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Abstract

With rapid development of mathematical models and simulation tools, the need
of uncertainty quantification process has grown higher than ever before. Parametric
uncertainties and overall decision stacks are nowadays the two main barriers in
solving large scale systematic problem.

Global Sensitivity Analysis (GSA) is one reliable solution for uncertainty quan-
tification which is capable to assess the uncertainty of model output on its inputs’.
Among several GSA algorithms, Fourier Amplitude Sensitivity Test (FAST) is one
of the most popular choices of researchers. Based on ANOVA-HDMR (ANalysis
Of VAriance - High Dimensional Model Representation), it is both mathematically
solid and computationally efficient.

One unfortunate fact is that the uniqueness of ANOVA-HDMR relies on the
independency of input variables. It makes FAST unable to treat many industrial
cases especially for those with only datasets but not distribution functions to be
found. To answer the needs, two extended FAST methods with correlation design are
proposed and further studied in this research. Among them FAST-c is distribution-
based and FAST-orig is data-based.

As a frame of validation and application, a number of vibroacoustic problems are
dealt with in this research. Vibroacoustic materials with substructures, are perfect
test candidates for FAST-c and FAST-orig. Two application cases are presented
in the first part of this thesis, follwing the literature review. The models chosen
here are poroelastic material and sandwich composite structures, both having their
mechanical properties hugely influenced by their microscopic and mesoscopic geo-
metric parameters. Getting the original FAST method compared to the two with
correlation design, many different features on materials’ vibroacoustic performance
are latter discovered.

Having got an answer for GSA on models with dependent variables, the
second part of this thesis contains more extended researches related to FAST. It is
taken into comparison with Random Forest, a well-known data-mining algorithm.
The potential error of both algorithms are analyzed and the possibility of joint
application is discussed. In the following chapters, more applications of FAST-series
methods are reported. They are applied under various conditions where another
improved version named FAST-pe is developed to treat a model of periodic
structures with correlation among each units. Upon these FAST application cases,
the design of preliminary process and the sampling strategies is the core part to be
introduced.

Keywords: Global Sensitivity Analysis (GSA), Fourier Amplitude Sensitiv-
ity Test (FAST), vibro-acoustic materials, correlation and dependency



vi



Résumé

Avec le dévèloppement rapid des modèles mathématiques et des outils de simula-
tion, le besoin des processus de quantification des uncertitudes a été bien augmenter.
L’uncertitude paramétrique et la groupe des nombreux décisions sont aujourd’hui
les deux barrière principale dans la résolution des grandes problèmes systématiques.

Capable de proportionner l’uncertitude de la sortie sur celle des entreés, l’Analyse
de Sensibilité Globale (GSA) est une solution fiable pour la quantification de
l’incertitude. Parmi plusieurs algorithmes de GSA, Fourier Amplitude Sensitiv-
ity Analysis (FAST) est l’un des choix les plus populaires des chercheurs. Basé sur
ANOVA-HDMR (ANalysis Of VAriance - High Dimensional Model Representation),
il est solid en mathématique est efficace en calcul.

Malheureusement, la décomposition unique d’ANOVA-HDMR se dépend sur
l’indépendance des entrées. À cause de cela, il y a pas mal de cas industriels qui ne
peut pas se traiter par FAST, particulièrement pour ceux qui donnent uniquement
les échantillons mais sans lois de distribution. Sous cette demande, deux méth-
ode extensifs de FAST avec design de corrélation sont proposées et étudiées dans
la recherche. Parmi les deux méthodes, FAST-c s’est basé sur les distributions et
FAST-orig s’est basé sur les échantillons.

Comme applications et validations, multiples prolèmes vibroacoustiques se sont
traités dans la recherche. Les matériaux acoustiques avec soustructures, sont des
candidats parfaits pour tester FAST-c et FAST-orig. Deux application sont présen-
tées dans la première partie de la thèse, après l’état de l’arts. Les modèles choisis
sont matérial poroélastique et structures composite sandwich, dont les propriétés
mécaniques sont tous fortement finfluencées par les paramètres géométriques micro-
scopique ou mesoscopique. D’avoir la méthode de FAST originale comparée avec les
deux nouvelles, on trouve bien plus d’information sur la performance vibroacous-
tique de ces matériaux.

Déjà répondu à la demande de GSA sur les modèles avecs les variables
dépendantes, la deuxième partie de la thèse contient plus de recherches reliées
avec FAST. D’abord FAST est pris en comparaison avec Random Forest, une
algorithme bien connu de data-mining. Leurs erreurs potentiels et la possibilité de
fonctioner ensemble sont discutés. Et dans les chapitres suivies, plus d’application
de FAST sont présentées. Les méthodes sont appliquées sous plusieurs différente
conditions. Une modèle de structure périodique qui contient des corrélation parmi
les unités nous a en plus forcé à dévélopper une nouvelle FAST-pe méthode.
Dans ces applications, les designs des processuss préliminaires et les stratégies
d’échantillonages sont des essense à présentées.

Mots-clés: Analyse de Sensibilité Globale (GSA), Fourier Amplitude Sen-
sivity Test (FAST), matériaux vibroacoustiques, corrélataion et dépendence
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Industrial background

Uncertainty is an essential existence in the dynamic universe, from nanoscopic
movements to megascopic observations. In the aspect of scientific research, accord-
ing to Figure 1, uncertainty is an important measurements for the development
of science. With more and more extremely fast computational processors being

Figure 1: Identification and division of post normal science based on system uncer-
tainties and decision stakes [Funtowicz 1990]

invented in recent decades, we can afford to construct and maintain models and
systems with more and more complexities. Concerning the butterfly effect, in a
huge model, small changes at input values could possibly result in enormous shock
at model outputs. Thus, uncertainty identification and quantification is becoming a
great issue and can no longer be ignored and approximated. For most of industrial
and scientific objectives in systematic input-output analysis, such as optimization,
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model reduction or meta-model extraction, the corresponding parametric tools can
hardly work well without a solid preliminary study using uncertainty quantification
tools.

Composite materials and structures is a category of mechanical systems that
grew up with the increase of productivity. In the domain of vibro-acoustic
applications, composite materials have a dominant role compared to traditional
materials, particularly in case of anti-noise designs for various vehicles. Obeying
the mass law of acoustic theories, the main purpose of composite materials are
to maintain the best possible rigidity and damping properties and at the same
time to avoid the structural resonance around its working frequency. After over a
century of development, the design of composite structures has become extremely
delicate, into microscale, and can now be realized by countless fabrication process,
including many new technics like 3-D printing. Thus these materials are nowadays
under urgent need of uncertainty control, especially in the design process of some
conceptional structures.

Concerning the approaches for systematic input-output analysis, some charac-
teristic properties of these variables must be studied. Several basic benchmarks
such as marginal distribution rules can be easily evaluated and get directly used
in uncertainty quantification algorithms. While some high dimensional statistical
information such as dependency among variables have rarely been considered in
published applications.

Research Methodology

The main methods that we preferred in this thesis are FAST(Fourier Amplitude
Sensitivity Test)-series global sensitivity analysis (GSA) algorithms. FAST is
a non-parametric algorithm that can quantitatively estimate the proportion of
uncertainty for a certain output upon its inputs’. Based on FFT (Fast Fourier
Transform), the biggest advantage of FAST is its temporal efficiency, for its
computational intensity on sampling phase is rather lower than other algorithms.
The only problem is that ANOVA-HDMR (ANalysis Of VAriance - High Di-
mensional Model Representation), the theoretic basis of FAST, is no longer
unique under parametric dependency. Without the uniqueness of decomposition,
error will occur when using traditional FAST to estimate sensitivity indices,
and it’s hard to tell how great the error is. Thus the main content of this thesis
will be how to get FAST compatible with models containing parametric dependency.

In order to verify the accuracy and robustness of these modified FAST al-
gorithms, several other methods are chosen as references in sensitivity analysis.
CRM (Correlation Ratio Method) is a distribution-based ANOVA sensitivity
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analysis algorithm, with a history over 2 decades. Its accuracy and stability
has been proven but its computational cost is so great that its nearly impos-
sible to get it applied on industrial cases. And another referential method is
Random Forest (RF), which is a popular data-mining algorithm, at least much
more popular than FAST. RF is originally a meta-modelling algorithm with
an internal function of input evaluation, so it’s totally under another system
of data analysis. Concerning its increasing popularity, a comparison is made to
discover the advantages and disadvantages of FAST and RF compared to each other.

Thesis Contribution

As mentioned before, FAST conventionally does not support dependent inputs,
which greatly limited its applications. The main purpose is to improve FAST to
get it compatible with such kind of sampling conditions, specifically observed in
our vibro-acoustic models. During the research, some other model constraints are
found and need to be treated with extra technics, and the error caused by the non
unique ANOVA decomposition is also estimated. Several improved FAST-series
algorithms are proposed under different conditions.

ANOVA-based GSA methods are mostly distribution-based algorithms, while
the currently most popular IO-analysis methods such as Random Forest are mostly
data-based. A deeper study between these two algorithms shows that in the aspect
of uncertainty quantification, they have quite comparable results, both able to make
self evaluation. Comparisons are also made upon their compatibility, additional
functions, efficiency and theoretical basis, and some constructive conclusion finally
get drawn for further developments of GSA.

As testing cases for developed FAST algorithms, their mathematical complexi-
ties are not very high and can be treated with a steady process of preliminary study
- sampling - post-treatment - results. While in more common case like cooperation
with other laboratory members, we can always encounter some special constraints
in phases of sampling and model evaluation. Some experience on how to choose a
proper GSA algorithms and to correctly make them work towards the expectation
of model designers are drawn through two small projects with my colleagues.

Thesis Outline

This thesis contains in total 6 chapters, divided into the first half part and the
second half part. Part 1 mainly focuses on the efforts of improving FAST algorithms
under the needs of GSA with dependent input variables. Part 2 is a relatively
loose part composed by three unrelated chapters where each of them discussed an
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interesting topic related to FAST.

In part 1, the first chapter is conventionally the literature review, which leads
up the next two chapters. Chapter 2 presented a first application of a newly
developed FAST-c algorithm on a mathematical model of porous elastic material
with correlated inputs. Chapter 3 follows the perspective of chapter 2 and proposed
another FAST-orig algorithm to estimated the potential error of FAST-c on
sandwich composite materials.

The part 2 begins with chapter 4 comparing the performance of FAST and RF
in uncertainty quantification. Chapter 5 is an unfinished research on proposing a
new FAST-pe algorithms for another kind of correlation among multiple units of
periodic structures. Chapter 6 combines all other small pieces of my laboratory
work, including some interesting RF investigation and two cooperation cases with
my colleagues.



Part I

Sensitivity Analysis on acoustic
materials with correlation design





Part 1: Introduction

For decades, both global sensitivity analysis algorithms and acoustic compos-
ite materials have always been rapidly developing. For them, one represents
a comparably accurate and stable uncertainty quantification method and the
other represents some of the most high-powered and structurally delicate in-
dustrial designs. Basically the global sensitivity analysis algorithms are mostly
statistical methods, thus there’s very little cases of application in traditional
mechanical or material domain, until the very fast computer processors makes
the large amount and large scale simulations possible for scientific research facilities.

My thesis is part of continuous work began by our colleagues who wisely chose
the comparatively efficient FAST (Fourier Amplitude Sensitivity Test) algorithm
to apply on periodic acoustic materials. At that time, it was a great success to
get the mechanical uncertainties proportioned to structural geometrical parameters
and thus met the agreements of empirical theories. But still, ANOVA (ANalysis Of
VAriance) is a set of systematic theories with lot of statistical conceptions. Some of
them can be easily compatible with simple mathematical tools, such as parametric
marginal distributions, variance and expectations; but some don’t quite get along
with mechanical intuitions, such as the hypothesis of parametric independency for
the ANOVA based HDMR (High Dimension Model Representation). The study
of parametric dependency is not commonly necessary for vibro-acoustic researches
and the dependency itself can largely vary under different context.

Years before the main direction of research in global sensitivity analysis is
on its computational efficiency, limited by the calculation resources at that time.
While during the passed 20 years, thanks to high power processurs, publications
concerning ANOVA-based GSA applications have increased more than 100 times.
For many research cases, the parametric independency hypothesis were obvious
barriers for their expension on industrial scale. Based on two typical models of
acoustic materials, the main objective of these two pieces of work is to develop the
FAST algorithm under particular needs of parametric dependency and to find a
proper way for its applicationsa.

