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"Toute découverte, qu'elle soit philosophique, scienti�que ou autre ne peut

être considérée que comme un stade dans l'Histoire de l'homme et non comme

une découverte dela vérité. L'homme de la Terre a encore besoin de certaines

croyances, de certaines théories, même si celles-ci les plongent dans l'erreur pour

quelque temps. Une erreur correspond à un degré dans la quête de la vérité."

Daniel Meurois et Anne Givaudan

À la mémoire de Nuage et Griffon
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Chapter 1

General Introduction

1.1 Conditioning and reinforcement learning

We will �rst introduce how a very in�uential reinforcement learning algorithm al-

lows us to understand many aspects of animal behavior and neural activity. At the

turn of the twentieth century, a new approach called 'behaviorism' tried to emulate

physics by explaining animal behavior in terms of mechanics that could be easily

measured. At �rst behaviorism forti�ed the old Cartesian wall between humans and

animals: humans were thinking organisms who shape their environment; animals

were mindless brutes whose behavior is conditioned by the environment. Then Bur-

rhus Skinner tried to tear down this wall by getting rid of the mind. He claimed that

the human learning process is no different from conditioning in animals, and that it

could be described mechanically without resorting to nebulous terms like 'thought'

or 'consciousness' (Fouts and Mills, 1997).

1.1.1 The notion of reward

Before the 1950s, the prevailing view held that the basic motivations, such as pain,

pleasure and so on, probably involved excitation or activity of the whole brain. In

1953, Olds and Miller implemented by accident an electrode in a nerve pathway

from the rhinencephalon. They observed the implemented rat learned to return to

the portion of its environment where it had been given the electrical stimulation

(Olds, 1956).

This demonstration of a learned place preference suggested that these stimula-

tions were rewarding. They thus placed the animals in a box in which they could

stimulate themselves by pressing the lever. The rats were then self-stimulating about

once every �ve seconds. When they turned off the current (so that the animal's

pressing of the lever could no longer stimulate the brain), the animals kept pressing

it only a few times before going to sleep (Olds and Milner, 1954).

Olds (1956) found that the strongest reward, or pleasure, came from stimulating

the hypothalamus and certain mid-brain nuclei, hence describing the reward system

for the �rst time. Later these brain areas were identi�ed as receiving dopamine from

the ventral tegmental area and substantia nigra (Schultz, Dayan, and Montague,

1997). We will later see why this neurotransmitter is important for reinforcement

learning.

A pleasant stimulus is familiarly called a reward. But it should be noted that

1
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Figure 1.1: When the rat presses on the treadle, it triggers an electric stimulus to
its brain, creating a self-stimulation circuit. Some of the animals have been seen to
stimulate themselves for 24 hours without rest, and as often as 5,000 times an hour.
(Figure reproduced from Olds, 1956.)

actual reward lies in active processes of the brain that reacts to a stimulus rather

than the stimulus itself, as this experiment showed. A reward is actually a composite

process containing several psychological components:

� Liking, which is the actual pleasure component or hedonic impact of a reward,

� Wanting, i.e., the motivation for reward, which makes the animal approach

reward and avoid punishment,

� Learning, i.e., the associations, representations, and predictions about future

rewards based on past experiences.

These different aspects are mediated by partly dissociable brain substrates. Within

each reward component, there are further subdivisions and levels, including both

conscious and non-conscious processing (Berridge and Kringelbach, 2008).

We have seen that thelearningand wanting components of reward were present

in the rats' electrical self-stimulation. But the challenge in the liking aspect is that

it is very dif�cult to access such subjective 'pleasure' states in experimental work,

particularly in animals. In humans, one can simply ask participants to verbally re-

port or rate their subjective pleasure (O'Doherty, 2014). Humans implemented with

'pleasure' electrodes often displayed the same wanting behavior as the rats (Heath,

1972; Portenoy et al., 1986). But there was no clear evidence that electrodes caused

real pleasure. A patient described “erotic sensations often intermixed with an un-

dercurrent of anxiety. She also noted extreme thirst, drinking copiously during the

session, and alternating generalized hot and cold sensations” (Portenoy et al., 1986).

Punishment is usually de�ned as the opposite of reward. A debate in cogni-

tive neuroscience concerns whether the same brain areas, namely the ventral stria-

tum and the ventromedial prefrontal cortex, represent reward as well as punishment

(Bartra, McGuire, and Kable, 2013) or whether aversive value encoding and learning

are organized in an opponent system, namely the insula and the dorsomedial pre-

frontal cortex (Garrison, Erdeniz, and Done, 2013). What is clear is that humans and
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INTRODUCTION

Computational models. We Þtted the behavioural data with
model-free reinforcement-learning models (see Methods)34. The
tested models included a standard Q-learning (thereafter referred
to as ABSOLUTE), adapted to account for learning from
counterfactual feedback, which has been most frequently used
with this kind of task and we therefore consider as the reference
model (hypothesis zero)3,6,27,28,33. We also considered a modiÞed
version of the ABSOLUTE model, which, similarly to other
theories assumes that choice context (or state) values are
separately learnt and represented35,36. The crucial feature of
this model (thereafter referred to as RELATIVE) is that the
context value sets the reference point to which an outcome should
be compared before updating the option value; option values are
therefore no longer encoded in an absolute, but in a relative scale
(Fig. 3). The context value (V(s)) is deÞned as a Ôrandom-policyÕ
state value, aimed at capturing the overall expected value of a
given pair of options, independent from subjectsÕ choice
propensity. Note that the RELATIVE model shares a
crucial feature (that is, relative option value encoding) with
previous computational formulations, such as actorÐcritic and
advantage learning models, that inspired its conception (see
Supplementary Note 2 for additional model comparison
including these preceding models and a discussion of their
differences)37,38.

Bayesian model selection. For each model, we estimated the free
parameters by likelihood maximization (to calculate the Akaike
Information Criterion, AIC, and the Bayesian Information Cri-
terion, BIC) and by Laplace approximation of the model evi-
dence (to calculate the exceedance probability; Tables 2 and 3).
After post hocanalyses we found that the RELATIVE model
better accounted for the data, both at Þxed and random effect
analysis (compared with the ABSOLUTE LL:T ! 4.1,Po 0.001).
This was also true when accounting (penalizing) for the different
number of free parameters (AIC:T ! 3.4,Po 0.001; BIC:T ! 2.1,
Po 0.05)39. We also calculated the exceedance probability (XP) of
the model based on an approximate posterior probability of the
model, and we consistently found that our model signiÞcantly
outperformed the others (XP! 1.0)40. Thus, context-dependent
value encoding (RELATIVE) provided better account of learning
test choices, even after correcting for its higher degrees of
freedom (note that this conclusion was not affected by using
different learning rates for the reward and the punishment
contexts).

Relative value encoding explains instrumental performance.
To characterize the effect of context-dependent over absolute
value learning, we generated for each trialt the probability of
choosing the best option according to the models, given the
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Figure 2 | Behavioural results and model simulations.(a) Correct choice rate during the learning test. (b) Choice rate in the post-learning test.G75 and
G25: options associated with 75% and 25% per cent of winning 0.5h, respectively;L75 and L25: options associated with 75% and 25% per cent of losing
0.5h, respectively. EV: absolute expected value (Probability(outcome)" Magnitude(outcome)) in a single trial. The values# 37.5b and $ 37.5b
correspondG75 and theL75 options, respectively. Ina and b coloured bars represent the actual data and black (RELATIVE) and white (ABSOLUTE) dots
represent the model simulated data. (c) Reward minus punishment correct choice rate during the learning test. (d) G25 minus L25 choice rate during the
post learning test. *Po 0.05 one samplet-test; NS, not signiÞcant (N! 28). Error bars represent s.e.m.
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Figure 1.2: In each context (monetary gains or losses), options were associated with
different outcome probabilities, so that the subjects' task was to learn which option
was associated with either the highest reward, or the lowest punishment probability.
Healthy subjects learnt similarly from reward and punishment. (Figure reproduced
from Palminteri et al., 2012; Palminteri et al., 2015.)

animals are able to learn equally well by seeking rewards and by avoiding punish-

ments (Pessiglione et al., 2006; Palminteri et al., 2015).

1.1.2 Classical and instrumental conditioning

Here we are mainly interested in the learning aspect of reward. Learning about

stimuli or actions solely on the basis of the rewards or punishments associated with

them is called associative learning or conditioning or reinforcement learning. Con-

ditioning is traditionally separated into classical (or Pavlovian) conditioning, and

!"#$%"&'$()*+*$(*(,-

).%*(,&'$()*+*$(*(,-

/#+"%&'$()*+*$(*(,-

Figure 1.3: Before conditioning, the dog displays an 'unconditioned response':
he salivates when food is put in his mouth. After repeatedly hearing a
whistle before the arrival of food, the dog now salivates as soon as he
heard the whistle, displaying a 'conditioned response'. (Figure adapted from
www.savingstudentsmoney.org/psychimg.)
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instrumental (or operant) conditioning. In Pavlovian conditioning, the rewards or

punishments are delivered independently of any actions taken by the animal. Ev-

eryone knows Ivan Petrovich Pavlov was making dogs salivate with a bell, although

not a lot of people understand why his discoveries were crucial for psychology.

Pavlov was originally interested in the physiology of digestion. Dogs are salivat-

ing as soon as food is put into their mouth (as we also do). Pavlov called this re�ex

'unconditioned response', as it is an automatic behavior that cannot be learned or

changed. He discovered that an arbitrary signal, that could be a whistle, the vanilla

smell or the view of a rotating object, can also cause salivation, if this arbitrary sig-

nal was repeatedly perceived just before the arrival of food. He called this learned

behavior a 'conditioned response'. His results revealed that the most basic form of

learning can be studied experimentally (Frith, 2013).

On the contrary, in instrumental conditioning, the actions of the animal deter-

mine what reinforcement is provided. As this PhD thesis focus on the link between

control (i.e. how your actions can shape your environment) and reinforcement learn-

ing, instrumental conditioning is of particular interest for us.

By the time Pavlov was studying dogs, Edward Thorndike was putting a hungry

cat into what he called 'puzzle box', i.e., a box that could be opened if the animal

pressed a lever or pulled a loop. He observed that cats were indeed able to learn

to go out of the cage, but he wanted to understand how. He saw that cats could

not learn by observation (i.e., by seeing another cat get out of the puzzle box), but

only by trial-and-error (Frith, 2013). Thorndike called this associative learning the

'law of effect', stating that “responses that produce a satisfying effect in a particular

situation become more likely to occur again in that situation, and responses that

produce a discomforting effect become less likely to occur again in that situation”

(Thorndike, 1911).

Figure 1.4: Thorndike placed cats in a puzzle box that could be opened if the
cat pressed a lever. Thorndike noted that with each successive trial, it took
the cat less and less time to escape on average. (Figure reproduced from com-
mons.wikimedia.org.)

Skinner later generalized the use of boxes in which some actions are linked re-

wards or punishments, called 'Skinner boxes'. The self-stimulation box that we de-

scribed earlier is a particular kind of Skinner box (Olds, 1956).
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1.1.3 The TD(0) algorithm

The �rst evidence that animal learning can be described by a reinforcement learning

algorithm came from a Pavlovian conditioning experiment. After conditioning, an

animal's behavior indicates that the conditioned stimulus induces a prediction about

the likely time and magnitude of the reward. Schultz, Dayan, and Montague (1997)

deduced that no further learning should thus take place when the reward can be

entirely predicted by the conditioned stimulus.

They recorded the activity of single dopamine neurons in alert monkeys while

they were presented with stimuli and rewards. The majority of dopamine neurons

(55 to 80%) are known to respond with short, phasic activations when animals touch

a small morsel of apple or receive a small quantity of fruit juice to the mouth. Sur-

prisingly, after repeated pairings of visual and auditory stimuli followed by reward,

dopamine neurons change the time of their phasic activation from just after the time

of reward delivery to the time of stimulus onset. In trials where the reward was

not following the conditioned stimulus, dopamine neurons are depressed markedly

below their basal �ring rate exactly at the time that the reward should have been

delivered.

Information Encoded in
Dopaminergic Activity

Dopamine neurons of the ventral tegmental
area (VTA) and substantia nigra have long
been identified with the processing of re-
warding stimuli. These neurons send their
axons to brain structures involved in moti-
vation and goal-directed behavior, for ex-
ample, the striatum, nucleus accumbens,
and frontal cortex. Multiple lines of evi-
dence support the idea that these neurons
construct and distribute information about
rewarding events.

First, drugs like amphetamine and co-
caine exert their addictive actions in part by
prolonging the influence of dopamine on
target neurons (14). Second, neural path-
ways associated with dopamine neurons are
among the best targets for electrical self-
stimulation. In these experiments, rats press
bars to excite neurons at the site of an im-
planted electrode (15). The rats often
choose these apparently rewarding stimuli
over food and sex. Third, animals treated
with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet (16).
All the above results generally implicate
midbrain dopaminergic activity in reward-
dependent learning. More precise informa-
tion about the role played by midbrain do-
paminergic activity derives from experiments
in which activity of single dopamine neurons
is recorded in alert monkeys while they per-
form behavioral acts and receive rewards.

In these latter experiments (17), dopa-
mine neurons respond with short, phasic
activations when monkeys are presented
with various appetitive stimuli. For exam-
ple, dopamine neurons are activated when
animals touch a small morsel of apple or
receive a small quantity of fruit juice to the
mouth as liquid reward (Fig. 1). These pha-
sic activations do not, however, discrimi-
nate between these different types of re-
warding stimuli. Aversive stimuli like air
puffs to the hand or drops of saline to the
mouth do not cause these same transient
activations. Dopamine neurons are also ac-
tivated by novel stimuli that elicit orienting
reactions; however, for most stimuli, this
activation lasts for only a few presentations.
The responses of these neurons are relative-
ly homogeneousÑdifferent neurons re-
spond in the same manner and different
appetitive stimuli elicit similar neuronal re-
sponses. All responses occur in the majority
of dopamine neurons (55 to 80%).

Surprisingly, after repeated pairings of
visual and auditory cues followed by reward,
dopamine neurons change the time of their
phasic activation from just after the time of
reward delivery to the time of cue onset. In
one task, a naõ¬ve monkey is required to
touch a lever after the appearance of a small
light. Before training and in the initial
phases of training, most dopamine neurons
show a short burst of impulses after reward
delivery (Fig. 1, top). After several days of
training, the animal learns to reach for the

lever as soon as the light is illuminated, and
this behavioral change correlates with two
remarkable changes in the dopamine neu-
ron output: (i) the primary reward no longer
elicits a phasic response; and (ii) the onset
of the (predictive) light now causes a phasic
activation in dopamine cell output (Fig. 1,
middle). The changes in dopaminergic ac-
tivity strongly resemble the transfer of an
animalÕs appetitive behavioral reaction
from the US to the CS.

In trials where the reward is not deliv-
ered at the appropriate time after the onset
of the light, dopamine neurons are de-
pressed markedly below their basal firing
rate exactly at the time that the reward
should have occurred (Fig. 1, bottom). This
well-timed decrease in spike output shows
that the expected time of reward delivery
based on the occurrence of the light is also
encoded in the fluctuations in dopaminer-
gic activity (18). In contrast, very few do-
pamine neurons respond to stimuli that pre-
dict aversive outcomes.

The language used in the foregoing de-
scription already incorporates the idea that
dopaminergic activity encodes expectations
about external stimuli or reward. This inter-
pretation of these data provides a link to an
established body of computational theory (6,
7). From this perspective, one sees that dopa-
mine neurons do not simply report the occur-
rence of appetitive events. Rather, their out-
puts appear to code for a deviation or error
between the actual reward received and pre-
dictions of the time and magnitude of reward.
These neurons are activated only if the time
of the reward is uncertain, that is, unpredicted
by any preceding cues. Dopamine neurons are
therefore excellent feature detectors of the
ÒgoodnessÓ of environmental events relative
to learned predictions about those events.
They emit a positive signal (increased spike
production) if an appetitive event is better
than predicted, no signal (no change in spike
production) if an appetitive event occurs as
predicted, and a negative signal (decreased
spike production) if an appetitive event is
worse than predicted (Fig. 1).

Computational Theory and Model

The TD algorithm (6, 7) is particularly well
suited to understanding the functional role
played by the dopamine signal in terms of
the information it constructs and broadcasts
(8, 10, 12). This work has used fluctuations
in dopamine activity in dual roles (i) as a
supervisory signal for synaptic weight
changes (8, 10, 12) and (ii) as a signal to
influence directly and indirectly the choice
of behavioral actions in humans and bees
(9Ð11). Temporal difference methods have
been used in a wide spectrum of engineering
applications that seek to solve prediction

Reward predicted
Reward occurs

No prediction
Reward occurs

Reward predicted
No reward occurs

(No CS)

(No R)CS
-1 0 1 2 s

CS

R

R

Do dopamine neurons report an error 
in the prediction of reward?

Fig. 1. Changes in dopamine neuronsÕ
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of predictionÑhence a positive
error in the prediction of reward. The do-
pamine neuron is activated by this unpre-
dicted occurrence of juice. (Middle ) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the predictionÑhence no error in the
prediction of reward. The dopamine neu-
ron is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom ) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur be-
cause of a mistake in the behavioral re-
sponse of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have oc-
curred. The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an inter-
nal representation of the time of the pre-
dicted reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the peri-event time histogram and
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.

SCIENCE ! VOL. 275 ! 14 MARCH 1997 ! http://www.sciencemag.org1594

Figure 1.5: Dopamine as a reward error prediction. Each panel shows the peri-
event time histogram (top) and raster of impulses (bottom) from the same monkey
dopaminergic neuron (each line of dots shows one trial). Original sequence of tri-
als is plotted from top to bottom. CS: conditioned, reward-predicting stimulus. R:
primary reward. (Figure reproduced from Schultz, Dayan, and Montague, 1997.)

Dopamine outputs appeared to code for a deviation or error between the actual

reward received and predictions of the time and magnitude of reward. The authors

then paralleled this with the Temporal Difference error variable in the TD(0) algo-

rithm, from the reinforcement learning framework:
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d(t) = R(t) � V (t) (1.1)

where R(t) is the reward received on time t, and V (t) the expected future reward

associated with that stimuli or action on time t. The TD error d(t) is used to improve

the estimates of V (t):

V (t + 1) = V (t) + a � d(t) (1.2)

where a is a learning rate parameter.

Reward prediction in both Pavlovian and instrumental conditioning tasks was

later shown to rely on similar neural basis, namely the ventral striatum which re-

ceives the projections of dopaminergic neurons (O'Doherty et al., 2004). Therefore

the TD(0) algorithm was used to explain instrumental, as well as Pavlovian, condi-

tioning. Furthermore Pessiglione et al. (2006) investigated the effects of drugs en-

hancing or reducing dopaminergic function. They found that the magnitude of re-

ward prediction error expressed in the striatum was indeed modi�ed by dopamine

treatments, and that participants treated with the dopamine enhancer better learned

than participants treated with the dopamine blocker.

The reinforcement learning model was also used to explain two event-related po-

tentials (ERPs) classically found in EEG measures: the error-related negativity (ERN)

occurring after an erroneous response, and the feedback-related negativity (FRN) oc-

curring after a negative feedback. Holroyd and Coles (2002) found these two types

of ERPs to be generated when a negative prediction error signal is conveyed to the

anterior cingulate cortex (ACC) via the mesencephalic dopamine system. The ACC

appears to monitor errors, in order to then engage regulatory processes in the lateral

prefrontal cortex to improve performance (Ridderinkhof et al., 2004).

controllers acting semi-independently and in parallel, each trying
to exert their influence over the motor system. More specifically,
we consider that the motor controllers correspond to the various
neural command structures that project to the anterior cingulate
motor cortex. For example, one controller might correspond to the
dorsolateral prefrontal cortex, another to the orbitofrontal cortex,
and still others to the basal ganglia and the amygdala. We suggest
that each controller might approach solving high-level motor-
control problems in its own way. For example, whereas one
controller may impel the motor system to search for immediate
reinforcement, another controller might inhibit the motor system in
favor of delayed reinforcement, and still another might direct the
motor system to avoid pain at all costs. Other controllers might
guide motor output when guessing, or when making decisions
under uncertainty, or even when navigating delicate social
encounters.

We propose that the anterior cingulate cortex, at the confluence
of all this information, decides which motor commands are actu-

ally issued to the motor system. In this view, the anterior cingulate
cortex acts as a motor control filter, enabling any one of the motor
controllers to take command of the motor system. Ignorant as to
which controller is best suited to address the task at hand, the
anterior cingulate cortex must learn which controller should be
delegated motor authority. We assume that the anterior cingulate
cortex is trained to recognize the appropriate controller, with
reinforcement learning signals conveyed to it via the mesence-
phalic dopamine system. We further assume that some of the
motor controllers may themselves use those same reinforcement
learning signals to identify the appropriate response strategy re-
quired of them. (This architecture is conceptually similar to the
mixture-of-experts network of Jacobs, Jordan, & Barto, 1991; and
to the goal decomposition approaches of Whitehead, Karlsson, &
Tenenberg, 1993; and Kalmar, Szepesvari, & Lorincz, 1998).

In keeping with previous simulations, we assume that the rein-
forcement learning signal conveyed by the mesencephalic dopa-
mine system is specifically a TD error. In one account of the neural

Figure 1. A schematic of the model. The corresponding neural substrate is given in parentheses below each
component label. See text for details. ERN! error-related negativity; TD! temporal difference error.

685HUMAN ERROR PROCESSING

Figure 1.6: The reinforcement learning theory of error monitoring is linking the tem-
poral difference error to the error-related negativity. (Figure reproduced from Hol-
royd and Coles, 2002.)
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The remaining mystery in instrumental conditioning was to understand how ac-

tions can be selected on the basis of their corresponding reward prediction. Rein-

forcement learning models can use different action selection rules:

� the 'hardmax' rule: always choosing the optimal action, i.e. the action associ-

ated with the highest expected reward,

� the 'softmax' rule: choosing the actions probabilistically on the basis of the ac-

tions' relative expected reward,

� the 'e-greedy'rule: choosing the optimal action most of the time, but occasion-

ally (with probability 1 � e) substituting a random action.

Daw et al. (2006) compared the �t of models embodying these different action

selection strategies. They found their participants' behavior to be better described

by the softmax rule, with the probability of choosing action i taking the form:

Pi =
eb� Vi

å j eb� Vj
(1.3)

This particular reinforcement learning model instantiation (a TD(0) learning rule

to learn the value predictions with a softmax rule for action selection) is now widely

used to explain participants' choices in conditioning tasks (Gläscher and O'Doherty,

2010).WIREs Cognitive Science Model-based approaches to neuroimaging
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FIGURE 1| An example of a computational model which can be used in combination with functional magnetic resonance imaging data:
reinforcement learning (RL). The goal of this model is to learn about the expected reward attributable to a set of actions in the world (e.g., A and B),
and to guide action selection so that the action associated with the highestexpected reward is favored. This particular RL model instantiation uses a
temporal difference learning rule to learn the value predictions and a softmax rule for action selection. The index variablet denotes within-trial time.
The model has Þve internal variables: the prediction error (PE)! , and the estimated value predictions for the two actionsVA andVB, along with the
softmax transformed action probabilitiesPA andPB. These variables are plotted in a trial-by-trial resolution but are modeled at different time points
within a trial when converted to a predictor in a general linear model (Figure 2). The PE! (weighted by the learning rate" ) regulates the size of the
value update on each trial. Softmax action selection is realized by Þltering the value difference through a sigmoid function, whose slope is controlled
by the inverse temperature#. This operation converts the values to action probabilities. This parameter represents the stochasticity of the choices, or
conversely, the reward sensitivity: if# is small, even large value differences will result in verysimilar action probabilities and the modelÕs choices are
virtually random. In contrast, if# is large, even small value differences in the medium value range can be exaggerated, thus leading to different
choices. The model likelihood is used as a cost function in an optimization procedure to determine the model parameters" and# so that modelÕs Þt
with the individual choice history is maximal. As an initial visual quality check, the modelÕs binned action probabilities for one particular action(e.g.,
A) can be plotted against the actual choice probabilities (determined, e.g., as percentage of choices for option A) and the increase across these
different bins can be examined (lower right panel). Deviations of this linear increase from they = x line can indicate whether the model is severely
over- or underpredicting the actual choices of a subject.

Determining Free Model Parameters
After a computational model of a cognitive process
has been selected, the free model parameters have to be
determined, a step which is crucial for the subsequent
interpretation of the fMRI Þndings. In principle, there
are several ways for choosing concrete values for
model parameters.

Firstly, these parameter values can be chosen,
such that the predictions of the model provide the best
Þt to the observable behavioral data. This provides an
important link to the fMRI analysis because it ensures
that the activation pattern in a particular brain region

is instantiating a computation that is behaviorally
relevant, which therefore confers psychological valid-
ity. In the example of Figure 1, the degree to which
the model with a speciÞc set of parameters explains
the behavioral data is computed by summing across
all trials over the logarithm of action probabilities
derived from the model for the action chosen on that
trial. During the optimization procedure, the free
model parameters" (learning rate) and # (softmax
temperature) are iteratively adjusted to minimize the
negative model likelihood, which serves as a cost func-
tion. In the RL case, this is equivalent to minimizing

Volume 1, July/August 2010 $ 2010 John Wiley & Sons, Ltd. 503

Figure 1.7: A summary of the reinforcement learning model used for human cogni-
tion. (Figure reproduced from Gläscher and O'Doherty, 2010.)

However humans and many other animals spontaneously explore their environ-

ments, even when they are not under direct pressure for �nding extrinsic rewards

like food. Interestingly, curiosity-driven learning enables organisms to make dis-

coveries to solve complex problems with rare or deceptive rewards (Oudeyer, 2018).

Colas, Sigaud, and Oudeyer (2018) have recently added a Goal Exploration Process,
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which bene�t from more focus on exploration, within a standard deep reinforce-

ment learning algorithm. The addition of an explorative early phase improved the

standard algorithm in challenging environments.

