Skip to Main content Skip to Navigation

Wireless body area networks : co-channel interference mitigation & avoidance

Abstract : A Wireless Body Area Network (WBAN) is a short-range network that consists of a coordinator (Crd) and a collection of low-power sensors that can be implanted in or attached to the human body. Basically, WBANs can provide real-time patient monitoring and serve in various applications such as ubiquitous health-care, consumer electronics, military, sports, etc. [1]. As the license-free 2.4 GHz ISM band is widely used among WBANs and across other wireless technologies, the fundamental problem is to mitigate the resulting co-channel interference. Other serious problems are to extend the network lifetime and to ensure reliable transmission within WBANs, which is an urgent requirement for health-care applications. Therefore, in this thesis, we conduct a systematic research on a few number of research problems related to radio co-channel interference, energy consumption, and network reliability. Specifically, we address the following problems ranging from theoretical modeling and analysis to practical protocol design: • Intra-WBAN interference mitigation and avoidance • Cooperative inter-WBAN interference mitigation and avoidance • Non-cooperative inter-WBAN interference mitigation and avoidance • Interference mitigation and avoidance in WBANs with IoT Firstly, to mitigate the intra-WBAN interference, we present two mechanisms for a WBAN. The first is called CSMA to Flexible TDMA combination for Interference Mitigation, namely, CFTIM, which dynamically allocates time-slots and stable channels to lower the intra-WBAN interference. The second is called Interference Avoidance Algorithm, namely IAA that dynamically adjusts the superframe length and limits the number of channels to 2 to lower the intra-WBAN interference and save energy. Theoretically, we derive a probabilistic model that proves the SINR outage probability is lowered. Simulation results demonstrate the effectiveness and the efficiency of CFTIM and IAA in terms of lowering the probability of interference, extending network lifetime, improving throughput and reliability. Secondly, we address the problem of interference among cooperative WBANs through using orthogonal codes. Motivated by distributed time provisioning supported in IEEE 802.15.6 standard [2], we propose two schemes. The first is called Distributed Time Correlation Reference, namely, DTRC that provides each WBAN with the knowledge about which superframes overlap with each other. The second is called Orthogonal Code Allocation Algorithm for Interference Mitigation, namely, OCAIM, that allocates orthogonal codes to interfering sensors belonging to sensor interference lists (SILs), which are generated based on the exchange of power-based information among WBANs. Mathematically, we derive the successful and collision probabilities of frames transmissions. Extensive simulations are conducted and the results demonstrate that OCAIM can diminish the interference, improve the throughput and save the power resource. Thirdly, we address the problem of co-channel interference among non-cooperative WBANs through time-slot and channel hopping. Specifically, we propose two schemes that are based on Latin rectangles. The first is called Distributed Algorithm for Interference mitigation using Latin rectangles, namely, DAIL that allocates a single channel to a timeslot combination to each sensor to diminish inter-WBAN interference and to yield better schedules of the medium access within each WBAN. The second is called Channel Hopping for Interference Mitigation, namely, CHIM, which generates a predictable interference free transmission schedule for all sensors within a WBAN. CHIM applies the channel switching only when a sensor experiences interference to save the power resource. Furthermore, we present an analytical model that derives bounds on collision probability and throughput for sensors transmissions. (...)
Complete list of metadata

Cited literature [137 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Wednesday, April 24, 2019 - 5:05:07 PM
Last modification on : Saturday, June 19, 2021 - 3:49:27 AM


Version validated by the jury (STAR)


  • HAL Id : tel-02109264, version 1


Mohamad Jaafar Ali. Wireless body area networks : co-channel interference mitigation & avoidance. Networking and Internet Architecture [cs.NI]. Université Sorbonne Paris Cité, 2017. English. ⟨NNT : 2017USPCB252⟩. ⟨tel-02109264⟩



Record views


Files downloads