V. Achard, J. Martiel, A. Michelot, C. Guérin, A. Reymann et al., A "Primer"-Based Mechanism Underlies Branched Actin Filament Network Formation and Motility, Curr. Biol, vol.20, pp.423-428, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00469496

J. C. Adams, Roles of fascin in cell adhesion and motility, Current Opinion in Cell Biology, vol.16, pp.590-596, 2004.

U. Aebi, R. Millonig, H. Salvo, and A. Engel, The Three-Dimensional Structure of the Actin Filament Revisiteda, Annals of the New York Academy of Sciences, vol.483, pp.100-119, 1986.

R. Aguilar-cuenca, A. Juanes-garcía, and M. Vicente-manzanares, Myosin II in mechanotransduction: master and commander of cell migration, morphogenesis, and cancer, Cellular and Molecular Life Sciences, vol.71, pp.479-492, 2014.

O. Akin and R. D. Mullins, Capping Protein Increases the Rate of Actin-based Motility by Promoting Filament Nucleation by the Arp2/3 Complex, Cell, vol.133, pp.841-851, 2008.

A. S. Alberts, Identification of a Carboxyl-terminal Diaphanous-related Formin Homology Protein Autoregulatory Domain, Journal of Biological Chemistry, vol.276, pp.2824-2830, 2001.

J. Alvarado, M. Sheinman, A. Sharma, F. C. Mackintosh, and G. H. Koenderink, Molecular motors robustly drive active gels to a critically connected state, Nature Physics, vol.9, pp.591-597, 2013.

K. Aoyagi, I. Shima, M. Wang, Y. Hu, F. U. Garcia et al., Specific transcription factors prognostic for prostate cancer progression, Clinical Cancer Research, vol.4, pp.2153-2160, 1998.

M. Baldassarre, Z. Razinia, N. N. Brahme, R. Buccione, and D. A. Calderwood, 2012. Filamin A controls matrix metalloproteinase activity and regulates cell invasion in human fibrosarcoma cells, Journal of Cell Science, vol.125, pp.3858-3869

J. R. Bartles, Parallel Actin Bundles and Their Multiple Actin-bundling Proteins. Current Opinion in Cell Biology, vol.12, pp.72-78, 2000.

M. Barzik, T. I. Kotova, H. N. Higgs, L. Hazelwood, D. Hanein et al., Ena/VASP Proteins Enhance Actin Polymerization in the Presence of Barbed End Capping Proteins, Journal of Biological Chemistry, vol.280, pp.28653-28662, 2005.

S. Benesch, S. Lommel, A. Steffen, T. E. Stradal, N. Scaplehorn et al., Phosphatidylinositol 4,5-Biphosphate (PIP2)-induced Vesicle Movement Depends on N-WASP and Involves Nck, WIP, and Grb2, Journal of Biological Chemistry, vol.277, pp.37771-37776, 2002.

M. Bergert, S. D. Chandradoss, R. A. Desai, and E. Paluch, Cell mechanics control rapid transitions between blebs and lamellipodia during migration, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.14434-14439, 2012.

L. Blanchoin, R. Boujemaa-paterski, C. Sykes, and J. Plastino, Architecture, and Mechanics in Cell Motility. Physiological Reviews, vol.94, pp.235-263, 2014.

M. Bovellan, Y. Romeo, M. Biro, A. Boden, P. Chugh et al., Cellular Control of Cortical Actin Nucleation. Current Biology, vol.24, pp.1628-1635, 2014.

E. T. Bowden, E. Onikoyi, R. Slack, A. Myoui, T. Yoneda et al., Co-localization of cortactin and phosphotyrosine identifies active invadopodia in human breast cancer cells, Experimental Cell Research, vol.312, pp.1240-1253, 2006.

D. Breitsprecher, A. K. Kiesewetter, J. Linkner, C. Urbanke, G. P. Resch et al., Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation, EMBO Journal, vol.27, pp.2943-2954, 2008.

D. Breitsprecher, A. K. Kiesewetter, J. Linkner, M. Vinzenz, T. Stradal et al., Molecular mechanism of Ena/VASP-mediated actin-filament elongation, EMBO Journal, vol.30, pp.456-467, 2011.

A. Bretscher and K. Weber, Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures, The Journal of Cell Biology, vol.86, pp.335-340, 1980.

R. Caceres and J. Plastino, Cytoskeleton dynamics: actin in cell invasion Encyclopedia of Life Sciences, 2017.

K. G. Campellone and M. D. Welch, A nucleator arms race: cellular control of actin assembly, Nature Reviews Molecular Cell Biology, vol.11, pp.237-251, 2010.

G. Carmona, U. Perera, C. Gillett, A. Naba, A. L. Law et al., Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE, Oncogene, vol.35, pp.5155-5169, 2016.

J. A. Caruso and P. M. Stemmer, Proteomic profiling of lipid rafts in a human breast cancer model of tumorigenic progression, Clinical and Experimental Metastasis, vol.28, pp.529-540, 2011.

G. Charras and E. Paluch, Blebs lead the way: how to migrate without lamellipodia, Nature Reviews Molecular Cell Biology, vol.9, pp.730-736, 2008.

G. T. Charras, M. Coughlin, T. J. Mitchison, and L. Mahadevan, Life and Times of a Cellular Bleb, Biophysical Journal, vol.94, pp.1836-1853, 2008.

G. T. Charras, C. Hu, M. Coughlin, and T. J. Mitchison, Reassembly of contractile actin cortex in cell blebs, The Journal of Cell Biology, vol.175, pp.477-490, 2006.

X. J. Chen, A. J. Squarr, R. Stephan, B. Chen, T. E. Higgins et al., Ena/VASP Proteins Cooperate with the WAVE Complex to Regulate the Actin Cytoskeleton, Developmental Cell, vol.30, pp.569-584, 2014.

M. A. Chesarone, A. G. Dupage, and B. L. Goode, Unleashing formins to remodel the actin and microtubule cytoskeletons, Nature Reviews Molecular Cell Biology, vol.11, pp.62-74, 2010.

R. Christian, H. Ben, M. Claas-von, M. Rebecca, H. Alf et al., Exploring single-molecule dynamics with fluorescence nanoscopy, New Journal of Physics, vol.11, p.103054, 2009.

C. Co, D. T. Wong, S. Gierke, V. Chang, and J. Taunton, Mechanism of Actin Network Attachment to Moving Membranes: Barbed End Capture by N-WASP WH2 Domains, Cell, vol.128, pp.901-913, 2007.

D. S. Courson and R. S. Rock, Actin Cross-link Assembly and Disassembly Mechanics for ?-Actinin and Fascin, The Journal of Biological Chemistry, vol.285, pp.26350-26357, 2010.

M. J. Dayel, O. Akin, M. Landeryou, V. Risca, A. Mogilner et al., In silico reconstitution of actin-based symmetry breaking and motility, PLOS Biol, vol.7, p.1000201, 2009.

M. V. De-arruda, S. Watson, C. S. Lin, J. Leavitt, and P. Matsudaira, Fimbrin is a homologue of the cytoplasmic phosphoprotein plastin and has domains homologous with calmodulin and actin gelation proteins, The Journal of Cell Biology, vol.111, pp.1069-1079, 1990.

C. R. Demaso, I. Kovacevic, A. Uzun, and E. J. Cram, Structural and Functional Evaluation of C. elegans Filamins FLN-1 and FLN-2, PLOS One, vol.6, p.22428, 2011.

D. Vizio, D. , J. Kim, M. H. Hager, M. Morello et al., Oncosome Formation in Prostate Cancer: Association with a Region of Frequent Chromosomal Deletion in Metastatic Disease, Cancer Research, vol.69, pp.5601-5609, 2009.

W. Y. Ding, H. T. Ong, Y. Hara, J. Wongsantichon, Y. Toyama et al., Plastin increases cortical connectivity to facilitate robust polarization and timely cytokinesis, The Journal of Cell Biology, vol.216, pp.1371-1386, 2017.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli et al., Macromolecular-scale resolution in biological fluorescence microscopy, Proc. Natl. Acad. Sci. USA, vol.103, pp.11440-11445, 2006.

L. K. Doolittle, M. K. Rosen, and S. B. Padrick, Measurement and Analysis of in vitro Actin Polymerization, Methods in molecular biology, vol.1046, pp.273-293, 2013.

S. Eden, R. Rohatgi, A. V. Podtelejnikov, M. Mann, and M. W. Kirschner, Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck, Nature, vol.418, pp.790-793, 2002.

H. M. Eilken and R. H. Adams, Dynamics of endothelial cell behavior in sprouting angiogenesis, Current Opinion in Cell Biology, vol.22, pp.617-625, 2010.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, vol.126, pp.677-689, 2006.

K. A. Estes and W. Hanna-rose, The anchor cell initiates dorsal lumen formation during C. elegans vulval tubulogenesis, Developmental Biology, vol.328, pp.297-304, 2009.

S. Farooqui, W. Mark, I. Pellegrino, M. K. Rimann, L. Morf et al., Coordinated Lumen Contraction and Expansion during Vulval Tube Morphogenesis in Caenorhabditis elegans, Developmental Cell, vol.23, pp.494-506, 2012.

L. A. Flanagan, J. Chou, H. Falet, R. Neujahr, J. H. Hartwig et al., Filamin A, the Arp2/3 complex, and the morphology and function of cortical actin filaments in human melanoma cells, The Journal of Cell Biology, vol.155, pp.511-518, 2001.

D. A. Fletcher and R. D. Mullins, Cell mechanics and the cytoskeleton, Nature, vol.463, pp.485-492, 2010.

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. Kim, A. Celedon et al., A distinctive role for focal adhesion proteins in threedimensional cell motility, Nature Cell Biology, vol.12, pp.598-604, 2010.