1.1.4 Computational optimality

In 1979, Sutton and Barto developed the idea of a 'hedonistic' learning system that

wantssomething, that adapts its behavior in order to maximize a special signal from

its environment. Reinforcement learning is now one of the most active areas in ma-

chine learning, with different sub�elds such as dynamic programming, temporal-

difference learning, and function approximation (Sutton and Barto, 1998).

Machine learning studies the class of algorithms provided with a set of data and

designed to 'learn-by-examples'. A typical distinction is made between supervised

learning, in which data are assigned to their corresponding target, and unsupervised

learning, in which the algorithm is simply provided with an unlabelled set of data.

Reinforcement learning is often said to be minimally supervised because agents are

not told explicitly what actions to take in particular situations, but must work this

out themselves on the basis of the reinforcement they receive (Dayan and Abbott,

2001).

Formally, the goal of reinforcement learning is to learn of a behavioral strategy

(a policy) which maximizes the long term sum of rewards (delayed reward) by a

direct interaction (trial-and-error) with an unknown and uncertain environment. Fi-

nite Markov Decision Processes are a classical formalization of sequential decision

making, where actions in�uence not just immediate rewards, but also subsequent

situations, or states.

The learner and decision maker is called the agent. The thing it interacts with,

comprising everything outside the agent, is called the environment. These interact at

each of a sequence of discrete time steps:t = 0, 1, 2... At each time stept, the agent

preceives some representation of the environment's state St 2 S, where Sis the set of

possible states, and on that basis the agent selects an actionA t 2 A(st ), where A(st )

is the set of actions available in stateSt . One time step later, in part as a consequence

of its action, the agent receives a numerical reward, Rt+ 1 2 R � R, and �nds itself

in a new state, St+ 1 (Sutton and Barto, 2017).

38 CHAPTER 3. FINITE MARKOV DECISION PROCESSES

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agentÐenvironment interaction in a Markov decision process.

its action, the agent receives a numericalreward, Rt +1 ! R " R, and Þnds itself in a new state,St +1 .4

The MDP and agent together thereby give rise to a sequence ortrajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a Þnite MDP, the sets of states, actions, and rewards (S, A, and R) all have a Þnite number of
elements. In this case, the random variablesRt and St have well deÞned discrete probability distribu-
tions dependent only on the preceding state and action. That is, for particular values of these random
variables, s! ! S and r ! R, there is a probability of those values occurring at timet, given particular
values of the preceding state and action:

p(s!, r |s, a) .= Pr { St = s!, Rt = r | St " 1 = s, At " 1 = a} , (3.2)

for all s! , s ! S, r ! R, and a ! A(s). The dot over the equals sign in this equation reminds us that it
is a deÞnition (in this case of the functionp) rather than a fact that follows from previous deÞnitions.
The function p : S# R # S# A $ [0, 1] is an ordinary deterministic function of four arguments. The Ô|Õ
in the middle of it comes from the notation for conditional probability, but here it just reminds us that
p speciÞes a probability distribution for each choice ofs and a, that is, that

!

s! # S

!

r # R

p(s!, r |s, a) = 1 , for all s ! S, a ! A(s). (3.3)

The probabilities given by the four-argument function p completely characterize the dynamics of a
Þnite MDP. From it, one can compute anything else one might want to know about the environment,
such as thestate-transition probabilities (which we denote, with a slight abuse of notation, as a three-
argument function p : S# S# A $ [0, 1]),

p(s! |s, a) .= Pr { St = s! | St " 1 = s, At " 1 = a} =
!

r # R

p(s!, r |s, a). (3.4)

We can also compute the expected rewards for stateÐaction pairs as a two-argument functionr : S# A $
R:

r (s, a) .= E[Rt | St " 1 = s, At " 1 = a] =
!

r # R

r
!

s! # S

p(s!, r |s, a), (3.5)

or the expected rewards for stateÐactionÐnext-state triples as a three-argument functionr : S# A # S $
R,

r (s, a, s!) .= E[Rt | St " 1 = s, At " 1 = a, St = s!] =
!

r # R

r
p(s!, r |s, a)
p(s! |s, a)

. (3.6)

it simply as A.
4We use Rt +1 instead of Rt to denote the reward due to A t because it emphasizes that the next reward and next

state, Rt +1 and St +1 , are jointly determined. Unfortunately, both conventions are widely used in the literature.

Figure 1.8: The agent-environment interaction in a Markov decision process. (Figure
reproduced from Sutton and Barto, 2017.)

The use of a reward signal to formalize the idea of a goal is one of the most dis-

tinctive features of reinforcement learning. According to the discounting approach,
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the agent tries to select actions so that the sum of the discounted rewards it receives

over the future is maximized. In particular, it chooses A t to maximize the expected

discounted return:

Gt =
¥

å
k= 0

gkRt+ k+ 1 (1.4)

where g is a parameter, called the discount rate (0 � g � 1).

Almost all reinforcement learning algorithms involve estimating value functions,

that estimate how good it is for the agent to be in a given state, with respect to par-

ticular ways of acting, called policies. Formally the state-value function for policy p ,

denoted vp (s), is the expected return when starting in s and following p thereafter:

vp (s) = Ep [Gt jSt = s] (1.5)

If the agent is following policy p at time t, then p (ajs) is the probability that

A t = a if St = s. The Bellman equation for vp expresses a relationship between the

value of a state and the value of its successor states:

vp (s) = å
a

p (ajs) å
s0,r

p(s0, r js, a)[r + gvp (s0)] (1.6)

for all s 2 S.

The optimal policy to follow is de�ned as having the optimal state-value func-

tion, denoted v� :

v� (s) = max
p

vp (s) (1.7)

for all s 2 S.

Interestingly the TD(0) algorithm has been shown to slowly converge to the op-

timal solution, given some conditions as a Markovian environment and an action

selection rule allowing for some exploration (as the softmax or the e-greedy rules).

We have seen how the reinforcement learning framework can explain learning

by associations driven purely from reward and punishment. Now we will further

develop why the notion of control is important to take into account in reinforcement

learning.

9
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1.2 Conditioning and instrumental control

Here we will review how control and reinforcement learning are two interdependent

concepts, and how manipulating instrumental control in conditioning experiments

have led to rich discoveries.

1.2.1 Superstitious behaviour

According to the reinforcement learning theory, learning will take place as long as

an action and a subsequent reward are contingent, and not necessarily when the

action is actually causingthe reward. Skinner (1948) therefore hypothesized that

conditioning protocols could create superstitious behavior, if rewards were to be

given in a random manner. Eight hungry pigeons were put in an experimental cage

with a food hopper. Food was given to the pigeons at regular intervals, with no

reference whatsoever to the bird's behavior. After a brief delay, six pigeons exhibited

a clear and repetitive behavior between the food arrivals: turning counter-clock wise

two or three times, pecking or brushing movements towards the �oor, hopping from

right to left, etc.

Skinner interpreted the results as such: “The experiment might be said to demon-

strate a sort of superstition. The bird behaves as if there were a causal relation be-

tween its behavior and the presentation of food, although such a relation is lacking.

There are many analogies in human behavior.” (Skinner, 1948).

 

 

Fig. 1 . 'Reconditioning' of a supe rstitious response after extinction. The response of 

hopping from right to left ha d been thoroughly extinguished just before the record 

was taken. The arrows indicate the automa tic presentation of food at one-min. 

intervals without reference to the pigeon's behavior. 

 

In this case it was possible to reco rd the 'extinction' of the response 

when the clock was turned off and the magazine was no longer 

presented at any time. The bird continued to respond with its 

characteristic side to side hop.  More than l0,000 responses were 

recorded before 'extinction' had re ached the point at which few if any 

responses were made during a 10 or  15 min interval. When the clock 

was again started, the periodic pres entation of the magazine (still 

without any connection whatsoever wi th the bird's behavior) brought 

out a typical curve for reconditioni ng after periodic reinforcement, 

shown in Fig. 1. The record had been  essentially horizontal for 20 min. 

prior to the beginning of this curve . The first reinforcement had some 

slight effect and the second a greater effect. There is a smooth 

positive acceleration in rate as the bird returns to the rate of 

responding which prevailed when it was reinforced every min.  

 5

Figure 1.9: The response of hopping from right to left have been observed and me-
chanically recorded in a pigeon placed in a cage with rewards given at regular inter-
vals. The arrows indicate the automatic presentation of food at one-minute intervals
without reference to the pigeon's behavior. The bird does not respond immediately
after eating, but when 10 or 15 or even 20 seconds have elapsed, it begins to respond
rapidly and continues until the reinforcement is received. (Figure reproduced from
Skinner, 1948.)

Superstitious, magical, and pseudoscienti�c thinking refer to ungrounded be-

liefs that are not supported by current evidence (Lindeman and Svedholm, 2012).

Such beliefs are indeed widespread in people: two in �ve Europeans are supersti-

tious (European Commission, 2010) and three-quarters of the American population

believes in the authenticity of one or more paranormal processes (Moore, 2005). In-

terestingly, reinforcement learning can be used to explain complex behaviors such

as superstitious actions.
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1.2.2 Learned helplessness

Reinforcement learning is often of little help to understand moods or emotions (but

see Eldar and Niv, 2015 for a counter-example). Resignation is a typical marker of

depression and is highly correlated to neuroticism, a fundamental personality trait

characterizing a persisting tendency to experience negative emotions (Jeronimus et

al., 2016). Seligman, an American psychologist, identi�ed resignation as a mood

that can be learnt, instead of being a �xed individual trait. The theory of 'learned

helplessness' postulates that, as humans are naturally prone to avoid suffering, res-

ignation has to be learnt by repeatedly experiencing negative events, over which we

have no control.

This hypothesis was exposed in a seminal study conditioning dogs with electrical

shocks. Seligman and Maier (1967) used three groups of dogs. The �rst was a control

group, placed in a hammock without any treatment. The second group was exposed

to electrical shocks that could be suppressed when the dogs pressed a panel with

their nose, and the dogs indeed were able learn this association. The third group

was also exposed to electrical shocks, but without the possibility to alleviate them.

Group 3 dogs were yoked to Group 2 dogs, so that both groups would receive the

same average duration of shock.

The next day the animals were installed in a different environment, a shuttlebox

escape, from which they could escape by jumping a partition. When again exposed

to electrical shocks, 90% of the dogs in both Groups 1 and 2 learned to escape by

crossing the barrier, while two third of the Group 3 dogs laid down passively during

the shocks, failing to escape the shuttlebox.

Figure 1.10: After receiving controllable or uncontrollable electrical shocks, the dogs
in Seligman and Maier (1967)'s experiment were placed in a compartment from
which they could easily escape. When again exposed to electrical shocks, animals
having received controllable shocks easily found the solution to escape (as in the �g-
ure) while dogs previously subjected to uncontrollable pain laid motionless. (Figure
replicated from Swenson's online lecture.)

Although this phenomenon was already known at the time (e.g. Overmier and

Leaf, 1965), it was mainly interpreted as an interference effect (Adams and Lewis,

1962): animals were thought to fail escaping the shuttlebox because they had learnt

in the �rst part of the experiment some behavior that interfered with the escaping

behavior necessary in the second part. Seligman was the �rst to postulate and prove

that this lack of initiative subsequent to uncontrollable shocks comes from the lack of

control experienced. In a crucial experiment, any possible interfering behavior was

prevented by immobilizing Group 3 dogs with curare while exposing them to un-

controllable shocks. Later, when placed in the compartments where electrical shocks

11
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were given, Group 3 dogs were again immobile, although they could not have de-

veloped an interfering behavior from their previous shock exposure (Overmier and

Seligman, 1967).

Another interpretation was proposed to explain the helplessness behavior ob-

served. From a behaviorist point of view, animals only learn an association between

a speci�c response and an event, and they are unable to learn that they lack control

over events. Thus it was claimed that in Seligman and Maier (1967)'s experiment,

when the animals �rst receive unescapable shocks in the hammock, shock offset

was occasionally paired with not moving. This could reinforce the association of not

moving with shock offset, explaining the absence of movement when animals were

later placed in the escapable shuttlebox. As Skinner (1992) has shown, non-existent

action-outcome relationships can indeed be conditioned in a situation of lack of con-

trol.

But Maier (1970) refuted this behaviorist-compatible interpretation of learned

helplessness by testing a variant of the original task in which Group 2 dogs could

suppress shock by holding still, and not by pressing a lever. Similarly to their pre-

vious results, they found that dogs subsequently succeeded to learn to escape the

shuttlebox by jumping the partition. These results grounded the theory of learned

helplessness: experiencing uncontrollable negative events leads to a general help-

lessness state of mind. This experiment crucially showed that beyond learning pure

response-outcome associations, animals are able to learn a general lack of control.

That �nding, among other results, constituted the beginning of a cognitive theory of

animal behavior.

Almost exactly at the same time as Seligman and Maier (1967), the same paradigm

was used on rats, but this time to study the physiological effects of escapable and un-

escapable electrical shocks (Weiss, 1968). Triplets of rats were placed into a restrain-

ing and escape-avoidance cage. One rat was randomly assigned to the Nonshock

group, and its tail electrode was disconnected to the electric generator. One rat was

assigned to the Avoidance group and the electrical shocks received could be termi-

nated when the animal touched the copper plate in front of him with its nose. The

rat assigned to the Yoked group received the same electrical shocks as the Avoidance

rat, and the touch plate in front of it was not connected to the electrical shock relay.

256 JAY MICHAEL WEISS

The fear tests (latency to drink) indi-
cated that as a result of being able to avoid
or escape shock, Avoidance Ss were less
afraid in the stress situation than Yoked
Ss. Since drinking was measured in the
lower compartment, Avoidance Ss were
found to be less afraid in the location
where they received at least as many
shocks as. Yoked Ss. It can be suggested
that the difference in fear between Avoid-
ance and Yoked Ss led to the difference in
body weight. Evidence that fear and weight
gain were related was seen in the correla-
tion between weight gained following the
initial stress session and amount of feces
excreted during this session, another meas-
ure of fear which discriminated Avoidance
and Yoked Ss. Since the present study
controlled for possible differences in the
physical stressor, these results establish
that weight loss in rats can be produced
psychogenically, apparently by fear.

It is also apparent that differences in
body weight developed as the result of a
.poststress effect occurring in Ss' home
cages away from the stress situation, since
Avoidance and Yoked Ss lost similar
amounts of weight during the stress ses-
sion. When Peters and Finch (1961) gave
rats a single shock and subsequent exposure
to the stress situation, they suggested that
the weight loss observed at the end of 5
days had occurred outside the stress situa-
tion, although they had not tested this
possibility by measuring the actual weight
loss during stress sessions. The present re-
sults confirm their suggestion that major
stress-induced weight changes occur follow-
ing removal from the stress situation. This
adds changes in body weight to a growing
list of poststress effects, such as have been
found relating to stomach acid (Polish,
Mason, Thach, & Niemeck, 1962) and
body temperature (Goodell, Graham, &
Wolff , 1950).

Church (1964) made the ingenious sug-
gestion in regard to the Mowrer and Viek
(1948) study that Avoidance Ss would
rapidly turn off shock when it became pain-
ful , but that Yoked Ss could experience
pain above this threshold since they could
not terminate shock at that point. Since

conditions of the present studies also dif-
fered from those of Mowrer and Viek in
that virtually all shocks were much above
any S's pain threshold, particularly when
delivered through fixed electrodes, the
argument does not apply to this situation.

EXPERIMENT 2
In Experiment 2, effects of coping be-

havior were examined in a different situa-
tion, and stress was measured in terms of
another indicant, gastrointestinal lesions.
Avoidance Ss, as in Experiment 1, had
control over the occurrence and duration of
shock, but the situation in Experiment 2
was designed to be generally more stressful
with all Ss restrained in a small area
throughout the stress session, and the length
of the session increased to over 20 hr.

Method
Subjects. The Ss were male albino rats similar

to those in Experiment 1.
Apparatus. The principal apparatus consisted of

the three combination restraining and escape-
avoidance cages shown in Figure 1. At the front
of each cage was a copper plate which S could
touch with its nose or front feet by reaching
through a %-in.-diameter hole, thereby com-
pleting a low current (.1 ^a.) relay circuit. The
cages rested on a large platform supported by
springs which could be gently oscillated by means
of a motor and cam.

Procedure. For each experimental session, one
triplet matched for body weight was drawn from

FIG. 1. Avoidance, Yoked, and Nonshock Ss
(foreground to rear) in the apparatus.

Figure 1.11: An illustration of a triplet of rats used in Weiss (1968)'s protocol. The
lower rat is part of the Avoidance group, the middle rat of the Yoked group and the
upper rat of the Nonshock group. (Figure reproduced from Weiss, 1968.)
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Weiss (1968) found that Yoked rats showed a greater decrease in body weight

and more extensive gastric lesions (also known as stress ulcers) than Avoidance rats.

Thus the physiological effects of stress could be decreased by being able to perform

a response that controlled the electrical shocks, that Weiss called a coping response.

This study shows that exerting control over negative events is an important factor

not only to predict how an animal will react to the next aversive events, but also to

reduce stress and its noxious consequences.

258 JAY MICHAEL WEISS

TABLE 3
GASTROINTESTINAL LESIONS FOR EACH GROUP

IN EXPERIMENT 2

Groupa

Yoked
Avoidance
Nonshock

Percent-
age of 5s
showing
lesions

75
68
31

Mean
number of

lesions13

2.4
1.0
0.7

Mean length
of longest
lesion (in

mm.) among
SB develop-
ing lesions0

3.0
1.7
L2

Mean total
length of
lesions

(in mm.) ¡

4.5
1.6
0.5

a N = 16 for each group.
b Yoked Ss differed significantly from Avoid-

ance (p < .02) and Nonshock (p < .005) Ss.
c Yoked iSs differed significantly from Avoidance

and Nonshock iSs, both p's < .03, with independ-
ent i!-tests.

d Yoked Ss differed significantly from Avoid-
ance (p < .01) and Nonshock (p < .001) Ss;
Avoidance and Nonshock groups differed signifi-
cantly (p < .05). Zero length was assigned for
Ss showing no lesions.

Tissue prepared histologically was exam-
ined by a pathologist who confirmed the
presence of lesions.

Table 3 presents the results of analysis
of lesions, as determined blindly by the in-
dependent judge. It can be seen that Yoked
Ss developed more extensive lesioning than
Avoidance and Nonshock Ss. Figure 2
shows matched Yoked and Avoidance Ss,
displaying the range of differences.

Results of directly comparing Ss in each
triplet for abnormality are shown in Table
4. Two triplets were not included in this
analysis since the pathology in these cases
was so limited that the judge could not
assign a separate rank to each stomach.
The overall x2 with these cell frequencies

TABLE 4
FREQUENCIES OF STOMACH ABNORMALIT Y

RANKINGS FOR ALL GROUPS

Abnormality
Group

ranka

1 (least)
2
3 (most)

Yoked

0
1

13

Avoidance

4
9
1

Nonshock

10
4
0

was highly significant (x2 = 40.0, p <
.001). It can be seen that there was a
marked tendency for the Yoked S in each
triplet to be rated most abnormal. The
X2s comparing individual groups showed a
significant difference between Yoked and
Avoidance groups (x

2 = 20.7, p < .001)
and Yoked and Nonshock groups (x2 =
24.8, p < .001), while the difference be-
tween Avoidance and Nonshock groups
approached significance (x2 = 5.5, p <
.10).

Measurement of lesions and ratings of
abnormality by E yielded similar results
to those reported above. The correlation
between lesion measurements by the inde-
pendent judge and E was .89.

Disciission
Results of Experiment 2 showed that

Yoked Ss developed more severe gastro-
intestinal lesions than either Avoidance or
Nonshock Ss and confirmed findings of the

a Two triplets, in which pathology was so
limited that the judge could not assign separate
ranks, were not included.

FIG. 2. The glandular portion of stomachs for
matched Avoidance and Yoked Ss, illustrating
the range of differences in length of lesions as
determined by the judge. (Top pair show a large
positive differenceÑi.e., Yoked S with more
lesioned tissue than its matched Avoidance SÑa
moderate positive difference is presented below
this; Ss at bottom show the largest negative
difference which was found, the Avoidance S
having two narrow longitudinal lesions in the
fold at the upper right.)

Figure 1.12: Photographs of the stomachs of one Yoked example rat and one Avoid-
ance example rat from Weiss (1968)'s study. An independent judge, blind to the
experimental condition, identi�ed a lesion as a clearly visible defect or break in the
mucosa, which was often accompanied by hemorrhage. She found more extensive
gastric lesioning in the Yoked than in the Avoidance group. (Figure reproduced from
Weiss, 1968.)

Learned helplessness was found to be characterized by a constellation of behav-

ioral changes, that go well beyond a reduced escaping behavior or an increase in

stress markers. Uncontrollable stressors also tended to reduce swimming when the

animal was placed in water; reduce aggression and social dominance; produce neo-

phobia, exaggerated fear and fear conditioning; reduce social interaction; produce

opioid analgesia; reduce learning of instrumental responses for appetitive rewards;

increase rewarding effects of opiates, and so on (see Maier and Watkins, 1998 for a

review).

We have seen that instrumental control through avoidance options can produce

substantial reductions in stress. But conditions were also found which produced

more pathology in animals able to perform a coping response than in helpless an-

imals. Weiss (1971) put rats in a situation in which they had to make a bar press

response to avoid shock – but successful avoidance was signaled by an aversive

blast of loud noise. In effect, the rats had to choose between two negative outcomes:

shock versus noise, and they developed ulcers comparable to those of the helpless

rats exposed to inescapable shock. Dif�cult decisions (as choosing the lesser of two

evils) thus instigate costly inner processes.

Although learned helplessness is sometimes called 'behavioral depression' (Weiss

et al., 1981), it should be noted that consequences of exposure to uncontrollable stres-

sors are as similar to depressive symptoms as to those of extreme anxiety. Moreover,

learned helplessness was found to be sensitive to both anti-depressants and anxi-

olytics (Maier and Watkins, 2005). This is perhaps not surprising since the devel-

opment of both depression and anxiety may be in�uenced by stress, particularly

uncontrollable stress. But caution should be used when extrapolating the learned

helplessness literature to explain the development of psychiatric diseases as major

depressive disorder.
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1.2.3 The notion of instrumental contingency

The intuitive notion of helplessness entails the belief that no action that one does will

matter, and therefore can be de�ned as a perceived lack of control. Maier and Selig-

man (1976) de�ned the notion of controllability in an early review of their work.

They called p(RFjR) the conditional probability of an outcome or reinforcer RF

following a response R (at p(RFjR) = 1, every response produces a reinforcer; at

p(RFjR) = 0, a response never produces a reinforcer). Important events can some-

times occur when no speci�c response has been made, and they called p(RFjR) the

conditional probability of a reinforcer RF following an absence of response R.

They de�ned that a response stands in a relation of control to a reinforcer if and

only if:

p(RFjR) 6= p(RFjR) (1.8)

And conversely a reinforcer was said to be uncontrollable if p(RFjR) = p(RFjR)

for all possible responses R.LEARNED HELPLESSNESS: THEORY AND EVIDENCE

One conditional probability, however, is
an inadequate description of the relations be-
tween response and outcomes about which
an organism may learn. Important events
can sometimes occur when no specific re-
sponse has been made, and it would be a
woefully maladaptive organism that was in-
sensitive to such a contingency. Rather
than representing environmental contingen-
cies as occurring along a single dimension,
we think instrumental training can be better
described using a two-dimensional space, as
shown in Figure 1. The .ar-axis />(RF/R)
represents the traditional dimension, the
conditional probability of an outcome follow-
ing a response. Orthogonal to the condi-
tional probability of an outcome, given a
response, is the conditional probability of an
outcome occurring in the absence of that re-
sponse />(RF/R). This dimension is repre-
sented along the y-axis. We assume that
organisms are sensitive to variations along
both dimensions conjointly, and the empiri-
cal meaning of this assumption is that sys-
tematic changes in behavior should occur
with systematic changes along both dimen-
sions. There is considerable convergence of
opinion and evidence among learning theo-
rists today that organisms can indeed learn
about the contingencies within this instru-
mental training space, including the crucial
45¡ line (e.g., Catania, 1971; Church, 1969;;
Gibbon, Berryman, & Thompson, 1974;
Maier, Seligman, & Solomon, 1969; Res-
corla, 1967, 1968; Seligman, Maier, & Solo-
mon, 1971; Wagner, 1969; Weiss, 1968).
Thus an organism may learn the extent to
which food occurs when it does not make a
specific response along with learning the
extent to which food occurs when it does
make a specific response.

Consider a few examples. In Figure 1,
Point a (1.0,0) is a case of continuous re-
inforcement : The subject is always rein-
forced for response R, and is never rein-
forced if it fails to make R. Point b (0,1.0)
is a case in which the subject is never rein-
forced for making the designated R, and is
always reinforced for refraining from R (dif-
ferential reinforcement of other behavior).
Consider Point c (.5,.2): Here the subject

p (RF/R)

.40 -

.20 -

(.00

FIGURE 1. The response-reinforced contingency
space. p( RF/R) = conditional probability of an
outcome following a response, />(RF/R) = condi-
tional probability of an outcome occurring in the
absence of that response.

is reinforced 50% of the times that it makes
R, but even if it fails to make R, it is rein-
forced 20% of the time.

The traditional training procedures ar-
rayed along the #-axis have been thoroughly
explored by many experimenters (e.g., Fer-
ster & Skinner, 1957; Honig, 1966). The
points in the training space which do not
fall along the #-axis have not, however, been
systematically investigated. Consider the
points that lie along the 45¡ line (x, y,
where x = y). Whether or not the subject
responds, the density of reinforcement is the
same. The conditional probability of an
outcome, given a specific response, does not
differ from the conditional probability of re-
inforcement in the absence of that response.
The outcome is independent of responding.

