. Petroleum;-encyclopaedia and . Britannica,

H. Chisholm and . Ed, , 1911.

L. S. Russell, A heritage of light: Lamps and lighting in the early Canadian home, 2003.

R. Geyer, J. R. Jambeck, and K. L. Law, Production, use, and fate of all plastics ever made. Sci, 2017.

. Plasticeurope, The Plastic Industry report Berlin, 2016.

R. C. Thompson, C. J. Moore, F. S. Vom-saal, and S. H. Swan, Plastics, the environment and human health: current consensus and future trends, Philos. Trans. R. Soc. London. Ser. B, vol.364, pp.2153-2166, 2009.

R. C. Thompson, S. H. Swan, C. J. Moore, and F. S. Vom-saal, Our plastic age, Philos. Trans. R. Soc. London. Ser. B, vol.364, pp.1973-1976, 2009.

, The price of oil -in context, CBC News, 2006.

, United Nations Environment Programme. Environmental assessment of Ogoniland; United Nations Environment Programme, 2011.

, World Economy Forum. The New Plastic Economy: Rethinking the future of plastics, 2016.

L. Marc, What Is the Greenhouse Effect? livescience.com

J. Jancovici, What is the greenhouse effect

S. R. Umair, Global Warming: Causes, Effects and Solutions, Dureeamin Journal, vol.1, 2015.

C. G. Brundtland, Our Common Future, The World Commission on Environmental Development, 1987.

, Getting a global agreement on climate change, 2014.

, Single-use plastics

. Brussels, , 2018.

R. A. Sheldon, Chem. Ind, pp.903-906, 1992.

R. A. Sheldon, The E Factor: fifteen years on, Green Chem, p.1273, 2007.

P. T. Anastas and J. C. Warner, Green chemistry: Theory and practice, 2000.

P. T. Anastas and J. B. Zimmerman, Twelve Principles of Green Engineering, Env. Sci. Tech, vol.37, pp.94-101, 2003.

H. Röper, Renewable Raw Materials in Europe -Industrial Utilisation of Starch and Sugar, vol.54, pp.89-99, 2002.

, Introduction: Green Chemistry and Catalysis. In Green Chemistry and Catalysis

R. A. Sheldon, I. W. Arends, and U. Hanefeld, , pp.1-47, 2007.

R. A. Sheldon, Green and sustainable manufacture of chemicals from biomass: state of the art, Green Chem, vol.16, pp.950-963, 2014.

I. Delidovich, P. J. Hausoul, L. Deng, R. Pfützenreuter, M. Rose et al., Alternative Monomers Based on Lignocellulose and Their Use for Polymer Production, Chem. Rev, vol.116, pp.1540-1599, 2016.

M. Rose and R. Palkovits, Cellulose-based sustainable polymers: state of the art and future trends, Macromol. Rapid. Comm, vol.32, pp.1299-1311, 2011.

J. N. Putro, F. E. Soetaredjo, S. Lin, Y. Ju, and S. Ismadji, Pretreatment and conversion of lignocellulose biomass into valuable chemicals, RSC Adv, vol.6, pp.46834-46852, 2016.

D. Klemm, B. Heublein, H. Fink, and A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed. Engl, vol.44, pp.3358-3393, 2005.

A. C. Payen, Hebd. Seances Acad. Sci, vol.1838, p.1052

A. C. Payen, Hebd. Seances Acad. Sci, vol.1838, p.1125

A. Brogniartm, A. B. Pelonze, and R. Dumas, Comptes Rendus, vol.1839, pp.51-53

C. V. Stevens, R. Verhé, and ;. J. Wiley, Renewable bioresources: Scope and modification for non-food applications / editors Christian V. Stevens with Roland Verhé, 2004.

R. E. Cannon and S. M. Anderson, Biogenesis of bacterial cellulose, Crit. Rev. Microbiol, vol.17, pp.435-447, 1991.

J. Rainer and F. F. Luiz, Production and application of microbial cellulose, Polym. Degrad. Stab, vol.59, pp.101-106, 1998.

E. J. Vandamme, S. Baets, A. Vanbaelen, K. Joris, P. Wulf et al., Improved production of bacterial cellulose and its application potential, Polym. Degrad. Stab, vol.59, pp.93-99, 1998.

R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chem. Soc. Rev, vol.40, pp.3941-3994, 2011.

A. Khalil, H. P. Bhat, A. H. Ireana-yusra, and A. F. , Green composites from sustainable cellulose nanofibrils: A review, Carbohydr. Polym, vol.87, pp.963-979, 2012.

F. H. Isikgor and C. R. Becer, Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers, Polym. Chem, vol.6, pp.4497-4559, 2015.

H. Staudinger, Uber Polymerisation, Ber. Dtsch. Chem. Ges, vol.53, pp.1073-1085, 1920.

W. G. Ferrier, The crystal and molecular structure of ?-D-glucose, Acta Cryst, vol.16, pp.1023-1031, 1963.

J. Aburto, I. Alric, S. Thiebaud, E. Borredon, D. Bikiaris et al., Synthesis, Characterization, and Biodegradability of Fatty-Acid Esters of Amylose and Starch, J. Appl. Polym. Sci, vol.74, pp.1440-1451, 1999.

H. Winkler, W. Vorwerg, and H. Wetzel, Synthesis and properties of fatty acid starch esters, Carbohydr. Polym, vol.98, pp.208-216, 2013.

A. Richter and D. Klemm, Regioselective sulfation of trimethylsilyl cellulose using different SO3-complexes, Cellulose, vol.10, pp.133-138, 2003.

C. Altaner, B. Saake, and J. Puls, Mode of action of acetylesterases associated with endoglucanases towards water-soluble and -insoluble cellulose acetates, Cellulose, vol.8, pp.259-265, 2001.

C. Altaner, J. Puls, and B. Saake, Enzymes aided analysis of the substituent distribution along the chain of cellulose acetates regioselectively modified by the action of Aspergillus niger acetylesterase, Cellulose, vol.10, pp.391-395, 2003.

E. Billès, K. N. Onwukamike, V. Coma, S. Grelier, and F. Peruch, Cellulose oligomers production and separation for the synthesis of new fully bio-based amphiphilic compounds, Carbohydr. Polym, vol.154, pp.121-128, 2016.

Y. Habibi, L. A. Lucia, and O. J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications, Chem. Rev, vol.110, pp.3479-3500, 2010.

S. S. Hindi, Microcrystalline Cellulose: The Inexhaustible Treasure for Pharmaceutical Industry, Nanoscience and Nanotechnology Research, vol.4, pp.17-24, 2017.

D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors et al., Nanocelluloses: a new family of nature-based materials, Angew. Chem. Int. Ed. Engl, vol.50, pp.5438-5466, 2011.

S. Roller and S. A. Jones, Handbook of fat replacers, 1996.

N. Lavoine, I. Desloges, A. Dufresne, and J. Bras, Microfibrillated cellulose -its barrier properties and applications in cellulosic materials: a review, Carbohydr. Polym, vol.90, pp.735-764, 2012.

H. Golmohammadi, E. Morales-narváez, T. Naghdi, and A. Merkoçi, Nanocellulose in Sensing and Biosensing, Chem. Mater, vol.29, pp.5426-5446, 2017.

A. C. O'sullivan, Cellulose: the structure slowly unravels, vol.4, pp.173-207, 1997.

A. Samir, M. A. Alloin, F. Dufresne, and A. , Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules, vol.6, pp.612-626, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00305961

Y. Nishiyama, Structure and properties of the cellulose microfibril, J Wood Sci, vol.55, pp.241-249, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00439995

H. Yamamoto, Situ crystallization of bacterial cellulose I. Influences of polymeric additives, stirring and temperature on the formation celluloses I-alpha and I-beta as revealed by cross polarization/magic angle spinning (CP/MAS) 13 C NMR spectroscopy, Cellulose, vol.1, pp.57-66, 1994.

H. Yamamoto and F. Horii, CPMAS carbon-13 NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures, Macromolecules, vol.26, pp.1313-1317, 1993.

A. Ishikawa and T. Okano, Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, Illl and IV, Polymer, vol.38, pp.463-468, 1997.

Y. Nishiyama, P. Langan, and H. Chanzy, Crystal Structure and Hydrogen-Bonding System in Cellulose I? from Synchrotron X-ray and Neutron Fiber Diffraction, J. Am. Chem. Soc, vol.124, pp.9074-9082, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00306874

Y. Nishiyama, J. Sugiyama, H. Chanzy, and P. Langan, Crystal structure and hydrogen bonding system in cellulose I(alpha) from synchrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc, vol.125, pp.14300-14306, 2003.