G. R. Francis and R. H. Waterston, Muscle organization in Caenorhabditis elegans: localization of proteins implicated in thin filament attachment and I-band organization, The Journal of Cell Biology, vol.101, pp.1532-1549, 1985.

P. Friedl and K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms, Nature Reviews Cancer, vol.3, pp.362-374, 2003.

L. K. Fritz-laylin, S. J. Lord, and R. D. Mullins, WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility, The Journal of Cell Biology, vol.216, pp.1673-1688, 2017.

M. Fukumoto, S. Kurisu, T. Yamada, and T. Takenawa, ?-Actinin-4 Enhances Colorectal Cancer Cell Invasion by Suppressing Focal Adhesion Maturation, PLOS One, vol.10, p.120616, 2015.

C. Gally, F. Wissler, H. Zahreddine, S. Quintin, F. Landmann et al., Myosin II regulation during C. elegans embryonic elongation: LET-502/ROCK, MRCK-1 and PAK-1, three kinases with different roles, Development, vol.136, pp.3109-3119, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00420802

S. Geraldo, A. Simon, N. Elkhatib, D. Louvard, L. Fetler et al., Do cancer cells have distinct adhesions in 3D collagen matrices and in vivo?, European Journal of Cell Biology, vol.91, pp.930-937, 2012.

A. Giri, S. Bajpai, N. Trenton, H. Jayatilaka, G. D. Longmore et al., The Arp2/3 complex mediates multigeneration dendritic protrusions for efficient 3-dimensional cancer cell migration, The FASEB Journal, vol.27, pp.4089-4099, 2013.

Z. Gitai, T. W. Yu, E. A. Lundquist, M. Tessier-lavigne, and C. I. Bargmann, The Netrin Receptor UNC-40/DCC Stimulates Axon Attraction and Outgrowth through Enabled and, in Parallel, Rac and UNC-115/AbLIM, Neuron, vol.37, pp.53-65, 2003.

M. A. Goldstein, J. P. Schroeter, and R. L. Sass, The Z lattice in canine cardiac muscle, The Journal of Cell Biology, vol.83, pp.187-204, 1979.

J. B. Gorlin, R. Yamin, S. Egan, M. Stewart, T. P. Stossel et al., Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring, The Journal of Cell Biology, vol.111, pp.1089-1105, 1990.

T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N. T. Urban et al., Diffraction-unlimited all-optical imaging and writing with a photochromic GFP, Nature, vol.478, pp.204-208, 2011.

E. J. Hagedorn, L. C. Kelley, K. M. Naegeli, Z. Wang, Q. Chi et al., ADF/cofilin promotes invadopodial membrane recycling during cell invasion in vivo, The Journal of Cell Biology, vol.204, pp.1209-1218, 2014.

E. J. Hagedorn and D. R. Sherwood, Cell invasion through basement membrane: the anchor cell breaches the barrier, Current Opinion in Cell Biology, vol.23, pp.589-596, 2011.

E. J. Hagedorn, H. Yashiro, J. W. Ziel, S. Ihara, Z. Wang et al., Integrin Acts Upstream of Netrin Signaling to Regulate Formation of the Anchor Cell's Invasive Membrane in C. elegans, Developmental Cell, vol.17, pp.187-198, 2009.

E. J. Hagedorn, J. W. Ziel, M. A. Morrissey, L. M. Linden, Z. Wang et al., The netrin receptor DCC focuses invadopodia-driven basement membrane transmigration in vivo, The Journal of Cell Biology, vol.201, pp.903-913, 2013.

D. Hanein and A. R. Horwitz, The structure of cell-matrix adhesions: the new frontier, Current Opinion in Cell Biology, vol.24, pp.134-140, 2012.

S. D. Hansen and R. D. Mullins, Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments, vol.4, p.6585, 2015.

J. H. Hartwig, K. A. Chambers, and T. P. Stossel, Association of gelsolin with actin filaments and cell membranes of macrophages and platelets, The Journal of Cell Biology, vol.108, pp.467-479, 1989.

J. H. Hartwig and T. P. Stossel, Structure of macrophage actin-binding protein molecules in solution and interacting with actin filaments, Journal of Molecular Biology, vol.145, pp.563-581, 1981.

S. Havrylenko, P. Noguera, M. Abou-ghali, J. Manzi, F. Faqir et al., WAVE binds Ena/VASP for enhanced Arp2/3 complex-based actin assembly, Molecular Biology of the Cell, vol.26, pp.55-65, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01142070

S. W. Hell, S. Jakobs, and L. Kastrup, Imaging and writing at the nanoscale with focused visible light through saturable optical transitions, Applied Physics A, vol.77, pp.859-860, 2003.

S. W. Hell and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Optics Letters, vol.19, pp.780-782, 1994.

H. N. Higgs, L. Blanchoin, and T. D. Pollard, Influence of the C terminus of WiskottAldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization, Biochemistry, vol.38, pp.15212-15222, 1999.

H. N. Higgs and T. D. Pollard, Activation by Cdc42 and Pip(2) of Wiskott-Aldrich Syndrome Protein (Wasp) Stimulates Actin Nucleation by Arp2/3 Complex, The Journal of Cell Biology, vol.150, pp.1311-1320, 2000.

E. Hohenester and P. D. Yurchenco, Laminins in basement membrane assembly, Cell Adhesion and Migration, vol.7, pp.56-63, 2013.

F. Huang, S. Han, B. Xing, J. Huang, B. Liu et al., Targeted inhibition of fascin function blocks tumour invasion and metastatic colonization, Nature Communications, vol.6, 2015.

B. J. Hwang, A. D. Meruelo, and P. W. Sternberg, 2007. C. elegans EVI1 proto-oncogene, EGL-43, is necessary for Notch-mediated cell fate specification and regulates cell invasion, Development, vol.134, pp.669-679

S. Ihara, E. J. Hagedorn, M. A. Morrissey, Q. Chi, F. Motegi et al., Basement membrane sliding and targeted adhesion remodels tissue boundaries during uterine vulval attachment in Caenorhabditis elegans, Nature Cell Biology, vol.13, pp.641-651, 2011.

A. M. Ismail, S. B. Padrick, B. Chen, J. Umetani, and M. K. Rosen, The WAVE Regulatory Complex is Inhibited, Nature structural & molecular biology, vol.16, pp.561-563, 2009.

S. Jansen, A. Collins, C. Yang, G. Rebowski, T. Svitkina et al., Mechanism of Actin Filament Bundling by Fascin, Journal of Biological Chemistry, vol.286, pp.30087-30096, 2011.

M. Kaucikas, M. Tros, and J. J. Van-thor, Photoisomerization and Proton Transfer in the Forward and Reverse Photoswitching of the Fast-Switching M159T Mutant of the Dronpa Fluorescent Protein, The Journal of Physical Chemistry B, vol.119, pp.2350-2362, 2015.

L. C. Kelley, L. L. Lohmer, E. J. Hagedorn, and D. R. Sherwood, Traversing the basement membrane in vivo: A diversity of strategies, The Journal of Cell Biology, vol.204, pp.291-302, 2014.

T. Kiema, Y. Lad, P. Jiang, C. L. Oxley, M. Baldassarre et al., The Molecular Basis of Filamin Binding to Integrins and Competition with Talin, Molecular Cell, vol.21, pp.337-347, 2006.

S. A. Koestler, A. Steffen, M. Nemethova, M. Winterhoff, N. Luo et al., Arp2/3 complex is essential for actin network treadmilling as well as for targeting of capping protein and cofilin, Molecular Biology of the Cell, vol.24, pp.2861-2875, 2013.

E. M. Kovacs, R. S. Makar, and F. B. Gertler, Tuba stimulates intracellular N-WASPdependent actin assembly, Journal of Cell Science, vol.119, pp.2715-2726, 2006.

D. R. Kovar, E. S. Harris, R. Mahaffy, H. N. Higgs, and T. D. Pollard, Control of the Assembly of ATP-and ADP-Actin by Formins and Profilin. Cell, vol.124, pp.423-435, 2006.

S. Kurisu and T. Takenawa, The WASP and WAVE family proteins, Genome Biology, vol.10, p.226, 2009.

S. Kurisu and T. Takenawa, WASP and WAVE family proteins: Friends or foes in cancer invasion?, Cancer Science, vol.101, pp.2093-2104, 2010.

T. Lämmermann and M. Sixt, Mechanical modes of 'amoeboid' cell migration, Current Opinion in Cell Biology, vol.21, pp.636-644, 2009.

V. Laurent, T. P. Loisel, B. Harbeck, A. Wehman, L. Gröbe et al., Role of proteins of the Ena-VASP family in actinbased motility of Listeria monocytogenes, The Journal of Cell Biology, vol.144, pp.1245-1258, 1999.

A. Law, A. Vehlow, M. Kotini, L. Dodgson, D. Soong et al., Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo, The Journal of Cell Biology, vol.203, pp.673-689, 2013.

K. Lee, J. L. Gallop, K. Rambani, and M. W. Kirschner, Self-assembly of filopodia-like structures on supported lipid bilayers, Science, vol.329, pp.1341-1345, 2010.

A. Leithner, A. Eichner, J. Müller, A. Reversat, M. Brown et al., Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes, Nature Cell Biology, vol.18, pp.1253-1259, 2016.

R. Levayer and T. Lecuit, Biomechanical regulation of contractility: spatial control and dynamics, Trends in Cell Biology, vol.22, pp.61-81, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00843477

A. K. Lewis and P. C. Bridgman, Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity, The Journal of Cell Biology, vol.119, pp.1219-1243, 1992.

D. Li, L. Shao, B. Chen, X. Zhang, M. Zhang et al.,

. Betzig, Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics, Science, vol.349, pp.3500-3500, 2015.