The concepts of controllability and uncon-
trollability are defined within this instru-
mental training space. Any time there is
something the subject can do or refrain
from doing that changes what it gets, it has
control. Specifically, a response R stands in
a relation of control to a reinforcer RF if
and only if

/È (RF/R) ^# (RF/R). (1)

Furthermore, when a response wil l not
change what the subject gets, the response

Figure 1.13: An outcome is de�ned as uncontrollable when the probability of the
outcome or reinforcer RF following a response R is the same as the probability of
the outcome RFfollowing the absence of response R. (Figure reproduced from Maier
and Seligman, 1976.)

Independently from Maier and Seligman (1976), Hammond (1980) also de�ned

instrumental contingency as the difference between probabilities of a reward R in

presence or absence of an actionA:

Dp = p(RjA) � p(RjA) (1.9)

If there is a causal action-reward relationship, the reward is said be 'contingent'

with the action.

1.2.4 Instrumental contingency and behavior

In contrast with Skinner (1948)'s results, Hammond (1980) was the �rst to demon-

strate that animals are sensitive to the causal relation between response and reward.

Hungry rats were trained to press a lever under a schedule in which the �rst press

14
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in each one-second period is followed the delivery of a food pellet with a �xed prob-

ability. The causal relationship between lever pressing and food delivery was then

degraded by increasing the probability that a food pellet will be delivered at the end

of any second in which the animal does not press the lever. When the two proba-

bilities of reward in presence and absence of lever pressing were set equal, pressing

had no effect on the likelihood of the reward.

The important feature of this causal manipulation is that the contingency was

degraded without altering the probability that a response was paired with a reward.

Still, enhancing the probability of a reward in the absence of the response depressed

the rats' instrumental performance.

LYNN J. HAMMOND
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Fig. 1. Responses per hour for sessions of Experiment I. The top graph represents the mean response rate for
all ten rats, the two lower graphs depict the two subjects which showed the most and the least effect of the shifted
contingency.
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Figure 1.14: The mean response rate for ten rats accross different experimental ses-
sions. The numbers above indicate the probability of a reward in the presence and
absence of a response, thus .05-0 indicates an instrumental contingency, while .05-.05
indicates no contingency. (Figure reproduced from Hammond, 1980.)

Human participants were also found to be sensitive to the implemented contin-

gency. Liljeholm et al. (2011) manipulated both the probability of a reward given an

action p(RjA), and given no action p(RjA). They found that the participants' mean

response rate was lower when contingency was degraded similarly to the rats' be-

havior in Hammond (1980)'s experiment.

Figure 1.15: Mean presses per second in human participants across blocks sorted
in descending order by objective contingency. (Figure reproduced from Liljeholm
et al., 2011.)
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Interestingly, Maier and Seligman (2016) drew a distinction between objective

and subjective helplessness in a recent review. An animal is objectively helpless with

respect to an outcome if this outcome is uncontrollable by any possible response.

But being subjectively helpless is another matter. The animal must 'detect' the lack

of contingency as de�ned above and so must have expected that in the future the

shock would be independent of its responses. Thus by experiencing an objective un-

controllability, an animal can develop a subjective helplessness. In the next section,

we will see how the perception of control can differ from the actual control in human

explicit reports.

16
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1.3 The perception of control

We will now review psychological studies on humans investigating the effects of

control perception(and not control itself) on explicit reports and behavior.

1.3.1 The locus of control

The locus of control refers to people disposition to believe their fate either to be in

their own hands or to be the consequence of external factors beyond their personal

control. In an in�uential article, Rotter has hypothesized that the perceived locus

of control would greatly in�uence how people will learn from reinforcements: “A

person who is looking for an unusual brand of tobacco and is �nally able to �nd it

will return to the same place where he was reinforced before when he needs tobacco

again. However, an individual who needs money and �nds a �ve dollar bill in the

street is not likely to return to that spot to look for a �ve dollar bill when he needs

money.” (Rotter, 1966).

An experiment was undertaken comparing verbal expectancies for future rein-

forcement under conditions of chance and skill learning. Phares (1957) used color

matching as an ambiguous task and instructed half of the subjects that the task was

so dif�cult as to be a matter of luck and the other half of his subjects that success

was a matter of skill and that previous research had found some people to be very

good at the task. For both conditions, a �xed order of partial reinforcement (right

or wrong) was used. To measure the participants' expectancy, they were asked the

number of chips they would bet on their probability of being correct on the succeed-

ing trial. As Rotter has hypothesized, the increments and decrements of expectancy

following respectively success and failure, were found to be signi�cantly greater un-

der skill instructions than under chance instructions.

Rotter developed and validated a questionnaire, the Internal-External Locus of

Control Scale (I-E scale), to assess people's locus of control. Individuals who be-

lieve personal outcomes are contingent largely on their own behavior and attributes

are said to have internal locus of control. On the other hand, people with external

locus of control feel predominantly governed by other powerful individuals, insti-

tutions, luck, chance and so on. Rotter (1966) found that the scores on the locus of

control questionnaire could explain individual differences in learning or not from

reinforcers.

12 Jct.iax B. Rottkh 

T A B L E 1ÑContinue d 

Item 
Hiserial item correlations 

200 M 200 K 400 M + F 

15.a. I n my case getting what I want has l i t t le or nothing 
to do wi th luck. 

b. Many times we might just as well decide what to do by 
Ñ  flipping a coin. .369 .209 .288 

16.a. Who gets to be the boss often depends on who was 
""" lucky enough to be in the right place first. .295 .318 .307 
b. Getting people to do the right thing depends upon 

ability, hick has little or nothing to do with it. 
17.a. As far as world affairs are concerned, most of us are 

~~ the victims of forces we can neither understand, nor 
control. .313 .107 .357 

b. By taking an active part in political and social affairs 
the people can control world events. 

18.a. Most people don't realize the extent to which their 
~ lives are controlled by accidental happenings. .258 .362 .310 
b. There really is no such thing as "luck." 

19.a. One should always be willing to admit mistakes. (Filler) 
b. I t is usually best to cover up one's mistakes. 

20.a. It is hard to know whether or not a person really likes 
" you. .255 .307 .271 
b. How many friends you have depends upon how nice a 

person you are. 
21.a. In the long run the bad things that happen to us are 

~~ balanced by the good ones. .108 .197 .152 
b. Most misfortunes are the result of lack of ability, 

ignorance, laziness, or all three. 
22.a. With enough effort we can wipe out political corrup-

tion. 
b. It is difficult for people to have much control over the 
Ñ  things politicians do in office. .226 .224 .227 

23.a. Sometimes I can't understand how teachers arrive at 
~ the grades they give. .275 .248 .255 
b. There is a direct connection between how hard I study 

and the grades I get. 
24.a. A good leader expects people to decide for themselves 

what they should do. (Filler) 
b. A good leader makes i t clear to everybody what their 

jobs are. 
25.a. Many times I feel that I have l i t t le influence over 

Ñ  the things that happen to me. .521 .440 .480 
b. I t is impossible for me to believe that chance or luck 

plays an important role in my l i fe. 
26.a. People are lonely because they don't t r y to be fr iendly. 

b. There's not much use in t ry ing too hard to please 
~ people, if they like you, they like you. .179 .227 .195 

27.a. There is too much emphasis on athletics in high school. (Fil ler) 
b. Team sports are an excellent way to build character. 

28.a. What happens to me is my own doing. 
b. Sometimes I feel that I don't have enough control over 
ª  the direction my life is taking. .331 .149 .238 

29.a. Most of the time I can't understand why politicians 
_ behave the way they do. .004 .211 .109 
b. I n the long run the people are responsible for bad gov-

ernment on a national as well as on a local level. 

Note.ÑScor e is number of underlined items. 

Figure 1.16: Examples among the 29 items in the Internal-External Locus of Control
Scale. The �nal score is given by the number of underlined items (item number 26
is a `�ller', as it is not related to locus of control). (Figure reproduced from Rotter,
1966.)
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The I-E scale developed by Rotter has remained the most popular tool for mea-

suring locus of control (Twenge, Zhang, and Im, 2004). A quantitative meta-analysis

found an internal locus of control to predict many favorable work outcomes, such

as positive task and social experiences, and greater job motivation (Ng, Sorensen,

and Eby, 2006). Locus of control is an important part of a trait termed core self-

evaluation, the other parts being self-esteem, self-ef�cacy, and emotional stability.

Core self-evaluation was shown to be the best predictor for job performance and

work and life satisfaction (Judge, 2009).

There is a general trend for paranormal beliefs to be associated with an external

locus of control (Dag, 1999; Tobacyk, Nagot, and Miller, 1988). As a group, paranor-

mal believers are inclined to feel specially vulnerable to external forces beyond their

control (Irwin and Watt, 2007). This correlation suggests an interesting relationship

between locus of control and the development of superstitious beliefs.

1.3.2 Illusions of control

In a seminal �eld study involving 631 adults, Langer (1975) showed that people tend

to overestimate the probability of a positive outcome, and that this overestimation

was based on factors that cannot rationally play a causal role in obtaining the out-

come. For example, she found that response familiarity, or practice, on a chance

task resulted in greater con�dence in winning than when there was no practice. In-

creased con�dence also resulted when the apparatus was controlled by the subject

rather than the experimenter, even though in both instances the subject determined

the response that would be made.

There are many naturalistic situations in which people fail to accurately judge a

lack of contingency. Henslin (1967) studied dice playing and noted that dice players

clearly behave as if they were controlling the outcome of the toss. They would throw

the dice carefully and softly if they wanted low numbers, and to throw it hard for

high numbers. They also believe that effort and concentration will pay off.

Blanco, Matute, and Vadillo (2011) investigated the effect of behavior on the il-

lusion of control. Although they implemented no contingency between the partici-

pants behavior (a key pressing) and the outcome (a �ctive patient recovering from

a disease), subsequent judgements of contingency were positive, suggesting they

developed an illusion of control.

Crucially, active participants (the participants that pressed the key the more of-

ten) were more prone to develop the illusion of control than those who responded

less often. Blanco, Matute, and Vadillo (2011) suggested that this correlation could

emerge from a cognitive dissonance phenomenon: the more participants have re-

sponded, the more prone they are to judge that their effort was not in vain.

In another experiment, Langer and Roth (1975) asked participants to guess the

result of 30 coin toss. When feedback were manipulated to give participants an

early, fairly consistent pattern of successes (although there was always in total 15

wins and 15 losses), participants predicted signi�cantly more successes on future

trials than those experiencing a random outcome sequence. In another experiment,

the perception that one is causing a successful outcome was enhanced merely by the

increased frequency of that outcome (Jenkins and Ward, 1965).
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p , .05. In addition, there was some interindivi-
dual variability, as can be concluded from Figure
2. Indeed, the minimum value of the actual contin-
gency in our sample was Ð.76 (high negative
contingency) while the maximum value was .45
(moderate positive contingency), despite the fact
that all participants were exposed to an identical
sequence of uncontrollable outcomes.1 If the
observed variance in the judgements of contingency
reßected differences in the actual contingencies
received by participants, then we should Þnd that
the contingency values to which participants are
actually exposed increase with the P(R). The ana-
lyses showed that, indeed, as P(R) went up, so did

the actually experienced contingency,b ! .54,
t(81) ! 5.83,p , .001 (see Figure 2).

Then a multiple regression analysis, with P(R)
and actual contingency as factors, was conducted
on the judgements. The extent to which the
actual contingency values could predict the
judgements, while controlling for the P(R) effect,
was checked, yielding a nonsigniÞcant result,
b ! .07, t(80) ! 0.59, p ! .56. In contrast, the
effect of P(R) on judgements remained signiÞcant
even when controlling for the effect of the actual
contingency, b ! .33, t(80) ! 2.64, p , .01.
Thus, the effect of P(R) on judgements that we
found and reported cannot be explained by the
differential exposure to contingencies during the
training phase.

The actual contingency values were calculated
at the end of the training phase, which means
that they are overall values. One could argue,
then, that participants may not have based their
judgements on the overall actual contingency
values, but on the actual contingency values experi-
enced only during the Þrst part of training, or
perhaps only during the last part of it, showing
either a primacy or a recency bias. This possibility
was tested by means of two simple linear
regressions. Neither the contingency presented
during the Þrst 10 trials of the training phase
(M ! Ð.06; SEM ! .05), b ! Ð.04, t(81) !
0.39, p ! .70, nor the contingency presented
during the last 10 trials of the training phase
(M ! .03; SEM ! .05), b ! Ð.03,t(81) ! 0.32,
p ! .75, was able to predict the subsequent judge-
ments of contingency. Note that the probability of
the outcome, P(O), was exactly .80 in these two
blocks of the training phase. This is a high P(O)
condition that warrants a fair comparison with
the previous analyses on the whole learning
phase (in which the probability of the outcome
was also high, .76).

Taken together, our analyses show no evidence
that participantÕs ratings about the efÞcacy of the
medicine were based on the actual contingency

Figure 1. Judgements as a function of probability of responding,
P(R), in Experiment 1.

Figure 2. Variability in actual contingency in Experiment 1. P(R)
! probability of responding.

1Note that only P(R) and actual contingency were allowed to vary from one participant to another: The P(O) was identical for
every participant (38 out of 50 trials were preprogrammed as outcome present), and, therefore, the P(O) cannot be on the basis of
variability in the actual contingency.
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Figure 1.17: Contingency judgements as a function of probability of responding,
P(R). (Figure reproduced from Blanco, Matute, and Vadillo, 2011.)

The illusion of control can thus be partly explained by a human bias to more

attribute to oneself success than failure. Such link between perceived control and

positive outcomes could explain why depressed individuals – who think less often

of success – are not as likely as others to over-perceive control of successful outcomes

(Alloy and Abramson, 1979).

1.3.3 An analytical perception of control

Illusions of control appear to be common in natural settings. But we also saw that

humans and animals can be sensitive to instrumental contingency of their actions

(Hammond, 1980; Liljeholm et al., 2011). Indeed, when humans are instructed before

the beginning of the experiment to behave scienti�cally and to assess the response-

outcome relationship, most studies found participants' judgments to be strong linear

functions of the programmed contingencies (Chatlosh, Neunaber, and Wasserman,

1985; Wasserman, Chatlosh, and Neunaber, 1983).

PERCEPTION OF CAUSAL RELATIONS 413 

full problem set, regardless of the outcome probability or the sex of the 
subject, the probability of a recorded response was higher in the Tap 
task 0, = .31) than in the Press task 0, = .25), HI, 68) = 4.34, p = 
.041. Neither the probability of the outcome nor the sex of the subject 
influenced the probability of telegraph key responding. 

Contingency ratings. Figure 2 shows subjectsÕ scaled ratings (divided 
by 100) in the Tap and Press conditions at each of the five levels of 
response-outcome contingency. These five-point functions were con- 
structed from the nine individual problems, the data from which are 
shown in Table 2. 

Across both tasks and both sexes of subject, ratings rose as a function 
of increases in the response-outcome contingency. The linear trend of 
the reliable main effect of response-outcome contingency was significant, 
F(1, 68) = 358.82, p < .OOl . In addition, the overall contingency-rating 
function had a reliable cubic component, F(1, 68) = 9.07, p = .004, 
confirming its inverted S shape. The absence of a reliable quadratic 
component plus the high symmetry of the contingency-rating functions 
about zero suggest that negative contingencies were rated in much the 
same way as positive contingencies. 

The linear trend of the reliable contingency x task interaction was 
also significant, F(1, 68) = 9.02, p = .004; this confirms the steeper 
contingency-rating function from the Tap task than from the Press task 
depicted in Fig. 2. Indeed, ratings supported under the Tap task were 
very close to those expected if there were isomorphism between subjectsÕ 

/ 
PTAP 

RESPONSE-OUTCOME CONTINGENCY 

FIG. 2. Scaled contingency ratings (divided by 100) for Group Tap and Group Press 
of Experiment 1 at each of the five levels of response-outcome contingency. 

Figure 1.18: Scaled contingency ratings between a telegraph key operation and the
illumination of a brief light, for each of the �ve levels of response-outcome contin-
gency implemented. The `Tap' group of participants was asked to produce a brief
response by simply taping on the telegraph key, while the `Press' group was asked
to produce a continuous response by pressing the key for a variable length of time.
(Figure reproduced from Wasserman, Chatlosh, and Neunaber, 1983.)

In another study using a free-operant contingency, participants could again press
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a key on a computer keyboard, which was associated with an outcome on the com-

puter screen (Shanks and Dickinson, 1991) . But interestingly, participants in one

group were asked to judge the effectiveness of the action in causing the outcome,

while those in a second group were asked to maximize their points score under a

payoff schedule. They observed low and constant proportions of responses as well

as accurate judgments in the group instructed to assess control, and higher propor-

tions of response in the group instructed to maximize outcomes, although they used

a response cost to prevent the tendency to over-respond in the latter. They hypothe-

sized that the natural performance strategy for maximizing reinforcement probably

differs from the one to identify contingencies.

Trying to prove their hypothesis, Matute (1996) exposed participants to uncon-

trollable outcomes (as the termination of an aversive noise or a more neutral event

as a beep). Half of the subjects was instructed to obtain the outcome (this condition

was called 'naturalistic'), while the other half was instructed to respond on 50% of

the trials and to assess their control over the outcome (corresponding to an 'analytic'

condition). Subjects in the naturalistic condition tended to respond at almost every

opportunity and developed a strong illusion of control. This illusion may simply

be a collateral effect of a high tendency to respond, preventing them from learning

that the outcome would have occurred with the same probability if they had not re-

sponded. By contrast, subjects in the analytic condition made accurate judgments of

control.

PSYCHOLOGICAL SCIENCE 

Helena Matute 

ible was the judgment of control. After the last trial, all subjects 
inswered a question regarding the degree of control that they 
lad perceived (see appendix). The scale for responding ranged 
iom - 100 to + 100. Positive numbers indicated a positive con- 
.ingency, negative numbers indicated a negative contingency, 
ind 0 indicated a perception of response-outcome indepen- 
jence. 

RESULTS 

High p(R) and illusion of control developed in the naturalis- 
tic conditions whether subjects were trying to obtain termina- 
tion of the noise or  repetition of the beep. In contrast, subjects 
investigating their degree of control (analytic groups) main- 
tained their p(R) at a point close to .5 and accurately reported 
response-outcome independence. 

Fig. 1. Mean probability of responding (p[R]; top panel) and 
mean judgment of control (bottom panel) for the four experi- 
mental conditions. Judgments were assessed using a scale that 
ranged from - 100 to + 100, with positive and negative numbers 
representing perception of positive and negative contingency, 
respectively, and 0 indicating an accurate perception of re- 
sponse-outcome independence. 

VOL. 7. NO. 5, SEPTEMBER 1996 

The p(R) data are depicted in the top panel of Figure 1. A 2 
[outcome) x 2 (instructions) analysis of variance on subjectsÕ 
d R )  yielded a main effect for instructions, F(1, 28) = 23.23, p 
< -01 ; a marginally significant effect for outcome, F( I ,  28) = 
3.31, p = .08; and no interaction. This result confirms that p(R) 
is affected more by the instructed goals of the subject than by 
the objective properties of the outcome (at least with the mild 
outcomes used in this experiment). Both the noise termination 
and the beep repetition seemed to function as reinforcers or  as 
neutral events depending..on whether subjects had been in- 
structed to obtain the outcome or to assess control over it. 
Planned comparisons showed that for both outcome conditions, 
subjects receiving naturalistic instructions were more active 
than subjects receiving analytic instructions, F(I, 28) = 6.62, p 
< .OS, for the escape condition and F( 1,28) = 17.6, p < . O f ,  for 
the beep condition. 

The judgmental data are depicted in the bottom panel of 
Figure 1. A 2 (outcome) X 2 (instructions) analysis of variance 
on subjectsÕ judgments yielded a main effect for instructions, 
F( I ,  28) = 9.29, p < .01, and no other main effect or interaction 
(ps > 30). Planned comparisons confirmed that for both out- 
come conditions, subjects in the naturalistic condition reported 
higher judgments of control (i.e,, illusion) than subjects in the 
analytic condition (who reported an accurate judgment of re- 
sponse-outcome independence), F( I ,  28) = 4.22, p < -05, for 
the escape condition and F(I,28) = 5.08, p < .05, for the beep 
condition. 

Finally, subjectsÕ p(R)s and judgments of control were found 
to be positively correlated, r = .70, p C -001. In  general. sub- 
jects responding at high rates reported the highest positive judg- 
ments of control, and subjects responding in about 50% of the 
trials accurately detected response-outcome independence. 

DISCUSSION 

This single factorial experiment replicated both (a) experi- 
ments showing that humans can detect response-outcome inde- 
pendence accurately (e.g., Shanks & Dickinson, 1987; Wasser- 
man, 1990) and (b) experiments showing that humans develop 
superstition and illusion of control (e.g., Langer, 1975; Matute, 
1993, 1995; Wright, 1962) by simply varying the goal-setting 
instructions. The subjectsÕ p(R), which followed from natural- 
istic versus analytic instructions, appeared to be a critical de- 
terminant of whether subjects detected response-outcome inde- 
pendence. Thus, the different judgments obtained by different 
research traditions appear to reflect different (analytic vs. nat- 
uralistic) research orientations that imply different goals and 
strategies on the part of the subject. 

Subjects maintained their p (R)  at a point close to .5 and 
made accurate judgments of response-outcome independence 
when their goal was to find out how much contrcl over the 
outcome was possible (analytic conditions). In contrast, sub- 
jects who were trying to maximize the outcome (naturalistic 
conditions) tended to a very high p(R). and many of them did 
not even test for p(O1noR). Consequently, the outcome most 
frequently occurred in the presence (rather than absence) of 
responding. When this happens, responses apparently are per- 

29 1 
 at University College London on March 26, 2015pss.sagepub.comDownloaded from 

Figure 1.19: Mean probability of responding (p(R); top panel) and mean judgment
of control (bottom panel) in naturalistic and analytic conditions. A judgement of 0
indicates an accurate perception of response-outcome independence. Escape repre-
sents the aversive noise condition, and beep the neutral stimuli condition. (Figure
reproduced from Matute, 1996.)
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1.3.4 Learning biases can explain illusions of control

We will now see how a computational perspective in sequential learning tasks can

explain the emergence of illusions of control .

In a variety of behavioral tasks, subjects have been observed to readily alter their

behavioral strategy in response to recent trends of stimulus statistics, even when

such trends are spurious. Interestingly, this behavioral trend can be reproduced by

an optimal Bayesian model under assumptions of statistical non-stationarity, while

the same model under assumptions of stationarity would correctly infer an absence

of control in a random environment (Yu and Cohen, 2009; Zhang, Huang, and Yu,

2014) . The participants' internal assumptions were then `reverse-engineered': a

random environment was perceived as actually changing about once every four tri-

als (Yu and Cohen, 2009), although large inter-individual differences were found

(Zhang, Huang, and Yu, 2014).
a FBM b DBM c

p(
!

|x
t)

Trial
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p(
! t
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t)
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Figure 2: Bayesian inference assuming Þxed and changing Bernoulli parameters. (a) Graphical
model for the FBM.! ! [0, 1], xt ! { 0, 1} . The numbers in circles show example values for the
variables. (b) Graphical model for the DBM.! t = "# (! t " ! t ! 1) + (1 " " )p0(! t ), where we as-
sume the priorp0 to be a Beta distribution. The numbers in circles show examples values for the
variables. (c) Grayscale shows the evolution of posterior probability mass over! for FBM (darker
color indicate concentration of mass), given the sequence of truly random (P(xt ) = .5) binary
data (blue dots). The mean of the distribution, in cyan, is also the predicted stimulus probability:
P(xt = 1 |x t ! 1) = #! |x t ! 1$. (d) Evolution of posterior probability mass for the DBM (grayscale)
and predictive probabilityP(xt = 1 |x t ! 1) (cyan); they perpetually ßuctuate with transient runs of
repetitions or alternations.

about the task over the time course of the experiment is the appropriate value of! . We call this the
Fixed Belief Model (FBM). BayesÕ Rule tells us how to compute the posterior:

p(! |x t ) % P(x t |! )p(! ) = ! r t + a+1 (1 " ! )t ! r t + b+1

where r t denotes the number of repetitions observed so far (up tot), x t is the set of binary
observations(x1, . . . , xt ), and the prior distributionp(! ) is assumed to be a beta distribution:
p(! ) = p0(! ) = Beta(a, b). The predicted probability of seeing a repetition on the next trial is
the mean of this posterior distribution:P(xt +1 =1 |x t ) =

!
! p(! |x t )d! = #! |x t $.

A more complex internal model that subjects may entertain is that the relative frequency of repeti-
tion (versus alternation) can undergo discrete changes at unsignaled times during the experimental
session, such that repetitions are more prominent at times, and alternation more prominent at other
times. We call this the Dynamic Belief Model (DBM), in which! t has a Markovian dependence
on ! t ! 1, so that with probability" , ! t = ! t ! 1, and probability1 " " , ! t is redrawn from a Þxed
distributionp0(! t ) (same Beta distribution as for the prior). The observationxt is still assumed to
be drawn from a Bernoulli process with rate parameter! t . Stimulus predictive probability is now
the mean of the iterative prior,P(xt =1 |x t ! 1) = #! t |x t ! 1$, where
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Figures 2a;b illustrate the two graphical models. Figures 2c;d demonstrate how the two models re-
spond differently to the exact same sequence of truly random binary observations (! = .5). While
inference in FBM leads to less variable and more accurate estimate of the underlying bias as the
number of samples increases, inference in DBM is perpetually driven by local transients. Relat-
ing back to the experimental data, we plot the probability ofnot observing the current stimulus for
each type of 5-stimulus sequences in Figure 1 for (b) FBM and (c) DBM, since RT is known to
lengthen with reduced stimulus expectancy. Comparing the Þrst half of a simulated experimental
session (red) with the second half (blue), matched to the number of trials for each subject, we see
that sequential effects signiÞcantly diminish in the FBM, but persist in the DBM. A re-analysis
of the experimental data (Figure 1d) shows that sequential effects also persist in human behavior,
conÞrming that Bayesian prediction based on a (Markovian) changeable world can account for be-
havioral data, while that based on a Þxed world cannot. In Figure 1d, the green dashed line shows
that a linear transformation of the DBM sequential effect (from Figure 1c) is quite a good Þt of the
behavioral data. It is also worth noting that in the behavioral data there is a slight over all preference
(shorter RT) for repetition trials. This is easily captured by the DBM by assumingp0(! t ) to be
skewed toward repetitions (see Figure 1c inset). The same skewed prior cannot produce a bias in the
FBM, however, because the prior only Þgures into Bayesian inference once at the outset, and is very
quickly overwhelmed by the accumulating observations.
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P(xt = 1 |x t ! 1) = #! |x t ! 1$. (d) Evolution of posterior probability mass for the DBM (grayscale)
and predictive probabilityP(xt = 1 |x t ! 1) (cyan); they perpetually ßuctuate with transient runs of
repetitions or alternations.
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conÞrming that Bayesian prediction based on a (Markovian) changeable world can account for be-
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Figure 1.20: Graphical models of two Bayesian models assuming �xed and changing
Bernoulli parameters (top panels). The two models made different inferences when
observing the exact same sequence of truly random binary observations (g = .5,
bottom panels). (Figure reproduced from Yu and Cohen, 2009.)

