L. Les, Une machinerie de transport et de sécrétion apparentée Le transport des LROs en direction de la membrane plasmique

A. Akhmanova and C. C. Hoogenraad, Microtubule plus-end-tracking proteins: mechanisms and functions, Curr Opin Cell Biol, vol.17, issue.1, pp.47-54, 2005.

A. Akhmanova and M. O. Steinmetz, Tracking the ends: a dynamic protein network controls the fate of microtubule tips, Nat Rev Mol Cell Biol, vol.9, issue.4, pp.309-331, 2008.

L. A. Amos and D. Schlieper, Microtubules and maps, Adv Protein Chem, vol.71, pp.257-98, 2005.

C. Bosc, A. Andrieux, and D. Job, STOP proteins. Biochemistry, vol.42, pp.12125-12157, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00380095

W. Bu and L. K. Su, Regulation of microtubule assembly by human EB1 family proteins, Oncogene, vol.20, issue.25, pp.3185-92, 2001.

M. F. Carlier, Nucleotide hydrolysis in cytoskeletal assembly, Curr Opin Cell Biol, vol.3, issue.1, pp.12-19, 1991.

D. Job, O. Valiron, and B. Oakley, Microtubule nucleation, Curr Opin Cell Biol, vol.15, issue.1, pp.111-118, 2003.

C. L. Leung, D. Sun, M. Zheng, D. R. Knowles, and R. K. Liem, Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons, J Cell Biol, vol.147, issue.6, pp.1275-86, 1999.

H. Maiato, P. Sampaio, and C. E. Sunkel, Microtubule-associated proteins and their essential roles during mitosis, Int Rev Cytol, vol.241, pp.53-153, 2004.

T. Mitchison and M. Kirschner, Dynamic instability of microtubule growth, Nature, vol.312, issue.5991, pp.237-279, 1984.

E. Nogales and H. W. Wang, Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives, Curr Opin Struct Biol, vol.16, issue.2, pp.221-230, 2006.

B. R. Oakley, Gamma-tubulin: the microtubule organizer?, Trends Cell Biol, vol.2, issue.1, pp.1-5, 1992.

J. E. Rickard and T. E. Kreis, CLIPs for organelle-microtubule interactions, Trends Cell Biol, vol.6, issue.5, pp.178-83, 1996.

N. A. Reed, D. Cai, T. L. Blasius, G. T. Jih, E. Meyhofer et al., Microtubule acetylation promotes kinesin-1 binding and transport, Curr Biol, vol.16, pp.2166-72, 2006.

O. Valiron, N. Caudron, and D. Job, Microtubule dynamics, Cell Mol Life Sci, vol.58, issue.14, pp.2069-84, 2001.

K. J. Verhey and J. Gaertig, The tubulin code. Cell Cycle, vol.6, pp.2152-60, 2007.

. Le,

E. M. De-la-cruz and T. D. Pollard, Structural biology, Actin' up. Science, vol.293, issue.5530, pp.616-624, 2001.

D. Remedios, C. G. Chhabra, D. Kekic, M. Dedova, I. V. Tsubakihara et al., Actin binding proteins: regulation of cytoskeletal microfilaments, Physiol Rev, vol.83, issue.2, pp.433-73, 2003.

R. A. Milligan, M. Whittaker, and D. Safer, Molecular structure of F-actin and location of surface binding sites, Nature, 1990.

T. D. Pollard, L. Blanchoin, and R. D. Mullins, Molecular mechanisms controlling actin filament dynamics in nonmuscle cells, Annu Rev Biophys Biomol Struct, vol.29, pp.545-76, 2000.

T. D. Pollard and J. A. Cooper, Actin, a central player in cell shape and movement, Science, vol.326, issue.5957, pp.1208-1220, 2009.

I. Sagot, A. A. Rodal, J. Moseley, B. L. Goode, and D. Pellman, An actin nucleation mechanism mediated by Bni1 and profilin, Nat Cell Biol, vol.4, issue.8, pp.626-657, 2002.

L. Dynéines,

A. P. Carter, C. Cho, J. L. Vale, and R. D. , Walking the walk: how kinesin and dynein coordinate their steps, Curr Opin Cell Biol, vol.331, issue.6021, pp.59-67, 2009.

I. R. Gibbons and A. J. Rowe, Dynein: A Protein with Adenosine Triphosphatase Activity from Cilia, Science, vol.149, issue.3682, pp.424-430, 1965.

B. M. Paschal, H. S. Shpetner, R. B. Vallee, T. A. Schroer, E. R. Steuer et al., MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties, J Cell Biol, vol.105, issue.3, pp.937-983, 1987.

L. Hirokawa, N. Noda, Y. Tanaka, Y. Niwa, and S. , Kinesin superfamily motor proteins and intracellular transport, Nat Rev Mol Cell Biol, vol.10, issue.10, pp.682-96, 2009.

C. J. Lawrence, R. K. Dawe, K. R. Christie, D. W. Cleveland, S. C. Dawson et al., A standardized kinesin nomenclature, J Cell Biol, vol.167, issue.1, pp.19-22, 2004.

H. Miki, Y. Okada, and N. Hirokawa, Analysis of the kinesin superfamily: insights into structure and function, Trends Cell Biol, vol.15, issue.9, pp.467-76, 2005.

R. D. Vale, T. S. Reese, and M. P. Sheetz, Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility, Cell, vol.42, issue.1, pp.39-50, 1985.

K. J. Verhey and J. W. Hammond, Traffic control: regulation of kinesin motors, Nat Rev Mol Cell Biol, vol.10, issue.11, pp.765-77, 2009.

G. Woehlke and M. Schliwa, Walking on two heads: the many talents of kinesin, Nat Rev Mol Cell Biol

G. H. Fan, L. A. Lapierre, J. R. Goldenring, J. Sai, and A. Richmond, Rab11-family interacting protein 2 and myosin Vb are required for CXCR2 recycling and receptor-mediated chemotaxis, Gramlich MW, Klyachko VA. Actin/Myosin-V-and Activity-Dependent Inter-synaptic Vesicle Exchange in Central Neurons. Cell Rep, vol.15, pp.2096-2104, 2004.

J. Jacobelli, S. A. Chmura, D. B. Buxton, M. M. Davis, and M. F. Krummel, A single class II myosin modulates T cell motility and stopping, but not synapse formation, Nat Immunol, vol.5, issue.5, pp.531-539, 2004.

M. Krendel and M. S. Mooseker, Myosins: tails (and heads) of functional diversity, Physiology (Bethesda), vol.20, pp.239-51, 2005.

D. P. Syamaladevi, J. A. Spudich, and R. Sowdhamini, Structural and functional insights on the Myosin superfamily, Bioinform Biol Insights, vol.6, pp.11-21, 2012.

X. S. Wu, K. Rao, H. Zhang, F. Wang, J. R. Sellers et al., Hammer JA 3rd. Identification of an organelle receptor for myosin-Va, Nat Cell Biol, vol.4, issue.4, pp.271-279, 2002.

, Les mécanismes d'arrimage, de fusion et de sécrétion des LRO

A. Betz, M. Okamoto, F. Benseler, and N. Brose, Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin, J Biol Chem, vol.272, issue.4, pp.2520-2526, 1997.

J. S. Bonifacino and B. S. Glick, The mechanisms of vesicle budding and fusion, Cell, vol.116, issue.2, pp.153-66, 2004.

N. Calloway, G. Gouzer, M. Xue, and T. A. Ryan, The active-zone protein Munc13 controls the usedependence of presynaptic voltage-gated calcium channels. Elife, 2015.

L. H. Chamberlain, R. D. Burgoyne, and G. W. Gould, SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis, Proc Natl Acad Sci U S A, vol.98, issue.10, pp.5619-5643, 2001.

L. F. Chang, S. Chen, C. C. Liu, X. Pan, J. Jiang et al., Structural characterization of full-length NSF and 20S particles, Nat Struct Mol Biol, vol.19, issue.3, pp.397-409, 2002.

X. Chen, J. Lu, I. Dulubova, and J. Rizo, NMR analysis of the closed conformation of syntaxin-1, J Biomol NMR, vol.41, issue.1, pp.43-54, 2008.

I. Dulubova, S. Sugita, S. Hill, M. Hosaka, I. Fernandez et al., A conformational switch in syntaxin during exocytosis: role of munc18, EMBO J, vol.18, issue.16, pp.4372-82, 1999.

I. Dulubova, M. Khvotchev, S. Liu, I. Huryeva, T. C. Südhof et al., Munc18-1 binds directly to the neuronal SNARE complex, Proc Natl Acad Sci, vol.104, issue.8, pp.2697-702, 2007.

L. Han, T. Jiang, G. A. Han, N. T. Malintan, L. Xie et al., Rescue of Munc18-1 and -2 double knockdown reveals the essential functions of interaction between Munc18 and closed syntaxin in PC12 cells, Mol Biol Cell, vol.20, issue.23, pp.4962-75, 2009.

P. I. Hanson, R. Roth, H. Morisaki, R. Jahn, and J. E. Heuser, Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy, Cell, vol.90, issue.3, pp.523-558, 1997.

Y. Hata, C. A. Slaughter, and T. C. Südhof, Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin, Nature, vol.366, issue.6453, pp.347-51, 1993.

W. Hong and S. Lev, Tethering the assembly of SNARE complexes, Trends Cell Biol, vol.24, issue.1, pp.35-43, 2014.

R. Jahn and R. H. Scheller, SNAREs--engines for membrane fusion, Nat Rev Mol Cell Biol, vol.7, issue.9, pp.631-674, 2006.
DOI : 10.1038/nrm2002

R. Jahn and D. Fasshauer, Molecular machines governing exocytosis of synaptic vesicles, Nature, vol.490, issue.7419, pp.201-208, 2012.

P. S. Kaeser, L. Deng, Y. Wang, I. Dulubova, X. Liu et al., RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction, Cell, vol.144, issue.2, pp.282-95, 2011.

, Complexin cross-links prefusion SNAREs into a zigzag array, Nat Struct Mol Biol, vol.18, issue.8, pp.927-960, 2011.

T. Lang, D. Bruns, D. Wenzel, D. Riedel, P. Holroyd et al., SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis, EMBO J, vol.20, issue.9, pp.2202-2215, 2001.

C. Ma, W. Li, Y. Xu, and J. Rizo, Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex, Nat Struct Mol Biol, vol.18, issue.5, pp.542-551, 2011.

C. N. Medine, C. Rickman, L. H. Chamberlain, and R. R. Duncan, Munc18-1 prevents the formation of ectopic SNARE complexes in living cells, J Cell Sci, vol.120, pp.4407-4422, 2007.

M. A. Poirier, W. Xiao, J. C. Macosko, C. Chan, Y. K. Shin et al., The synaptic SNARE complex is a parallel four-stranded helical bundle, Nat Struct Biol, vol.5, issue.9, pp.765-774, 1998.

J. Rizo and T. C. Südhof, Snares and Munc18 in synaptic vesicle fusion, Nat Rev Neurosci, vol.3, issue.8, pp.641-53, 2002.

J. Rizo and T. C. Südhof, The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices--guilty as charged?, Annu Rev Cell Dev Biol, vol.28, pp.279-308, 2012.

J. Rizo, Synaptotagmin-SNARE coupling enlightened, Nat Struct Mol Biol, vol.17, issue.3, pp.260-262, 2010.
DOI : 10.1038/nsmb0310-260

T. L. Rodkey, Munc18a scaffolds SNARE assembly to promote membrane fusion, Mol. Biol. Cell, vol.19, pp.5422-5434, 2008.
DOI : 10.1091/mbc.e08-05-0538

URL : http://europepmc.org/articles/pmc2592651?pdf=render

L. Siksou, A. Triller, and S. Marty, Ultrastructural organization of presynaptic terminals, Curr Opin Neurobiol, vol.21, issue.2, pp.261-269, 2011.

T. Söllner, S. W. Whiteheart, M. Brunner, H. Erdjument-bromage, S. Geromanos et al., SNAP receptors implicated in vesicle targeting and fusion, Südhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins, vol.362, pp.318-342, 1993.

T. C. Südhof, A molecular machine for neurotransmitter release: synaptotagmin and beyond, Nat Med, vol.19, issue.10, pp.1227-1258, 2013.

R. B. Sutton, D. Fasshauer, R. Jahn, A. T. Brunger, J. Tang et al., Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution, Nature, vol.395, issue.6700, p.150, 1998.

T. Trimbuch and C. Rosenmund, Should I stop or should I go? The role of complexin in neurotransmitter release, Nat Rev Neurosci, vol.17, issue.2, pp.118-143, 2016.

M. Verhage, A. S. Maia, J. J. Plomp, A. B. Brussaard, J. H. Heeroma et al., Synaptic assembly of the brain in the absence of neurotransmitter secretion, Science, vol.287, issue.5454, pp.864-873, 2000.

Y. Wang, M. Okamoto, F. Schmitz, K. Hofmann, and T. C. Südhof, Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion, Nature, vol.388, issue.6642, pp.593-601, 1997.

K. Wiederhold and D. Fasshauer, Is assembly of the SNARE complex enough to fuel membrane fusion?, J Biol Chem, vol.284, pp.13143-52, 2009.

E. Yu, E. Kanno, S. Choi, M. Sugimori, J. E. Moreira et al., Role of Rab27 in synaptic transmission at the squid giant synapse, Proc Natl Acad Sci USA, vol.105, pp.16003-16008, 2008.

, L'implication des protéines Rabs dans la régulation du trafic vésiculaire

N. Arimura, T. Kimura, S. Nakamuta, S. Taya, Y. Funahashi et al.,

S. Fujii, K. Iwamatsu, A. Segal, R. A. Fukuda, M. Kaibuchi et al., Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27, Dev Cell, vol.16, issue.5, pp.675-86, 2009.

L. Corbeel and K. Freson, Rab proteins and Rab-associated proteins: major actors in the mechanism of protein-trafficking disorders, Eur J Pediatr, vol.167, issue.7, pp.723-732, 2008.