L. Liang, J. Guan, Y. Zeng, J. Wang, X. Li et al., Down-regulation of formin-like 2 predicts poor prognosis in hepatocellular carcinoma, Human Pathology, vol.42, pp.1603-1612, 2011.

S. Linder, C. Wiesner, and M. Himmel, Degrading Devices: Invadosomes in Proteolytic Cell Invasion, Annual Review of Cell and Developmental Biology, vol.27, pp.185-211, 2011.

Y. Liu, M. L. Berre, F. Lautenschlaeger, P. Maiuri, A. Callan-jones et al., Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells, Cell, vol.160, pp.659-672, 2015.

F. Lizárraga, R. Poincloux, M. Romao, G. Montagnac, G. L. Dez et al., Diaphanous-Related Formins Are Required for Invadopodia Formation and Invasion of Breast Tumor Cells, Cancer Research, vol.69, pp.2792-2800, 2009.

L. L. Lohmer, M. R. Clay, K. M. Naegeli, Q. Chi, J. W. Ziel et al., A Sensitized Screen for Genes Promoting Invadopodia Function In Vivo: CDC-42 and Rab GDI-1 Direct Distinct Aspects of Invadopodia Formation, PLOS Genetics, vol.12, p.1005786, 2016.

E. A. Lundquist, P. W. Reddien, E. Hartwieg, H. R. Horvitz, and C. I. Bargmann, Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis, Development, vol.128, pp.4475-4488, 2001.

P. K. Luther, Three-Dimensional Structure of a Vertebrate Muscle Z-band: Implications for Titin and ?-Actinin Binding, Journal of Structural Biology, vol.129, pp.1-16, 2000.

L. M. Machesky and R. H. Insall, Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex, Curr. Biol, vol.8, pp.1347-1356, 1998.

L. M. Machesky, R. D. Mullins, H. N. Higgs, D. A. Kaiser, L. Blanchoin et al., Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex, Proceedings of the National Academy of Sciences of the United States of America, vol.96, pp.3739-3744, 1999.

J. Marchand, D. A. Kaiser, T. D. Pollard, and H. N. Higgs, Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex, Nature Cell Biology, vol.3, pp.76-82, 2001.

T. Matsuoka and M. Yashiro, Rho/ROCK signaling in motility and metastasis of gastric cancer, World Journal of Gastroenterology, vol.20, pp.13756-13766, 2014.

D. Q. Matus, E. Chang, S. C. Makohon-moore, M. A. Hagedorn, Q. Chi et al., Cell Division and Targeted Cell Cycle Arrest Opens and Stabilizes Basement Membrane Gaps, Nature Communications, vol.5, pp.4184-4184, 2014.

D. Q. Matus, X. Li, S. Durbin, D. Agarwal, Q. Chi et al., In Vivo Identification of Regulators of Cell Invasion Across Basement Membranes, Science Signaling, vol.3, pp.1-9, 2010.

D. Q. Matus, L. Lauren, L. C. Lohmer, A. J. Kelley, A. Q. Schindler et al., Invasive Cell Fate Requires G1 Cell-Cycle Arrest and Histone Deacetylase-Mediated Changes in Gene Expression, Developmental Cell, vol.35, pp.162-174, 2015.

S. T. Mcclatchey, Z. Wang, L. M. Linden, E. L. Hastie, L. Wang et al., Boundary cells restrict dystroglycan trafficking to control basement membrane sliding during tissue remodeling, vol.5, p.17218, 2016.

A. M. Mcgough, C. J. Staiger, J. Min, and K. D. Simonetti, The gelsolin family of actin regulatory proteins: modular structures, versatile functions, FEBS Lett, vol.552, pp.75-81, 2003.

H. Miki, S. Suetsugu, and T. Takenawa, WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac, EMBO Journal, vol.17, pp.6932-6941, 1998.

H. Miki and T. Takenawa, Regulation of actin dynamics by WASP family proteins, Journal of Biochemistry, vol.134, pp.309-313, 2003.

N. Morone, T. Fujiwara, K. Murase, R. S. Kasai, H. Ike et al., Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography, The Journal of Cell Biology, vol.174, pp.851-862, 2006.

M. A. Morrissey, D. P. Keeley, E. J. Hagedorn, S. T. Mcclatchey, Q. Chi et al., B-LINK: a hemicentin, plakin, and integrin-dependent adhesion system that links tissues by connecting adjacent basement membranes, Developmental Cell, vol.31, pp.319-331, 2014.

G. L. Moulder, G. H. Cremona, J. Duerr, J. N. Stirman, S. D. Fields et al., 2010. ?-actinin is Required for Proper Assembly of Z-disk / Focal Adhesion-Like Structures and for Efficient Locomotion in Caenorhabditis elegans, Journal of Molecular Biology, vol.403, pp.516-528

R. D. Mullins, J. A. Heuser, and T. D. Pollard, The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments, Proceedings of the National Academy of Sciences of the United States of America, vol.95, pp.6181-6186, 1998.

D. A. Murphy and S. A. Courtneidge, The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function, Nature Reviews Molecular Cell Biology, vol.12, pp.413-426, 2011.

A. S. Nezhad and A. Geitmann, The cellular mechanics of an invasive lifestyle, Journal of Experimental Botany, vol.64, pp.4709-4728, 2013.

A. Nürnberg, T. Kitzing, and R. Grosse, Nucleating actin for invasion, Nature Reviews Cancer, vol.11, pp.177-187, 2011.

L. M. Nusblat, A. Dovas, and D. Cox, The non-redundant role of N-WASP in podosome-mediated matrix degradation in macrophages, European Journal of Cell Biology, vol.90, pp.205-212, 2011.

Y. Ohta, N. Suzuki, S. Nakamura, J. H. Hartwig, and T. P. Stossel, The small GTPase RalA targets filamin to induce filopodia, Proceedings of the National Academy of Sciences of the United States of America, vol.96, pp.2122-2128, 1999.

T. Oikawa, H. Yamaguchi, T. Itoh, M. Kato, T. Ijuin et al., PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia, Nature Cell Biology, vol.6, pp.420-426, 2004.

M. Oser, H. Yamaguchi, C. C. Mader, J. J. Bravo-cordero, M. Arias et al., Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation, The Journal of Cell Biology, vol.186, pp.571-587, 2009.

C. A. Otey and O. Carpen, ?-actinin revisited: A fresh look at an old player, Cell Motility and the Cytoskeleton, vol.58, pp.104-111, 2004.

E. Paluch, M. Piel, J. Prost, M. Bornens, and C. Sykes, Cortical Actomyosin Breakage Triggers Shape Oscillations in Cells and Cell Fragments, Biophysical Journal, vol.89, pp.724-733, 2005.

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg et al., Tensional homeostasis and the malignant phenotype, Cancer Cell, vol.8, pp.241-254, 2005.

F. B. Patel, Y. Y. Bernadskaya, E. Chen, A. Jobanputra, Z. Pooladi et al., The WAVE/SCAR complex promotes polarized cell movements and actin enrichment in epithelia during C. elegans embryogenesis, Developmental Biology, vol.324, pp.297-309, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00351005

N. R. Paul, J. L. Allen, A. Chapman, M. Morlan-mairal, E. Zindy et al., 2015. ?5?1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3, The Journal of Cell Biology, vol.210, pp.1013-1031
URL : https://hal.archives-ouvertes.fr/pasteur-01680196

R. J. Petrie, N. Gavara, R. S. Chadwick, and K. M. Yamada, Nonpolarized signaling reveals two disctinct modes of 3D cell migration, The Journal of Cell Biology, vol.197, pp.439-455, 2012.

R. J. Petrie and K. M. Yamada, At the leading edge of three-dimensional cell migration, Journal of Cell Science, vol.125, pp.5917-5926, 2012.

A. J. Piekny, A. Wissmann, and P. E. Mains, Embryonic Morphogenesis in Caenorhabditis elegans Integrates the Activity of LET-502 Rho-Binding Kinase, MEL-11 Myosin Phosphatase, DAF-2 Insulin Receptor and FEM-2 PP2c Phosphatase, Genetics, vol.156, pp.1671-1689, 2000.

S. Pinner and E. Sahai, Imaging amoeboid cancer cell motility in vivo, Journal of Microscopy, vol.231, pp.441-445, 2008.

T. D. Pollard, Rate constants for the reactions of ATP-and ADP-actin with the ends of actin filaments, The Journal of Cell Biology, vol.103, pp.2747-2754, 1986.

T. D. Pollard and G. G. Borisy, Cellular Motility Driven by Assembly and Disassembly of Actin Filaments, Cell, vol.112, pp.453-465, 2003.

M. Pring, A. Weber, and M. R. Bubb, Profilin-actin complexes directly elongate actin filaments at the barbed end, Biochemistry, vol.31, pp.1827-1836, 1992.

T. S. Randall and E. Ehler, A formin-g role during development and disease, European Journal of Cell Biology, vol.93, pp.205-211, 2014.

D. J. Reiner and E. A. Lundquist, Small GTPases. Wormbook, pp.1-99, 2016.

O. Revach and B. Geiger, The interplay between the proteolytic, invasive, and adhesive domains of invadopodia and their roles in cancer invasion, Cell Adhesion and Migration, vol.8, pp.215-225, 2014.

C. Revenu, R. Athman, S. Robine, and D. Louvard, The co-workers of actin filaments: from cell structures to signals, Nature Reviews Molecular Cell Biology, vol.5, pp.635-646, 2004.

I. Rimann and A. Hajnal, Regulation of anchor cell invasion and uterine cell fates by the egl-43 Evi-1 proto-oncogene in Caenorhabditis elegans, Developmental Biology, vol.308, pp.187-195, 2007.