P. Langan, Y. Nishiyama, H. Chanzy, and . X-ray, Structure of Mercerized Cellulose II at 1 Å Resolution. Biomacromolecules, vol.2, pp.410-416, 2001.

M. Ek, G. Gellerstedt, and G. Henriksson, Pulp and Paper Chemistry and Technology, 2009.

E. Sjöström, Fundamentals and applications / Eero Sjöström, 1993.

J. I. Botello, M. A. Gilarranz, F. Rodríguez, and M. Oliet, Preliminary study on products distribution in alcohol pulping of Eucalyptus globulus, J. Chem. Technol. and Biot, vol.74, pp.141-148, 1999.

C. F. Schoenbein and . Pogg, , vol.70, p.220, 1846.

C. F. Schoenbein and . Ber, Naturforsch. Ges. Basel, vol.1847, p.27

J. Wertz, O. Bédué, and J. Mercier, Cellulose Science and Technology, 2010.

J. W. Hyatt, US Patent, vol.50, p.1865

A. M. Chardonnet and . French, , vol.165, p.1884

E. J. Schweizer and . Prakt, Chem 1857, vol.72, p.109

L. H. Despeissis and . French, , vol.203, p.1890

C. F. Cross, E. J. Bevan, and C. Beadle, British Patent, vol.8, p.1892

M. Mueller, British Patent 10094, 1906.

K. Ekman, O. T. Turenen, and . Huttunen, J. I. Finnish Patent, vol.61, p.33, 1982.

J. W. Hill and R. A. Jacobson, S. Patent, vol.2, p.825

R. A. Jacobson, Carbamic Esters from Urea, J. Am. Chem. Soc, vol.60, pp.1742-1744, 1938.

F. Loth, E. Schaaf, H. Fink, J. Kunze, H. Gensrich et al., , 2004.

D. L. Johnson, US patent 3447956 A, 1969.

R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, Dissolution of Cellose with Ionic Liquids, J. Am. Chem. Soc, vol.124, pp.4974-4975, 2002.

H. Sixta, A. Michud, L. Hauru, S. Asaadi, Y. Ma et al.,

M. Hummel, Ioncell-F: A High-strength regenerated cellulose fibre, NPPRJ, vol.33, pp.43-57, 2015.

T. Heinze and T. Liebert, Celluloses and Polyoses/Hemicelluloses, Polymer science: A comprehensive reference, 2012.

J. Schuetzenberger and . Compt, Sciences, vol.1865, p.485

C. F. Cross and E. J. Bevan, Fabrikation von celluloseacetat, J. Soc. Chem. Ind. Bd. 1895, vol.14, p.435

G. W. Miles, AP, vol.838, 1904.

. Eichengruen, . Becker, and . D. Guntrum, P, vol.252, p.705, 1905.

A. D. Eichengruen, P, vol.254, 1909.

P. Rustemeyer, 1. History of CA and evolution of the markets, Macromol. Symp, vol.208, pp.1-6, 2004.

, British Celanase Manufacturing Co. EP, vol.165, 1920.

, Clavel. D.R.P, vol.355, p.533, 1920.

W. Suida, ber den Einflu\ der aktiven Atomgruppen in den Textilfasern auf das Zustandekommen von Frbungen. Monatshefte fr Chemie, vol.26, pp.413-427, 1905.

H. Dreyfus, , 1912.

D. J. Traill and . Soc, Chem. Ind. Trans, LIII, p.338

R. E. Montonna, . Pap, and J. Trade, , p.35, 1936.

C. L. Mccormick and T. R. Dawsey, Preparation of cellulose derivatives via ring-opening reactions with cyclic reagents in lithium chloride/N,N-dimethylacetamide, Macromolecules, vol.23, pp.3606-3610, 1990.

T. Heinze, R. Dicke, A. Koschella, A. H. Kull, E. Klohr et al., Effective preparation of cellulose derivatives in a new simple cellulose solvent, Macromol. Chem. Phys, vol.201, pp.627-631, 2000.

H. Fink, P. Weigel, H. J. Purz, and J. Ganster, Structure formation of regenerated cellulose materials from NMMO-solutions, Prog. Polym. Sci, vol.26, pp.1473-1524, 2001.

S. Dorn, F. Wendler, F. Meister, and T. Heinze, Interactions of Ionic Liquids with Polysaccharides -7: Thermal Stability of Cellulose in Ionic Liquids and N -Methylmorpholine-N -oxide, Macromol. Mater. Eng, vol.293, pp.907-913, 2008.

T. Rosenau, A. Potthast, H. Sixta, and P. Kosma, Review article The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process), Prog. Polym. Sci, vol.26, pp.1763-1837, 2001.

S. Kalia, B. S. Kaith, and I. Kaur, Cellulose Fibers: Bio-and Nano-Polymer Composites

H. Springer-berlin, , 2011.

S. S. Hindi and R. A. Abohassan, Cellulose triacetate synthesis from cellulosic wastes by heterogenous reactions, Bioresources, vol.10, pp.5030-5048, 2005.

V. K. Varshney, P. K. Gupta, S. Naithani, R. Khullar, A. Bhatt et al., Carboxymethylation of ?-cellulose isolated from Lantana camara with respect to degree of substitution and rheological behavior, Carbohydr. Polym, vol.63, pp.40-45, 2006.

P. Nasatto, F. Pignon, J. Silveira, M. Duarte, M. Noseda et al., Original Physical Properties and Extended Applications. Polymers, vol.7, pp.777-803, 2015.

W. Mormann, Silylation of cellulose with hexamethyldisilazane in ammonia -activation, catalysis, mechanism, properties, vol.10, pp.271-281, 2003.

W. Mormann, J. Demeter, and T. Wagner, Silylcellulose from silylation/desilylation of cellulose in ammonia, Macromol. Symp, pp.49-57, 2001.

P. L. Granja, L. Pouységu, M. Pétrand, B. De-jésu, C. Baquey et al., Cellulose Phosphates as Biomaterials. I. Synthesis and Characterization of Highly Phosphorylated Cellulose Gels, J. Appl. Polym. Sci, vol.82, pp.3341-3353, 2001.

C. W. Saunders and L. T. Taylor, A review of the synthesis, chemistry and analysis of nitrocellulose, J. Energetic. Mater, vol.8, pp.149-203, 1990.

R. C. Law, Applications of cellulose acetate-5.1 Cellulose acetate in textile application, Macromol. Symp, vol.208, pp.255-266, 2004.

K. J. Edgar, C. M. Buchanan, J. S. Debenham, . Rundquist, B. D. Seiler et al., Advances in cellulose ester performance and application, Prog. Polym. Sci, vol.26, pp.1605-1688, 2000.

A. Hummel, 3.2 Industrial processes, Macromol. Symp, vol.208, pp.61-80, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00492450

P. Anastas and N. Eghbali, Green chemistry: principles and practice, Chem. Soc. Rev, vol.39, pp.301-312, 2010.

A. D. Curzons, D. C. Constable, and V. L. Cunningham, Solvent selection guide: a guide to the integration of environmental, health and safety criteria into the selection of solvents. Clean Products and Processes, pp.82-90, 1999.

C. Capello, U. Fischer, and K. Hungerbühler, What is a green solvent? A comprehensive framework for the environmental assessment of solvents, Green Chem, vol.9, p.927, 2007.

B. Trost, The atom economy-a search for synthetic efficiency, Science, vol.254, pp.1471-1477, 1991.

G. Koller, U. Fischer, and K. Hungerbühler, Assessing Safety, Health, and Environmental Impact Early during Process Development, Ind. Eng. Chem. Res, vol.39, pp.960-972, 2000.

P. G. Jessop, Searching for green solvents, Green Chem, p.1391, 2011.

C. Chen, M. Chen, X. Zhang, C. Liu, and R. Sun, Per-O-acetylation of cellulose in dimethyl sulfoxide with catalyzed transesterification, J. Agric. Food Chem, vol.62, pp.3446-3452, 2014.

Y. Guo, X. Wang, Z. Shen, X. Shu, and R. Sun, Preparation of cellulose-graft-poly(?-caprolactone) nanomicelles by homogeneous ROP in ionic liquid, Carbohydr. Polym, vol.92, pp.77-83, 2013.