Yu and Cohen (2009) conclude that it is very dif�cult to discriminate a truly ran-

domized sequence, which by chance would contain runs of repetitions and alterna-

tions, from one that has changing biases for repetitions and alternations over time.

Bialek (2005) also found plausible models allowing for changing biases to lead to sur-

prisingly high probabilities of misidentifying random sequences as biased. There-

fore if people assume they live in a changing environment, this belief will create an

illusion of control, even in a random environment.

Recently, Nassar et al. (2010) have used a novel task to characterize how human

subjects adapt their behavior in a changing task. They found that most subjects be-

haved as if they substantially overestimated the implemented volatility, suggesting

that people tend to assume their environment is more changing than it really is. This

misperception of volatility can be the source of people frequent illusions of control.

Lefebvre et al. (2017) have simulated the TD(0) algorithm that we previously de-

scribed, in a task with a null instrumental contingency (as the reward probabilities

were symmetric: 25% and 25% for both possible actions). This model and their par-

ticipants were found to display transient preferred responses, as the Yu and Cohen

(2009) Bayesian model with an assumption for volatility did.
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Furthermore, some of Lefebvre et al. (2017) participants were better explained

by a TD(0) model with different learning rates associated with positive and negative

outcomes. These participants displayed a pronounced preference for one option (al-

though both options were equally rewarding), as did the model with a higher posi-

tive than negative learning rate. Therefore, illusions of control can also be strength-

ened by an asymmetric update of positive vs. negative outcomes.

In the format provided by the authors and unedited.

  
 

Behavioral and neural characterization of optimistic reinforcement learning  

Germain  Lefebvre, Ma‘l  Lebreton, Florent Meyniel, Sacha Bourgeois -Gironde & Stefano Palminteri 

Supplementary  Notes and Figures  

Preferred response rate as a behavioral measure of optimistic behavior  

As previously defined in the main text, the preferred response rate is the rate of the choices directed 

toward the most frequently chosen option by subjects in symmetric reward probability conditions (i.e. 

25/25% and 75/75%). The preferred choice rate is therefore by definition greater than 0.5. In these 

conditions there is no contingency-based reason to prefer one option to the other. This is particularly true 

in low-rewarding environment (25/25% condition), where neither option is satisfying in terms of outcome, 

compared to the average task outcome. We showed previously that the preferred response rate allows to 

behaviorally differentiating optimistic from unbiased subjects.  

 

 
Figure S1:  typical ÒoptimisticÓ and ÒunbiasedÓ subjects in the 25/25% condition.  
(A) and (B) RW± (optimistic) typical subject. (A) Plot represents behavioral choices (represented by black dots) of a typical RW± 
subject (i.e. whose behavior is best fitted by the RW± model) in the 25/25% condition, together with RW and RW± models 
predictions (represented respectively by gray and red lines). (B) Plot represents Q-values (of the two options) differential evolution in 
each model for a typical RW± subject. (C) and (D) RW (unbiased) typical subject. (C) Plot represents behavioral choices 
(represented by black dots) of a typical RW subject (whose behavior is best fitted by the RW model) in the 25/25% condition, 
together with RW and RW± models predictions (represented respectively by gray and red lines). (D) Plot represents the evolution of 
Q-values (of the two options) differential in each model for a typical RW subject.  
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Figure 1.21: Behavioral choices and model simulations of a typical RW � participant
(whose behavior is best �tted by a model with different positive and negative learn-
ing rates, left panel) and RW participant (whose behavior is best �tted by a model
with a unique learning rates, right panel). (Figure reproduced from Lefebvre et al.,
2017.)

A model has also been developed to explain transient, instead of global, illu-

sions of control, as people often take previous outcomes into account when making

predictions about random events. The prediction that the next outcome will be dif-

ferent from the previous one is often referred to as expectation of negative recency

(for example when roulette players bet on red after the wheel has just landed on

black). Scheibehenne and Studer (2014) analyses on a student sample revealed that

prediction strategies varied across participants. Importantly, the different expecta-

tion patterns could be accounted for by a drift model that considers how often the

same event has previously occurred in a row.

This section focused on the different biases arising when asking participants to

report their perception of outcome control, and we have seen how computational

models with certain assumptions can explain them. In the next section, we will

focus on the perception of actioncontrol, often called sense of agency or subjective

control.
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1.4 The sense of agency

Sense of agency can be de�ned as the feeling that we control our actions, and through

them effects in the outside world (Haggard and Chambon, 2012). Other researchers

prefer to talk about the experience of conscious will (Wegner, 2003), following Hume's

proposition to de�ne will as a feeling (Hume, 1739).

1.4.1 The free will controversy

A crucial question is when does conscious will appear in the events surrounding

actions? Kornhuber and Deecke (1965) have asked participants to move their right

index �nger at some arbitrary time in the following few seconds. Continuous record-

ings were made of electrical potential at several scalp electrodes while the actual

time at which the �nger moved was precisely measured by electromyography. Brain

electrical activity was found to start increasing about 800 milliseconds before the vol-

untary �nger movement, in the left and right precentral and the midparietal regions.

This activity was called the readiness potential. It appeared that a general bilateral

readiness for voluntary action later resolved into a more localized activation of the

area responsible for the speci�c action, peaking 50 ms before the action unfolds.

Then the following question is when exactly in this sequence the person experi-

ence conscious will. Libet (1985) also asked participants to move their �nger sponta-

neously, but this time while they were watching a clock. A spot of light was revolv-

ing each 2.56 seconds in a clockwise path around the circumference of the screen.

The participant's task was simply to report for each �nger movement where the dot

was on the clock when he experienced “conscious awareness of wanting to perform

a given self-initiated movement”. The conscious willing of �nger movement oc-

curred at a signi�cant interval after the onset of the readiness potential, but also at

a signi�cant interval before the actual �nger movement (and also before the actual

awareness of the movement).

for all groups. This value was the same even when subjects reported having pre-
planned roughly when to act! If we correct W for the Ð50 msec. error in the subjectsÕ
reports of timings of the skin stimuli, we have an average corrected W of about Ð150
msec. Clearly, the brain process (RP) to prepare for this voluntary act began about
400 msec. before the appearance of the conscious will to act (W). This relationship
was true for every group of 40 trials and in every one of the nine subjects studied. It
should also be noted that the actual difference in times is probably greater than the
400 msec; the actual initiating process in the brain probably starts before our recorded
RP, in an unknown area that then activates the supplementary motor area in the cere-
bral cortex. The supplementary motor area is located in the midline near the vertex
and is thought to be the source of our recorded RP.

Any Role for Conscious Will?

The initiation of the freely voluntary act appears to begin in the brain unconsciously,
well before the person consciously knows he wants to act! Is there, then, any role for
conscious will in the performance of a voluntary act? (see Libet, 1985). To answer
this it must be recognized that conscious will (W) does appear about 150 msec. before
the muscle is activated, even though it follows onset of the RP. An interval of 150
msec. would allow enough time in which the conscious function might affect the final
outcome of the volitional process. (Actually, only 100 msec. is available for any such
effect. The final 50 msec. before the muscle is activated is the time for the primary
motor cortex to activate the spinal motor nerve cells. During this time the act goes to
completion with no possibility of stopping it by the rest of the cerebral cortex.)

Potentially available to the conscious function is the possibility of stopping or
vetoing the final progress of the volitional process, so that no actual muscle action
ensues.Conscious-will could thus affect the outcomeof the volitional process even

DO WE HAVE FREE WILL? 51

Figure 3
Diagram of sequence of events, cerebral and subjective, that precede a fully self-initiated voluntary
act. Relative to 0 time, detected in the electromyogram (EMG) of the suddenly activated muscle, the
readiness potential (RP)(an indicator of related cerebral neuronal activities) begins first, at about
Ð1050 ms. when some pre-planning is reported (RP I) or about Ð550 ms. with spontaneous acts
lacking immediate pre planning (RP II). Subjective awareness of the wish to move (W) appears at
about Ð200 ms., some 350 ms. after onset even of RP II; however, W does appear well before the act
(EMG). Subjective timings reported for awareness of the randomly delivered S (skin) stimulus
average about Ð50 ms. relative to actual delivery time. (From Libet, 1989.)

Figure 1.22: The readiness potential (RP) begins �rst, at about -1050 ms when some
pre-planning is reported (RP I), or about -550 ms with spontaneous acts lacking im-
mediate pre-planning (RP II). Subjective awareness of the wish to move (W) appears
at about -200 ms, some 350 ms after onset even of RP II. (Figure reproduced from
Libet, 1999.)

Libet (1999) concludes that “the volitional process is therefore initiated uncon-

sciously. But the conscious function could still control the outcome; it can veto the

act. Free will is therefore not excluded.” But this �nding is of course contrary to each

23



INTRODUCTION

individual own feeling to consciously initiate voluntary acts.

1.4.2 Conscious will as an illusion

Most of the time in everyday life, we feel we are doing things willfully when we

actually do them, and feel we are not doing something when in truth we have not

done it. However, some cases remind us that action and the feeling of doing are not

inevitably intertwined. The processes of mind that produce the experience of will

may be quite distinct from the processes of mind that produce the action itself.

One can think of hypnosis, whose profound effect is the feeling that your actions

are happening to you rather than that you are doing them (Lynn, Rhue, and Weekes,

1990). Wegner (2002) also uses the example of table-turning to show that an action

can be done without the feeling of having done it. In table turning, a group of people

gather around a light table and wait for it to move. Often it would move, sometimes

even circling the room or rocking from side to side. Investigations by scientists such

as Michael Faraday (using force measurement devices between hands and tables)

revealed that the source of the table movement was indeed the participants (Faraday,

1853).

Wegner and Wheatley (1999) were inspired by an ordinary household Ouija board

to experimentally test whether people will think they have caused actions when a

thought relevant to the action is primed just before the action – whether they ac-

tually performed the action or not. People in one experiment were presented with

thoughts (e.g. a tape-recorded mention of the word swan) relevant to their action

(moving an onscreen cursor to select a picture of a swan).

The movement that participants performed was not in fact their own, as they

shared the computer mouse with an experimental confederate who gently forced

the action without the participants' knowledge. Nevertheless, when the relevant

thought was provided either 1 s or 5 s before the action, participants reported feeling

that they acted intentionally in making the movement. On trials when thoughts of

the swan were prompted 30 s before the forced action or 1 s afterwards, no in�ated

experience of will was found (Wegner and Wheatley, 1999).

Figure 1.23: On the left, the experimental Ouija board used in the experiment. On the
right, the mean percentage of intentionality rated for forced stops on objects primed
at different moments before and after the stop. (Figure reproduced from Wegner and
Wheatley, 1999.)

This experiment and others have led Wegner (2003) to propose the following
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theory. The experience of conscious will arise when the person infers an apparent

causal path from thought to action (purple arrow). The actual causal paths (green

arrows) are not present in the person consciousness. The thought of doing the action,

as well as the actual implementation of the action, are caused by unconscious mental

events, and these unconscious mental events might be linked to each other directly

or through yet other mental or brain processes. Conscious will is experienced as a

result of what is apparent, not what is real.

some 350Ð400 ms. So, although the conscious intention
preceded the Þnger movement, it occurred well after
whatever brain events were signaled by the RP. This
Þnding suggests that the experience of consciously
willing an action begins after brain events that set the
action into motion [6,7] . The brain creates both the
thought and the action, leaving the person to infer that
the thought is causing the action.

Clinical evidence
Anomalies pointing to a system that fabricates an
experience of will can also be found in clinical cases.
Patients with brain damage resulting in Ôalien hand
syndromeÕ, for example, report that one of their hands
functions with a mind of its own, often performing
elaborate and seemingly voluntary actions without the
patientÕs experience of willful control. One patient
described the experience as a feeling that Ôsomeone from
the moonÕ was controlling her hand [8] . Schizophrenia
accompanied by auditory hallucinations also produces
anomalistic will Ð in this case, an experience of Ôhearing
voicesÕ that occurs when patients attribute their own
thoughts and inner voice to others [9Ð14]. Thoughts that
come to mind without prior anticipation are not experi-
enced as willed, and their insistent recurrence can lead
patients to ascribe them to outside agents.

Automatisms
Will is also experienced independently of action in a
menagerie of cases known as automatisms [15Ð19].
Practices such as automatic writing, table turning,
Ouija-board spelling, dowsing, pendulum divining, chan-
neling, and the like were the major psychological basis of
the Spiritualist fad of the late 19th century, as these
various contrivances gave rise to experiences of unwilled
action that were then attributed to spirits or other
supernatural agents. In the case of table turning, for
instance, a group of people gathered around a light table
and waited for it to move ( Fig. 2 ). Often it would Ð after a
signiÞcant wait Ð sometimes even circling the room or
rocking from side to side. Yet the participants often
reported no experience of willing the action and instead
expressed amazement at the tableÕs animation. Although
spirit agency was the popular explanation, investigations
by scientists such as Michael Faraday (using force
measurement devices between hands and tables) revealed
that the source of the table movement was indeed the
participants [20,21]. The experience of will in such cases
was entirely misleading about the causal basis of the
action.

Apparent mental causation
If the experience of conscious will is not a direct report

Fig. 1. The experience of conscious will arises when the person infers an apparent causal path from thought to action (purple arrow). The actual causal paths (green) are
not present in the personÕs consciousness. The thought is caused by unconscious mental events, and the action is caused by unconscious mental events, and these uncon-
scious mental events might also be linked to each other directly or through yet other mental or brain processes. Conscious will is experienced as a resu lt of what is appar-
ent, not what is real. ModiÞed with permission from Ref. [22].
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Figure 1.24: A mechanism to explain illusory agency. (Figure reproduced from Weg-
ner, 2003.)

1.4.3 The importance of believing in free will

Although Wegner (2002) has postulated that our sense of control is a pure illusion,

we strongly feel we are in control of our life, and this sense of control is an important

part of human psychology (the hypothesis that humans need to feel in control will be

developed in the general discussion ). What would happen if people came to believe

that they cannot exert free will, i.e., that their behavior is the inexorable product of a

causal chain set into motion without their own volition?

Believing that outcomes are based on an inborn trait, rather than effort, in�u-

ences behavior. For instance, Mueller and Dweck (1998) observed 10-year-old chil-

dren who were told that they had been successful on an initial task either as the

result of their intelligence or through their hard work. In a second round, all the

children encountered a task that was well beyond their performance level, at which

they all failed. When the children were given yet a third task, those who thought

their earlier success was due to their intelligence put forth less effort and reported

lower enjoyment than those who thought their initial success was due to their own

effort. When asked, children praised for intelligence described it as a �xed trait,

while children praised for hard work believed it to be subject to improvement.
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In two seminal experiments, Vohs and Schooler (2008) have studied whether be-

lieving that human behavior is predetermined would encourage cheating. Partici-

pants would read either a text that encouraged a belief in determinism (i.e., that por-

trayed behavior as the consequence of environmental and genetic factors), a neutral

text, or a text endorsing free will. They found that weakening free-will beliefs re-

liably increased cheating: participants who read deterministic statements were less

likely to actively prevent the answer to an arithmetic problem from appearing on the

computer screen, and overpaid themselves when allowed to take money for each

correct answer on a dif�cult cognitive test.

correctly (i.e., when participants were not in the self-scoring,
self-payment situation). In the baseline experimenter-scored
condition, participants simply completed the cognitive prob-
lems, which the experimenter scored; participants then received
$1 for each correct answer. We did not ask participants in this
condition to complete the FWD scale so as not to activate the
concept of free will. In the determinism experimenter-scored
condition, we gave participants the determinism statements and
then the logic problems. The experimenter scored the problems
and paid participants $1 for each correct answer. This com-
parison condition allowed us to assess whether reading the
scientiÞc-sounding determinism statements had the incidental
effect of aiding in solving the logic problems.

Thus, there were three comparison conditions we could use to
examine the effects of the determinism and free-will manip-
ulations on cheating: a neutral condition, in which participants
were allowed to cheat but were not exposed to statements that
might change their beliefs about free will; a baseline experi-
menter-scored condition, in which participantsÕ true scores on
the cognitive task were calculated without any manipulation;
and a determinism experimenter-scored condition, in which
participants read deterministic statements but were not allowed
to cheat, so that their true scores on the problem set were known.

Results

Scores on the FWD Scale
Participants in the free-will, determinism, and neutral condi-
tions completed the FWD scale so that we could check whether
the manipulations in the statement-reading task had been ef-
fective. Scores on the Free Will subscale differed as a function of
condition,F(2, 70)5 17.03,p < .01. A planned contrast re-
vealed that participants in the free-will condition reported
stronger beliefs in free will (M 5 23.09,SD5 6.42) than did
participants in the neutral condition (M 5 20.04,SD5 3.76),
t(70)5 12.54,p< .01. A second planned contrast showed that
participants in the determinism condition reported weaker be-
liefs in free will (M5 15.56,SD5 2.79) than did participants in
the neutral condition,t(70)5 3.52,p < .01.

The manipulations also affected endorsement of statements on
the ScientiÞc Causation subscale,F(2, 70)5 5.85, p < .01.
SpeciÞc contrasts showed that participants in the determinism
condition had higher scores (M 5 23.14,SD5 2.69) than those
in the neutral and free-will conditions (neutral:M 5 20.40,
SD5 3.40; free will:M 5 20.78,SD5 3.21),t(70)5 2.98,p<
.01. Scores on the Fate and Chance subscales were unaffected
by the manipulations,Fs < 0.2,ps > .30.

Assessment of Cheating Behavior
In three conditions, participants paid themselves after scoring
(and shredding) their own answer sheets, whereas in two addi-
tional conditions, the experimenter paid participants according
to their actual performance. Hence, to assess cheating behav-

ior, we compared payments in the self-paid, cheating-possible
groups with payments in the experimenter-scored groups. Recall
that we did not have participantsÕ answer sheets in the three self-
paid conditions; therefore, we divided the number of $1 coins
taken by each group by the number of group members to arrive at
an average self-payment. These group averages, along with the
known payments in the baseline experimenter-scored and de-
terminism experimenter-scored conditions, were subjected to an
analysis of variance, which showed a signiÞcant effect of condi-
tion,F(4, 114)5 5.68,p < .01. Planned contrasts revealed that
participants who had read the determinism statements and who
were allowed to pay themselves for correct answers walked away
with more money than the others,t(114)5 4.48,p< .01 (see Fig.
1). None of the other groups differed from each other,ts< 1.

Did Changing Beliefs About Free Will Change Cheating
Behavior?
To test our hypothesis that discouraging a belief in free will
would lead to cheating, we Þrst calculated the correlation be-
tween scores on the Free Will subscale and average payments.
As expected, we found a strong negative relationship,r(71)5
! .47,1 indicating that the more participants endorsed state-
ments of free will, the less they paid themselves (on average) for
the self-scored cognitive test.

Next, we performed a mediation analysis to assess our pre-
diction that free-will beliefs determine cheating. In an ANCOVA
in which Free Will scores and condition were entered as pre-
dictors of cheating, the effect of condition failed to predict
cheating behavior,F < 1, whereas the effect of free-will beliefs
remained signiÞcant,t(67)5 10.72,p < .01.

Ancillary Measure: Mood
To ensure that the statements did not inadvertently alter par-
ticipantsÕ moods, we assessed positive and negative emotions

Fig. 1. Mean amount of money, in dollars, that participants received in
the Þve conditions in Experiment 2. Participants in the free-will, neutral,
and determinism conditions paid themselves $1 for each answer they
claimed to have solved. Participants in the two experimenter-scored
conditions were paid according to the true number of solutions. Error
bars show standard errors.

1Note that there were fewer degrees of freedom for this analysis than for the
main analysis because participants in the baseline experimenter-scored and
determinism experimenter-scored conditions did not complete the FWD scale.
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Value of Believing in Free Will

Figure 1.25: Mean amount of money, in dollars, that participants received in �ve
different conditions. Participants in the free-will, neutral, and determinism condi-
tions paid themselves $1 for each answer they claimed to have solved. Participants
in the two experimenter-scored conditions were paid according to the true number
of solutions. (Figure reproduced from Vohs and Schooler, 2008).

Subsequent work has shown that increasing disbelief in free will contributes to

increases in agression and decreases in helpful, prosocial behavior (Baumeister, Ma-

sicampo, and DeWall, 2009). A possibility is that the belief that forces outside the

self determine behavior drain the motivation to resist the temptation to cheat, in-

ducing a “why bother?” mentality (Vohs and Schooler, 2008). Or perhaps, denying

free will simply provides the ultimate excuse to behave as one likes. Sartre (1956)

indeed said: “We are always ready to take refuge in a belief in determinism if this

freedom weighs upon us or if we need an excuse.”

1.4.4 The intentional binding paradigm

As we have seen, explicit judgements of control or agency can be contaminated by

a need for excuses, and confounding effects on explicit agency judgements there-

fore seem inevitable. The intentional binding paradigm offers an implicit measure

related to sense of agency, which may be less subject to cognitive biases.

In the �rst article to report the intentional binding effect, Haggard, Clark, and

Kalogeras (2002) used the Libet clock method to study the perceived time of actions

and their consequent effects. In baseline conditions, participants either made vol-

untary actions or listened to the occurrence of an auditory tone (in the absence of

action) while they watched a rotating clock hand on a computer screen. They were

asked to report the position of the clock hand when they moved or when the tone

occurred. In operant conditions, participants made a voluntary key press on every

trial, but this time it was followed 250 ms later by an auditory tone.

The authors found that, in operant conditions, the perceived time of their actions
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was later than in baseline conditions and the perceived time of the tone was earlier

than in baseline conditions. Critically, in an identical set of conditions involving

involuntary movements induced via transcranial magnetic stimulation (TMS) over

the primary motor cortex, the binding effect was reversed such that the interval

between action and effect actually increased in `operant' conditions compared to

baseline conditions. The authors speculated that a speci�c cognitive function of the

central nervous system is to bind together critical sensorimotor events that surround

voluntary action, and that this function may be crucial for the normal experience of

agency.

Figure 1.26: Voluntary actions produce binding effects, as awareness of voluntary
action shifts later toward a consequent tone, whereas awareness of the tone shifts
forward toward the voluntary action that evokes it (left). Neutral events such as
sham TMS produce minimal perceptual shifts (middle). Involuntary TMS-induced
movements do not sustain binding, but produce repulsion effects in the opposite
direction (right). (Figure reproduced from Haggard, Clark, and Kalogeras, 2002).

Since this �rst report, considerable interest has been generated and a fascinating

array of studies has accumulated. More than a decade later, there is compelling evi-

dence supporting a link between intentional binding and sense of agency, although

the exact nature of that relationship is yet to be fully understood (Moore and Obhi,

2012).

We have seen that explicit reports of agency or control have shed doubt on the

existence of free will, and can be interpreted as a reconstruction of reality. The in-

tentional binding paradigm is thus an important tool to have access to the sense of

agency from behavioral measures only.
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1.5 The gap between behavior and consciousness

We have seen that there can be a gap between being in control and perceiving to be

in control, and that explicit reports can be contaminated by different cognitive pro-

cesses. Here we will demonstrate that in a variety of learning and decision-making

tasks, a general gap has been documented between behavior and explicit reports.

1.5.1 Unconscious conditioning

Conditional responding during simple Pavlovian conditioning is often characterized

as a form of implicit memory. The �rst proof that humans can be unconsciously

conditioned came from Morris, Öhman, and Dolan (1998). They measured neural

activity in volunteer subjects who were presented with an angry face associated with

a burst of white noise. The subjects' awareness of the angry face was sometimes

prevented by backward masking with a neutral face. Throughout the experiment,

the subjects were required to indicate, by pressing a button, any occurrence of either

angry face. Their responses revealed an inability to detect the masked angry faces.

Nevertheless, they found a similar signi�cant response in the region of the amygdala

to the presentation of the masked and unmasked conditioned faces.
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Chatsworth, CA) and cloned using the pCR-Script kit (Stratagene). A mini-
mum of 8 clones from each culture were sequenced on an automated sequencer
(LI-COR, Lincoln, NE). Sequences were aligned manually with other marine
cyanobacterial sequences available in the Ribosomal Database Project28 using
the Genetic Data Environment29. The sequence for MIT9303 obtained pre-
viously from a PCR product17 is contained within the sequence we report here.
A total of 1,094 unambiguously aligned and determined nucleotides were used
in the analyses. Phylogenetic analyses used PAUP! (version 4.0d47, provided by
D. Swofford). For both distance and maximum likelihood analyses the model of
nucleotide substitution used was the Hasegawa Kishino Yana 1985 model.
Nucleotide frequencies and the transition transversion ratio were estimated
from the data.
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If subjects are shown an angry face as a target visual stimulus for
less than forty milliseconds and are then immediately shown an
expressionless mask, these subjects report seeing the mask but not
the target. However, an aversively conditioned masked target can
elicit an emotional response from subjects without being con-
sciously perceived1,2. Here we study the mechanism of this uncon-
sciously mediated emotional learning. We measured neural
activity in volunteer subjects who were presented with two
angry faces, one of which, through previous classical condition-
ing, was associated with a burst of white noise. In half of the trials,
the subjectsÕ awareness of the angry faces was prevented by
backward masking with a neutral face. A signiÞcant neural
response was elicited in the right, but not left, amygdala to
masked presentations of the conditioned angry face. Unmasked
presentations of the same face produced enhanced neural activity

Figur e 1 Stimulus parameter s and experi mental desig n. In the scann ing window ,

pairs of target and masking faces were shown in four separate conditio ns,

determi ned by the comb ination of masking and conditio ning of the angry face.

