E. G. Liddell and C. S. Sherrington, Recruitment and some other Features of Reflex Inhibition, Proc. R. Soc. Lond. B Biol. Sci, vol.97, pp.488-518, 1925.

P. A. Redfern, Neuromuscular transmission in new-born rats, J. Physiol, vol.209, pp.701-709, 1970.

D. C. Van-essen, H. Gordon, J. M. Soha, and S. E. Fraser, Synaptic dynamics at the neuromuscular junction: mechanisms and models, J. Neurobiol, vol.21, pp.223-249, 1990.

M. Manuel and D. Zytnicki, Alpha, beta and gamma motoneurons: functional diversity in the motor system's final pathway, J. Integr. Neurosci, vol.10, pp.243-276, 2011.

R. E. Burke, D. N. Levine, and F. E. Zajac, Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius, Science, vol.174, pp.709-712, 1971.

R. E. Burke, D. N. Levine, P. Tsairis, and F. E. Zajac, Physiological types and histochemical profiles in motor units of the cat gastrocnemius, J. Physiol, vol.234, pp.723-748, 1973.

A. M. Mcphedran, R. B. Wuerker, E. Henneman, . Of-motor, and . Units, A HETEROGENEOUS PALE MUSCLE (M. GASTROCNEMIUS) OF THE CAT, vol.28, pp.85-99, 1965.

A. M. Mcphedran, R. B. Wuerker, and E. Henneman, PROPERTIES OF MOTOR UNITS IN A HOMOGENEOUS RED MUSCLE (SOLEUS) OF THE CAT, J. Neurophysiol, vol.28, pp.71-84, 1965.

J. Hegedus, C. T. Putman, and T. Gordon, Time course of preferential motor unit loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis, Neurobiol. Dis, vol.28, pp.154-164, 2007.

M. H. Brooke and K. K. Kaiser, Muscle fiber types: how many and what kind?, Arch. Neurol, vol.23, pp.369-379, 1970.

S. Schiaffino, Myosin heavy chain isoforms and velocity of shortening of type 2 skeletal muscle fibres, Acta Physiol. Scand, vol.134, pp.575-576, 1988.

P. A. Mccombe and R. D. Henderson, Effects of gender in amyotrophic lateral sclerosis, Gend. Med, vol.7, pp.557-570, 2010.

G. Wohlfart, Clinical considerations on innervation of skeletal muscle, Am. J. Phys. Med, vol.38, pp.223-230, 1959.

M. Swash and D. Ingram, Preclinical and subclinical events in motor neuron disease, J. Neurol. Neurosurg. Psychiatry, vol.51, pp.165-168, 1988.

S. Chen, P. Sayana, X. Zhang, and W. Le, Genetics of amyotrophic lateral sclerosis: an update, Mol. Neurodegener, vol.8, p.28, 2013.

D. R. Rosen, Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature, vol.364, p.362, 1993.

E. Kabashi, TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis, Nat. Genet, vol.40, pp.572-574, 2008.

T. J. Kwiatkowski, Mutations in the FUS/TLS gene on chromosome 16

, cause familial amyotrophic lateral sclerosis, Science, vol.323, pp.1205-1208, 2009.

M. Dejesus-hernandez, Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS, Neuron, vol.72, pp.245-256, 2011.

A. E. Renton, A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD, Neuron, vol.72, pp.257-268, 2011.

C. A. Pardo, Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons

, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.954-958, 1995.

R. A. Saccon, R. K. Bunton-stasyshyn, E. M. Fisher, and P. Fratta, Is SOD1 loss of function involved in amyotrophic lateral sclerosis?, Brain J. Neurol, vol.136, pp.2342-2358, 2013.

I. C. Shaw, P. S. Fitzmaurice, J. D. Mitchell, and P. G. Lynch, Studies on cellular free radical protection mechanisms in the anterior horn from patients with amyotrophic lateral sclerosis, Neurodegener. J. Neurodegener. Disord

, Neuroprotection Neuroregeneration, vol.4, pp.391-396, 1995.

