.. .. , , p.350

. .. Effet,

. .. Synthèse, 149 6.2.4 Intérêt du verre métallique comme élément de blindage, p.150

A. .. Post-mortem-des-faciès-de-rupture, 152 6.3.1 Évolution des coupelles et des cônes

, Morphologie

.. .. ,

.. .. Synthèse, , p.181

.. .. Une,

L. .. , , p.188

, Les verres métalliques : vers une application défense

D. Vador, Star Wars : Episode IV -Un Nouvel Espoir

. .. L'écaillage, , p.150

.. .. ,

.. .. Synthèse,

, Pour compléter notre caractérisation, nous avons entrepris plusieurs campagnes d'essais laser dans le but d'étudier les processus d'endommagement et de rupture dynamique. Dans ce chapitre, il sera question d'étudier à plusieurs échelles les phénomènes de rupture engendrés par divers chargements laser. L'objectif final de ce chapitre sera d'apporter des éléments de réponses quant à l, Jusqu'à présent, nous avons principalement concentré notre attention sur la façon dont se propageaient les ondes de chocs dans les verres métalliques base zirconium

, « Le jour où la science commencera à étudier les phénomènes non physiques, elle fera plus de progrès en une décennie que dans tous les siècles précédents de son existence

T. |-nikola, , pp.1856-1943

, Les origines de la rupture : hypothèses et investigations, p.188

, Les verres métalliques : vers une application défense, p.188

, Comme suggère son intitulé, nous évoquerons dans ce chapitre les perspectives envisageables à ces travaux de thèse, Nous tâcherons de dégager plusieurs axes de réflexions pouvant aboutir à de futurs travaux de recherche

, Une structure à passer au crible À la suite de notre étude menée sur l'équation d'état de nos matériaux, plusieurs interrogations ont été soulevées et restent pour certaines en suspens. Nous proposons dans ce qui suit de passer en revue ces différents points, tout en apportant des pistes de réflexions quant aux potentiels travaux à mener

, Une ardente modélisation Tout d'abord, les résultats obtenus par compression quasi-isentropique et par choc pour les régimes R2 et R3 ont démontré une forte cohérence en dépit des différentes approximations formulées (adiabatique unique, approximation surface libre

B. Dans-le, étudier quantitativement les coupelles et cônes observées sur les surfaces de rupture des cratères en face arrière, un algorithme de détection basé sur la méthode des monts et vallées a été développé

, Initialisation */ Création d'une matrice [Z] à partir des hauteurs issues d'un fichier profilométrique

, Création d'une copie [Z1] de la matrice

, Détection des Extrema Globaux */ Recherche du maximum absolu Zmax de la matrice

, Recherche du minimum absolu Zmin de la matrice

, Édition de la matrice

, /*Détection des Coupelles*/ Tant que Min(i)[Z1]<Zmax //Min(i)

, Création d'une matrice voisinage [N] autour de l'actuel minimum absolu Min(i)

, Recherche dans [N] si un minimum a été précédemment détecté

, Si un minimum a déjà été détecté alors Recherche dans [N] de précèdents minima à une distance inférieure à, p.3

, Cette valeur a été déterminée par convergence. Vérifier dans la matrice [N] l'indice des minima les plus proches

, Attribution à Min(i) de l'indice le plus faible

, Indice relatif à la valeur du CC auquel appartient le minimum de l'itération i. Sinon Création d'un nouveau CC

, Fin Édition de la matrice [Z1] par la suppression du minimum Min(i) détecté

F. Fin, 1 -(a) Surface originale d'une zone du cratère en face arrière d'un verre métallique Z r 50 Cu 40 Al 10 . (b) Image créée après détection de contour par l'algorithme de détection. Dans les deux images, les axes verticaux et horizontaux sont exprimés en micromètres

, Les figures B.1 (a) et (b) illustrent respectivement l'image initiale et l'image créée après détection. Sur ces images la résolution d'un pixel est de 1 µm 2 et les hauteurs sont exprimées en micromètres. Concernant l'image contenant les indices des objets détectés, ceuxci sont représentés par leur contour, Une fois tous les pixels de l'image traités, la matrice [Z1] comporte les indices de chaque pixel correspondant à la coupelle ou au cône auquel il appartient

, Afin de pouvoir s'affranchir de ces objets peu représentatifs pour notre étude, nous avons ensuite soumis cette nouvelle image à des filtres morphologiques simples avant de pouvoir effectuer des calculs statistiques sur les objets restants

, Dans le but d'effectuer une première étude sur le sujet, nous avons décidé de nous concentrer sur les coupelles et les cônes présentant les géométries les plus régulières possible. Ainsi, les filtres « MinPerim » et « MeanPerim » ont été développé afin de pouvoir conserver uniquement les objets les plus réguliers, mais aussi étudier en détail les zones les plus proches de la zone d'initiation. La construction de ces deux filtres repose sur la, Au regard de la complexité des surface, de possibles interactions entre coupelles et cônes peuvent avoir lieu entrainant ainsi des recouvrements

. Le and . Minperim, Au-dessus de l'altitude de celui-ci, les pixels se retrouvent alors supprimés (cf. Fig. B.2 (c) et (d)). Il permet de conserver uniquement la géométrie suivant l