R. Rohatgi, L. Ma, H. Miki, M. Lopez, H. Kirchausen et al., The interaction between N-Wasp and the Arp2/3 complex links Cdc42-dependent signals to actin assembly, Cell, vol.97, pp.221-231, 1999.

S. Romero, C. Le-clainche, D. Didry, C. Egile, D. Pantaloni et al., Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis, Cell, vol.119, pp.419-429, 2004.

K. Rottner, B. Behrendt, J. V. Small, and J. Wehland, VASP dynamics during lamellipodia protrusion, Nature Cell Biology, vol.1, pp.321-322, 1999.

J. D. Rotty, C. Wu, and J. E. Bear, New insights into the regulation and cellular functions of the Arp2/3 complex, Nature Reviews Molecular Cell Biology, vol.14, pp.7-12, 2013.

R. G. Rowe and S. J. Weiss, Navigating ECM Barriers at the Invasive Front: The Cancer Cell-Stroma Interface, Annual Review of Cell and Developmental Biology, vol.25, pp.567-595, 2009.

M. J. Rust, M. Bates, and X. Zhuang, Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution, Nature Methods, vol.3, pp.793-795, 2006.

F. Sabeh, I. Ota, K. Holmbeck, H. Birkedal-hansen, P. Soloway et al., Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP, The Journal of Cell Biology, vol.167, pp.769-781, 2004.

F. Sabeh, R. Shimizu-hirota, and S. J. Weiss, Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited, The Journal of Cell Biology, vol.185, pp.11-19, 2009.

E. Saez, S. E. Rutberg, E. Mueller, H. Oppenheim, J. Smoluk et al., c-fos is required for malignant progression of skin tumors, Cell, vol.82, pp.721-732, 1995.

M. Sawa, S. Suetsugu, A. Sugimoto, H. Miki, M. Yamamoto et al., Essential role of the C.elegans Arp2/3 complex in cell migration during ventral enclosure, Journal of Cell Science, vol.116, pp.1505-1518, 2003.

M. Schliwa and J. Van-blerkom, Structural interaction of cytoskeletal components, The Journal of Cell Biology, vol.90, pp.222-235, 1981.

T. Schmid and A. Hajnal, Signal transduction during C. elegans vulval development: a NeverEnding story, Current Opinion in Genetics and Development, vol.32, pp.1-9, 2015.

M. Schoumacher, R. D. Goldman, D. Louvard, and D. M. Vignjevic, Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia, The Journal of Cell Biology, vol.189, pp.541-556, 2010.

D. Sept and J. A. Mccammon, Thermodynamics and Kinetics of Actin Filament Nucleation, Biophysical Journal, vol.81, pp.667-674, 2001.

M. A. Shakir, K. Jiang, E. C. Struckhoff, R. S. Demarco, F. B. Patel et al., The Arp2/3 activators WAVE and WASP have distinct genetic interactions with Rac GTPases in Caenorhabditis elegans axon guidance, Genetics, vol.179, pp.1957-1971, 2008.

H. Shao, S. Li, S. C. Watkins, and A. Wells, 2014. ?-Actinin-4 Is Required for Amoeboidtype Invasiveness of Melanoma Cells, Journal of Biological Chemistry, vol.289, pp.32717-32728
URL : https://hal.archives-ouvertes.fr/hal-01281368

D. D. Shaye and I. Greenwald, The Disease-Associated Formin INF2/EXC-6 Organizes Lumen and Cell Outgrowth during Tubulogenesis by Regulating F-Actin and Microtubule Cytoskeletons, Developmental Cell, vol.32, pp.743-755, 2015.

C. A. Shelton, J. C. Carter, G. C. Ellis, and B. Bowerman, The Nonmuscle Myosin Regulatory Light Chain Gene mlc-4 Is Required for Cytokinesis, Anterior-Posterior Polarity, and Body Morphology during Caenorhabditis elegans Embryogenesis, The Journal of Cell Biology, vol.146, pp.439-451, 1999.

T. Shemesh, T. Otomo, M. K. Rosen, A. D. Bershadsky, and M. M. Kozlov, A novel mechanism of actin filament processive capping by formin: solution of the rotation paradox, The Journal of Cell Biology, vol.170, pp.889-893, 2005.

D. R. Sherwood, J. A. Butler, J. M. Kramer, and P. W. Sternberg, FOS-1 Promotes Basement-Membrane Removal during Anchor-Cell Invasion in C. elegans, Cell, vol.121, pp.951-962, 2005.

D. R. Sherwood and P. W. Sternberg, Anchor Cell Invasion into the Vulval Epithelium in C. elegans, Developmental Cell, vol.5, pp.21-31, 2003.

H. Shroff, H. White, and E. Betzig, Photoactivated Localization Microscopy (PALM) of Adhesion Complexes, Current Protocols in Cell Biology, 2013.

A. R. Skop, H. Liu, J. Yates, B. J. Meyer, and R. Heald, Dissection of the Mammalian Midbody Proteome Reveals Conserved Cytokinesis Mechanisms, Science, vol.305, pp.61-66, 2004.

J. V. Small, T. Stradal, E. Vignal, and K. Rottner, The lamellipodium: where motility begins, Trends in Cell Biology, vol.12, pp.112-120, 2002.

B. A. Smith, S. B. Padrick, L. K. Doolittle, K. Daugherty-clarke, I. R. Corrêa et al., Three-color single molecule imaging shows WASP detachment from Arp2/3 complex triggers actin filament branch formation, p.1008, 2013.

W. H. Stefan, J. S. Steffen, B. Mark, Z. Xiaowei, H. Rainer et al., The 2015 super-resolution microscopy roadmap, vol.48, p.443001, 2015.

R. P. Stevenson, D. Veltman, and L. M. Machesky, Actin-bundling proteins in cancer progression at a glance, Journal of Cell Science, vol.125, pp.1073-1079, 2012.

T. P. Stossel, J. Condeelis, L. Cooley, J. H. Hartwig, A. Noegel et al., Filamins as integrators of cell mechanics and signalling, Nature Reviews Molecular Cell Biology, vol.2, pp.138-145, 2001.

S. Suei, J. Plastino, and L. Kreplak, Fascin and VASP synergistically increase the Young's modulus of actin comet tails, J. Struct. Biol, vol.177, pp.40-45, 2012.

P. Suraneni, B. Rubinstein, J. R. Unruh, M. Durnin, D. Hanein et al., The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration, The Journal of Cell Biology, vol.197, pp.239-251, 2012.

T. M. Svitkina and G. G. Borisy, Arp2/3 Complex and Actin Depolymerizing Factor/Cofilin in Dendritic Organization and Treadmilling of Actin Filament Array in Lamellipodia, The Journal of Cell Biology, vol.145, pp.1009-1026, 1999.

T. M. Svitkina, E. A. Bulanova, O. Y. Chaga, D. M. Vignjevic, S. Kojima et al., Mechanism of filopodia initiation by reorganization of a dendritic network, The Journal of Cell Biology, vol.160, pp.409-421, 2003.

K. Takahashi and K. Suzuki, WAVE2, N-WASP, and mena facilitate cell invasion via phosphatidylinositol 3-kinase-dependent local accumulation of actin filaments, Journal of Cellular Biochemistry, vol.112, pp.3421-3429, 2011.

T. Takenawa, Phosphoinositide-binding interface proteins involved in shaping cell membranes, Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, vol.86, pp.509-523, 2010.

I. Testa, T. Nicolai, S. Urban, C. Jakobs, K. I. Eggeling et al., Nanoscopy of Living Brain Slices with Low Light Levels, Neuron, vol.75, pp.992-1000, 2012.

H. Thiam, P. Vargas, N. Carpi, C. L. Crespo, M. Raab et al., Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments, Nature Communications, vol.7, p.10997, 2016.

J. P. Thiery, Epithelial-mesenchymal transitions in tumour progression, Nature Reviews Cancer, vol.2, pp.442-454, 2002.

J. Tinevez, U. Schulze, G. Salbreux, J. Roensch, J. Joanny et al., Role of cortical tension in bleb growth, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.18581-18586, 2009.

Y. Tseng, T. P. Kole, J. S. Lee, E. Fedorov, S. C. Almo et al., How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response, Biochemical and Biophysical Research Communications, vol.334, pp.183-192, 2005.

P. Vargas, P. Maiuri, M. Bretou, P. J. Saez, P. Pierobon et al.,

P. Alberts, S. Sunareni, R. Xia, R. Li, M. Voituriez et al., Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells, Nature Cell Biology, vol.18, pp.43-53, 2016.

D. Vestweber, How leukocytes cross the vascular endothelium, Nature Reviews Immunology, vol.15, pp.692-704, 2015.

M. Vicente-manzanares and A. R. Horwitz, Adhesion dynamics at a glance, Journal of Cell Science, vol.124, pp.3923-3927, 2011.

D. Vignjevic, Y. S.-i.-kojima, O. Aratyn, T. Danciu, G. G. Svitkina et al., Role of fascin in filopodial protrusion, The Journal of Cell Biology, vol.174, pp.863-875, 2006.

D. Vignjevic, M. Schoumacher, N. Gavert, K. Janssen, G. Jih et al., Fascin, a Novel Target of ?-Catenin-TCF Signaling, Is Expressed at the Invasive Front of Human Colon Cancer, Cancer Research, vol.67, pp.6844-6853, 2007.

M. Voisin, D. Pröbstl, and S. Nourshargh, Venular Basement Membranes Ubiquitously Express Matrix Protein Low-Expression Regions: Characterization in Multiple Tissues and Remodeling during Inflammation, The American Journal of Pathology, vol.176, pp.482-495, 2010.

N. Volkmann, D. Derosier, P. Matsudaira, and D. Hanein, An Atomic Model of Actin Filaments Cross-Linked by Fimbrin and Its Implications for Bundle Assembly and Function, The Journal of Cell Biology, vol.153, pp.947-956, 2001.