N. Shibata, Transgenic mouse model for familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation, Neuropathol. Off. J. Jpn. Soc. Neuropathol, vol.21, pp.82-92, 2001.

D. W. Cleveland and J. D. Rothstein, From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS, Nat. Rev. Neurosci, vol.2, pp.806-819, 2001.

M. E. Gurney, Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation, Science, vol.264, pp.1772-1775, 1994.

P. H. Özdinler, Corticospinal Motor Neurons and Related Subcerebral Projection Neurons Undergo Early and Specific Neurodegeneration in hSOD1G93A Transgenic ALS Mice, J. Neurosci. Off. J. Soc. Neurosci, vol.31, pp.4166-4177, 2011.

P. C. Wong, H. Cai, D. R. Borchelt, and D. L. Price, Genetically engineered mouse models of neurodegenerative diseases, Nat. Neurosci, vol.5, pp.633-639, 2002.

J. H. Veldink, Sexual differences in onset of disease and response to exercise in a transgenic model of ALS, Neuromuscul. Disord. NMD, vol.13, pp.737-743, 2003.

C. M. Wooley, Gait analysis detects early changes in transgenic SOD1(G93A) mice, Muscle Nerve, vol.32, pp.43-50, 2005.

S. Pun, A. F. Santos, S. Saxena, L. Xu, and P. Caroni, Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF, Nat. Neurosci, vol.9, pp.408-419, 2006.

J. Hegedus, C. T. Putman, N. Tyreman, and T. Gordon, Preferential motor unit loss in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis, J. Physiol, vol.586, pp.3337-3351, 2008.

L. R. Fischer, Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man, Exp. Neurol, vol.185, pp.232-240, 2004.

K. C. Kanning, A. Kaplan, and C. E. Henderson, Motor neuron diversity in development and disease, Annu. Rev. Neurosci, vol.33, pp.409-440, 2010.

A. Y. Chiu, Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis, Mol. Cell. Neurosci, vol.6, pp.349-362, 1995.

H. Ilieva, M. Polymenidou, and D. W. Cleveland, Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond, J. Cell Biol, vol.187, pp.761-772, 2009.

L. I. Bruijn, Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1, Science, vol.281, pp.1851-1854, 1998.

E. J. Yoon, Intracellular amyloid beta interacts with SOD1 and impairs the enzymatic activity of SOD1: implications for the pathogenesis of amyotrophic lateral sclerosis, Exp. Mol. Med, vol.41, pp.611-617, 2009.

P. K. Andrus, T. J. Fleck, M. E. Gurney, and E. D. Hall, Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis, J. Neurochem, vol.71, pp.2041-2048, 1998.

L. I. Bruijn, Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.7606-7611, 1997.

J. S. Beckman, M. Carson, C. D. Smith, W. H. Koppenol, and . Als, Nature, vol.364, p.584, 1993.

M. Wiedau-pazos, Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis, Science, vol.271, pp.515-518, 1996.

A. M. Van-der-bliek, Q. Shen, and S. Kawajiri, Mechanisms of mitochondrial fission and fusion, Cold Spring Harb. Perspect. Biol, vol.5, 2013.

R. J. Youle and M. Karbowski, Mitochondrial fission in apoptosis, Nat. Rev. Mol. Cell Biol, vol.6, pp.657-663, 2005.

A. Olichon, The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space, FEBS Lett, vol.523, pp.171-176, 2002.

A. Santel and M. Fuller, Control of mitochondrial morphology by a human mitofusin, J. Cell Sci, vol.114, pp.867-874, 2001.

E. E. Griffin, S. A. Detmer, and D. C. Chan, Molecular mechanism of mitochondrial membrane fusion, Biochim. Biophys. Acta, vol.1763, pp.482-489, 2006.

C. Frezza, OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion, Cell, vol.126, pp.177-189, 2006.

C. Vande-velde, Misfolded SOD1 Associated with Motor Neuron Mitochondria Alters Mitochondrial Shape and Distribution Prior to Clinical Onset, PLoS ONE, vol.6, 2011.

