T. Abeel, T. Van-parys, Y. Saeys, J. Galagan, and Y. Van-de-peer, GenomeView: a next-generation genome browser, Nucleic Acids Res, vol.40, p.12, 2012.

, Simon Bourdareau 1 , Leila Tirichine 2 , Susana M. Coelho 1, J. Mark Cock, vol.1

, CS, vol.90074

S. Ahmed, J. M. Cock, E. Pessia, R. Luthringer, A. Cormier et al., A haploid system of sex determination in the brown alga Ectocarpus sp, Current Biology, vol.24, pp.1945-57, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01132642

J. M. Cock, L. Sterck, P. Rouzé, D. Scornet, A. E. Allen et al., The Ectocarpus genome and the independent evolution of multicellularity in brown algae, Nature, vol.465, pp.617-638, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00906990

S. M. Coelho, O. Godfroy, A. Arun, L. Corguillé, G. Peters et al., OUROBOROS is a master regulator of the gametophyte to sporophyte life cycle transition in the brown alga Ectocarpus, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.11518-11541, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01806390

S. M. Coelho, D. Scornet, S. Rousvoal, N. T. Peters, L. Dartevelle et al.,

, How to cultivate Ectocarpus, Cold Spring Harbor Protocols, vol.2012, pp.258-61

A. Cormier, K. Avia, L. Sterck, T. Derrien, V. Wucher et al., Re-annotation, improved large-scale assembly and establishment of a catalogue of noncoding loci for the genome of the model brown alga Ectocarpus, New Phytologist, vol.214, pp.219-232, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01402123

S. M. Dittami, D. Scornet, J. Petit, B. Ségurens, D. Silva et al., Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress, Genome Biology, vol.10, p.66, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01806423

O. Godfroy, T. Uji, C. Nagasato, A. P. Lipinska, D. Scornet et al., DISTAG/TBCCd1 Is Required for Basal Cell Fate Determination in Ectocarpus, The Plant Cell, vol.29, pp.3102-3124, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01806392

X. Lin, L. Tirichine, and C. Bowler, Protocol: Chromatin immunoprecipitation (ChIP) methodology to investigate histone modifications in two model diatom species, Plant Methods, vol.8, p.48, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00776647

A. Lipinska, A. Cormier, R. Luthringer, A. F. Peters, E. Corre et al., Sexual Dimorphism and the Evolution of Sex-Biased Gene Expression in the Brown Alga Ectocarpus, Molecular Biology and Evolution, vol.32, pp.1581-97, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01285048

N. Macaisne, F. Liu, D. Scornet, A. F. Peters, A. Lipinska et al., The Ectocarpus IMMEDIATE UPRIGHT gene encodes a member of a novel family of cysteine-rich proteins that have an unusual distribution across the eukaryotes, Development, vol.144, pp.409-427, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01925145

L. Mignerot and S. Coelho, The origin and evolution of the sexes: Novel insights from a distant eukaryotic linage, Comptes Rendus Biologies, vol.339, pp.252-257, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01323858

A. F. Peters, D. Marie, D. Scornet, B. Kloareg, and J. M. Cock, PROPOSAL OF ECTOCARPUS SILICULOSUS (ECTOCARPALES, PHAEOPHYCEAE) AS A MODEL ORGANISM FOR BROWN ALGAL GENETICS AND GENOMICS. Journal of Phycology, vol.40, pp.1079-88, 2004.

A. F. Peters, D. Scornet, M. Ratin, B. Charrier, A. Monnier et al., Life-cycle-generation-specific developmental processes are modified in the immediate upright mutant of the brown alga Ectocarpus siliculosus, Development, vol.135, pp.1503-1515, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01806436

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang et al., , 1997.

G. Blast, PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, pp.3389-3402

X. J. Yang, Histone Acetyltransferases, Key Writers of the Epigenetic Language, Chromatin Signaling and Diseases, 2016.

B. Gu and M. G. Lee, Histone H3 lysine 4 methyltransferases and demethylases in selfrenewal and differentiation of stem cells, Cell & Bioscience, vol.3, p.39, 2013.

C. Mozzetta, E. Boyarchuk, J. Pontis, A. , and S. , Sound of silence: the properties and functions of repressive Lys methyltransferases, Nature Reviews Molecular Cell Biology, vol.16, pp.499-513, 2015.

Q. Feng, H. Wang, H. H. Ng, H. Erdjument-bromage, P. Tempst et al., Methylation of H3-Lysine 79 Is Mediated by a New Family of HMTases without a SET Domain, Current Biology, vol.12, pp.1052-1058, 2002.

M. J. Lamberti, R. E. Vera, R. Vittar, N. B. Schneider, and G. , Histone Deacetylases, the Erasers of the Code, Chromatin Signaling and Diseases, 2016.

M. A. García, R. Fueyo, and M. A. Martínez-ballás, Lysine Demethylases: Structure, Function, and Disfunction, Chromatin Signaling and Diseases, 2016.

A. Veluchamy, A. Rastogi, X. Lin, B. Lombard, O. Murik et al., An integrative analysis of post-translational histone modifications in the marine diatom Phaeodactylum tricornutum, Genome Biology, vol.16, p.102, 2015.

A. Rastogi, X. Lin, B. Lombard, D. Loew, and L. Tirichine, Probing the evolutionary history of epigenetic mechanisms: what can we learn from marine diatoms, AIMS Genetics, vol.2, pp.173-191, 2015.