S. Barthel and T. Heinze, Acylation and carbanilation of cellulose in ionic liquids, Green Chem, vol.8, pp.301-306, 2006.

T. Kakko, A. W. King, and I. Kilpeläinen, Homogenous esterification of cellulose pulp in [DBNH, vol.24, pp.5341-5354, 2017.

Y. Yang, H. Xie, and E. Liu, Acylation of cellulose in reversible ionic liquids, Green Chem, vol.16, pp.3018-3023, 2014.

Y. Yang, L. Song, C. Peng, E. Liu, and H. Xie, Activating cellulose via its reversible reaction with CO2 in the presence of 1,8-diazabicyclo, Green Chem, vol.17, pp.2758-2763, 2015.

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Sustainable Transesterification of Cellulose with High Oleic Sunflower Oil in a DBU-CO2 Switchable Solvent, ACS Sustainable. Chem. Eng, vol.6, pp.8826-8835, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01917955

A. Llevot, P. Dannecker, M. Czapiewski, L. C. Over, Z. Söyler et al., Renewability is not Enough: Recent Advances in the Sustainable Synthesis of BiomassDerived Monomers and Polymers, Chem. Eur. J, vol.22, pp.11510-11521, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01873247

R. W. Dwyer and S. G. Abel, The Efficiencies of Cellulose Acetate Filters. Beiträge zur Tabakforschung International/Contributions to Tobacco Research, vol.13, pp.243-253, 1986.

L. Tang, D. N. Hon, .. Zhu, and Y. , An investigation in solution acetylation of cellulose by microscopic techniques, J. Appl. Polym. Sci, vol.64, pp.1953-1960, 1997.

T. Welton, Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis, Chem. Rev, vol.99, pp.2071-2084, 1999.

J. P. Hallett and T. Welton, Room-temperature ionic liquids: solvents for synthesis and catalysis, Chem. Rev, vol.2, pp.3508-3576, 2011.

C. Graenacher, US Patent 1,943,176, 1934.

A. P. Los-ríos and . De,

A. Irabien, F. Hollmann, and F. J. Fernández, Ionic Liquids: Green Solvents for Chemical Processing, J. Chem, pp.1-2, 2013.

S. Mallakpour and M. Dinari, Ionic Liquids as Green Solvents: Progress and Prospects

A. Mohammad, , pp.1-32, 2012.

P. Mäki-arvela, I. Anugwom, P. Virtanen, R. Sjöholm, and J. P. Mikkola, Dissolution of lignocellulosic materials and its constituents using ionic liquids-A review, Ind. Crops. Prod, vol.32, pp.175-201, 2010.

O. A. El-seoud, A. Koschella, L. C. Fidale, S. Dorn, and T. Heinze, Applications of ionic liquids in carbohydrate chemistry: A window of opportunities, Biomacromolecules, vol.8, pp.2629-2647, 2007.

T. Liebert and . T. Heinze, Interaction of ionic liquids with polysaccharides: Solvents and reaction media for the modification of cellulose, vol.3, pp.576-601, 2008.

M. Isik, H. Sardon, and D. Mecerreyes, Ionic liquids and cellulose: Dissolution, chemical modification and preparation of new cellulosic materials, Int. J. Mol. Sci, vol.15, pp.11922-11940, 2014.

B. Kosan, C. Michels, and F. Meister, Dissolution and forming of cellulose with ionic liquids, Cellulose, vol.15, pp.59-66, 2008.

J. Vitz, T. Erdmenger, C. Haensch, and U. Schubert, Extended dissolution studies of cellulose in imidazolium based ionic liquids, Green Chem, p.417, 2009.

M. T. Clough, K. Geyer, P. A. Hunt, S. Son, U. Vagt et al., Ionic liquids: not always innocent solvents for cellulose, Green Chem, vol.17, pp.231-243, 2015.

M. Gericke, P. Fardim, and T. Heinze, Ionic liquids--promising but challenging solvents for homogeneous derivatization of cellulose: Molecules, vol.17, pp.7458-7502, 2012.

V. K. Aggarwal, I. Emme, and A. Mereu, Unexpected side reactions of imidazolium-based ionic liquids in the base-catalysed Baylis-Hillman reaction, Chem. Commun, pp.1612-1613, 2002.

H. Zhang, J. Wu, J. Zhang, and J. He, 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid: A New and Powerful Non-derivatizing Solvent for Cellulose, Macromolecules, vol.38, pp.8272-8277, 2005.

G. Ebner, S. Schiehser, A. Potthast, and T. Rosenau, Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids, Tetrahedron. Lett, vol.49, pp.7322-7324, 2008.

K. Massonne, W. Siemer, W. Mormann, . W. Leng, and . Basf, , p.27250, 2009.

H. Satria, K. Kuroda, Y. Tsuge, K. Ninomiya, and K. Takahashi, Dimethyl sulfoxide enhances both the cellulose dissolution ability and biocompatibility of a carboxylate-type liquid zwitterion, New J. Chem, vol.42, pp.13225-13228, 2018.

J. Wu, J. Zhang, H. Zhang, J. He, Q. Ren et al., Homogeneous acetylation of cellulose in a new ionic liquid, Biomacromolecules, vol.5, pp.266-268, 2004.

W. Mormann and M. Wezstein, Trimethylsilylation of cellulose in ionic liquids, Macromol. Biosci, vol.9, pp.369-375, 2009.

S. A. Chowdhury, R. Vijayaraghavan, and D. R. Macfarlane, Distillable ionic liquid extraction of tannins from plant materials, Green Chem, p.1023, 2010.

A. W. King, J. Asikkala, I. Mutikainen, P. Järvi, and I. Kilpeläinen, Distillable acidbase conjugate ionic liquids for cellulose dissolution and processing, Angew. Chem. Int. Ed. Engl, vol.50, pp.6301-6305, 2011.

A. Parviainen, A. W. King, I. Mutikainen, M. Hummel, C. Selg et al., Predicting cellulose solvating capabilities of acid-base conjugate ionic liquids, ChemSusChem, vol.6, pp.2161-2169, 2013.

N. S. Cetin, P. Tingaut, N. Ozmen, N. Henry, D. Harper et al., Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions, Macromol. Biosci, vol.9, pp.997-1003, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00945037

M. Jebrane, F. Pichavant, and G. Sèbe, A comparative study on the acetylation of wood by reaction with vinyl acetate and acetic anhydride, Carbohydr. Polym, vol.83, pp.339-345, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00679446

M. Jebrane and G. Sèbe, A novel simple route to wood acetylation by transesterification with vinyl acetate, Holzforschung, p.215, 2007.

J. Chen, J. Xu, K. Wang, X. Cao, and R. Sun, Cellulose acetate fibers prepared from different raw materials with rapid synthesis method, Carbohydr. Polym, vol.137, pp.685-692, 2016.

G. Roscher and . Esters, Ullmann's Encyclopedia of Industrial Chemistry

-. Wiley, &. Gmbh, . Co, and . Kgaa, , 2000.

K. Thümmler, S. Fischer, J. Peters, T. Liebert, and T. Heinze, Evaluation of molten inorganic salt hydrates as reaction medium for the esterification of cellulose, Cellulose, vol.17, pp.161-165, 2010.

P. G. Jessop, D. J. Heldebrant, X. Li, C. A. Eckert, and C. L. Liotta, Reversible Nonpolarto-Polar Solvent, Nature, vol.436, p.1102, 2005.

Q. Zhang, N. S. Oztekin, J. Barrault, K. Oliveira-vigier, and F. De;-jérôme, Activation of microcrystalline cellulose in a CO2-based switchable system, ChemSusChem, vol.6, pp.593-596, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00945524

H. Xie, X. Yu, Y. Yang, and Z. K. Zhao, Capturing CO2 for cellulose dissolution, Green Chem, vol.16, pp.2422-2427, 2014.

K. N. Onwukamike, T. Tassaing, S. Grelier, E. Grau, H. Cramail et al., Detailed Understanding of the DBU/CO2 Switchable Solvent System for Cellulose Solubilization and Derivatization, ACS Sustainable. Chem. Eng, vol.6, pp.1496-1503, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01917963

A. Schenzel, A. Hufendiek, C. Barner-kowollik, and M. A. Meier, Catalytic transesterification of cellulose in ionic liquids: sustainable access to cellulose esters, Green Chem, vol.16, pp.3266-3271, 2014.