G. Natale, Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis, Front. Cell. Neurosci, vol.9, 2015.

C. M. Higgins, C. Jung, and Z. Xu, ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes, BMC Neurosci, vol.4, p.16, 2003.

S. M. Greenwood, S. M. Mizielinska, B. G. Frenguelli, J. Harvey, and C. N. Connolly, Mitochondrial dysfunction and dendritic beading during neuronal toxicity, J. Biol. Chem, vol.282, pp.26235-26244, 2007.

J. Magrané, M. A. Sahawneh, S. Przedborski, Á. G. Estévez, and G. Manfredi, Mitochondrial dynamics and bioenergetic dysfunction is associated with synaptic alterations in mutant SOD1 motor neurons, J. Neurosci. Off. J. Soc. Neurosci, vol.32, pp.229-242, 2012.

J. Magrané, Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial dynamics abnormalities, Hum. Mol. Genet, vol.18, pp.4552-4564, 2009.

J. Magrané, C. Cortez, W. Gan, and G. Manfredi, Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models, Hum. Mol. Genet, vol.23, pp.1413-1424, 2014.

M. Rizzardini, Low levels of ALS-linked Cu/Zn superoxide dismutase increase the production of reactive oxygen species and cause mitochondrial damage and death in motor neuron-like cells, J. Neurol. Sci, vol.232, pp.95-103, 2005.

S. P. Allen, Superoxide dismutase 1 mutation in a cellular model of amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to glycolysis, Neurobiol. Aging, vol.35, pp.1499-1509, 2014.

J. Lautenschläger, Overexpression of human mutated G93A SOD1 changes dynamics of the ER mitochondria calcium cycle specifically in mouse embryonic motor neurons, Exp. Neurol, vol.247, pp.91-100, 2013.

B. Moreau, C. Nelson, and A. B. Parekh, Biphasic regulation of mitochondrial Ca2+ uptake by cytosolic Ca2+ concentration, Curr. Biol. CB, vol.16, pp.1672-1677, 2006.

M. K. Jaiswal, Selective vulnerability of motoneuron and perturbed mitochondrial calcium homeostasis in amyotrophic lateral sclerosis: implications for motoneurons specific calcium dysregulation, Mol. Cell. Ther, vol.2, 2014.

L. J. Martin, The mitochondrial permeability transition pore: a molecular target for amyotrophic lateral sclerosis therapy, Biochim. Biophys. Acta, vol.1802, pp.186-197, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00562920

L. J. Martin, GNX-4728, a novel small molecule drug inhibitor of mitochondrial permeability transition, is therapeutic in a mouse model of amyotrophic lateral sclerosis, Front. Cell. Neurosci, vol.8, p.433, 2014.

P. A. Parone, Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited ALS, J. Neurosci. Off. J. Soc. Neurosci, vol.33, pp.4657-4671, 2013.

S. Pedrini, ALS-linked mutant SOD1 damages mitochondria by promoting conformational changes in Bcl-2, Hum. Mol. Genet, vol.19, pp.2974-2986, 2010.

F. Tafuri, D. Ronchi, F. Magri, G. P. Comi, and S. Corti, SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis, Front. Cell. Neurosci, vol.9, p.336, 2015.

S. Pickles, ALS-linked misfolded SOD1 species have divergent impacts on mitochondria, Acta Neuropathol. Commun, vol.4, p.43, 2016.

A. Igoudjil, In vivo pathogenic role of mutant SOD1 localized in the mitochondrial intermembrane space, J. Neurosci. Off. J. Soc. Neurosci, vol.31, pp.15826-15837, 2011.

L. Ozcan and I. Tabas, Role of Endoplasmic Reticulum Stress in Metabolic Disease and Other Disorders, Annu. Rev. Med, vol.63, pp.317-328, 2012.

J. D. Atkin, Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis, Neurobiol. Dis, vol.30, pp.400-407, 2008.

D. Chen, Y. Wang, and E. R. Chin, Activation of the endoplasmic reticulum stress response in skeletal muscle of G93A*SOD1 amyotrophic lateral sclerosis mice, Front. Cell. Neurosci, vol.9, 2015.