. Figure-b, 2 -(a) Vue de dessus de la coupelle initiale après détection ; (b) Vue de côté de la coupelle initiale ; (c) Vue de dessus de la coupelle écrétée par le critère MinPerim ; (d) Vue de côté de la coupelle écrétée par MinPerim ; (e) Vue de dessus de la coupelle écrétée par le critère MeanPerim

. Figure-b, 3 -(a) Surface initiale à laquelle sont superposés les objets détectés par l'algorithme de détection. (b) Image finale conservée après application du filtre morphologique « MeanPerim

. Le-deuxième, ;. E. Meanperim, . Abbott-and-f, and . Firestone, De manière similaire à « MinPerim », tous les pixels appartenant à l'objet se trouvant au-dessus de cette élévation moyenne du périmètre se retrouvent supprimés de l'objet. Comme l'illustrent les figures B.2 (e) et (f), ce filtre est moins pré-cis et restrictif que « MinPerim ». Seuelement, il offre accès à des distributions de hau, Specifying surface quality : a method based on accurate measurement and comparison, vol.55, pp.569-572, 1933.

N. Amadou, E. Brambrink, A. Benuzzi-mounaix, G. Huser, F. Guyot et al., Direct laser-driven ramp compression studies of iron : A first step toward the reproduction of planetary core conditions, High Energy Density Physics, vol.9, pp.243-246, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01053951

N. Amadou, E. Brambrink, T. De-rességuier, A. Manga, A. Aboubacar et al., Laser-Driven Ramp Compression to Investigate and Model Dynamic Response of Iron at High Strain Rates, Metals, vol.6, p.320, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01483620

J. Antonowicz, A. Pietnoczka, G. A. Evangelakis, O. Mathon, I. Kantor et al., Atomic-level mechanism of elastic deformation in the Zr-Cu metallic glass, Physical Review B, vol.93, pp.1-5, 2016.

T. Antoun, D. R. Curran, V. S. Razorenov, L. Seaman, G. I. Kanel et al., , 2002.

A. S. Argon, Plastic deformation in metallic glasses, Acta Metallurgica, vol.27, pp.47-58, 1979.

A. S. Argon-and-m and . Salama, The mechanism of fracture in glassy materials capable of some inelastic deformation, Materials Science and Engineering, vol.23, pp.219-230, 1976.

B. Arman, S. Luo, T. C. Germann, A. T. Ça, and . Gin, Dynamic response of Cu46Zr54 metallic glass to high-strain-rate sho, Physical Review B, vol.81, p.144201, 2010.

J. R. Asay-and-l and . Barker, Interferometric measurement of shock-induced internal particle velocity and spatial variations of particle velocity, Journal of Applied Physics, vol.45, pp.2540-2546, 1974.

L. M. Barker-and-r and . Hollenbach, Laser interferometer for measuring high velocities of any reflecting surface, Journal of Applied Physics, vol.43, pp.4669-4675, 1972.

H. Bei, S. E. Xie, and . George, Softening caused by profuse shear banding in a bulk metallic glass, Physical Review Letters, vol.96, pp.1-4, 2006.

L. Belhadi, F. Decremps, S. Pascarelli, L. Cormier, Y. Le et al., Polyamorphism in cerium based bulk metallic glasses : Electronic and structural properties under pressure and temperature by x-ray absorption techniques Polyamorphism in cerium based bulk metallic glasses : Electronic and structural properties under press, Applied Physics Letters, vol.103, pp.1-5, 2013.

F. Birch, elasticity and constitution of Earth's interior, Journal of Geophysical Research, vol.57, pp.227-286, 1952.
DOI : 10.1029/jz057i002p00227

M. Boustie-and-f and . Cottet, Experimental and numerical study of laser induced spallation into aluminum and copper targets, Journal of Applied Physics, vol.69, pp.7533-7538, 1991.

T. Brink, M. Peterlechner, H. Rösner, K. Albe, and A. G. Wilde, Influence of Crystalline Nanoprecipitates on Shear-Band Propagation in Cu-Zr-Based Metallic Glasses, Physical Review Applied, vol.5, pp.1-16, 2016.

F. Buy, C. Voltz, and A. F. Llorca, State for Shock Wave, Shock Compression of Condensed Matter-2005, pp.1503-1506, 2006.

A. J. Cao, Y. Q. Cheng, and A. E. Ma, Structural processes that initiate shear localization in metallic glass, Acta Materialia, vol.57, pp.5146-5155, 2009.
DOI : 10.1016/j.actamat.2009.07.016

P. M. Celliers, D. K. Bradley, G. W. Collins, D. G. Hicks, T. R. Boehly et al., Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility, Review of Scientific Instruments, vol.75, pp.4916-4929, 2004.
DOI : 10.1063/1.1807008

URL : https://digital.library.unt.edu/ark:/67531/metadc900001/m2/1/high_res_d/926409.pdf

Y. Champion-and-m and . Bl, Propriétés mécaniques des verres métalliques Propriétés mécaniques des verres métalliques, Techniques de l'ingénieur, vol.33, pp.2720-2721, 2009.