E. Walck-shannon, B. Lucas, I. Chin-sang, D. Reiner, K. Kumfer et al., CDC-42 orients cell migration during epithelial intercalation in the Caenorhabditis elegans epidermis, PLOS Genetics, vol.12, p.1006415, 2016.

E. Walck-shannon, D. Reiner, and J. Hardin, Polarized Rac-dependent protrusions drive epithelial intercalation in the embryonic epidermis of C. elegans, Development, vol.142, pp.3549-3560, 2015.

L. Wang, W. Shen, S. Lei, D. Matus, D. Sherwood et al., MIG-10 (Lamellipodin) stabilizes invading cell adhesion to basement membrane and is a negative transcriptional target of EGL-43 in C, elegans. Biochemical and Biophysical Research Communications, vol.452, pp.328-333, 2014.

Z. Wang, Q. Chi, and D. R. Sherwood, MIG-10 (lamellipodin) has netrin-independent functions and is a FOS-1A transcriptional target during anchor cell invasion in C. elegans, Development, vol.141, pp.1342-1353, 2014.

Z. Wang, L. M. Linden, K. M. Naegeli, J. W. Ziel, Q. Chi et al., UNC-6 (netrin) stabilizes oscillatory clustering of the UNC-40 (DCC) receptor to orient polarity, The Journal of Cell Biology, vol.206, pp.619-633, 2014.

N. Watanabe, T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya, Cooperation between mDia1 and ROCK in Rho-induced actin reorganization, Nature Cell Biology, vol.1, pp.136-143, 1999.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs et al., Nanoscale resolution in GFP-based microscopy, Nature Methods, vol.3, pp.721-723, 2006.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis, Nature, vol.440, pp.935-939, 2006.

A. Wissmann, J. Ingles, and P. E. Mains, TheCaenorhabditis elegans mel-11Myosin Phosphatase Regulatory Subunit Affects Tissue Contraction in the Somatic Gonad and the Embryonic Epidermis and Genetically Interacts with the Rac Signaling Pathway, Developmental Biology, vol.209, pp.111-127, 1999.

J. Withee, B. Galligan, N. Hawkins, and G. Garriga, Caenorhabditis elegans WASP and Ena/VASP protiens play compensatory roles in morphogenesis and neuronal cell migration, Genetics, vol.167, pp.1165-1176, 2004.

K. Wolf, I. Mazo, H. Leung, K. Engelke, U. H. Von-andrian et al., Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis, The Journal of Cell Biology, vol.160, pp.267-277, 2003.

K. Wolf, M. Lindert, M. Krause, S. Alexander, J. Riet et al., Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force, The Journal of Cell Biology, vol.201, pp.1069-1084, 2013.

J. A. Wood, S. J. Liliensiek, P. Russell, P. F. Nealey, and C. J. Murphy, Biophysical Cueing and Vascular Endothelial Cell Behavior. Materials, vol.3, p.1620, 2010.

C. Wu, S. B. Asokan, M. E. Berginski, E. M. Haynes, N. E. Sharpless et al., Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis, Cell, vol.148, pp.973-987, 2012.

Y. Xu, T. A. Bismar, J. Su, B. Xu, G. Kristiansen et al., Filamin A regulates focal adhesion disassembly and suppresses breast cancer cell migration and invasion, The Journal of Experimental Medicine, vol.207, pp.2421-2437, 2010.

H. Yamaguchi, M. Lorenz, S. Kempiak, C. Sarmiento, S. Coniglio et al., Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin, The Journal of Cell Biology, vol.168, pp.441-452, 2005.

C. Yang and T. Svitkina, Filopodia initiation, Cell Adhesion and Migration, vol.5, pp.402-408, 2011.

X. Yu, T. Zech, L. Mcdonald, E. G. Gonzalez, A. Li et al., N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods, The Journal of Cell Biology, vol.199, pp.527-544, 2012.

J. Zalevsky, I. Grigorova, and R. D. Mullins, Activation of the Arp2/3 Complex by the Listeria ActA Protein, Journal of Biological Chemistry, vol.276, pp.3468-3475, 2001.

J. Zalevsky, L. Lempert, H. Kranitz, and R. D. Mullins, Different WASP family proteins stimulate different Arp2/3 complex-dependent actin-nucleating activities, Current Biology, vol.11, pp.1903-1913, 2001.

X. Zhu, L. Liang, and Y. Ding, Overexpression of FMNL2 is closely related to metastasis of colorectal cancer, International Journal of Colorectal Disease, vol.23, p.1041, 2008.

Z. Zhu, Y. Chai, Y. Jiang, W. Li, H. Hu et al., Functional Coordination of WAVE and WASP in C. elegans Neuroblast Migration, Developmental Cell, vol.39, pp.224-238, 2016.

J. W. Ziel, E. J. Hagedorn, A. Audhya, and D. R. Sherwood, UNC-6 (Netrin) Orients the Invasive Membrane of the Anchor Cell in C. elegans, Nature Cell Biology, vol.11, pp.183-189, 2009.

R. Bear, J. E. Gertler, and F. B. , Ena/VASP: towards resolving a pointed controversy at the barbed end, Journal of Cell Science, vol.122, pp.1947-1953, 2009.

M. Bergert, S. D. Chandradoss, R. A. Desai, and E. Paluch, Cell mechanics control rapid transitions between blebs and lamellipodia during migration, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.14434-14439, 2012.

L. Blanchoin, R. Boujemaa-paterski, C. Sykes, and J. Plastino, Actin dynamics, architecture, and mechanics in cell motility, Physiological Reviews, vol.94, pp.235-263, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00943523

M. Bovellan, Y. Romeo, and M. Biro, Cellular control of cortical actin nucleation, Current Biology, vol.24, pp.1628-1635, 2014.

K. G. Campellone and M. D. Welch, A nucleator arms race: cellular control of actin assembly, Nature Reviews Molecular Cell Biology, vol.11, pp.237-251, 2010.

G. Charras and E. Paluch, Blebs lead the way: how to migrate without lamellipodia, Nature Reviews Molecular Cell Biology, vol.9, pp.730-736, 2008.

H. M. Eilken and R. H. Adams, Dynamics of endothelial cell behavior in sprouting angiogenesis, Current Opinion in Cell Biology, vol.22, pp.617-625, 2010.

J. Faix and K. Rottner, The making of ilopodia, Current Opinion in Cell Biology, vol.18, pp.18-25, 2006.

A. Fantin, A. Lampropoulou, and G. Gestri, NRP1 regulates CDC42 activation to promote ilopodia formation in endothelial tip cells, Cell Reports, vol.11, pp.1577-1590, 2015.

C. Furman, A. L. Sieminski, and A. V. Kwiatkowski, Ena/VASP is required for endothelial barrier function in vivo, The Journal of Cell Biology, vol.179, pp.761-775, 2007.

B. L. Goode and M. J. Eck, Mechanism and function of formins in the control of actin assembly, Annual Review of Biochemistry, vol.76, pp.593-627, 2007.

E. J. Hagedorn, L. C. Kelley, and K. M. Naegeli, ADF/coilin promotes invadopodial membrane recycling during cell invasion in vivo, The Journal of Cell Biology, vol.204, pp.1209-1218, 2014.

E. J. Hagedorn, J. W. Ziel, and M. A. Morrissey, The netrin receptor DCC focuses invadopodia-driven basement membrane transmigration in vivo, The Journal of Cell Biology, vol.201, pp.903-913, 2013.

E. Hohenester and P. D. Yurchenco, Laminins in basement membrane assembly, Cell Adhesion & Migration, vol.7, pp.56-63, 2013.

A. Juin, E. Planus, and F. Guillemot, Extracellular matrix rigidity controls podosome induction in microvascular endothelial cells, Biology of the Cell, vol.105, pp.46-57, 2013.

S. Kurisu and T. Takenawa, WASP and WAVE family proteins: friends or foes in cancer invasion?, Cancer Science, vol.101, pp.2093-2104, 2010.

T. Lämmermann and M. Sixt, Mechanical modes of 'amoeboid' cell migration, Current Opinion in Cell Biology, vol.21, pp.636-644, 2009.

S. Linder and M. Aepfelbacher, Podosomes: adhesion hot-spots of invasive cells, Trends in Cell Biology, vol.13, pp.376-385, 2003.

Y. Liu, L. Berre, M. Lautenschlaeger, and F. , Coninement and low adhesion induce fast amoeboid migration of slow mesenchymal cells, Cell, vol.160, pp.659-672, 2015.

L. L. Lohmer, M. R. Clay, and K. M. Naegeli, A sensitized screen for genes promoting invadopodia function in vivo: CDC-42 and Rab GDI-1 direct distinct aspects of invadopodia formation, PLOS Genetics, vol.12, p.1005786, 2016.

C. Luxenburg, S. Winograd-katz, A. L. Geiger, and B. , Involvement of actin polymerization in podosome dynamics, Journal of Cell Science, vol.125, pp.1666-1672, 2012.

A. I. Mcclatchey and R. G. Fehon, Merlin and the ERM proteins -regulators of receptor distribution and signaling at the cell cortex, Trends in Cell Biology, vol.19, pp.198-206, 2009.

M. Meddens, E. Pandzic, and J. A. Slotman, Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization, Nature Communications, vol.7, p.13127, 2016.

M. A. Morrissey, D. P. Keeley, and E. J. Hagedorn, B-LINK: a hemicentin, plakin, and integrin-dependent adhesion system that links tissues by connecting adjacent basement membranes, Developmental Cell, vol.31, pp.319-331, 2014.

M. Da and S. A. Courtneidge, The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function, Nature Reviews Molecular Cell Biology, vol.12, pp.413-426, 2011.