I. Dulubova, X. Lou, J. Lu, I. Huryeva, A. Alam et al., A Munc13/RIM/ Rab3 tripartite complex: from priming to plasticity?, EMBO J, vol.24, issue.16, pp.2839-50, 2005.

M. Fukuda, Regulation of secretory vesicle traffic by Rab small GTPases, Cell Mol Life Sci, 2008.

M. Geppert, Y. Goda, C. F. Stevens, and T. C. Südhof, The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion, Nature, vol.387, issue.6635, pp.810-814, 1997.

G. Ménasché, E. Pastural, J. Feldmann, S. Certain, F. Ersoy et al., Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome, Nat Genet, vol.25, issue.2, pp.173-179, 2000.

D. B. Munafo, J. L. Johnson, B. A. Ellis, S. Rutschmann, B. Beutler et al., Rab27a is a key component of the secretory machinery of azurophilic granules in granulocytes, Biochem J, vol.402, pp.229-239, 2007.

S. R. Pfeffer, Rab GTPase regulation of membrane identity, Curr Opin Cell Biol, vol.25, issue.4, pp.414-423, 2013.

R. Pulido, I. Nightingale, T. D. Darchen, F. Seabra, M. C. Cutler et al., Myosin Va acts in concert with Rab27a and MyRIP to regulate acute von-Willebrand factor release from endothelial cells, Traffic, vol.12, issue.10, pp.1371-1382, 2011.

R. K. Singh, K. Mizuno, C. Wasmeier, S. T. Wavre-shapton, C. Recchi et al., Distinct and opposing roles for Rab27a/Mlph/MyoVa and Rab27b/Munc13-4 in mast cell secretion, FEBS J, vol.280, issue.3, pp.892-903, 2013.

R. Shirakawa, T. Higashi, A. Tabuchi, A. Yoshioka, H. Nishioka et al., Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets, J Biol Chem, vol.279, issue.11, pp.10730-10737, 2004.

M. P. Stein, J. Dong, and A. Wandinger-ness, Rab proteins and endocytic trafficking: potential targets for therapeutic intervention. Adv Drug Deliv Rev, Nov, vol.14, issue.11, pp.1421-1458, 2003.

H. Stenmark, Rab GTPases as coordinators of vesicle traffic, Nat Rev Mol Cell Biol, vol.10, issue.8, pp.513-538, 2009.

T. Tolmachova, M. Abrink, C. E. Futter, K. S. Authi, and M. C. Seabra, Rab27b regulates number and secretion of platelet dense granules, Proc Natl Acad Sci, vol.104, issue.14, pp.5872-5879, 2007.

D. Van-breevoort, A. P. Snijders, N. Hellen, S. Weckhuysen, K. W. Van-hooren et al., STXBP1 promotes Weibel-Palade body exocytosis through its interaction with the Rab27A effector Slp4-a. Blood, vol.123, pp.3185-94, 2014.

X. S. Wu, K. Rao, H. Zhang, F. Wang, J. R. Sellers et al., Hammer JA 3rd. Identification of an organelle receptor for myosin-Va, Proc Natl Acad Sci USA, vol.4, issue.4, pp.16003-16008, 2002.

M. Zerial and H. Mcbride, Rab proteins as membrane organizers, Review. Erratum in: Nat Rev Mol Cell Biol, vol.2, issue.2, p.216, 2001.

Y. Zhen and H. Stenmark, Cellular functions of Rab GTPases at a glance, J Cell Sci, vol.128, issue.17, 2015.

L. Les, Des Voies de biogenèses variées La biogenèse des granules lytiques

G. Bossi and G. M. Griffiths, CTL secretory lysosomes: biogenesis and secretion of a harmful organelle, Semin Immunol, vol.17, issue.1, pp.87-94, 2005.

G. De-saint-basile, G. Menasche, and A. Fischer, Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules, Nat Rev Immunol, vol.10, pp.568-79, 2010.

G. M. Griffiths and S. Isaaz, Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor, J Cell Biol, vol.120, issue.4, pp.885-96, 1993.

J. Gruenberg, The endocytic pathway: a mosaic of domains, Nat Rev Mol Cell Biol, vol.2, issue.10, pp.721-751, 2001.

J. H. Hurley, M. M. Ménager, G. Ménasché, M. Romao, P. Knapnougel et al., Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4, ESCRT complexes and the biogenesis of multivesicular bodies, vol.20, pp.257-67, 2007.

J. C. Stinchcombe, L. J. Page, and G. M. Griffiths, Secretory lysosome biogenesis in cytotoxic T lymphocytes from normal and Chediak Higashi syndrome patients, Traffic, vol.1, issue.5, pp.435-479, 2000.

P. Arvan and D. Castle, Sorting and storage during secretory granule biogenesis: looking backward and looking forward, Biochem J, vol.332, pp.593-610, 1998.

N. P. Azouz, N. Zur, A. Efergan, N. Ohbayashi, M. Fukuda et al., Rab5 is a novel regulator of mast cell secretory granules: impact on size, cargo, and exocytosis, J Immunol, vol.192, pp.4043-4053, 2014.

T. Braga, M. Grujic, A. Lukinius, L. Hellman, M. Abrink et al., Serglycin proteoglycan is required for secretory granule integrity in mucosal mast cells, J Cell Biol, vol.403, pp.563-575, 1966.
URL : https://hal.archives-ouvertes.fr/hal-00478650

I. Hammel, A. M. Dvorak, S. P. Peters, E. S. Schulman, H. F. Dvorak et al., Differences in the volume distributions of human lung mast cell granules and lipid bodies: evidence that the size of these organelles is regulated by distinct mechanisms, J Cell Biol, vol.100, issue.5, pp.1488-92, 1985.

F. Henningsson, S. Hergeth, R. Cortelius, M. Abrink, G. Pejler et al., A role for serglycin proteoglycan in granular retention and processing of mast cell secretory granule components, Eur J Immunol, vol.273, issue.21, pp.53-59, 2001.

P. Prasad, A. A. Yanagihara, A. L. Small-howard, H. Turner, and A. J. Stokes, Secretogranin III directs secretory vesicle biogenesis in mast cells in a manner dependent upon interaction with chromogranin A, J Immunol, vol.181, pp.5024-5034, 2008.

S. Wernersson and G. Pejler, Mast cell secretory granules: armed for battle, Nat Rev Immunol, vol.14, pp.478-494, 2014.

K. N. Balaji, N. Schaschke, W. Machleidt, M. Catalfamo, P. A. Henkart et al., Cytotoxic T lymphocytes from cathepsin B-deficient mice survive normally in vitro and in vivo after encountering and killing target cells, J Biol Chem, vol.196, pp.30485-30491, 2002.

K. A. Browne, E. Blink, V. R. Sutton, C. J. Froelich, D. A. Jans et al., Cytosolic delivery of granzyme B by bacterial toxins: evidence that endosomal disruption, in addition to transmembrane pore formation, is an important function of perforin, Mol Cell Biol, vol.19, issue.12, pp.1411-1419, 1999.

M. Dupuis, E. Schaerer, K. H. Krause, and J. Tschopp, The calcium-binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes, J Exp Med, vol.177, pp.1-7, 1993.

S. A. Fraser, R. Karimi, M. Michalak, D. Hudig-;-froelich, C. J. Orth et al., New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis, J Biol Chem, vol.164, issue.8, pp.29073-29082, 1996.

D. Keefe, L. Shi, S. Feske, R. Massol, F. Navarro et al., Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis, Immunity, vol.23, issue.3, pp.249-62, 2005.

M. G. Lichtenheld, K. J. Olsen, P. Lu, D. M. Lowrey, A. Hameed et al., Structure and function of human perforin, Nature, vol.335, issue.6189, pp.448-51, 1988.

S. S. Metkar, B. Wang, M. Aguilar-santelises, S. M. Raja, L. Uhlin-hansen et al., Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme B-serglycin complexes into target cells without plasma membrane pore formation, Mol Immunol, vol.16, issue.3, pp.589-602, 1990.

M. E. Pipkin, A. Rao, and M. G. Lichtenheld, The transcriptional control of the perforin locus, Immunol Rev, vol.235, issue.1, pp.55-72, 2010.

M. E. Pipkin and J. Lieberman, Delivering the kiss of death: progress on understanding how perforin works, Curr Opin Immunol, vol.19, issue.3, pp.301-309, 2007.

E. R. Podack, J. D. Young, and Z. A. Cohn, Isolation and biochemical and functional characterization of perforin 1 from cytolytic T-cell granules, Proc Natl Acad Sci, vol.82, issue.24, pp.8629-8662, 1985.

J. Rizo and T. C. Sudhof, C2-domains, structure and function of a universal Ca 2+ -binding domain, J Biol Chem, vol.273, pp.15879-15882, 1998.

H. Sauer, L. Pratsch, J. Tschopp, S. Bhakdi, and R. Peters, Functional size of complement and perforin pores compared by confocal laser scanning microscopy and fluorescence microphotolysis, Biochim Biophys Acta, vol.1063, issue.1, pp.137-183, 1991.

Y. Shinkai, K. Takio, and K. Okumura, Homology of perforin to the ninth component of complement (C9)

, Nature, vol.334, issue.6182, pp.525-532, 1988.

J. Thiery, D. Keefe, S. Saffarian, D. Martinvalet, M. Walch et al., Perforin activates clathrin-and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis, Nat Immunol, vol.115, issue.8, pp.770-777, 2010.

J. Tschopp, D. Masson, and K. K. Stanley, Structural/functional similarity between proteins involved in complement and cytotoxic T-lymphocyte-mediated cytolysis, Nature, vol.322, issue.6082, pp.831-835, 1986.

R. Uellner, M. J. Zvelebil, J. Hopkins, J. Jones, L. K. Macdougall et al.,

G. M. Waterfield and . Griffiths, Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain, Embo J, vol.16, issue.24, pp.7287-96, 1997.

I. Voskoboinik, J. C. Whisstock, and J. A. Trapani, Perforin and granzymes: function, dysfunction and human pathology, Nat Rev Immunol, 2015.

C. Adrain, B. M. Murphy, and S. J. Martin, Molecular ordering of the caspase activation cascade initiated by the cytotoxic T lymphocyte/natural killer (CTL/NK) protease granzyme B, J Biol Chem, vol.280, issue.6, pp.4663-73, 2005.

C. Adrain, P. J. Duriez, G. Brumatti, P. Delivani, and S. J. Martin, The cytotoxic lymphocyte protease, granzyme B, targets the cytoskeleton and perturbs microtubule polymerization dynamics, J Biol Chem, vol.281, issue.12, pp.8118-8143, 2006.

F. Andrade, S. Roy, N. Thornberry, A. Rosen, and L. Casciola-rosen, Granzyme B directly and efficiently cleaves several downstream caspase substrates: implications for CTL-induced apoptosis, Immunity, vol.8, pp.451-460, 1998.

N. Bovenschen, R. Quadir, A. L. Van-den-berg, A. B. Brenkman, I. Vandenberghe et al., Granzyme K displays highly restricted substrate specificity that only partially overlaps with granzyme A, J Biol Chem, vol.284, issue.6, pp.3504-3516, 2009.

A. J. Bredemeyer, R. M. Lewis, J. P. Malone, A. E. Davis, J. Gross et al., A proteomic approach for the discovery of protease substrates, Proc Natl Acad Sci U S A, vol.101, issue.32, pp.11785-90, 2004.

S. P. Cullen and S. J. Martin, Mechanisms of granule-dependent killing, Cell Death Differ, vol.15, issue.2, pp.251-62, 2008.

D. M. Cooper, D. V. Pechkovsky, T. L. Hackett, D. A. Knight, and D. J. Granville, Granzyme K activates proteaseactivated receptor-1, PLoS One, vol.6, issue.6, p.21484, 2011.

S. A. De-poot and N. Bovenschen, Granzyme M:behind enemy lines, Cell Death Differ, vol.21, issue.3, pp.359-68, 2014.

M. Enari, H. Sakahira, H. Yokoyama, K. Okawa, A. Iwamatsu et al., Tumor suppressor NM23-H1 is a granzyme Aactivated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor, Nature, vol.391, issue.6662, pp.659-72, 1998.

C. J. Froelich, W. L. Hanna, G. G. Poirier, P. J. Duriez, D. 'amours et al., Granzyme B/perforin-mediated apoptosis of Jurkat cells results in cleavage of poly(ADPribose) polymerase to the 89-kDa apoptotic fragment and less abundant 64-kDa fragment, Biochem Biophys Res Commun, vol.227, issue.3, pp.658-65, 1996.

W. J. Grossman, P. A. Revell, Z. H. Lu, H. Johnson, A. J. Bredemeyer et al., The orphan granzymes of humans and mice, Curr Opin Immunol, vol.15, issue.5, p.731, 2003.

J. A. Heibein, I. S. Goping, M. Barry, M. J. Pinkoski, G. C. Shore et al., Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members bid and Bax, J Exp Med, vol.192, issue.10, pp.1391-402, 2000.

C. E. Hirst, M. S. Buzza, and C. H. Bird, The intracellular granzyme B inhibitor, proteinase inhibitor 9, is up-regulated during accessory cell maturation and effector cell degranulation, and its overexpression enhances CTL potency, J Immunol, vol.170, issue.2, pp.805-815, 2003.

M. Irmler, S. Hertig, H. R. Macdonald, R. Sadoul, J. D. Becherer et al.,

, Granzyme A is an interleukin 1 beta-converting enzyme, J Exp Med, vol.181, issue.5, pp.1917-1939, 1995.

D. E. Jenne and J. Tschopp, Granzymes, a family of serine proteases released from granules of cytolytic T lymphocytes upon T cell receptor stimulation, Immunol Rev, vol.103, pp.53-71, 1988.

H. Johnson, L. Scorrano, S. J. Korsmeyer, and T. J. Ley, Cell death induced by granzyme C, Blood, vol.101, pp.3093-3101, 2003.