F. J. Carr, D. Chill, and N. Maida, The lactic acid bacteria: a literature survey, Crit. Rev. Microbiol, vol.28, pp.281-370, 2002.

T. Buntara, S. Noel, P. H. Phua, and I. Melián-cabrera,

H. J. Heeres, Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone, Angew. Chem. Int. Ed. Engl, vol.50, pp.7083-7087, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01664689

M. Winkler, Y. S. Raupp, L. A. Köhl, H. E. Wagner, and M. A. Meier, Modified Poly(?-caprolactone)s: An Efficient and Renewable Access via Thia-Michael Addition and Baeyer-Villiger Oxidation, Macromolecules, vol.47, pp.2842-2846, 2014.

J. R. Lowe, M. T. Martello, W. B. Tolman, and M. A. Hillmyer, Functional biorenewable polyesters from carvone-derived lactones, Polym. Chem, vol.2, pp.702-708, 2011.

D. J. Lundberg, D. J. Lundberg, M. A. Hillmyer, and P. J. Dauenhauer, Techno-economic Analysis of a Chemical Process To Manufacture Methyl-?-caprolactone from Cresols, ACS Sustainable. Chem. Eng, vol.6, pp.15316-15324, 2018.

L. Song, Y. Yang, H. Xie, and E. Liu, Cellulose Dissolution and In Situ Grafting in a Reversible System using an Organocatalyst and Carbon Dioxide, ChemSusChem, vol.8, pp.3217-3221, 2015.

A. Mayumi, T. Kitaoka, and H. Wariishi, Partial substitution of cellulose by ring-opening esterification of cyclic esters in a homogeneous system, J. Appl. Polym. Sci, vol.102, pp.4358-4364, 2006.

H. Dong, Q. Xu, Y. Li, S. Mo, S. Cai et al., The synthesis of biodegradable graft copolymer cellulose-graft-poly(L-lactide) and the study of its controlled drug release, Colloids Surf, vol.66, pp.26-33, 2008.

Q. Xu, L. Song, L. Zhang, G. Hu, J. Du et al., Organocatalytic Cellulose Dissolution and In Situ Grafting of ?-Caprolactone via ROP in a Reversible DBU/DMSO/CO2 System, vol.2, pp.7128-7134, 2017.

J. A. Galbis, M. D. García-martín, M. V. Paz, and E. Galbis, Synthetic Polymers from Sugar-Based Monomers, Chem. Rev, vol.116, pp.1600-1636, 2016.

W. Y. Li, A. X. Jin, C. F. Liu, R. C. Sun, A. P. Zhang et al., Homogeneous modification of cellulose with succinic anhydride in ionic liquid using 4-dimethylaminopyridine as a catalyst, Carbohydr. Polym, vol.78, pp.389-395, 2009.

X. Yin, C. Yu, X. Zhang, J. Yang, Q. Lin et al., Comparison of succinylation methods for bacterial cellulose and adsorption capacities of bacterial cellulose derivatives for Cu 2+ ion, Polym. Bull, vol.67, pp.401-412, 2011.

J. Chen, M. Su, X. Zhang, R. Chen, J. Hong et al., The role of cations in homogeneous succinoylation of mulberry wood cellulose in salt-containing solvents under mild conditions, Cellulose, vol.21, pp.4081-4091, 2014.

P. Xin, Y. Huang, C. Hse, H. N. Cheng, C. Huang et al., Modification of Cellulose with Succinic Anhydride in TBAA/DMSO Mixed Solvent under Catalyst-Free Conditions, Materials, p.10, 2017.

Z. Söyler, K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail et al., Sustainable succinylation of cellulose in a CO2-based switchable solvent and subsequent Passerini 3-CR and Ugi 4-CR modification, Green Chem, vol.20, pp.214-224, 2018.

T. Elschner and T. Heinze, Cellulose carbonates: a platform for promising biopolymer derivatives with multifunctional capabilities, Macromol. Biosci, vol.15, pp.735-746, 2015.

S. R. Labafzadeh, K. J. Helminen, I. Kilpeläinen, and A. W. King, Synthesis of cellulose methylcarbonate in ionic liquids using dimethylcarbonate, ChemSusChem, vol.8, pp.77-81, 2015.

P. Tundo, M. Musolino, and F. Aricò, The reactions of dimethyl carbonate and its derivatives, Green Chem, vol.20, pp.28-85, 2018.

H. Mutlu, J. Ruiz, S. C. Solleder, and M. A. Meier, TBD catalysis with dimethyl carbonate: a fruitful and sustainable alliance, Green Chem, p.1728, 2012.

Z. Söyler and M. A. Meier, Sustainable functionalization of cellulose and starch with diallyl carbonate in ionic liquids, vol.19, pp.3899-3907, 2017.

W. Kulicke, C. Clasen, and C. Lohman, Characterization of Water-Soluble Cellulose Derivatives in Terms of the Molar Mass and Particle Size as well as Their Distribution, Macromol. Symp, vol.223, pp.151-174, 2005.

T. Heinze, K. Schwikal, and S. Barthel, Ionic liquids as reaction medium in cellulose functionalization, Macromol. Biosci, vol.5, pp.520-525, 2005.

M. Kostag, K. Jedvert, C. Achtel, T. Heinze, and O. A. El-seoud, Recent Advances in Solvents for the Dissolution, Shaping and Derivatization of Cellulose: Quaternary Ammonium Electrolytes and their Solutions in Water and Molecular Solvents, Molecules, p.23, 2018.

S. Köhler, T. Liebert, and T. Heinze, Ammonium-based cellulose solvents suitable for homogeneous etherification, Macromol. Biosci, vol.9, pp.836-841, 2009.

J. Pourchez, P. Grosseau, R. Guyonnet, and B. Ruot, HEC influence on cement hydration measured by conductometry, Cem. Conc. Res, vol.36, pp.1777-1780, 2006.
URL : https://hal.archives-ouvertes.fr/emse-00449716

N. K. Singh, P. C. Mishra, V. K. Singh, and K. K. Narang, Effects of hydroxyethyl cellulose and oxalic acid on the properties of cement, Cem. Conc. Res, vol.33, pp.1319-1329, 2003.

S. Köhler, T. Liebert, T. Heinze, A. Vollmer, P. Mischnick et al., Hydroxyalkylation of cellulose without additional inorganic bases, Cellulose, vol.17, pp.437-448, 2010.

R. Evans, R. H. Wearne, and A. F. Wallis, Molecular weight distribution of cellulose as its tricarbanilate by high performance size exclusion chromatography, J. Appl. Polym. Sci, vol.37, pp.3291-3303, 1989.

H. Knölker, T. Braxmeier, and G. Schlechtingen, A Novel Method for the Synthesis of Isocyanates Under Mild Conditions, Angew. Chem. Int. Ed. Engl, vol.34, pp.2497-2500, 1995.

O. Kreye, H. Mutlu, and M. A. Meier, Sustainable routes to polyurethane precursors, Green Chem, p.1431, 2013.

L. Maisonneuve, O. Lamarzelle, E. Rix, E. Grau, and H. Cramail, Isocyanate-Free Routes to Polyurethanes and Poly(hydroxy Urethane)s, Chem. Rev, vol.115, pp.12407-12439, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01365096

H. C. Erythropel, J. B. Zimmerman, T. M. Winter, L. De;-petitjean, F. Melnikov et al., The Green ChemisTREE: 20 years after taking root with the 12 principles, Green Chem, vol.20, pp.1929-1961, 2018.

A. Dömling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev, vol.106, pp.17-89, 2006.

A. Strecker, Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper, Ann. Chem. Pharm, vol.1850, pp.27-45

P. Théato, Multi-Component and Sequential Reactions in Polymer Synthesis 269

Y. Gu, Multicomponent reactions in unconventional solvents: state of the art, Green Chem, 2012.

B. B. Touré and D. G. Hall, Natural product synthesis using multicomponent reaction strategies, Chem. Rev, vol.109, pp.4439-4486, 2009.

S. Brauch, S. S. Van-berkel, and B. Westermann, Higher-order multicomponent reactions: beyond four reactants, Chem. Soc. Rev, vol.42, pp.4948-4962, 2013.

B. Ganem, Strategies for innovation in multicomponent reaction design, Acc. Chem. Res, vol.42, pp.463-472, 2009.

I. Ugi, A. Dömling, and W. Hörl, Multicomponent reactions in organic chemistry, Endeavour, vol.18, pp.115-122, 1994.

J. J. Haven, E. Baeten, J. Claes, J. Vandenbergh, and T. Junkers, High-throughput polymer screening in microreactors: boosting the Passerini three component reaction, Polym. Chem, vol.8, pp.2972-2978, 2017.

