the NKRP1 receptor family in C57BL/6 mice, J Immunol, vol.183, issue.1, pp.106-122, 2009.

D. Pozo, CD161 (human NKR-P1A) signaling in NK cells involves the activation of acid sphingomyelinase, J Immunol, vol.176, issue.4, pp.2397-406, 2006.

M. Lopez-botet and T. Bellon, Natural killer cell activation and inhibition by receptors for MHC class I, Curr Opin Immunol, vol.11, issue.3, pp.301-308, 1999.

F. Borrego, Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells, Mol Immunol, vol.38, issue.9, pp.637-60, 2002.

B. K. Kaiser, Interactions between NKG2x immunoreceptors and HLA-E ligands display overlapping affinities and thermodynamics, J Immunol, vol.174, issue.5, pp.2878-84, 2005.

M. Vales-gomez, Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E. Embo j, vol.18, pp.4250-60, 1999.

M. T. Orr, Development and function of CD94-deficient natural killer cells, PLoS One, vol.5, issue.12, p.15184, 2010.

D. H. Raulet, Roles of the NKG2D immunoreceptor and its ligands, Nat Rev Immunol, vol.3, issue.10, pp.781-90, 2003.

S. Bauer, Activation of NK cells and T cells by NKG2D, a receptor for stressinducible MICA, Science, vol.285, issue.5428, pp.727-736, 1999.

E. Vivier, E. Tomasello, and P. Paul, Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition?, Curr Opin Immunol, vol.14, issue.3, pp.306-317, 2002.

J. Zhang, F. Basher, and J. D. Wu, NKG2D Ligands in Tumor Immunity: Two Sides of a Coin. Front Immunol, vol.6, p.97, 2015.

N. W. Zwirner, Cytokine-driven regulation of NK cell functions in tumor immunity: role of the MICA-NKG2D system, Cytokine Growth Factor Rev, vol.18, issue.1-2, pp.159-70, 2007.

A. Muntasell, Inhibition of NKG2D expression in NK cells by cytokines secreted in response to human cytomegalovirus infection, Blood, vol.115, issue.25, pp.5170-5179, 2010.

Q. Guo and C. Zhang, Critical role of Toll-like receptor signaling in NK cell activation, Chinese Science Bulletin, vol.57, issue.24, pp.3192-3202, 2012.

S. Sivori, CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells, Proc Natl Acad Sci U S A, vol.101, issue.27, pp.10116-10137, 2004.

C. Guillerey, Toll-like receptor 3 regulates NK cell responses to cytokines and controls experimental metastasis, Oncoimmunology, vol.4, issue.9, p.1027468, 2015.

T. Akazawa, Antitumor NK activation induced by the Toll-like receptor 3-TICAM-1 (TRIF) pathway in myeloid dendritic cells, Proc Natl Acad Sci, vol.104, issue.1, pp.252-259, 2007.

S. Pisegna, p38 MAPK activation controls the TLR3-mediated up-regulation of cytotoxicity and cytokine production in human NK cells, Blood, vol.104, issue.13, pp.4157-64, 2004.

T. Kawai and S. Akira, Toll-like receptor and RIG-I-like receptor signaling, Ann N Y Acad Sci, vol.1143, pp.1-20, 2008.

S. Mccartney, Distinct and complementary functions of MDA5 and TLR3 in poly(I:C)-mediated activation of mouse NK cells, J Exp Med, vol.206, issue.13, pp.2967-76, 2009.

S. M. Ngoi, M. G. Tovey, and A. T. Vella, Targeting poly(I:C) to the TLR3-independent pathway boosts effector CD8 T cell differentiation through IFN-alpha/beta, J Immunol, vol.181, issue.11, pp.7670-80, 2008.

A. A. Maghazachi, G protein-coupled receptors in natural killer cells, J Leukoc Biol, vol.74, issue.1, pp.16-24, 2003.

D. D. Taub, Alpha and beta chemokines induce NK cell migration and enhance NK-mediated cytolysis, J Immunol, vol.155, issue.8, pp.3877-88, 1995.