L. Y. Li, X. Luo, and X. Wang, Endonuclease G is an apoptotic DNase when released from mitochondria, Nature, vol.412, issue.6842, pp.95-104, 2001.

J. Lieberman, The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal, Nat Rev Immunol, vol.3, pp.1-12, 2003.

J. Lieberman and Z. Fan, Nuclear war: the granzyme A-bomb, Curr Opin Immunol, vol.15, pp.553-559, 2003.

S. J. Lord, R. V. Rajotte, G. S. Korbutt, and R. C. Bleackley, Granzyme B: a natural born killer, Immunol Rev, vol.193, pp.31-38, 2003.

D. Martinvalet, D. M. Dykxhoorn, R. Ferrini, J. Lieberman-;-mcguire, M. J. Lipsky et al., Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I, J Biol Chem, vol.133, issue.4, pp.2458-67, 1993.

J. A. Prendergast, C. D. Helgason, and R. Bleackley, Quantitative polymerase chain reaction analysis of cytotoxic cell proteinase gene transcripts in T cells. Pattern of expression is dependent on the nature of the stimulus, J Biol. Chem, vol.267, pp.5090-5095, 1992.

H. S. Suidan, K. J. Clemetson, M. Brown-luedi, S. P. Niclou, J. M. Clemetson et al., The serine protease granzyme A does not induce platelet aggregation but inhibits responses triggered by thrombin, Biochem J, vol.315, pp.939-984, 1996.

L. Shi, L. Wu, S. Wang, and Z. Fan, Granzyme F induces a novel death pathway characterized by Bidindependent cytochrome c release without caspase activation, Cell Death Differ, vol.16, issue.12, pp.1694-706, 2009.

Y. Suzuki, Y. Imai, H. Nakayama, K. Takahashi, K. Takio et al., A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death, Mol Cell, vol.8, pp.613-621, 2001.

V. R. Sutton, J. E. Davis, M. Cancilla, R. W. Johnstone, A. A. Ruefli et al., Initiation of apoptosis by granzyme B requires direct cleavage of bid, but not direct granzyme B-mediated caspase activation, J Exp Med, vol.192, issue.10, pp.1403-1417, 2000.

D. A. Thomas, C. Du, M. Xu, X. Wang, and T. J. Ley, DFF45/ICAD can be directly processed by granzyme B during the induction of apoptosis, Immunity, vol.12, issue.6, pp.621-653, 2000.

D. Zhang, P. J. Beresford, A. H. Greenberg, and J. Lieberman, Granzymes A and B directly cleave lamins and disrupt the nuclear lamina during granule-mediated cytolysis, Proc Natl Acad Sci U S A, vol.98, issue.10, pp.5746-51, 2001.

D. Zhang, M. S. Pasternack, P. J. Beresford, L. Wagner, A. H. Greenberg et al., Induction of rapid histone degradation by the cytotoxic T lymphocyte protease Granzyme A, J Biol Chem, vol.276, issue.5, pp.3683-90, 2001.

T. Zhao, H. Zhang, Y. Guo, Z. Fan, L. Andrés-delgado et al., Granzyme K directly processes bid to release cytochrome c and endonuclease G leading to mitochondria-dependent cell death, J Biol Chem, vol.282, issue.16, pp.12104-12115, 2007.

, INF2 promotes the formation of detyrosinated microtubules necessary for centrosome reorientation in T cells, J Cell Biol, vol.198, issue.6, pp.1025-1062, 2012.

L. Andrés-delgado, O. M. Antón, and M. A. Alonso, Centrosome polarization in T cells: a task for formins. Front Immunol, vol.4, p.191, 2013.

O. M. Antón, L. Andrés-delgado, N. Reglero-real, A. Batista, and M. A. Alonso, MAL protein controls protein sorting at the supramolecular activation cluster of human T lymphocytes, J Immunol, vol.186, issue.11, pp.6345-56, 2011.

L. Ardouin, M. Bracke, A. Mathiot, S. N. Pagakis, T. Norton et al., Vav1 transduces TCR signals required for LFA-1 function and cell polarization at the immunological synapse, Eur J Immunol, vol.33, issue.3, pp.790-797, 2003.

A. Babich, S. Li, R. S. O'connor, M. C. Milone, B. D. Freedman et al., Kinetics of early T cell receptor signaling regulate the pathway of lytic granule delivery to the secretory domain, Nat Immunol, vol.197, issue.6, pp.632-674, 2005.

P. Beemiller, J. Jacobelli, and M. F. Krummel, Integration of the movement of signaling microclusters with cellular motility in immunological synapses, Nat Immunol, vol.13, issue.8, pp.787-95, 2012.

F. Bertrand, S. Müller, K. H. Roh, C. Laurent, L. Dupré et al., An initial and rapid step of lytic granule secretion precedes microtubule organizing center polarization at the cytotoxic T lymphocyte/target cell synapse, Proc Natl Acad Sci, vol.110, issue.15, pp.6073-6081, 2009.

N. Blanchard, D. Bartolo, V. Hivroz, and C. , In the immune synapse, ZAP-70 controls T cell polarization and recruitment of signaling proteins but not formation of the synaptic pattern, Immunity, vol.17, issue.4, pp.389-99, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00138115

J. Bouchet, D. Río-iñiguez, I. Lasserre, R. Agüera-gonzalez, S. Cuche et al., Rac1-Rab11-FIP3 regulatory hub coordinates vesicle traffic with actin remodeling and T-cell activation, EMBO J, vol.35, issue.11, pp.1160-74, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01370720

J. Bouchet, D. Río-iñiguez, I. Vázquez-chávez, E. Lasserre, R. Agüera-gonzález et al., Rab11-FIP3 Regulation of Lck Endosomal Traffic Controls TCR Signal Transduction, J Immunol, vol.198, issue.7, pp.2967-2978, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01519813

R. J. Brownlie and R. Zamoyska, T cell receptor signalling networks: branched, diversified and bounded, Nat Rev Immunol, vol.13, issue.4, pp.257-69, 2013.

S. C. Bunnell, V. Kapoor, R. P. Trible, W. Zhang, and L. E. Samelson, Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT, Immunity, vol.14, issue.3, 2001.

J. K. Burkhardt, J. M. Mcilvain, M. P. Sheetz, and Y. Argon, Lytic granules from cytotoxic T cells exhibit kinesin-dependent motility on microtubules in vitro, J Cell Sci, vol.104, pp.151-62, 1993.

G. Campi, R. Varma, and M. L. Dustin, Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling, J Exp Med, vol.202, pp.1031-1036, 2005.

K. Choudhuri, J. Llodrá, E. W. Roth, J. Tsai, S. Gordo et al., Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse, Nature, vol.507, pp.118-123, 2014.

J. Combs, S. J. Kim, S. Tan, L. A. Ligon, E. L. Holzbaur et al., Recruitment of dynein to the Jurkat immunological synapse, Proc Natl Acad Sci, vol.103, issue.40, pp.14883-14891, 2006.

W. A. Comrie, A. Babich, and J. K. Burkhardt, F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse, J Cell Biol, vol.208, issue.4, pp.475-91, 2015.

V. Das, B. Nal, A. Dujeancourt, M. I. Thoulouze, T. Galli et al., Activationinduced polarized recycling targets T cell antigen receptors to the immunological synapse, Immunity, vol.20, issue.5, pp.577-88, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-00137478

T. Daniele, Y. Hackmann, A. T. Ritter, M. Wenham, S. Booth et al., A role for Rab7 in the movement of secretory granules in cytotoxic T lymphocytes, Traffic, vol.12, pp.902-911, 2011.

G. De-saint-basile, G. Menasche, and A. Fischer, Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules, Nature reviews. Immunology, vol.10, pp.568-579, 2010.

S. Dunn, E. E. Morrison, T. B. Liverpool, C. Molina-parís, R. A. Cross et al., Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells, J Cell Sci, vol.121, pp.1085-95, 2008.

M. L. Dustin and E. O. Long, Cytotoxic immunological synapses, Immunol Rev, vol.235, issue.1, pp.24-34, 2010.

F. Finetti, L. Patrussi, G. Masi, A. Onnis, D. Galgano et al., Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system, J Cell Sci, vol.127, pp.1924-1961, 2014.

F. Finetti, L. Patrussi, D. Galgano, C. Cassioli, G. Perinetti et al., The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse, J Cell Sci, vol.128, issue.14, pp.2541-52, 2015.

K. T. Fowler, N. W. Andrews, and J. W. Huleatt, Expression and function of synaptotagmin VII in CTLs, J Immunol, vol.178, issue.3, pp.1498-504, 2007.

B. Geiger, D. Rosen, G. Berke, T. S. Gomez, K. Kumar et al., Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse, J Cell Biol, vol.95, issue.1, pp.177-90, 1982.

J. A. Gorman, A. Babich, C. J. Dick, R. A. Schoon, A. Koenig et al., Uncoordinated 119 protein controls trafficking of Lck via the Rab11 endosome and is critical for immunological synapse formation, J Immunol, vol.188, issue.12, pp.1675-84, 2009.

, Dynein-driven transport of T cell receptor microclusters regulates immune synapse formation and T cell activation. Immunity, vol.34, pp.919-950, 2011.

P. A. Janmey and U. Lindberg, Cytoskeletal regulation: rich in lipids, Nat Rev Mol Cell Biol, vol.5, issue.8, pp.658-66, 2004.

M. R. Jenkins, A. Tsun, J. C. Stinchcombe, and G. M. Griffiths, Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells, Proc Natl Acad Sci, vol.31, issue.4, pp.20296-301, 2007.

N. Kanwar and J. A. Wilkins, IQGAP1 involvement in MTOC and granule polarization in NK-cell cytotoxicity, Eur J Immunol, vol.41, issue.9, pp.2763-73, 2011.

A. S. Kim, L. T. Kakalis, N. Abdul-manan, G. A. Liu, and M. K. Rosen, Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein, Nature, vol.404, pp.151-158, 2000.

M. F. Krummel, M. D. Sjaastad, C. Wülfing, and M. M. Davis, Differential clustering of CD4 and CD3zeta during T cell recognition, Science, vol.289, issue.5483, pp.1349-52, 2000.

M. R. Kuhne, J. Lin, D. Yablonski, M. N. Mollenauer, L. I. Ehrlich et al.,

. Weiss, Linker for activation of T cells, zeta-associated protein-70, and Src homology 2 domain-containing ! 156

, leukocyte protein-76 are required for TCR-induced microtubule-organizing center polarization, J Immunol, vol.171, issue.2, pp.860-866, 2003.

S. Kumari, D. Depoil, R. Martinelli, E. Judokusumo, G. Carmona et al., Actin foci facilitate activation of the phospholipase C-? in primary T lymphocytes via the WASP pathway, Elife, vol.4, 2015.

A. Kupfer and G. Dennert, Reorientation of the microtubule-organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells, J Immunol, vol.133, issue.5, pp.2762-2768, 1984.

K. Lagrue, A. Carisey, A. Oszmiana, P. R. Kennedy, D. J. Williamson et al., The central role of the cytoskeleton in mechanisms and functions of the NK cell immune synapse, Immunol Rev, vol.256, issue.1, pp.203-224, 2013.

P. Larghi, D. J. Williamson, J. M. Carpier, S. Dogniaux, K. Chemin et al., VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites, Nat Immunol, vol.14, issue.7, pp.723-754, 2013.

R. Lasserre, S. Charrin, C. Cuche, A. Danckaert, M. I. Thoulouze et al., Ezrin tunes T-cell activation by controlling Dlg1 and microtubule positioning at the immunological synapse, EMBO J, vol.29, issue.14, pp.2301-2315, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00593159

L. Floc, &. , A. Tanaka, Y. Bantilan, N. S. Voisinne et al., Annular PIP3 accumulation controls actin architecture and modulates cytotoxicity at the immunological synapse, J Exp Med, vol.210, issue.12, pp.2721-2758, 2013.

K. H. Lee, A. D. Holdorf, M. L. Dustin, A. C. Chan, P. M. Allen et al., T cell receptor signaling precedes immunological synapse formation, Science, vol.295, issue.5559, pp.1539-1581, 2002.
DOI : 10.1126/science.1067710

K. H. Lee, A. R. Dinner, C. Tu, G. Campi, S. Raychaudhuri et al., The polarity protein Par1b/EMK/MARK2 regulates T cell receptor-induced microtubule-organizing center polarization, J Immunol, vol.14, issue.5648, pp.1215-1236, 2003.

X. Liu, T. M. Kapoor, J. K. Chen, and M. Huse, Diacylglycerol promotes centrosome polarization in T cells via reciprocal localization of dynein and myosin II, Proc Natl Acad Sci, vol.110, issue.29, pp.11976-81, 2013.

M. J. Ludford-menting, J. Oliaro, F. Sacirbegovic, E. T. Cheah, N. Pedersen et al.,

S. M. Russell, N. B. Martín-cófreces, J. Robles-valero, J. R. Cabrero, M. Mittelbrunn et al., A network of PDZ-containing proteins regulates T cell polarity and morphology during migration and immunological synapse formation, J Cell Biol, vol.22, issue.6, pp.951-62, 2005.

H. Matsuo, J. Chevallier, N. Mayran, L. Blanc, I. Ferguson et al., Role of LBPA and Alix in multivesicular liposome formation and endosome organization, Science, vol.303, issue.5657, pp.531-535, 2004.

A. N. Mentlik, K. B. Sanborn, E. L. Holzbaur, and J. S. Orange, Rapid lytic granule convergence to the MTOC in natural killer cells is dependent on dynein but not cytolytic commitment, Mol Biol Cell, vol.21, issue.13, pp.2241-56, 2010.

A. V. Miletic, D. B. Graham, K. Sakata-sogawa, M. Hiroshima, M. J. Hamann et al., Vav links the T cell antigen receptor to the actin cytoskeleton and T cell activation independently of intrinsic Guanine nucleotide exchange activity. PLoS One, e6599. Monks CR, vol.12, pp.82-86, 1998.