C. Zhang, S. Gao, A. J. Molascon, Z. Wang, M. A. Gorovsky et al., Bioinformatic and Proteomic Analyses of Bulk Histones Reveals PTM Crosstalk and Chromatin Features, Journal of Proteome Research, vol.13, pp.3330-3337, 2014.

S. A. Morris, B. Rao, B. A. Garcia, S. B. Hake, R. L. Diaz et al., Identification of Histone H3 Lysine 36 Acetylation as a Highly Conserved Histone Modification, The Journal of Biological Chemistry, vol.282, pp.7632-7640, 2007.

K. Zhang, V. V. Sridhar, J. Zhu, A. Kapoor, and J. Zhu, Distinctive Core Histone PostTranslational Modification Patterns in Arabidopsis thaliana, PLoS ONE, vol.2, issue.11, p.1210, 2007.

J. Charron, H. He, A. A. Elling, and X. W. Deng, Dynamic Landscapes of Four Histones Modifications during Deetiolation in Arabidopsis, The Plant Cell, vol.21, pp.3732-3748, 2009.

W. Mahrez, T. Arellano, M. S. Moreno-romero, J. Nakamura, M. Shu et al., H3K36ac Is an Evolutionary Conserved Plant Histone Modification That Marks Active Genes, Plant Physiology, vol.170, pp.1566-1577, 2016.

H. C. Beck, E. C. Nielsen, R. Matthiesen, L. H. Jensen, M. Sehested et al., Quantitative Proteomic Analysis of Posttranslational Modifications of Human Histones, Molecular & Cellular Proteomics, vol.5, pp.1314-1325, 2006.

M. Tan, H. Luo, S. Lee, J. F. , S. Yang et al., Identification of 67 Histone Marks and Histone Lysine Crotonylation as a New Type of Histone Modification, Cell, vol.146, pp.1016-1028, 2011.

Y. Zhao and B. A. Garcia, Comprehensive Catalog of Currently Documented Histone Modifications, Cold Spring Harbor Perspectives in Biology, vol.7, p.25064, 2015.

M. L. Valero, R. Sendra, and M. Pamblanco, Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of posttranslational modification in Saccharomyces cerevisiae, Journal of Proteomics, vol.136, p.183, 2016.

S. Ahmed, J. M. Cock, E. Pessia, R. Luthringer, A. Cormier et al., A haploid system of sex determination in the brown alga Ectocarpus sp, Current Biology, vol.24, pp.1945-57, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01132642

A. Arun, Analyse génétique et moléculaire de la régulation du cycle de vie chez l'algue brune Ectocarpus siliculosis, 2012.

T. Bailey, M. Boden, F. Buske, M. Frith, C. Grant et al.,

, MEME Suite: tools for motif discovery and searching, Nucleic Acids Research, vol.37, pp.202-208

E. Bailey, Fitting a mixture model by expectation maximization to discover motifs in biopolymers, Proceedings. International Conference on Intelligent Systems for Molecular Biology, vol.2, pp.28-36, 1994.

A. Bannister and T. Kouzarides, Regulation of chromatin by histone modifications, Cell Research, vol.21, pp.381-395, 2011.
DOI : 10.1038/cr.2011.22

URL : https://www.nature.com/articles/cr201122.pdf

S. Artlett-a-o'malley-r-huang, M. Galli, J. Nery, . Gallav, and J. Ecker, Mapping genome-wide transcription-factor binding sites using DAP-seq, Nature Protocols, vol.12, pp.1659-1672, 2017.

J. Belton, R. Mccord, J. Gibcus, N. Naumova, Y. Zhan et al., Hi-C: A comprehensive technique to capture the conformation of genomes, Methods, vol.58, p.268, 2012.

M. F. Berger, G. Badis, A. R. Gehrke, S. Talukder, A. A. Philippakis et al.,

T. M. Alleyne, S. Mnaimneh, O. B. Botvinnik, and E. T. Chan, Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences, Cell, vol.133, pp.1266-76, 2008.

M. Berger and M. Bulyk, Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors, Nature Protocols, vol.4, pp.393-411, 2009.

A. Bergerat, B. De-massy, D. Gadelle, P. Varoutas, N. A. Forterre et al., An atypical topoisomerase II from archaea with implications for meiotic recombination, Nature, vol.386, pp.414-417, 1997.
DOI : 10.1038/386414a0

N. Bolduc, A. Yilmaz, . Mejia-guerra, and S. Mk-m-r-hashi-k-o'c-nn-r-d-gr-tew-l-e-hake, Unraveling the KNOTTED1 regulatory network in maize meristems, Genes & Development, vol.26, pp.1685-1690, 2012.

G. Bowman and M. Poirier, Post-Translational Modifications of Histones That Influence Nucleosome Dynamics, Chemical Reviews, vol.115, pp.2274-2295, 2015.

J. Bowman, K. Sakakibara, C. Furumizu, and T. Dierschke, Evolution in the Cycles of Life, Annual Review of Genetics, vol.50, pp.1-22, 2015.

F. Burki, M. Kaplan, D. Tikhonenkov, V. Zlatogursky, B. Minh et al., Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista, Proc. R. Soc. B, vol.283, p.20152802, 2016.