R. Kakuchi, Multicomponent reactions in polymer synthesis, Angew. Chem. Int. Ed. Engl, vol.53, pp.46-48, 2014.

I. Ugi and S. Heck, The Multicomponent Reactions and their Libraries for Natural and Preparative Chemistry, CCHTS, vol.4, pp.1-34, 1970.

M. A. Mironov, Multicomponent reactions and combinatorial chemistry, Russ. J .Gen. Chem, vol.80, pp.2628-2646, 2010.

D. M. D'souza and T. J. Müller, Multi-component syntheses of heterocycles by transition-metal catalysis, Chem. Soc. Rev, vol.36, pp.1095-1108, 2007.

J. D. Sunderhaus and S. F. Martin, Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds, Chem. Eur. J, vol.15, pp.1300-1308, 2009.

A. Váradi, T. C. Palmer, R. Notis-dardashti, and S. Majumdar, Isocyanide-Based Multicomponent Reactions for the Synthesis of Heterocycles, Molecules, p.19, 2015.

O. Kreye, T. Tóth, and M. A. Meier, Introducing multicomponent reactions to polymer science: Passerini reactions of renewable monomers, J. Am. Chem. Soc, vol.133, pp.1790-1792, 2011.

A. Sehlinger, O. Kreye, and M. A. Meier, Tunable Polymers Obtained from Passerini Multicomponent Reaction Derived Acrylate Monomers, Macromolecules, vol.46, pp.6031-6037, 2013.

S. C. Solleder and M. A. Meier, Sequence control in polymer chemistry through the Passerini three-component reaction, Angew. Chem. Int. Ed. Engl, vol.53, pp.711-714, 2014.

S. C. Solleder, D. Zengel, K. S. Wetzel, and M. A. Meier, A Scalable and High-Yield Strategy for the Synthesis of Sequence-Defined Macromolecules, Angew. Chem. Int. Ed. Engl, vol.55, pp.1204-1207, 2016.

H. Colquhoun and J. Lutz, Information-containing macromolecules, Nat. Chem, vol.6, pp.455-456, 2014.
DOI : 10.1038/nchem.1958

J. Lutz, M. Ouchi, D. R. Liu, and M. Sawamoto, Sequence-controlled Polymers. Science, p.1238149, 2013.

S. Oelmann and M. A. Meier, Synthesis and unimolecular micellar behavior of amphiphilic star-shaped block copolymers obtained via the Passerini three component reaction, vol.7, pp.45195-45199, 2017.
DOI : 10.1039/c7ra08982a

URL : https://pubs.rsc.org/en/content/articlepdf/2017/ra/c7ra08982a

S. Oelmann, A. Travanut, D. Barther, M. Romero, S. M. Howdle et al., Biocompatible Unimolecular Micelles Obtained via the Passerini Reaction as Versatile Nanocarriers for Potential Medical Applications, Biomacromolecules, 2018.
DOI : 10.1021/acs.biomac.8b00592

A. C. Boukis, K. Reiter, M. Frölich, D. Hofheinz, and M. A. Meier, Multicomponent reactions provide key molecules for secret communication, Nat. Commun, vol.9, p.1439, 2018.
DOI : 10.1038/s41467-018-03784-x

URL : https://www.nature.com/articles/s41467-018-03784-x.pdf

A. Dömling, Ugi, I. Multicomponent reactions with Isocyanides, Angew. Chem. Int. Ed. Engl, vol.39, pp.3168-3210, 2000.

A. Hantzsch, Condensationsprodukte aus Aldehydammoniak und ketonartigen Verbindungen, Ber. Dtsch. Chem. Ges. 1881, vol.14, pp.1637-1638
DOI : 10.1002/cber.18810140214

K. S. Atwal, B. N. Swanson, S. E. Unger, D. M. Floyd, S. Moreland et al., Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents, J. Med. Chem, vol.34, pp.806-811, 1991.

R. Miri, K. Javidnia, B. Hemmateenejad, M. Tabarzad, and M. Jafarpour, Synthesis, evaluation of pharmacological activities and quantitative structure-activity relationship studies of a novel group of bis(4-nitroaryl-1,4-dihyropyridine), Chem. Biol. Drug Des, vol.73, pp.225-235, 2009.

R. M. Kellogg, T. J. Van-bergen, H. Van-doren, D. Hedstrand, J. Kooi et al., The Hantzsch 1,4-Dihydropyridine Synthesis as a Route to Bridged Pyridine and Dihydropyridine Crown Ethers, J. Org. Chem, vol.45, pp.2854-2861, 1980.
DOI : 10.1021/jo01302a020

P. Biginelli and . Ber, Dtsch. Chem. Ges, vol.1893, pp.447-450

C. O. Kappe, Biologically active dihydropyrimidones of the Biginelli-type-a literature survey, Eur. J. Med. Chem, vol.35, pp.1043-1052, 2000.

R. W. Lewis, J. Mabry, J. G. Polisar, K. P. Eagen, B. Ganem et al., Dihydropyrimidinone positive modulation of delta-subunit-containing gamma-aminobutyric acid type A receptors, including an epilepsy-linked mutant variant, Biochemistry, vol.49, pp.4841-4851, 2010.

H. Nagarajaiah, A. Mukhopadhyay, and J. N. Moorthy, Biginelli reaction: an overview, Tetrahedron. Lett, vol.57, pp.5135-5149, 2016.
DOI : 10.1016/j.tetlet.2016.09.047

C. Mannich and W. Krösche, Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin, Arch. Pharm. Pharm. Med. Chem, vol.250, pp.647-667, 1912.
DOI : 10.1002/ardp.19122500151

URL : https://zenodo.org/record/1424583/files/article.pdf

M. Passerini, Gazz.Chim.Ital, vol.51, pp.126-129, 1921.

I. Ugi and C. Steinbrückner, Über ein neues Kondensations-Prinzip, Angew. Chem, vol.72, pp.267-268, 1960.
DOI : 10.1002/ange.19600720709

A. Gautier, Ueber die Einwirkung des Chlorwasserstoffs u. a. auf das Aethyl-und Methylcyanür, Ann. Chem. Pharm, vol.1867, pp.289-294

P. J. Scheuer, Isocyanides and cyanides as natural products, Acc. Chem. Res, vol.25, pp.433-439, 1992.
DOI : 10.1021/ar00022a001

W. Lieke, Ueber das Cyanallyl, Ann. Chem. Pharm. 1859, vol.112, pp.316-321
DOI : 10.1002/jlac.18591120307

URL : https://zenodo.org/record/1427139/files/article.pdf

A. W. Hofmann, Beobachtungen vermischten Inhalts. Ber. Dtsch. Chem. Ges, vol.1870, pp.761-772

A. W. Hofmann, Ueber eine neue Reihe von Homologen der Cyanwasserstoffsäure, Ann. Chem. Pharm, vol.1867, pp.114-120

I. Ugi and R. Meyr, Neue Darstellungsmethode für Isonitrile, Angew. Chem, vol.70, pp.702-703, 1958.
DOI : 10.1002/ange.19580702213

G. Skorna and I. Ugi, Isocyanide Synthesis with Diphosgene, Angew. Chem. Int. Ed. Engl, vol.16, pp.259-260, 1977.
DOI : 10.1002/anie.197702591

H. Eckert and B. Forster, Triphosgene, a Crystalline Phosgene Substitute, Angew. Chem. Int. Ed. Engl, vol.26, pp.894-895, 1987.
DOI : 10.1002/anie.198708941

W. Rothe, Vorläufige Mitteilung über eine neues Antibiotikum, Pharmazie, 1950.

M. Nobuhara, H. Tazima, K. Shudo, A. Itai, T. Okamoto et al., Chem. Pharm. Bull, vol.24, pp.832-834, 1976.

I. Ugi, A. Dömling, and B. Werner, The Chemistry of Isocyanides, their MultiComponent Reactions and their Libraries, Molecules, vol.8, pp.53-66, 2003.

R. H. Baker and D. Stanonis, The Passerini Reaction. III. Stereochemistry and Mechanism 1,2, J. Am. Chem. Soc, vol.73, pp.699-702, 1951.