J. C. Nolz, T. S. Gomez, P. Zhu, S. Li, R. B. Medeiros et al., The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation, Current Biology, vol.16, pp.24-34, 2006.

A. Onnis, F. Finetti, L. Patrussi, M. Gottardo, C. Cassioli et al., Rab35 and its GAP EPI64C in T cells regulate receptor recycling and immunological synapse formation, Cell Death Differ, vol.22, issue.26, pp.18323-18353, 2008.

E. J. Quann, E. Merino, T. Furuta, and M. Huse, Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells, Nat Immunol, vol.10, issue.6, pp.627-662, 2009.

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo et al., Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion, Cell, vol.100, issue.2, pp.221-229, 2000.

A. T. Ritter, K. L. Angus, and G. M. Griffiths, The role of the cytoskeleton at the immunological synapse, Immunol Rev, vol.256, issue.1, pp.107-124, 2013.

A. T. Ritter, Y. Asano, J. C. Stinchcombe, N. M. Dieckmann, B. C. Chen et al., Actin depletion initiates events leading to granule secretion at the immunological synapse, Immunity, vol.42, issue.5, pp.864-76, 2015.

J. E. Ryser, E. Rungger-brändle, C. Chaponnier, G. Gabbiani, and P. Vassalli, The area of attachment of cytotoxic T lymphocytes to their target cells shows high motility and polarization of actin, but not myosin, J Immunol, vol.128, issue.3, pp.1159-62, 1982.

W. W. Schamel, I. Arechaga, R. M. Risueño, H. M. Van-santen, P. Cabezas et al., Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response, J Exp Med, vol.202, issue.4, pp.493-503, 2005.

H. Soares, R. Henriques, M. Sachse, L. Ventimiglia, M. A. Alonso et al., Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse, J Exp Med, vol.210, issue.11, pp.2415-2448, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01371057

J. C. Stinchcombe, G. Bossi, S. Booth, and G. M. Griffiths, The immunological synapse of CTL contains a secretory domain and membrane bridges, Immunity, vol.15, issue.5, pp.751-61, 2001.

J. C. Stinchcombe, E. Majorovits, G. Bossi, S. Fuller, and G. M. Griffiths, Centrosome polarization delivers secretory granules to the immunological synapse, Nature, vol.443, issue.7110, pp.462-467, 2006.

L. Stowers, D. Yelon, L. J. Berg, J. Chant-;-tsun, A. Qureshi et al., Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42, Proc Natl Acad Sci, vol.92, issue.11, pp.5027-5058, 1995.

G. M. Griffiths, Centrosome docking at the immunological synapse is controlled by Lck signaling, J Cell Biol, vol.192, issue.4, pp.663-74, 2011.

S. Valitutti, M. Dessing, K. Aktories, H. Gallati, and A. Lanzavecchia, Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton, J Exp Med, vol.181, issue.2, pp.577-84, 1995.

S. Vardhana, K. Choudhuri, R. Varma, M. L. Dustin, R. Varma et al., T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster, Immunity, vol.32, issue.4, pp.117-144, 2006.

S. Y. Wei, T. E. Lin, W. L. Wang, P. L. Lee, M. C. Tsai et al., Protein kinase C-? and -? coordinate flowinduced directionality and deformation of migratory human blood T-lymphocytes, J Mol Cell Biol, vol.6, issue.6, pp.458-72, 2014.

A. Wiedemann, D. Depoil, M. Faroudi, and S. Valitutti, Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses, Proc Natl Acad Sci, vol.103, issue.29, pp.10985-90, 2006.

J. Yi, X. S. Wu, T. Crites, and J. A. Hammer, Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells, Mol Biol Cell, vol.23, issue.5, pp.834-52, 2012.

T. Yokosuka, K. Sakata-sogawa, W. Kobayashi, M. Hiroshima, A. Hashimoto-tane et al., Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76, Nat Immunol, vol.6, issue.12, pp.1253-62, 2005.

T. Yokosuka, W. Kobayashi, K. Sakata-sogawa, M. Takamatsu, A. Hashimoto-tane et al., Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation, Immunity, vol.29, issue.4, pp.589-601, 2008.

Y. Yu, N. C. Fay, A. A. Smoligovets, H. J. Wu, and J. T. Groves, Myosin IIA modulates T cell receptor transport and CasL phosphorylation during early immunological synapse formation, PLoS One, vol.7, issue.2, 2012.

M. D. Barbosa, F. J. Barrat, V. T. Tchernev, Q. A. Nguyen, V. S. Mishra et al., Syndrome hémophagocytaire / mécanisme de sécrétion des granules lytiques, p.158

, Identification of mutations in two major mRNA isoforms of the Chediak-Higashi syndrome gene in human and mouse, Hum Mol Genet, vol.6, issue.7, pp.1091-1099, 1997.

K. L. Boswell, D. J. James, J. M. Esquibel, S. Bruinsma, R. Shirakawa et al., Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients. Blood, J Cell Biol, vol.197, issue.2, pp.1906-1921, 2007.

M. Côte, M. M. Ménager, A. Burgess, N. Mahlaoui, C. Picard et al., Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells, J Clin Invest, vol.119, issue.12, pp.3765-73, 2009.

E. D. Elstak, M. Neeft, N. T. Nehme, J. Voortman, M. Cheung et al., The munc13-4-rab27 complex is specifically required for tethering secretory lysosomes at the plasma membrane, Blood, vol.118, issue.6, pp.1570-1578, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00613200

J. Feldmann, I. Callebaut, G. Raposo, S. Certain, D. Bacq et al., Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3), Cell, vol.115, issue.4, pp.461-73, 2003.

K. T. Fowler, N. W. Andrews, and J. W. Huleatt, Expression and function of synaptotagmin VII in CTLs, J Immunol, vol.178, issue.3, pp.1498-504, 2007.

M. Fukuda, C. Saegusa, and K. Mikoshiba, Novel splicing isoforms of synaptotagmin-like proteins 2 and 3: identification of the Slp homology domain, Biochem Biophys Res Commun, vol.283, pp.513-519, 2001.

M. Fukuda, The C2A domain of synaptotagmin-like protein 3 (Slp3) is an atypical calcium-dependent phospholipid-binding machine: comparison with the C2A domain of synaptotagmin I, Biochem J, vol.366, issue.2, pp.681-688, 2002.

Y. Hackmann, S. C. Graham, S. Ehl, S. Höning, K. Lehmberg et al., Syntaxin binding mechanism and disease-causing mutations in Munc18-2, Proc Natl Acad Sci, vol.110, issue.47, pp.4482-91, 2013.

M. Halimani, V. Pattu, M. R. Marshall, H. F. Chang, M. U. Jung et al., Syntaxin11 serves as a t-SNARE for the fusion of lytic granules in human cytotoxic T lymphocytes, Eur J Immunol, vol.44, issue.2, pp.573-84, 2014.

O. Holt, E. Kanno, G. Bossi, S. Booth, D. T. Santoro et al., Slp1 and Slp2-a localize to the plasma membrane of CTL and contribute to secretion from the immunological synapse, Traffic, vol.9, issue.4, pp.446-57, 2008.

T. S. Kuroda, M. Fukuda, H. Ariga, and K. Mikoshiba, The Slp homology domain of synaptotagmin-like proteins 1-4 and Slac2 functions as a novel Rab27A binding domain, J Biol Chem, vol.277, pp.9212-9218, 2002.

M. Kurowska, N. Goudin, N. T. Nehme, M. Court, J. Garin et al., Terminal transport of lytic granules to the immune synapse is mediated by the kinesin-1/Slp3/Rab27a complex, Blood, vol.119, issue.17, pp.3879-89, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02084704

K. Krzewski, A. Gil-krzewska, J. Watts, J. N. Stern, and J. L. Strominger, VAMP4-and VAMP7-expressing vesicles are both required for cytotoxic granule exocytosis in NK cells, Eur J Immunol, vol.41, issue.11, pp.3323-3332, 2011.

L. S. Loo, L. A. Hwang, Y. M. Ong, H. S. Tay, C. C. Wang et al., A role for endobrevin/VAMP8 in CTL lytic granule exocytosis, Eur J Immunol, vol.39, issue.12, pp.3520-3528, 2009.

M. R. Marshall, V. Pattu, M. Halimani, M. Maier-peuschel, M. L. Müller et al., VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity, J Cell Biol, vol.210, issue.1, pp.135-51, 2015.

U. Matti, V. Pattu, M. Halimani, C. Schirra, E. Krause et al., Synaptobrevin2 is the v-SNARE required for cytotoxic T-lymphocyte lytic granule fusion, Nat Immunol, vol.4, p.1439, 2007.

G. Ménasché, E. Pastural, J. Feldmann, S. Certain, F. Ersoy et al., Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome, Nat Genet, vol.25, issue.2, pp.173-179, 2000.

G. Menasche, J. Feldmann, A. Fischer, G. De-saint, and . Basile, Primary hemophagocytic syndromes point to a direct link between lymphocyte cytotoxicity and homeostasis, Immunol Rev, vol.203, pp.165-79, 2005.

G. Ménasché, M. M. Ménager, J. M. Lefebvre, E. Deutsch, R. Athman et al., A newly identified isoform of Slp2a associates with Rab27a in cytotoxic T cells and participates to cytotoxicgranule secretion, J Biol Chem, vol.112, issue.13, pp.191-203, 1997.

S. E. Stepp, R. Dufourcq-lagelouse, L. Deist, F. Bhawan, S. Certain et al., Perforin gene defects in familial hemophagocytic lymphohistiocytosis, Science, vol.286, issue.5446, pp.1957-1966, 1999.

M. Steegmaier, J. Klumperman, D. L. Foletti, J. S. Yoo, and R. H. Scheller, Vesicle-associated membrane protein 4 is implicated in trans-Golgi network vesicle trafficking, Mol. Biol. Cell, vol.10, pp.1957-1972, 1999.

J. C. Stinchcombe, D. C. Barral, E. H. Mules, S. Booth, A. N. Hume et al., Rab27a is required for regulated secretion in cytotoxic T lymphocytes, J Cell Biol, vol.152, issue.4, pp.825-859, 2001.

J. C. Stinchcombe, L. J. Page, and G. M. Griffiths, Secretory lysosome biogenesis in cytotoxic T lymphocytes from normal and Chediak-Higashi syndrome patients, Traffic, vol.1, pp.435-444, 2000.

A. C. Valdez, J. P. Cabaniols, M. J. Brown, and P. A. Roche, Van der Sluijs P, Zibouche M, van Kerkhof P. Late steps in secretory lysosome exocytosis in cytotoxic lymphocytes. Front Immunol, J Cell Sci, vol.112, p.359, 1999.

J. Wang, T. Takeuchi, H. Yokota, and T. Izumi, Novel rabphilin-3-like protein associates with insulincontaining granules in pancreatic beta cells, J Biol Chem, vol.274, pp.28542-28548, 1999.

S. M. Wilson, R. Yip, D. A. Swing, T. N. O'sullivan, Y. Zhang et al., A mutation in Rab27a causes the vesicle transport defects observed in ashen mice, Proc Natl Acad Sci, vol.97, issue.14, pp.7933-7941, 2000.

Z. Stadt, U. Schmidt, S. Kasper, B. Beutel, K. Diler et al., Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11, Am J Hum Genet, vol.14, issue.6, pp.482-92, 2005.

S. Amato and H. Y. Man, AMPK signaling in neuronal polarization: Putting the brakes on axonal traffic of PI3-Kinase, Commun Integr Biol, vol.5, issue.2, pp.152-157, 2012.

N. Arimura, T. Kimura, S. Nakamuta, S. Taya, Y. Funahashi et al.,

S. Fujii, K. Iwamatsu, A. Segal, R. A. Fukuda, M. Kaibuchi et al., Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27, Dev Cell, vol.16, issue.5, pp.675-86, 2009.

P. D. Campbell, K. Shen, M. R. Sapio, T. D. Glenn, W. S. Talbot et al., Unique function of Kinesin Kif5A in localization of mitochondria in axons, J Neurosci, vol.34, issue.44, pp.14717-14749, 2014.

J. J. Chua, E. Butkevich, J. M. Worseck, M. Kittelmann, M. Grønborg et al., Phosphorylation-regulated axonal dependent transport of syntaxin 1 is mediated by a Kinesin-1 adapter, Proc Natl Acad Sci, vol.109, issue.15, pp.5862-5869, 2012.

J. Cui, Z. Wang, Q. Cheng, R. Lin, X. M. Zhang et al., Targeted inactivation of kinesin-1 in pancreatic ?-cells in vivo leads to insulin secretory deficiency, Diabetes, vol.60, issue.1, 2011.

R. J. Diefenbach, E. Diefenbach, M. W. Douglas, A. L. Cunningham, R. J. Diefenbach et al., The heavy chain of conventional kinesin interacts with the SNARE proteins SNAP25 and SNAP23. Biochemistry, J Virol, vol.41, issue.50, pp.2102-2113, 2002.

C. M. Fader, M. O. Aguilera, M. I. Colombo, G. G. Farías, C. M. Guardia et al., Cloning mammalian genes by expression selection of genetic suppressor elements: association of kinesin with drug resistance and cell immortalization, Biochem Biophys Res Commun, vol.8, issue.12, pp.3744-3752, 1994.

M. Ishida, N. Ohbayashi, and M. Fukuda, Rab1A regulates anterograde melanosome transport by recruiting kinesin-1 to melanosomes through interaction with SKIP. Sci Rep, vol.5, p.8238, 2015.

Y. Kanai, Y. Okada, Y. Tanaka, A. Harada, S. Terada et al., KIF5C, a novel neuronal kinesin enriched in motor neurons, J Neurosci, vol.20, issue.17, pp.6374-84, 2000.