The two periodic acoustic material models are, namely, a porous elastic material
model and a sandwich honeycomb material model. Both as materials with (ap-
proximately) periodic structures, they have a common point that their macroscopic
physical properties are partially determined by geometrical sub-structures. Such
particularity makes them like models with two systematic levels in the aspect of
sensitivity analysis. The SA algorithms are applied on the first level of identifying
the influence of input physical parameters on the output acoustic properties, while
these physical parameters themselves are outputs of the second level model with its
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microscopic geometric inputs. Such facts makes us unable to avoid the parametric
dependency or correlation properties and have to discover the potentials of FAST
algorithm.

The chapter of literature review will include some basic conceptions and theories
of GSA, of FAST and of the acoustic materials being studied. Then two chapters
will separately be given to the FAST applications on porous elastic materials and
sandwich composite materials. A continuous clue of improvements on FAST algo-
rithm will be present in throughout these chapters. Some general conclusions will
be drawn after all these three chapters.



Chapter 1

Literature Review

Contents
1.1 Global Sensitivity Analysis (GSA) . . . . . . . . . . . . . . . 5
1.2 ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 FAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Correlation among variables . . . . . . . . . . . . . . . . . . . 9
1.4 Algorithms compatible with correlated samples . . . . . . . 10

1.4.1 Correlation Ratio Method (CRM) . . . . . . . . . . . . . . . 10
1.5 Vibro-acoustic composite materials . . . . . . . . . . . . . . . 10

1.1 Global Sensitivity Analysis (GSA)

Sensitivity analysis is the study of how uncertainty in the output of a model (numer-
ical or otherwise) can be apportioned to different sources of uncertainty in the model
input (Saltelli, 2004), yet is an advanced conception of uncertainty quantification.
Under the general objective of quantifying the uncertainty of input-output systems,
actually many approaches, including various deviational and regression algorithms,
can be categorized as SA methods. Most of them work with the methodology of
fixing all other variables to analyze the influence of a certain input on the output.
Thus, as these methods mainly focus on a fixed point and its nearby space, they are
commonly called Local Sensitivity Analysis (LSA). While in this thesis we would
rather recommend another kind of SA methods, called Global Sensitivity Analysis
(GSA). Easy to understand from its name, GSA aims at evaluating the influence of
every inputs at the same time by browsing the whole sampling space.

The main reason of proposing GSA in modern model analysis is to avoid the curse
of dimensionality, briefly presented in FIgure 1.1: In this illustration, the sphere
represents the sampling space of LSA compared to the hypercube representing GSA
sampling. In low dimensions, meaning with few inputs, their volume of sampling
space are still comparable, but when the number of inputs is above 5, the samples
in the hyper sphere can no longer well represent the whole sampling space, thus its
SA results might be mislead by some local space features.

Decades ago when computer processors were not strong enough, it’s quite diffi-
cult to make a complete space sampling for GSA. At that time many GSA algorithms
have their theoretical basis elaborated but can not actually get implemented. LSA,
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Figure 1.1: Curse of dimensionality: a comparison of 3D and 2D
spheres [Saltelli 2008]

with its advantage of easy implementation and easy explanation to public, dom-
inates the world of scientific research til today. This situation keeps until recent
years, coming together with the era of big data, there is an obvious increase of
researches using GSA methods. A report shows that during the last decade more
enthusiasm was observed in the application of GSA methods than in LSA ones.

Figure 1.2: Historical trend of publications concerning sensitivity analy-
sis [Ferretti 2016]

1.2 ANOVA

During more than 50 years of development, numerous GSA methods have been
proposed, among which many widely used ones, belong to the ANOVA (ANalysis
Of VAriance) class. ANOVA is a traditional statistic tool firstly given at 19th centry
and later well developped at the beginning of 20th centry [Fisher 1918]. Nowadays
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ANOVA has grown into a big system of general parametric corrrelation estimation
solution, and the ANOVA-based GSA algorithms are developed on the One-Way-
ANOVA, where only one output vector is being analyzed. It denotes a group of SA
methods based on a same system of sensitivity indices S. Usually S is a real positive
value, indicating the strength of sensitivity for one or several inputs upon the model
output. Only under some special definitions the sensitivity indices can be negative.

For a model Y = f(x1, x2, ..., xn) with f : Rn → R, it has been proved by
Sobol’ [Sobol’ 1990] that the total variance of the output V (Y ) can be uniquely de-
composed into the sum of conditional variances as following under several conditions,
calling ANOVA-HDMR (High Dimension Mathematical Representation):

V (Y ) =
∑
i

Vi(xi)+
∑
i

∑
j>i

Vij(xi, xj)+
∑
i

∑
j>i

∑
l>j

Vijl(...)+ ...+V123...n(x1, ..., xn),

(1.1)
and the sensitivity indexes are defined as Su = Vu/V (Y ), u ⊆ {1, ..., n}, which
means

1 =
∑
i

Si +
∑
i

∑
j>i

Sij +
∑
i

∑
j>i

∑
l>j

Sijl + ...+ S123...n. (1.2)

A more compact definition of the first order sensitivity index is given by:

Si =
VXi(EX∼i(Y |Xi))

V (Y )
=

Vi
V (Y )

, i = 1, 2, ..., n, (1.3)

where X∼i means all the inputs except Xi. The index Si represents the ratio of
variance of the output Y explained by the input Xi. Its statistical meaning is
the expectation of variance that can be reduced when fixing xi somewhere in the
sampling space. Based on the Equation 1.2, for systems with uncorrelated inputs,∑
Si ≤ 1 is always true. And when

∑
Si = 1, the system is called an additive

system.
Besides, the high order terms of sensitivity indices can also have an analytical

expression in recursive form:

Vij = VXi,Xj (EX∼i,j (Y |Xi, Xj))− Vi − Vj , (1.4)

Sij =
Vij
V (Y )

=
VXi,Xj (EX∼i,j (Y |Xi, Xj))

V (Y )
− Si − Sj . (1.5)

These higher order sensitivity indexes represent the pure co-influence of several
inputs on the output.

And when summing up all the terms related to a certain input, named as ST i,
for example:

ST1 = S1 + S12 + S13 + S123. (1.6)

This term is called the total sensitivity index, which shows the maximum possible
influence of a variable, by measuring the portion of uncertainty that would be left
out if all the other inputs are fixed. Its analytical expression is:

ST i = 1− VX∼i(EXi(Y |X∼i))
V (Y )

=
EX∼i(VXi(Y |X∼i))

V (Y )
. (1.7)
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1.2.1 FAST

FAST is one of the best accepted ANOVA-based GSA methods, being granted by
its smart design using periodic sampling curves and FFT as variance estimator.
Figure 1.3 is a brief diagram showing the essential elements of algorithm design.

Figure 1.3: Diagram presenting the basic mechanism of FAST [Cukier 1973]

Since firstly computed by McRae et al. [McRae 1982], FAST has always been re-
garded as one of the most efficient methods in the area of global sensitivity analysis
in benchmarks [Gatelli 2009]. With the order M defined as the minimum interfer-
ence order (usually equal to 4), the total variance V (Y ) is approximated using the
Fourier coefficient Aj , Bj :

V (Y ) ≈ 2

(N−1)/2∑
j=1

(A2
j +B2

j ), (1.8)

where N is the total sampling number chosen according to the value of M and

Aj =
1

2π

∫ π

−π
f(x1, x2, ..., xn) cos(js)ds,

Bj =
1

2π

∫ π

−π
f(x1, x2, ..., xn) sin(js)ds.

In FAST, the discrete sampling vector Xi is generated by

x
(j)
i =

1

2
+

1

π
arcsin(sin(ωis

(j) + φi)), (1.9)

where ωi is the characteristic frequency particularly chosen for each Xi, depending
on the value of M . φ is a set of random numbers generated for this quasi-random
sampling process. Then the Vi used for the estimation of Si is approximated by:

Vi ≈ 2

M∑
j=1

(A2
jωi +B2

jωi). (1.10)
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The modern FAST algorithm is nowadays designed by Saltelli and Bo-
lado [Saltelli 1998] with a mix of traditional FAST [Cukier 1973] and some other
ANOVA-based methods. It has been applied to different cases such as forest plan-
ning [Pacala 1996], nuclear waste treatment [Jacques 2006] and system reliability
verification [Borgonovo 2003]. Such implementations proved its effectiveness and
robustness in multi disciplinary cases.

1.3 Correlation among variables

As an important assumption, the whole structure of ANOVA is based on indepen-
dent variables, but this is not the common case in industrial applications. There
are several reasons why variables become correlated, while the most important one
is that these variables themselves are outputs of another model. There are sev-
eral classical measures of correlation between variables, among which one can cite
Pearson’s and Spearman’s coefficients.

Pearson’s correlation coefficient ρp uses the covariance function cov(xi, xj), and
is defined as:

ρpij =
cov(xi, xj)

σxiσxj
, (1.11)

where σx is the standard deviation of x. This coefficient measures the linear depen-
dence between two variables.

Spearman’s correlation coefficient is defined as:

ρsij = 1−
6
∑N

k=1(rank(xki )− rank(xkj ))
2

N(N2 − 1)
, (1.12)

where rank(x) is an operator allowing to obtain the position of each element after
sorting them in increasing order. Spearman’s correlation coefficient indicates the
monotonic relationship between variables.

There are some similarities between these two correlation coefficients. Both of
them have values between -1 and 1, where -1 means strictly negative correlation,
1 means strictly positive correlation and 0 means uncorrelated. They both have
the properties that ρij = ρji and ρii = 1. In most industrial cases, the correlation
matrix, which is composed of these coefficient values, is symmetric and positive
definite. This is an important property for the correlation design of an advanced
FAST algorithm.

The difference between Pearson’s and Spearman’s correlation coefficient is that
Pearson’s represents the linear correlation while Spearman’s represents the mono-
tonic correlation, making it more suitable for non-linear systems. Because of its
use of the rank(·) function, Spearman’s correlation coefficient (resp. matrix) is also
called rank correlation coefficient.

Strictly speaking, the expression (1.1) of ANOVA can no longer be used
on a model with correlated variables because its decomposition is no longer
unique [Chastaing 2012]. Although the first order sensitivity indexes Si can still
be calculated by formula (1.3), their sum can greatly exceed 1.
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1.4 Algorithms compatible with correlated samples

Several sensitivity analysis methods have been developed to handle correlation be-
tween variables. Among them, let’s mention Kucherenko’s advanced Monte-Carlo
(MC) estimators [Kucherenko 2012] which are based on the classic Sobol’-Jensen
estimator [Saltelli 2010], Mara’s sensitivity estimator [Mara 2015] based on Rosen-
blatt transformation, and Chastaing’s newly developed covariance based sensitivity
index [Chastaing 2012]. They are not preferred for various reasons, some of them
can only work in strict conditions, and some others are not based on ANOVA-HDMR
so incomparable with FAST design.

1.4.1 Correlation Ratio Method (CRM)

Correlation Ratio Method (CRM) is a common referential algorithm for correlation
design of GSA algorithms. CRM was firstly proposed by McKay et al. [McKay 1997]
as an alternative method to Sobol’s method for non-orthogonal cases. The specificity
of this algorithm is that it used a r-LHS (replicated Latin Hypercube Sampling),
corresponding to the estimators developed by Ratto and Tarantola [Saltelli 2004,
Saltelli 2001]. In detail, supposing that the r-LHS is executed r times with N

points each time, then Y is a N × r matrix of evaluation results. In Y, for a given l
as replication index, y(lj)

i = f(X), X being the input vector in the r-LHS sampling
whose ith component xi lies in the interval [ j−1

N , jN ]. The total and the first order
conditional variances are calculated in this way:

V (Y ) =
1

Nr

N∑
j=1

r∑
l=1

(y
(lj)
i − y)2, i = 1, 2, ..., n, (1.13)

and

Vi =
1

N

N∑
j=1

(y
(j)
i − y)2, (1.14)

where

y
(j)
i =

1

r

r∑
l=1

y
(lj)
i .

The disadvantage of r-LHS is its computational cost. For instance, with five
inputs, CRM requires almost ten times more samples than FAST, which makes it
less practical despite its better accuracy.

1.5 Vibro-acoustic composite materials

Noise control is an eternal topic in both civil and industrial engineering. It can
be regarded in different aspects: isolation, absorption, resonance and many other
passive or active technics. Porous materials and sandwich composite materials are
separately the most popular choices in sound absorption and isolation.
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A common index for sound absorption measurement is the sound absorption co-
efficient, noting the proportion of acoustic power getting absorbed after reflection.
Mathematical models such as Johnson-Allard, simplified Lafarge and Champoux-
Allard (JCA) model [Allard 2009] and Biot-Allard model [Biot 1956] are developed
to better estimate the performance of porous material backed by a rigid wall. But
it should be mentioned that for many kinds of porous materials used in sound ab-
sorption, their airpore substructure can greatly influence the overall mass and their
acoustic performance in medium and high frequencies. The relation between their
microstructures and macroscopic mechanical properties is a key point in sensitivity
analysis.