H. Kikuchi, Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.6025-6030, 2006.

K. Y. Soo, Bim Links ER Stress and Apoptosis in Cells Expressing Mutant SOD1 Associated with Amyotrophic Lateral Sclerosis, PLoS ONE, vol.7, 2012.

S. Saxena, E. Cabuy, and P. Caroni, A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice, Nat. Neurosci, vol.12, pp.627-636, 2009.

K. Oyanagi, Spinal anterior horn cells in sporadic amyotrophic lateral sclerosis show ribosomal detachment from, and cisternal distention of the rough endoplasmic reticulum, Neuropathol. Appl. Neurobiol, vol.34, pp.650-658, 2008.

S. Sasaki, Endoplasmic Reticulum Stress in Motor Neurons of the Spinal Cord in Sporadic Amyotrophic Lateral Sclerosis, J. Neuropathol. Exp. Neurol, vol.69, pp.346-355, 2010.

J. Grosskreutz, . Van-den, L. Bosch, and B. U. Keller, Calcium dysregulation in amyotrophic lateral sclerosis, Cell Calcium, vol.47, pp.165-174, 2010.

V. Tadic, T. Prell, J. Lautenschlaeger, and J. Grosskreutz, The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis, Front. Cell. Neurosci, vol.8, p.147, 2014.

O. M. De-brito and L. Scorrano, Mitofusin 2 tethers endoplasmic reticulum to mitochondria, Nature, vol.456, pp.605-610, 2008.

R. Stoica, ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43, Nat. Commun, vol.5, p.3996, 2014.

S. Paillusson, There's Something Wrong with my MAM; the ERMitochondria Axis and Neurodegenerative Diseases, Trends Neurosci, vol.39, pp.146-157, 2016.

J. P. Muñoz, Mfn2 modulates the UPR and mitochondrial function via repression of PERK, EMBO J, vol.32, pp.2348-2361, 2013.

C. Gkogkas, VAPB interacts with and modulates the activity of ATF6

, Hum. Mol. Genet, vol.17, pp.1517-1526, 2008.

J. R. Friedman, B. M. Webster, D. N. Mastronarde, K. J. Verhey, and G. K. Voeltz, ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules, J. Cell Biol, vol.190, pp.363-375, 2010.

J. R. Friedman, ER tubules mark sites of mitochondrial division, Science, vol.334, pp.358-362, 2011.

N. Bernard-marissal, J. Médard, H. Azzedine, and R. Chrast, Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration, Brain J. Neurol, vol.138, pp.875-890, 2015.

A. L. Nishimura, A Mutation in the Vesicle-Trafficking Protein VAPB Causes Late-Onset Spinal Muscular Atrophy and Amyotrophic Lateral Sclerosis

, Am. J. Hum. Genet, vol.75, pp.822-831, 2004.

S. Watanabe, Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1-and SOD1-linked ALS, EMBO Mol. Med, vol.8, pp.1421-1437, 2016.

C. Mis, M. S. Brajkovic, S. Frattini, E. Di-fonzo, A. Corti et al., Autophagy in motor neuron disease: Key pathogenetic mechanisms and therapeutic targets, Mol. Cell. Neurosci, vol.72, pp.84-90, 2016.

S. Hadano, Loss of ALS2/Alsin exacerbates motor dysfunction in a SOD1-expressing mouse ALS model by disturbing endolysosomal trafficking, PloS One, vol.5, p.9805, 2010.

C. S. Krasniak and S. T. Ahmad, The role of CHMP2B(Intron5) in autophagy and frontotemporal dementia, Brain Res, vol.1649, pp.151-157, 2016.

C. Münch, Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS, Neurology, vol.63, pp.724-726, 2004.

S. Sasaki, Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis, J. Neuropathol. Exp. Neurol, vol.70, pp.349-359, 2011.

M. Nassif, Pathogenic role of BECN1/Beclin 1 in the development of amyotrophic lateral sclerosis, Autophagy, vol.10, pp.1256-1271, 2014.

E. Tokuda, T. Brännström, P. M. Andersen, and S. L. Marklund, Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase, Acta Neuropathol. Commun, vol.4, p.6, 2016.