N. A. Kaniuk, V. Canadien, R. D. Bagshaw, M. Bakowski, V. Braun et al., Salmonella exploits Arl8B-directed kinesin activity to promote endosome tubulation and cell-to-cell transfer, Cell Microbiol, vol.13, issue.11, pp.1812-1835, 2011.

K. N. Karle, D. Möckel, E. Reid, and L. Schöls, Axonal transport deficit in a KIF5A(-/-) mouse model, Neurogenetics, vol.13, issue.2, pp.169-79, 2012.

M. Kurowska, N. Goudin, N. T. Nehme, M. Court, J. Garin et al., Terminal transport of lytic granules to the immune synapse is mediated by the kinesin-1/Slp3/Rab27a complex, Blood, vol.119, issue.17, pp.3879-89, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02084704

V. Malikov, E. S. Da-silva, V. Jovasevic, G. Bennett, . De-souza-aranha et al., HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus, Nat Commun, vol.6, p.6660, 2015.

T. Maritzen and V. Haucke, Gadkin: A novel link between endosomal vesicles and microtubule tracks, Commun Integr Biol, vol.3, issue.4, pp.299-302, 2010.

G. W. Morgan, M. Hollinshead, B. J. Ferguson, B. J. Murphy, D. C. Carpentier et al., Vaccinia protein F12 has structural similarity to kinesin light chain and contains a motor binding motif required for virion export, PLoS Pathog, vol.6, issue.2, p.1000785, 2010.

A. M. Morton, A. L. Cunningham, and R. J. Diefenbach, Kinesin-1 plays a role in transport of SNAP-25 to the plasma membrane, Biochem Biophys Res Commun, vol.391, issue.1, pp.388-93, 2010.

I. Munoz, L. Danelli, J. Claver, N. Goudin, M. Kurowska et al., Kinesin-1 controls mast cell degranulation and anaphylaxis through PI3K-dependent recruitment to the granular Slp3/Rab27b complex, J Cell Biol, vol.215, issue.2, pp.203-216, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01415529

K. Nakajima, X. Yin, Y. Takei, D. H. Seog, N. Homma et al., Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy, Biochem Soc Trans, vol.76, issue.5, pp.441-447, 2012.

E. Reid, A. M. Dearlove, M. Rhodes, and D. C. Rubinsztein, A new locus for autosomal dominant "pure" hereditary spastic paraplegia mapping to chromosome 12q13, and evidence for further genetic heterogeneity, Am J Hum Genet, vol.65, issue.3, pp.757-63, 1999.

E. Reid, M. Kloos, A. Ashley-koch, L. Hughes, S. Bevan et al., A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10), Am J Hum Genet, vol.71, issue.5, pp.1189-94, 2002.

M. R. Schmidt, T. Maritzen, V. Kukhtina, V. A. Higman, L. Doglio et al., Regulation of endosomal membrane traffic by a Gadkin/AP-1/kinesin KIF5 complex, Proc Natl Acad Sci, vol.106, issue.36, pp.15344-15353, 2009.

D. A. Skoufias, D. G. Cole, K. P. Wedaman, and J. M. Scholey, The carboxyl-terminal domain of kinesin heavy chain is important for membrane binding, J Biol Chem, vol.269, issue.2, pp.1477-85, 1994.

Y. Tanaka, Y. Kanai, Y. Okada, S. Nonaka, S. Takeda et al., Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria, Cell, vol.93, issue.7, p.161, 1998.

X. Wang and T. L. Schwarz, The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility, Cell, vol.136, issue.1, pp.163-74, 2009.

Z. Wang, J. Cui, W. M. Wong, X. Li, W. Xue et al., Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions, Development, vol.140, issue.3, pp.617-643, 2013.

I. Chapitre, Le mécanisme de sécrétion des mastocytes A-Généralités sur les mastocytes murins: 1-La différenciation des mastocytes

Y. Arinobu, H. Iwasaki, M. F. Gurish, S. Mizuno, H. Shigematsu et al., Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis, Proc Natl Acad Sci, vol.102, issue.50, pp.18105-18115, 2005.

Y. Arinobu, H. Iwasaki, and K. Akashi, Origin of basophils and mast cells, Allergol Int, vol.58, issue.1, pp.21-29, 2009.

P. Besmer, K. Manova, R. Duttlinger, E. J. Huang, A. Packer et al., The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis, Dev Suppl, pp.125-137, 1993.

C. C. Chen, M. A. Grimbaldeston, M. Tsai, I. L. Weissman, and S. J. Galli, Identification of mast cell progenitors in adult mice, Proc Natl Acad Sci, vol.102, issue.32, pp.11408-11421, 2005.

C. B. Franco, C. C. Chen, M. Drukker, I. L. Weissman, and S. J. Galli, Distinguishing mast cell and granulocyte differentiation at the single-cell level, Cell stem cell, vol.6, pp.361-368, 2010.

H. Iwasaki, S. Mizuno, Y. Arinobu, H. Ozawa, Y. Mori et al., The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages, Genes Dev, vol.20, issue.21, pp.3010-3031, 2006.

Y. Kitamura, S. Go, and K. Hatanaka, Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation, Blood, vol.52, issue.2, pp.447-52, 1978.

Y. Li, X. Qi, B. Liu, H. Huang, A. R. Migliaccio et al., GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant, J Immunol, vol.194, issue.9, pp.281-96, 2003.

K. Mukai, M. J. Benbarak, M. Tachibana, K. Nishida, H. Karasuyama et al., Critical role of P1-Runx1 in mouse basophil development, Blood, vol.120, pp.76-85, 2012.

X. Qi, J. Hong, L. Chaves, Y. Zhuang, Y. Chen et al., Antagonistic regulation by the transcription factors C/EBPalpha and MITF specifies basophil and mast cell fates, Immunity, vol.39, pp.97-110, 2013.

H. R. Rodewald, M. Dessing, A. M. Dvorak, S. J. Galli, M. Sakata-yanagimoto et al., Coordinated regulation of transcription factors through Notch2 is an important mediator of mast cell fate, Proc Natl Acad Sci, vol.271, issue.5250, pp.7839-7883, 1996.

C. P. Shelburne, M. E. Mccoy, R. Piekorz, V. Sexl, K. H. Roh et al., Stat5 expression is critical for mast cell development and survival, Blood, vol.15, issue.4, pp.1290-1297, 2003.

E. Brzezi?ska-b?aszczyk, A. Pietrzak, and A. H. Misiak-t?oczek, Tumor necrosis factor (TNF) is a potent rat mast cell chemoattractant, La migration des mastocytes, vol.27, pp.911-920, 2007.

K. Eller, D. Wolf, J. M. Huber, M. Metz, G. Mayer et al., IL-9 production by regulatory T cells recruits mast cells that are essential for regulatory T cell-induced immune suppression, J Immunol, vol.186, pp.83-91, 2011.

B. L. Gruber, M. J. Marchese, and R. R. Kew, Transforming growth factor-beta 1 mediates mast cell chemotaxis, J Immunol, 1994.

M. F. Gurish, H. Tao, J. P. Abonia, A. Arya, D. S. Friend et al., Intestinal mast cell progenitors require CD49dbeta7 (alpha4beta7 integrin) for tissue-specific homing, J Exp Med, vol.194, issue.9, pp.1243-52, 2001.

I. Halova, L. Draberova, P. Draber, P. S. Jolly, M. Bektas et al., Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis, J Exp Med, vol.3, issue.7, pp.959-70, 2004.

J. Kitaura, T. Kinoshita, M. Matsumoto, S. Chung, Y. Kawakami et al., IgE-and IgE+Ag-mediated mast cell migration in an autocrine/paracrine fashion, Blood, vol.105, issue.8, pp.3222-3231, 2005.

N. Matsuura and B. R. Zetter, Stimulation of mast cell chemotaxis by interleukin 3, J Exp Med, vol.170, issue.4, pp.1421-1427, 1989.

C. J. Meininger, H. Yano, R. Rottapel, A. Bernstein, K. M. Zsebo et al., The c-kit receptor ligand functions as a mast cell chemoattractant, Blood, vol.79, issue.4, pp.958-63, 1992.

G. Nilsson, J. A. Mikovits, D. D. Metcalfe, and D. D. Taub, Mast cell migratory response to interleukin-8 is mediated through interaction with chemokine receptor CXCR2/Interleukin-8RB, Blood, vol.93, pp.2791-2797, 1999.

J. Sawada, A. Itakura, A. Tanaka, T. Furusaka, and H. Matsuda, Nerve growth factor functions as a chemoattractant for mast cells through both mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways, Blood, vol.95, issue.6, pp.2052-2060, 2000.

D. Taub, J. Dastych, N. Inamura, J. Upton, D. Kelvin et al., Bone marrow-derived murine mast cells migrate, but do not degranulate, in response to chemokines, J Immunol, vol.154, issue.5, pp.2393-402, 1995.

C. L. Weller, S. J. Collington, A. Hartnell, D. M. Conroy, T. Kaise et al., Chemotactic action of prostaglandin E2 on mouse mast cells acting via the PGE2 receptor

, Proc Natl Acad Sci U S A, vol.104, issue.28, pp.11712-11719, 2007.

C. L. Weller, S. J. Collington, J. K. Brown, H. R. Miller, A. Al-kashi et al.,

C. H. Woo, D. T. Jeong, S. B. Yoon, K. S. Kim, I. Y. Chung et al., Leukotriene B4, an activation product of mast cells, is a chemoattractant for their progenitors, Biochem Biophys Res Commun, vol.201, issue.12, pp.392-399, 2002.

M. F. Gurish, W. S. Pear, R. L. Stevens, M. L. Scott, K. Sokol et al., Tissue-regulated differentiation and maturation of a v-abl-immortalized mast cellcommitted progenitor, La maturation des mastocytes, vol.3, pp.175-86, 1995.

S. Wernersson and G. Pejler, Mast cell secretory granules: armed for battle, Nat Rev Immunol, 2014.
DOI : 10.1038/nri3690

D. S. Friend, N. Ghildyal, K. F. Austen, M. F. Gurish, R. Matsumoto et al., Mast cells that reside at different locations in the jejunum of mice infected with Trichinella spiralis exhibit sequential changes in their granule ultrastructure and chymase phenotype, J Cell Biol, vol.14, issue.7, pp.279-90, 1996.

, -Les médiateurs de l'inflammation

K. Ashina, Y. Tsubosaka, T. Nakamura, K. Omori, K. Kobayashi et al., Histamine Induces Vascular Hyperpermeability by Increasing Blood Flow and Endothelial Barrier Disruption In vivo, e0132367. Bell A, Althaus M, Diener M. Communication between mast cells and rat submucosal neurons, vol.10, pp.1809-1832, 2015.

E. P. Benditt and M. Arase, An enzyme in mast cells with properties like chymotrypsin, J Exp Med, vol.110, pp.451-460, 1959.

J. Boesiger, M. Tsai, M. Maurer, M. Yamaguchi, L. F. Brown et al., Mast cells can secrete vascular permeability factor/ vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of fc epsilon receptor I expression, J Exp Med, vol.188, issue.6, pp.1135-1180, 1998.

P. Bradding, I. H. Feather, P. H. Howarth, R. Mueller, J. A. Roberts et al., Interleukin 4 is localized to and released by human mast cells, J Exp Med, 1992.

J. G. Freeman, J. J. Ryan, C. P. Shelburne, D. P. Bailey, L. A. Bouton et al., Catecholamines in murine bone marrow derived mast cells, J Neuroimmunol, vol.119, issue.2, pp.231-239, 2001.

N. Fukuishi, S. Murakami, A. Ohno, N. Yamanaka, N. Matsui et al., Does ?-hexosaminidase function only as a degranulation indicator in mast cells? The primary role of ?-hexosaminidase in mast cell granules, J Immunol, vol.193, issue.4, pp.1886-94, 2014.

S. J. Galli, S. Nakae, and M. Tsai, Mast cells in the development of adaptive immune responses, Nat Immunol, vol.6, issue.2, pp.135-177, 2005.

G. Garcia-faroldi, F. R. Melo, E. Ronnberg, M. Grujic, and G. Pejler, Active caspase-3 is stored within secretory compartments of viable mast cells, J Immunol, vol.191, pp.1445-1452, 2013.

G. G. Glenner and L. A. Cohen, Histochemical demonstration of a species-specific trypsin-like enzyme in mast cells, Nature, vol.185, pp.846-847, 1960.

J. R. Gordon and S. J. Galli, Mast cells as a source of both preformed and immunologically inducible TNFalpha/cachectin, Nature, vol.346, pp.274-276, 1990.

S. L. Gyles, L. Xue, E. R. Townsend, F. Wettey, R. Pettipher et al., A dominant role for chemoattractant receptor-homologous molecule expressed on T helper type 2 (Th2) cells (CRTH2) in mediating chemotaxis of CRTH2+ CD4+ Th2 lymphocytes in response to mast cell supernatants, J Clin Invest, vol.119, issue.6, pp.773-81, 2000.

S. He, M. D. Gaça, A. F. Walls, F. Henningsson, K. Yamamoto et al., A role for tryptase in the activation of human mast cells: modulation of histamine release by tryptase and inhibitors of tryptase, J Pharmacol Exp Ther, vol.286, issue.1, pp.2035-2042, 1998.

Y. Hori, Y. Nihei, Y. Kurokawa, A. Kuramasu, Y. Makabe-kobayashi et al., Accelerated clearance of Escherichia coli in experimental peritonitis of histamine-deficient mice, J Immunol, vol.169, pp.1978-1983, 2002.

P. A. Knight, S. H. Wright, C. E. Lawrence, Y. Y. Paterson, and H. R. Miller, Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1, J Exp Med, vol.192, pp.1849-1856, 2000.