Transmission Loss (TL) and thus the critical frequency, are very important in-
dicators to estimate the structural sound isolation capacities and its proper work-
ing frequency band. During long time of research, their analytical estimations in
isotropic panels have become accurate enough. While with the development of ma-
terial science, more and more composite materials, sandwich composite structures,
for example, are applied in engineering cases, replacing traditional materials. While
granted for its high stiffness-to-mass ratio, the reduction in the overall structural
density may actually harm its sound isolation properties. In open publications, sev-
eral approaches have been made to estimate the acoustic characteristic properties
of homogenized sandwich panels: pure analytical solutions [Mead 1969, Renji 2005]
or with the help of Finite Element methods [Yang 2017]. If the meso-structures of
the core layer need to be considered, the Gibson-Ashby model [Gibson 1997] and its
improved version can also be applied together as a sandwich panel model with core
layer homogenization.
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GSA on porous elastic materials
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2.1 Chapter introduction

Porous materials have historically become one of the most successful solutions in
sound absorption problems, and we already have several models to estimate their
sound absorption efficiency based on their macroscopic physical characteristics.
While as the micro structure of porous material can strongly vary under differ-
ent fabrication conditions, their physical properties may contain larger uncertainty
than classical materials. This explains the growing interest in sensitivity analysis
for noise control applications. Specifically, in the study of Ouisse et al. [Ouisse 2012]
the issue of sensitivity analysis of absorption indicators is dealt with. Christen et
al. [Christen 2016] considered the transmission loss through layered composite pan-
els as an indicator for the sensitivity analysis. In both cases, some interesting trends
with regards to the more influential material parameters were provided.

However, in these works, the variables are mostly supposed to be indepen-
dent and uniformly or normally distributed. While actually, concerning porous
materials, a micro-macro semi-empirical model, recently proposed by Doutres et
al. [Doutres 2011], shows that the variables studied in the JCA model may have
correlation among them. Other works on acoustic foam’s microstructures are also
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reviewed, such as Zielinski et al. [Zielinski 2015], which present similar acoustic
properties, while the correlation was not clearly pointed out.

As mentioned before, ANOVA-HDMR actually fails for correlated inputs and
the traditional FAST can not work correctly with correlation, thus some improve-
ments are needed. In this piece of work, the FAST method with Correlation design
(named FASTC in this paper) which is considered further was proposed by Xu and
Gertner [Xu 2008]. The advantage of FASTC is that it requires only the knowledge
of correlation matrix, which is more accessible than conditional distribution density
function in industrial cases. It’s like a lighter version of algorithms based on full
input datasets.

One of the main objectives of this work is to find out how correlated the vari-
ables of the JCA model are, and to estimate the impact of the correlation on SA
estimations. This will be achieved through the micro-macro model and by observing
their effects on the SA results. These statistics may help to better understand how
to handle uncertainties in manufacturing and filtering phase for materials with com-
plex microstructures. Also, this study can be regarded as a first test of the FASTC
method’s effectiveness and reliability on vibroacoustic applications.

2.2 JCA model

The JCA model is used to estimate the acoustic absorption coefficient of porous
material sample whose frame remains rigid when backed by an impervious rigid
wall. It has only one output, the absorption coefficient α, with five inputs, also
called non-acoustic parameters, namely the porosity φ, the flow resistivity σ, the
tortuosity α∞, and the characteristic viscous and thermal lengths Λ and Λ′. This
model also implies a non-material parameter ω representing the acoustic angular
frequency.

The effective density ρe, including viscous and inertial effects, can be calculated
by:

ρe(ω) = ρ0(α∞ +
ν0φ

jωq0
G(ω)), (2.1)

with ν0 = η/ρ0, η being the dynamic viscosity, ρ0 being the air density, q0 = η/σ

being the static viscous permeability, j =
√
−1, and:

G(ω) =

√
1 + (

2α∞q0

φΛ
)2

jω

ν0
. (2.2)

The bulk modulus related to thermal effects K is given by the simplified Lafarge
model:

K(ω) =
γP0

γ − γ−1

1+ ν′φ
jωq′0

G′(ω)

, (2.3)

where P0 is the static pressure, γ is the heat ratio, ν ′ = ν0/Pr, Pr being the Prandtl
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number, q′0 is the static thermal permeability and

G′(ω) =

√
1 + (

2q′0
φΛ′

)2
jω

ν ′
. (2.4)

With the Champoux-Allard approximation:

q′0 =
φΛ′2

8
, (2.5)

it leaves only six variables required for the calculation, including the angular fre-
quency ω. With these presented formulas, the characteristic impedance Zc, the
surface impedance Zs and the wave number k can be calculated as below:

k(ω) = ω

√
ρe(ω)

K(ω)
, (2.6)

Zc(ω) =
√
ρe(ω)K(ω), (2.7)

Zs(ω) = − 1

φ
jZc(ω) cot(k(ω)e), (2.8)

where e is the thickness of the material sample. Finally the sound absorption coef-
ficient α is presented as

α(ω) = 1−
∣∣∣∣Zs(ω)− Z0

Zs(ω) + Z0

∣∣∣∣2 , (2.9)

where Z0 = ρ0c0 and c0 being the speed of sound.

2.3 Micro-Macro model

In view of micro-structuration of acoustic foams, a semi-empirical micro-macro
model was recently proposed by Doutres et al. [Doutres 2011]. The latter was consid-
ered mainly for polyurethane (PU) foams. One of the most important assumptions
is that the foams are nearly or totally homogeneous, because their characteristic
dimension is far larger than the size of inhomogeneities. Another assumption is
that the micro structure of foams are approximated as a periodic stacking of Kelvin
cells, or tetrakaidecahedral cells, which is the basis of parameter estimation. At last
all the foams with a degree of anisotropy larger than 1.25 are rejected because the
model can only work on at least quasi-isotropic PU foams.

This model has five outputs, which are the material parameters of the JCA
model, and 3 input parameters. These parameters are the strut length l, the strut
thickness t and the reticulation rate Rw. A simplification for high porosity cases,
with φ lying between 0.97 and 0.99, can reduce these parameters to only 2, expressing
l and t as a function of the cell size Cs. The inputs are measured from the Kelvin
cell as shown in Figure 2.1, extracted from the works of Doutres et al..
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Figure 2.1: 2-parameter (a) and 3-parameter (b) micro-macro model

In practice, l, t and Cs can be measured by optical micrograph, but Rw can
only be measured with a Scanning Electron Microscope (SEM). When expressed
mathematically, the 3-parameter model and the 2-parameter model use exactly the
same formulas with the variables l, t and Rw:

φ =
Vf
Vt

= 1− Cρt (
t

l
)2, (2.10)

with Vf being the fluid volume within the cell, Vt being the total cell volume and
Cρt = (2

√
3− π)/

√
2;

α∞ = 1.05(
1

Rw
)−0.6763; (2.11)

σ = Cβ(Cρr
t

l2
)2(

1

Rw
)1.1166, (2.12)

with Cρr = 3π/8
√

2, Cβ = 128η, and η being the dynamic fluid viscosity taken equal
to 1.85× 10−5Pa.s;

Λ′ =
2Vf
At

=
8l
√

2

3

1− t2(2
√

3−π)

l2
√

2

1 + 2
√

3−Rw(1 + 2
√

3− 4πt
l
√

3
)
, (2.13)

with At being the surface of the frame in contact with the saturation fluid;

Λ =
Λ′

n
=

Λ′

1.55
(

1

Rw
)−0.6763, (2.14)

where the coefficient 1.55 is obtained empirically for fully reticulated foams.
The 2-parameter simplification is obtained by assuming that the ratios A =

Cs/l
√

2 and B = l/t are constant. However, these ratios are provided with rather
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wide error margins, so they are considered as independent parameters in the present
study. Supposing that no experimental statistics is given, all micro structure quan-
tities are uniformly sampled as default, with their bounds listed in Table 2.1:

Table 2.1: Sampling bounds for inputs of micro-macro models

Parameter Variable Lower bound Upper bound
Common parameter

Reticulation rate Rw(%) 5 100
3− parameter model

Strut length l(µm) 141 530
Strut thickness t(µm) 36 160
2− parameter model

Cell size Cs(µm) 500 1 500
Empirical parameter A A(−) 1.97 2.69
Empirical parameter B B(−) 3.25 4.31

It can be seen that this model generates five outputs with only three or four
inputs, which means that there must be some correlation among these physical
quantities.

2.4 FASTC

It should be noticed that the correlated case is not often considered in SA research,
as ANOVA actually fails in case of correlated variables. In the limited literature
survey, the FASTC method proposed by Xu and Gertner [Xu 2008] seems to be an
implementable and efficient method for models with limited a priori knowledge.

The core of FASTC’s correlation design is Iman’s transform [Iman 1982], which
allows to create a set of correlated samples by reordering existing ones. Its prin-
ciple is simple: for a sampling matrix X containing uncorrelated row vectors and
a positive definite and symmetric correlation matrix C, let C = PP′ by Cholesky
factorization, then Xb = XP′ has exactly the same correlation matrix as the objec-
tive correlation matrix C. For the objective correlation matrix, both Pearson and
Spearman correlation matrices can be used, but Spearman’s matrix is preferred.
Noticing that Xb doesn’t contain the same elements as X, Iman’s solution is to
reorder all elements in X to ensure that it has the same rank as Xb. The error in
the correlation matrix caused by using X instead of Xb is limited when there are
enough samples. What should be paid attention to is that this method can only be
applied to normalized samples with mean value equal to 0 and standard deviation
equal to 1.

After the denormalization, a correlated sampling matrix X is finally obtained,
but with only the first column containing periodic sampling data. So when applying
FFT on the output dataset Y = f(X), only S1 can be correctly calculated. In order
to properly estimate other first-order sensitivity indices Si, Y must also be reordered
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each time correspond to the original periodicity of xi. As for another algorithm
taken as referential in this research, the CRM (Correlation Ratio Method), also
uses Iman’s transform for the generation of correlated datasets. But as it takes
a different mechanism of SI estimation specifically designed for r-LHS, there is no
problem of separate SA estimation.

2.5 Identification of inputs’ marginal distribution and of
their correlation

In order to apply these SA methods, the first step is to study the original datasets
for some necessary information such as each variable’s marginal distribution and
their correlation coefficients. All the samples are generated by MC sampling of the
micro-macro model.

2.5.1 3-parameter (3-p) micro-macro model

In figure 2.2, the yellow bars represent the original marginal distributions from sam-
ples generated by Micro-Macro model and the magenta line is the closest uniform,
exponential or lognormal approximate.
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Figure 2.2: Marginal distribution of variables generated by 3-parameter micro-macro
model and our approximation: (a): φ, (b): σ, (c): α∞, (d): Λ, (e): Λ′

The first three parameters (φ, σ, α∞) seem to be correctly represented by an
exponential trend. Meanwhile, the viscous and the thermal lengths can be approxi-
mated by lognormal distribution. The rank correlation matrix of this dataset is also
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obtained: 

φ σ α∞ Λ Λ′

φ 1 −0.85 0.00 0.53 0.77

σ −0.85 1 0.39 −0.87 −0.95

α∞ 0.00 0.39 1 −0.73 −0.33

Λ 0.53 −0.87 −0.73 1 0.86

Λ′ 0.77 −0.95 −0.33 0.86 1

 (2.15)

It shows that most of these variables are strongly correlated to each other, es-
pecially for the characteristic lengths. Indeed, they both have similar correlation
properties: positively correlated to the porosity φ and negatively correlated to the
air flow resistivity σ and the tortuosity α∞. No correlation between the porosity
φ and the tortuosity α∞ is observed. Indeed the last four parameters σ, α∞, Λ

and Λ′ all depend exponentially on the reticulation rate Rw in the mathematical
expression of the model. Combined with the empirical correlation between Λ and Λ′

(nearly linear in fully reticulated case[Doutres 2011]), the 4 variables become closely
correlated as shown in Eq. 2.15.