A. Al-aoukaty, T. J. Schall, and A. A. Maghazachi, Differential coupling of CC chemokine receptors to multiple heterotrimeric G proteins in human interleukin-2-activated natural killer cells, Blood, vol.87, issue.10, pp.4255-60, 1996.

M. J. Robertson, Role of chemokines in the biology of natural killer cells, J Leukoc Biol, vol.71, issue.2, pp.173-83, 2002.

M. Nieto, Roles of chemokines and receptor polarization in NK-target cell interactions, J Immunol, vol.161, issue.7, pp.3330-3339, 1998.

O. Yoneda, Fractalkine-mediated endothelial cell injury by NK cells, J Immunol, vol.164, issue.8, pp.4055-62, 2000.

K. Rajasekaran, Signaling by Fyn-ADAP via the Carma1-Bcl-10-MAP3K7 signalosome exclusively regulates inflammatory cytokine production in NK cells, Nat Immunol, vol.14, issue.11, pp.1127-1163, 2013.

E. Vivier, S. Ugolini, and J. A. Nunes, ADAPted secretion of cytokines in NK cells, Nat Immunol, vol.14, issue.11, pp.1108-1118, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01038082

J. A. Trapani, Proapoptotic functions of cytotoxic lymphocyte granule constituents in vitro and in vivo, Curr Opin Immunol, vol.12, issue.3, pp.323-332, 2000.

M. L. Dustin and E. O. Long, Cytotoxic immunological synapses, Immunol Rev, vol.235, issue.1, pp.24-34, 2010.

E. R. Podack, H. Hengartner, and M. G. Lichtenheld, A central role of perforin in cytolysis?, Annu Rev Immunol, vol.9, pp.129-57, 1991.

J. S. Orange, Formation and function of the lytic NK-cell immunological synapse, Nat Rev Immunol, vol.8, issue.9, pp.713-738, 2008.

A. Cohnen, Surface CD107a/LAMP-1 protects natural killer cells from degranulation-associated damage, Blood, vol.122, issue.8, pp.1411-1419, 2013.

M. A. Cooper, T. A. Fehniger, and M. A. Caligiuri, The biology of human natural killer-cell subsets, Trends Immunol, vol.22, issue.11, pp.633-673, 2001.

D. Kagi, Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice, Nature, vol.369, issue.6475, pp.31-38, 1994.

M. J. Smyth, Perforin is a major contributor to NK cell control of tumor metastasis, J Immunol, vol.162, issue.11, pp.6658-62, 1999.

S. E. Stepp, Perforin gene defects in familial hemophagocytic lymphohistiocytosis, Science, vol.286, issue.5446, pp.1957-1966, 1999.

M. J. Smyth, Cytokines in cancer immunity and immunotherapy. Immunol Rev, vol.202, pp.275-93, 2004.

B. Motyka, Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis, Cell, vol.103, issue.3, pp.491-500, 2000.

G. Alter, J. M. Malenfant, and M. Altfeld, CD107a as a functional marker for the identification of natural killer cell activity, J Immunol Methods, vol.294, issue.1-2, pp.15-22, 2004.

Y. T. Bryceson, Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells, J Exp Med, vol.202, issue.7, pp.1001-1013, 2005.

L. Zamai, Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells, J Exp Med, vol.188, issue.12, pp.2375-80, 1998.

C. Chester, K. Fritsch, and H. E. Kohrt, Natural Killer Cell Immunomodulation: Targeting Activating, Inhibitory, and Co-stimulatory Receptor Signaling for Cancer Immunotherapy. Front Immunol, vol.6, p.601, 2015.
DOI : 10.3389/fimmu.2015.00601

URL : https://www.frontiersin.org/articles/10.3389/fimmu.2015.00601/pdf

M. A. Cooper, Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood, vol.97, pp.3146-51, 2001.

W. E. Carson, Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor, J Exp Med, vol.180, issue.4, pp.1395-403, 1994.

E. A. Grimm, Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes, J Exp Med, vol.155, issue.6, pp.1823-1864, 1982.

M. A. Cooper, Cytokine-induced memory-like natural killer cells, Proc Natl Acad Sci, vol.106, issue.6, pp.1915-1924, 2009.
DOI : 10.1073/pnas.0813192106