A. Nürnberg, T. Kitzing, and R. Grosse, Nucleating actin for invasion, Nature Reviews Cancer, vol.11, pp.177-187, 2011.

M. J. Paszek, N. Zahir, and K. R. Johnson, Tensional homeostasis and the malignant phenotype, Cancer Cell, vol.8, pp.241-254, 2005.

R. Poincloux, O. Collin, and F. Lizárraga, Contractility of the cell rear drives invasion of breast tumor cells in 3D matrigel, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.1943-1948, 2011.

T. D. Pollard and G. G. Borisy, Cellular motility driven by assembly and disassembly of actin ilaments, Cell, vol.112, pp.453-465, 2003.

D. Proebstl, M. Voisin, and A. Woodin, Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo, The Journal of Experimental Medicine, vol.209, pp.1219-1234, 2012.

O. Revach, A. Weiner, and K. Rechav, Mechanical interplay between invadopodia and the nucleus in cultured cancer cells, Scientiic Reports, vol.5, p.9466, 2015.

R. Rg and S. J. Weiss, Navigating ECM barriers at the invasive front: the cancer cell-stroma interface, Annual Review of Cell and Developmental Biology, vol.25, pp.567-595, 2009.

G. Salbreux, G. Charras, and E. Paluch, Actin cortex mechanics and cellular morphogenesis, Trends in Cell Biology, vol.22, pp.536-545, 2012.

M. Schoumacher, R. D. Goldman, D. Louvard, and D. M. Vignjevic, Actin, microtubules, and vimentin intermediate ilaments cooperate for elongation of invadopodia, The Journal of Cell Biology, vol.189, pp.541-556, 2010.

G. Seano and L. Primo, Podosomes and invadopodia: tools to breach vascular basement membrane, Cell Cycle, vol.14, pp.1370-1374, 2015.

V. P. Sharma, R. Eddy, and D. Entenberg, Tks5 and SHIP2 regulate invadopodium maturation, but not initiation, in breast carcinoma cells, Current Biology, vol.23, pp.2079-2089, 2013.

H. Sibony-benyamini, G. , and H. , Invadopodia: the leading force, Eur J Cell Biol, vol.91, pp.896-901, 2012.

R. P. Stevenson, D. Veltman, and L. M. Machesky, Actin-bundling proteins in cancer progression at a glance, Journal of Cell Science, vol.125, pp.1073-1079, 2012.

. T-h-i-a-mh--r-,v-a-r-g-a-sp, Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments, Nature Communications, vol.7, p.10997, 2016.

J. P. Thiery, Epithelial-mesenchymal transitions in tumour progression, Nature Reviews Cancer, vol.2, pp.442-454, 2002.

P. Vargas, P. Maiuri, and M. Bretou, Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells, Nature Cell Biology, vol.18, pp.43-53, 2016.

D. Vestweber, How leukocytes cross the vascular endothelium, Nature Reviews Immunology, vol.15, pp.692-704, 2015.

M. Voisin, P. D. Nourshargh, and S. , Venular basement membranes ubiquitously express matrix protein low-expression regions: characterization in multiple tissues and remodeling during Inlammation, The American Journal of Pathology, vol.176, pp.482-495, 2010.

Y. Wakayama, S. Fukuhara, K. Ando, M. Matsuda, and N. Mochizuki, Cdc42 mediates Bmp-induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial ilopodia in zebraish, Developmental Cell, vol.32, pp.109-122, 2015.

L. Wang, W. Shen, and S. Lei, MIG-10 (Lamellipodin) stabilizes invading cell adhesion to basement membrane and is a negative transcriptional target of EGL-43 in C, elegans. Biochemical and Biophysical Research Communications, vol.452, pp.328-333, 2014.

D. Wirtz, K. Konstantopoulos, and P. C. Searson, The physics of cancer: the role of physical interactions and mechanical forces in metastasis, Nature Reviews Cancer, vol.11, pp.512-522, 2011.

K. Wolf, I. Mazo, and H. Leung, Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis, The Journal of Cell Biology, vol.160, pp.267-277, 2003.

H. Yamaguchi, M. Lorenz, and S. Kempiak, Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and coilin, The Journal of Cell Biology, vol.168, pp.441-452, 2005.

D. Yamazaki, S. Suetsugu, and H. Miki, WAVE2 is required for directed cell migration and cardiovascular development, Nature, vol.424, pp.452-456, 2003.

J. W. Ziel, E. J. Hagedorn, A. A. Sherwood, and D. R. , UNC-6 (netrin) orients the invasive membrane of the anchor cell in C. elegans, Nature Cell Biology, vol.11, pp.183-189, 2009.

B. Further-reading, . Bt, and J. Condeelis, Digging a little deeper: the stages of invadopodium formation and maturation, European Journal of Cell Biology, vol.93, pp.438-444, 2014.

P. Friedl, E. Sahai, S. Weiss, and K. M. Yamada, New dimensions in cell migration, Nature Reviews Molecular Cell Biology, vol.11, pp.743-747, 2012.

A. Glentis, V. Gurchenkov, and D. M. Vignjevic, Assembly, heterogeneity and breaching of basement membranes, Cell Adhesion & Migration, vol.8, pp.236-245, 2014.

E. J. Hagedorn and D. R. Sherwood, Cell invasion through basement membrane: the anchor cell breaches the barrier, Current Opinion in Cell Biology, vol.23, pp.589-596, 2011.

L. L. Lohmer, L. C. Kelley, E. J. Hagedorn, and D. R. Sherwood, Invadopodia and basement membrane invasion in vivo, Cell Adhesion & Migration, vol.8, pp.246-255, 2014.

A. Parekh and A. M. Weaver, Regulation of invadopodia by mechanical signaling, Experimental Cell Research, vol.343, pp.89-95, 2016.

T. D. Pollard, Rate constants for the reactions of ATP-and ADP-actin with the ends of actin filaments, J. Cell Biol, vol.103, pp.2747-2754, 1986.

T. D. Pollard, L. Blanchoin, and R. D. Mullins, Molecular mechanisms controlling actin filament dynamics in nonmuscle cells, Annu. Rev. Biophys. Biomol. Struct, vol.29, pp.545-576, 2000.

D. Brüggemann, J. P. Frohnmayer, and J. P. Spatz, Model systems for studying cell adhesion and biomimetic actin networks, Beilstein J. Nanotechnol, vol.5, pp.1193-1202, 2014.

S. K. Vogel and P. Schwille, Minimal systems to study membrane-cytoskeleton interactions, Curr. Opin. Biotechnol, vol.23, pp.758-765, 2012.

R. D. Mullins and S. D. Hansen, In vitro studies of actin filament and network dynamics, Curr. Opin. Cell Biol, vol.25, pp.6-13, 2013.

A. P. Liu and D. A. Fletcher, Biology under construction: in vitro reconstitution of cellular function, Nat. Rev. Mol. Cell Biol, vol.10, pp.644-650, 2009.

M. Loose and P. Schwille, Biomimetic membrane systems to study cellular organization, J. Struct. Biol, vol.168, pp.143-151, 2009.

L. G. Tilney and M. S. Tilney, The wily ways of a parasite: induction of actin assembly by Listeria, Trends Microbiol, vol.1, pp.25-31, 1993.

P. Cossart, Actin-based bacterial motility, Curr. Opin. Cell Biol, vol.7, pp.94-101, 1995.

J. A. Theriot and T. J. Mitchison, Actin microfilament dynamics in locomoting cells, Nature, vol.352, pp.126-131, 1991.

J. A. Theriot, T. J. Mitchison, L. G. Tilney, and D. A. Portnoy, The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization, Nature, vol.357, pp.257-260, 1992.

C. S. Peskin, G. M. Odell, and G. F. Oster, Cellular motions and thermal fluctuations: the Brownian ratchet, Biophys. J, vol.65, pp.316-324, 1993.

A. Mogilner and G. Oster, Cell motility driven by actin polymerization, Biophys. J, vol.71, pp.3030-3045, 1996.

E. Gouin, H. Gantelet, C. Egile, I. Lasa, H. Ohayon et al., A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii, J. Cell Sci, vol.112, pp.1697-1708, 1999.

S. Pistor, T. Chakraborty, U. Walter, and J. Wehland, The bacterial actin nucleator protein ActA of Listeria monocytogenes contains multiple binding sites for host microfilament proteins, Curr. Biol, vol.5, pp.517-525, 1995.

A. Sechi, J. Wehland, and J. V. Small, The isolated comet tail pseudopodium of Listeria monocytogenes: a tail of two actin filament populations, long and axial and short and random, J. Cell Biol, vol.137, pp.155-167, 1997.

J. Skoble, D. A. Portnoy, and M. D. Welch, Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility, J. Cell Biol, vol.150, pp.527-537, 2000.

J. Skoble, V. Auerbuch, E. D. Goley, M. D. Welch, and D. A. Portnoy, Pivotal role of VASP in Arp2/3 complex-mediated actin nucleation, actin branch-formation, and Listeria monocytogenes motility, J. Cell Biol, vol.155, pp.89-100, 2001.

J. J. Loureiro, D. A. Rubinson, J. E. Bear, G. A. Baltus, A. V. Kwiatkowski et al., Critical roles of phosphorylation and actin binding motifs, but not the central prolinerich region, for Ena/Vasodilator-stimulated Phosphoprotein (VASP) function during cell migration, Mol. Biol. Cell, vol.13, pp.2533-2546, 2002.

M. Geese, J. J. Loureiro, J. E. Bear, J. Wehland, F. B. Gertler et al., Contribution of Ena/VASP proteins to intracellular motility of Listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization, Mol. Biol. Cell, vol.13, pp.2383-2396, 2002.

