Skip to Main content Skip to Navigation
Theses

Sur la géométrie des solitons de Kähler-Ricci dans les variétés toriques et horosphériques

Abstract : This thesis deal with Kähler-Ricci solitons which are natural generalizations of Kähler-Einstein metrics. It is divided into two parts. The first one studies the solitonic decomposition of the space of holomorphic vector spaces in the case of toric manifold. The second one studies is an analytic way the existence of horospherical Kähler-Ricci solitons on those manifolds and then computes the greatest Ricci lower bound.
Complete list of metadatas

Cited literature [70 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02114494
Contributor : Abes Star :  Contact
Submitted on : Monday, April 29, 2019 - 4:29:08 PM
Last modification on : Wednesday, September 16, 2020 - 5:31:29 PM

File

72041_DELGOVE_2019_archivage.p...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02114494, version 1

Citation

François Delgove. Sur la géométrie des solitons de Kähler-Ricci dans les variétés toriques et horosphériques. Géométrie différentielle [math.DG]. Université Paris-Saclay, 2019. Français. ⟨NNT : 2019SACLS084⟩. ⟨tel-02114494⟩

Share

Metrics

Record views

373

Files downloads

141