URL : http://www.pnas.org/content/106/6/1915.full.pdf

K. B. Nguyen, Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection, J Immunol, vol.169, issue.8, pp.4279-87, 2002.

N. Zucchini, Natural killer cells in immunodefense against infective agents, Expert Rev Anti Infect Ther, vol.6, issue.6, pp.867-85, 2008.
DOI : 10.1586/14787210.6.6.867

URL : http://europepmc.org/articles/pmc2676939?pdf=render

M. J. Loza, Expression of type 1 (interferon gamma) and type 2 (interleukin-13, interleukin-5) cytokines at distinct stages of natural killer cell differentiation from progenitor cells, Blood, vol.99, issue.4, pp.1273-81, 2002.

D. B. Stetson, Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function, J Exp Med, vol.198, issue.7, pp.1069-76, 2003.
DOI : 10.1084/jem.20030630

URL : http://jem.rupress.org/content/198/7/1069.full.pdf

U. Boehm, Cellular responses to interferon-gamma, Annu Rev Immunol, vol.15, pp.749-95, 1997.

J. R. Schoenborn, Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferongamma, Nat Immunol, vol.8, issue.7, pp.732-774, 2007.

M. O. Li, Transforming growth factor-beta regulation of immune responses, Annu Rev Immunol, vol.24, pp.99-146, 2006.

H. Schindler, The production of IFN-gamma by IL-12/IL-18-activated macrophages requires STAT4 signaling and is inhibited by IL-4, J Immunol, vol.166, issue.5, pp.3075-82, 2001.

R. Dhiman, IL-22 produced by human NK cells inhibits growth of Mycobacterium tuberculosis by enhancing phagolysosomal fusion, J Immunol, vol.183, issue.10, pp.6639-6684, 2009.
DOI : 10.4049/jimmunol.0902587

URL : http://www.jimmunol.org/content/183/10/6639.full.pdf

A. Horowitz, K. A. Stegmann, and E. M. Riley, Activation of natural killer cells during microbial infections. Front Immunol, vol.2, p.88, 2011.
DOI : 10.3389/fimmu.2011.00088

URL : https://www.frontiersin.org/articles/10.3389/fimmu.2011.00088/pdf

N. J. Topham and E. W. Hewitt, Natural killer cell cytotoxicity: how do they pull the trigger? Immunology, vol.128, pp.7-15, 2009.
DOI : 10.1111/j.1365-2567.2009.03123.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2567.2009.03123.x

M. J. Smyth, Activation of NK cell cytotoxicity, Mol Immunol, vol.42, issue.4, pp.501-511, 2005.
DOI : 10.1016/j.molimm.2004.07.034

B. N. Jaeger and E. Vivier, Natural killer cell tolerance: control by self or selfcontrol?, Cold Spring Harb Perspect Biol, vol.4, issue.3, 2012.
DOI : 10.1101/cshperspect.a007229

URL : https://hal.archives-ouvertes.fr/hal-00685519

K. Karre, Natural killer cell recognition of missing self, Nat Immunol, vol.9, issue.5, pp.477-80, 2008.

M. Uhrberg, Human diversity in killer cell inhibitory receptor genes, Immunity, vol.7, issue.6, pp.753-63, 1997.

D. H. Raulet and R. E. Vance, Self-tolerance of natural killer cells, Nat Rev Immunol, vol.6, issue.7, pp.520-551, 2006.

P. Hoglund and P. Brodin, Current perspectives of natural killer cell education by MHC class I molecules, Nat Rev Immunol, vol.10, issue.10, pp.724-758, 2010.

S. Gasser and D. H. Raulet, Activation and self-tolerance of natural killer cells, Immunol Rev, vol.214, pp.130-172, 2006.

P. Brodin, The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells, Blood, vol.113, issue.11, pp.2434-2475, 2009.

N. T. Joncker, NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: the rheostat model, J Immunol, vol.182, issue.8, pp.4572-80, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00408430

A. Chalifour, A Role for cis Interaction between the Inhibitory Ly49A receptor and MHC class I for natural killer cell education, Immunity, vol.30, issue.3, pp.337-384, 2009.

Y. Kerdiles, S. Ugolini, and E. Vivier, T cell regulation of natural killer cells, J Exp Med, vol.210, issue.6, pp.1065-1073, 2013.