P. A. Giardini and J. A. Theriot, Effects of intermediate filaments on actin-based motility of Listeria monocytogenes, Biophys. J, vol.81, pp.3193-3203, 2001.

F. Gerbal, V. Laurent, A. Ott, M. Carlier, P. Chaikin et al., Measurement of the elasticity of the actin tail of Listeria monocytogenes,E u r .B i o p h y s, J, vol.2, issue.9, pp.134-140

J. A. Theriot, J. Rosenblatt, D. A. Portnoy, P. J. Goldschimdt-clermont, and T. J. Mitchison, Involvement of profilin in the actin-based motility of L. monocytogenes in cells and cell-free extracts, Cell, vol.76, pp.505-517, 1994.

V. Laurent, T. P. Loisel, B. Harbeck, A. Wehman, L. Gröbe et al., Role of proteins of the Ena-VASP family in actin-based motility of Listeria monocytogenes, J. Cell Biol, vol.144, pp.1245-1258, 1999.

R. D. Mullins, J. A. Heuser, and T. D. Pollard, The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments, Proc. Natl. Acad. Sci, vol.95, pp.6181-6186, 1998.

M. D. Welch, J. Rosenblatt, J. Skoble, D. A. Portnoy, and T. J. Mitchison, Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation, Science, vol.281, pp.105-108, 1998.

L. M. Machesky, R. D. Mullins, H. N. Higgs, D. A. Kaiser, L. Blanchoin et al., Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex, Proc. Natl. Acad. Sci, vol.96, pp.3739-3744, 1999.

T. P. Loisel, R. Boujemaa, D. Pantaloni, and M. F. Carlier, Reconstitution of actin-based motility of Listeria and Shigella using pure proteins, Nature, vol.401, pp.613-616, 1999.

E. Andrianantoandro and T. D. Pollard, Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/Cofilin, Mol. Cell, vol.24, pp.13-23, 2006.

A. V. Nadkarni and W. M. Brieher, Aip1 destabilizes cofilin-saturated actin filaments by severing and accelerating monomer dissociation from ends, Curr. Biol, vol.24, pp.2749-2757, 2014.

Q. Chen, N. Courtemanche, and T. D. Pollard, Aip1 promotes actin filament severing by cofilin and regulates constriction of the cytokinetic contractile ring, J. Biol. Chem, vol.290, pp.2289-2300, 2015.

L. Gressin, A. Guillotin, C. Guérin, L. Blanchoin, and A. Michelot, Architecture dependence of actin filament network disassembly, Curr. Biol, vol.25, pp.1437-1447, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01166758

S. Jansen, A. Collins, S. M. Chin, C. A. Ydenberg, J. Gelles et al., Single-molecule imaging of a three-component ordered actin disassembly mechanism, Nat. Commun, vol.6, p.7202, 2015.

P. A. Nguyen, A. C. Groen, M. Loose, K. Ishihara, M. Wühr et al., Spatial organization of cytokinesis signaling reconstituted in a cell-free system, Science, vol.346, pp.244-247, 2014.

Y. Miao, C. C. Wong, V. Mennella, A. Michelot, D. A. Agard et al., Cell-cycle regulation of formin-mediated actin cable assembly, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.4446-4455, 2013.

A. Michelot, A. Grassart, V. Okreglak, M. Costanzo, C. Boone et al., Actin filament elongation in Arp2/3-derived networks is controlled by three distinct mechanisms, Dev. Cell, vol.24, pp.182-195, 2013.

L. A. Cameron, M. J. Footer, A. Van-oudenaarden, and J. A. Theriot, Motility of ActA protein-coated microspheres driven by actin polymerization, Proc. Natl. Acad. Sci, vol.96, pp.4908-4913, 1999.

L. A. Cameron, T. M. Svitkina, D. Vignjevic, J. A. Theriot, and G. G. Borisy, Dendritic organization of actin comet tails, Curr. Biol, vol.11, pp.130-135, 2001.

T. M. Svitkina and G. C. Borisy, Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia, J. Cell Biol, vol.145, pp.1009-1026, 1999.

V. Noireaux, R. M. Golsteyn, E. Friederich, J. Prost, C. Antony et al., Growing an actin gel on spherical surfaces, Biophys. J, vol.278, pp.1643-1654, 2000.

J. Plastino, I. Lelidis, J. Prost, and C. Sykes, The effect of diffusion, depolymerization and nucleation promoting factors on actin gel growth, Eur. Biophys. J, vol.33, pp.310-320, 2004.

J. Van-der-gucht, E. Paluch, J. Plastino, and C. Sykes, Stress release drives symmetry breaking for actin-based movement, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.7847-7852, 2005.

M. J. Dayel, O. Akin, M. Landeryou, V. Risca, A. Mogilner et al., In silico reconstitution of actin-based symmetry breaking and motility, PLoS Biol, vol.7, p.1000201, 2009.

A. Kawska, K. Carvalho, J. Manzi, R. Boujemaa-paterski, L. Blanchoin et al., How actin network dynamics control the onset of actin-based motility, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.14440-14445, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00744185

D. Yarar, W. To, A. Abo, and M. D. Welch, The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex, Curr. Biol, vol.9, pp.555-558, 1999.

D. Yarar, J. A. D'alessio, R. L. Jeng, and M. D. Welch, Motility determinants in WASP family proteins, Mol. Biol. Cell, vol.13, pp.4045-4059, 2002.

F. Castellano, C. Le-clainche, D. Patin, M. Carlier, and P. Chavrier, A WASP-VASP complex regulates actin polymerization at the plasma membrane, EMBO J, vol.20, pp.5603-5614, 2001.

J. Fradelizi, V. Noireaux, J. Plastino, B. Menichi, D. Louvard et al., ActA and human zyxin harbour Arp2/3-independent actinpolymerization activity, Nat. Cell Biol, vol.3, pp.699-707, 2001.

J. Plastino, S. Olivier, and C. Sykes, Actin filaments align into hollow comets for rapid VASP-mediated propulsion, Curr. Biol, vol.14, pp.1766-1771, 2004.

S. Romero, C. Le-clainche, D. Didry, C. Egile, D. Pantaloni et al., Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis, Cell, vol.119, pp.419-429, 2004.

A. Michelot, J. Berro, C. Guérin, R. Boujemaa-paterski, C. J. Staiger et al., Actin-filament stochastic dynamics mediated by ADF/Cofilin, Curr. Biol, vol.17, pp.825-833, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00146683

M. Bovellan, Y. Romeo, M. Biro, A. Boden, P. Chugh et al., Cellular control of cortical actin nucleation, vol.24, pp.1628-1635, 2014.

N. Morone, T. Fujiwara, K. Murase, R. S. Kasai, H. Ike et al., Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography, J. Cell Biol, vol.174, pp.851-862, 2006.

J. Block, D. Breitsprecher, S. Kühn, M. Winterhoff, F. Kage et al., FMNL2 drives actin-based protrusion and migration downstream of Cdc42, Curr. Biol, vol.22, pp.1005-1012, 2012.

T. A. Burke, J. R. Christensen, E. Barone, C. Suarez, V. Sirotkin et al., Homeostatic actin cytoskeleton networks are regulated by assembly factor competition for monomers, Curr. Biol, vol.24, pp.579-585, 2014.

C. Suarez, R. T. Carroll, T. A. Burke, J. R. Christensen, A. J. Bestul et al., Profilin regulates F-actin network homeostasis by favoring formin over Arp2/3 complex, Dev. Cell, vol.32, pp.43-53, 2015.

R. Rohatgi, L. Ma, H. Miki, M. Lopez, H. Kirchausen et al., The interaction between N-Wasp and the Arp2/3 complex links Cdc42-dependent signals to actin assembly, Cell, vol.97, pp.221-231, 1999.

L. M. Machesky and R. H. Insall, Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex, Curr. Biol, vol.8, pp.1347-1356, 1998.

H. Miki, S. Suetsugu, and T. Takenawa, WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac, EMBO J, vol.17, pp.6932-6941, 1998.

L. Blanchoin, R. Boujemaa-paterski, C. Sykes, and J. Plastino, Actin dynamics, architecture and mechanics in cell motility, Physiol. Rev, vol.94, pp.235-263, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00943523

H. Miki and T. Takenawa, Regulation of actin dynamics by WASP family proteins, J. Biochem, vol.134, pp.309-313, 2003.

Y. Marcy, J. Prost, M. Carlier, and C. Sykes, Forces generated during actin-based propulsion: a direct measurement by micromanipulation, Proc. Natl. Acad. Sci. U. S. A, pp.5992-5997, 2004.

S. Wiesner, E. Helfer, D. Didry, G. Ducouret, F. Lafuma et al., A biomimetic motility assay provides insight into the mechanism of actin-based motility, J. Cell Biol, vol.160, pp.387-398, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01960776

J. Zalevsky, L. Lempert, H. Kranitz, and R. D. Mullins, Different WASP family proteins stimulate different Arp2/3 complex-dependent actin-nucleating activities, Curr. Biol, vol.11, pp.1903-1913, 2001.

S. Havrylenko, P. Noguera, M. Abou-ghali, J. Manzi, F. Faqir et al., WAVE binds Ena/VASP for enhanced Arp2/3 complex-based actin assembly, Mol. Biol. Cell, vol.26, pp.55-65, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01142070

V. Koronakis, P. J. Hume, D. Humphreys, T. Liu, O. Horning et al., WAVE regulatory complex activation by cooperating GTPases Arf and Rac1, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.14449-14454, 2011.

K. G. Campellone and M. D. Welch, A nucleator arms race: cellular control of actin assembly, Nat. Rev. Mol. Cell Biol, vol.11, pp.237-251, 2010.

A. Bernheim-groswasser, S. Wiesner, R. M. Golsteyn, M. Carlier, and C. Sykes, The dynamics of actin-based motility depend on surface parameters, Nature, vol.417, pp.308-311, 2002.