Y. Xie, Endolysosomal Deficits Augment Mitochondria Pathology in Spinal Motor Neurons of Asymptomatic fALS Mice, Neuron, vol.87, pp.355-370, 2015.

X. Zhang, MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis, Autophagy, vol.10, pp.588-602, 2014.

M. Laforge, NF-?B pathway controls mitochondrial dynamics, Cell Death Differ, vol.23, pp.89-98, 2016.

C. Yung, D. Sha, L. Li, and L. Chin, Parkin Protects Against Misfolded SOD1 Toxicity by Promoting Its Aggresome Formation and Autophagic Clearance, Mol. Neurobiol, vol.53, pp.6270-6287, 2016.

K. Ikenaka, Disruption of Axonal Transport in Motor Neuron Diseases, Int. J. Mol. Sci, vol.13, pp.1225-1238, 2012.

M. Hafezparast, Mutations in dynein link motor neuron degeneration to defects in retrograde transport, Science, vol.300, pp.808-812, 2003.

J. A. Clark, E. J. Yeaman, C. A. Blizzard, J. A. Chuckowree, and T. C. Dickson, A Case for Microtubule Vulnerability in Amyotrophic Lateral Sclerosis: Altered Dynamics During Disease, Front. Cell. Neurosci, vol.10, p.204, 2016.

F. Zhang, Interaction between familial amyotrophic lateral sclerosis (ALS)-linked SOD1 mutants and the dynein complex, J. Biol. Chem, vol.282, pp.16691-16699, 2007.

J. Y. Park, Mitochondrial swelling and microtubule depolymerization are associated with energy depletion in axon degeneration, Neuroscience, vol.238, pp.258-269, 2013.

D. Blackburn, S. Sargsyan, P. N. Monk, and P. J. Shaw, Astrocyte function and role in motor neuron disease: a future therapeutic target?, Glia, vol.57, pp.1251-1264, 2009.

J. S. Henkel, D. R. Beers, W. Zhao, and S. H. Appel, Microglia in ALS: The Good, The Bad, and The Resting, J. Neuroimmune Pharmacol, vol.4, pp.389-398, 2009.

C. F. Valori, L. Brambilla, F. Martorana, and D. Rossi, The multifaceted role of glial cells in amyotrophic lateral sclerosis, Cell. Mol. Life Sci. CMLS, vol.71, pp.287-297, 2014.

K. Yamanaka and H. Yamashita, ALS and microglia--a player for non-cellautonomous neuron death

, Brain Nerve Shinkei Kenkyu No Shinpo, vol.59, pp.1163-1170, 2007.

D. S. Howland, Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS), Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.1604-1609, 2002.

T. Philips and J. D. Rothstein, Rodent Models of Amyotrophic Lateral Sclerosis, Curr. Protoc. Pharmacol, vol.69, pp.5-67, 2015.

J. E. Schuster, R. Fu, T. Siddique, and C. J. Heckman, Effect of prolonged riluzole exposure on cultured motoneurons in a mouse model of ALS, J. Neurophysiol, vol.107, pp.484-492, 2012.

P. Menon, Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study, Lancet Neurol, vol.14, pp.478-484, 2015.

L. H. Barbeito, A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis, Brain Res. Brain Res. Rev, vol.47, pp.263-274, 2004.

B. K. Vanselow and B. U. Keller, Calcium dynamics and buffering in oculomotor neurones from mouse that are particularly resistant during amyotrophic lateral sclerosis (ALS)-related motoneurone disease, J. Physiol. 525 Pt, vol.2, pp.433-445, 2000.
DOI : 10.1111/j.1469-7793.2000.t01-1-00433.x

URL : https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-7793.2000.t01-1-00433.x

J. J. Kuo, T. Siddique, R. Fu, and C. Heckman, Increased persistent Na(+) current and its effect on excitability in motoneurones cultured from mutant SOD1 mice, J. Physiol, vol.563, pp.843-854, 2005.
DOI : 10.1113/jphysiol.2004.074138

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1665614

B. Van-zundert, Neonatal neuronal circuitry shows hyperexcitable disturbance in a mouse model of the adult-onset neurodegenerative disease amyotrophic lateral sclerosis, J. Neurosci. Off. J. Soc. Neurosci, vol.28, pp.10864-10874, 2008.