2.5.2 2-parameter (2-p) micro-macro model

Just as for the 3-p model, the comparison of marginal distributions are shown in
the Figure 2.3:
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Figure 2.3: Marginal distribution of variables generated by 2-parameter micro-macro
model and our approximation: (a): φ, (b): σ, (c): α∞, (d): Λ, (e): Λ′

In this approximation the porosity φ is considered uniformly distributed, since
the model is valid only for a narrow range of porosity, and no clear trend emerge for a
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distribution. Similarly to the 3-p model, σ and α∞ are approximated by exponential
functions and the characteristic lengths Λ, Λ′ by lognormal functions. Finally the
rank correlation matrix is shown to be:



φ σ α∞ Λ Λ′

φ 1 −0.16 0.00 0.05 0.08

σ −0.16 1 0.71 −0.94 −0.94

α∞ 0.00 0.71 1 −0.90 −0.57

Λ 0.05 −0.94 −0.90 1 0.86

Λ 0.08 −0.94 −0.57 0.86 1

 (2.16)

The main difference with the 3-p case is the absence of correlation between the
porosity φ and any other variables, whereas it was strongly negatively correlated to
the flow resistivity in the former case. This can be explained as in the 2-parameter
micro-macro model, the expression of the porosity φ depends only on the cell size
and not on the reticulation rate Rw, while the latter has been observed to have a
dominant effect by Doutres et al. [Doutres 2014] in the micro-macro models in most
cases.

2.6 Results comparison and discussion

2.6.1 Comparison of SA results with 3-parameter micro-macro
model

The SA algorithms are applied on the five non-acoustic parameters of the JCA
model, to determine which among them have the most influence on the output α.
The correlation properties are induced by 3-parameter model and 2-parameter model
with the micro structural variables uniformly sampled as in Table 2.1. For the SA
estimation parameters, 2 different thickness of 25mm (1 in.) and 47mm (' 2 in.)
are tested using all three SA methods on the frequency range of 100Hz - 2500Hz.
The two different thicknesses and the frequency range are chosen to be identical to
those in the study of Ouisse et al. [Ouisse 2012]. So the analysis results represent an
overall view of the JCA model’s uncertainly under a wide range of microstructure
and environment conditions uncertainties.

The SA results are presented as a set of curves of first order sensitivity indexes
estimated by FASTC, CRM and FAST method along the frequency band. The two
FAST methods require 5000 samples each while 50000 samples are used in CRM
method. According to our experience, the value of sensitivity indexes in the lowest
part of the frequency band is not very reliable due to the low value of absorption
in this region. However, the most interesting results are the trends in mid and high
frequencies. The mean value ± standard deviation and the Normalized Standard
Deviation (NSD) of absorption are plotted in order to visualize the variability of the
model output with frequency. Generally, the greater these values, the more useful
and more valuable will the SA tests be.
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2.6.1.1 SA results of 1 in. (25mm) thickness samples

In the case of 25mm thick samples with a wide range of reticulation rate, the SA
results are shown in Figure 2.5 and the output variability shown in Figure 2.4:
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Figure 2.4: Statistics of the output set for JCA model with correlated inputs (3-
parameter micro-macro model): (a): mean value ± standard deviation; (b): nor-
malized standard deviation. Thickness of material: 25mm

Looking at Figure 2.4, several frequency zones can be identified: mean absorp-
tion as well as standard deviations increase steeply up to 2000Hz, and more slowly
between 2000 and 2500 Hz. The maximum value of NSD(α) lies between 500 and
1000Hz, with a moderate and increasing mean value of α. It imposes a focus on
sensitivity indexes around 1000Hz.

The curves in Figure 2.5 illustrate the importance of taking correlation into
account. Huge estimation gaps are observed between the SA results of uncorrelated
FAST and the two correlated methods FASTC and CRM, who give close results
to each other. As expected, FASTC always slightly underestimates the Si, but the
negligible error compared to CRM indirectly demonstrates the robustness of these
2 SA methods. According to the graphs, Λ appears to be the dominant parameter,
except at very low frequency. Its steady influence at mid-high frequency makes it
the most interesting variable to control.

Also as expected, φ appears to have the least influence on the output. This
is due to the mechanism of micro-macro model in which φ does not depend on
Rw, which has been proven in [Doutres 2014] to be very influential. The strong
correlation shown in the correlation matrix not only results in similar trends for the
Si of the correlated variables but these trends are very different to any of those in
the uncorrelated case. Empirically, at low frequency, Λ′ is observed to be dominant,
while Λ has no influence, as shown also by the results of FAST. But also with the
highly recognized correlation among them, a transfer point appears on the curve of
Λ at low frequency while SΛ′ keeps a significant value at high frequency. Finally,
it should be mentioned that the SA results of FAST shown in the graphs differ
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Figure 2.5: SA results for JCA model with correlated inputs (3-parameter micro-
macro model) by different methods: FASTC, CRM with correlation design and
original FAST, thickness of material: 25mm. (a): SI(φ), (b): SI(σ), (c): SA(α∞),
(d): SI(Λ), (e): SI(Λ′)

from the results of Ouisse et al. [Ouisse 2012], highlighting the effect of distribution
change.

2.6.1.2 SA results of 2 in. (≈47mm) thickness samples

In the case of 47mm thick samples with a wide range of reticulation rate, the SA
results are shown in Figure 2.7 and the output variability shown in Figure 2.6:
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Figure 2.6: Statistics of the output set for JCA model with correlated inputs (3-
parameter micro-macro model): (a): mean value ± standard deviation; (b): nor-
malized standard deviation. Thickness of material: 47mm

As can be imagined, with a greater thickness, the absorption coefficient increase
more rapidly than with 25mm thickness. Its mean value reaches its maximum in
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Figure 2.7: SA results for JCA model with correlated inputs (3-parameter micro-
macro model) by different methods: FASTC, CRM with correlation design and
original FAST, thickness of material: 47mm. (a): SI(φ), (b): SI(σ), (c): SA(α∞),
(d): SI(Λ), (e): SI(Λ′)

the mid-frequency band between 1000 and 1500Hz, while the standard deviation
gradually decreases when the frequency increases. Similarly, the NSD curve also
shows that the low-mid frequency band should be concentrated on while the study
on high frequency can be less valuable.

Similarly to the NSD curve, the Si curves of FASTC all reach their first peak
at about 500Hz while the curves of uncorrelated FAST do not follow this trend. In
Figure 2.5, the sensitivity indexes estimated by FASTC are all much greater than
those estimated by FAST. However in Figure 2.7, we observe that Sα∞ estimated by
FASTC is even smaller than the one of original FAST at around 2000Hz. Though
σ and α∞ have similar correlations with other variables, they have totally different
effects on these two variables’ uncertainties. This shows that the impact of corre-
lation coefficients on the sensitivity indexes can hardly be predicted. The curves
of 47mm samples have similar trends to the 25mm samples, with Λ still being the
most influential variable at low-mid frequency while sharing dominant position with
σ in the high frequency band. Finally, the sensitivity indexes vary faster in this case
than with 25mm samples, owing to the shift towards lower frequencies of the first
absorption maximum and phenomena occurring after it.

2.6.2 Comparison of SA results with 2-parameter micro-macro
model

2.6.2.1 SA results of 1 in. (25mm) thickness samples

In case of 25mm thick highly reticulated samples, the SA results are shown in
Figure 2.9 and the output variability shown in Figure 2.8:

Regarding Figure 2.8, though the NSD curve has slightly shifted, the trends are
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Figure 2.8: Statistics of the output set for JCA model with correlated inputs (2-
parameter micro-macro model): (a): mean value and mean value ± standard devi-
ation; (b): normalized standard deviation. Thickness of material: 25mm

exactly the same as in Figure 2.4. As expected from the 3-p results, improving
the knowledge of the porosity cannot really reduce the variability in the absorption
coefficient, and the uncertainty in the "constants" A and B lead to close marginal
distributions and correlation matrices.

As for the Si curves, though their forms seem different from the 3-p ones, the
frequencies where the extrema occur remain the same. The main differences concern
the porosity and the tortuosity. The sensitivity index relative to φ always remains
very low. Comparing Sφ between 3-p and 2-p model, it can be seen that when
correlation with other variables no longer exists (Eq.2.16), its sensitivity index de-
crease to almost 0, just as in the uncorrelated FAST. So in case of φ, the correlation
properties explain about 0.3 to 0.4 the absolute value of its sensitivity index, which
can be a reference for other variables. On the other hand, α∞, whose value depends
only on Rw, show more influence on the output than in case of 3-p model. This
basically highlights the influence on absorption of the reticulation rate, to which all
influential macroscopic parameters are correlated. Such results has also been shown
in [Doutres 2014].

2.6.2.2 SA results of 2 in. (≈47mm) thickness samples

In case of 47mm thick highly reticulated samples, the output variability are shown
in Figure 2.10 and the SA results in Figure 2.11. It can be seen that they are
remarkably close to those of the 3-p model of Figures 2.6 and 2.7.

After comparing the four sets of results, we can draw the conclusion that the
2-parameter model has little impact on the sensitivity of absorption to non-acoustic
parameters. On the one hand, reducing the number of parameters may appear
as reducing uncertainty, but this is compensated by the wide variability range of
the cell size Cs considered in this study. A previous study [Doutres 2015] showed



2.7. Chapter conclusion 25

Frequency(Hz)

0 1000 2000

S
e

n
s
it
iv

iy
 i
n

d
e

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a)

S
i
(FASTC)

S
i
(CRMC)

S
i
(FAST)

Frequency(Hz)

0 1000 2000

(b)

Frequency(Hz)

0 1000 2000

(c)

Frequency(Hz)

0 1000 2000

(d)

Frequency(Hz)

0 1000 2000

(e)

Figure 2.9: SA results for JCA model with correlated inputs (2-parameter micro-
macro model) by different methods: FASTC, CRM with correlation design and
original FAST, thickness of material: 25mm. (a): SI(φ), (b): SI(σ), (c): SA(α∞),
(d): SI(Λ), (e): SI(Λ′)

that the rather wide uncertainty on the "constants" A and B have little influence
on the variability of the non-acoustic parameters, except on the porosity. Since
the latter has little influence on the acoustic absorption, this uncertainty has little
consequence. The main difference between the two models is in the correlation
between the porosity and the other parameters, rather strong with 3 parameters
and absent in the 2-p model. This leads to very different values for the porosity’s
sensitivity index, although it remains the least influential of the five non-acoustic
parameters considered.

2.7 Chapter conclusion

In this paper, the effect of uncertainties and correlations among parameters of the
sound absorption Johnson-Champoux-Allard model was studied. Sensitivity analy-
sis methods considering the correlation among the inputs of JCA model generated
by a secondary micro-macro empirical model were considered in depth. In order to
deal with this problem, a FASTC method based on Iman’s transform is specially
chosen for correlated variables. The novelty of the approach lies in the account
taken of correlation.

Concerning the inputs’ joint distribution, two main observations can be made
from the micro-macro model used in this study. First, every parameter’s marginal
distribution is strongly biased and usually far from the commonly used normal or
uniform distributions. The shape of the distribution is an important factor on un-
certainty assessment. Secondly, the correlations among variables are much stronger
than expected, and questions the frequent hypothesis that the parameters are in-
dependent. The only previously well-established correlation was that between the
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Figure 2.10: Statistics of the output set for JCA model with correlated inputs
(2-parameter micro-macro model): (a): mean value and mean value ± standard
deviation; (b): normalized standard deviation. Thickness of material: 47mm

viscous and thermal characteristic lengths, where the latter is commonly estimated
as twice the former [Allard 2009]. In this paper, we show that the correlation among
other variables are generally equivalent or even stronger than the one between Λ and
Λ′. Among these five variables, the only one which is kept almost independent from
others is the porosity φ.

The SA results taking correlation effects into account are different from the ones
in former studies. While the sensitivity index of φ keeps a negligible value, the other
variables all have a noticeable effect (compared to SA results without correlation)
with first-order sensitivity indexes ranging from 0.5 up to 0.99. This phenomenon
is especially remarkable in the high frequency band, which is the main working
condition of acoustic foams. Different behaviors are also observed under different
micro-macro assumptions and sample thicknesses. Such results show that the pre-
determined reticulation rate and sample thickness also have impact on forms of Si
curves.