Y. Q. Cheng-and-e and . Ma, Intrinsic shear strength of metallic glass, Acta Materialia, vol.59, pp.1800-1807, 2011.

Y. Q. Cheng, E. Ma, and H. W. Sheng, Atomic Level Structure in Multicomponent Bulk Metallic Glass, vol.102, p.245501, 2009.
DOI : 10.1103/physrevlett.102.245501

Y. Q. Cheng, H. W. Sheng, and A. E. Ma, Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys, Physical Review B -Condensed Matter and Materials Physics, vol.78, pp.1-7, 2008.
DOI : 10.1103/physrevb.78.014207

E. L. Christiansen and . Kerr, Ballistic limit equations for spacecraft shielding, International Journal of Impact Engineering, vol.26, p.12, 2001.
DOI : 10.1016/s0734-743x(01)00070-7

M. H. Cohen-and-d and . Turnbull, Molecular transport in liquids and glasses, The Journal of Chemical Physics, pp.1164-1169, 1959.

J. P. Colombier, P. Combis, F. Bonneau, R. Le, A. E. Harzic et al., Hydrodynamic simulations of metal ablation by femtosecond laser irradiation, Physical Review B -Condensed Matter and Materials Physics, vol.71, pp.1-6, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00121833

R. Conner, R. Dandliker, and A. W. Johnson, Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites, Acta Materialia, vol.46, pp.6089-6102, 1998.

R. Conner, R. Dandliker, V. Scruggs, and A. W. Johnson, Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites, International Journal of Impact Engineering, vol.24, pp.435-444, 2000.
DOI : 10.1016/s0734-743x(99)00176-1

R. D. Conner, W. L. Johnson, N. E. Paton, and W. D. Nix, Shear bands and cracking of metallic glass plates in bending, Journal of Applied Physics, vol.94, pp.904-911, 2003.

B. G. Cour-palais-and and J. L. Crews, A multi-shock concept for spacecraft shielding, International Journal of Impact Engineering, vol.10, pp.135-146, 1990.

J. Cuq-lelandais, M. Boustie, L. Soulard, L. Berthe, T. De-rességuier et al., Study of spallation by subpicosecond laser driven shocks in metals, EPJ Web of Conferences, vol.10, p.14, 2010.

F. H. Torre, D. Klaumünzer, R. Maass, and J. F. Löffler, Stick-slip behavior of serrated flow during inhomogeneous deformation of bulk metallic glasses, Acta Materialia, vol.58, pp.3742-3750, 2010.

F. Decremps, G. Morard, G. Garbarino, and A. M. Casula, Polyamorphism of a Ce-based bulk metallic glass by high-pressure and high-temperature density measurements, Physical Review B, vol.93, pp.1-7, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01921085

L. A. Deibler and J. J. Lewandowski, Outer medium effects and fracture nucleation sites in model experiments to mimic fracture surface features of metallic glasses, Materials Science and Engineering : A, vol.538, pp.259-264, 2012.

J. Ding, Y. Q. Cheng, and A. E. Ma, Full icosahedra dominate local order in Cu64Zr34metallic glass and supercooled liquid, Acta Materialia, vol.69, pp.343-354, 2014.

D. H. Dolan, Accuracy and precision in photonic doppler velocimetry, Review of Scientific Instruments, p.81, 2010.

P. E. Donovan, A yield criterion for Pd40Ni40P20 metallic glass, Acta Metallurgica, vol.37, pp.445-456, 1989.

G. M. Dougherty, G. J. Shiflet, and S. J. Poon, Synthesis And Microstructural Evolution Of A1-Ni-Fe-Gd Metallic Glass By Mechanical Alloying, Acta metall. mater, vol.42, pp.2275-2283, 1994.

D. C. Drucker-and-w.-prager, Soil mechanics and plastic analysis for limit design, Quarterly of Applied Mathematics, vol.10, pp.157-165, 1952.

J. Edwards, K. T. Lorenz, B. A. Remington, S. Pollaine, J. Colvin et al., Laser-Driven Plasma Loader for Shockless Compression and Acceleration of Samples in the Solid State, Physical Review Letters, p.92, 2004.

E. Esa&apos;, , 2017.

J. P. Escobedo, D. Chapman, K. Laws, A. D. Brown, F. Wang et al., Effects of chemical composition and test conditions on the dynamic tensile response of Zr-based metallic glasses, AIP Conference Proceedings, vol.1793, 2017.

J. P. Escobedo-and-y and . Gupta, Dynamic tensile response of Zr-based bulk amorphous alloys : Fracture morphologies and mechanisms, Journal of Applied Physics, vol.107, p.123502, 2010.

J. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion , and Related Problems, vol.241, pp.376-396, 1957.

R. Fabbro, B. Faral, and A. J. Virmont, Experimental study of abltation pressure, Phys. Fluids, vol.28, pp.3414-3423, 1985.

L. Ferrière-and-g and . Osinski, Shock metamorphism in Impact Cratering : Processes and Products, 2012.

K. M. Flores-and-r and . Dauskardt, Mean stress effects on flow localization and failure in a bulk metallic glass, Acta Materialia, vol.49, pp.2527-2537, 2001.

F. C. Frank, Supercooling of Liquids, Proceedings of the Royal Society A : Mathematical, vol.215, pp.43-46, 1952.

K. Fujita, A. Okamoto, N. Nishiyama, Y. Yokoyama, H. Kimura et al., Effects of loading rates, notch root radius and specimen thickness on fracture toughness in bulk metallic glasses, Journal of Alloys and Compounds, pp.22-27, 2007.