I. Ugi, R. Meyr, and V. Isonitrile, Erweiterter Anwendungsbereich der Passerini-Reaktion, Chem. Ber, vol.94, pp.2229-2233, 1961.
DOI : 10.1002/cber.19610940844

O. Mumm, Berichte der deutschen chemischen Gesellschaft, vol.43, p.886, 1910.

A. M. Bochek, Effect of Hydrogen Bonding on Cellulose Solubility in Aqueous and Nonaqueous Solvents, Russ. J. Appl. Chem, vol.76, pp.1711-1719, 2003.

P. Nanta, W. Skolpap, K. Kasemwong, and Y. Shimoyama, Dissolution and modification of cellulose using high-pressure carbon dioxide switchable solution, J. Supercrit. Fluids, vol.130, pp.84-90, 2017.
DOI : 10.1016/j.supflu.2017.07.019

J. Wang, Z. Xue, C. Yan, Z. Li, and T. Mu, Fine regulation of cellulose dissolution and regeneration by low pressure CO2 in DMSO/organic base: dissolution behavior and mechanism, PCCP, vol.18, pp.32772-32779, 2016.

G. V. Carrera, N. Jordão, and L. C. Branco, Nunes da Ponte, M. CO2 capture and reversible release using mono-saccharides and an organic superbase, J. Supercrit. Fluids, vol.105, pp.151-157, 2015.

D. J. Heldebrant, P. G. Jessop, C. A. Thomas, C. A. Eckert, and C. L. Liotta, The reaction of 1,8-diazabicyclo5.4.0undec-7-ene (DBU) with carbon dioxide, J. Org. Chem, vol.70, pp.5335-5338, 2005.

D. J. Heldebrant, C. R. Yonker, P. G. Jessop, and L. Phan, Organic liquid CO2 capture agents with high gravimetric CO2 capacity, Energy Environ. Sci, vol.1, pp.487-493, 2008.
DOI : 10.1039/b809533g

J. Andanson, A. A. Pádua, and M. F. Costa-gomes, Thermodynamics of cellulose dissolution in an imidazolium acetate ionic liquid, Chem. Commun, vol.51, pp.4485-4487, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212245

M. Shi and Y. Shen, Synthesis of Mixed Carbonates via a Three-Component Coupling of Alcohols, CO2, and Alkyl Halides in the Presence of K2CO3 and Tetrabutylammonium Iodide, Molecules, vol.7, pp.386-393, 2002.

A. W. King, J. Jalomäki, M. Granström, D. S. Argyropoulos, S. Heikkinen et al., A new method for rapid degree of substitution and purity determination of chloroform-soluble cellulose esters, using 31P NMR, Anal. Methods, vol.2, p.1499, 2010.

J. Pang, X. Liu, M. Wu, Y. Wu, X. Zhang et al., Fabrication and Characterization of Regenerated Cellulose Films Using Different Ionic Liquids, J. Spectro, pp.1-8, 2014.

R. Sescousse, R. Gavillon, and T. Budtova, Wet and dry highly porous cellulose beads from cellulose-NaOH-water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles, J Mater Sci, vol.46, pp.759-765, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00522043

J. Trygg, P. Fardim, M. Gericke, E. Mäkilä, and J. Salonen, Physicochemical design of the morphology and ultrastructure of cellulose beads, Carbohydr. Polym, vol.93, pp.291-299, 2013.

J. Innerlohinger, H. K. Weber, and G. Kraft, Aerocellulose: Aerogels and Aerogel-like Materials made from Cellulose, Macromol. Symp, vol.244, pp.126-135, 2006.

F. Liebner and T. Rosenau, Functional materials from renewable sources, ACS symposium series, 1107.

R. W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, J. Mater. Sci, vol.24, pp.3221-3227, 1989.

V. Bock, A. Emmerling, R. Saliger, and J. Fricke, Structural Investigation of Resorcinol Formaldehyde and Carbon Aerogels Using SAXS and BET, J. Porous. Mater, vol.4, pp.287-294, 1997.

P. C. Thapliyal and K. Singh, Aerogels as Promising Thermal Insulating Materials: An Overview, Journal of Materials, pp.1-10, 2014.

Z. Wu, C. Li, H. Liang, J. Chen, and S. Yu, Ultralight, flexible, and fireresistant carbon nanofiber aerogels from bacterial cellulose, Angew. Chem. Int. Ed. Engl, vol.52, pp.2925-2929, 2013.

C. A. García-gonzález, M. Alnaief, and I. Smirnova, Polysaccharide-based aerogelsPromising biodegradable carriers for drug delivery systems, Carbohydr. Polym, vol.86, pp.1425-1438, 2011.

Z. Ulker and C. Erkey, An emerging platform for drug delivery: aerogel based systems, J. Controlled. Release, vol.177, pp.51-63, 2014.

S. S. Kistler, Coherent Expanded Aerogels and Jellies, Nature, vol.127, p.741, 1931.

S. S. Kistler, Coherent Expanded-Aerogels, J. Phys. Chem, vol.36, pp.52-64, 1931.

F. Liebner, E. Haimer, M. Wendland, M. Neouze, K. Schlufter et al., Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels, Macromol. Biosci, vol.10, pp.349-352, 2010.

M. Pääkkö, J. Vapaavuori, R. Silvennoinen, H. Kosonen, M. Ankerfors et al., Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities, Soft Matter, 2008.

Z. Zhang, G. Sèbe, D. Rentsch, T. Zimmermann, and P. Tingaut, Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water, Chem. Mater, vol.26, pp.2659-2668, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01366155

Z. Wang, S. Liu, Y. Matsumoto, and S. Kuga, Cellulose gel and aerogel from LiCl/DMSO solution, Cellulose, vol.19, pp.393-399, 2012.

S. Hoepfner, L. Ratke, and B. Milow, Synthesis and characterisation of nanofibrillar cellulose aerogels, Cellulose, vol.15, pp.121-129, 2008.

H. Jin, Y. Nishiyama, M. Wada, and S. Kuga, Nanofibrillar cellulose aerogels, Colloids. Surf., A, vol.240, pp.63-67, 2004.

N. Buchtová and T. Budtova, Cellulose aero-, cryo-and xerogels: towards understanding of morphology control, Cellulose, vol.23, pp.2585-2595, 2016.

C. C. Sun, True density of microcrystalline cellulose, J. Pharm. Sci, vol.94, pp.2132-2134, 2005.

N. Pircher, L. Carbajal, C. Schimper, M. Bacher, H. Rennhofer et al., Impact of selected solvent systems on the pore and solid structure of cellulose aerogels, Cellulose, vol.23, pp.1949-1966, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01317471

C. M. Alder, J. D. Hayler, R. K. Henderson, A. M. Redman, L. Shukla et al., Updating and further expanding GSK's solvent sustainability guide, Green Chem, vol.18, pp.3879-3890, 2016.

M. Du, N. Mao, and S. J. Russell, Control of porous structure in flexible silicone aerogels produced from methyltrimethoxysilane (MTMS): the effect of precursor concentration in solgel solutions, J Mater Sci, vol.51, pp.719-731, 2016.

A. Shinko, S. C. Jana, and M. A. Meador, Crosslinked polyurea aerogels with controlled porosity, RSC Adv, vol.5, pp.105329-105338, 2015.

D. Ciolacu, F. Ciolacu, and V. I. Popa, Amorphous cellulose -Structure and Characterization, Cellul. Chem. Technol, vol.45, pp.13-21, 2011.

P. Wang and B. Y. Tao, Synthesis of cellulose-fatty acid esters for use as biodegradable plastics, J. Environ. Polym. Degr, vol.3, pp.115-119, 1995.

T. Kulomaa, J. Matikainen, P. Karhunen, M. Heikkilä, J. Fiskari et al., Cellulose fatty acid esters as sustainable film materials -effect of side chain structure on barrier and mechanical properties, RSC Adv, vol.5, pp.80702-80708, 2015.

T. A. Dankovich and Y. Hsieh, Surface modification of cellulose with plant triglycerides for hydrophobicity, vol.14, pp.469-480, 2007.

C. Villiers, J. Dognon, R. Pollet, P. Thuéry, and M. Ephritikhine, An isolated CO2 adduct of a nitrogen base: crystal and electronic structures, Angew. Chem. Int. Ed. Engl, vol.49, pp.3465-3468, 2010.

I. Ugi and C. Steinbrückner, Chem. Ber, vol.94, pp.2802-2814, 1961.

T. A. Keating and R. W. Armstrong, The Ugi Five-Component Condensation Using CO2 , CS2 , and COS as Oxidized Carbon Sources, J. Org. Chem, vol.63, pp.867-871, 1998.