The physical meaning of this SA is that if one wants to control the uncertainty
of porous material’s absorption coefficient, filtering the products with their viscous
length can be the most effective way. While in case of 47mm thickness porous mate-
rial samples, the parameter to be filtered should be better chosen under knowledge
of its working frequency, because its SA results varies brutally in medium and high
frequency band. Of course this conclusion depends on the micro-macro model and
on the hypothesis that no extra control in production is applied.
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Figure 2.11: SA results for JCA model with correlated inputs (2-parameter micro-
macro model) by different methods: FASTC, CRM with correlation design and
original FAST, thickness of material: 47mm. (a): SI(φ), (b): SI(σ), (c): SA(α∞),
(d): SI(Λ), (e): SI(Λ′)
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3.1 Chapter introduction

Different from simple plate structures, composite structures could contain more un-
certainties on their macroscopic mechanic properties. These uncertainties can be
accumulated throughout the procedures of manufacturing: a bit of error allowed for
the core meso-structure, a bit of error allowed for the combination of layers, etc..
These observed variation of the structural mechanical parameters will finally result
in the variation of the objective characteristic property: acoustic properties. In the
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process of structural optimization, the reduction of uncertainties at the system out-
put is one necessary issue. Already acknowledged the uncertainty of the structural
mechanical parameters, variable filtering is the first step of setting up optimization
algorithms. Which parameters are more influential to the output and which are
not?

To answer the question of variable filtering, quite a lot of methods have been
proposed. The classical maximum entropy principle was applied to estimate the
confidence intervals for the TL of rigid walls [Reynders 2014]. A stochastic bound-
ary element method (BEM) was proposed for the calculation of industrial struc-
tural acoustic property variation [Amico 2013]. A review of uncertainty assessment
methods in vibroacoustics [Ohayon 2014] can also be referred, including the popular
hybrid FE-SEA method [Cicirello 2013]. Among the literatures, the best solution
for the uncertainty proportion problem probably is the Global Sensitivity Analysis,
which is able to describe the the influence of each parameters on the variability of
the output. Rapidly developed after the 1990s, more and more ANOVA(Analysis
of Variance)-based GSA algorithms have been applied in vibroacoustics. As one of
the most computational costless algorithm, the Fourier Amplitude Sensitivity Test
(FAST) was preferred in acoustic composite material analysis: the study on elas-
tic porous materials and their micro-structures [Ouisse 2012, Doutres 2014] and the
study on isotropic single or sandwich panels [Christen 2016]. The first-order sen-
sitivity indices and the total sensitivity indices, together, helped to better identify
the most and the least influential inputs on the output uncertainty.

But, as mentioned, the sandwich composite sample, can not be completely
treated as the combination of three isotropic layers. Though the optimization
and the uncertainty assessment are always imposed on the macroscopic, the meso-
structures are extra contents that should must be considered. Quite often when
sandwich composite materials are studied, their mechanical parameters are sup-
posed to be normally or uniformly distributed. But with the meso-structures con-
sidered, not only the variables’ marginal distribution rules can be customized, but
also the correlation or dependency can be involved. An advanced FAST algorithm
called FASTC (S-FAST), which can take the correlation into consideration, has
been tested in a previous publication [Chai 2017]. That piece of work was about
sound absorption capacities of elastic porous material with specific micro-structure.
Compared to the traditional FAST method, FASTC presents more information on
variables’ correlation properties and that makes the GSA results more adaptable
to real industrial case. But also, that investigation has shown some limitation of
using correlation matrix as the only indicator of variable dependency. So another
FAST-orig method will be proposed in this piece of work and to be compared with
former ones.

The main objective of this work is to take an overall sensitivity analysis to
identify the mechanical parameters which have the most contribution on material’s
acoustic performance uncertainties within different frequency bounds. For the pur-
pose of an intense comparison, multiple core meso-structures and sound transmission
models are involved. Including FAST-orig, FASTC and the classical FAST, three
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SA methods are applied to ten cases of composite structure models for the uncer-
tainty assessment of three acoustic indicators: TL, transition frequency and critical
frequency.

3.2 Acoustic characteristics of sandwich panels

Figure 3.1: Geometric illustration for incident wave towards the face-plate

Concerning the sound transmission properties in sandwich structures, some char-
acteristic indicators should be paid attention on with preference. The sound Trans-
mission Loss (TL) is the most important direct measure of the structural sound
isolation capacity, so is preferred as in first order. Then the structural coincidence
frequency, it tells the proper working frequency band of this kind of material. And
at last, the transition frequency is a meaningful indicator to be estimated for sci-
entific research, which is a direct reference for the choice of vibroacoustical analysis
tools.

Mead’s model [Mead 1969, Clarkson 1983], Renji’s model [Renji 2005] and Guil-
laumie’s model [Guillaumie 2015], are preferred in this work, to estimate the TL, the
coincidence frequency and the transition frequency. They are valid in this research
case when the two face-plates of the sandwich structure have the same isotropic
mechanical properties. Meanwhile, the Guillaumie’s model requests that the core
layer should also be isotropic, which is not always true under certain meso-structure
choices. So for the purpose of precision, Baho’s model [Baho 2016] could be more
accurate. But in this work Guillaumie’s model is finally chosen as an approximation
because this model has generally the same inputs as Mead’s and Renji’s models.
This makes the study on variables’ correlation characteristics easier.

The input parameters of the three models are: the Young’s modulus of the face
plate E, the core layer’s shear modulus Gxz and Gyz, the mass per surface area m
of the sandwich structure and the damping factor η of the whole structure. Among
these inputs, E and η are variables with preset intervals, and m is calculated with
the following expression:

m = 2ρshs + ρeqc hc,

in which hs and ρs represent respectively the face plate thickness and density, hc
and ρeqc represent the core layer thickness and density. Among these variables, ρs,
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hs and hc are all fixed with preset values while ρeqc needs to be calculated along with
Gxz and Gyz depending on which meso-structure is chosen in test.

3.2.1 Mead’s model

With a resultant sound wave pressure loading on the panel defined as p, equation of
motion in this structure is firstly given by Mead and Markus [Mead 1969] as a beam
theory and later developed by Clarkson and Ranky [Clarkson 1983] with several
corrections [Mead 1972] and assumptions:

1. The core bending stresses are negligible compared with the face plate direct
stresses.

2. The panel motion in the transverse direction for all the three layers is the
same.

3. The shear strains in the face-plates in planes perpendicular to the plane of the
plate are negligible.

After eliminated the terms above, the equation can be reduced to this form:

Df∇6w − g′(Df +D)∇4w +mω2∇2w −mg′ω2w = ∇2p− g′p, (3.1)

with ω being the sound wave angular frequency. In the equation, core shear
parameter g′ = g(1 + iη)(1 − ν2), g = 2G/Ehshc, with the core storage shear
modulus usually approximated by G =

√
GxzGyz. Df = Eh3

s/6(1− ν2) represents
the double face-plate bending stiffness and D = Ehs(hs + hc)

2/2 represents the
structural bending stiffness.

This equation of motion finally gives this expression of the structural impedance
Z equivalent to the one proposed by Narayanan and Shanbhag [Narayanan 1982]:

Z(ω) =
(1 + iη)Dfk

6 + (1 + iη)g(Df +D)k4 −mω2k2 −mω2g(1− ν2)

iω(k2 + g)
, (3.2)

in which the wavenumber is noted as k. Finally the transmission loss is obtained as
following:

τ =

∣∣∣∣PTPI
∣∣∣∣2 =

∣∣∣∣∣
(
Z cos θ

2Z0
+ 1

)−1
∣∣∣∣∣
2

, Z0 = ρ0c0, (3.3)

TL = −10 log10 τ. (3.4)

Same as in the definition of the wavenumber

k =
ω

c0
sin θ,

θ indicates the angle of incident sound wave respect to the normal direction of the
face-plate, shown in Figure 3.1.
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3.2.2 Renji’s model

This model indicates that it considers especially the shear deformation of the traverse
plane due to the traverse shear stresses, and the form of its equation of motion
is [Renji 2005]:

N∇4w −mω2∇2w +mgω2 + gcω = gp, (3.5)

with the shear rigidity N = gD. Ignoring the imaginary part of D the expression
of the structural impedance is given as [Christen 2016]:

Z(ω, θ) = imω

[
1 +

(
D

Nc2
0

sin2 θ − D

mc4
0

(1 + iη) sin4 θ

)
ω2

]
. (3.6)

It should be mentioned that in equation (3.5) the notation c represents the
structural damping coefficient, who has a linear correlation with η. But as the
term is later ignored, the damping factor is mainly considered in the shear rigidityN .

3.2.3 Coincidence frequency

Based on Renji’s model and his simplification on TL expressions, he provides an
analytical formula [Renji 2005] to estimate the coincidence frequencies for sandwich
composite panels. This estimation of coincidence frequency takes assumption that
no dissipation exists in the panel, which means the damping factor η will not be
involved. The formula is given as:

f2
c,t =

c4
0m

4π2D
, (3.7)

where fc,t is an estimation of panel’s critical frequency without considering its tra-
verse deformation. And the corrected coincidence frequency fc is further calculated
by:

f2
c =

f2
c,t

[1− c20m

N sin2 θ
] sin4 θ

. (3.8)

But it should be mentioned that this estimation shows quite great error for both
Renji’s and Mead’s model, so in this research the final coincidence frequency value
is actually directly obtained from the TL curve.

3.2.4 Transition frequency

In order to make the algorithm of estimating the TF compatible to the inputs men-
tioned above, the Guillaumie’s formula [Guillaumie 2015] is preferred. It supposes
that the equivalent core material piece is isotropic, which is not really true in this
case of honeycomb structure. Recent research [Baho 2016] shows that in case of
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highly orthotropic structure, the error of Guillaumie’s formula is about 15%. The
expression of TF is:

fGt =
N

4π

√
1

mD
. (3.9)

The definition of this transition frequency is based on the structural modal density,
representing the intersection frequency between the asymptotical pure bending
modal density and the pure shear modal density.

3.3 Homogenization of Meso-structures

Figure 3.2: Meso-structure for the honeycomb sandwich panel with double vertical
thickness

As is indicated before, sandwich composite materials are very preferred in indus-
trial applications for their high rigidity-to-mass ratio. The core layer of a sandwich
panel can be filled with porous material or with different kind of 2D, 3D meso-
structures in order to maintain its bending stiffness while decreasing the overall
mass. Honeycomb is among most popular meso-structures with high space effi-
ciency and mature industrial production procedures. And based on the honeycomb
structure, various meso-structures such as triangle, rectangle or rhombus periodic
structures can also be easily evaluated via simple deformation.

Required by Mead’s and Renji’s model, the estimation of equivalent core
layer physical and mechanical parameters are necessary. Gibson-Ashby (G-A)
model [Gibson 1997] is a classical model with its simple methodology which can be
applied on meso-structures with different shapes. And recently, the Gibson-Malek
(G-M) model [Malek 2015] is proposed as a correction of Gibson-Ashby for honey-
comb meso-structures.
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(a) (b) (c) (d)

Figure 3.3: Meso-structures of different shapes: (a): double vertical thickness hon-
eycomb, (b): triangle, (c): double vertical thickness rectangle and (d): rhombus

3.3.1 Gibson-Ashby honeycomb structure and its extension

With the Gibson-Ashby model, the equivalent shear modulus, Young’s modulus
and density per unit surface can be analytically estimated. In this research, the
estimation of the shear modulus in 2 directions Gxz, Gyz and the density m is
necessary for further calculation in Mead’s and Renji’s model. This estimation
requires the physical parameters of core material such as the density ρc and the
isotropic shear modulus Gc, but also several geometric parameters: l, lh and θ, as
presented in Figure 3.3. Exceptionally, the wall thickness of meso-structures is noted
t and has a fixed value of 0.2mm in this work.

Supposing that the surface of cross section is a constant value under slight bend-
ing or compression deformation, the equivalent density of the honeycomb structure
can be easily obtained with some geometric approximations:

ρeqc
ρc

=

(
t

l

)
l + lh

(l sin θ + lh) cos θ
. (3.10)

And the directional shear modulus Gxz and Gyz are estimated based on these two
relationships. When dividing one unit of the meso-structure into several pieces of
walls with each the shear strain γi, the shear stress τi and the pure wall volume Vi:

Gxzγ
2
xzV ≤

∑
i

(Gcγ
2
i Vi), (3.11)

τ2
xz

Gxz
V ≤

∑
i

(
τ2
i

GcVi

)
. (3.12)

In the equations V represents the total volume of the unit including the pore space.
It should be mentioned that the values of γi, τi and Vi all depend on how the
structure is divided, while γi and τi need to be recalculated for each direction (x-z
plane or y-z plane). In the algorithms, Gc is given by Ec/(1 + νc).

Precising the expressions above, it can be obtained that:

Gxz
Gc

=

(
t

l

)
cos θ

lh/l + sin θ
. (3.13)
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While for Gyz:
Gyz
Gc
≤
(
t

l

)
h/l + 2 sin2 θ

2(lh/l + sin θ) cos θ
,

Gyz
Gc
≥
(
t

l

)
lh/l + sin θ

(1 + 2lh/l) cos θ
,

their is an interval of possible values. After several finite elements simulations, one
empirical formula is concluded

Gyz = Gyzlower +
0.787

hc/l

(
Gyzupper −Gyzlower

)
, (3.14)

where the term (hc/l) should be a value between 1 and 10.