E. Narni-mancinelli, S. Ugolini, and E. Vivier, Tuning the threshold of natural killer cell responses, Curr Opin Immunol, vol.25, issue.1, pp.53-61, 2013.

E. Narni-mancinelli, Tuning of natural killer cell reactivity by NKp46 and Helios calibrates T cell responses, Science, vol.335, issue.6066, pp.344-352, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00685893

J. M. Elliott, J. A. Wahle, and W. M. Yokoyama, MHC class I-deficient natural killer cells acquire a licensed phenotype after transfer into an MHC class I-sufficient environment, J Exp Med, vol.207, issue.10, pp.2073-2082, 2010.

C. Watzl, Natural killer cell regulation -beyond the receptors, vol.6, p.87, 1000.

T. A. Fehniger, Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs, Immunity, vol.26, issue.6, pp.798-811, 2007.

T. Walzer, Natural-killer cells and dendritic cells: "l'union fait la force, Blood, vol.106, issue.7, pp.2252-2260, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00079034

Y. T. Bryceson and E. O. Long, Line of attack: NK cell specificity and integration of signals, Curr Opin Immunol, vol.20, issue.3, pp.344-52, 2008.

M. Lucas, Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity, vol.26, pp.503-520, 2007.

E. O. Long, Ready for prime time: NK cell priming by dendritic cells, Immunity, vol.26, issue.4, pp.385-392, 2007.

F. Bihl, Primed antigen-specific CD4+ T cells are required for NK cell activation in vivo upon Leishmania major infection, J Immunol, vol.185, issue.4, pp.2174-81, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00724243

F. Ghiringhelli, CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner, J Exp Med, vol.202, issue.8, pp.1075-85, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00020140

M. J. Smyth, CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer, J Immunol, vol.176, issue.3, pp.1582-1589, 2006.

T. Kottke, Use of biological therapy to enhance both virotherapy and adoptive T-cell therapy for cancer, Mol Ther, vol.16, issue.12, pp.1910-1918, 2008.

P. Pandiyan, CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells, Nat Immunol, vol.8, issue.12, pp.1353-62, 2007.

T. E. O'sullivan, J. C. Sun, and L. L. Lanier, Natural Killer Cell Memory. Immunity, vol.43, issue.4, pp.634-679, 2015.

A. M. Jamieson, Turnover and proliferation of NK cells in steady state and lymphopenic conditions, J Immunol, vol.172, issue.2, pp.864-70, 2004.

J. G. O'leary, T cell-and B cell-independent adaptive immunity mediated by natural killer cells, Nat Immunol, vol.7, issue.5, pp.507-523, 2006.

S. Paust, Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses, Nat Immunol, vol.11, issue.12, pp.1127-1162, 2010.

J. C. Sun, NK cells and immune "memory, J Immunol, vol.186, issue.4, pp.1891-1898, 2011.

H. Arase, Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors, Science, vol.296, issue.5571, pp.1323-1329, 2002.

J. C. Sun, J. N. Beilke, and L. L. Lanier, Adaptive immune features of natural killer cells, Nature, vol.457, issue.7229, pp.557-61, 2009.

R. Koka, Cutting edge: murine dendritic cells require IL-15R alpha to prime NK cells, J Immunol, vol.173, issue.6, pp.3594-3602, 2004.

M. Della-chiesa, The natural killer cell-mediated killing of autologous dendritic cells is confined to a cell subset expressing CD94/NKG2A, but lacking inhibitory killer Ig-like receptors, Eur J Immunol, vol.33, issue.6, pp.1657-66, 2003.

M. A. Degli-esposti and M. J. Smyth, Close encounters of different kinds: dendritic cells and NK cells take centre stage, Nat Rev Immunol, vol.5, issue.2, pp.112-136, 2005.

K. Pallmer and A. Oxenius, Recognition and Regulation of T Cells by NK Cells. Front Immunol, 2016.

F. Deauvieau, Lessons from NK Cell Deficiencies in the Mouse, Curr Top Microbiol Immunol, vol.395, pp.173-90, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01440235

S. Johansson, NK cells: elusive players in autoimmunity, Trends Immunol, vol.26, issue.11, pp.613-621, 2005.

J. S. Orange and Z. K. Ballas, Natural killer cells in human health and disease, Clin Immunol, vol.118, issue.1, pp.1-10, 2006.