Mc, masked conditioned (the CS+ angry face was the target and the neutral face

was the mask); nc, non-masked conditio ned (a neutral face was the target and the

CS+ face was the mask); mu, masked uncondit ioned (the CS! face was the target

and the neutral face the mask); nu, non-mas ked uncondit ioned (the neutral face

was the target and the CS! face the mask). Face 1, angry face paired with noise

(CS+);face 2, angry face not paired with noise (CS! ); faces 3 and 4, neutral faces.

In all conditio ns, the target face was displ ayed for 30ms and immediat ely followed

by the mask for 45 ms.

Figure 1.27: The sequence of stimuli used for unconscious Pavlovian conditioning.
(Figure reproduced from Morris, Öhman, and Dolan, 1998).

In another study, participants were also exposed to a fear conditioning proce-

dure in which one tone predicted a loud white noise, whereas a second tone was

presented alone. The �rst tone was presented just above or below the perceptual

threshold in the different trials. They again found a differential skin conductance re-

sponse between the two tones, that was present on both perceived and unperceived

trials (Knight, Nguyen, and Bandettini, 2003).

Unconscious learning was then demonstrated in instrumental conditioning, show-

ing that unperceived cues could also bias decision making. Pessiglione et al. (2008)

used a masking procedure on visual cues, so that participants could not build con-

scious representations of cue-outcome associations. These unperceived cues were

paired with monetary outcomes (+£1, £0 or -£1), depending on whether participants

chose the `Go' or `NoGo' response. Participants did choose the `Go' response more

frequently following reward predictive cues relative to punishment predictive cues.

The uncovered cues were subsequently rated by the participants, and ratings were

signi�cantly higher for reward compared to punishment cues, although none of the

cues was reported as previously seen.
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To assess visual awareness, we successively displayed two
masked cues on a computer screen and asked subjects whether
they perceived a difference or not. We reasoned that if subjects
are unable to correctly perceive any difference between the
masked cues, then they are also unable to build conscious rep-
resentations of cue-outcome associations. The procedure has
the advantage of not showing the cues unmasked, so that, by
the end of the experiment, subjects had no idea what the cues
look like.

The perceptual discrimination task was performed outside the
scanner at the beginning of the experiment, in order to adapt du-
ration of cue display to each individual, and in the scanner at the
end of the experiment, to check for any effect of learning or
change in visual conditions. For all subjects, cue duration was
set at either 33 or 50 ms and was kept Þxed through the entire
experiment. In every individual, correct guessing on the Þnal as-
sessment did not differ from chance (p > 0.05, chi-square test).
At group level, average percentage of correct responses for
the 20 subjects was 48% ± 3%, which again was not different
from chance (p > 0.5, two-tailed paired t test). Average d 0 was
0.08 ± 0.20, showing that, even when correcting for response
bias, signal detection was not different from zero (p > 0.5, two-
tailed paired t test). Thus, subjects remained unable to discrim-
inate between the different masked cues, from the beginning
to the end of conditioning sessions.

We employed the same masking procedure in the subliminal
conditioning task, in which cues were paired with monetary out-
comes (Figure 1). From these outcomes (! £1, £0, +£1), subjects
had to learn when to take the risky response (either ÔÔGoÕÕ or
ÔÔNoGo,ÕÕ depending on subjects). Subjects were also told that,
for the risky response, the outcome would depend on the cue
hidden behind the masking image (see instructions in Supple-

mental Data available online). As they would not see the cues,
we encouraged them to follow their intuition, taking the risky
response if they had a feeling they were in a winning trial and
choosing a safe response if they felt it was a losing trial. Note
that if subjects always made the same response, or if they
performed at chance, their Þnal payoff would be zero.

As a dependent variable to assess for conditioning effects, we
used monetary payoff, which corresponds to the area below the
reward and above the punishment learning curves (Figure 2A).
Overall subjects won money in this task, on average £7.5 ± £1.8
(p < 0.001, one-tailed paired t test), indicating that the risky re-
sponse was more frequently chosen following reward predictive
relative to punishment predictive cues. Both reward and punish-
ment conditions also differed signiÞcantly from the neutral condi-
tion (p < 0.05, one-tailed paired t test). There was no signiÞcant
difference (p > 0.5, two-tailed paired t test) between the reward
and punishment condition: on average subjects won £24.3 ±
£1.9 and avoid losing £23.2 ± £2.1. Learning curves showed
that responses improved symmetrically for rewards and punish-
ments, ending with 63% ± 5% of correct responses on average.
Surprisingly, this plateau was reached at around the halfway
point of the learning session. The effects of subliminal condition-
ing were subsequently assessed with a preference judgment
task, in which cues were uncovered and rated by the subjects
from the most to least liked ( Figure 2B). Ratings were signiÞcantly
higher for reward compared to punishment cues (p < 0.01, one-
tailed paired t test), consistent with subjects having learned the
affective values of subliminal cues, such that these values were
able to bias their preferences. When uncovering the cues, sub-
jects were also asked to signal any cue that they may have
seen during conditioning sessions; none was reported as previ-
ously seen.

Figure 1. Subliminal Conditioning Task
Successive screenshots displayed during a given
trial are shown from left to right, with durations in
milliseconds. After seeing a masked contextual
cue ßashed on a computer screen, subjects
choose to press or not press a response button
and subsequently observe the outcome. In this
example, ÔÔGoÕÕ appears on the screen because
the subject has pressed the button, following
the cue associated with a rewarding outcome
(winning £1).

Figure 2. Behavioral Data
(A) Learning curves. Colors indicate cues for which
button presses are rewarded (green), neutral
(blue), or punished (red). Diamonds represent,
across trials, percentages of subjects that pressed
the button. Left: continuous lines join the dia-
monds to illustrate actual choices made by
subjects. Right: continuous lines represent the
probabilities of button press estimated by an
optimized Q-learning model.
(B) Preferences. After the conditioning phase,
cues were unmasked and subjects rated them,
from the most (3) to the least liked (1). The graph
shows the average rating for reward (green), neu-
tral (blue), and punishment (red) cues. Bars are ±
intersubjects standard errors of the mean.

Neuron

fMRI Study of Subliminal Conditioning

562 Neuron 59, 561Ð567, August 28, 2008» 2008 Elsevier Inc.

Figure 1.28: The sequence of stimuli used for unconscious instrumental condition-
ing. (Figure reproduced from Pessiglione et al., 2008).

1.5.2 Implicit sequence learning

Another form of unconscious learning is implicit sequence learning. The semi-

nal study of Nissen and Bullemer (1987) used a simple paradigm: participants re-

sponded to a stimulus (an asterisk) occurring at one of four locations with a key

located directly below each position. Following a 500 ms response-to-stimulus in-

terval, the next stimulus occurred. The basic design was thus a four-choice, com-

patible response mapping, serial reaction task. Although not informed of it, some

participants were responding to an asterisk moving in a regular, repeating pattern

of positions, while others responded to a random order of locations. Subjects in the

repeating sequence condition had faster reaction times and made fewer errors than

those responding to random information, although they were not consciously aware

of a sequence. NISSEN AND BULLEMER 

BLOCK 

FIG. 1. Mean of median reaction time in milliseconds in each block of Experiment 1. 
Filled circles: repeating sequence; x Ôs: random sequence. Bars represent standard errors. 

from the repeating condition (F(1,154) = 210.45, p < .OOl) and random 
condition (F(1,154) = 10.54, p < .005) 

The accuracy data from these two conditions are shown in Table 1. 
Although accuracy was high throughout, it increased with practice, par- 
ticularly from Block I to Block 2, in the repeating condition but not in the 
random condition. A two-way analysis of variance of the accuracy data 
revealed a main effect of block (F(7,154) = 9.01, p < .OOl) and an inter- 
action between group and block (F(7,154) = 4.90, p < .OOl). According 
to the results of trend analyses, there was a significant linear trend in the 
repeating condition (F(l,l54) = 52.98, p < .OOl) but not in the random 
condition. r 

The latency data show that the two conditions yield different perfor- 

TABLE 1 
Percentage Correct in Experiment I 

Block of trials 

Group I 2 3 4 5 6 7 8 

Repeating 91 96 97 98 98 98 98 98 
Random 94 96 96 95 94 96 97 9.5 

1 A criterion significance level of .OS was used in all analyses reported in this article. 

Figure 1.29: The sequence learning phenomenon. (Figure reproduced from Nissen
and Bullemer, 1987).

In another study, eight pairs of objects were presented, in which one object in

each pair was always correct. Two patients with large medial temporal lobe lesions

showed slow and gradual increase of performance in this task, while controls had a

perfect score after three days of testing. Crucially these patients were unable to recall

or recognize word lists, stories and diagrams (Bayley, Frascino, and Squire, 2005).

A study even showed that implicit, automatic learning may be attenuated by ex-

plicit memory processes under certain circumstances (Fletcher et al., 2004). Explicit
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knowledge is thus often not seen as an inherent part of learning sequenced infor-

mation. Rather, awareness may arise from the interaction of the sequence learning

systems with other cognitive systems that then produce conscious knowledge of the

sequence (Clegg, DiGirolamo, and Keele, 1998).

Explicit reports can be seen as a pure arti�cial reconstruction of the real learning

process. But this statement actually oversimpli�es the interaction between behav-

ior and consciousness. Unconscious instrumental conditioning is known to produce

a much smaller performance than conscious instrumental conditioning (Pessiglione

et al., 2008). There are also cases in which we actually know more than what our

behavior shows. For example, a recent study on mice has shown that task acqui-

sition may be diverging from task expression. The authors analyzed a conditioned

response and found a classical and progressive learning curve that is the hallmark

of instrumental conditioning. But when testing mice preferences in a different con-

text, they found a all-or-nothing behavior, showing that mice can indeed perform

one-shot learning (Kuchibhotla and al., 2018).

A series of experiments have then directly explored the relationship between

performance on a cognitive task and the explicit or reportable knowledge associated

with that performance. There was no evidence for a positive association between

task performance and associated verbalizable knowledge. It seems that subjects are

not able to access speci�c task-related information in a form that will allow them to

answer post-task verbal questions. It is possible that whatever is learned during task

performance is not verbalizable (Berry and Broadbent, 1984). We can thus envision

behavior and conscious reports as two (mostly) independent proxys for cognition.

1.5.3 Feeling free vs. being free to choose

Being free is often described as the possibility of choosing between different things,

rather than being forced into an option. But paradoxically when people are faced to

a complex choice with multiple options leading to various consequences, they can

feel blocked or frustrated rather than free.

In a series of six experiments, Lau, Hiemisch, and Baumeister (2015) studied

what factors in�uenced the feeling of freedom. One experiment compared students

having to choose between three, six or nine housing advertisements. The more op-

tions the students needed to analyze, the less free they felt. In another experiment,

participants had to choose between two job applicants. In one case both applicants

were badly �tted for the job, while in another case both were equally competent.

Participants felt freer when choosing between two equally good than two equally

bad options. Therefore the feeling of choice freedom do not arise from a situation in

which a choice can be made between multiple options equally attractive, but rather

is due to positive outcomes emerging from or expected from the choice.

Lau, Hiemisch, and Baumeister (2015) concluded that the feeling of freedom es-

sentially differ from what is theoretically seen as freedom. These results can be seen

as a consequence of a general well-known phenomenon: choice overload. The choice

overload hypothesis states that an increase in the number of options to choose from

may lead to adverse consequences such as a decrease in the motivation to choose or

the satisfaction with the �nally chosen option (see Scheibehenne, Greifeneder, and
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(.83 and .81). Following the outcome of each game, one item asked how much responsibility the participant held for the
game outcome, on a 0Ð100% scale.

7.2. Results

7.2.1. Manipulation checks
ConÞrming that participants understood the outcome and cared about it, positive affect was substantially higher after

winning than after losing, after decision 1: F(1,73) = 115.1, p < .001, g2 = .61, after decision 2: F(1,73) = 44.1, p < .001,
g2 = .38. Participants also reported signiÞcantly more surprise after losing than winning, after decision 1: F(1,73) = 10.5,
p = .002, g2 = .12, after decision 2: F(1,73) = 5.6, p = .021, g2 = .07. Thus, participants generally expected to win and were emo-
tionally involved in the simulation (see Table 3).

7.2.2. Subjective freedom and uncertainty
To test our prediction we used 2 ! 2 mixed ANOVAs incorporating a repeated measures factor (feeling in decision 1 ver-

sus feeling in decision 2) and a between factor (outcome of decision 1: win versus defeat). Concerning uncertainty, we found
a signiÞcant interaction between the repeated measure and the outcome, F(1,73) = 13.23, p = .001, g2

p = .15. Uncertainty
increased in decision 2 for participants experiencing a defeat after decision 1, while it decreased for participants who had
won (see Table 3). For subjective freedom, we found a highly signiÞcant interaction between measurement and outcome,
F(1,73) = 24.06, p < .001, g2

p = .25. Hence, in decision 2 the participantÕs subjective freedom increased after a win, while it
decreased after a defeat (see Fig. 2).

7.2.3. Choice behavior
We analyzed choice-behavior in decision 2 by coding whether the participants retained their formation or swapped play-

ers. In the group of participants experiencing a win after decision 1, 46% made no change, 26% swapped one player and 28%
swapped both players (i.e., rounded values). Of the participants with a defeat only 6% made no change, 30% swapped one
player and 64% swapped both players. We therefore observed a signiÞcant difference in the changes the participants made
to their original choice ( v2(2) = 16.99, p < .001). In order to see if the changes in choice-behavior were directly associated

Table 3
Means and standard deviations, M (SD), for all measures in Experiment 6.

Measurement
point

Within decision
1 before defeat

Within
decision 1
before win

Within
decision 2
after defeat

Within
decision 2
after win

After
decision 1
defeat

After
decision 1
win

After
decision 2
defeat

After
decision 2
win

Experience of
freedom

4.63 (0.84) 4.30 (1.21) 3.78 (1.27) 4.62 (1.07) / / / /

Uncertainty 3.40 (2.26) 4.09 (2.46) 4.17 (2.29) 3.22 (2.11) / / / /
Positive affect / / / / 3.39 (1.83) 7.43 (1.41) 3.67 (2.57) 7.09 (1.74)
Surprise / / / / 6.17 (1.94) 4.59 (2.25) 6.00 (2.65) 4.56 (2.55)
Responsibility / / / / 56.39 (26.12) 68.05 (23.98) 47.89 (30.9) 63.49 (26.58)

Note: This asymmetric table contains the descriptive statistics of the four relevant measurement points: within decision 1, directly after decision 1, wi thin
decision 2 and directly after decision 2. Please note that we have differentiated the measurement points in reference to the manipulated outcomes (i. e.,
Ôwithin decision 2 after defeatÕ = value in decision 2 after decision 1 yielded a negative outcome; Ôafter decision 1 winÕ = value after recognizing a po sitive
outcome of decision 1).

Fig. 2. Means and standard error bars for experience of freedom within decision 1 and within decision 2 in Experiment 6.

42 S. Lau et al. / Consciousness and Cognition 33 (2015) 30Ð46

Figure 1.30: Mean experience of freedom for two successive decisions, after a posi-
tive or negative outcome occurred after the �rst choice. The expectancy of obtaining
a good result without much effort was a key determinant of the feeling of freedom.
(Figure reproduced from Lau, Hiemisch, and Baumeister, 2015).

Todd, 2010 for a review).

In a seminal series of economic experiments, Iyengar and Lepper (2000) revealed

the possible negative consequences due to having too much choice. They offered

participants a choice between an array of either 6 or 30 chocolates. Participants who

chose from the 30 options experienced the choice as more enjoyable but also as more

dif�cult and frustrating. Most intriguingly, though, participants facing the large as-

sortment reported less satisfaction with the chocolates they �nally chose than those

selecting from the small assortment. This challenges the implicit assumption that

the more choice, the better. The reduced feeling of freedom when facing multiple

options may thus be an additional consequence of the choice overload phenomenon.

additionally asked to rate how free their choices felt, subjective reports in this objective context were consistent with the
operational deÞnitions of free and instructed choice, and BOLD contrasts replicated previous studies. This part of our results
is broadly consistent with the classical view of voluntary action, and conÞrms a relation between internal generation of ac-
tion and the experience of volition ( Krieghoff et al., 2011 ).

We next compared this pattern of BOLD activations with those obtained in a subjective context where participants se-
lected actions according to the combination of a numerical stimulus stem and a completion rule (ÔÔlook randomÕÕ). The com-
pletion rule aimed at providing each participant with a situation in which they could experience an ecologically valid graded
sense of voluntariness.

We assumed that participants might use completion rules to conform to the required ÔÔrandom appearanceÕÕ of sequences.
The precise completion rule (e.g., repetition avoidance, ( Ginsburg & Karpiuk, 1994 ) could vary across participants according
to their conceptions of randomness.

Although the completion rule was not considered to be critical in the context of this experiment, we also investigated
participantsÕ number choices, and voluntariness ratings. As an initial approach, we measured the number of exclusion trials
(those in which the number chosen was not included in the presented stem). Participants indeed tended to base their num-
ber choice on an exclusion strategy. Crucially however, the mean voluntariness ratings did not differ between exclusion trials
and inclusion trials, suggesting that participants based their voluntariness ratings on other factors, and that the BOLD con-
trast between choices subjectively rated as free vs. instructed cannot be simply explained by exclusion-related activity.

Also, and as it was mentioned above, stems with large stimulus spaces (i.e., no number repetitions) did not allow partic-
ipants to use an exclusion rule, but were at the same time rated most consistently as free. Therefore, the ability to use an
exclusion rule (i.e., simply choose the number that is not included in the stem) is unlikely to be the core of feeling free.

However, the actual rules used for ÔÔrandomÕÕ generation are not relevant for our analysis, and the requirement to generate
random numbers served merely to provide a plausible response space within which some responses might seem more free
than others. We considered this subjective experience, independently of the precise completion rule adopted, and of the par-
ticular response given. We contrasted trials associated with higher subjective ratings to those with lower subjective ratings
of voluntariness.

The neural correlates of the subjective feeling of freedom were quite different from the neural correlates of free choice as
classically operationalized. Our ROI analysis revealed that in Þve of the ROIs identiÞed (ACC, bilateral IPL, left DLPFC and left
PMC), BOLD activity in the objective context was higher for free trials as compared with instructed trials. In stark opposition,
in the subjective context BOLD activity showed a trend to be lower for free trials in these Þve ROIs. Only one area, the pre-
cuneus, showed the same pattern of BOLD activity in the objective and subjective contexts. Univariate increases in precuneus
BOLD activity are not typically associated with voluntary action. Instead, the precuneus has been linked to self-referential

Fig. 5. Subjective free > subjective instructed in whole brain (blue) and objective free > objective forced (green). Panels (AÐC) show coronal, sagittal and
axial planes respectively. Blue: Postcentral region showing increased BOLD signal for the contrast free > instructed in the median split data from th e
subjective context. BOLD signal peaked at MNI coordinates ( x = 4 y = ! 21 z = 49) and ( x = 0 y = ! 28 z = 53). Results from this contrast in the subjective
context are non-overlapping with those from the same contrast in the classical context (green). BOLD activations were corrected for multiple compar isons
by means of a Monte Carlo simulation ( p < .001, minimum cluster size: 25 voxels).

1280 E. Filevich et al. / Consciousness and Cognition 22 (2013) 1271Ð1284

Figure 1.31: The non-overlapping neural correlates of subjective and objective free-
dom of choice. In blue: the subjective free > subjective instructed contrast; in green:
the objective free > objective instructed contrast, both in whole brain. (Figure repro-
duced from Filevich et al., 2013).

Another study have looked at the difference between being free and feeling
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free from a neuroimaging perspective. A typical method for studying free choice

was used: contrasting free and instructed selection of response alternatives (see

Krieghoff et al., 2011 for a review). Filevich et al. (2013) introduced a novel task in

which participants had to complete a number sequence with the instruction to make

the whole sequence 'look random'. This way depending on the number sequence

presented and the personal rule participants followed to make a sequence look ran-

dom, the experimenters created situations in which the choice of number would

feel more free or feel more constrained. BOLD responses for conditions subjectively

experienced as free identi�ed a postcentral area, distinct from the areas typically

considered to be involved in free action. Their results suggest that the experience of

free choice may not derive from brain circuits involved in action selection, but from

quite different brain circuits.

Although conscious reports were often used to better characterize control and

agency, they could be a purely reconstructive process, dissociated from the cognitive

processes underlying behavior.
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Chapter 2

Research question

Sense of agency or subjective control depends on the ability to learn and make use of

action-outcome contingencies and one of the more classical algorithm to model this

learning originates in the �eld of reinforcement learning. Our aim in this PhD thesis

was to study the relationship between control, agency and reinforcement learning

processes. As this question is very general, we will focus on three speci�c problems

arising at the interaction of these cognitive processes.

In a �rst series of experiments, we will study how participants can compute and

monitor their control over given outcomes in a changing environment. Our aim

was to better understand the computational processes responsible for control per-

ception, and their associated biases. We have seen in the introduction how human

participants can be subjected to illusions of control. We thus hypothesized that a

model whose updates were built on a by-default control assumption would be more

adapted to describe participants' behavior.

In a second series of experiments conducted in collaboration with University

College London, we used intentional binding as an implicit proxy to measure partic-

ipants' feeling of agency in a reversal-learning task. Agency and adaptive response

processes have so far been studied almost exclusively separately. Interestingly the

emergence of an error in a learning process was shown to increase one's vigilance

and cognitive control. We investigated how the implicit feeling of agency is modu-

lated by the error-triggered engagement of cognitive control.

Finally, we investigated whether agency can be the source of some standard se-

quential decision-making biases, like the choice con�rmation bias. In a last set of

experiments, the participant could be either an agent or an observer, in a simple

instrumental conditioning task. In the agent condition, the subject freely chose be-

tween two symbols, whereas in the observer condition, the computer preselected

one symbol and the subject was forced to match this choice. Previous experiments

have shown that in free-choice, individuals display a choice-con�rmation bias. We

predicted that a lack of agency at the moment of choice would make the bias disap-

pear.

Subjective reports of control often appeared to be a reconstructive narrative, com-

pletely detached from the reality of the task. This is why we will use the tool of

cognitive modeling, rather than verbal reports, in this PhD thesis, to uncover the

cognitive processes underlying participants' behavior.
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Chapter 3

General method

Cognitive modeling is the central, but not necessarily well known, tool used in this

PhD thesis. We will �rst describe here this approach. Theoretical analysis and com-

putational modeling are important ways of characterizing what nervous systems do,

determining how they function, and understanding why they operate in particular

ways. Cognitive modeling is based on the belief that methods of mathematics, and

computer science can provide important insight into cognitive science and psychol-

ogy (Dayan and Abbott, 2001).

3.1 Cognitive modeling

These past decades, much efforts have been devoted to a model-based approach in

neuroscience and psychology, and cognitive modeling has grown considerably in

cognitive sciences. The importance of computational models in cognitive sciences

and neurosciences is not surprising; because the core function of the brain is to pro-

cess information in order to guide adaptive behavior, it is particularly useful to for-

mulate cognitive theories in computational terms.
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The curves on the left show the relative frequency of PubMed entries forÔcognitiveÕ(in red) andÔcognitive and computational' (in blue) as a function of the year. Their
frequencies are calculated relative to the number of entries of 2014, which are therefore normalized to 1 for both curves. The bars on the left represent the estimated
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Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 3

Figure 3.1: The curves on the left show the relative frequency of PubMed entries for
'cognitive' (in red) and 'cognitive and computational' (in blue) as a function of the
year. Their frequencies are calculated relative to the number of entries of 2014, which
are therefore normalized to 1 for both curves. The bars on the left represent the
estimated annual growth of the best-�tting exponential curve. (Figure reproduced
from Palminteri, Wyart, and Koechlin, 2017.)
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3.1.1 De�nition

Donoho et al. (2009) have said that originally, there were two scienti�c methodolog-

ical branches: deductive(for example, mathematics) and empirical(for example, sta-

tistical data analysis of controlled experiments), but that now, many scientists ac-

cept computation(for example, large-scale simulation) as the third branch. Weisberg

(2007) has rather splited empirical sciences into two main approaches: model-free

approaches directly investigate the natural phenomenon of interest, whereas model-

based approaches investigate abstract (mathematical) representations of the natural

system that are responsible for the empirical phenomenon of interest.

For example, an active area of cognitive modeling is concerned with the question

of how we learn to categorize perceptual objects (Medin and Schaffer, 1978). One

categorization model is called the prototype model. It postulates that the learner

estimates the central tendency from all the examples experienced from within each

category during training. When a new target stimulus is presented, the similarity

of this target to each category prototype is evaluated, and the category with the

most similar prototype is chosen. But according to the exemplar model, the learner

memorizes all the examples that are experienced, and the similarity of a new target

stimulus is computed to each stored example for each category. These two models

differ in terms of the assumptions they make, but they both try to account for a

common set of empirical laws to explain categorization.

Cognitive science is concerned with understanding the processes that the brain,

especially the human brain, uses to accomplish complex tasks, including perceiving,

learning, remembering, thinking, predicting, inference, problem solving, decision

making, planning, and moving around the environment. The goal of a cognitive

model is to scienti�cally explain one or more of these basic cognitive processes, or

explain how these processes interact (Busemeyer and Diederich, 2010).