3.3.1.1 Triangle meso-structure

As the last pattern presented in Figure 3.3, all the units are supposed to be equi-
lateral triangles with common walls in y-axis. The definition of the structural geo-
metric parameters are a bit different from the ones of honeycomb structures. Thus
the expressions for the equivalent physical parameters are also modified.

ρeqc
ρc

=

(
t

l

)
2(1 + cos θ)

sin θ cos θ
. (3.15)

For the shear modulus, the same process is applied:

Gxz
Gc

=

(
t

l

)
tan θ. (3.16)

Similarly, an interval is obtained for the value of Gyz:

Gyz
Gc
≤
(
t

l

)
1 + cos θ

sin θ
,

Gyz
Gc
≥
(
t

l

)
4 cos θ

sin θ(1 + cos θ)
.

As the the triangle structure can be simply regarded as a division of the hexagonal
structure, the same empirical relationship (3.14) can be applied.

3.3.2 Gibson-Malek honeycomb structure and its deformation

This model is an improvement of Gibson-Ashby model considering some complex
elastic deformations at the nodes, the notations are kept as the same in Gibson-
Ashby model.

ρeqc
ρc

= 1− l cos θ(lhb + l sin θ)

(l cos θ + t)(h+ l sin θ)
, (3.17)

Gxz
Gc

=
t/l

(lh/l + sin θ)(cos θ + t/l)

[
cos2 θ

(
lb
l

)
+ 2

(
t

l

)
tan

(
π

4
− θ

2

)]
, (3.18)
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Gyz
Gc

=
t/l

(lh/l + sin θ)(cos θ + t/l)

[
sin2 θ

(
lb
l

)
+
lh
l

+

(
t

l

)
tan

(
π

4
− θ

2

)]
, (3.19)

in which some specified notations are used:

lb = l − t tan

(
π

4
− θ

2

)
; lhb = lh − t tan

(
π

4
− θ

2

)
.

3.3.2.1 Double vertical thickness rectangle and rhombus deformation

The estimation of the shear modulus of rectangle and rhombus meso-structures can
be simply done by modifying the geometric inputs in Gibson-Malek model, without
constructing a new model. For double vertical thickness rectangle meso-structure,
the characteristic angle θ is set to be 0, while for rhombus meso-structure, the
vertical direction wall length lh is set to be t. lh can not be set directly to 0 because
Lhb will become a negative value.

3.4 Correlation and dependency discussion

Both FASTC and CRM rely on Iman’s transform to introduce correlation among
samples. This process is known to introduce errors in the obtained correlation co-
efficients, compared to the objective correlation matrix, especially if the number
of samples is too low. Because FASTC requires fewer samples than CRM, the er-
ror in the sampling reordering phase may be more important. In our cases, the
error on each coefficient is always less than 10%, but the difference could reach
20% with fewer samples. The minimum number of samples is discussed in Iman et
al. [Iman 1982]’s work. Secondly, Iman’s transform requires only the knowledge of
the inputs’ marginal distributions and their correlation matrix. This is generally
not sufficient to define an n-dimensional co-distribution function. Kucherenko et
al. indicated in their paper [Kucherenko 2012] that the definition of a certain cop-
ula is needed. In fact, without this copula, the sensitivity index Si value is often
not uniquely defined. As presented in Figure 3.4 and Figure 3.5, the original co-
distribution and the approximated one have large discrepancies, although they have
similar correlation matrices. This is especially the case for the porosity φ, which
is not correlated with the other variables in the 2-p micro-macro model. For these
parameters, Iman’s transform does not provide a good approximation of the original
co-distribution, which is used by FASTC.

In authors’ former studies, errors have actually already been observed due to
Iman’s transform. In that case, for a correlated model with 8 inputs, when the
inputs’ entry positions are changed, their expected SA values get also changed, par-
ticularly for these highly correlated parameters. Such phenomenon can not occur in
traditional FAST algorithm, so only Iman’s transform and its post-treatment can
explain these biased SA results. One question is that among these SA results ob-
tained under different conditions, we can’t tell which approaches better the theoretic
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Figure 3.4: Original co-distribution of the 5 variables generated by 2-parameter
micro-macro model

one. Errors can be recognized but not be evaluated, which is the major hindrance
to the application of FASTC.

A quantification of the error induced by incomplete information can hardly be
evaluated only by analyzing the internal mechanism of the algorithm, FASTC, etc..
One way to evaluate it would be to make a direct comparison of the original samples
and the reconstructed samples, as presented by Figure 3.4 and Figure 3.5, in a more
quantitative way. But this may not be easily feasible for the estimation of SA
errors indirectly caused by Iman’s transform. The greatest problem is that few of
the popular ANOVA-based SA methods use existing samples for sensitivity indexes
estimation. Unlike classical Sobol’s estimator, neither CRM nor FASTC can be used
with MC sampling phase, since it cannot satisfy periodicity or LHS requirements.

3.5 FAST-orig

It has been noticed that the correlated case is not often considered in SA research,
as ANOVA actually fails in case of correlated variables. In some limited litera-
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Figure 3.5: Co-distribution of the 5 variables generated by Iman’s transform based
on the original correlation matrix of 2-parameter micro-macro model

tures, the FASTC method proposed by Xu and Gertner seems to be an imple-
mentable and efficient method for models with limited a priori knowledge. See
example [Zheng 2015, Gaspar 2014]

FASTC relies on Iman’s transform [Iman 1982] to construct a set of correlated
samples with a certain correlation matrix provided. The conventional FAST pro-
cedures are then executed on these correlated samples. Different from the FAST
method, the estimation of each sensitivity index requires a reordering of output
dataset before the Fourier Transform, which slightly increased the calculation com-
plexity.

In a previous research, some potential error induced by Iman’s transform in
FASTC algorithm has been discovered [Chai 2017]. Theoretically, such error rep-
resents indeed the difference between dependent variables and correlated variables.
As this error can not be self-estimated by FASTC itself, a corrected FASTC algo-
rithm, called FAST-orig, using original samples as datasets, is taken into account
for a comparison with FASTC.
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Table 3.1: Sensitivity analysis methods

Algorithm Sampling method Estimator
FASTC-orig Original datasets FFT
FASTC Periodic sampling + Iman’s transform FFT
FAST Periodic sampling FFT

3.6 Identification of inputs’ marginal distribution and of
their correlation

3.6.1 Variables overview

For these meso-structure models, their inputs samples can be freely defined and the
outputs will be used in sensibility analysis upon Mead’s and Renji’s models. Refer-
ring to previous studies [Christen 2016, Baho 2016], several geometric parameters
are set to be constant while others are set to be uniformly distributed regarding
to certain characteristic indicators. For the uncertainty of inputs, their bounds of
variation are uniformly set as δ = 20%. See Table 5.1 and Table 3.3

Table 3.2: Table of variables and their values

Notation Variable Value(variance bounds) Unit
c0 Sound speed in air 343.2 m/s
E Face-plate Young’s modulus 70(±δ) GPa
Ec Core material Young’s modulus see Table 3.3 GPa
hc Core layer thickness 20 mm
hs Face-plate thickness 1 mm
l Non-vertical meso-structural length see Table 3.3 mm
lh Vertical meso-structural length see Table 3.3 mm
t Meso-structural wall thickness 0.2(±δ) mm
η Structural damping factor 0.005 -
θ Meso-structural angle see Table 3.3 rad
ν Face-plate Poisson’s ratio 0.1 -
νc Core material Poisson’s ratio 0.34(±δ) -
ρ0 Air density 1.27 kg/m3

ρc Core material density 2700(±δ) kg/m3

ρs Face-plate density 3050 kg/m3

Some constraints are applied to Ec, l, lh and θ to specify the meso-structures
and to unify the equivalent structural mass and stiffness.

Though the variables defined in Table 5.1 and Table 3.3 are all uniformly
distributed, the outputs of the meso-structure homogenization model, same as the
inputs of sandwich panel sound transmission model, the Gxz, Gyz and m may not
be generated with uniform distribution. So with five different meso-structures, their
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Table 3.3: Table of variables’ bounds chosen for different meso-structures

Variable G-A Triangle G-M Rectangle Rhombus Indicator
Ec (GPa) 18±δ 37±δ 17±δ 17±δ 17±δ Gxz +Gyz = 0.8GPa
l (mm) 2.45±δ 6.05±δ 2.6±δ 2.5±δ 3.4±δ m = 12kg/m3

lh (mm) 2.45±δ - 2.6±δ 5.4±δ 0.2±δ depends on the shape
θ (rad) π/6±δ π/3±δ π/6±δ 0 π/4±δ depends on the shape

probability density functions (pdf) as well as their correlation properties should be
measured separately. Such information is not only useful for deeper investigation
into meso-structure models, but also necessary for the application of FAST series
SA methods.

3.6.2 Correlated variables

In this section the marginal distribution details and the correlation properties of
the homogenized physical parameters Gxz, Gyz, m, etc. are separately presented in
order of different core layer meso-structures: Gibson-Ashby honeycomb, Figure 3.6
and Matrix (3.20); Gibson-Ashby triangle, Figure 3.7 and Matrix (3.21); Gibson-
Malek honeycomb, Figure 3.8 and Matrix (3.22); Gibson-Malek rectangle, Figure 3.9
and Matrix (3.23); Gibson-Malek rhombus, Figure 3.10 and Matrix (3.24).

Figure 3.6: Marginal distribution of variables generated by Gibson-Ashby double
vertical thickness hexagon model (yellow bars) and its mathematical approximation
(magenta line)



E Gxz Gyz m η

E 1 0.01 0.00 0.00 −0.01

Gxz 0.01 1 0.58 0.44 −0.00

Gyz 0.00 0.58 1 0.57 −0.01

m 0.00 0.44 0.57 1 −0.01

η −0.01 −0.00 −0.01 −0.01 1

 (3.20)
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Figure 3.7: Marginal distribution of variables generated by extended Gibson-Ashby
triangle model (yellow bars) and its mathematical approximation (magenta line)



E Gxz Gyz m η

E 1 0.01 0.01 0.01 0.00

Gxz 0.01 1 −0.15 0.65 0.00

Gyz 0.01 −0.15 1 0.16 −0.00

m 0.01 0.65 0.16 1 −0.01

η 0.00 0.00 −0.00 −0.01 1

 (3.21)

Figure 3.8: Marginal distribution of variables generated by Gibson-Malek double
vertical thickness hexagon model (yellow bars) and its mathematical approximation
(magenta line)



E Gxz Gyz m η

eta 1 −0.00 −0.00 0.01 −0.00

Gxz −0.00 1 0.68 0.51 0.02

Gyz −0.00 0.68 1 0.61 0.01

m 0.01 0.51 0.61 1 0.01

η −0.00 0.02 0.01 0.01 1

 (3.22)
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Figure 3.9: Marginal distribution of variables generated by deformed Gibson-Malek
double vertical thickness rectangle model (yellow bars) and its mathematical ap-
proximation (magenta line)



E Gxz Gyz m η

E 1 −0.00 0.00 0.00 −0.01

Gxz −0.00 1 0.66 0.53 −0.00

Gyz 0.00 0.66 1 0.63 −0.01

m 0.01 0.53 0.63 1 −0.01

η −0.01 −0.00 −0.01 −0.01 1

 (3.23)

Figure 3.10: Marginal distribution of variables generated by deformed Gibson-Malek
rhombus model (yellow bars) and its mathematical approximation (magenta line)



E Gxz Gyz m η

E 1 0.00 −0.00 0.01 0.01

Gxz 0.00 1 0.15 0.51 0.00

Gyz −0.00 0.15 1 0.47 0.01

m 0.01 0.51 0.47 1 0.00

η 0.01 0.00 0.01 0.00 1

 (3.24)

Referring to figures and correlation matrices, some interesting details can be
found for these meso-structures. Comparing the marginal distributions graphs of
Gxz, Gyz and m, two pattern of distributions can be recognized. One pattern is
presented by the double vertical thickness hexagon and rectangle meso-structures,
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with obvious different mean values for Gxz and Gyz. The other pattern by the tri-
angle and rhombus meso-structure, with similar Gxz and Gyz value and distribution
rules. Such difference shows clearly that the double vertical thickness industrial
design can greatly increase the value of Gyz and increase the level of orthotropism
in a macroscopic view.