C. Garban-labaune, E. Fabre, and A. A. Michard, Effect of target metarial on absorption measurements at short laser wavelengths, Optics Communications, pp.174-177, 1982.

M. Ghidelli, H. Idrissi, S. Gravier, J. J. Blandin, J. P. Raskin et al., Homogeneous flow and size dependent mechanical behavior in highly ductile Zr65Ni35 metallic glass films, Acta Materialia, pp.246-259, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01914050

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier et al., Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation, Nature Communications, vol.8, pp.8-13, 2017.

A. L. Greer, Y. Cheng, and A. E. Ma, Shear bands in metallic glasses, Materials Science and Engineering : R : Reports, vol.74, pp.71-132, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00639976

J. R. Greer and J. T. De-hosson, Plasticity in small-sized metallic systems : Intrinsic versus extrinsic size effect, Progress in Materials Science, vol.56, pp.654-724, 2011.

J. Grun, R. Decoste, B. H. Ripin, and A. J. Gardner, Characteristics of ablation plasma from planar, laser-driven targets, Applied Physics Letters, vol.39, pp.545-547, 1981.

H. Guo, P. F. Yan, Y. B. Wang, J. Tan, Z. F. Zhang et al., Tensile ductility and necking of metallic glass, Nature Materials, vol.6, pp.735-739, 2007.

J. Hama-and-k and . Suito, The search for a universal equation of state correct up to very high pressures, Journal of Physics Condensed Matter, vol.8, pp.67-81, 1996.

L. Hamill, S. Roberts, M. Davidson, W. L. Johnson, S. Nutt et al., Hypervelocity impact phenomenon in bulk metallic glasses and composites, vol.16, pp.85-93, 2014.

Z. Han and Y. Li, Cooperative shear and catastrophic fracture of bulk metallic glasses from a shear-band instability perspective, Journal of Materials Research, vol.24, pp.3620-3627, 2009.

T. M. Hayes, J. W. Allen, J. Tauc, B. C. Giessen, and J. J. Hauser, Short-range order in metallic glasses, Physical Review Letters, vol.40, pp.1282-1285, 1978.

Q. He, Y. Q. Cheng, E. Ma, and A. J. Xu, Locating bulk metallic glasses with high fracture toughness : Chemical effects and composition optimization, Acta Materialia, vol.59, pp.202-215, 2011.

Y. He, R. B. Schwarz, and D. G. Mandrus, Materials research, Journal of Materials Research, vol.11, pp.1836-1841, 1996.

A. Hirata, L. J. Kang, T. Fujita, B. Klumov, K. Matsue et al., Geometric frustration of icosahedron in metallic glasses, Science, pp.376-379, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00870688

D. C. Hofmann, L. Hamill, E. Christiansen, and A. S. Nutt, Hypervelocity Impact Testing of a Metallic Glass-Stuffed Whipple Shield, vol.17, pp.1313-1322, 2015.

D. Houdoux, T. B. Nguyen, A. Amon, and A. J. Crassous, Plastic flow and localization in an amorphous material : what do experiments tell us ?, Physical Review E, pp.1-8, 2018.

Z. W. Hsiao, C. C. Fu, P. H. Tsai, J. S. Jang, S. R. Jian et al., Effect of Nano-Crystallization on the Mechanical Properties of the (Zr53Cu30Ni9Al8)99.5Si0.5 Bulk Metallic Glass, pp.2933-2937, 2010.

Y. C. Hu, P. F. Guan, Q. Wang, Y. Yang, H. Y. Bai et al., Pressure effects on structure and dynamics of metallic glass-forming liquid, Journal of Chemical Physics, p.146, 2017.

X. Huang, Z. Ling, and L. H. Dai, Ductile-to-brittle transition in spallation of metallic glasses, Journal of Applied Physics, vol.116, p.143503, 2014.

X. Huang, Z. Ling, H. S. Zhang, and L. H. Dai, How does spallation microdamage nucleate in bulk amorphous alloys under shock loading ?, Journal of Applied Physics, p.103519, 2011.
DOI : 10.1063/1.3663332

URL : http://dspace.imech.ac.cn/bitstream/311007/44894/1/SCI-J2011019.pdf

M. Idriss, F. Célarié, Y. Yokoyama, F. Tessier, and A. T. Rouxel, Evolution of the elastic modulus of Zr-Cu-Al BMGs during annealing treatment and crystallization : Role of Zr/Cu ratio, Journal of Non-Crystalline Solids, vol.421, pp.35-40, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01150390

A. Inoue, Stabilization and high strain-rate superplasticity of metallic supercooled liquid, Materials Science and Engineering A, vol.267, pp.171-183, 1999.
DOI : 10.1016/s0921-5093(99)00089-1

A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia, vol.48, pp.279-306, 2000.
DOI : 10.1016/s1359-6454(99)00300-6

A. Inoue, H. M. Kimura, and A. T. Zhang, High-strength aluminum-and zirconium-based alloys containing nanoquasicrystalline particles, Materials Science and Engineering A, pp.727-735, 2000.
DOI : 10.1016/s0921-5093(00)01307-1

A. Inoue, N. Nishiyama, and A. H. Kimura, Preparation and thermal stability of bulk amorphous Pd 40 Cu 30 Ni 10 P 20 alloy cylinder of 72 mm in diameter, 1997.