N. M. Kushnir-sukhov, A. M. Gilfillan, J. W. Coleman, J. M. Brown, S. Bruening et al., 5-hydroxytryptamine induces mast cell adhesion and migration, J Immunol, vol.177, pp.6422-6432, 2006.
DOI : 10.4049/jimmunol.177.9.6422

URL : http://www.jimmunol.org/content/177/9/6422.full.pdf

Q. T. Le, G. Gomez, W. Zhao, J. Hu, H. Z. Xia et al., Processing of human protryptase in mast cells involves cathepsins L, B, and C, J Immunol, vol.187, issue.4, pp.1912-1920, 2011.

A. Leon, A. Buriani, R. Dal-toso, M. Fabris, S. Romanello et al., Delayed onset of inflammation in protease-activated receptor-2-deficient mice, Proc Natl Acad Sci U S A, vol.91, pp.6504-6510, 1994.

K. A. Lindstedt, Y. Wang, N. Shiota, J. Saarinen, M. Hyytiainen et al., Activation of paracrine TGF-beta1 signaling upon stimulation and degranulation of rat serosal mast cells: a novel function for chymase, FASEB J, vol.15, pp.1377-1388, 2001.

J. R. Mcdermott, R. E. Bartram, P. A. Knight, H. R. Miller, D. R. Garrod et al., A role for serglycin proteoglycan in mast cell apoptosis induced by a secretory granule-mediated pathway, Proc Natl Acad Sci U S A, vol.100, issue.7, pp.5423-5456, 2003.

H. Mizutani, N. Schechter, L. G. Black, R. A. Kupper, and T. S. , Rapid and specific conversion of precursor interleukin 1 beta (IL-1 beta) to an active IL-1 species by human mast cell chymase, J Exp Med, vol.174, pp.821-825, 1991.

T. C. Moon, A. D. Befus, M. Kulka, K. Morikawa, F. Oseko et al., Namazi MR. Possible molecular mechanisms to account for the involvement of tryptase in the pathogenesis of psoriasis, Clin Exp Immunol, vol.5, issue.3, pp.449-52, 1994.

S. Nelissen, T. Vangansewinkel, N. Geurts, L. Geboes, E. Lemmens et al., Mast cells protect from post-traumatic spinal cord damage in mice by degrading inflammation-associated cytokines via mouse mast cell protease 4, Neurobiol Dis, vol.62, pp.260-72, 2014.

Y. Omoto, K. Tokime, K. Yamanaka, K. Habe, T. Morioka et al., Human mast cell chymase cleaves pro-IL-18 and generates a novel and biologically active IL-18 fragment, J Immunol, vol.177, pp.8315-8319, 2006.

J. Pardo, R. Wallich, K. Ebnet, S. Iden, H. Zentgraf et al., Granzyme B is expressed in mouse mast cells in vivo and in vitro and causes delayed cell death independent of perforin, Cell Death Differ, vol.14, pp.1768-1779, 2007.

A. M. Piliponsky, C. C. Chen, E. J. Rios, P. M. Treuting, A. Lahiri et al., The chymase mouse mast cell protease 4 degrades TNF, limits inflammation, and promotes survival in a model of sepsis, Am J Pathol, vol.181, issue.3, p.332, 1953.

E. Rönnberg, F. R. Melo, and G. Pejler, Mast cell proteoglycans, J Histochem Cytochem, vol.60, issue.12, pp.950-62, 2012.

W. M. Shafer, J. Pohl, V. C. Onunka, N. Bangalore, and J. Travis, Human lysosomal cathepsin G and granzyme B share a functionally conserved broad spectrum antibacterial peptide, J Biol Chem, vol.266, issue.1, pp.112-118, 1991.

N. M. Schechter, A. M. Irani, J. L. Sprows, J. Abernethy, B. Wintroub et al., Molecular mechanism of mast cell mediated innate defense against endothelin and snake venom sarafotoxin, J Immunol, vol.145, pp.2629-2639, 1990.

N. J. Shubin, V. A. Glukhova, M. Clauson, P. Truong, M. Abrink et al., Proteome analysis of mast cell releasates reveals a role for chymase in the regulation of coagulation factor XIIIA levels via proteolytic degradation, J Allergy Clin Immunol, vol.139, issue.1, pp.323-334, 2017.

P. J. Wolters, C. T. Pham, D. J. Muilenburg, T. J. Ley, and G. H. Caughey, Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice, J Biol Chem, vol.276, issue.21, pp.18551-18557, 2001.

, Les mécanismes d'activation des mastocytes

Y. Baba, K. Nishida, Y. Fujii, T. Hirano, M. Hikida et al., Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses, Nat. Immunol, vol.9, pp.81-88, 2008.

G. Bansal, Z. Xie, S. Rao, K. H. Nocka, and K. M. Druey, Suppression of immunoglobulin E-mediated allergic responses by regulator of G protein signaling 13, Nat Immunol, vol.9, pp.73-80, 2008.

M. Becker, N. A. Lemmermann, S. Ebert, P. Baars, A. Renzaho et al., Mast cells as rapid innate sensors of cytomegalovirus by TLR3/TRIF signaling-dependent and-independent mechanisms, Cell Mol Immunol, vol.12, pp.192-201, 2015.

M. Benhamou, C. Bonnerot, W. H. Fridman, and M. Daëron, Molecular heterogeneity of murine mast cell Fc gamma receptors, J Immunol, vol.144, issue.8, pp.3071-3078, 1990.

U. Blank, C. Ra, L. Miller, K. White, H. Metzger et al., Complete structure and expression in transfected cells of high affinity IgE receptor, Nature, vol.337, pp.187-189, 1989.

S. Bulfone-paus, G. Nilsson, P. Draber, U. Blank, and F. Levi-schaffer, Positive and Negative Signals in Mast Cell Activation, Trends Immunol, issue.17, pp.30022-30026, 2017.

M. Daeron, O. Malbec, S. Latour, M. Arock, and W. H. Fridman, Regulation of high-affinity IgE receptormediated mast cell activation by murine low-affinity IgG receptors, Daeron M: Fc receptor biology, vol.95, pp.203-234, 1995.

M. Daëron and R. Lesourne, Negative signaling in Fc receptor complexes, Adv Immunol, vol.89, pp.39-86, 2006.

A. Erdei, M. Andrásfalvy, H. Péterfy, G. Tóth, and I. Pecht, Regulation of mast cell activation by complement-derived peptides, Immunol Lett, vol.92, issue.1-2, pp.39-42, 2004.

E. Eiseman and J. B. Bolen, Engagement of the high-affinity IgE receptor activates src protein-related tyrosine kinases, Nature, vol.355, pp.78-80, 1992.

C. Fewtrell and H. Metzger, Larger oligomers of IgE are more effective than dimers in stimulating rat basophilic leukemia cells, J Immunol, vol.125, pp.701-710, 1980.

T. Gebhardt, G. Sellge, A. Lorentz, R. Raab, M. P. Manns et al., Cultured human intestinal mast cells express functional IL-3 receptors and respond to IL-3 by enhancing growth and IgE receptor-dependent mediator release, Eur J Immunol, vol.32, pp.2308-2316, 2002.

A. M. Gilfillan and C. Tkaczyk, Integrated signalling pathways for mast-cell activation, Nat Rev Immunol, vol.6, pp.218-230, 2006.
DOI : 10.1038/nri1782

H. Gu, K. Saito, L. D. Klaman, J. Shen, T. Fleming et al., Essential role for Gab2 in the allergic response, Nature, vol.412, issue.6843, pp.186-90, 2001.

S. Hao, T. Kurosaki, and A. August, Differential regulation of NFAT and SRF by the B cell receptor via a PLCgamma-Ca(2+)-dependent pathway, EMBO J, vol.15, issue.16, p.165, 2003.

P. B. Hill, A. J. Macdonald, E. M. Thornton, G. F. Newlands, S. J. Galli et al., Stem cell factor enhances immunoglobulin E-dependent mediator release from cultured rat bone marrow-derived mast cells: activation of previously unresponsive cells demonstrated by a novel ELISPOT assay, Immunology, vol.87, pp.326-333, 1996.

A. J. Hueber, J. C. Alves-filho, D. L. Asquith, C. Michels, N. L. Millar et al., IL-33 induces skin inflammation with mast cell and neutrophil activation, Eur J Immunol, vol.41, issue.8, pp.2229-2266, 2011.
DOI : 10.1002/eji.201041360

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/eji.201041360

B. Jabril-cuenod, C. Zhang, A. M. Scharenberg, R. Paolini, R. Numerof et al., Sykdependent phosphorylation of Shc. A potential link between FcepsilonRI and the Ras/mitogen-activated protein kinase signaling pathway through SOS and Grb2, J Biol Chem, vol.271, issue.27, pp.959-70, 1996.
DOI : 10.1074/jbc.271.27.16268

URL : http://www.jbc.org/content/271/27/16268.full.pdf

F. Jonsson and M. Daeron, Mast cells and company, Front Immunol, vol.3, p.16, 2012.

H. S. Kuehn, M. Rådinger, J. M. Brown, K. Ali, B. Vanhaesebroeck et al., Btk-dependent Rac activation and actin rearrangement following FcepsilonRI aggregation promotes enhanced chemotactic responses of mast cells, J Cell Sci, vol.123, pp.2576-85, 2010.

C. L. Kepley, S. Taghavi, G. Mackay, D. Zhu, P. A. Morel et al., Co-aggregation of FcgammaRII with FcepsilonRI on human mast cells inhibits antigen-induced secretion and involves SHIP-Grb2-Dok complexes, J Biol Chem, vol.279, issue.34, pp.35139-35188, 2004.

M. S. Kim, M. Rådinger, and A. M. Gilfillan, The multiple roles of phosphoinositide 3-kinase in mast cell biology, Trends Immunol, vol.29, issue.10, pp.493-501, 2008.

J. Kitaura, K. Asai, M. Maeda-yamamoto, Y. Kawakami, U. Kikkawa et al., Akt-dependent cytokine production in mast cells, J Exp Med, vol.192, issue.5, pp.729-769, 2000.

S. Kraft and J. P. Kinet, New developments in FcepsilonRI regulation, function and inhibition, Nat Rev Immunol, vol.7, pp.365-378, 2007.

C. L. Law, K. A. Chandran, S. P. Sidorenko, and E. A. Clark, Phospholipase C-gamma1 interacts with conserved phosphotyrosyl residues in the linker region of Syk and is a substrate for Syk, Mol Cell Biol, vol.16, issue.4, pp.1305-1320, 1996.

R. Malaviya, Z. Gao, K. Thankavel, P. A. Van-der-merwe, and A. Sn, The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositolanchored molecule CD48, Proc Natl Acad Sci U S A, vol.96, pp.8110-8115, 1999.

T. S. Manetz, C. Gonzalez-espinosa, R. Arudchandran, S. Xirasagar, V. Tybulewicz et al., Vav1 regulates phospholipase cgamma activation and calcium responses in mast cells, Mol Cell Biol, vol.21, issue.11, pp.3763-74, 2001.

H. Matsushima, N. Yamada, H. Matsue, S. Shimada, H. Migalovich-sheikhet et al., and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells, Nat Rev Immunol, vol.173, issue.2, pp.434-476, 2001.

H. Ochi, D. Jesus, N. H. Hsieh, F. H. Austen, K. F. Boyce et al., IL-4 and -5 prime human mast cells for different profiles of IgE-dependent cytokine production, Proc Natl Acad Sci U S A, vol.97, pp.1491-1502, 2000.

A. Olivera, K. Mizugishi, A. Tikhonova, L. Ciaccia, S. Odom et al., The sphingosine kinase-sphingosine-1-phosphate axis is a determinant of mast cell function and anaphylaxis, Immunity, vol.26, issue.3, pp.287-97, 2007.

K. Ozawa, Z. Szallasi, M. G. Kazanietz, P. M. Blumberg, H. Mischak et al., Ca(2+)-dependent and Ca(2+)-independent isozymes of protein kinase C mediate exocytosis in antigen-stimulated rat basophilic RBL-2H3 cells. Reconstitution of secretory responses with Ca2+ and purified isozymes in washed permeabilized cells, J Biol Chem, vol.268, issue.3, pp.1749-56, 1993.

V. Parravicini, M. Gadina, M. Kovarova, S. Odom, C. Gonzalez-espinosa et al., Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation, Nat Immunol, vol.3, p.166, 2002.

E. Razin, Z. Szallasi, M. G. Kazanietz, P. M. Blumberg, and J. Rivera, Protein kinases C-beta and C-epsilon link the mast cell high-affinity receptor for IgE to the expression of c-fos and c-jun, Proc Natl Acad Sci, vol.91, issue.16, pp.7722-7728, 1994.

J. Rivera, Molecular adapters in Fc(epsilon)RI signaling and the allergic response, Curr Opin Immunol, vol.14, pp.688-693, 2002.

J. Rivera and . Ntal/, LAB and LAT: a balancing act in mast-cell activation and function, Trends Immunol, vol.26, issue.3, pp.119-141, 2005.

J. Rivera, N. A. Fierro, A. Olivera, and R. Suzuki, New insights on mast cell activation via the high affinity receptor for IgE, Adv Immunol, vol.98, pp.85-120, 2008.

S. Saitoh, R. Arudchandran, T. S. Manetz, W. Zhang, C. L. Sommers et al., LAT is essential for Fc(epsilon)RI-mediated mast cell activation, Immunity, vol.12, pp.525-535, 2000.

L. K. Singh, X. Pang, N. Alexacos, R. Letourneau, and T. C. Theoharides, Acute immobilization stress triggers skin mast cell degranulation via corticotropin releasing hormone, neurotensin, and substance P: A link to neurogenic skin disorders, Brain Behav Immun, vol.13, pp.225-239, 1999.

L. C. Sjoberg, J. A. Gregory, S. E. Dahlen, G. P. Nilsson, and M. Adner, Interleukin-33 exacerbates allergic bronchoconstriction in the mice via activation of mast cells, Allergy, vol.70, pp.514-521, 2015.

V. Supajatura, H. Ushio, A. Nakao, S. Akira, K. Okumura et al., Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity, J Clin Invest, vol.109, pp.1351-1359, 2002.