F. Burki, K. Shalchian-tabrizi, M. Minge, Å. Skjaeveland, S. Nikolaev et al., Phylogenomics Reshuffles the Eukaryotic Supergroups, PLoS ONE, vol.2, p.790, 2007.
DOI : 10.1371/journal.pone.0000790

URL : https://doi.org/10.1371/journal.pone.0000790

T. Bürglin, . Meis, . Pbc, and I. Knox, TGIF) reveals a novel domain conserved between plants and animals, Nucleic Acids Research, vol.25, pp.4173-4180, 1997.

G. Caretti, M. Motta, and R. Mantovani, NF-Y Associates with H3-H4 Tetramers and Octamers by Multiple Mechanisms, Molecular and Cellular Biology, vol.19, pp.8591-8603, 1999.
DOI : 10.1128/mcb.19.12.8591

URL : http://europepmc.org/articles/pmc84987?pdf=render

A. Carrasco, W. Mcginnis, W. Gehring, and E. Robertis,

T. Cavalier-smith, E. Chao, E. Snell, C. Berney, A. Fiore-donno et al., , 2014.

, Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution

T. Cavalier-smith, A. Fiore-donno, E. Chao, A. Kudryavtsev, C. Berney et al.,

, Multigene phylogeny resolves deep branching of Amoebozoa, Molecular Phylogenetics and Evolution, vol.83, pp.293-304

M. Chai, C. Zhou, I. Molina, C. Fu, J. Nakashima et al., A class II KNOX gene, KNOX4, controls seed physical dormancy, Proceedings of the National Academy of Sciences, vol.113, pp.6997-7002, 2016.

X. Cheng and X. Zhang, Structural dynamics of protein lysine methylation and demethylation. Mutation Research/Fundamental and Molecular Mechanisms of, Mutagenesis, vol.618, pp.102-115, 2007.

L. R. Cleveland, The Origin and Evolution of Meiosis, Science, vol.105, pp.287-289, 1947.

J. M. Cock, L. Sterck, P. Rouzé, D. Scornet, A. E. Allen et al.,

F. Artiguenave, J. Aury, and J. H. Badger, The Ectocarpus genome and the independent evolution of multicellularity in brown algae, Nature, vol.465, pp.617-638, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00906990

S. M. Coelho, A. F. Peters, B. Charrier, R. D. Destombe, C. Valero et al., Complex life cycles of multicellular eukaryotes: new approaches based on the use of model organisms, Gene, vol.406, pp.152-70, 2007.

A. Cormier, K. Avia, L. Sterck, T. Derrien, V. Wucher et al., Re-annotation, improved large-scale assembly and establishment of a catalogue of noncoding loci for the genome of the model brown alga Ectocarpus, New Phytologist, vol.214, pp.219-232, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01402123

D. Corona, A. Eberharter, A. Budde, R. Deuring, S. Ferrari et al., Two histone fold proteins, CHRAC-14 and CHRAC-16, are developmentally regulated subunits of chromatin accessibility complex (CHRAC), The EMBO Journal, vol.19, pp.3049-3059, 2000.

C. Cowan, J. Atienza, D. Melton, and K. Eggan, Nuclear Reprogramming of Somatic Cells After Fusion with Human Embryonic Stem Cells, Science, vol.309, pp.1369-1373, 2005.

J. Crow and M. Kimura, Evolution in Sexual and Asexual Populations, The American Naturalist, vol.99, pp.439-450, 1965.

A. Currie, NF-Y Is Associated with the Histone Acetyltransferases GCN5 and P/CAF, Journal of Biological Chemistry, vol.273, pp.1430-1434, 1998.

J. Dacks, M. Field, R. Buick, L. Eme, S. Gribaldo et al., The changing view of eukaryogenesis -fossils, cells, lineages and how they all come together, J Cell Sci, vol.129, pp.3695-3703, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02016401

A. Deaton and A. Bird, CpG islands and the regulation of transcription, Genes & Development, vol.25, pp.1010-1022, 2011.

R. Derelle, P. Lopez, H. Guyader, and M. Manuel, Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes, Evolution & Development, vol.9, pp.212-219, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00607197

S. M. Dittami, D. Scornet, J. Petit, B. Ségurens, D. Silva et al., Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress, Genome Biology, vol.10, p.66, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01806423

D. Dolfini, R. Gatta, and R. Mantovani, NF-Y and the transcriptional activation of CCAAT promoters, Critical Reviews in Biochemistry and Molecular Biology, vol.47, pp.29-49, 2012.

E. Ebchuqin, N. Yokota, L. Yamada, Y. Yasuoka, M. Akasaka et al., Evidence for participation of GCS1 in fertilization of the starlet sea anemone Nematostella vectensis: Implication of a common mechanism of sperm-egg fusion in plants and animals, Biochemical and Biophysical Research Communications, vol.451, pp.522-528, 2014.

R. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, pp.1792-1797, 2004.

I. Ene and R. Bennett, The cryptic sexual strategies of human fungal pathogens, Nature Reviews Microbiology, vol.12, 2014.

A. Fehér, T. Pasternak, and D. Dudits, Transition of somatic plant cells to an embryogenic state, Plant Cell, Tissue and Organ Culture, vol.74, pp.201-228, 2003.

Q. Feng, H. Wang, H. Ng, H. Erdjument-bromage, P. Tempst et al., Methylation of H3-Lysine 79 Is Mediated by a New Family of HMTases without a SET Domain, Current Biology, vol.12, pp.1052-1058, 2002.