Figure 3.2: Cognitive models can be used in a variety of cognitive science �elds,
from conditioning to representing social relationships or cognitive maps, or to link
together the different characters in a story. (Adapted from Timothy Berhens slides at
the Cosyne 2018 symposium.)

But what makes these models cognitive models as opposed to some other kind

of models, such as conceptual models, statistical models, or neural models? One

hallmark of cognitive models is that they are described in formal mathematical or

computer languages. Another hallmark is that they are derived from basic principles
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of cognition.

3.1.2 Procedure

Busemeyer and Diederich (2010) have described cognitive modeling as a �ve-stage

process:

� A conceptual cognitive theory is reformulated into a mathematical or com-

puter language description.

� As the theory is often insuf�cient to completely specify a full model, additional

ad hoc assumptions need to be made.

� Models almost always contain initially unknown parameters, that need to be

estimated from some of the observed data.

� The models are compared with respect to their ability to explain the empirical

results.

� Finally one usually needs to start all over again, as model development and

testing is actually a never-ending process.

Models always need to be modi�ed or extended to account for newly discovered

experimental �ndings, or in some cases old models need to be discarded for the

�eld to start over. Thus, the modeling process produces an evolution of models that

improve and become more powerful over time as the science in a �eld progresses.

It should be noted that complicated steps in cognitive modeling consist in the

addition of ad hoc assumptions and free parameters needed to create a model. Of

course theorists always try to minimize their number, to keep the model as simple as

possible. One universally recognized heuristic for theory selection is Occam's law

of parsimony: “plurality is never to be posited without necessity”. This principle

dictates that among equally good explanations of data, the less complex explanation

should be held as true (Palminteri, Wyart, and Koechlin, 2017).

3.1.3 Perspectives

An advantage of cognitive models over conceptual frameworks is that, by using

mathematical or computer languages, cognitive models should guarantee to pro-

duce logically valid predictions (provided no calculation or code errors were made).

This is not true of conclusions based on intuitively based verbal reasoning that can

lead to incorrect conclusions (Busemeyer and Diederich, 2010).

A second important reason for using mathematical or computer models is that

they are capable of making precise quantitative predictions. Most researchers would

reject a model whose predictions are an order of magnitude off the mark, even

though the model makes the correct qualitative or ordinal prediction. One could ar-

gue that generic statistical models or empirical curve-�tting models also use formal

language and are also capable of generating quantitative predictions. The important

difference is that a cognitive model is generalizable: it can be used to derive new

predictions for new relationships that go far beyond the original data.
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It should be kept in mind that it is meaningless to ask if a model can �t the data or

not (Roberts and Pashler, 2000). In fact, all models are deliberately constructed to be

simple representations that only capture the essentials of the cognitive systems. The

statistician George Box famously said: “All models are wrong but some are useful.”

(Box, 1979). Indeed a suf�cient amount of data will always prove that a model is not

true, and no model is able to explain the whole variability of any data set. Therefore

cognitive modeling must rely on a comparison between various models.

Thus models are selected on their ability to predict the observed data as a func-

tion of their complexity. But the ability of a candidate model to generate a behavioral

effect of interest is rarely assessed, although it can be an absolute falsi�cation crite-

rion. Palminteri, Wyart, and Koechlin (2017) have argued that the simulation of

candidate models is necessary to falsify models and therefore support the speci�c

claims about cognitive function made by the vast majority of model-based studies.

Figure 3.3: Concrete examples of model falsi�cation. Top panels:observed (grey
dots) and model simulated (colored lines) choice variability in a probabilistic infer-
ence task as a function of the sequence length.Bottom panels:observed (grey dots)
and model simulated (colored bars) post-learning preference as a function of the
stimulus value. (Figure reproduced from Palminteri, Wyart, and Koechlin, 2017.)

Now that we have introduced the general framework we will be using in this

PhD thesis, we will present one of the most known and used computational frame-

work: the Bayesian or probabilistic framework. This introduction will be short, as

we have only used Bayesian models in Study I for comparison purposes.
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3.2 Bayesian models

3.2.1 Bayesian probabilities

Bayes theorem is a method of statistical inference that provides a normative way to

update a prior belief with incoming evidence. It was named after Reverend Thomas

Bayes (1702-1761) who was the �rst to provide an equation that allows new evidence

to update beliefs (Bayes and Price, 1763), then further developed by Pierre-Simon

Laplace who published the modern formulation in 1820 (Laplace, 1820).

A probability can give us a measure of how much one believes in something. For

example, when one is absolutely sure of something (for example that the sun rises

every day), the probability is 1. The use of probability to represent uncertainty is not

an ad hoc choice: Cox (1946) showed that if numerical values are used to represent

degrees of belief, then a simple set of axioms encoding common sense properties of

such beliefs leads uniquely to a set of rules equivalent to the sum and product rules

of probability.

Given some phenomenon A and an observation X relative to A, Bayes theorem

indicates precisely how much we should update our belief of A given the new ob-

servation X:

p(A jX) =
p(X jA)p(A)

p(X)
(3.1)

where p(A) is the a priori belief on A, before observing X, p(X jA) is the likelihood

of observing X if A is true, and p(A jX) is the a posteriori belief on A taking into

account the new observation.

The ideal Bayesian observer is an agent that will use new observations in a nor-

mative way. For example, consider the problem of breath cancer. Imagine that 1%

of women who participate in routine screening have breast cancer, and that 80% of

women with breast cancer will get positive mammographies, while 9.6% of women

without breast cancer will also get positive mammographies. Then, according to

Bayes rule, a woman who had a positive mammography in a routine screening ac-

tually has a probability of only 7.8% of having cancer (Yudkowsky, 2003).

Probabilistic approaches have been increasingly ubiquitous, and widely used,

in cognition. Helmholtz (1856) was among the �rst to propose that the perceptual

system executes an “unconscious inference” from sensory stimulations to hypothe-

size about the environment, but strong experimental evidence in support of this no-

tion has emerged only recently. From knowledge-bases, to perception, to language

and motor control, there has been widespread application of sophisticated prob-

abilistic methods in computational modeling (Chater and Oaksford, 2008). These

experiments have shown that human behavior is highly consistent with probabilis-

tic reasoning in the sensory (Knill and Richards, 1996) and the motor (Körding and

Wolpert, 2004) domain.

For example to quantitatively investigate cue combination, Ernst and Banks (2002)

studied how human subjects estimated the width of an object by looking at it and

touching it. One could imagine people used the average of the visual and tactile

estimates. But Bayes rule would predict that each cue should contribute to the �nal

estimate in proportion to its reliability (or inverse variance). This model behaved
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very similarly to humans in the task: visual dominance occurred when the variance

associated with visual estimation is lower than that associated with tactile estima-

tion.

Figure 3.4: Bayesian integration of tactile and visual informations. (Figure repro-
duced from Ernst and Banks, 2002.)

3.2.2 Bayesian inference

A fundamental notion in Bayesian modeling is the distinction between observed and

latent variables. In a Bayesian model, the latent variable distributions are updated

based on the values of the observed variables. For example, let us consider a single

Gaussian random variable x, whose variance s2 is known, and we have to infer the

mean mgiven a set of N observations. The posterior distribution is given by:

p(mjx1, ...,xN ) µ p(x1, ...,xN jm)p(m) (3.2)

If we chose the prior p(m) to be Gaussian, it will be conjugate, as the posterior dis-

tribution will also be Gaussian. Conjugate priors are often used, as they greatly

simplify Bayesian analysis (Gelman et al., 2013).

The mean of the distribution over mis a parameter controlling a prior, and so it

can be viewed as a hyperparameter. Because the value of this hyperparameter may

itself be unknown, we can again treat it from a Bayesian perspective by introducing

a prior a over the hyperparameter, sometimes called a hyperprior, which is again

given by a Gaussian distribution. This construction can be extended in principle to

any level, and is an illustration of a hierarchical Bayesian model (Bishop, 2006).

Figure 3.5: The graphical model of a Bayesian hierarchical model. Random vari-
ables are represented by empty nodes, and deterministic parameters by smaller solid
nodes. The arrows express probabilistic relationship between the nodes. The box la-
belled N is a plate, representing N nodes of which only a single example xn is shown
explicitly.

Bayesian models have been used in human decision-making, to compute a peo-
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ple's beliefs about the hidden state of the world from observed actions and rewards.

In fact, the TD(0) learning rule we presented in the introduction can be seen as a

simpli�ed case of the Kalman �lter, a Bayesian model that also uses a Temporal Dif-

ference learning rule but has additional machinery that determines the learning rate

parameter a on a trial-by-trial basis (Behrens et al., 2007).

One key issue in psychology is how to change one's beliefs about the world, and

more speci�cally the amount of in�uence that unexpected outcomes should have on

existing beliefs. The strength of a Bayesian model is that it can distinguish outcomes

that are unexpected because of a fundamental change in the environment, from out-

comes that are unexpected because of persistent environmental stochasticity. Nassar

et al. (2010) have shown that human participants can recognize change points from

unexpectedly large prediction errors. This suggests that the brain uses straightfor-

ward updating rules that take into account both recent outcomes and prior expecta-

tions about higher-order environmental structure.

As we said, Bayesian models allow for a hierarchy in the inferences performed,

and this has been used to model cognitive processes. To ensure optimal decision-

making, the hidden states and their changes should be probabilistically inferred, but

also the rate at which the hidden states will change. Using a hierarchical Bayesian

model, Behrens et al. (2007) have showed that human subjects not only adapt their

responses when changes occur, but also assess volatility in an optimal manner.

Figure 3.6: Left panel:graphical description of the probability-tracking problem. At
each trial i, data yi is observed, which is governed by probability r i . This probability
can change between trials, governed by the volatility, vi , which can itself change
and is governed by control parameter k. The goal of the Bayesian learner is to track
these parameters through the course of the experiment, given only the observed
data. Right panel:the dashed lines show the implemented reward probabilities and
volatilities, and the solid lines their Bayesian estimates. (Figure reproduced from
Behrens et al., 2007.)

More generally, it is known that cognitive processes can be hierarchically orga-

nized in the brain. For example, cognitive control was shown to involve at least

three nested levels of processing, implemented in distinct frontal regions (Koechlin,

Ody, and Kouneiher, 2003). Another study investigating the architecture of reason-

ing processes in the prefrontal cortex, have shown that different regions are involved

in making probabilistic inferences about the ongoing and the alternative behavioral
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strategies (Donoso, Collins, and Koechlin, 2014).

3.2.3 Perspectives

Most studies in neuroscience have focused on problems with a small number of

variables, all following simple distributions, for which an optimal solution can be

easily derived. Examples include integration of two conditionally independent cues,

visual search with simple, independent stimuli, and temporal integration of sensory

evidence for binary decision-making in a stationary environment. For these tasks,

humans and animals often exhibit near-optimal behavior, in the sense that they take

into account the uncertainty associated with all signals and combine these signals

according to their reliability (Pouget et al., 2013).

Real-life problems, however, are almost always far too complicated to allow for

optimal behavior. Optimal behavior requires both full knowledge of the generative

model and the ability to perform exact inference, neither of which are possible for

most problems of interest.

Given the dif�culty of real-world problems, one might imagine that, when con-

fronted with them, the brain no longer relies on a probabilistic approach, but uses

instead a set of heuristics (Gigerenzer, Todd, and ABC Research Group, 1999). There

are a variety of approximate approaches to hard inference problems. However,

whether organisms continue to be probabilistic on hard problems or, alternatively,

whether organisms abandon the probabilistic approach altogether when the prob-

lems become especially dif�cult can only be answered experimentally.

The recent advances of cognitive modeling allows us to now predict human

learning and decision-making in �ne-grained details. Our goal in this PhD thesis

is to gain insight on the interaction of control, agency and reinforcement learning,

by using model comparison and parameter optimization.
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Chapter 4

Study I

4.1 Introduction

We live in a constantly changing world. To adopt a �exible behavior, adapted to new

situations, we need to monitor actions bearing consequences in the outside world,

and select the most appropriate one. This requires being able to attribute a causal

relationship between our actions and external events.

This �rst series of 3 experiments were built on a modi�ed reversal-learning pro-

cedure, in which there was some uncertainty about the identity of the causal agent.

To maximize their performance subjects had to continuously monitor their causal

in�uence over the task environment, by discriminating changes that were caused by

their own actions from changes that were not.

Our aim was to better understand the computational processes responsible for

control perception, and their associated biases.

4.2 Our draft in preparation for Psychological Review
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STUDY I

4.3 Additional simulations

In this draft, we have presented a novel model for reinforcement-learning, which

is emulating a counterfactual outcome to update the unchosen Q-values. While a

classical reinforcement-learning model has usually 2 parameters (i.e. the learning

rate a and the exploitation intensity b), this counterfactual model has 4 additional

parameters:

� the reference point P, used to emulate a counterfactual outcome, and thus a

counterfactual prediction error;

� the three counterfactual learning rates aCF1, aCF2 and aCF3, associated with

each of the unchosen actions, that are weighting the counterfactual prediction

error in the unchosen Q-values update.

We will now simulate this novel model in a classical stationary setting (Sutton and

Barto, 1998; Cazé and van der Meer, 2013) and show in which conditions and pa-

rameter values it outperforms the classical reinforcement learning model.

Figure 4.1: An illustration of the counterfactual model architecture. On trial t, a ma-
chine and a button are chosen, which leads to an obtained reward R(t). Both classi-
cal and counterfactual models use the prediction error to update the Q-value of the
chosen dyad machine-button. In the counterfactual model, the reward is also used
to emulate a counterfactual reward RCF(t) by symmetry with a reference point P.
The counterfactual prediction error is weighted by a different counterfactual learn-
ing rate aCF, depending on whose unchosen action the Q-value is updated. In green
the parameters shared by the classical and counterfactual models, and in blue the
parameters speci�c to the counterfactual model.

4.3.1 The counterfactual learning rates: a theoretical perspective

We have shown that the pattern of counterfactual learning rates is optimal only

when adapted to the structure of the task (section “CF model: best-�tting param-

eters”). We wanted here to understand why. We again used the “dependency” and

the “value” conditions from Experiment 1, to be the environments on which we will

test the different patterns of learning rates.
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Here we assumed that the average of all reward distributions (here 50) was taken

as the reference point. It should be noted that the dependency condition has what we

call `button-symmetric' reward distributions. It means that, for a given machine, the

outcome received for the chosen button is symmetric to the outcome of the unchosen

button. Therefore the counterfactual model should use the counterfactual outcome

to update the Q-value of the unchosen button of the chosen machine (aCF1 > 0), but

not the Q-values of the two other unchosen actions ( aCF2 = aCF3 = 0).

Figure 4.2: Left panels: an illustration of the two conditions on which the models
will be simulated. Middle panels: the optimal counterfactual updates according to
the condition symmetry. Right panels: the pattern of counterfactual learning rates
corresponding to these optimal updates. The value of the factual learning rate a is
shown here for comparison purposes.

The value condition has the inverse symmetry: its reward distributions are machine-

symmetric. There the optimal counterfactual model will update the Q-values of the

unchosen machine (for both chosen and unchosen buttons) with the counterfactual

outcome (aCF2 > 0 and aCF3 > 0), but the Q-value of the unchosen button of the

chosen machine should stay unchanged (aCF1 = 0).

The optimal pattern of counterfactual learning rates can therefore be deduced

from the reward distributions of the two conditions.

4.3.2 The counterfactual learning rates: simulations

To test this hypothesis, we ran 10,000 simulations of the two patterns of learning

rates, and of a classical reinforcement-learning model. We set the beta value at 0.1

to allow some explorative behavior. As said above the reference point used was 50.

The learning rates (factual and counterfactual) were set at 0.1 or 0, according to the

pattern tested. The four Q-values are initiated at 50, the average of reward distribu-

tions. The simulations lasted for 200 trials in the two �rst conditions of Experiment

1. Unlike the simulations in the draft, here the action-outcome relations were sta-
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tionary, i.e., no reversal occurred during the whole task.

Figure 4.3: The dynamics of the Q-values of counterfactual models with button- (in
purple, left panel) and machine-symmetric (in orange, right panel) pattern of coun-
terfactual learning rates. We have also plotted the Q-values dynamics of a classical
reinforcement-learning model (in grey) for comparison purpose. The dotted lines
represent the average reward for the reward distributions associated with the differ-
ent actions. In this �gure, and for all the following ones, the upper and lower panels
show the simulations in the dependency and value conditions respectively.

We looked at the dynamics of the Q-values for the different models in the two

environments. In both tasks, the classical Reinforcement-Learning model is approx-

imating well the average reward of each action (58, 50 and 42 for the dependency

condition; 58 and 42 for the value condition). Interestingly we can see different dy-

namics in high and low Q-values: the Q-values approximating 42 were slower to

converge than the Q-values approximating 58, as they were associated to actions

less frequently chosen by the model.

For the counterfactual model, the Q-values dynamics depended on whether the

pattern of counterfactual learning rates was adapted, or not, to the task. For the de-

pendency condition and the button-symmetric counterfactual model, the Q-values

not only approximated well the average reward, but also were faster to converge,

compared to a Reinforcement-learning model. The same can be observed for the

machine-symmetric counterfactual model in the value condition. Interestingly, we

can see that for this model, both high and low Q-values displayed the same speed

of convergence, as outcomes were used to update both the chosen and unchosen

Q-values.

It should be emphasized that the counterfactual models with unadapted pat-

terns of learning rates poorly approximated the underlying average rewards. The
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machine-symmetric counterfactual model's Q-values converged to biased estimates

of average rewards in the dependency condition, while the button-symmetric model

was unable to dissociated the high-rewarding actions from the low-rewarding ones

(Q-values staying around 50) in the value condition.

The Q-values dynamics were good predictors of a model's performance, as the

models are using the difference in Q-values to guide the action selection. We can

thus predict that models with well-discriminated Q-values will perform better than

models with more similar Q-values, for a �xed exploitation intensity parameter b.

Indeed, the counterfactual model whose pattern of learning rates was adapted to

the condition outperformed both the Reinforcement-Learning model and the un-

adapted counterfactual model, in both tasks. It should be noted that counterfactual

model was more advantageous than the classical one only when their counterfactual

learning rates re�ected well the task's structure.

Figure 4.4: The performances of the classical reinforcement-learning model (in grey)
and the counterfactual models with button- (in purple) and machine-symmetric (in
orange) patterns of counterfactual learning rates. The x-axis represents the trial
number. The chance level is represented in dotted line (0.25 for the A-O dependency
condition as only one action is correct, but 0.5 for the Outcome value condition, as
two actions among 4 possible are associated with the high-rewarding machine).

4.3.3 The reference point: simulations

We then wondered how the dynamics of the counterfactual model may change when

the reference point was no longer the underlying average of reward distributions.

We looked at the Q-values dynamics when we set the reference point to the val-

ues of 40 and 60 and ran simulations similar to those described above. As we can see,

when the reference point departed from the value of 50, the Q-values did not con-

verge anymore to the average reward for each action. They underestimated the real

reward average when the reference point was set under 50, and they overestimated

them when the reference point was set at 60.

It seemed that the lower the reference point, the higher the difference between

Q-values was. We could therefore predict that a reference point lower than 50 would

increase the model's performances. Still, we considered purposeless to further ex-
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Figure 4.5: The dynamics of the Q-values of the counterfactual models for a reference
point P of 40 and 60. We only plotted the model that was shown to be more adapted
to the task, therefore the button-symmetric model for the dependency condition, and
the machine-symmetric model for the value condition. The dotted lines represent the
average reward for the reward distributions associated with the different actions.

plore the mechanisms of this counterfactual model, as it has become a degenerate

model, whose internal variables were no longer related to the true statistics of the

task.

In summary, when the pattern of counterfactual learning rates was re�ecting the

task's symmetry, the counterfactual model outperformed the classical reinforcement-

learning model. Still a non-adapted counterfactual model performed worse than the

classical one, or even at chance. It should be added that the performances of the

counterfactual model were reference-dependent. The counterfactual model devel-

oped here had never been described before in the reinforcement-learning literature.

Our simulations con�rmed that this model can be advantageous in stationary sym-

metrical tasks with more than 2 possible actions.
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Chapter 5

Study II

5.1 Introduction

A fundamental experience of everyday life is the feeling that we control our own

actions. When these actions produce effects in the environment, we feel that we

cause those too. This cluster of experiences is referred to as the Sense of Agency

(Haggard and Chambon, 2012).

In the previous study, we were interested in how human participants would

compute an on-the-�y estimate of instrumental control in an instrumental condition-

ing experiment. Here for the �rst time, we measured participants' feeling of agency

during an instrumental task. We used the intentional binding paradigm, as there

is compelling evidence supporting a link between intentional binding and sense of

agency (Moore and Obhi, 2012).

Sense of agency or subjective control depends on the ability to learn and make

use of action-outcome contingencies and one of the more classical algorithm to model

this learning originates in the �eld of reinforcement learning. Our goal was to

study the possible correlations between implicit feelings of agency and reinforce-

ment learning processes.

5.2 Our published research article
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5.3 Additional experiment

We have also analyzed the results of another experiment conducted by Steven di

Costa. In this experiment, we have varied the action-outcome contingencies. Its

results replicated our published article.

5.3.1 Methods

16 participants were tested on the same general procedure as in Experiment 1. The

only difference was in the action-outcome contingencies: in some blocks, one key de-

livered rewarded high-tone with a probability of 0.7 and the other key with a prob-

ability of 0.3, while in the other blocks the probabilities were 0.9 and 0.1. Therefore

there were four agency conditions: one action binding condition and one outcome

binding condition for the 70%/30% contingencies, and again one action binding con-

dition and one outcome binding condition for the 90%/10% contingencies.

Experimental trials were categorized according to three design factors: 1. condi-

tion (90%/10% vs. 70%/30%), 2. whether outcome on a given trial was positive or

negative. 3. whether outcome on the previous trial was positive or negative. Action

binding data and outcome binding data were then subjected to a 2x2x2 ANOVA. To

further understand participants' strategy, we used the same computational model

as the one described in our article.

5.3.2 Results

In both the 70%/30% and the 90%/10% condition, participants were able to learn

the correct action. Similarly to Experiments 1 and 2, the trial number after rever-

sal had a signi�cant effect on participants' proportion of correct choice in both the

70%/30% (F(4, 56) = 48.1, p < 0.0001) and in the 90%/10% (F(4, 56) = 139.7, p <

0.0001) conditions.

Figure 5.1: Proportion of correct responses before and after a reversal event for the
70%/30% and the 90%/10% conditions. Participants' data are in orange, and pre-
dictions of the reinforcement-learning model are in purple. Error-bars represent the
standard error of mean.

Consistently with previous �ndings (Vulkan, 2000), participants followed the

probability matching law, i.e. their proportion of correct choices after learning were

matched to the probability of reward of the correct action. Indeed in the 70%/30%
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condition, participants reached a plateau of 70% of performance a few trials after the

reversal while in the 90%/10% condition, the plateau was at 90%.

A 2� 2� 2 ANOVA on action binding yielded no signi�cant main effect of condi-

tion, current outcome or previous outcome, nor any signi�cant interaction (all p >

0.25). The same ANOVA on outcome binding revealed similar results (all p > 0.25).

But because this experiment was a replication, we then directly used paired t-tests

on the pooled 70%/30% and 90%/10% conditions, to investigate the effect of the

previous and current outcomes on action and outcome binding respectively.

As in Experiments 1 and 2, the previous outcome valence had a signi�cant effect

on action binding ( t15 = 2.3, p = .038), with stronger action binding following a neg-

ative outcome than following a positive outcome. Regarding outcome binding that

was tested only in Experiment 1, the current outcome valence had again a signi�cant

effect on outcome binding ( t15 = -2.4, p = .030), with negative outcomes being more

strongly bound towards actions than positive outcomes.

Figure 5.2: On the left, the mean outcome binding (ms) measured for rewarded
(blue) and non-rewarded (red) outcomes. On the right, mean action binding (ms)
following a rewarded or non-rewarded outcome on the previous trial. Error-bars
represent the standard error of mean.

From the �tted parameters, we simulated the model's choices, and we again

found a generally good match with participants' performances (see the previous per-

formance �gure). Similarly to Lefebvre et al. (2016), Palminteri et al. (2017) and our

published article, we also found a higher learning rate for positive outcomes than

negative outcomes (paired t-test, t15 = 6.94,p < 0.001). We will develop extensively

this learning rate assymetry results and interpret it in Study III.

We �nally explored the correlation between the difference in action binding and

the learning rate asymmetry. We found a positive correlation between the post-error

boost of agency and the normalized learning rate asymmetry, although it was not

signi�cant ( R = 0.38,p = 0.15).

In this additional experiment, we have used novel action-outcome contingencies.

We replicated that, in a reinforcement-learning environment, negative outcomes led

to increased outcome binding, while also increasing action binding in the following
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trial. Unfortunately, we lacked statistical power to further analyze the difference

between the 70%/30% and 90%/10% conditions. We also found a positive, although

non signi�cant, correlation between the post-error boost of action binding and the

learning rate asymmetry. This experiment generalized our �ndings to new action-

outcome contingencies, although it remained inconclusive about the speci�c effects

of the manipulated contingencies.
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5.4 Additional analyses

After the article publication, we further analyzed Experiment 2's results. Experi-

ment 2 consisted of two main conditions: a learning condition in which one key

delivered rewarding high tones with a probability of 0.8 and the other key with

a probability of 0.2, and a random condition in which the probability of rewarding

tones was the same for the two keys (0.5). These conditions were explicitly explained

to participants: in the learning condition they were instructed to "�nd the good key,

maximizing the number of high tones", whereas in the random condition they were

told, "whichever action is chosen, it will have no in�uence on the following tone".

Furthermore, participants could earn a performance bonus only in the learning con-

dition, thus they had no motivation to follow action-outcome contingencies in the

random condition. This experiment thus gives us a unique opportunity to study the

impact of an explicit lack of instrumental control on participants' behavior.

5.4.1 Behavioral results

Adaptive behavior is often described as a tendency to switch response when the

last action led to a negative outcome and to keeping pressing the same key when

it previously led to a positive outcome. We expected participants to adapt their

responses accordingly to the previous outcome only in the learning condition, and

not in the random condition.