E. Martin, W. Cazenave, D. Cattaert, and P. Branchereau, Embryonic alteration of motoneuronal morphology induces hyperexcitability in the mouse model of amyotrophic lateral sclerosis, Neurobiol. Dis, vol.54, pp.116-126, 2013.

F. Leroy, B. Lamotte-d'incamps, R. D. Imhoff-manuel, and D. Zytnicki, Early intrinsic hyperexcitability does not contribute to motoneuron degeneration in amyotrophic lateral sclerosis, vol.3
DOI : 10.7554/elife.04046

URL : https://doi.org/10.7554/elife.04046

M. Manuel, Fast kinetics, high-frequency oscillations, and subprimary firing range in adult mouse spinal motoneurons, J. Neurosci. Off. J. Soc. Neurosci, vol.29, pp.11246-11256, 2009.
DOI : 10.1523/jneurosci.3260-09.2009

URL : https://hal.archives-ouvertes.fr/hal-02045313

N. Delestrée, Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis, J. Physiol, vol.592, pp.1687-1703, 2014.

M. Hadzipasic, Selective degeneration of a physiological subtype of spinal motor neuron in mice with SOD1-linked ALS, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.16883-16888, 2014.

B. J. Wainger, Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons, Cell Rep, vol.7, pp.1-11, 2014.

A. Devlin, Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability, Nat. Commun, vol.6, p.5999, 2015.
DOI : 10.1038/ncomms6999

URL : https://www.nature.com/articles/ncomms6999.pdf

D. Sareen, Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion, Sci. Transl. Med, vol.5, pp.208-149, 2013.
DOI : 10.1126/scitranslmed.3007529

URL : http://europepmc.org/articles/pmc4090945?pdf=render

M. Naujock, 4-Aminopyridine Induced Activity Rescues Hypoexcitable Motor Neurons from Amyotrophic Lateral Sclerosis Patient-Derived Induced Pluripotent Stem Cells, Stem Cells Dayt. Ohio, vol.34, pp.1563-1575, 2016.
DOI : 10.1002/stem.2354

URL : https://stemcellsjournals.onlinelibrary.wiley.com/doi/pdf/10.1002/stem.2354

S. M. Elbasiouny, J. E. Schuster, and C. J. Heckman, Persistent inward currents in spinal motoneurons: important for normal function but potentially harmful after spinal cord injury and in amyotrophic lateral sclerosis, Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol, vol.121, pp.1669-1679, 2010.

K. A. Quinlan, J. E. Schuster, R. Fu, T. Siddique, and C. J. Heckman, Altered postnatal maturation of electrical properties in spinal motoneurons in a mouse model of amyotrophic lateral sclerosis, J. Physiol, vol.589, pp.2245-2260, 2011.

M. Pieri, I. Carunchio, L. Curcio, N. B. Mercuri, and C. Zona, Increased persistent sodium current determines cortical hyperexcitability in a genetic model of amyotrophic lateral sclerosis, Exp. Neurol, vol.215, pp.368-379, 2009.

C. R. Sunico, Reduction in the motoneuron inhibitory/excitatory synaptic ratio in an early-symptomatic mouse model of amyotrophic lateral sclerosis, Brain Pathol. Zurich Switz, vol.21, pp.1-15, 2011.

Q. Chang and L. J. Martin, Glycinergic innervation of motoneurons is deficient in amyotrophic lateral sclerosis mice: a quantitative confocal analysis, Am. J. Pathol, vol.174, pp.574-585, 2009.

R. E. Burke and L. L. Glenn, Horseradish peroxidase study of the spatial and electrotonic distribution of group Ia synapses on type-identified ankle extensor motoneurons in the cat, J. Comp. Neurol, vol.372, pp.465-485, 1996.