D. Ferrier and P. Holland, Ancient origin of the Hox gene cluster, Nature Reviews Genetics, vol.2, p.35047605, 2001.

W. Flemming, Ueber das Verhalten des Kerns bei der Zellteilung und über die Bedeutung mehrkerniger Zellen, Archiv für Pathologische Anatomie, vol.77, pp.1-28, 1879.

J. Fleming, G. Pavesi, P. Benatti, C. Imbriano, R. Mantovani et al., NF-Y coassociates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors, Genome Research, vol.23, pp.1195-1209, 2013.

A. Fossati, D. Dolfini, G. Donati, and R. Mantovani, NF-Y Recruits Ash2L to Impart H3K4 Trimethylation on CCAAT Promoters, PLoS ONE, vol.6, p.17220, 2011.

Y. Fu, G. Luo, K. Chen, X. Deng, M. Yu et al., , 2015.

. N6-methyldeoxyadenosine, Marks Active Transcription Start Sites in Chlamydomonas, Cell, vol.161, pp.879-892

C. Furumizu, J. P. Alvarez, K. Sakakibara, and J. L. Bowman, Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication, PLoS genetics, vol.11, p.1004980, 2015.

D. Fyodorov, B. Zhou, A. Skoultchi, and Y. Bai, Emerging roles of linker histones in regulating chromatin structure and function, Nature Reviews Molecular Cell Biology, 2017.

J. Fédry, Y. Liu, G. Péhau-arnaudet, P. J. Li, W. Tortorici et al., The Ancient Gamete Fusogen HAP2 Is a Eukaryotic Class II, Fusion Protein. Cell, vol.168, pp.904-915, 2017.

M. A. Garcia, A. Fueyo, and M. A. Martinéz-balbas, Lysine Demethylases: Structure, Function and Disfunction, Chromatin Signaling and Diseases, 2016.

R. Gatta and R. Mantovani, NF-Y affects histone acetylation and H2A.Z deposition in cell cycle promoters, Epigenetics, vol.6, pp.526-534, 2011.

B. Gillissen, J. Bergemann, C. Sandmann, B. Schroeer, M. Bölker et al., A two-component regulatory system for self/non-self recognition in Ustilago maydis, Cell, vol.68, pp.647-657, 1992.

O. Godfroy, T. Uji, C. Nagasato, A. P. Lipinska, D. Scornet et al.,

M. Laure and T. Motomura, DISTAG/TBCCd1 Is Required for Basal Cell Fate Determination in Ectocarpus, The Plant Cell, vol.29, pp.3102-3124, 2017.

M. Godoy, J. Franco-zorrilla, J. Pérez-pérez, J. Oliveros, Ó. Lorenzo et al., Improved protein-binding microarrays for the identification of DNA-binding specificities of transcription factors, The Plant Journal, vol.66, pp.700-711, 2011.

R. Gordân, N. Shen, I. Dror, T. Zhou, J. Horton et al., Genomic Regions Flanking E-Box Binding Sites Influence DNA Binding Specificity of bHLH Transcription Factors through DNA Shape, Cell Reports, vol.3, pp.1093-1104, 2013.

C. Goutte and A. Johnson, a1 Protein alters the dna binding specificity of ?2 repressor, Cell, vol.52, pp.875-882, 1988.

D. Goutte-gattat, M. Shuaib, K. Ouararhni, T. Gautier, D. Skoufias et al., Phosphorylation of the CENP-A amino-terminus in mitotic centromeric chromatin is required for kinetochore function, Proceedings of the National Academy of Sciences, vol.110, pp.8579-8584, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01322371

G. Grafi, How cells dedifferentiate: a lesson from plants, Developmental Biology, vol.268, pp.1-6, 2004.

E. Greer, M. Blanco, L. Gu, E. Sendinc, J. Liu et al., DNA Methylation on N6-Adenine in C. elegans. Cell, vol.161, pp.868-878, 2015.

M. Guertin, A. Martins, A. Siepel, and J. Lis, Accurate Prediction of Inducible Transcription Factor Binding Intensities In Vivo, PLoS Genetics, vol.8, p.1002610, 2012.

Y. Guo, S. Mahony, and D. Gifford, High Resolution Genome Wide Binding Event Finding and Motif Discovery Reveals Transcription Factor Spatial Binding Constraints, 2012.

, PLoS Computational Biology, vol.8

Y. Guo, K. Tian, H. Zeng, X. Guo, and D. Gifford, A novel k-mer set memory (KSM) motif representation improves regulatory variant prediction, p.130815, 2017.

T. Hamaji, D. Lopez, M. Pellegrini, and J. Umen, Identification and Characterization of a cis-Regulatory Element for Zygotic Gene Expression in Chlamydomonas reinhardtii, p.3, 2016.

, Genes|Genomes|Genetics, vol.6, pp.1541-1548

P. Hansen, J. Hecht, J. Ibn-salem, B. Menkuec, S. Roskosch et al., , 2016.

, Q-nexus: a comprehensive and efficient analysis pipeline designed for ChIP-nexus, BMC Genomics, vol.17, p.873

Q. He, J. Johnston, and J. Zeitlinger, ChIP-nexus enables improved detection of in vivo transcription factor binding footprints, Nature biotechnology, vol.33, pp.395-401, 2015.