A. Sehlinger, R. Schneider, and M. A. Meier, Ugi reactions with CO2: access to functionalized polyurethanes, polycarbonates, polyamides, and polyhydantoins. Macromol. Rapid Comm, vol.35, pp.1866-1871, 2014.

G. Gurau, H. Rodríguez, S. P. Kelley, P. Janiczek, R. S. Kalb et al., Demonstration of chemisorption of carbon dioxide in 1,3-dialkylimidazolium acetate ionic liquids, Angew. Chem. Int. Ed. Engl, vol.50, pp.12024-12026, 2011.

P. S. Barber, C. S. Griggs, G. Gurau, Z. Liu, S. Li et al., Coagulation of chitin and cellulose from 1-ethyl-3-methylimidazolium acetate ionicliquid solutions using carbon dioxide, Angew. Chem. Int. Ed. Engl, vol.52, pp.12350-12353, 2013.

S. König and I. Ugi, Crosslinking of Aqueous Alginic Acid by Four Component Condensation with Inclusion Immobilization of Enzymes, Z. Naturforsch, p.1261, 1991.

A. E. Nooy and . De,

D. Capitani, G. Masci, and V. Crescenzi, Ionic Polysaccharide Hydrogels via the Passerini and Ugi Multicomponent Condensations: Synthesis, Behavior and Solid-State NMR Characterization, Biomacromolecules, vol.1, pp.259-267, 2000.

A. E. Nooy and . De,

G. Masci and V. Crescenzi, Versatile Synthesis of Polysaccharide Hydrogels Using the Passerini and Ugi Multicomponent Condensations, Macromolecules, vol.32, pp.1318-1320, 1999.

Y. Y. Khine, S. Ganda, and M. H. Stenzel, Covalent Tethering of Temperature Responsive pNIPAm onto TEMPO-Oxidized Cellulose Nanofibrils via Three-Component Passerini Reaction, ACS Macro. Lett, vol.7, pp.412-418, 2018.

A. Sehlinger, P. Dannecker, O. Kreye, and M. A. Meier, Diversely Substituted Polyamides: Macromolecular Design Using the Ugi Four-Component Reaction, Macromolecules, vol.47, pp.2774-2783, 2014.

H. Yanai, T. Oguchi, and T. Taguchi, Direct alkylative Passerini reaction of aldehydes, isocyanides, and free aliphatic alcohols catalyzed by indium(III) triflate, J. Org. Chem, vol.74, pp.3927-3929, 2009.

L. El-kaim, M. Gizolme, and L. Grimaud, O-arylative Passerini reactions, Org. lett, vol.8, pp.5021-5023, 2006.

M. Tobisu, A. Kitajima, S. Yoshioka, I. Hyodo, M. Oshita et al., Brønsted acid catalyzed formal insertion of isocyanides into a C-O bond of acetals, J. Am. Chem. Soc, vol.129, pp.11431-11437, 2007.

S. E. Denmark and Y. Fan, The first catalytic, asymmetric alpha-additions of isocyanides

, Lewis-base-catalyzed, enantioselective Passerini-type reactions, J. Am. Chem. Soc, vol.125, pp.7825-7827, 2003.

P. G. Jessop, L. Phan, A. Carrier, S. Robinson, C. J. Dürr et al., A solvent having switchable hydrophilicity, Green Chem, p.809, 2010.

L. Phan, D. Chiu, D. J. Heldebrant, H. Huttenhower, E. John et al., Switchable Solvents Consisting of Amidine/Alcohol or Guanidine/Alcohol Mixtures, Ind. Eng. Chem. Res, vol.47, pp.539-545, 2008.

I. Anugwom, P. Mäki-arvela, P. Virtanen, S. Willför, R. Sjöholm et al., Selective extraction of hemicelluloses from spruce using switchable ionic liquids, Carbohydr. Polym, vol.87, 2005.

Z. Söyler, K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail et al., Sustainable succinylation of cellulose in a CO2-based switchable solvent and subsequent Passerini 3-CR and Ugi 4-CR modification, Green Chem, vol.20, pp.214-224, 2018.

S. B. Lang, T. M. Locascio, and J. A. Tunge, Activation of alcohols with carbon dioxide: intermolecular allylation of weakly acidic pronucleophiles, Org. lett, vol.16, pp.4308-4311, 2014.

H. L. Jackson, W. B. Mccormack, C. S. Rondestvedt, K. C. Smeltz, and I. E. Viele, Control of peroxidizable compounds, J. Chem. Educ, vol.47, p.175, 1970.

H. Kakei, T. Nemoto, T. Ohshima, and M. Shibasaki, Efficient synthesis of chiral alphaand beta-hydroxy amides: application to the synthesis of (R)-fluoxetine, Angew. Chem. Int. Ed. Engl, vol.43, pp.317-320, 2004.

B. R. Barnett and J. S. Figueroa, Zero-valent isocyanides of nickel, palladium and platinum as transition metal ?-type Lewis bases, Chem. Commun, vol.52, pp.13829-13839, 2016.

M. Bhattacharyya, R. Prakash, R. Jagan, and S. Ghosh, Synthesis and ligand substitution of tri-metallic triply bridging borylene complexes, J. Organomet. Chem, vol.866, pp.79-86, 2018.

N. Y. Tashkandi, E. E. Cook, J. L. Bourque, and K. M. Baines, Addition of Isocyanides to Tetramesityldigermene: A Comparison of the Reactivity between Surface and Molecular Digermenes, Chem. Eur. J, vol.22, pp.14006-14012, 2016.

P. Patschinski, C. Zhang, and H. Zipse, The Lewis base-catalyzed silylation of alcohols-a mechanistic analysis, J. Org. Chem, vol.79, pp.8348-8357, 2014.

H. Le-thanh and D. Vocelle, H NMR studies of proton transfer in Schiff base and carboxylic acid systems, Can. J. Chem, vol.68, pp.1909-1916, 1990.

M. Rospenk and L. Sobczyk, 1H NMR studies of proton transfer inortho-mannich bases, Magn. Reson. Chem, vol.27, pp.445-450, 1989.

M. Alves, B. Grignard, S. Gennen, C. Detrembleur, C. Jerome et al., Organocatalytic synthesis of bio-based cyclic carbonates from CO2 and vegetable oils, RSC Adv, vol.5, pp.53629-53636, 2015.
DOI : 10.1039/c5ra10190e

URL : https://orbi.uliege.be/bitstream/2268/182834/2/Alves%20M%202015%20RSC%20Adv%20author%27s%20version.pdf

, 2 List of abbreviations ATR-IR: Attenuated total reflectance infrared spectroscopy

, -N-allyl-2,3-dimethylimidazolium bromide

, Trioctylphosphonium acetate

, Cellulose nanocrystals CO2: Carbon dioxide CP: Cellulose pulp CTMP: Chemothermomechanical pulping CTO: Calcium thiocyanate octahydrate-lithium chloride ?: Dispersity DBN: 1, p.5

. Dmac-libr, Dimethylacetamide-Lithium bromide DMAC-LiCl: N,N-dimethylacetamide-lithium chloride DMSO: Dimethyl sulfoxide DMSO-TBAF: Dimethyl sulfoxide-tetrabutyl ammonium fluoride DS: Degree of substitution E-factor: Environmental factor ESH: Environmental, health and safety FACEs: Fatty acid cellulose esters FP: Whatman? filter paper

, Appendix SFP: Succinylated filter LCA: Life cycle analysis MCC: Microcrystalline cellulose MCRs: Multicomponent reactions MP: Mechanical pulp MS: Molecular degree of substitution MTBD: 7-methyl-1, GC: Gas chromatography GC-MS: Gas chromatography-mass spectrometry IL: Ionic liquid IMCRs: Isocyanide-based multicomponent reactions 9, vol.5, p.7

, Polypropylene PS: Polystyrene PVC: Polyvinyl chloride SEC: Size exclusion chromatography SEM: Scanning electron microscopy TBD: 1,5, p.7

, Thermogravimetric analysis TMG: 1,1,3,3-tetramethylguanidine TMP: Thermomechanical pulp Ugi-4CR: Ugi four component reaction Ugi-5CR: Ugi five component reaction UNEP: United Nations Environment Program WEF: World Economy forum XRD: X-ray diffraction