R. E. Fyffe, Spatial distribution of recurrent inhibitory synapses on spinal motoneurons in the cat, J. Neurophysiol, vol.65, pp.1134-1149, 1991.

C. Iglesias, Electrophysiological and spinal imaging evidences for sensory dysfunction in amyotrophic lateral sclerosis, BMJ Open, vol.5, p.7659, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01258712

S. Sangari, Impairment of sensory-motor integration at spinal level in amyotrophic lateral sclerosis, Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol, vol.127, pp.1968-1977, 2016.

L. Saba, Altered Functionality, Morphology, and Vesicular Glutamate Transporter Expression of Cortical Motor Neurons from a Presymptomatic Mouse Model of Amyotrophic Lateral Sclerosis, Cereb. Cortex N. Y. N, 1991.

M. Jiang, J. E. Schuster, R. Fu, T. Siddique, and C. J. Heckman, Progressive changes in synaptic inputs to motoneurons in adult sacral spinal cord of a mouse model of amyotrophic lateral sclerosis, J. Neurosci. Off. J. Soc. Neurosci, vol.29, pp.15031-15038, 2009.

A. Mcgown, Early interneuron dysfunction in ALS: insights from a mutant sod1 zebrafish model, Ann. Neurol, vol.73, pp.246-258, 2013.

L. J. Martin and Q. Chang, Inhibitory synaptic regulation of motoneurons: a new target of disease mechanisms in amyotrophic lateral sclerosis, Mol. Neurobiol, vol.45, pp.30-42, 2012.

Y. Ikegaya, Rapid and reversible changes in dendrite morphology and synaptic efficacy following NMDA receptor activation: implication for a cellular defense against excitotoxicity, J. Cell Sci, vol.114, pp.4083-4093, 2001.

D. T. Chang and I. J. Reynolds, Mitochondrial trafficking and morphology in healthy and injured neurons, Prog. Neurobiol, vol.80, pp.241-268, 2006.

A. Sharma, ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function, Nat. Commun, vol.7, p.10465, 2016.

M. Kamelgarn, Proteomic analysis of FUS interacting proteins provides insights into FUS function and its role in ALS, Biochim. Biophys. Acta, vol.1862, 2004.

P. J. Shaw, P. G. Ince, and . Glutamate, excitotoxicity and amyotrophic lateral sclerosis, J. Neurol, vol.244, pp.3-14, 1997.

Z. Wang, L. Li, M. Goulding, and E. Frank, Early postnatal development of reciprocal Ia inhibition in the murine spinal cord, J. Neurophysiol, vol.100, pp.185-196, 2008.

W. Wang, The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons, Hum. Mol. Genet, vol.22, pp.4706-4719, 2013.

E. Onesto, Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts, Acta Neuropathol. Commun, vol.4, 2016.

A. Kaus and D. Sareen, ALS Patient Stem Cells for Unveiling Disease Signatures of Motoneuron Susceptibility: Perspectives on the Deadly Mitochondria, ER Stress and Calcium Triad, Front. Cell. Neurosci, vol.9, 2015.

R. Stoica, ALS/FTD-associated FUS activates GSK-3? to disrupt the VAPB-PTPIP51 interaction and ER-mitochondria associations, EMBO Rep, vol.17, pp.1326-1342, 2016.

J. Deng, FUS Interacts with HSP60 to Promote Mitochondrial Damage, PLoS Genet, vol.11, p.1005357, 2015.

D. W. Choi, Ionic dependence of glutamate neurotoxicity, J. Neurosci, vol.7, pp.369-379, 1987.

C. Ruegsegger, Aberrant association of misfolded SOD1 with Na(+)/K(+)ATPase-?3 impairs its activity and contributes to motor neuron vulnerability in ALS, Acta Neuropathol. (Berl.), vol.131, pp.427-451, 2016.

A. Fuchs, Downregulation of the Potassium Chloride Cotransporter KCC2 in Vulnerable Motoneurons in the SOD1-G93A Mouse Model of Amyotrophic Lateral Sclerosis, J. Neuropathol. Exp. Neurol, vol.69, pp.1057-1070, 2010.