Interestingly, the correlation properties among these variables seems to have
similar relations with the meso-structures. Firstly, the structural densitym is always
strongly correlated to the shear modulus Gxz and Gyz. It can easily be understood
as the rigidity is generally related to the compactness for a same piece of material.
Secondly, the correlation index between the two shear modulus depends on whether
the meso-structure has double vertical thickness wall or not. If so, the shear modulus
are strongly correlated, which means the structural stiffness are generally equally
enforced in each directions, while the pore shape seems to be less important. If not,
the shear modulus are weakly (rhombus) or even negatively (triangle) correlated,
which shows the importance of pore shape deformation on the overall structural
physical properties.

As in preset, the face-plate Young’s modulus E and the structural damping
factor η are uniformly distributed, so there’s no need to study their marginal
distribution properties.

3.7 Results comparison and discussion

As the mean value of the homogenized sandwich panel physical parameters are
controlled to be the same for each case, only one evaluation on the overall sound
transmission performance is enough. The Figure 3.11 has also shown the coincidence
frequency at about 600Hz and the transition frequency at about 1050Hz. At the
coincidence frequency, the minimum transmission loss is down to 10dB with a rela-
tive high normalized standard deviation, which indicates the necessity of executing
uncertainty analysis around this frequency.

As introduced before, two sound transmission models combined with five dif-
ferent meso-macrostructures form in total 10 cases. The 10 sets of SA results are
divided into two sections based on the sound transmission models. Generally similar
trends of transmission loss curve can be recognized in each section.

For each variable of these 10 models, three SI curves are given by FAST,
FSATC and FAST-orig, representing GSA results with different levels of parametric
dependency acknowledgements: FAST means the ignoration of dependency; FASTC
means a rough esitmation with only the correlation coefficients considered; FAST-
orig means taking full consideration of parametric dependency. Computationally
FAST is the most efficient while theoretically FAST-oirg should give the nearest
estimation of analytiacal sensitivity indices. Thus the comparison of GSA results
in this section will be focused on balancing their efficiency and accuracy and to
discuss the compatibility of each algorithm.
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Figure 3.11: Transmission loss estimated by Mead’s model with correlated inputs
(similar for all meso-structures). Left: mean value ± standard deviation and tran-
sition frequency; right: normalized standard deviation.

3.7.1 SA results on Mead’s model

Figure 3.12: SA results for Mead’s model with correlated inputs (Gibson-Ashby
double vertical thickness hexagon model) by different methods.

Regarding the SA curves for each variables, the first point that to be mentioned
is the particular evolution trend of SI curve for E the Young’s modulus. This is the
only variable that has an important influence on the output around the coincidence
frequency. With or without correlation, at the coincidence frequency, the sum
of the first-order SI is far lower than 1, which means quite complex high-order
interaction effects are hidden behind the mechanism.
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Figure 3.13: SA results for Mead’s model with correlated inputs (extended Gibson-
Ashby triangle model) by different methods.

With the correlation effect involved, the SA curves for Gxz, Gyz and m all have
a "V" shape, which present their solid influence on TL in the frequency bands
before and after the coincidence frequency. The importance of the three inputs
are quite different for different meso-structures, one could be more important on
certain frequency band but less important on another band. The only common
point is that m the density keeps to be the dominant factor at low frequency band,
which has a good agreement with the basic theory of mass law.

Regarding the curves obtained by the classic FAST method, it can be seen that
with the correlation effect, the value of these sensitivity indices have been greatly
changed. Noticed that both positive and negative correlation exists among the
variables, their effects reflected on the SA curves can also be positive or negative.
But the correspondence is not absolute, positive correlation can result to decrease
of sensitivity index or even no change at all. And relatively, when looking at the
SA curve of η the damping factor, its SA curves are obviously compressed when
the correlation among other variables are taken is into consideration.

A bit different from other meso-structures, only in case of the Gibson-Ashby
triangle model the two shear modulus Gxz and Gyz have apparent different
value in the whole frequency interval. Similarly, only in this meso-structure Gxz
has a non-negligible importance on the structural coincidence frequency. Such
special properties may be caused by the fixed rigid walls in y-axis of the triangle
meso-structure, which has a major contribution to the overall structural rigidity.
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Figure 3.14: SA results for Mead’s model with correlated inputs (Gibson-Malek
double vertical thickness hexagon model) by different methods.

3.7.2 SA results on Renji’s model

Compared with Mead’s model, the charts obtained by Renji’s model seems to be
quite different, in many aspects.

As for the SA curves of the five inputs, compare to the ones of Mead’s model,
only few similar features can be recognized in the curves of E and η. In most cases
even the basic forms of the curves are totally different. Especially for the SA curves
of the shear modulus Gxz and Gyz, they have both an "W" shape curve, with
one extreme at the coincidence frequency and another at around the transition
frequency. For Mead’s model, the SI curve become relatively stable when above
the transition frequency, while for Renji’s model, no similar features can be observed.

For the sensitivity indices estimated with Mead’s model, the correlation
properties among variables mainly increase their value, while for Renji’s model,
FASTC and FAST-orig methods always give a lower SI estimation than FAST. Such
phenomenon indicates again the unpredictable effects caused by the correlation
properties.

Other points conveyed by these charts, including the NSD properties, SA results
of coincidence frequencies and specialty of the triangle meso-structure, are similar
to the ones described in Mead’s model.

3.7.3 SA results on structures’ transition frequencies

For a sandwich panel, in the structural aspect, the rigidity-to-mass property is
always the most important quality criteria. Here the rigidity includes not only
the compression rigidity, but also the shear rigidity, which reflects mainly on the
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Figure 3.15: SA results for Mead’s model with correlated inputs (deformed Gibson-
Malek double vertical thickness rectangle model) by different methods.

transition frequency of the vibroacoustic material. This frequency is adjusted to be
a fixed value for comparison purpose in this piece of work. But still if considering
its uncertainty, as shown in Figure 3.22, the value of transition frequency is shown
to be quite sensitive to Gyz the shear modulus in x-axis for the uncorrelated case,
except for the rhombus meso-structure. Such results are pretty easy to understand
as the hexagon and rectangle meso-structures both have double vertical thickness
design while the triangle structure has fixed vertical walls as basic shape.

But when the correlation is considered, it can be seen that actually the shear
modulus Gxz has also great potential influence on the transition frequency, as the
correlation between these 2 shear modulus objectively exists in most cases. Here
the only exception is the triangle meso-structure, where the correlation amplified
mainly the importance of m the density but not Gxz. Such facts indicate the
possibility that for such meso-structure based on vertical walls, the thickness of the
walls, rather than the deformation of substructures, has greater influence on the
structural shear rigidity.

3.8 Chapter conclusion

This chapter presents an investigation of two ANOVA-based GSA algorithms:
FASTC and FAST-orig, on vibroacoustic models with internally correlated inputs.
The purpose is to find out how the variables’ correlation and dependency prop-
erties can influence the GSA results, and to make a comparison between the two
algorithms.

The correlated samples for the sound transmission models, are firstly gener-
ated by two different core layer homogenization models. These samples, with their
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Figure 3.16: SA results for Mead’s model with correlated inputs (deformed Gibson-
Malek rhombus model) by different methods.

marginal distribution and correlation properties well retrieved, are then thrown into
sensitivity analysis. In this piece of work, five different meso-structures and two dif-
ferent sound transmission models are studied so finally in total 20 sets of sensitivity
analysis results are obtained.

Under a general view of the GSA results, the face-plate rigidity and the structural
density both are the most critical factors for the sandwich panel’s transmission loss
and coincidence frequency. While for the transition frequency, the two directional
shear modulus own dominant roles, especially with the correlation and dependency
properties counted. Such results means that in most cases these are the variables
that should firstly be controlled in order to limit the output’s uncertainty. The
core meso-structures do have affects on the panel’s SA results, though may not
as great as those caused by different sound transmission models. The variables’
marginal density functions and correlation matrices finally turn into relative floating
variation features on their SA curves. This phenomenon is especially obvious for
the sensitivity indices values of the shear modulus. It confirms the necessity of
distribution and correlation study before the execution of GSA.

For the comparison between Mead’s and Renji’s model, the SA results indicate
that they are two wholly different models. Not only their SA curves have different
patterns, their average TL curves can not even match each other, for a same piece
of material. Their differences are mainly represented at the estimation of coinci-
dence frequency and the TL curve trend at mid-high frequency. Further numerical
simulation or experiments are required to tell the accuracy of these two models.

As for the comparion among GSA algorithms under condition of parametric de-
pendency, FAST, FASTC and FAST-orig are compared in the aspects of accuracy
and aomputational efficiency. Quite obviously FAST is not suitable for correlated
variables as its SI estimations are far from the ones obtained by the other two algo-
rithms. While for FASTC and FAST-orig, theoretically FAST-orig can give the most
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Figure 3.17: SA results for Renji’s model with correlated inputs (Gibson-Ashby
double vertical thickness hexagon model) by different methods.

accurate estimation and FASTC can only give one of the solutions for non-unique
ANOVA-HDMR. It is almost impossible to self-evaluate the results of FASTC, thus
this set of SI could be coincidentally the correct one or more possibly not very ex-
act ones. Shown in the cases studied in this chapter, FASTC and FAST-orig gave
very similar results, which means at least in this model of vibroacoustic sandwich
panel, SIs calculated by FASTC are totally acceptable. Thus the preference between
FASTC and FAST-orig mostly depends on the their compatibility. For tests with
full datasets given, FAST-orig is the theoretical best solution with an extremely
high calculation efficiency, and for others with limited information, FASTC is an
acceptable solution which can be easily applied on various cases.

Still there are concerns left to be reviewed. The most important one, is the core
meso-structure, which is becoming more and more complex with the development of
manufacturing technologies. More and more structures can no longer be analytically
evaluated to obtain their homogenized mechanical parameters. Thus, finite element
methods are more and more required, which can easily exceed the calculation
capacity of personal computers using these ANOVA-based GSA algorithms. The
solution of the calculation efficiency problem requires efforts in different domains.
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Figure 3.18: SA results for Renji’s model with correlated inputs (extended Gibson-
Ashby triangle model) by different methods.

Figure 3.19: SA results for Renji’s model with correlated inputs (Gibson-Malek
double vertical thickness hexagon model) by different methods.
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Figure 3.20: SA results for Renji’s model with correlated inputs (deformed Gibson-
Malek double vertical thickness rectangle model) by different methods.

Figure 3.21: SA results for Renji’s model with correlated inputs (deformed Gibson-
Malek rhombus model) by different methods.
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Figure 3.22: SA results of transition frequency with correlated inputs by different
methods. Left: triangle meso-structure, right: other meso-structures.





Part 1: Conclusions

Though chapter 2 and chapter 3 are all named ’Global sensitivity analysis on
XXX materials’, the actual main roles of Part 1 are these FAST series sensitivity
analysis algorithms. The two models taken into analysis are both simplified
analytical models of acoustic materials that already exists for decades. Together,
they constructed a platform where we have some primitive constraints on sampling
strategies and these advanced FAST algorithms with correlation design can then
be tested and compared.

All the ANOVA-based sensitivity analysis algorithms mentioned in this chapter
are CRM, FAST, FAST-c and FAST-orig, among which CRM and FAST are
traditional algorithms, FAST-c is a recently proposed one and FAST-orig is actually
original. These algorithms perfectly present the evolution of ANOVA-based GSA
algorithms: from FAST which can only treat periodic datasets without correlation,
to CRM which firstly used Iman’s transform to construct correlated samples and
successfully calculated the sensitivity indices, then FAST-c combined their essence
of Fourier amplitude test and Iman’s transform, finally FAST-orig completed
FAST-c by fixing the bug of correlation and dependency.

The saying that the FAST series algorithms are the main roles of this first part
doesn’t mean that the results of sensitivity analysis are of no use. In opposition,
applications of GSA methods on models with preliminary acknowledgements are
totally reasonable. Same as in the domain of deep learning, the statistical results
obtained by these various algorithms can only become scientific when they are
analyzed together with analytical or empirical evidence. Such examples can be
widely found in the development of AI algorithms, where the most valuable final
step is always a competition or a test executed by human-beings. Thus, as a kind
of statistical method that has not yet been very commonly used, it’s somehow
necessary to use two traditional cases for its self-proof, and moreover, these FAST
algorithms do provide some interesting new details.

Apart from all these definitions and theories and formulas, this part of thesis
established the basic structure of GSA applications on structural dynamics.
Some key steps are: preliminary study and parameter configurations; correlation
design and the generation of sampling curves; parallel calculation and efficiency
evaluations; statistical post-treatment and SA results comparisons. For a complete
research using GSA algorithms, these steps are absolutely necessary and are the
basis of any potential improvements.