Figure 5.3: The proportion of switch between trial t and t+1 as a function of the
valence (positive or negative) of the outcomes seen on the trial t, sorted between the
trials in the learning and random conditions. The standard errors appearing on this
graph (and the following ones) were calculated across participants, while the stars
indicate signi�cance on paired t-tests (*: p < .05; **: p < .01; ***: p < .001).

We computed the proportion of key switch between trial t and t+1, as a func-

tion of the outcome valence (positive or negative) on trial t, and as a function of

the experimental condition (learning or random condition). We subjected these pro-

portions to a 2 � 2 ANOVA. We found a highly signi�cant effect of outcome valence

(F1,29 = 25.9,p = 1.5� 10� 6), with more switching behavior following negative out-

comes than following positive outcomes. There was no main effect of experimental
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condition ( F1,29 = 0.36,p = .55). Crucially there was a signi�cant valence � condi-

tion interaction ( F1,29 = 9.4,p = 2.7� 10� 3).

We performed simple-effect t-tests to further investigate this interaction. In both

the learning and the random conditions, non-rewarded outcomes signi�cantly in-

creased the proportion of switch on the following trial compared to rewarded out-

comes, but the difference was stronger in the learning condition than in the ran-

dom condition (learning condition: t29 = 14.3,p = 1.1 � 10� 14; random condition:

t29 = 4.7,p = 5.5� 10� 5; difference between conditions: t29 = 8.7,p = 1.1� 10� 9).

Although participants were explicitly told their actions had no in�uence on out-

comes in the random condition, they still displayed adaptive behavior, instead of

randomly choosing between any key or always choosing the same. But this adapta-

tion was less pronounced than in the learning condition, showing that the instruc-

tions did regulate participants' strategy.

5.4.2 Computational results

We then used a reinforcement-learning model to further understand the different

strategies implemented by participants in the two conditions, and to investigate

whether an explicit lack of control had an impact on the asymmetry between the

positive and the negative learning rates.

We applied the same modeling procedure as the one described in the above ar-

ticle, baring a few differences. First, we used this model to �t both conditions in

Experiment 2 (and not only the learning condition). Second we �tted four learn-

ing rates, instead of two: we used a pair of alphas ( a+ and a� ) to �t the learning

condition, and another pair to �t the random condition.

Figure 5.4: Mean learning rates for positive ( a+ , in blue) and negative (a� , in red)
outcomes in the learning and random conditions.

We then subjected the learning rates to the same 2� 2 ANOVA as the proportions

of switch, i.e., the outcome valence and experimental condition as the predictors.

We found a signi�cant effect of outcome valence ( F1,29 = 8.6,p = 4.0 � 10� 3), with

higher learning rates for positive outcomes than for negative ones. There was a

highly signi�cant effect of experimental condition ( F1,29 = 17.1,p = 6.8� 10� 5), with

higher learning rates in the learning than in the random condition. Interestingly we

found no valence � condition interaction ( F1,29 = 0.02,p = 0.88).
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The asymmetry between a+ and a� was thus considered similar between the

learning and the random conditions. This result is striking because we will see in

the next study that being forced to choose between two options abolished the asym-

metry between a+ and a� . Therefore a lack of agency in action choice made the

learning rate asymmetry vanish, while here an explicit lack of agency over action

outcomes did not prevent positive outcomes to be more integrated than negative

outcomes.

Still we found learning rates to be higher in the learning than in the random con-

dition. We can interpret it as participants choosing more randomly between the two

keys, regardless of previously observed outcomes, in the random than the learning

condition. But a change in learning rates can be interpreted differently, as re�ecting

the environment stability (Behrens et al., 2007). Our reinforcement-learning model

allowed us to investigate how far participants' choice was from randomness, as the

model computed the probabilities to choose each key on each trial. We could thus

compute how likely the participants' choices were to occur, according to the model.

We found that the probability of the model selecting the same action as the partic-

ipant was 0.82 � 0.02 (mean� standard error mean) in the learning condition and

0.65 � 0.03 in the random condition. This difference in predictive power was sig-

ni�cant (paired t-test: t29 = 4.8,p = 4.8 � 10� 5). Participants' choices were thus

predicted to a lesser extent by a reinforcement-learning model in the random than in

the learning condition, showing that participants' behavior was less outcome-driven

and more stochastic in the random condition.

Figure 5.5: Mean predictive power, i.e. percentage of choices predicted by the model,
for the learning and the random conditions.

When participants were told they had no control over outcomes, we found that

their adaptive behavior was reduced and that a reinforcement-learning model was

less able to explain participants' choices, thus making their choices more stochastic,

than when participants are instructed to learn action-outcome contingencies. Con-

sistently with Lefebvre et al. (2016)'s �ndings, we also found a lack of control to have

no effect on the learning rate asymmetry.
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Chapter 6

Study III

6.1 Introduction

In the previous study, we found participants' learning rates to be higher for positive

than negative outcomes for factual learning, i.e., learning from obtained outcomes.

Palminteri et al. (2017) found the same result, but also the opposite valence-induced

bias for counterfactual learning, as negative counterfactual outcomes were preferen-

tially integrated, relative to positive ones. These results can be generally seen as a

choice-con�rmation bias.

Figure 6.1: The choice-con�rmation bias recently found in learning rates. Factual
and counterfactual learning rates are respectively denoted aC and aCF. (Figure re-
produced from Palminteri et al., 2017.)

Choice-con�rmation is a self-centered bias: we want our choice to be correct,

and thus interpret the given outcomes in this light. In our previous study, when

we �tted the learning rates independently in Experiment 2's learning and random

conditions, we found the same difference between positive and negative learning

rates for explicit presence and lack of outcome control. The choice-con�rmation bias

appeared to persist in a situation in which participants were told that their actions

could not control outcomes and that there were no `correct' or `incorrect' choice to

make.

In this study, we hypothesized the learning rate asymmetry to disappear when

participants were forced to select an action, and we investigated the optimality of

differential learning rates in various experimental conditions.

6.2 Our draft in preparation
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6.3 A normative perspective on differential learning rates

Other studies with various protocols have also found differential learning associated

with positive and negative outcomes (Frank, Seeberger, and O'reilly, 2004; Sharot,

Korn, and Dolan, 2011; Niv et al., 2012; see Sharot and Garrett, 2016 for a review).

This difference is often interpreted as a cognitive bias, or perhaps the result of limited

cognitive resources, but this pervasive asymmetric updating actually raises norma-

tive questions. Cazé and van der Meer (2013) have recently tested the performance

of agents able to differentially update positive and negative prediction errors, under

action-outcome contingencies that are rarely tested in human participants.

6.3.1 Previous �ndings

Classical theories of reinforcement learning assume that action values are learnt via

the calculation of a reward prediction error, i.e., the difference between the obtained

and the expected outcome, independently of the valence of the prediction error. This

way action values represent a weighted average of the past reward associated with

each action, and of the initial estimate Q0 (Sutton and Barto, 1998). Provided the

learning rate is small enough and the environment is stationary, the action values

will optimally converge to the average reward associated with that action. But using

differential learning rates for positive and negative outcomes will cause the Q-value

to be a biased estimate of the underlying average reward.

Figure 6.2: Q-values estimate the action average reward. Here we take the example
of an action yielding positive outcomes (r = +1) in 60 per cent of cases, and thus
negative outcomes (r = -1) in 40 per cent of cases. Asymmetric learning rates will
cause the Q-value to be a biased estimate of average reward. For optimistic learners
(a+ > a� ), the Q-value will overestimate the true average reward, as positive out-
comes will be preferentially updated. In contrast for pessimistic agents, the Q-value
will underestimate the true average reward.

To obtain the Q-value distortion exerted by different a+ and a� , Cazé and van

der Meer (2013) derived the equation for Q-value differential update for one action

and one state. At a steady state, they found:

Q¥ =
px � (1 � p)
px + ( 1 � p)

(6.1)
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where p is the probability of positive outcomes, and x is the ratio between the learn-

ing rate for positive over negative prediction error x = a+ / a� .

Their simulations of Q-values after 800 trials for different values of p were con-

sistent with the above equation. They found the Q-values of a rational learner

(a+ = a� ) to be good estimates of the reward average (here 2p � 1). But for an

optimistic agent ( a+ > a� ), the Q-values were an overestimation of the true average

reward. In contrast a pessimistic agent (a+ < a� ) underestimated the true average

reward.

Figure 6.3: Differential learning rates result in biased estimates of the true expected
values. Estimated Q-values after 800 trials averaged over 5,000 simulations for dif-
ferent ratios of a+ and a� . The dotted lines represent the true values of Q: 0.8, 0.6,
-0.6, -0.8. The error bars represent the variance of the estimated Q-values. From the
upper to the lower lines, the probability of positive outcome were respectively 0.9,
0.8, 0.2, 0.1. (Figure reproduced from Cazé and van der Meer, 2013).

To perform well, a model has to maximize the difference of Q-values between

the high- and the low-rewarding actions. It is interesting to see that when the prob-

abilities were 0.9 or 0.8, the model that maximized the difference between Q-values

was the pessimistic learner, while the Q-values for p = 0.2 or p = 0.1 were the most

divergent for an optimistic learner. From the previous equation, Cazé and van der

Meer (2013) had computed the ratio for which DQ¥ is maximal:

x� =
p

q0q1
p

p0p1
(6.2)

where p1 is the probability of positive outcome for one action, p0 is the probability

of positive outcome for the other action, and q is the probability of negative outcome

for each action: qi = 1 � pi .

We can see that, when both action yield close outcome probabilities ( p1 ! p0),

the optimal ratio between the positive over negative learning rate tends to be the

ratio between p(negative reward) and p(positive reward). Therefore behavior is op-

timal when the positive (resp. negative) learning rate corresponds to the probability

of negative (resp. positive) outcome. Among other models, Cazé and van der Meer

(2013) have simulated a meta-learner, which adapts its learning rates accordingly to
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the tasks' underlying reward probabilities.

The authors �rst compared the rational, pessimistic and optimistic learners on

two “two-armed bandit” tasks:

� a “low-reward” task, in which the probabilities of positive outcome were 0.2

and 0.1 for the two possible actions, therefore outcomes were mostly negative.

� a “high-reward” task, with probabilities 0.9 and 0.8, thus yielding mainly pos-

itive outcomes.

The model with the greatest difference in Q-values in the previous �gure outper-

formed the other models. Indeed, in the low-reward task, the optimistic agent learnt

to take the best action signi�cantly more often than the rational agent, which in turn

performs better than the pessimistic agent. In contrast, for the high-reward task, the

pessimistic model outperformed the optimistic one. This decrease in performance

can be explained by excessive exploration, as the models with lower performance

also had high probabilities of switching actions.

Figure 6.4: A. Performance for the three agents: “rational” (R, a+ = a� , blue line),
“optimistic” (O, a+ > a� , green line) and “pessimistic” (P, a+ < a� , red line) in the
low-reward (left panel) and high-reward (right panel) tasks. B. Proportion of action
switch after 800 trials for each agent, in the two different tasks. (Figure reproduced
from Cazé and van der Meer, 2013).

As different patterns of a+ and a� can only be advantageous in one of the two

tasks, a meta-learner who could outperform a rational learner on both tasks was

created. The meta-learner model had a ratio between the positive and negative

learning rate that would optimally tend to the ratio between p(negative reward) and

p(positive reward). It outperformed a rational learner in both low- and high-reward

tasks, for a wide range of rational learning rate ( a = 0.01, 0.1 or 0.4).

Finally the different models were simulated on a task whose probabilities of

positive outcome were 0.25 and 0.75, which is closer to the experiments in human

reinforcement-learning. This time, different learning rates for positive and negative

outcomes were not advantageous, as a rational learner (a+ = a� ) outperformed all

other models. But the authors' previous �ndings did generalize well to the case of a

“three-armed bandit” task.
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Figure 6.5: Performance of a meta-learner (N, in purple) and rational agents (in teal
for a = 0.01, in royal blue for a = 0.1 and in navy blue for a = 0.4) in the low-reward
(left panel) and high-reward (right panel) tasks. (Figure reproduced from Cazé and
van der Meer, 2013).

Figure 6.6: A. The performance of the different agents (Meta-learner, Optimistic,
Rational and Pessimistic) in a task where the probabilities of reward are 0.75 and
0.25 for the two choices. B. The performance of agents in a “three-armed bandit”
task, with reward probabilities 0.2, 0.15 and 0.1 in the low-reward task, and 0.9, 0.85
and 0.8 in the high-reward task. (Figure reproduced from Cazé and van der Meer,
2013).

6.3.2 Our published replication article
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6.3.3 Further analyses of the Study II's data

We will show here that this normative interpretation for positive and negative learn-

ing rates cannot explain our results in Study II. In this study, we used symmetrical

action-outcome contingencies (0.8 and 0.2), and we found the participants' positive

learning rates to be higher than the negative ones.

We have simulated the optimistic, rational and pessimistic models described in

Cazé and van der Meer (2013) to see what performances these models would have

had in the two experiments published in the Quartely Journal of Experimental Psy-

chology. We only adapted these models by normalizing their Q-values. We ran 100

simulations on the design matrices used for each participant. We can see that the

model with the highest performance was the pessimistic learner, although our par-

ticipants' best-�tting parameters showed they were optimistic.

Figure 6.7: The performance of the different agents (Optimistic, Rational and Pes-
simistic) in our two experiments published in the Quartely Journal of Experimental
Psychology (Study II). We have circled the performance corresponding to the partic-
ipants' pattern of learning rates.

Cazé and van der Meer (2013) also tested their models on contingencies close

to the ones we used (.75 and 0.25, see Figure 6.6A), but they found that : “In this

scenario the advantage of differential learning rates is negligible”. An important

difference is that Cazé and van der Meer (2013) tested their models in stationary

settings, in which the action-outcome contingencies were stable during the whole

experiment, while we used a reversal-learning procedure in Study II.

Palminteri et al. (2017) did investigate the behavior of optimistic and rational

models when action-outcome contingencies reversed. They found that the opti-

mistic model was slower to inverse its values after a reversal, therefore displaying

worse performance. They also found the participants with a higher optimistic bias to

perform less well after a reversal than the participants having a lower or nonexistent

bias. This shows that being optimistic is not optimal in a reversal-learning setting

such as the one we used in Study II. A normative perspective thus cannot explain

why we found our participants to have a higher positive, than negative, learning

rate (a+ > a� ).
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6.3.4 Further analyses of the Study III's data

Cazé and van der Meer (2013)'s theory is that different learning rate patterns are

adaptive in low- and high-reward environment. As we have shown in the draft,

we could see in both experiments that optimistic models had indeed better perfor-

mances in the low-reward condition (0.4 and 0.1 contingencies), and that pessimistic

models were optimal in the high-reward condition (0.6 and 0.9 contingencies, see

Figure 5 of the draft).

We wanted to test if our participants were able to adapt their learning rates ac-

cording to which condition they were in, to increase their performance. When we

�tted the high- and low-reward conditions separately, we found no clear and repli-

cable differences in learning rates, although it seemed that participants were less

optimistic in the low- than high-reward condition. We have thus displayed in Study

III only pooled results (Figure 3 of the draft).

Figure 6.8: The differential learning rate pattern when we �tted separately the low-
and high-reward conditions in Study III.

6.3.5 Reanalyses of Gershman (2015)'s data

Gershman (2015) has also tested low- and high-reward contingencies on human par-

ticipants, and found no difference in learning rates between the conditions. We con-

tacted him, and he kindly sent us his data. We reanalyzed them, and ensured to

center the initial Q-values with respect to the outcome distribution (i.e., the Q-values

were initialized at 0.5 as the outcomes were either +1 or 0). One should note that here

only factual learning rates are �tted, as the participants only saw factual outcomes.
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Except in Experiment 1's results, we found participants' best-�tting learning

rates to be slightly different in low- and high reward contingencies: participants

appeared to be more pessimistic in low-reward conditions, and more optimistic in

high-reward conditions. This effect was small and non-existent in the �rst experi-

ment, and it was also not very clear in Study III. We thus think that further research

is needed before we can conclude whether participants adapt their learning rates in

low- and high-reward conditions.

Figure 6.9: Our reanalysis of Gershman (2015)'s data.

It should be noted that this effect, if it is con�rmed, goes in the opposite direc-

tion than what a normative approach would recommend. Indeed the optimal meta-

learner developed by Cazé and van der Meer (2013) was actually more optimistic

in low-reward conditions, and more pessimistic in high-reward conditions. We can

thus interpret Gershman (2015)'s participants as displaying a frequency effect: peo-

ple appeared to integrate more outcomes that are frequently seen. By contrast the

optimal learning process is to learn more from rare outcomes, as they are the most

informative.

Differential learning rates for positive and negative outcomes can be advanta-

geous in some experimental settings. Indeed, Cazé and van der Meer (2013) found

that a higher positive than negative learning rate allowed for better performances in

a low-reward environment (i.e., when both actions had low probabilities of positive

outcomes) while the inverse pattern can be found in a high-reward environment.

Our replication article con�rmed the validity of these results.

It should be noted that this normative perspective was in contrast with most of

our results. Indeed the optimistic learning rate pattern we found in Study II was

actually sub-optimal in a reversal-learning environment. By reanalyzing Study III's

and Gershman (2015)'s data, we also found that people, if anything, seem to adapt

their learning rates in the opposite direction than what optimality would recom-

mend.
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Chapter 7

General Discussion

In this PhD thesis, we have used cognitive modeling to investigate the relationship

between control, agency and reinforcement learning in human decision-making.

In Study I, a series of 3 experiments were built on a modi�ed reversal-learning

procedure, in which there was some uncertainty about the identity of the causal

agent. There were different conditions in which the participant's actual control over

the outcomes could be positive or null. Through model comparison, we found that

the model best able to �t and simulate participants' behavior was not a model ex-

plicitly looking for control, but rather a model based on counterfactual emulation,

i.e., the model's choice is assumed to always control the action outcome. Moreover,

this counterfactual emulation was hierarchically implemented at the different action

level, suggesting a hierarchical representation of the possible actions in the partici-

pants' mind. This hierarchical counterfactual emulation was found in all conditions,

regardless of the actual instrumental control implemented.

In Study II, we also used a reversal-learning paradigm while measuring inten-

tional binding, a proxy to the implicit feeling of agency. We were interested in the

�uctuation of sense of agency that accompanies adaptive behavior. We observed in 3

experiments a post-error boost of action binding: action binding on the trial follow-

ing a non-rewarded outcome was stronger than following a rewarded outcome. In-

terestingly, we found participants' best-�tting learning rates to be higher for positive

than negative outcomes (a+ > a� ), and the post-error boost was inter-individually

correlated with the asymmetry in learning rates. Besides our classical `learning' con-

dition, we also implemented a `random' condition, in which participants were ex-

plicitly instructed that action-outcome mappings were entirely unpredictable. We

found the post-error boost of action binding to be speci�c to a learning context. It

should be noted that our best-�tting model was a normalized reinforcement learn-

ing model, equivalent to the counterfactual emulation model described in Study I,

with no hierarchy between the chosen and unchosen actions (“�at” counterfactual

emulation: aCF = a).

Finally, in Study III, we conducted two stationary instrumental conditioning

tasks to investigate reinforcement learning processes occurring when the partici-

pant' choice was either free or forced. Previous experiments have shown that people

usually display a choice-con�rmation bias, i.e., they preferentially take into account

information that con�rms their current decision ( a+
F > a�

F and a+
CF < a�

CF). We repli-

cated this result in free-choice trials, and found that, when participants were forced
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to match a preselected option, they integrated outcomes independently from their

valence (a+
F = a�

F and a+
CF = a�

CF). Interestingly, Cazé and van der Meer (2013)

have shown in silico that different learning rates can be advantageous in certain ex-

perimental contingencies. We replicated this article, and used similar simulations to

address the optimality of our different �ndings.

Figure 7.1: A summary of our �ndings.

Our general conclusion is that control perception and reinforcement learning,

two fundamental �elds of human psychology, are deeply intertwined. Indeed, ac-

tion binding, an implicit proxy for the feeling of agency is in�uenced by post-error

adaptive mechanisms. Furthermore, contrary to impartial machines, humans care

about being in control or about making the right choice, and this results in integrat-

ing information in a one-sided way.

In this discussion, we will now try to parallel these results with certain in�uen-

tial cognitive biases and psychological traits. Then we will see how our results can

help formalizing the notion of control, to characterize what is grounding people's

perception of control.
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7.1 Cognitive biases and psychological traits

First, we will discuss our �ndings with respect to some cognitive biases and psycho-

logical traits that have been observed in behavior or explicit reports. We have seen

in the introduction that they was a gap between behavior and explicit reports so

it should be noted that generalizing our �ndings to phenomenological experiences

would be an extrapolation.

7.1.1 Valence-induced biases

One of the most salient attributes of information is valence: whether a piece of news

is good or bad. Most of the classic theories assume that agents gather and integrate

information in a manner that will result in a relatively accurate representation of

reality. But examining people's beliefs about themselves and their future reveals

systematic biases. In approximately 80% of the population, desirable information is

integrated into prior beliefs more readily than undesirable information, resulting in

an optimism bias (Sharot and Garrett, 2016).

The optimism bias may be counterintuitive, as most people would say they re-

member more vividly negative than positive events. Indeed, a general negativity

bias was also found in different experiments, based on both innate predispositions

and experience to give greater weight to negative entities (e.g., events, objects, per-

sonal traits). In an in�uential review, Rozin and Royzman (2001) concluded that

there was a pervasive negativity bias, that could actually be meaningful and adap-

tive, in much of human and animal cognition and behavior.

In this PhD thesis, we found differences in learning rates for positive and neg-

ative outcomes. However we cannot conclude in favor of a general positivity or

negativity bias, as this difference in learning rates took various forms. Indeed we

found higher positive than negative learning rates for factual outcomes (Studies II

and III), but the reversed pattern for counterfactual outcomes (Study III), and no

valence-induced difference in forced-choice trials (Study III). Although the negativ-

ity bias can be useful to understand how humans process external information, we

would argue that human behavior in a reinforcement learning context is better ex-

plained by self-related biases, rather than a general valence-induced bias.

7.1.2 The cognitive dissonance theory

In Aesop's Fable “The Fox and the Grapes”, a fox tries to get some grapes that are

hanging on a high, unreachable vine. After failing to reach them, the fox decides that

the grapes were probably sour anyway. An interesting aspect of this story is the idea

that making a choice (e.g., giving up on the grapes) can change one's preferences.

In a seminal study, 225 female students rated a series of domestic appliances and

then were asked to choose among two equally preferred appliances as a gift. The

results of a second round of ratings indicated that the students increased their ratings

of the domestic appliance they had selected as a gift and decreased their ratings of

the appliances they had rejected (Brehm, 1956). Young children and non-human

primates were also shown to exhibit choice-induced preferences (Egan, Bloom, and

Santos, 2010).
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This paradigm was originally developed in order to study the phenomenon of

cognitive dissonance reduction. According to this theory, the action of deciding pro-

vokes a psychological dissonance consequent to choosing X instead of Y, despite

little difference between X and Y. Thus, the decision “I chose X” is dissonant with

the cognition that “There are some aspects of Y that I like.”. People would then arti-

�cially in�ate their preference to X and decrease their preference for Y to reduce the

cognitive dissonance.

The dissonance theory has been generalized to also include inconsistency be-

tween two cognitions, and not only between cognition and action (Festinger, 1957).

Dissonance theory is more than simply a theory about consistency. It is essentially a

theory about sense-making: how people try to make sense out of their beliefs, their

environment, and their behavior – and thus try to lead lives that are (in their own

minds) reasonable, sensible, and meaningful (Aronson, 1997).

We found in Studies II and III that participants preferentially took into account

information that con�rms their decision, except when their choice was not inten-

tional, but imposed by the “computer”, i.e., an external source. These results are

consistent with the cognitive dissonance theory, and more speci�cally with choice-

induced preference. Indeed if people integrated more information consistent with

their choice, this biased learning process would lead to a choice-induced preference

behavior. This was shown in silico by Lefebvre et al. (2017): after a series of choices,

a model with a higher positive than negative learning rate displayed a pronounced

preference for one option, although both options actually were equally rewarding.

By de�ning dissonance as a negative drive state, Leon Festinger combined mo-

tivation with cognition and formulated new predictions that could not be easily ex-

plained by other theories. For example, reinforcement theory would suggest that, if

you reward individuals for making a particular statement, they might come to like

and believe in the truth and beauty of that statement (through the mechanism of

secondary reinforcement). But Festinger and Carlsmith (1959) actually showed the

opposite result. Participants were subjected to a boring experience and then paid

either $1 or $20 to tell someone that the experience had been interesting and enjoy-

able. The participants who said that they found the task enjoyable in order to earn

$1 came to actually believe it was enjoyable to a far greater extent than those who

were paid $20 to lie.

Cognitive dissonance theory was often used to explain illogical, or even dis-

advantageous, behavior. Interestingly, in Study III, we found choice-con�rmatory

models to outperform valence-neutral models. It was non trivial to see that a unique

learning model can both maximize rewards and minimize cognitive dissonance un-

der some experimental conditions.

It should be noted that another recent cognitive model is also compatible with

the cognitive dissonance theory: the self-consistent Bayesian observer model. This

model made for perceptual decision-making assumes that a subject will integrate

sensory evidence in a manner that is consistent with the subject's preceding choice

(Luu and Stocker, 2018). We hope further cognitive modeling approaches will soon

be able to explain the �ne-grained details of cognitive dissonance mechanisms.
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Figure 7.2: The self-consistent Bayesian model (shown on the right panel) is used to
explain why two successive choices made by participants were more consistent than
what is predicted by a normative model making two independent decisions (shown
on the left panel). (Figure reproduced from Luu and Stocker, 2018).