T. Akita and Y. Okada, Characteristics and roles of the volume-sensitive outwardly rectifying (VSOR) anion channel in the central nervous system, Neuroscience, vol.275, pp.211-231, 2014.

M. Shen, Activation of volume-sensitive outwardly rectifying chloride channel by ROS contributes to ER stress and cardiac contractile dysfunction: involvement of CHOP through Wnt, Cell Death Dis, vol.5, p.1528, 2014.

H. Inoue and Y. Okada, Roles of volume-sensitive chloride channel in excitotoxic neuronal injury, J. Neurosci. Off. J. Soc. Neurosci, vol.27, pp.1445-1455, 2007.

A. R. Crofts and J. B. Chappell, CALCIUM ION ACCUMULATION AND VOLUME CHANGES OF ISOLATED LIVER MITOCHONDRIA. REVERSAL OF CALCIUM ION-INDUCED SWELLING, Biochem. J, vol.95, pp.387-392, 1965.

G. Calamita, P. Gena, D. Meleleo, D. Ferri, and M. Svelto, Water permeability of rat liver mitochondria: A biophysical study, Biochim. Biophys. Acta BBABiomembr, vol.1758, pp.1018-1024, 2006.

W. Lee and F. Thévenod, A role for mitochondrial aquaporins in cellular life-and-death decisions?, Am. J. Physiol. -Cell Physiol, vol.291, pp.195-202, 2006.

A. Sugiura, S. Mattie, J. Prudent, and H. M. Mcbride, Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes, Nature, vol.542, pp.251-254, 2017.

M. Honsho, S. Yamashita, and Y. Fujiki, Peroxisome homeostasis: Mechanisms of division and selective degradation of peroxisomes in mammals

, Biophys. Acta BBA -Mol. Cell Res, vol.1863, pp.984-991, 2016.

H. S. Ilieva, Age-related changes in peroxisomal membrane protein 70 and superoxide dismutase 1 in transgenic G93A mice, Neurol. Res, vol.25, pp.423-426, 2003.

N. Thau, Decreased mRNA expression of PGC-1? and PGC-1?-regulated factors in the SOD1G93A ALS mouse model and in human sporadic ALS, J. Neuropathol. Exp. Neurol, vol.71, pp.1064-1074, 2012.

Y. Qi, Differential peroxisome proliferator activated receptors activity in a rodent model of amyotrophic lateral sclerosis, Int. J. Clin. Exp. Med, vol.8, pp.3743-3751, 2015.

M. Schrader, J. Costello, L. F. Godinho, and M. Islinger, Peroxisomemitochondria interplay and disease, J. Inherit. Metab. Dis, vol.38, pp.681-702, 2015.

V. Benedusi, F. Martorana, L. Brambilla, A. Maggi, and D. Rossi, The peroxisome proliferator-activated receptor ? (PPAR?) controls natural protective mechanisms against lipid peroxidation in amyotrophic lateral sclerosis, J. Biol. Chem, vol.287, pp.35899-35911, 2012.

M. Kiaei, K. Kipiani, J. Chen, N. Y. Calingasan, and M. F. Beal, Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis, Exp. Neurol, vol.191, pp.331-336, 2005.

W. Song, Y. Song, B. Kincaid, B. Bossy, and E. Bossy-wetzel, Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons: neuroprotection by SIRT3 and PGC-1?, Neurobiol. Dis, vol.51, pp.72-81, 2013.

W. Zhao, Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1?) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis, Mol. Neurodegener, vol.6, p.51, 2011.

Y. Qi, PGC-1? Silencing Compounds the Perturbation of Mitochondrial Function Caused by Mutant SOD1 in Skeletal Muscle of ALS Mouse Model, Front. Aging Neurosci, vol.7, p.204, 2015.

L. Dimitrov, S. K. Lam, and R. Schekman, The Role of the Endoplasmic Reticulum in Peroxisome Biogenesis, Cold Spring Harb. Perspect. Biol, vol.5, 2013.

H. F. Tabak, Braakman, I. & van der Zand, A. Peroxisome formation and