A. Inoue, K. Ohtera, K. Kita, and A. T. Masumoto, New Amorphous Mg-Ce-Ni Alloys with High Strength and Good Ductility : Condensed Matter, vol.27, p.2248, 1988.
DOI : 10.1143/jjap.27.l2248

A. Inoue, T. Zhang, and A. T. Itoi, -Inoue -New Fe-Co-Ni-Zr-B amorphous alloys with wide supercooled liquid regions and good soft magnetic properties.pdf, Material Transactions, JIM, vol.38, pp.359-362, 1997.
DOI : 10.2320/matertrans1989.38.359

URL : https://www.jstage.jst.go.jp/article/matertrans1989/38/4/38_4_359/_pdf

A. Inoue, T. Zhang, and A. T. Masumoto, Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region, 1990.
DOI : 10.2320/matertrans1989.31.177

URL : https://www.jstage.jst.go.jp/article/matertrans1989/31/3/31_3_177/_pdf

Q. K. Jiang, X. D. Wang, X. P. Nie, G. Q. Zhang, H. Ma et al., Zr-(Cu,Ag)-Al bulk metallic glasses, Acta Materialia, vol.56, pp.1785-1796, 2008.
DOI : 10.1016/j.actamat.2007.12.030

URL : http://bib-pubdb1.desy.de//record/87038/files/AM_vol56%282008%29p1785-1796.pdf

H. J. Jin, X. J. Gu, P. Wen, L. B. Wang, and A. K. Lu, Pressure effect on the structural relaxation and glass transition in metallic glasses, Acta Materialia, vol.51, pp.6219-6231, 2003.

G. R. Johnson-and-w and . Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering Fracture Mechanics, vol.21, pp.31-48, 1985.

G. R. Johnson-and-t and . Holmquist, An improved computational constitutive model for brittle materials, AIP Conference Proceedings, vol.309, pp.981-984, 1994.

T. Kanomata, Y. Sato, Y. Sugawara, H. M. Kimura, T. Kaneko et al., Specific heat of Zr-based metallic glasses, Journal of Alloys and Compounds, vol.461, pp.39-41, 2008.
DOI : 10.1016/j.jallcom.2007.07.051

P. L. Karlson and ©. , Nature, pp.55-56, 1959.

H. Kato, H. S. Chen, and A. A. Inoue, Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses, Scripta Materialia, vol.58, pp.1106-1109, 2008.
DOI : 10.1016/j.scriptamat.2008.02.006

Y. Kawamura, T. Nakamura, H. Kato, H. Mano, and A. A. Inoue, Newtonian and non-Newtonian viscosity of supercooled liquid in metallic glasses, Materials Science and Engineering A, pp.674-678, 2001.

D. Klaumünzer, R. Maa, F. H. Torre, and J. F. Löffler, Temperaturedependent shear band dynamics in a Zr-based bulk metallic glass, Applied Physics Letters, vol.96, pp.22-25, 2010.

D. Klaumünzer, R. Maass, and J. F. Löffler, Stick-slip dynamics and recent insights into shear banding in metallic glasses, Journal of Materials Research, vol.26, pp.1453-1463, 2011.

W. Klement, R. H. Willens, and A. P. Duwez, Non-crystalline structure in solidified Gold-Silicon alloys, Nature, vol.187, pp.869-870, 1960.

H. U. Künzi, Mechanical Properties of Metallic Glasses, Glassy Metal II, 1983.

A. J. Lasdon and A. D. Warren-and-m.-ratner, Design and testing of a generalized reduced gradient code for nonlinear programming, ACM Trans. Math. Software, vol.4, pp.34-50, 1978.

C. Labaune, Effect of the laser wavelength : A long story of laser-plasma interaction physics for Inertial Confinement Fusion Teller Medal Lecture, EPJ Web of Conferences, vol.59, p.1012, 2013.

H. J. Leamy, T. T. Wang, and H. S. Chen, Plastic flow and fracture of metallic glass, Metallurgical Transactions, vol.3, pp.699-708, 1972.

J. J. Lewandowski, Effects of Annealing and Changes in Stress State on Fracture Toughness of Bulk Metallic Glass, 2001.

J. J. Lewandowski-and-a and . Greer, Temperature rise at shear bands in metallic glasses, Nature Materials, issue.5, pp.15-18, 2006.

J. J. Lewandowski-and-p and . Lowhaphandu, Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal, Philosophical Magazine A : Physics of Condensed Matter, Structure, Defects and Mechanical Properties, vol.82, pp.3427-3441, 2002.

J. J. Lewandowski, W. H. Wang, and A. L. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philosophical Magazine Letters, vol.85, pp.77-87, 2005.

J. Liu, S. Sohn, Y. Li, J. J. Cha, Y. Liu et al., Metallic glass nanostructures of tunable shape and composition, Nature Communications, vol.6, pp.1-6, 2015.

P. Lowhaphandu, S. Montgomery, and A. J. Lewandowski, Effects of superimposed hydrostatic pressure on flow and fracture of a Zr-Ti-Ni-Cu-Be bulk amorphous alloy, Scripta Materialia, pp.19-24, 1999.