K. Hedgethorne, S. Eustermann, J. Yang, T. Ogden, D. Neuhaus et al., , 2017.

, Homeodomain-like DNA binding proteins control the haploid-to-diploid transition in Dictyostelium, Science Advances, vol.3, p.1602937

D. Hickey and M. Rose, The role of gene transfer in the evolution of eukaryotic sex. The evolution of sex, 1988.

P. Holland, A. Booth, and E. Bruford, Classification and nomenclature of all human homeobox genes, BMC Biology, vol.5, pp.1-28, 2007.

N. Horst, A. Katz, I. Pereman, E. Decker, N. Ohad et al., A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction, Nature Plants, vol.2, p.2015209, 2016.

R. D. Hotchkiss, The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography, Journal of Biological Chemistry, vol.175, pp.315-332, 1948.

H. Huang, B. Sabari, B. Garcia, A. D. Zhao, and Y. , SnapShot: Histone Modifications, Cell, 2014.

B. Hudry, M. Thomas-chollier, Y. Volovik, M. Duffraisse, A. Dard et al., Molecular insights into the origin of the Hox-TALE patterning system, vol.3, p.1939, 2014.

J. S. Hughes and S. P. Otto, Ecology and the Evolution of Biphasic Life Cycles, The American Naturalist, vol.154, p.306, 1999.

C. Hull, M. Boily, and J. Heitman, Sex-Specific Homeodomain Proteins Sxi1? and Sxi2a Coordinately Regulate Sexual Development in Cryptococcus neoformans, 2005.

, Eukaryotic Cell, vol.4, pp.526-535

L. M. Iyer, D. Zhang, and L. Aravind, Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification, BioEssays : news and reviews in molecular, cellular and developmental biology, vol.38, pp.27-40, 2016.

D. Jiang and F. Berger, Histone variants in plant transcriptional regulation, Biochimica et Biophysica Acta (BBA) -Gene Regulatory Mechanisms, vol.1860, pp.123-130, 2017.

R. Jones and W. Gelbart, The Drosophila Polycomb-group gene Enhancer of zeste contains a region with sequence similarity to trithorax, Molecular and Cellular Biology, vol.13, pp.6357-6366, 1993.

S. Joo, Y. Nishimura, E. Cronmiller, R. Hong, T. Kariyawasam et al., Gene, 2017.

, Haploid-to-Diploid Transition of Chlamydomonas reinhardtii, Plant physiology, vol.175, p.314

B. J. Karas, R. E. Diner, S. C. Lefebvre, J. Mcquaid, A. P. Phillips et al., Designer diatom episomes delivered by bacterial conjugation, Nature communications, vol.6, p.6925, 2015.

P. Keeling, The endosymbiotic origin, diversification and fate of plastids, 2010.

, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.365, pp.729-748

C. Kissinger, B. Liu, E. Martin-blanco, T. Kornberg, and C. Pabo, Crystal structure of an engrailed homeodomain-DNA complex at 2.8 Å resolution: A framework for understanding homeodomain-DNA interactions, Cell, vol.63, pp.579-590, 1990.

J. Klemm, M. Rould, A. R. Herr, W. Pabo, and C. , Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules, Cell, vol.77, pp.21-32, 1994.

A. Kondrashov, Deleterious mutations and the evolution of sexual reproduction, Nature, vol.336, pp.435-440, 1988.

R. Kornberg, Chromatin Structure: A Repeating Unit of Histones and DNA, Science, vol.184, pp.868-871, 1974.

L. Koumandou, B. Wickstead, M. Ginger, M. Van-der-giezen, J. Dacks et al., Molecular paleontology and complexity in the last eukaryotic common ancestor, Critical Reviews in Biochemistry and Molecular Biology, vol.48, pp.373-396, 2013.

. Kues, T. Richardson, . Mutasa, . Gottgens, . Gaubatz et al., The combination of dissimilar alleles of the A alpha and A beta gene complexes, whose proteins contain homeo domain motifs, determines sexual development in the mushroom Coprinus cinereus, Genes & Development, 1992.

I. Kukimoto, S. Elderkin, M. Grimaldi, T. Oelgeschläger, and P. Varga-weisz, The Histone-Fold Protein Complex CHRAC-15/17 Enhances Nucleosome Sliding and Assembly Mediated by ACF, Molecular Cell, vol.13, pp.265-277, 2004.

B. Kumar, H. Parker, A. Paulson, M. Parrish, I. Pushel et al., HOXA1 and TALE proteins display cross-regulatory interactions and form a combinatorial binding code on HOXA1 targets, Genome Research, vol.27, pp.1501-1512, 2017.

N. Kutschera, Endosymbiosis, cell evolution, and speciation, Theory in Biosciences, vol.124, pp.1-24, 2005.

T. Laloum, D. Mita, S. Gamas, P. Baudin, M. Niebel et al., CCAAT-box binding transcription factors in plants: Y so many?, Trends in Plant Science, vol.18, pp.157-166, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268179

M. Lawrence, S. Daujat, and R. Schneider, Lateral Thinking: How Histone Modifications Regulate Gene Expression, Trends in Genetics, vol.32, pp.42-56, 2016.

J. Lee, H. Lin, S. Joo, and U. Goodenough, Early Sexual Origins of Homeoprotein Heterodimerization and Evolution of the Plant KNOX/BELL Family, Cell, vol.133, 2008.