R. Suzuki, S. Leach, W. Liu, E. Ralston, J. Scheffel et al., Molecular editing of cellular responses by the high-affinity receptor for IgE, Science, vol.343, pp.1021-1025, 2014.

K. Takeshita, K. Sakai, K. B. Bacon, and F. Gantner, Critical role of histamine H4 receptor in leukotriene B4 production and mast cell-dependent neutrophil recruitment induced by zymosan in vivo, J Pharmacol Exp Ther, vol.307, issue.3, pp.1072-1080, 2003.

S. Y. Tam, M. Tsai, J. N. Snouwaert, J. Kalesnikoff, D. Scherrer et al., RabGEF1 is a negative regulator of mast cell activation and skin inflammation, Nat Immunol, vol.5, pp.844-852, 2004.

C. Tkaczyk, M. A. Beaven, S. M. Brachman, D. D. Metcalfe, and A. M. Gilfillan, The phospholipase C?-dependent pathway of Fc?RI-mediated mast cell activation is regulated independently of phosphatidylinositol 3-kinase, J. Biol. Chem, vol.278, pp.48474-48484, 2003.

C. Tkaczyk, V. Horejsi, S. Iwaki, P. Draber, L. E. Samelson et al., NTAL phosphorylation is a pivotal link between the signaling cascades leading to human mast cell degranulation following Kit activation and Fc epsilon RI aggregation, Blood, vol.104, pp.207-214, 2004.

P. Vadas, M. Gold, B. Perelman, G. M. Liss, G. Lack et al., Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis, N Engl J Med, vol.358, pp.28-35, 2008.

M. Weetall, D. Holowka, and B. Baird, Heterologous desensitization of the high affinity receptor for IgE (Fc epsilon R1) on RBL cells, J Immunol, vol.150, pp.4072-4083, 1993.

W. Xiao, H. Nishimoto, H. Hong, J. Kitaura, S. Nunomura et al., Positive and negative regulation of mast cell activation by Lyn via the FcepsilonRI, J Immunol, vol.175, issue.10, pp.6885-92, 2005.

J. Zhang, A. K. Somani, and K. A. Siminovitch, Roles of the SHP-1 tyrosine phosphatase in the negative regulation of cell signalling, Semin Immunol, vol.12, issue.4, pp.361-78, 2000.

, B-Les mécanismes de sécrétion des mastocytes

G. Alvarez-de-toledo and J. M. Fernandez, Compound versus multigranular exocytosis in peritoneal mast cells, La différentes voies de sécrétion des mastocytes, vol.95, pp.397-409, 1990.

W. Antonin, C. Holroyd, D. Fasshauer, S. Pabst, V. Mollard et al., A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function, EMBO J, vol.19, issue.23, pp.6453-64, 2000.

N. P. Azouz, T. Matsui, M. Fukuda, and R. Sagi-eisenberg, Decoding the regulation of mast cell exocytosis by networks of Rab GTPases, J Immunol, vol.189, issue.5, pp.2169-80, 2012.

N. P. Azouz, N. Zur, A. Efergan, N. Ohbayashi, M. Fukuda et al., Transient fusion ensures granule replenishment to enable repeated release after IgE-mediated mast cell degranulation, J Immunol, vol.192, issue.9, pp.3989-4000, 2014.

M. Benhamou and U. Blank, Stimulus-secretion coupling by high-affinity IgE receptor: new developments, FEBS Lett, p.15, 2010.

U. Blank, B. Cyprien, S. Martin-verdeaux, F. Paumet, I. Pombo et al., SNAREs and associated regulators in the control of exocytosis in the RBL-2H3 mast cell line, Mol Immunol, vol.38, pp.1341-1346, 2002.

U. Blank and J. Rivera, The ins and outs of IgE-dependent mast-cell exocytosis, Trends Immunol, vol.25, issue.5, pp.266-73, 2004.

C. Brochetta, R. Suzuki, F. Vita, M. R. Soranzo, J. Claver et al., Munc18-2 and syntaxin 3 control distinct essential steps in mast cell degranulation, J Immunol, vol.192, issue.1, pp.41-51, 2014.

K. L. Boswell, D. J. James, J. M. Esquibel, S. Bruinsma, R. Shirakawa et al., Munc13-4 reconstitutes calcium-dependent SNARE-mediated membrane fusion, J Cell Biol, vol.197, issue.2, pp.301-313, 2012.

J. M. Cabeza and J. Acosta, Ales E: Mechanisms of granule membrane recapture following exocytosis in intact mast cells, J Biol Chem, vol.288, pp.20293-20305, 2013.

A. Carroll-portillo, K. Spendier, J. Pfeiffer, G. Griffiths, H. Li et al., Formation of a mast cell synapse: Fc epsilon RI membrane dynamics upon binding mobile or immobilized ligands on surfaces, J Immunol, vol.184, pp.1328-1338, 2012.

A. Carroll-portillo, Z. Surviladze, A. Cambi, D. S. Lidke, and B. S. Wilson, Mast cell synapses and exosomes: membrane contacts for information exchange. Front Immunol, vol.3, p.46, 2012.

E. Crivellato, B. Nico, F. Mallardi, C. A. Beltrami, and D. Ribatti, Piecemeal degranulation as a general secretory mechanism?, Anat Rec A Discov Mol Cell Evol Biol, vol.274, issue.1, pp.778-84, 2003.

Z. Deng, T. Zink, H. Y. Chen, D. Walters, F. T. Liu et al., Impact of actin rearrangement and degranulation on the membrane structure of primary mast cells: a combined atomic force and laser scanning confocal microscopy investigation, Biophys J, vol.96, pp.569-578, 1991.

A. M. Dvorak, R. I. Tepper, P. F. Weller, E. S. Morgan, P. Estrella et al., Piecemeal degranulation of mast cells in the inflammatory eyelid lesions of interleukin-4 transgenic mice. Evidence of mast cell histamine release in vivo by diamine oxidase-gold enzyme-affinity ultrastructural cytochemistry, Blood, vol.83, pp.3600-3612, 1994.

A. M. Dvorak, A. Efergan, N. P. Azouz, O. Klein, K. Noguchi et al., Piecemeal degranulation of basophils and mast cells is effected by vesicular transport of stored secretory granule contents, Chem Immunol Allergy, vol.85, pp.135-184, 2005.

, Regulates Retrograde Transport of Mast Cell Secretory Granules by Interacting with the RILP-Dynein Complex, J Immunol, vol.196, issue.3, pp.1091-101, 2016.

A. Elhamdani, F. Azizi, and C. R. Artalejo, Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion, J Neurosci, vol.26, pp.3030-3036, 2006.

N. Foger, A. Jenckel, Z. Orinska, K. H. Lee, and A. C. Chan, Bulfone-Paus S: Differential regulation of mast cell degranulation versus cytokine secretion by the actin regulatory proteins Coronin1a and Coronin1b, J Exp Med, vol.208, pp.1777-1787, 2011.

S. P. Frank, K. P. Thon, S. C. Bischoff, and A. Lorentz, SNAP-23 and syntaxin-3 are required for chemokine release by mature human mast cells, Mol Immunol, vol.49, issue.1-2, pp.353-361, 2011.

B. Frossi, D. 'incà, F. Crivellato, E. Sibilano, R. Gri et al.,

, Single-cell dynamics of mast cell-CD4+ CD25+ regulatory T cell interactions, Eur J Immunol, vol.41, issue.7, pp.1872-82, 2011.

N. Gaudenzio, R. Sibilano, T. Marichal, P. Starkl, L. L. Reber et al., Different activation signals induce distinct mast cell degranulation strategies, J Clin Invest, vol.126, issue.10, pp.177-82, 2008.

Z. Guo, C. Turner, and D. Castle, Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells, Cell, vol.94, issue.4, pp.537-585, 1998.

Z. Hájková, V. Bugajev, E. Dráberová, S. Vinopal, L. Dráberová et al., STIM1-directed reorganization of microtubules in activated mast cells, J Immunol, vol.186, issue.2, pp.913-936, 2011.

R. Hepp, N. Puri, A. C. Hohenstein, G. L. Crawford, S. W. Whiteheart et al., Phosphorylation of SNAP-23 regulates exocytosis from mast cells, J. Biol. Chem, vol.280, pp.6610-6620, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00086895

H. Higashio, N. Nishimura, H. Ishizaki, J. Miyoshi, S. Orita et al., Doc2 alpha and Munc13-4 regulate Ca(2+) -dependent secretory lysosome exocytosis in mast cells, J Immunol, 2008.

H. Higashio, Y. Satoh, T. Saino, M. Krystel-whittemore, K. N. Dileepan et al., Mast cell degranulation is negatively regulated by the Munc13-4-binding small-guanosine triphosphatase Rab37. Sci Rep, Mast Cell: A Multi-Functional Master Cell. Front Immunol, vol.6, p.620, 2016.

D. Lawson, C. Fewtrell, M. C. Raff, A. Lorentz, A. Baumann et al., Localized mast cell degranulation induced by concanavalin Asepharose beads. Implications for the Ca2+ hypothesis of stimulus-secretion coupling, The SNARE Machinery in Mast Cell Secretion. Front Immunol, vol.79, pp.325-359, 1978.

E. Melicoff, L. Sansores-garcia, A. Gomez, D. C. Moreira, P. Datta et al., Synaptotagmin-2 controls regulated exocytosis but not other secretory responses of mast cells, J Biol Chem, vol.284, pp.19445-19451, 2009.

K. Mizuno, T. Tolmachova, D. S. Ushakov, M. Romao, M. Abrink et al., Rab27b regulates mast cell granule dynamics and secretion, Traffic, vol.8, pp.883-892, 2007.

M. Neeft, M. Wieffer, A. S. De-jong, G. Negroiu, C. H. Metz et al., Munc13-4 is an effector of rab27a and controls secretion of lysosomes in hematopoietic cells, Mol Biol Cell, vol.16, issue.2, pp.731-772, 2005.

K. Nishida, S. Yamasaki, Y. Ito, K. Kabu, K. Hattori et al., Fc{epsilon}RI-mediated mast cell degranulation requires calcium-independent microtubuledependent translocation of granules to the plasma membrane, J Cell Biol, vol.170, pp.115-126, 2005.

K. Ogawa, Y. Tanaka, T. Uruno, X. Duan, Y. Harada et al., DOCK5 functions as a key signaling adaptor that links Fc?RI signals to microtubule dynamics during mast cell degranulation, J Exp Med, vol.211, issue.7, pp.1407-1426, 2014.

F. Paumet, L. Mao, J. Martin, S. Galli, T. David et al., Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and identification of a vesicle-associated membrane protein 8-containing secretory compartment, J Immunol, vol.164, pp.5850-5857, 2000.

J. A. Pickett and J. M. Edwardson, Compound exocytosis: mechanisms and functional significance, Traffic, vol.7, issue.2, pp.109-125, 2006.

I. Pombo, S. Martin-verdeaux, B. Iannascoli, L. Mao, J. Deriano et al., IgE receptor type I-dependent regulation of a Rab3D-associated kinase: a possible link in the calcium-dependent assembly of SNARE complexes, J Biol Chem, vol.276, issue.46, pp.42893-900, 2001.

N. Puri, M. J. Kruhlak, S. W. Whiteheart, and P. A. Roche, Mast cell degranulation requires N-ethylmaleimidesensitive factor-mediated SNARE disassembly, J Immunol, vol.15, issue.10, pp.5345-52, 2003.

N. Puri, P. A. Roche, M. Roa, F. Paumet, L. Mao et al., Involvement of the ras-like GTPase rab3d in RBL-2H3 mast cell exocytosis following stimulation via high affinity IgE receptors (Fc epsilonRI), Proc Natl Acad Sci U S A, vol.105, issue.7, pp.2815-2838, 1997.

L. E. Sander, S. P. Frank, S. Bolat, U. Blank, T. Galli et al., Vesicle associated membrane protein (VAMP)-7 and VAMP-8, but not VAMP-2 or VAMP-3, are required for activation-induced degranulation of mature human mast cells, Eur J Immunol, vol.38, pp.855-863, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00786407

R. K. Singh, K. Mizuno, C. Wasmeier, S. T. Wavre-shapton, C. Recchi et al., Distinct and opposing roles for Rab27a/Mlph/MyoVa and Rab27b/Munc13-4 in mast cell secretion, FEBS J, vol.280, issue.3, pp.892-903, 2013.

K. Staser, M. A. Shew, E. G. Michels, M. M. Mwanthi, F. C. Yang et al., Complexin II facilitates exocytotic release in mast cells by enhancing Ca2+ sensitivity of the fusion process, Exp Hematol, vol.41, issue.1, pp.2239-2246, 2005.

S. Tadokoro, T. Kurimoto, M. Nakanishi, and N. Hirashima, Munc18-2 regulates exocytotic membrane fusion positively interacting with syntaxin-3 in RBL-2H3 cells, Mol Immunol, vol.44, issue.13, pp.3427-3460, 2007.

N. Tiwari, C. C. Wang, C. Brochetta, G. Ke, F. Vita et al., VAMP-8 segregates mast cell-preformed mediator exocytosis from cytokine trafficking pathways, Blood, vol.111, p.169, 2008.

K. J. Veale, C. Offenhäuser, S. P. Whittaker, R. P. Estrella, and R. Z. Murray, Recycling endosome membrane incorporation into the leading edge regulates lamellipodia formation and macrophage migration, Traffic, vol.11, issue.10, pp.1370-1379, 2010.

K. V. Vukman, A. Försönits, Á. Oszvald, E. Á. Tóth, and E. I. Buzás, Mast cell secretome: Soluble and vesicular components, Semin Cell Dev Biol, issue.17, pp.30107-30113, 2009.