J. Lu-and-g and . Ravichandran, Pressure-dependent flow behavior of, pp.2039-2049, 2003.

L. Lu, C. Li, W. Wang, M. Zhu, X. Gong et al., Ductile fracture of bulk metallic glass Zr50Cu40Al10 under high strain-rate loading, Materials Science and Engineering : A, vol.651, pp.848-853, 2016.

A. C. Lund-and-c and . Schuh, The Mohr-Coulomb criterion from unit shear processes in metallic glass, Intermetallics, vol.12, pp.1159-1165, 2004.

E. Ma, Tuning order in disorder, Nature Materials, vol.14, pp.547-552, 2015.

R. Maass, D. Klaumünzer, and J. F. Löffler, Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass, Acta Materialia, vol.59, pp.3205-3213, 2011.

R. Maass and J. F. Löffler, Shear-band dynamics in metallic glasses, Advanced Functional Materials, vol.25, pp.2353-2368, 2015.

C. Mabire, Transformation polymorphique et fusion de l'étain sous choc dans la gamme 0-100 GPa. Étude expérimentale et modélisation, 2002.

M. Martin, T. Sekine, T. Kobayashi, L. Kecskes, and A. N. Thadhani, HighPressure Equation of the State of a Zirconium-Based Bulk Metallic Glass, Metallurgical and Materials Transactions A, vol.38, pp.2689-2696, 2007.

E. Matsubara, K. Harada, and A. Y. Waseda, X-ray diffraction study of amorphous Al77 .5Mn22.5 and Al56Si30Mn14 alloys, Journal of Materials Science, vol.23, pp.753-756, 1988.

S. Mcnamara, J. Crassous, and A. A. Amon, Eshelby inclusions in granular matter : Theory and simulations, Physical Review E, p.94, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01321159

F. Q. Meng, K. Tsuchiya, and A. Y. Yokoyama, Crystalline to amorphous transformation in Zr-Cu-Al alloys induced by high pressure torsion, Intermetallics, pp.52-58, 2013.

P. Mercier, J. Benier, A. Azzolina, J. M. Lagrange, and A. D. Partouche, Photonic doppler velocimetry in shock physics experiments, Journal de Physique IV, vol.134, pp.805-812, 2006.

M. A. Meyers, Dynamic Behavior of Materials, 1994.

D. B. Miracle, A structural model for metallic glasses, Nature Materials, vol.3, pp.697-702, 2004.

D. B. Miracle, The efficient cluster packing model -An atomic structural model for metallic glasses, Acta Materialia, vol.54, pp.4317-4336, 2006.

D. B. Miracle, K. Laws, O. N. Senkov, and G. B. Wilks, Partial coordination numbers in binary metallic glasses, Metallurgical and Materials Transactions A : Physical Metallurgy and Materials Science, vol.43, pp.2649-2661, 2012.

D. B. Miracle, W. S. Sanders, and O. N. Senkov, The influence of efficient atomic packing on the constitution of metallic glasses, Philosophical Magazine, vol.83, pp.2409-2428, 2003.

E. Moshe, S. Eliezer, E. Dekel, A. Ludmirsky, Z. Henis et al., An increase of the spall strength in aluminum, copper, and Metglas at strain rates larger than 10 7 s ?1, Journal of Applied Physics, vol.83, pp.4004-4011, 1998.

T. Mukai, T. G. Nieh, Y. Kawamura, A. Inoue, and A. K. Higashi, Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass, vol.10, pp.1071-1077, 2002.

Y. F. Niu, K. Han, and J. P. Guin, Locally enhanced dissolution rate as a probe for nanocontact-induced densification in oxide glasses, Langmuir, pp.10733-10740, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00829987

S. A. Novikov, I. I. Divnov, and A. G. Ivanov, A study of the failure in steel, aluminum, and copper on explosive loading, Fiz. Met. Metalloved, vol.21, pp.608-615, 1966.

R. C. O&apos;handley, Physics of ferromagnetic amorphous alloys, Journal of Applied Physics, p.62, 1987.

C. A. Pampillo, Localized shear deformation in a glassy metal, Scripta Metallurgica, vol.6, pp.915-917, 1972.

A. K. Pandey, B. K. Pandey, and . Rahul, Theoretical prediction of Grüneisen parameter for bulk metallic glasses, Journal of Alloys and Compounds, vol.509, pp.4191-4197, 2011.

P. Panissod, D. A. Guerra, A. Amamou, J. Durand, W. L. Johnson et al., Local symmetry around the glass-former sites in amorphous metallic alloys through electric quadrupole effects, Physical Review Letters, vol.44, pp.1465-1468, 1980.

A. L. Peker-and-w and . Johnson, A highly processable metallic glass : Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, vol.63, pp.2342-2344, 1993.

C. R. Phipps, J. R. Luke, G. G. Mcduff, and A. T. Lippert, Laser ablation powered mini-thruster, vol.4760, pp.833-842, 2002.

A. Pineau, A. A. Benzerga, and A. T. Pardoen, Failure of metals I : Brittle and ductile fracture, Acta Materialia, vol.107, pp.424-483, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01308255

D. E. Polk, Structural model for amorphous metallic alloys, Scripta Metallurgica, vol.4, pp.117-122, 1970.

S. D. Rothman and . Maw, Characteristics analysis of Isentropic Compression Experiments (ICE), Journal De Physique Iv, vol.134, pp.745-750, 2006.