K. Lee and J. Workman, Histone acetyltransferase complexes: one size doesn't fit all, 2007.

, Nature Reviews Molecular Cell Biology, vol.8, pp.284-295

T. Lenormand, J. Engelstädter, S. Johnston, E. Wijnker, and C. Haag, Evolutionary mysteries in meiosis, Phil. Trans. R. Soc. B, vol.371, p.20160001, 2016.

. Li, J. Stark, and W. , Crystal structure of the MATa1/MAT?2 homeodomain heterodimer bound to DNA, 1995.

X. Lin, L. Tirichine, and C. Bowler, Protocol: Chromatin immunoprecipitation (ChIP), 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00776647

A. Lipinska, A. Cormier, R. Luthringer, A. F. Peters, E. Corre et al., Uncovering the genetic basis for early isogamete differentiation: a case study of Ectocarpus siliculosus, Molecular Biology and Evolution, vol.32, pp.1581-97, 2013.

X. Liu, D. Noll, J. Lieb, and N. Clarke, DIP-chip: Rapid and accurate determination of DNA-binding specificity, Genome Research, vol.15, pp.421-427, 2005.

J. Loidl, Conservation and Variability of Meiosis Across the Eukaryotes, Annual Review of Genetics, vol.50, 2015.

R. Luthringer, A. P. Lipinska, R. D. Cormier, A. Macaisne, N. Peters et al., The pseudoautosomal regions of the U/V sex chromosomes of the brown alga Ectocarpus exhibit unusual features, Molecular biology and evolution, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01806430

M. B. Otto and S. , The evolution of life cycles with haploid and diploid phases, BioEssays, vol.20, pp.453-462, 1998.

P. Martin, A. Mcgovern, G. Orozco, K. Duffus, A. Yarwood et al., Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci, Nature Communications, vol.6, p.10069, 2015.

W. Mcginnis, R. Garber, J. Wirz, A. Kuroiwa, and W. Gehring, A homologous proteincoding sequence in Drosophila homeotic genes and its conservation in other metazoans, Cell, vol.37, p.403408, 1984.

. Mcginnis, . Levine, . Hafen, . Kuroiwa, and . Gehring, A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes, Nature, vol.308, pp.428-433, 1984.

R. Mcginty and S. Tan, Nucleosome structure and function, Chemical reviews, vol.115, pp.2255-73, 2014.

M. E. Mead, B. C. Stanton, E. K. Kruzel, and C. M. Hull, Targets of the Sex Inducer homeodomain proteins are required for fungal development and virulence in Cryptococcus neoformans, Molecular microbiology, vol.95, pp.804-822, 2015.

S. Merabet and R. Mann, To Be Specific or Not: The Critical Relationship Between Hox And TALE Proteins, Trends in Genetics, vol.32, pp.334-347, 2016.

B. Mifsud, F. Tavares-cadete, A. Young, R. Sugar, S. Schoenfelder et al., Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C, Nature Genetics, vol.47, 2015.

T. H. Morgan, An attempt to analyse the constitution of the chromosomes on the basis of sex-limited unhritance in Drosophila, Journal of Experimental Zoology Part A, vol.11, pp.365-413, 1911.

T. Mori, H. Kuroiwa, T. Higashiyama, and T. Kuroiwa, GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization, Nature Cell Biology, vol.8, pp.64-71, 2005.

. Moy, . Mendoza, . Schulz, . Swanson, . Glabe et al., The sea urchin sperm disease protein, PKD1, The Journal of Cell Biology, vol.133, pp.809-817, 1996.

K. Mukherjee, L. Brocchieri, and T. Bürglin, A Comprehensive Classification and Evolutionary Analysis of Plant Homeobox Genes, Molecular Biology and Evolution, vol.26, pp.2775-2794, 2009.

V. Nardone, A. Chaves-sanjuan, and M. Nardini, Structural Determinants for NF, 2016.

Y. Dna, Interaction at the CCAAT Box. Biochimica et Biophysica Acta (BBA) -Gene Regulatory Mechanisms

M. Ni, M. Feretzaki, S. Sun, W. X. Heitman, and J. , Sex in Fungi. Genetics, vol.45, p.405, 2011.

Y. Nishimura, T. Shikanai, S. Nakamura, M. Kawai-yamada, and H. Uchimiya, Gsp1 triggers the sexual developmental program including inheritance of chloroplast DNA and mitochondrial DNA in Chlamydomonas reinhardtii, The Plant cell, vol.24, pp.2401-2415, 2012.

M. Noyes, R. Christensen, A. Wakabayashi, G. Stormo, M. Brodsky et al., Analysis of Homeodomain Specificities Allows the Family-wide Prediction of Preferred Recognition Sites, Cell, vol.133, 2008.

M. Okamoto, L. Yamada, Y. Fujisaki, G. Bloomfield, K. Yoshida et al.,

H. Mori, T. Urushihara, and H. , Two HAP2-GCS1 homologs responsible for gamete interactions in the cellular slime mold with multiple mating types: Implication for common mechanisms of sexual reproduction shared by plants and protozoa and for male-female differentiation, Developmental Biology, vol.415, pp.6-13, 2016.