T. Pujol, O. Du-roure, M. Fermigier, and J. Heuvingh, Impact of branching on the elasticity of actin networks, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.10364-10369, 2012.

O. Akin and R. D. Mullins, Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex, Cell, vol.133, pp.841-851, 2008.

V. Achard, J. Martiel, A. Michelot, C. Guérin, A. Reymann et al., A "primer"-based mechanism underlies branched actin filament network formation and motility, Curr. Biol, vol.20, pp.423-428, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00469496

S. Samarin, S. Romero, C. Kocks, D. Didry, D. Pantaloni et al., How VASP enhances actin-based motility, J. Cell Biol, vol.163, pp.131-142, 2003.

A. Upadhyaya, J. R. Chabot, A. Andreeva, A. Samadani, and A. Van-oudenaarden, Probing polymerization forces by using actin-propelled lipid vesicles, Proc. Natl. Acad. Sci, vol.100, pp.4521-4526, 2003.

P. A. Giardini, D. A. Fletcher, and J. A. Theriot, Compression forces generated by actin comet tails on lipid vesicles, Proc. Natl. Acad. Sci, vol.100, pp.6493-6498, 2003.

H. Boukellal, O. Campas, J. Joanny, J. Prost, and C. Sykes, Soft Listeria: actin-based propulsion of liquid drops, Phys. Rev. E, vol.69, 2004.

V. Delatour, E. Helfer, D. Didry, K. H. Lê, J. Gaucher et al., Arp2/3 controls the motile behavior of N-WASP-functionalized GUVs and modulates N-WASP surface distribution by mediating transient links with actin filaments, Biophys. J, vol.94, pp.4890-4905, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01960884

L. Trichet, O. Campas, C. Sykes, and J. Plastino, VASP governs actin dynamics by modulating filament anchoring, Biophys. J, vol.92, pp.1081-1089, 2007.

O. Siton, Y. Ideses, S. Albeck, T. Unger, A. D. Bershadsky et al., Cortactin releases the brakesinactin-basedmotilitybyenhancing WASP-VCA detachment from Arp2/3 branches, vol.21, pp.2092-2097, 2011.

C. Co, D. T. Wong, S. Gierke, V. Change, and J. Taunton, Mechanism of actin network attachment to moving membranes: barbed end capture by N-WASP WH2 domains, Cell, vol.128, pp.901-913, 2007.

F. Ferron, G. Rebowski, S. H. Lee, and R. Dominguez, Structural basis for the recruitment of profilin-actin complexes during filament elongation by Ena/VASP, EMBO J, vol.26, pp.4597-4606, 2007.

A. P. Liu and D. A. Fletcher, Actin polymerization serves as a membrane domain switch in model lipid bilayers, Biophys. J, vol.91, pp.4064-4070, 2006.

A. P. Liu, D. L. Richmond, L. Maibaum, S. Pronk, P. L. Geissler et al., Membrane-induced bundling of actin filaments, Nat. Phys, vol.4, pp.789-793, 2008.

K. Lee, J. L. Gallop, K. Rambani, and M. W. Kirschner, Self-assembly of filopodia-like structures on supported lipid bilayers, Science, vol.329, pp.1341-1345, 2010.

J. D. Cortese, B. Schwab, I. , C. Frieden, and E. L. Elson, Actin polymerization induces a shape change in actin-containing vesicles, Proc. Natl. Acad. Sci. U. S. A, vol.86, pp.5773-5777, 1989.

L. Limozin, M. Bärmann, and E. Sackmann, On the organization of self-assembled actin networks in giant vesicles, Eur. Phys. J. E, vol.10, pp.319-330, 2003.

L. Limozin and E. Sackmann, Polymorphism of cross-linked actin networks in giant vesicles, Phys. Rev. Lett, vol.89, p.168103, 2002.

H. Miyata and H. Hotani, Morphological changes in liposomes caused by polymerization of encapsulated actin and spontaneous formation of actin bundles, Proc. Natl. Acad. Sci. U. S. A, vol.89, pp.11547-11551, 1992.

H. Miyata, S. Nishiyama, K. Akashi, and K. Kinosita, Protrusive growth from giant liposomes driven by actin polymerization, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.2048-2053, 1999.

F. Tsai, B. Stuhrmann, and G. Koenderink, Encapsulation of active cytoskeletal protein networks in cell-sized liposomes, Langmuir, vol.27, pp.10061-10071, 2011.

M. Pinot, V. Steiner, B. Dehapiot, B. Yoo, F. Chesnel et al., Confinement induces actin flow in a meiotic cytoplasm, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.11705-11710, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00717415

M. M. Claessens, M. Bathe, E. Frey, and A. R. Bausch, Actin-binding proteins sensitively mediate F-actin bundle stiffness, Nat. Mater, vol.5, pp.748-753, 2006.

J. Alvarado, B. M. Mulder, and G. H. Koenderink, Alignment of nematic and bundled semiflexible polymers in cell-sized confinement, Soft Matter, vol.10, pp.2354-2364, 2014.

M. D. Vahey and D. A. Fletcher, The biology of boundary conditions: cellular reconstitution in one, two, and three dimensions, Curr. Opin. Cell Biol, vol.26, pp.60-68, 2014.

D. Merkle, N. Kahya, and P. Schwille, Reconstitution and anchoring of cytoskeleton inside giant unilamellar vesicles, ChemBioChem, vol.9, pp.2673-2681, 2008.

L. Pontani, J. Vandergucht, G. Salbreaux, J. Heuvingh, J. Joanny et al., Reconstitution of an actin cortex inside a liposome, Biophys. J, vol.96, pp.192-198, 2009.

T. Luo, V. Srivastava, Y. Ren, and D. N. Robinson, Mimicking the mechanical properties of the cell cortex by the self-assembly of an actin cortex in vesicles, Appl. Phys. Lett, vol.104, p.153701, 2014.

C. Campillo, P. Sens, D. Köster, L. Pontani, D. Lévy et al., Unexpected membrane dynamics unveiled by membrane nanotube extrusion, Biophys. J, vol.104, pp.1248-1256, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00821323

E. A. Shah and K. Keren, Symmetry breaking in reconstituted actin cortices, vol.3, p.1433, 2014.

S. Suetsugu, S. Kurisu, and T. Takenawa, Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins, Physiol. Rev, vol.94, pp.1219-1248, 2014.

A. Reymann, C. Guérin, M. Théry, L. Blanchoin, and R. Boujemaa-paterski, Geometrical control of actin assembly and contractility, vol.120, pp.19-38, 2014.

A. Reymann, J. Martiel, T. Cambier, L. Blanchoin, R. Boujemaa-paterski et al., Nucleation geometry governs ordered actin networks structures, Nat. Mater, vol.9, pp.827-832, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00525593

A. Reymann, R. Boujemaa-paterski, J. Martiel, C. Guérin, W. Cao et al., Actin network architecture can determine myosin motor activity, Science, vol.336, pp.1310-1314, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00735922

M. Murrell and M. L. Gardel, Actomyosin sliding is attenuated in contractile biomimetic cortices, Mol. Biol. Cell, vol.25, pp.1845-1853, 2014.

K. Carvalho, F. Tsai, E. Lees, R. Voituriez, G. Koenderink et al., Cell-sized liposomes reveal how actomyosin cortical tension drives shape change, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.16456-16461, 2013.

K. Carvalho, J. Lemière, F. Faqir, J. Manzi, L. Blanchoin et al., Actin polymerization or myosin contraction: two ways to build up cortical tension for symmetry breaking, Philos. Trans. R. Soc. B, vol.368, p.20130005, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01319317

J. Alvarado, M. Sheinman, A. Sharma, F. C. Mackintosh, and G. H. Koenderink, Molecular motors robustly drive active gels to a critically connected state, Nat. Phys, vol.9, pp.591-597, 2013.

G. T. Charras, C. Hu, M. Coughlin, and T. J. Mitchison, Reassembly of contractile actin cortex in cell blebs, J. Cell Biol, vol.175, pp.477-490, 2006.

N. Elkhatib, M. B. Neu, C. Zensen, K. M. Schmoller, D. Louvard et al., Fascin plays a role in stress fiber organization and focal adhesion disassembly, Curr. Biol, vol.24, pp.1492-1499, 2014.

O. Wiggan, A. E. Shaw, J. G. Deluca, and J. R. Bamburg, ADF/Cofilin regulates actomyosin assembly through competitive inhibition of Myosin II binding to F-actin, Dev. Cell, vol.22, pp.530-543, 2012.

I. M. Pinto, B. Rubinstein, A. Kucharavy, J. R. Unruh, and R. Li, Actin depolymerization drives actomyosin ring contraction during budding yeast cytokinesis, Dev. Cell, vol.22, pp.1247-1260, 2012.

L. Haviv, D. Gillo, F. Backouche, and A. Bernheim-groswasser, A cytoskeletal demolition worker: myosin II acts as an actin depolymerization agent, J. Mol. Biol, vol.375, pp.325-330, 2008.

M. P. Murrell and M. L. Gardel, F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex, Proc. Natl. Acad. Sci, vol.109, pp.20820-20825, 2012.
DOI : 10.1073/pnas.1214753109

URL : http://www.pnas.org/content/109/51/20820.full.pdf

S. K. Vogel, Z. Petrasek, F. Heinemann, and P. Schwille, Myosin motors fragment and compact membrane-bound actin filaments, p.116, 2013.
DOI : 10.7554/elife.00116

URL : https://doi.org/10.7554/elife.00116

C. Kocks, E. Gouin, M. Tabouret, P. Berche, H. Ohayon et al., monocytogenesinduced actin assembly requires the actA gene product, a surface protein, Cell, vol.68, pp.521-531, 1992.