K. Russew-and-f and . Sommer, Length and density changes of amorphous Pd40Cu30Ni10P20alloys due to structural relaxation, Journal of Non-Crystalline Solids, vol.319, pp.289-296, 2003.

P. Schall, D. A. Weitz, and A. F. Spaepen, Structural rearrangements that govern flow in colloidal glasses, vol.318, pp.1895-1899, 2007.

C. Schuh, T. Hufnagel, and A. U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Materialia, vol.55, pp.4067-4109, 2007.

C. A. Schuh, A. C. Lund, and T. G. Nieh, New regime of homogeneous flow in the deformation map of metallic glasses : Elevated temperature nanoindentation experiments and mechanistic modeling, Acta Materialia, vol.52, pp.5879-5891, 2004.

A. V. Sergueeva, N. A. Mara, D. J. Branagan, and A. K. Mukherjee, Strain rate effect on metallic glass ductility, Scripta Materialia, vol.50, pp.1303-1307, 2004.

Y. Shen, S. B. Jester, T. E. Qi, and . Reed, Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2, Nature Materials, vol.15, pp.60-65, 2016.

F. Shimizu, S. Ogata, and A. J. Li, Yield point of metallic glass, Acta Materialia, vol.54, pp.4293-4298, 2006.

I. Smirnov, S. Atroshenko, Y. Sudenkov, N. Morozov, W. Zheng et al., Dynamic properties of bulk metallic glass on the base of Zr, Shock Compression of Condensed Matter-2011, vol.1124, pp.1121-1124, 2012.

F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metallurgica, vol.25, pp.407-415, 1977.

F. D. Stacey, Thermodynamically Based Equation of State Iv Tm, Journal of Geophysical Research, vol.84, 1979.

A. K. Stemshorn-and-y and . Vohra, Structural stability and compressibility of group IV transition metals-based bulk metallic glasses under high pressure, Journal of Applied Physics, vol.106, pp.1-4, 2009.

A. K. Stemshorn-and-y and . Vohra, , vol.31, pp.287-291, 2011.

G. V. Stepanov, Spall fracture of metals by elastic-plastic loading waves, Problemy Prochnosti, vol.8, pp.66-70, 1976.

O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, Compact system for high-speed velocimetry using heterodyne techniques, Review of Scientific Instruments, p.77, 2006.

D. H. Suh-and-r and . Dauskardt, Effects of open-volume regions on relaxation time scales and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallic glass, Journal of Non-Crystalline Solids, vol.317, pp.181-186, 2003.

B. Sun-and-w and . Wang, Fracture of bulk metallic glasses, Progress in Materials Science, vol.74, pp.211-307, 2015.

B. Sun, Z. Zhan, B. Liang, R. Zhang, and A. Wang, Light Emission and Dynamic Failure Mechanism of Hypervelocity Impact on Zr-Ti-Ni-Cu-Be Bulk Metallic Glass, Chinese Physics Letters, vol.28, p.96102, 2011.

P. Tandaiya, R. Narasimhan, and A. U. Ramamurty, On the mechanism and the length scales involved in the ductile fracture of a bulk metallic glass, Acta Materialia, p.61, 2013.

A. Tanguy, F. Leonforte, and J. L. Barrat, Plastic response of a 2D LennardJones amorphous solid : Detailed analysis of the local rearrangements at very slow strain rate, European Physical Journal E, vol.20, pp.355-364, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00068911

H. Togo, Y. Zhang, Y. Kawamura, and A. T. Mashimo, Properties of Zr-based bulk metallic glass under shock compression, Materials Science and Engineering : A, pp.264-268, 2007.

M. M. Trexler-and-n and . Thadhani, Mechanical properties of bulk metallic glasses, Progress in Materials Science, vol.55, pp.759-839, 2010.

S. J. Turneaure, S. K. Dwivedi, and Y. M. Gupta, Shock-wave induced tension and spall in a zirconium-based bulk amorphous alloy, Journal of Applied Physics, vol.101, p.43514, 2007.

S. J. Turneaure, J. M. Winey, and Y. M. Gupta, Compressive shock wave response of a Zr-based bulk amorphous alloy, Applied Physics Letters, vol.84, p.1692, 2004.

S. J. Turneaure, J. M. Winey, and Y. M. Gupta, Response of a Zr-based bulk amorphous alloy to shock wave compression, Journal of Applied Physics, vol.100, p.63522, 2006.

P. Vinet, J. R. Smith, J. Ferrante, and J. H. Rose, Temperature effects on the universal equation of state of solids, Physical Review B, vol.35, pp.1945-1953, 1987.

C. A. Volkert, A. Donohue, and A. F. Spaepen, Effect of sample size on deformation in amorphous metals, Journal of Applied Physics, p.103, 2008.

C. P. Wang, S. B. Tu, Y. Yu, J. J. Han, and X. J. Liu, Experimental investigation of phase equilibria in the Zr-Cu-Al system, Intermetallics, pp.1-8, 2012.

G. Wang, K. C. Chan, X. H. Xu, and W. H. Wang, Instability of crack propagation in brittle bulk metallic glass, Acta Materialia, vol.56, pp.5845-5860, 2008.