O. Mandelboim, Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells, Nature, vol.409, issue.6823, pp.1055-60, 2001.

A. A. Scalzo, The interplay between host and viral factors in shaping the outcome of cytomegalovirus infection, Immunol Cell Biol, vol.85, issue.1, pp.46-54, 2007.

A. M. Tobin, Natural killer cells in psoriasis, J Innate Immun, vol.3, issue.4, pp.403-413, 2011.

B. Zhang, Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells, J Exp Med, vol.186, issue.10, pp.1677-87, 1997.

W. Xu, Mechanism of natural killer (NK) cell regulatory role in experimental autoimmune encephalomyelitis, J Neuroimmunol, vol.163, issue.1-2, pp.24-30, 2005.

I. S. Schuster, TRAIL+ NK cells control CD4+ T cell responses during chronic viral infection to limit autoimmunity, Immunity, vol.41, issue.4, pp.646-56, 2014.

J. Enk and O. Mandelboim, The Role of Natural Cytotoxicity Receptors in Various Pathologies: Emphasis on Type I Diabetes. Front Immunol, 2014.

C. Gur, Recognition and killing of human and murine pancreatic beta cells by the NK receptor NKp46, J Immunol, vol.187, issue.6, pp.3096-103, 2011.

N. Dalbeth and M. F. Callan, A subset of natural killer cells is greatly expanded within inflamed joints, Arthritis Rheum, vol.46, issue.7, pp.1763-72, 2002.

A. Mandal and C. Viswanathan, Natural killer cells: In health and disease, Hematol Oncol Stem Cell Ther, vol.8, issue.2, pp.47-55, 2015.

S. Ong, N. R. Rose, and D. Cihakova, Natural killer cells in inflammatory heart disease, Clin Immunol, vol.175, pp.26-33, 2017.

F. M. Erkeller-yuksel, P. M. Lydyard, and D. A. Isenberg, Lack of NK cells in lupus patients with renal involvement, Lupus, vol.6, issue.9, pp.708-720, 1997.

L. Jonasson, K. Backteman, and J. Ernerudh, Loss of natural killer cell activity in patients with coronary artery disease, Atherosclerosis, vol.183, issue.2, pp.316-337, 2005.

K. Backteman, J. Ernerudh, and L. Jonasson, Natural killer (NK) cell deficit in coronary artery disease: no aberrations in phenotype but sustained reduction of NK cells is associated with low-grade inflammation, Clin Exp Immunol, vol.175, issue.1, pp.104-116, 2014.

B. B. Ayach, Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction, Proc Natl Acad Sci, vol.103, issue.7, pp.2304-2313, 2006.

F. Colucci, M. A. Caligiuri, and J. P. Di-santo, What does it take to make a natural killer, Nat Rev Immunol, vol.3, issue.5, pp.413-438, 2003.

M. Bouchentouf, Induction of cardiac angiogenesis requires killer cell lectinlike receptor 1 and alpha4beta7 integrin expression by NK cells, J Immunol, vol.185, issue.11, pp.7014-7039, 2010.

E. K. Godeny and C. J. Gauntt, Involvement of natural killer cells in coxsackievirus B3-induced murine myocarditis, J Immunol, vol.137, issue.5, pp.1695-702, 1986.

L. H. Young, Perforin-mediated myocardial damage in acute myocarditis, Lancet, vol.336, issue.8722, pp.1019-1040, 1990.

T. A. Kosierkiewicz, S. M. Factor, and D. W. Dickson, Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms, J Neuropathol Exp Neurol, vol.53, issue.4, pp.399-406, 1994.

S. C. Whitman, Depletion of natural killer cell function decreases atherosclerosis in low-density lipoprotein receptor null mice, Arterioscler Thromb Vasc Biol, vol.24, issue.6, pp.1049-54, 2004.

Y. V. Bobryshev and R. S. Lord, Identification of natural killer cells in human atherosclerotic plaque, Atherosclerosis, vol.180, issue.2, pp.423-430, 2005.