, Intra-and inter-molecular hydrogen bonding in cellulose I structure. O3-H···O5 intramolecular (purple), O-H2···O6-H intramolecular (red) and H-O2···H6-O intermolecular (green) hydrogen bonds, vol.4

, Cellulose derivatives via homogeneous modification in ionic liquids or CO2 switchable solvent systems, Scheme, vol.5

, Concept of a distillable ionic liquid from TMG and propanoic acid, vol.6, p.145

, Derivative (top) and non-derivative (bottom) approach of CO2 switchable solvent system, Scheme, vol.7

, Design approach towards sustainable cellulose modification Scheme 9: Strecker synthesis of ?-amino nitriles, vol.8, p.191

, Hantzsch synthesis of 1,4 dihydropyridine (DHP), Scheme, vol.10, p.215

, The Biginelli synthesis of 3,4-dihydropyrimidin-2-(1H)-one (DHPM), Scheme, vol.11, p.219

, Mannich synthesis of ?-amino carbonyl compounds, Scheme, vol.12, p.223

, Resonance structures of isocyanide. Scheme 14: Lieke route for isocyanide synthesis, Scheme, vol.13, p.228

, Scheme 15: Hofmann route for isocyanide synthesis, p.230

, Scheme 16: Ugi route for isocyanide synthesis, p.231

, General reaction scheme for the Passerini, vol.17, p.3

, Generally accepted mechanism for Passerini 3-CR, vol.18, p.238

, General reaction scheme for the Ugi, vol.19, p.4

, Mechanism for the Ugi 4-CR, vol.20, p.239

, General procedure for cellulose aerogels preparation from the DBU-CO2 switchable solvent system, Scheme, vol.22

, Cellulose solubilization in DBU-CO2 switchable solvent system and subsequent transesterification using high oleic sunflower oil. Scheme 24: General reaction scheme of Ugi 5-CR, Scheme, vol.23

, General reaction scheme for Ugi 5-CR on cellulose in DBU-CO2, vol.25

, Marie Sklodowska-Curie European Joint Doctoral in Functional Materials (EJD-FunMat)

T. Title, Sustainable Cellulose Solubilization, Regeneration and Derivatization in a DBU-CO2 Switchable Solvent System

, Erasmus Mundus MSc. in Functional Advanced Materials & Engineering (FAME)

, Thesis Title: Synthesis of Amphiphilic Block Copolymer from Cellulose Oligomers via Click Reactions

, University of Bordeaux France (Av. 15.5/20) mention bien. Rank: Top 5%. 11, Bachelor of Technology (B.Tech) in Chemistry, 2007.

, SKILLS 1. Good team player, and excellent communication skills. 2. Analytical and critical thinking skills

, Expertise in Cellulose chemistry: solvents, derivatization and Cellulose-based material (fibres, aerogels, films) processing techniques

G. Nmr, . Ft-ir, . Gc-ms, . Gc, . Sem et al., Electrospinning and Tensile strength measurements, Proficiency in various polymer characterization techniques

, Excellent skills in MS Word

, Among 30 selected Marie-Sklodowska-Curie Researchers, for the FallingWall Lab, 2018.

, 22 nd ACS Green Chemistry Conference, p.6, 2018.

, Best Oral Presentation Award (among 48 presentations, Young Scientist Symposium, p.5, 2018.

. Marie-sklodowska, Curie ITN Fellowship from the European Commission for Ph.D. studies (02, 2016.

. Idx-labex, Fellowship for Erasmus Mundus FAME MSc. Program, pp.2013-2019, 2015.

, Dean's Award for Best Graduating Student, 2011.

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Sustainable Approach for Cellulose Aerogel preparation from the DBU-CO2 Solvent, ACS Sustainable. Chem. Eng, vol.7, issue.3, p.3329, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02134711

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Critical Review on Sustainable Homogeneous Cellulose Modification: Why Renewability is not enough, vol.7, issue.2, p.1826, 2019.

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, On the direct use of CO2 in multicomponent reactions: Introducing the Passerini four component reaction, RSC Advances, vol.8, p.31490, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01972921

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Sustainable Transesterification of Cellulose with High oleic sunflower in a DBU-CO2 Solvent, ACS Sustainable. Chem. Eng, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01917955

K. N. Onwukamike, T. Tassaing, S. Grelier, E. Grau, H. Cramail et al., Detailed understanding of the DBU-CO2 Switchable Solvent System for Cellulose Solubilization and Derivatization, ACS Sustainable. Chem. Eng, 1496.
URL : https://hal.archives-ouvertes.fr/hal-01917963

Z. Söyler, K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail et al., Sustainable Succinylation of Cellulose in a CO2-based Switchable Solvent and Subsequent Passerini 3-CR and Ugi 4-CR modification, Green Chem, p.214, 2018.

E. Billès, K. N. Onwukamike, V. Coma, S. Grelier, and F. Peruch, Cellulose Oligomers Production and Separation for the Synthesis of new fully Bio-based Amphiphilic Compounds, Carbohydr. Polym, vol.154, p.121, 2016.

K. N. Onwukamike, Breaking the walls of Unsustainable Fossil-based Resources. MSCAResearchers FallingWall Lab, 2018.

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Sustainable Cellulose Solubilization, Derivatization and Regeneration in a DBU-CO2 Solvent, Biennial Meeting of the GDCh-Division of Macromolecular Chemistry. Karlsruhe, issue.09, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02116117

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Sustainable Cellulose Solubilization, Derivatization and Regeneration in a DBU-CO2 solvent. BioEnvironmental Polymer Society (BEPS) 25 th annual meeting, p.8, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02116117

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Sustainable Cellulose Solubilization, Derivatization and Regeneration in a DBU-CO2 solvent, 11 th Edition of Young Scientist Symposium (YSS), p.5, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02116117

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Sustainable Cellulose Solubilization and Derivatization in a DBU-CO2 solvent, p.4, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02116117

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Update on research progress on Sustainable Cellulose Solubilization and Derivatization in a DBU-CO2 solvent, Solvay, Laboratory of the Future (LOF), p.4, 2018.

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Sustainable Cellulose Solubilization, Regeneration and Derivatization in a DBU-CO2 Solvent, EJD-FunMat 3 rd Summer School, p.3, 2018.

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Update on research progress on Sustainable Cellulose Solubilization and Derivatization in a DBU-CO2 solvent, Solvay, Laboratory of the Future (LOF), 2017.

K. N. Onwukamike, P. Scholten, and G. Chantereau, Developing an interface for promoting Sustainability through Science Communication, EJD-FunMat Entrepreneurship Summer School, 2017.

K. N. Onwukamike, T. Tassaing, S. Grelier, E. Grau, H. Cramail et al., DBU-CO2 as a Switchable Solvent for Cellulose Solubilization and Derivatization. BioEnvironmental Polymer Society (BEPS) 24 th annual meeting, p.9, 2017.

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Sustainable Cellulose Regeneration and Derivatization, 2 nd EJD-FunMat Summer School, p.3, 2017.

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Fundamental discussions on Ph.D. thesis topic, 1 st EJD-FunMat Summer School, p.3, 2016.

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Sustainable Cellulose Solubilization, Derivatization and Regeneration in a DBU-CO2 solvent, 22 nd ACS Green Chemistry conference, p.6, 2018.

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Sustainable Cellulose Solubilization, Derivatization and Regeneration in a DBU-CO2 solvent, Bordeaux Polymer Conference (BPC), p.5, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02116117

K. N. Onwukamike, T. Tassaing, S. Grelier, E. Grau, H. Cramail et al., Study of CO2 Switchable Solvent for Cellulose Solubilization, 5 th EPNEO International Polysaccharide Conference, p.8, 2017.

Z. Söyler, K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail et al., CO2-based Solvent for Sustainable Succinylation of Cellulose and Subsequent Passerini 3-CR and Ugi 4-CR modification, Advanced Polymers via Macromolecular Engineering (APME), p.5, 2017.

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Cellulose Modification via the Ugi 5-CR in a DBU-CO2 Switchable Solvent System, vol.19, p.4, 2017.

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Cellulose Modification via the Ugi 5-CR in a DBU-CO2 Switchable Solvent System, 9 th Workshop on Fats and Oils as Renewable Feedstocks for the Chemical Industry, p.3, 2017.

K. N. Onwukamike, S. Grelier, E. Grau, H. Cramail, and M. A. Meier, Cellulose Modification via the Ugi 5-CR in an ionic liquid, Jahrestagung der Fachgruppe Nachhaltige Chemie, issue.09, 2016.