7.1.3 The self-serving bias

Most people rate their abilities as better than `average' even though it is statistically

impossible for most people to have better-than-median abilities. In a survey of fac-

ulty at the University of Nebraska-Lincoln, 68% of professors rated themselves in

the top 25% for teaching ability, and more than 90% rated themselves as above av-

erage (Cross, 1977). High school students ascribed higher levels of honesty, persis-

tence and originality to themselves than to the average student, and also described

themselves as less hostile, less vain and less unreasonable than average. The relative

over-evaluation of one's own attributes has been shown in such diverse domains as

personality traits, abilities and satisfaction with relationships (Hoorens, 1993).

This `above-average' bias, conjugated with cognitive dissonance, may explain

the self-serving bias, occurring when people make internal attributions for desired

outcomes and external attributions for undesired outcomes. This bias is evident

in workers who attribute receiving promotions to hard work and exceptional skill,

yet attribute denial of promotions to unfair bosses, and in drivers who attribute

accidents to the weather or other drivers, yet attribute the narrow avoidance of an

accident to their alertness and �nely honed driving skills (Shepperd, Malone, and

Sweeny, 2008).

Interestingly, the self-serving bias is in contradiction with the post-error boost of

action binding we found in Study II. Because people tend to attribute more negative

outcomes to external factors, they should feel lessagent after a negative outcome.

Yet we found higher action binding following a non-rewarding tone, than following

a rewarding tone. As action binding is supposed to re�ect an implicit, maybe pre-

or non-conscious, form of agency, it is possible that action binding is not subjected

to the self-serving bias. However, Takahata et al. (2012) found intentional binding

to be attenuated by negative monetary outcome, consistently with the self-serving

bias.

A crucial detail in Takahata et al. (2012) experiment is that only one key could

be pressed by the participant, excluding any possibility for adaptive behavior to

emerge. In Study II tasks, two possible actions could be chosen, and negative out-
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Figure 7.3: Action and outcome binding for auditory stimuli paired with positive,
neutral or negative monetary outcomes and following a key press. (Figure repro-
duced from Takahata et al., 2012).

comes are known to be motivationally salient events triggering the necessity of

adaptation (Wessel et al., 2014). We would thus postulate that the self-serving bias

does not arise in adaptive behavior tasks, in which error processing is crucial to in-

crease performance.

People were found to show post-error adaptations, potentially to improve their

performance in the near future. At least three types of behavioral post-error adjust-

ments have been observed: post-error slowing, post-error reduction of interference,

and post-error improvement in accuracy, as well as neuronal activity increase in

task-relevant brain areas, and activity decrease in distracter-encoding brain areas

(Danielmeier and Ullsperger, 2011).

The general increase in attention and vigilance following an error may be the

cause for an increase in the feeling of agency. An interesting perspective to Study II

would then be to study the relationship of the post-error boost of action binding, task

performance, and error awareness, as it is still unclear which post-error adjustments

actually depend on error awareness or even `task dif�culty awareness' (Ullsperger

et al., 2010).

7.1.4 The need for control hypothesis

Superstitious and paranormal beliefs are widespread in the population and thus

have attracted a great deal of attention from research. An acute state of anxiety cor-

relates with paranormal beliefs (Keinan, 2002). Moreover, Dudley (1999) assessed

the level of superstitious belief both before and after working on a solvable or un-

solvable puzzle. Reported level of superstitious belief increased following exposure

to unsolvable, but not solvable problems. It suggests that participants invoke super-

stitious beliefs during instances of uncontrollability. Paranormal believers also tend

to be perceived by independent judges as trying to control others' actions.

Given that paranormal belief is related to fantasy proneness, its origins may be

found in one of the antecedent factor of fantasy proneness, namely a history of abuse

in childhood. Irwin (1992) has found a link between paranormal belief and child-

hood trauma, particularly physical abuse by family members. Traumatic events pose

a potential threat to a state of assurance, in essence because they can be taken to im-

ply that the world is uncertain and chaotic. By incorporating a system of personal

beliefs, the individual has a cognitive framework for effectively structuring events
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and experiences in life, so that they can be mastered, at least intellectually (Irwin

and Watt, 2007).

Figure 7.4: A model of origins and functions of paranormal beliefs. (Figure repro-
duced from Irwin, 1993).

Empirical research offers support for this view. Blackmore and Trościanko (1985)

have shown that a group of paranormal believers had a greater sense of control

over a computer task that did a group of nonbelievers, yet the two groups did not

differ in their achieved control of the task. Rudski (2004) found that questionnaire

measures of illusion of control were associated with paranormal belief, particularly

superstitious and precognition beliefs, again suggesting that such beliefs might give

a sense of control over otherwise unpredictable events. It should be stressed that the

particular form of paranormal belief endorsed by the individual will depend greatly

on the cultural and social environment.

Whitson and Galinsky (2008) have shown that increased pattern perception had

a motivational basis by measuring the need for structure directly. They found that

people experiencing a loss of control were more likely to develop superstitions, but

also to perceive conspiracies, to see images in noise and to form illusory correla-

tions. Many of these distortions are typically discussed as separate phenomena, but

they can actually be regarded as speci�c cases of a more general misperception of

randomness.

Scheibehenne, Wilke, and Todd (2011) found that most of their participants pre-

ferred to predict purely random sequences over those with moderate negative au-

tocorrelation and thus missed the opportunity for above-chance payoff. However,

there exist important individual differences with regard to how strongly people are

prone to that misperception, and with regard to how much they give into that mis-

perception and bet on it (Scheibehenne and Studer, 2014). For example, gamblers

appeared to be more impulsive than community members, and it could explain why

they are more willing to bet impulsively on perceived illusory patterns (Gaissmaier

et al., 2016).

In practice, �eld studies using control interventions have shown that new per-

ceived control could be particularly bene�cial for people who believed they had little

control. For instance, elderly people often experience an overall loss of actual con-

trol, due to reduced mobility, retirement from work and increasing health problems.

When they were given new control opportunities, even minor ones such as being

asked to take care of themselves or water a plant, they show renewed resilience in

psychological and physical well-being (Langer and Rodin, 1976), and these positive
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effects were shown to last as long as 18 months later (Rodin and Langer, 1977).

All in all, it might be better to err on the side of too much perceived control. Be-

liefs are thought to be held because they serve signi�cant psychodynamical needs of

the individual, and they can achieve this function whether they are grounded in ob-

jective reality or are intrinsically illusory (Taylor and Brown, 1988). Many instances

have been found in which it seems to be better to think you have control than not,

even in the case of dire circumstances (Taylor, Wayment, and Collins, 1993). Our

results in Study I suggest that people do rely on a by-default control hypothesis,

although it can make them unable to determine clearly which of their actions were

actually instrumental.

7.1.5 Free Will and cognitive traits

In a series of experiments, Alquist et al. (2015) have manipulated and measured

belief in free will. They also measured participants' counterfactual thinking by ask-

ing them to re�ect on a time they had hurt someone and counting the number of

thoughts in which they imagined what could have gone differently. Belief in free

will was associated with more counterfactual thinking, and particularly with an

an increase in the generation of self and upward counterfactuals, which have been

shown to be particularly useful for learning.

Figure 7.5: Average number of counterfactual thoughts by structure and free will
condition. (Figure reproduced from Alquist et al., 2015).

These results parallel our �ndings in Study I, in which instrumental control is

implemented as counterfactual power by participants. As Alquist et al. (2015), we

also hypothesize that a belief in control can be bene�cial for action-outcome learning,

by triggering a counterfactual emulation mechanism.

In the introduction, we have seen how arti�cially decreasing belief in free will

led to cheating and agressive behavior. However level of belief is stable in many

cases, and personality psychologists had developed tools to quantify individual dif-

ferences. To measure free will belief, researchers tend to rely on either the Free Will

and Determinism Plus Scale (FAD+; Paulhus and Carey, 2011) or the Free Will and

Determinism Scale (FWDS; Rakos et al., 2008). Other measures, including one-item

or two-item questions about whether one believes in free will, are also sometimes

used. One advantage of the FAD+ is that it measures free will belief and determinis-

tic beliefs with separate scales. In contrast, the FWDS treats determinism as the polar

opposite of free will, such that increases in one belief necessarily re�ect decreases in
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the other (Baumeister and Brewer, 2012).

Questionnaire results were consistent with free will manipulation experiments.

For example, students with higher dispositional belief in free will reported greater

expectations of future professional success. This signi�cant prediction was speci�c

to free will and remained intact after controlling for intelligence (SAT score), Big Five

personality traits, and locus of control. Moreover belief in free will was positively

correlated with three of the Big Five traits, namely Conscientiousness, Emotional

Stability, and Openness to Experience. A �eld study also measured variations in free

will beliefs among mostly poor, low educated, non-white day laborers. Individuals

who believed more in free will performed better in these actual jobs, as indicated by

ratings by their supervisors (Stillman et al., 2010).

These inter-individual differences in the belief in free will make us wonder if the

same variability can be seen in our model comparison and our best-�tting parame-

ter values in Study I. So far, we have analyzed how the inter-individual variability

in the reference point parameter can be related to the computed divergence between

chosen and unchosen reward. An interesting perspective would be to correlate ques-

tionnaires of free will or of locus of control with the best-�tting learning rate values

of the counterfactual (CF) model.

7.1.6 A historical perspective

In the introduction, we have showed that the reported locus of control was found to

be a stable trait, used in personality psychology to predict people's behavior. Over

the past 40 years, locus of control has become one of the most widely studied indi-

vidual differences in psychology, with most studies using Rotter (1966)'s I-E Scale.

In a Psychology Todayarticle, Rotter (1971) reported that his samples from the late

1960s and early 1970s were considerably more external than those collected in the

early 1960s.

To explore change over time in locus of control, Twenge, Zhang, and Im (2004)

examined responses of participants of the same age collected during different years,

gathered from the literature. They studied two samples, one of college students and

one of children, and found that young Americans increasingly believed their lives

were controlled by outside forces rather than their own efforts.

Figure 7.6: College students's locus of control, as measured by the I-E scale, over
time. High scores on the scale correspond to a more external locus of control. (Figure
reproduced from Twenge, Zhang, and Im, 2004).
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The found change was large: the average 2002 student was more external than

80% of college students in the early 1960s, and birth cohort/time period explained

14% of the variance in locus of control. Unfortunately, the implications of increasing

externality are almost uniformly negative. A meta-analysis found the self-serving

bias to be signi�cantly stronger in individuals with an external locus of control

(Campbell and Sedikides, 1999), and this bias is evident in the victim mentality,

which was found more common in recent years: Sykes (1992) has thus argued that

America has become `a nation of victims' that blames outrageous behavior on out-

side sources.

When we interpret our results in Study I, II and III, we should keep in mind that

we are studying participants living in a particular culture. As we have seen with

this historical perspective on the locus of control, we could imagine that different

behavioral trends might have arisen in different periods or from participants from

different cultures.
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7.2 Formalizing the notion of control

We will now discuss how our results can help formalizing the notion of control. Here

we will focus on formalizing people's perception of control, rather than a mathemat-

ical or statistical de�nition of control (see Pearl, 2000 for a review on this subject). We

already discussed in the Study I draft how control can be formalized as a difference-

making process. The effects of control on behavior and verbal reports have been

studied in various areas of psychology, and other mechanisms of control perception

have been proposed.

7.2.1 Control as a match between predicted and observed consequences

The notion of control was widely studied in the sensorimotor framework, as an ac-

tion effectuated via a motor command will always lead to sensory outcomes. Every

time our brain sends a motor command, there is evidence that a copy of this com-

mand is also generated, called the efference copy (Sperry, 1950). According to a very

in�uential model of sensorimotor control, the predictive forward model, this effer-

ence copy will be used to predict the sensory consequences of the action, in order to

compare them to the actual perceived consequences. When there is a match between

predicted and perceived consequences, a sense of control arises (Frith, Blakemore,

and Wolpert, 2000).

Figure 7.7: A model for determining the sensory consequences of a movement. An
internal forward model makes predictions of the sensory feedback based on the mo-
tor command. These predictions are then compared with the actual sensory feed-
back. A mismatch induces a perceived lack of control over the action. (Figure repro-
duced from Blakemore, Wolpert, and Frith, 2000).

This model was used to explain why you cannot tickle yourself. When a move-

ment is self-produced, its sensory consequences can be accurately predicted, and

this prediction can be used to attenuate the sensory effects of the movement. Func-

tional neuroimaging studies have demonstrated that this sensory attenuation might

be mediated by somatosensory cortex and anterior cingulate cortex: these areas are

activated less by a self-produced tactile stimulus than by the same stimulus when it

is externally produced (Blakemore, Wolpert, and Frith, 2000).

Interestingly we have seen in the introduction that the notion of prediction error
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is also central in the TD(0) algorithm, used to model people's reinforcement learning

processes. It was therefore hypothesized, although without providing experimental

evidence, that the prediction error as described in the predictive forward model can

be linked to the reward prediction error used in a reinforcement learning model (Den

Ouden et al., 2008). Therefore one could use the success of the predictive forward

model to give support to the `associative view of causality' that we have developed

in Study I, although we rather found evidence for the `counterfactual view of causal-

ity'.

As we said, the formalization of control as a match between predicted and ob-

served consequences was developed in the sensorimotor �eld, and the efference

copy mechanism cannot be generalized to long-term, non sensory outcomes of an

action. For example, when one pass an exam, one will feel responsible for the ob-

tained grade, independently of the grade being known one minute or one month

after the exam. We would therefore argue that the predictive forward model cannot

be generalized outside the sensorimotor framework, and we will now review the

other control models that have been developed.

7.2.2 Control as a continuity in the prediction-action-effect chain

According to the predictive forward model, sense of agency arises when external

events that follow our action are consistent with predictions of action effects made

while we perform or simply intend to perform an action. Thus, agency is inferred

retrospectively, after an action has been performed and its consequences are known.

In contrast, a more integrative framework has suggested that internal processes

involved in the selection of actions also in�uence subjective sense of control, in ad-

vance of the action itself, and irrespective of effect predictability. Indeed there is

evidence that earlier processes, linked to �uency of action selection, prospectively

contribute to sense of agency (Chambon, Sidarus, and Haggard, 2014).

Figure 7.8: The intention-action-effect chain. The action-selection processes oper-
ate between the formation of the initial intention and action execution. Dys�uency
of action selection signals a break in the intention-action link, and was linked to a
decreased perception of control. (Figure reproduced from Chambon, Sidarus, and
Haggard, 2014).

More speci�cally, people feel a stronger sense of control when they choose �u-

ently and easily what to do (Wenke, Fleming, and Haggard, 2010). This result is
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reminiscent of Lau, Hiemisch, and Baumeister (2015)'s results, mentioned in the

introduction: when participants had to choose between three, six or nine housing

advertisements, the more options they had, the less free they felt.

At the other end of the spectrum, free-choice, compared to instructed-choice, is

known to enhance an induced sense of control. Corah and Boffa (1970) told their

subjects that there were two conditions in the experiment, each of which would be

signaled by a different light. In one condition they were given a choice of whether or

not to press a button to escape from an aversive noise, and in the other one they were

not given an opportunity to escape the noise. They found that the choice instructions

decreased the aversiveness of the threatening stimulus, apparently by increasing

perceived control.

The protocol of Study III was built based on this chain model of control from

intention to action. Indeed in Study III, we made the assumption that giving partic-

ipants the possibility of a choice would enhance their sense of agency, so we could

study the link between agency and valence biases in reinforcement learning pro-

cesses. By forcing participants to match a preselected stimulus, we have thus broken

the link between intention and action, and as a consequence we found no choice-

con�rmatory bias in the participants' learning rates.

A perspective of this work would be to determine whether the selection of a

motor action is actually crucial for the choice-con�rmation bias to emerge. A future

task could be developed in which not pressing a key would lead to the automatic

selection of a preselected stimulus. Such protocol could disentangle the importance

of action plani�cation and action selection in the choice-con�rmation bias. Indeed

when a stimulus is preselected and the participant would not press a key, she would

still have the intention to choose this stimulus, but without having to generate a

motor command.

Our hypothesis would be that in this scenario, not pressing a key would be sim-

ilar to a choice for participants, and thus a choice-con�rmation bias would still ap-

pear in these 'passive choice' trials. A parallel can be made with Go/NoGo task,

in which inhibiting a Go response is perceived to be a costly and voluntary process

(Nieuwenhuis et al., 2003).

7.2.3 Control as instrumental contingency

In the introduction we have seen how control has been de�ned by the notion of the

instrumental contingency(Maier and Seligman, 1976; Hammond, 1980). In most ex-

perimental conditions, people's perception of control does correlate with the differ-

ence between the probabilities of a consequence knowing the action was performed

or not:

Dp = p(RjA) � p(RjA) (7.1)

This Dp or contingency model has been very in�uential to predict animal behav-

ior and human verbal reports (Cheng, 1997), and had inspired many variations of

this rule. For example, as the Dp can only be used for binary outcomes, Liljeholm

et al. (2013) used a more general metric, the Jensen-Shannon divergence, to com-
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pute the difference between probability distributions accounting for more than two

possible outcomes.

We also used this notion of contingency when we investigated the effect of a

lack of instrumental control on participants' learning strategy in Study II. We imple-

mented a lack of control as a null instrumental contingency ( Dp = 0). Importantly,

we explicitly said to participants when they were in control of the action outcomes,

and when they were not. We found a signi�cant effect of explicit control on the

learning rate parameters, with higher learning rates in the explicit control than lack

of control condition (see the additional analyses, Figure 5.4).

Another experiment tested the effect of instrumental control on the learning rate

asymmetry (Lefebvre et al., 2016). Although their protocol was slightly different,

they also had conditions with control, that they called asymmetric (as the reward

probabilities were 25% and 75%) and lack-of-control conditions, called symmetric

as the probabilities were the same for both actions (either 25%/25%, or 75%/75%).

Their instructions were the same in both conditions, making the lack of control im-

plicit.

Figure 7.9: Histograms show the learning rates following positive prediction errors
(a+ ) and negative prediction errors ( a� ), obtained from parameters optimization
involving only the `symmetric' (implicit lack of control) or the `asymmetric' (implicit
control) conditions. (Reproduced from Lefebvre et al., 2016, �gure S3B)

They also found a signi�cant main effect of condition, but in the opposite di-

rection, as their learning rates were generally higher for `symmetric' conditions (im-

plicit lack of control) than for `asymmetric' conditions (implicit control). It is striking

to see that explicit and implicit lack of control can have opposite effects, as this is in

contradiction with people being able to reliably monitor the implemented contin-

gencies (Liljeholm et al., 2013).

But Matute (1996) has previously shown that humans are able to accurately re-

port their own control only when they are asked to do so at the beginning of the

experiment. When participants were not instructed to monitor their action effects

(Dp), they actually tended to overestimate their control. Our results in Study I simi-

larly showed that people seemed to rely on a by-default control assumption.

In (Lefebvre et al., 2016)'s implicit lack of control conditions, we interpret partici-

pants' behavior as following the local patterns of rewards and adapt their responses

to them. Because local patterns are by essence fast-changing, participants must

imagine they are in a highly-changing environment to explain the brutal changes

in the observed patterns (Yu and Cohen, 2009). They therefore increase their learn-
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ing rates to adapt to this perceived volatility (Behrens et al., 2007).

But when participants are explicitly told to have no control as in Study II, they

don't try to monitor anymore action-outcome associations, thus displaying small

learning rates. The by-default control assumption described in Study I can thus

explain the differences of effects between implicit and explicit lack of control, found

when comparing Study II results to the literature.

7.2.4 Control as cognitive control

Cognitive control, the ability to coordinate thoughts and actions in relation with

internal goals, is often required in our everyday life and subserves higher cognition

processes such as planning and reasoning (Koechlin, Ody, and Kouneiher, 2003).

Cognitive control enables one to inhibit a habitual or automatic response in order

to reach a goal in a certain context. For example, imagine you are standing at the

corner of a street. Your natural reaction is to look left before crossing, and this is the

correct thing to do in most of the world. However, if you are in England, you should

repress your `instinct', and look right. This is a classic example of a circumstance

requiring cognitive control (Miller and Cohen, 2001).

Cognitive control and people's perception of control have been mostly studied

separately, but our results make us wonder whether a link between the two is pos-

sible. Indeed in Study II we found evidence that the post-error boost of implicit

agency may be linked to a error-triggered rise in cognitive control. Interestingly in

Study I, we found that participants seemed to rely on a by-default control mode. We

can thus wonder whether the variations found in the reported sense of agency could

be due to the different levels of cognitive control exerted during a task, rather than

to the participants' actual monitoring of instrumental control.

A similar link has been made between self-control and the belief in free will,

which is closely correlated with the locus of control trait (Baumeister and Brewer,

2012). Believing in free will is apparently tied to a broad sense of wanting to exert

control over one's life and believing that one can. That is, believers in free will claim

to have better self-control and to be more motivated to exert and maintain control

over themselves, as compared to disbelievers in free will.

By contrast, other researchers have focused on the distinction between perceived

control either in terms of cognitive control or behavioral control. This parallels the

common distinction between cognitive coping ability and behavioral coping abil-

ity, frequently applied in the literature on coping with stress (Pearlin and Schooler,

1978). In some situations, people may feel competent to regulate themselves by

reappraising the demands or by controlling their emotions, whereas in other situ-

ations they may feel competent to change the stressful encounters instrumentally.

McCarthy and Newcomb (1992) found that issues such as purpose in life or loss of

control were only related to the cognitive control dimension, whereas social stress

issues such as assertiveness, leadership, and dating were only related to the behav-

ioral control dimension.
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7.2.5 The importance of formalizing control

A fundamental experience of everyday life is the feeling that we control our own ac-

tions. When these actions produce effects in the environment, we feel that we cause

those too. Contingency awareness, the recognition that components of a future ob-

servation can be affected by one's choice of action, is considered a crucial step in the

intellectual development of children (Watson and Ramey, 1972). Without this cog-

nitive capacity, it is hard to see how the astonishing range and ef�ciency of human

functional instrumental action could occur. For example, agriculture, material cul-

ture and technology all depend on a core cognitive capacity to link one's actions to

subsequent effects.

Formalizing the perception of control is an important project not only for psy-

chology, but also for machine learning. Bellemare, Veness, and Bowling (2012) said

in a recent article: “While it is not yet clear what mechanisms produce contingency

awareness in humans, it seems plausible that some form of contingency awareness

could play an important role in the construction of arti�cially intelligent agents.” In-

deed, when using popular model-free reinforcement learning algorithms, it is well

known that good performance hinges on having access to an appropriate set of ba-

sis functions or features (Sutton, 1996). Bellemare, Veness, and Bowling (2012) have

proposed a mechanism to identify contingent regions, i.e., the parts of an observa-

tion whose immediate future value depends on the the agent's choice. Their results

showed that contingency awareness can signi�cantly improve the performance on

Atari 2600 games of existing feature construction methods by adding contingency-

speci�c features.

Figure 7.10: Contingency learning by an arti�cial agent. The contingent regions in
Beam Rider (shown in grey) correspond to the avatar's possible next position and
missile. (Reproduced from Bellemare, Veness, and Bowling, 2012)

In this PhD thesis, reinforcement learning models were used for the �rst time to

study the relationship between instrumental control, sense of agency and adaptive

behavior. Although this work was exploratory, we found this relationship to be rich

and diverse, leaving us with new questions to answer. We hope our results can foster

future research in this direction.
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Résumé

Le sentiment d'agentivité est dé�ni
comme le sentiment de contrôler nos
actions, et à travers elles, les évène-
ments du monde extérieur. Cet en-
semble phénoménologique dépend
de notre capacité d'apprendre les
contingences entre nos actions et
leurs résultats, et un algorithme
classique pour modéliser cela vient
du domaine de l'apprentissage par
renforcement. Dans cette thèse,
nous avons utilisé l'approche de
modélisation cognitive pour étudier
l'interaction entre agentivité et ap-
prentissage par renforcement.
Tout d'abord, les participants réal-
isant une tâche d'apprentissage par
renforcement tendent à avoir plus
d'agentivité. Cet effet est logique,
étant donné que l'apprentissage par
renforcement consiste à associer une
action volontaire et sa conséquence.
Mais nous avons aussi découvert que
l'agentivité in�uence l'apprentissage
de deux manières. Le mode par
défaut pour apprendre des contin-
gences action-conséquence est que
nos actions ont toujours un pouvoir
causal. De plus, simplement choisir
une action change l'apprentissage de
sa conséquence.
En conclusion, l'agentivité et
l'apprentissage par renforcement,
deux piliers de la psychologie
humaine, sont fortement liés. Con-
trairement à des ordinateurs, les
humains veulent être en contrôle, et
faire les bons choix, ce qui biaise
notre aquisition d'information.

Mots Clés

Agentivité, Contrôle instrumental, In-
férence causale, Prise de déci-
sion basée sur des valeurs, Mod-
èles d'apprentissage par renforce-
ment, Modèles bayésien

Abstract

Sense of agency or subjective con-
trol can be de�ned by the feeling that
we control our actions, and through
them effects in the outside world.
This cluster of experiences depend
on the ability to learn action-outcome
contingencies and a more classical
algorithm to model this originates
in the �eld of human reinforcement-
learning. In this PhD thesis, we used
the cognitive modeling approach to
investigate further the interaction be-
tween perceived control and rein-
forcement learning.
First, we saw that participants under-
going a reinforcement-learning task
experienced higher agency; this in-
�uence of reinforcement learning on
agency comes as no surprise, be-
cause reinforcement learning relies
on linking a voluntary action and
its outcome. But our results also
suggest that agency in�uences re-
inforcement learning in two ways.
We found that people learn action-
outcome contingencies based on a
default assumption: their actions
make a difference to the world. Fi-
nally, we also found that the mere fact
of choosing freely shapes the learn-
ing processes following that decision.
Our general conclusion is that
agency and reinforcement learning,
two fundamental �elds of human
psychology, are deeply intertwined.
Contrary to machines, humans do
care about being in control, or about
making the right choice, and this
results in integrating information in a
one-sided way.

Keywords

Agency, Instrumental control, Causal
inference, Value-based Decision-
Making, Reinforcement Learning
models, Bayesian models