A. Selathurai, Natural killer (NK) cells augment atherosclerosis by cytotoxicdependent mechanisms, Cardiovasc Res, vol.102, issue.1, pp.128-165, 2014.

G. Clerc and P. M. Rouz, Lymphocyte subsets in severe atherosclerosis before revascularization, Ann Intern Med, vol.126, issue.12, pp.1004-1009, 1997.

H. Bruunsgaard, Decreased natural killer cell activity is associated with atherosclerosis in elderly humans, Exp Gerontol, vol.37, issue.1, pp.127-163, 2001.

D. M. Ward, Use of expression constructs to dissect the functional domains of the CHS/beige protein: identification of multiple phenotypes, Traffic, vol.4, issue.6, pp.403-418, 2003.

B. Paigen, Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice, Arteriosclerosis, vol.10, issue.2, pp.316-339, 1990.

N. K. Schiller, W. A. Boisvert, and L. K. Curtiss, Inflammation in atherosclerosis: lesion formation in LDL receptor-deficient mice with perforin and Lyst(beige) mutations, Arterioscler Thromb Vasc Biol, vol.22, issue.8, pp.1341-1347, 2002.

J. C. Roder, A new immunodeficiency disorder in humans involving NK cells, Nature, vol.284, issue.5756, pp.553-558, 1980.

M. F. Linton, A. S. Major, and S. Fazio, Proatherogenic role for NK cells revealed, Arterioscler Thromb Vasc Biol, vol.24, issue.6, pp.992-996, 2004.

K. To, NKT cell subsets mediate differential proatherogenic effects in ApoE-/-mice, Arterioscler Thromb Vasc Biol, vol.29, issue.5, pp.671-678, 2009.

L. Oberg, Expression of Ly49A on T cells alters the threshold for T cell responses, Eur J Immunol, vol.30, issue.10, pp.2849-56, 2000.

E. Tupin, CD1d-dependent activation of NKT cells aggravates atherosclerosis, J Exp Med, vol.199, issue.3, pp.417-439, 2004.

H. Nishikado, NK cell-depleting anti-asialo GM1 antibody exhibits a lethal off-target effect on basophils in vivo, J Immunol, vol.186, issue.10, pp.5766-71, 2011.

R. H. Wiltrout, Reactivity of anti-asialo GM1 serum with tumoricidal and nontumoricidal mouse macrophages, J Leukoc Biol, vol.37, issue.5, pp.597-614, 1985.

J. Trambley, Asialo GM1(+) CD8(+) T cells play a critical role in costimulation blockade-resistant allograft rejection, J Clin Invest, vol.104, issue.12, pp.1715-1737, 1999.

U. Lee, Murine asialo GM1+CD8+ T cells as novel interleukin-12-responsive killer T cell precursors, Jpn J Cancer Res, vol.87, issue.5, pp.429-461, 1996.
DOI : 10.1111/j.1349-7006.1996.tb00241.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1349-7006.1996.tb00241.x

C. J. Murray, Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study, Lancet, vol.380, issue.9859, pp.2197-223, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00827610

P. Libby, A. H. Lichtman, and G. K. Hansson, Immune Effector Mechanisms Implicated in Atherosclerosis: From Mice to Humans. Immunity, vol.38, pp.1092-1104, 2013.

T. Kyaw, Cytotoxic and proinflammatory CD8+ T lymphocytes promote development of vulnerable atherosclerotic plaques in apoE-deficient mice, Circulation, vol.127, issue.9, pp.1028-1067, 2013.

M. Xia, Immune activation resulting from NKG2D/ligand interaction promotes atherosclerosis. Circulation, vol.124, pp.2933-2976, 2011.
DOI : 10.1161/circulationaha.111.034850

URL : https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.111.034850

R. D. Berahovich, Evidence for NK Cell Subsets Based on Chemokine Receptor Expression, The Journal of Immunology, vol.177, issue.11, pp.7833-7840, 2006.

H. Umehara, Fractalkine in vascular biology: from basic research to clinical disease, Arterioscler Thromb Vasc Biol, vol.24, issue.1, pp.34-40, 2004.