W. H. Wang, C. Dong, and C. H. Shek, Bulk metallic glasses, Materials Science and Engineering R : Reports, vol.44, pp.45-90, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00517416

W. H. Wang, P. Wen, L. M. Wang, Y. Zhang, M. X. Pan et al., Equation of state of bulk metallic glasses studied by an ultrasonic method, Applied Physics Letters, vol.79, pp.3947-3949, 2001.

C. E. Williams, Neutron and synchrotron radiation for condensed matter studies, HERCULES Volume 1 -Theory, Small angle scattering from solids and solutions, pp.235-245, 1993.

F. Xi, Y. Yu, C. Dai, Y. Zhang, and A. L. Cai, Shock compression response of a Zrbased bulk metallic glass up to 110 GPa, Journal of Applied Physics, vol.108, p.83537, 2010.

P. F. Xing, Y. X. Zhuang, W. H. Wang, L. Gerward, and J. Z. Jiang, Glass transition, crystallization kinetics and pressure effect on crystallization of ZrNbCuNiBe bulk metallic glass, Journal of Applied Physics, pp.4956-4960, 2002.

M. Yamada, R. Kamisato, T. Yamasaki, H. Adachi, K. Tsuchiya et al., Nanocrystallization of Zr-Cu-Ni-Al-Au glassy alloys during severe plastic deformation, IOP Conference Series : Materials Science and Engineering, p.63, 2014.

C. Yang, W. P. Chen, R. P. Liu, Z. J. Zhan, M. Z. Ma et al., Pressure effect on crystallization of Zr 41 Ti 14 Cu 12.5 Ni 10 Be 22.5 bulk metallic glass prepared by shock-wave quenching, Journal of Physics : Condensed Matter, vol.20, p.15201, 2008.

C. Yang, R. Liu, Z. Zhan, L. Sun, and A. W. Wang, High speed impact on Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass, Materials Science and Engineering : A, vol.426, pp.298-304, 2006.

C. Yang, R. P. Liu, B. Q. Zhang, Q. Wang, Z. J. Zhan et al., Void formation and cracking of Zr41Ti14Cu12.5-Ni10Be22.5 bulk metallic glass under planar shock compression, Journal of Materials Science, vol.40, pp.3917-3920, 2005.

L. Q. Yang-and-g and . Guo, Preferred clusters in metallic glasses, Chinese Physics B, vol.19, 2010.

Y. Yokoyama, K. Fukaura, and A. A. Inoue, Formation and mechanical properties of Zr-Cu-Al bulk glassy alloys, Materials Science and Engineering A, pp.427-431, 2004.

Y. Yokoyama, T. Ishikawa, J. T. Okada, Y. Watanabe, S. Nanao et al., Volume and viscosity of Zr-Cu-Al glass-forming liquid alloys, Journal of NonCrystalline Solids, vol.355, pp.317-322, 2009.

Y. Yokoyama, E. Mund, A. Inoue, and A. L. Schultz, Production of Zr55Cu30Ni5Al10 Glassy Alloy Rod of 30 mm in Diameter by a Cap-Cast Technique, Materials Transactions, vol.48, pp.3190-3192, 2007.

Y. Yokoyama, H. Tokunaga, A. R. Yavari, T. Kawamata, T. Yamasaki et al., Tough Hypoeutectic Zr-Based Bulk Metallic Glasses, Metallurgical and Materials Transactions A, vol.42, pp.1468-1475, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00640162

Y. Yokoyama, T. Yamasaki, P. Liaw, R. Buchanan, and A. A. Inoue, Glassstructure changes in tilt-cast Zr-Cu-Al glassy alloys, Materials Science and Engineering : A, pp.621-626, 2007.

Y. Yokoyama, T. Yamasaki, P. K. Liaw, and A. A. Inoue, Study of the structural relaxation-induced embrittlement of hypoeutectic Zr-Cu-Al ternary bulk glassy alloys, Acta Materialia, vol.56, pp.6097-6108, 2008.

F. Yuan, V. Prakash, and J. J. Lewandowski, Spall strength of a zirconiumbased bulk metallic glass under shock-induced compression-and-shear loading, Mechanics of Materials, vol.41, pp.886-897, 2009.

J. Zarzycki, Les verres et l'état vitreux, 1982.

H. W. Zhang-and-t and . Zhou, Pressure effect on the crystallization behavior of Zr46.7Ti8.3Cu7.5Ni10Be27.5bulk metallic glass, Physics Letters, vol.350, pp.297-301, 2006.

Z. F. Zhang, J. Eckert, and A. L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3bulk metallic glass, Acta Materialia, vol.51, pp.1167-1179, 2003.

Z. F. Zhang, G. He, J. Eckert, and A. L. Schultz, Fracture Mechanisms in Bulk Metallic Glassy Materials, Physical Review Letters, vol.91, pp.2-5, 2003.

W. Zheng, Y. Huang, B. Pang, and A. J. Shen, Hypervelocity impact on Zr51Ti5Ni10Cu25Al9 bulk metallic glass, Materials Science and Engineering : A, vol.529, pp.352-360, 2011.

S. Zhuang, J. Lu, and A. G. Ravichandran, Shock wave response of a zirconiumbased bulk metallic glass and its composite, Applied Physics Letters, vol.80, p.4522, 2002.