A. Oldfield, P. Yang, A. Conway, S. Cinghu, J. Freudenberg et al., , 2014.

, Histone-Fold Domain Protein NF-Y Promotes Chromatin Accessibility for Cell TypeSpecific Master Transcription Factors. Molecular Cell, vol.55, pp.708-722

A. Olins and D. Olins, Spheroid Chromatin Units (? Bodies), Science, vol.183, pp.330-332, 1974.

S. O'malley-r-huang, . Ng, J. Nery, M. Galli, and . Gallav,

J. Ecker, Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape, Cell, vol.165, pp.1280-1292, 2016.

L. Parfrey, D. Lahr, A. Knoll, and L. Katz, Estimating the timing of early eukaryotic diversification with multigene molecular clocks, Proceedings of the National Academy of Sciences, vol.108, pp.13624-13629, 2011.

J. Passner, H. Ryoo, L. Shen, R. Mann, and A. Aggarwal, Structure of a DNA-bound Ultrabithorax-Extradenticle homeodomain complex, Nature, vol.397, pp.714-719, 1999.

R. Pelossof, I. Singh, J. Yang, M. Weirauch, T. Hughes et al., Affinity regression predicts the recognition code of nucleic acid-binding proteins, Nature Biotechnology, vol.33, 2015.

A. F. Peters, D. Scornet, M. Ratin, B. Charrier, A. Monnier et al., Life-cycle-generation-specific developmental processes are modified in the immediate upright mutant of the brown alga Ectocarpus siliculosus, Development, vol.135, pp.1503-1515, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01806436

. Pontecorvo, The Parasexual Cycle in Fungi, Annual Review of Microbiology, vol.10, pp.393-400, 1956.

L. Rajeev, E. Luning, and A. Mukhopadhyay, DNA-affinity-purified chip (DAP-chip) visualized experiments, 2014.

J. Renkawitz, C. Lademann, M. Kalocsay, and S. Jentsch, Monitoring Homology Search during DNA Double-Strand Break Repair In Vivo, Molecular Cell, vol.50, pp.261-272, 2013.

M. Rescan, T. Lenormand, and R. D. , Interactions between Genetic and Ecological Effects on the Evolution of Life Cycles, The American Naturalist, vol.187, pp.19-34, 2016.

A. D. Riggs and T. N. Porter, Overview of epigenetic mechanisms. Cold Spring Harbor monograph series, vol.32, pp.29-46, 1996.

K. Sakakibara, S. Ando, H. Yip, Y. Tamada, Y. Hiwatashi et al.,

M. Bowman and J. , KNOX2 genes regulate the haploid-to-diploid morphological transition in land plants, Science, vol.339, pp.1067-70, 2013.

A. Scacchetti, L. Brueckner, D. Jain, T. Schauer, X. Zhang et al., CHRAC/ACF Contribute to the Repressive Ground State of Chromatin, p.218768, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02109020

C. Schmid, N. Schroer, and D. Müller, Female gamete membrane glycoproteins potentially involved in gamete recognition in Ectocarpus siliculosus (Phaeophyceae), 1994.

, Plant Science, vol.102, pp.61-67

T. Seike, T. Nakamura, and C. Shimoda, Molecular coevolution of a sex pheromone and its receptor triggers reproductive isolation in Schizosaccharomyces pombe, Proceedings of the National Academy of Sciences of the United States of America, vol.112, pp.4405-4415, 2015.

J. Shepherd, W. Mcginnis, A. Carrasco, E. Robertis, and W. Gehring, Fly and frog homoeo domains show homologies with yeast mating type regulatory proteins, Nature, vol.310, pp.310070-310070, 1984.

M. Siaut, M. Heijde, M. Mangogna, A. Montsant, S. Coesel et al., Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum, Gene, vol.406, pp.23-35, 2007.

A. Simpson, Y. Inagaki, and A. Roger, Comprehensive Multigene Phylogenies of, 2006.

, Excavate Protists Reveal the Evolutionary Positions of 'Primitive' Eukaryotes, Molecular Biology and Evolution, vol.23, pp.615-625

M. Slattery, T. Riley, P. Liu, N. Abe, P. Gomez-alcala et al.,

H. Bussemaker, Cofactor Binding Evokes Latent Differences in DNA Binding Specificity between Hox Proteins, Cell, vol.147, pp.1270-1282, 2011.

M. Slattery, T. Zhou, L. Yang, A. Machado, R. Gordân et al., Absence of a simple code: how transcription factors read the genome, Trends in Biochemical Sciences, vol.39, pp.381-399, 2014.

L. G. Smith, B. Greene, B. Veit, and S. Hake, A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates, Development, vol.116, pp.21-30, 1992.

R. Steele and C. Dana, Evolutionary History of the HAP2/GCS1 Gene and Sexual Reproduction in Metazoans, PLoS ONE, vol.4, p.7680, 2009.

B. Strahl and A. D. , The language of covalent histone modifications, Nature, vol.403, p.41, 2000.

N. Takatori, T. Butts, S. Candiani, M. Pestarino, D. Ferrier et al., Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae, Development Genes and Evolution, vol.218, pp.579-590, 2008.

P. Talbert and S. Henikoff, Histone variants--ancient wrap artists of the epigenome, Nature reviews. Molecular cell biology, vol.11, 2010.

A. Testa, G. Donati, P. Yan, F. Romani, T. Huang et al., , 2005.

, Chromatin Immunoprecipitation (ChIP) on Chip Experiments Uncover a Widespread Distribution of NF-Y Binding CCAAT Sites Outside of Core Promoters, Journal of Biological Chemistry, vol.280, pp.13606-13615

E. Truernit and J. Haseloff, A Role for KNAT Class II Genes in Root Development, Plant Signaling & Behavior, vol.2, pp.10-12, 2014.