S. Wernersson and G. Pejler, Mast cell secretory granules: armed for battle, Nat Rev Immunol, vol.14, pp.478-494, 2014.

R. M. Williams, W. Webb, S. S. Woo, D. J. James, and T. F. Martin, Munc13-4 functions as a Ca(2+) sensor for homotypic secretory granule fusion to generate endosomal exocytic vacuoles, -Les voies de signalisation impliquées dans la sécrétion des mastocytes, vol.113, pp.792-808, 2000.

Y. Baba, K. Nishida, Y. Fujii, T. Hirano, M. Hikida et al., Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses, Front Immunol, vol.9, p.453, 2008.

S. H. Chung, J. Polgar, and G. L. Reed, Protein kinase C phosphorylation of syntaxin 4 in thrombin-activated human platelets, J Biol Chem, vol.275, issue.33, pp.25286-91, 2000.

P. S. Costello, M. Turner, A. E. Walters, C. N. Cunningham, P. H. Bauer et al.,

, Critical role for the tyrosine kinase Syk in signalling through the high affinity IgE receptor of mast cells, Oncogene, vol.13, issue.12, pp.2595-605, 1996.

P. Dráber, V. Sulimenko, E. Dráberová, S. P. Frank, K. P. Thon et al., SNAP-23 and syntaxin-3 are required for chemokine release by mature human mast cells, Mol Immunol, vol.3, issue.1-2, pp.353-361, 2011.

Y. Fujita, T. Sasaki, K. Fukui, H. Kotani, T. Kimura et al., Phosphorylation of Munc-18/n-Sec1/rbSec1 by protein kinase C: its implication in regulating the interaction of Munc-18/n-Sec1/rbSec1 with syntaxin, J Biol Chem, vol.271, issue.13, pp.7265-7273, 1996.

S. J. Galli, S. Nakae, and M. Tsai, Mast cells in the development of adaptive immune responses, Nat Immunol, vol.6, issue.2, pp.135-177, 2005.

H. Gu, K. Saito, L. D. Klaman, J. Shen, T. Fleming et al., Essential role for Gab2 in the allergic response, Nature, vol.412, issue.6843, pp.186-90, 2001.

H. Higashio, N. Nishimura, H. Ishizaki, J. Miyoshi, S. Orita et al., Doc2 alpha and Munc13-4 regulate Ca(2+) -dependent secretory lysosome exocytosis in mast cells, J Immunol, vol.180, issue.7, pp.4774-84, 2008.

S. Hilfiker, V. A. Pieribone, C. Nordstedt, P. Greengard, and A. J. Czernik, Regulation of synaptotagmin I phosphorylation by multiple protein kinases, J Neurochem, vol.73, issue.3, pp.921-953, 1999.

S. Iwaki, C. Tkaczyk, A. B. Satterthwaite, K. Halcomb, M. A. Beaven et al., Btk plays a crucial role in the amplification of Fc epsilonRI-mediated mast cell activation by kit, J Biol Chem, vol.280, issue.48, pp.40261-70, 2005.

S. Kawamoto, A. R. Bengur, J. R. Sellers, and R. S. Adelstein, In situ phosphorylation of human platelet myosin heavy and light chains by protein kinase C, J Biol Chem, vol.264, issue.4, pp.2258-65, 1989.

H. S. Kuehn, M. Rådinger, J. M. Brown, K. Ali, B. Vanhaesebroeck et al., Btk-dependent Rac activation and actin rearrangement following FcepsilonRI aggregation promotes enhanced chemotactic responses of mast cells, J Cell Sci, vol.123, pp.2576-85, 2010.

M. Leitges, K. Gimborn, W. Elis, J. Kalesnikoff, M. R. Hughes et al., Protein kinase Cdelta is a negative regulator of antigen-induced mast cell degranulation, Mol Cell Biol, vol.22, issue.12, pp.3970-80, 2002.

R. I. Ludowyke, Z. Elgundi, T. Kranenburg, J. R. Stehn, C. Schmitz-peiffer et al., Phosphorylation of nonmuscle myosin heavy chain IIA on Ser1917 is mediated by protein kinase C beta II and coincides with the onset of stimulated degranulation of RBL-2H3 mast cells, Mol Cell Biol, vol.177, issue.3, pp.3763-74, 2001.

S. Martin-verdeaux, I. Pombo, B. Iannascoli, M. Roa, N. Varin-blank et al., Evidence of a role for Munc18-2 and microtubules in mast cell granule exocytosis, J Cell Sci, vol.15, 2003.

E. Melicoff, L. Sansores-garcia, A. Gomez, D. C. Moreira, P. Datta et al., Synaptotagmin-2 controls regulated exocytosis but not other secretory responses of mast cells, J Biol Chem, vol.284, issue.29, pp.19445-51, 2009.

D. D. Metcalfe, D. Baram, and Y. A. Mekori, Mast cells, Physiol Rev, vol.77, issue.4, pp.1033-79, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00282529

R. Z. Murray, J. G. Kay, D. G. Sangermani, and J. L. Stow, A role for the phagosome in cytokine secretion, Science, vol.310, issue.5753, pp.1492-1497, 2005.

H. Nechushtan, M. Leitges, C. Cohen, G. Kay, and E. Razin, Inhibition of degranulation and interleukin-6 production in mast cells derived from mice deficient in protein kinase Cbeta, Blood, vol.95, issue.5, pp.1752-1759, 2000.

K. Nishida, S. Yamasaki, Y. Ito, K. Kabu, K. Hattori et al., Fc{epsilon}RI-mediated mast cell degranulation requires calcium-independent microtubuledependent translocation of granules to the plasma membrane, J Cell Biol, vol.170, pp.115-126, 2005.

K. Nishida, S. Yamasaki, A. Hasegawa, A. Iwamatsu, H. Koseki et al., Gab2, via PI-3K, regulates ARF1 in Fc?RI-mediated granule translocation and mast cell degranulation, J Immunol, vol.187, issue.2, pp.932-973, 2011.

K. Ogawa, Y. Tanaka, T. Uruno, X. Duan, Y. Harada et al., DOCK5 functions as a key signaling adaptor that links Fc?RI signals to microtubule dynamics during mast cell degranulation, J Exp Med, vol.211, issue.7, pp.1407-1426, 2014.

K. Ozawa, Z. Szallasi, M. G. Kazanietz, P. M. Blumberg, H. Mischak et al., Ca(2+)-dependent and Ca(2+)-independent isozymes of protein kinase C mediate exocytosis in antigen-stimulated rat basophilic RBL-2H3 cells. Reconstitution of secretory responses with Ca2+ and purified isozymes in washed permeabilized cells, J Biol Chem, vol.268, issue.3, pp.1749-56, 1993.

V. Parravicini, M. Gadina, M. Kovarova, S. Odom, C. Gonzalez-espinosa et al., Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation, Nat Immunol, vol.3, issue.8, pp.741-749, 2002.

C. Pelletier, C. Guérin-marchand, B. Iannascoli, F. Marchand, B. David et al., Specific signaling pathways in the regulation of TNF-alpha mRNA synthesis and TNF-alpha secretion in RBL-2H3 mast cells stimulated through the high affinity IgE receptor, Inflamm Res, vol.47, issue.12, pp.493-500, 1998.

I. Pombo, S. Martin-verdeaux, B. Iannascoli, L. Mao, J. Deriano et al., IgE receptor type I-dependent regulation of a Rab3D-associated kinase: a possible link in the calcium-dependent assembly of SNARE complexes, J Biol Chem, vol.276, issue.46, pp.42893-900, 2001.

N. Puri, P. Roche, G. L. Reed, A. K. Houng, and M. L. Fitzgerald, Human platelets contain SNARE proteins and a Sec1p homologue that interacts with syntaxin 4 and is phosphorylated after thrombin activation: implications for platelet secretion, Proc Natl Acad Sci U S A, vol.105, issue.7, pp.2617-2643, 1999.

M. Sakuma, Y. Shirai, K. Yoshino, M. Kuramasu, T. Nakamura et al., Novel PKC?-mediated phosphorylation site(s) on cofilin and their potential role in terminating histamine release, Mol Biol Cell, vol.23, issue.18, pp.3707-3728, 2012.

R. Sullivan, M. Burnham, K. Török, and A. Koffer, Calmodulin regulates the disassembly of cortical F-actin in mast cells but is not required for secretion, Cell Calcium, vol.28, issue.1, pp.33-46, 2000.

S. Tadokoro, M. Nakanishi, and N. Hirashima, Complexin II facilitates exocytotic release in mast cells by enhancing Ca2+ sensitivity of the fusion process, J Cell Sci, vol.118, pp.2239-2246, 2005.

N. Tiwari, C. C. Wang, C. Brochetta, G. Ke, F. Vita et al., VAMP-8 segregates mast cell-preformed mediator exocytosis from cytokine trafficking pathways, Blood, vol.111, pp.3665-3674, 2008.

A. M. Beal, N. Anikeeva, R. Varma, T. O. Cameron, G. Vasiliver-shamis et al., Kinetics of early T cell receptor signaling regulate the pathway of lytic granule delivery to the secretory domain, Immunity, vol.31, issue.4, pp.632-674, 2009.

F. Bertrand, S. Müller, K. H. Roh, C. Laurent, L. Dupré et al., An initial and rapid step of lytic granule secretion precedes microtubule organizing center polarization at the cytotoxic T lymphocyte/target cell synapse, Proc Natl Acad Sci, vol.110, issue.15, pp.6073-6081, 2002.

A. Eskova, B. Knapp, D. Matelska, S. Reusing, A. Arjonen et al., An RNAi screen identifies KIF15 as a novel regulator of the endocytic trafficking of integrin, J Cell Sci, vol.127, pp.2433-2480, 2014.

K. T. Fowler, N. W. Andrews, and J. W. Huleatt, Expression and function of synaptotagmin VII in CTLs, J Immunol, vol.178, issue.3, pp.1498-504, 2007.

J. L. Hukelmann, K. E. Anderson, L. V. Sinclair, K. M. Grzes, A. B. Murillo et al., The cytotoxic T cell proteome and its shaping by the kinase mTOR, Nat Immunol, vol.17, issue.1, pp.104-116, 2016.

M. Kitagawa, S. Y. Fung, U. F. Hameed, H. Goto, M. Inagaki et al., Cdk1 coordinates timely activation of MKlp2 kinesin with relocation of the chromosome passenger complex for cytokinesis, Cell Rep, vol.7, issue.1, pp.166-79, 2014.

V. I. Korolchuk, S. Saiki, M. Lichtenberg, F. H. Siddiqi, E. A. Roberts et al., Lysosomal positioning coordinates cellular nutrient responses, Nat Cell Biol, vol.13, issue.4, pp.453-60, 2011.

E. M. Mace, W. W. Wu, T. Ho, S. S. Mann, H. T. Hsu et al., NK cell lytic granules are highly motile at the immunological synapse and require F-actin for post-degranulation persistence, J Immunol, vol.189, issue.10, pp.4870-80, 2012.

W. Majeed, S. Liu, and B. Storrie, Distinct sets of Rab6 effectors contribute to ZW10--and COG-dependent Golgi homeostasis, Traffic, vol.15, issue.6, pp.630-677, 2014.

A. M. Morton, A. L. Cunningham, and R. J. Diefenbach, Kinesin-1 plays a role in transport of SNAP-25 to the plasma membrane, Biochem Biophys Res Commun, vol.391, issue.1, pp.388-93, 2010.

S. Nath, E. Bananis, S. Sarkar, R. J. Stockert, A. O. Sperry et al., Kif5B and Kifc1 interact and are required for motility and fission of early endocytic vesicles in mouse liver, Mol Biol Cell, vol.18, issue.5, pp.1839-1888, 2007.

D. Peretti, L. Peris, S. Rosso, S. Quiroga, A. Cáceres et al., Evidence for the involvement of KIF4 in the anterograde transport of L1-containing vesicles, J Cell Biol, vol.149, issue.1, pp.241-50, 2000.

C. Wiesner, J. Faix, M. Himmel, F. Bentzien, and S. Linder, KIF5B and KIF3A/KIF3B kinesins drive MT1-MMP surface exposure, CD44 shedding, and extracellular matrix degradation in primary macrophages, Blood, vol.116, issue.9, pp.1559-69, 2010.

M. Blasius, T. L. Cai, D. Jih, G. T. Toret, C. P. Verhey et al., Two binding partners cooperate to activate the molecular motor Kinesin-1, J Cell Biol, vol.176, issue.1, pp.11-18, 2007.

D. Cai, A. D. Hoppe, J. A. Swanson, K. Verhey, D. L. Coy et al., Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells, Nat Cell Biol, vol.176, issue.1, pp.288-92, 1999.

H. A. Deberg, B. H. Blehm, J. Sheung, A. R. Thompson, C. S. Bookwalter et al., The heavy chain of conventional kinesin interacts with the SNARE proteins SNAP25 and SNAP23, Biochemistry, vol.288, issue.45, pp.14906-14921, 2002.

K. A. Dietrich, C. V. Sindelar, P. D. Brewer, K. H. Downing, C. R. Cremo et al., The kinesin-1 motor protein is regulated by a direct interaction of its head and tail, Proc Natl Acad Sci, vol.105, issue.26, pp.8938-8981, 2008.

D. D. Hackney, J. D. Levitt, and J. Suhan, Kinesin undergoes a 9 S to 6 S conformational transition, J Biol Chem, vol.267, issue.12, pp.8696-701, 1992.

D. D. Hackney and M. F. Stock, Kinesin tail domains and Mg2+ directly inhibit release of ADP from head domains in the absence of microtubules, Biochemistry, vol.47, issue.29, pp.7770-7778, 2008.

J. L. Hukelmann, K. E. Anderson, L. V. Sinclair, K. M. Grzes, A. B. Murillo et al., The cytotoxic T cell proteome and its shaping by the kinase mTOR, Nat Immunol, vol.17, issue.1, pp.104-116, 2016.

G. Morfini, G. Szebenyi, R. Elluru, N. Ratner, and S. T. Brady, Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility, Biochem Biophys Res Commun, vol.21, issue.3, pp.281-93, 2002.