J. G. Umen, Green Algae and the Origins of Multicellularity in the Plant Kingdom, 2014.

A. Veluchamy, A. Rastogi, X. Lin, B. Lombard, O. Murik et al., An integrative analysis of post-translational histone modifications in the marine diatom Phaeodactylum tricornutum, Genome biology, vol.16, 2015.

C. H. Waddington, The Epigenotype. Endeavour, vol.1, p.18, 1942.

M. Weirauch, A. Yang, M. Albu, A. Cote, A. Montenegro-montero et al.,

H. , L. S. Mann, I. Cook, and K. , Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity, Cell, vol.158, pp.1431-1443, 2014.

J. S. Watson and F. Crick, Genetical implications of the structure of desoxyribonucleic acid, Nature, vol.171, pp.964-967, 1953.

C. Wolberger, A. Vershon, B. Liu, A. Johnson, and C. Pabo, Crystal structure of a MAT?2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions, Cell, vol.67, pp.517-528, 1991.

A. Yadon and T. Tsukiyama, SnapShot: Chromatin Remodeling: ISWI. Cell, vol.144, p.453, 2011.

X. J. Yang, Histone Acetyltransferases, Key Writers of the Epigenetic Language, Chromatin Signaling and Diseases, 2016.

X. Yang and E. Seto, Lysine Acetylation: Codified Crosstalk with Other Posttranslational Modifications, Molecular Cell, vol.31, pp.449-461, 2008.

Y. Yin, E. Morgunova, A. Jolma, E. Kaasinen, B. Sahu et al.,

K. Dave and F. Zhong, Impact of cytosine methylation on DNA binding specificities of human transcription factors, Science, vol.356, p.2239, 2017.

H. Yoon, J. Hackett, C. Ciniglia, G. Pinto, and D. Bhattacharya, A Molecular Timeline for the Origin of Photosynthetic Eukaryotes, Molecular Biology and Evolution, vol.21, pp.809-818, 2004.

K. Zaremba-niedzwiedzka, E. Caceres, J. Saw, D. Bäckström, L. Juzokaite et al.,

E. Seitz, K. Anantharaman, K. Starnawski, P. Kjeldsen, and K. , Asgard archaea illuminate the origin of eukaryotic cellular complexity, Nature, vol.541, pp.353-358, 2017.

G. Zhang, H. Huang, D. Liu, Y. Cheng, X. Liu et al., N6-Methyladenine DNA Modification in Drosophila, Cell, vol.161, pp.893-906, 2015.

Y. Zhang, T. Liu, C. Meyer, J. Eeckhoute, D. Johnson et al., Model-based Analysis of ChIP-Seq (MACS), Genome Biology, vol.9, pp.1-9, 2008.

Y. Zhang and D. Reinberg, Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails, Genes & Development, vol.15, pp.2343-2360, 2001.

T. Zhou, L. Yang, Y. Lu, I. Dror, D. Machado et al.,

, DNAshape: a method for the high-throughput prediction of DNA structural features on a genomic scale, Nucleic Acids Research, vol.41, pp.56-62

, Ectocarpus présente un cycle de vie haplo-diploïde avec l'alternance de deux générations multicellulaires : un gamétophyte haploïde et un sporophyte diploïde. Deux mutants présentent un changement homéotique entre les programmes de développement des générations sporophyte et gamétophyte. Les mutants réitèrent le programme de développement du gamétophyte à la place du sporophyte. Ces mutants, appelés ouroboros (oro) et samsara (sam), sont affectés dans deux gènes différents codant pour des facteurs de transcription à homéodomaine de classe TALE. Ma thèse porte sur la caractérisation des deux facteurs de transcription ORO et SAM ainsi que sur les dynamiques chromatiniennes sous-jacentes. Ainsi, cette thèse présente les phénotypes des deux mutants oro et sam ainsi qu'une comparaison du transcriptome des mutants avec celui des générations gamétophyte et sporophyte (Chapitre 2). L'interaction entre ORO et SAM a été également testée et a lieu au niveau de chaque homéodomaine (Chapitre 2). Les préférences de liaison à l'ADN des deux facteurs de transcription ont été évaluées in vitro en utilisant les techniques de Protein Binding Microarray et de DAP-seq (Chapitre 3). De plus, un criblage par double-hybride de levure a permis d'identifier deux sous-unités C de la famille de facteurs de transcription Nuclear Factor Y interagissant avec ORO (Chapitre 3). Cette thèse a également permis des avancées importantes dans l'étude de la régulation de la chromatine notamment en mettant au point un protocole d'immunoprecipitation de la chromatine (Chapitre 4). Ainsi, les profils de six modifications posttraductionnelles d'histones sur l'ensemble du génome ont été établis (Chapitre 5). ORO et SAM sont deux régulateurs majeurs de l'initiation du programme associé au sporophyte. Les résultats suggèrent également que ORO et SAM pourrait être impliqués directement dans la reprogrammation de la, RESUME Les processus moléculaires qui contrôlent le cycle de vie sont essentiels pour que divers processus biologiques, y compris le développement multicellulaire, soient correctement initiés. Le découplage entre les programmes de développement et le cycle de vie peut avoir des conséquences dramatiques sur l'organisme. L'algue brune filamenteuse Ectocarpus est d'un intérêt particulier pour analyser les processus moléculaires impliqués dans le développement et la progression du cycle de vie

. Mots-clés,