Part II

Extended applications of GSA
methods





Part 2: Introduction

Originality is always considered as a premium factor in scientific researches. In
chapter 2 of part 1, we have an analytical physical model and a newly developed but
not original algorithm, and their first met is reported. It’s like organizing a date for
two opponents and the originality is the occurrence of first date for those who have
never met each other before. While in the next chapter, a new opponent comes and
with its preference we make a new hairstyle for the FAST-c algorithm, the positive
effect of this new hairstyle is the main originality of this chapter. In this part of
work, the main direction will not change but to organizing more dates between GSA
methods and structural dynamic systems, but more originalities must be discovered.

In the previous part, with two examples of application, the main structure
of our scientific research procedures has been presented in four steps. There are
preliminary studies of the model and the methods, which have occupied quite
long text before, while in this part of work more attention will be paid on the
interactions between physical models and GSA methods. Deeper investigations
into some certain steps of GSA applications will be the main theme of this part of
thesis.

In the previous part, actually quite a lot of background information have been
given, concerning GSA, FAST, periodic acoustic structures, etc.. Based on these
information, several questions may worth a discussion. For example, GSA as an
uncertainty quantification tool, though under a rapid increasing trend, can still
only occupy 1% of all publications in the category of sensitivity analysis, while
some other data based methods such as data mining algorithms has grown into
incredible popularity in recent decades, what makes the difference between them?
This question could be very difficult to answer in global view, but some microscopic
comparison could possibly be made, in some specific domains. And also for our
DySCo group in LTDS, various periodical or non-periodical structures are under
the study of tens of researchers, thus in the aspect of technical supporter, how
should these GSA algorithms be properly chosen and configured for different models
with different needs? Should some new functions be developed for some specific
structures? With the basic acknowledgements of GSA applications in part 1, these
details do worth a discussion.

Already mentioned above, this part of thesis will be written in a less organized
way where no common thread can be found among the chapters, they are like side
branches which enrich the whole thesis. Taking the fast boat of machine learning,
chapter 4 will present a comparison between FAST and Random Forest (RF), their
pros and cons in case of uncertainty quantification will be discussed. Chapter 5 will
introduce an incomplete original FAST series algorithms specifically designed for
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periodical structures, many details of FAST algorithm are re-designed. And lastly
the chapter 6, which is an assemble of all other small pieces of works in laboratory,
represents the view of various physical models in the aspect of a data analyst.
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When Global Sensitivity Analysis
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4.1 Chapter introduction

The trend of increasing complexity of mathematical models in various domains has
resulted increased uncertainties both in model parameters and model structures.
Whereas the uncertainty in inputs may often reflect directly on the output, the need
for model uncertainty quantification has been so far highly raised. Concentrated on
analytical expressions, Sensitivity Analysis (SA) is a traditional way to get the
uncertainty of output explained by the uncertainties of inputs. Fixing all variables
except one certain to observe its influence on the output, which is exactly the spirit
of Local Sensitivity Analysis (LSA), has already been performed by scientists and
engineers through thousands of years along the history. Later entering the electronic
era, with the support of computational calculation capacity, some more stochastic
algorithms and data-based algorithms have been developed and have got apparent
advantage towards old LSA methods.

Global Sensitivity Analysis (GSA), namely being distinguished as the opposite
conception of Local Sensitivity Analysis, is a category of advanced SA methods. The
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key point of GSA is to vary all the inputs together and to study their sensibility at
the same time using the same datasets. Such kind of approach makes it possible to
estimate the interaction effect among variables [Sobol 2001] and to avoid the curse
of dimensionality [Bellman 1957]. Literally, GSA methods can be applied on no
matter what mathematical models with quantitative inputs and outputs. Beginning
by some applications in chemistry [Saltelli 2005], GSA has been proved effective
in civil engineering [Gaspar 2014], climate change [Zheng 2015], safety measure-
ments [Borgonovo 2003], etc. Fourier Amplitude Sensitivity Test (FAST) algorithm,
firstly proposed by Cukier and Markus [Cukier 1973] and specially mentioned here,
is one of the most efficient GSA algorithms. It can calculate Sensitivity Indices (SIs)
based on a unique analytical expansion of ANOVA (ANalysis Of VAriance). Some
recent case of its applications in vibroacoustics can be found [Christen 2016]. In
general, GSA methods help to indicate the variables who have priority to get fixed
or paid on attention for model optimization and condensation.

While as GSA mainly serves for metamodelling, data mining models themselves
are metamodels, based on great number of samples. As other metamodels, they can
do estimations and predictions (classifiers and regressioners), and are also capable
for some extra functions such as clustering. But the application of these models
generally don’t relies on preliminary studies such as GSA, they often regards the
uncertainty of inputs as part of the models themselves. And for some algorithms,
Random Forest (RF) for example, it can further rank the importance of inputs after
the constructions of metamodels, based on how easily the estimation will get wrong
if some certain inputs get disturbed. With the explosion of data size on the Inter-
net, these data-based methods become highly recommended. Instead of traditional
mathematical tools, data mining and deep learning have become the main tools for
data analysts either in industry or for research. Not only in informational industries,
the use of RF can be found everywhere: geography [Belgiu 2016], biology [Jia 2016],
sociology [Khan 2017] and so many others. The feature importance selection func-
tion of RF don’t really have any analytical basis such as a formula, but it gives some
most direct indications on how serious problem the uncertainty of the inputs can
result in.

Got the point that both the analytical GSA methods and data-based Deep Learn-
ing methods can do the job of uncertainty identification, some interesting compari-
son can then be launched. Regarding to the acoustic background of the datasets in
this paper, some publications can be referred to: application of FAST on analytical
models of sound transmission [Christen 2017] and application of RF on numerical
datasets of sound emission [Morizet 2016] for example. Conducted from these re-
search cases, some impressional properties can be drawn on FAST and RF. In the
aspect of theoretical basis, FAST seems to be more analytically solid while RF gives
a more practical definition of sensitivity indicator. In the aspect of scientific ap-
plications, FAST is a tool of preliminary study and RF is a metamodeller. And
in the aspect of advantage/disadvantage, FAST is fast yet too statistical, and RF
is functionally strong but without a convincing theoretical basis. So somehow a
comparison between these two algorithms can give researchers a bit of inspiration
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of how to cover each others’ weakness as well as to maintain their advantages.

4.2 Special properties of Random Forest

Random Forest (RF) is a machine learning algorithm proposed by
Breiman [Breiman 2001], mainly to solve classification and regression prob-
lems. The basic structure of this method is to construct multiple different decision
trees and to get them voting for a most reasonable estimation, as presented in
Figure 4.1. This kind of design is proposed to avoid at best effort the ’over-fitting’
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Figure 4.1: A simple illustration of Random Forest given by Wang et
al. [Wang 2015].

phenomena when generating single decision trees, usually being Classification And
Regression Trees (CARTs). The key point of generating an effective ’Random’
Forest is to randomly pick training data and flag variables for the construction of
trees, making each of them a unique decisioner. This kind of data operation is called
’bagging’, thus its specific cross-validation algorithm got named as Out-Of-’Bag’
(OOB) validation. The OOB validation can not only estimate the error rate of RF
estimation, but also evaluate the relative importance of the inputs concerning their
influence on the outputs.

Both the variance-based sensitivity indices and this OOB validation based vari-
able importance selection results can represent how the uncertainty of each inputs
can disturb the output value. One based on theoretical decomposition and another
based on numerical experimental observations. Thus it can be quite interesting to
get them compared for a deeper inspect.

4.2.1 Classification And Regression Trees

CART is a kind of decision tree capable to treat continuous inputs and outputs for
regression problems. In an RF model, several dozens of trees are required in order to
get convergent results. Thus for the ’Random’ purpose, each CART are randomly
parametrized.

Firstly, each CART randomly picks about 60% the total training data as its own
training data, and the rest part will later be used in OOB validation phase. Such
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convention of taking about 60% of the total training data for each CART actually
has a statistical explanation. For a dataset S with n elements, if we take n randomly
drawn with replacement, the expectation of total unique elements to be drawn when
n become great enough is:

(1− (1− 1/n)n)n ≈ (1− e−1)n ≈ 0.632n. (4.1)

Thus it is also called 0.632 rule in bootstrapping. The fact that different trees use
different training samples makes a good basis of generating trees within different
’backgrounds’.

Secondly, for the efficiency purpose, the CARTs used in RF are all binary trees,
which means at each nodes the training data will be divided into two parts satisfying
the least square criteria. Normally, all the input datasets need to be screened in
order to determine the split on which input’s which value. While for RF, in order
to avoid local optimums, only limited randomly picked inputs are chosen to be
screened for each split. Normally for a dataset with K features,

√
K features will

be chosen for a classification case and K/3 features will be chosen for a regression
case. Like this the trees can have a much larger variety of ’personalities’ without
being dominated by some influential variables.

Thirdly, in case of continuous output, the nodes are considered to be enough
converged and become a leaf node when split training samples already meet the
convergency criteria. The criteria can either be a certain amount of depth of the
tree, a small margin of value bounds, or a rather low threshold of group variance.
All these criterions have been proved to be statistically stable and capable to reduce
the total variance. Logically each CART will take average of leaf node sample values
as a single-tree estimation value, then the whole RF will again take average of all
these estimation values as the final estimation. These procedures makes an RF with
’democratic’ semi-continuous outputs.

4.2.2 Out-Of-Bag validation and its variable importance selection

The OOB validation refers to the techniques of using unbagged samples as validation
sets for each CART, giving an all-over percentage of correct estimation P , where
higher value generally means better approximation. Then to the input importance
selection phase, each time all the sampling values of a certain feature xi will be
randomly permuted, so that this value would become some irrelative noise value.
The difference SOOBi = P − P (xi randomly permuted) is defined in this case the
importance factor of xi. Or it can also be called ’OOB-based sensitivity index’.
A greater value of this index means more serious estimation error would be made
if this input gets disturbed, so more importance should be given to quantify its
uncertainty.

This ’sensitivity index’ has very direct practical meaning as the potential of
causing error in RF estimation when facing uncertainty. After normalization, each
SOOBi represents the percentage of wrong estimations caused by the uncertainty
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of xi. It dose not have very rigorous analytical definition, which in reverse helps to
make its value more interpretable in industrial meanings.

OOB validation is an essential component of RF, while rarely it get directly
applied as an uncertainty indicator, maybe because of the calculation efficiency.
But theoretically it works on all kinds of samples that FAST is capable to treat, and
may has a better performance on correlated datasets and strongly no-linear models.
Different from ANOVA and FFT, the logistic binary trees don’t really care about
sampling continuouity.

4.3 Experimental design

The datasets being used in this research is retrieved from a former study on acoustic
sandwich materials. As a model with 13 inputs and 1 output, each datasets contains
20 000 samples in form of y = f(x1, x2, ..., x13).

For an acoustic model, it may not only be studied under a certain frequency,
but be evaluated on a continuous frequency bounds, which results 100 frequencies
taken to fit a curve. Under each frequency, the 20 000 {x1, x2, ..., x3} vectors are
the same while their corresponding y values are different.

And in addition, for this simple acoustic models, the y value can be obtained
either by analytical model or Wave Finite-Element (WFE) model. These two models
give slightly different results and are also taken into comparison in this research. So
in total their are two 20000×13×100 3d-matrix of input values x and two 20000×100

matrix of output values y.

4.3.1 Acoustic transmission loss of sandwich panels

The Transmission Loss (TL) is a very important criteria of material’s sound isolation
capacity. This value generally represents how much the power of the sound wave
can be decreased after travelling through the piece of material. In this research, TL
is y as model outputs and estimation objective.

And for the input vector {x1, x2, ..., x3}, it is composed with 13 variables con-
cerning mechanical and geometrical properties of honeycomb sandwich composite
materials. For the sake of simplicity, all the inputs are set to be uniformly distributed
with a 20% variance around their mean values, seeing Table 5.1:

The mean values of these variables are mostly obtained from experiments while
some other parameters such as air sound speed are fixed as constant.

4.3.2 Choice between analytical models

In traditional case of sandwich panels with isotropic and homogenous core material,
analytical models[Mead 1969] can give a fast and accurate estimation of its vibroa-
coustic properties. But with fast development of manufacturing techniques, more
and more delicate core meso-structures have been developed[Zhang 2015], Finite-
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Table 4.1: Table of variables and their values

Notation Variable Value distribution Unit
Inputs
Ec Core material Young’s modulus U [13.6, 20.4] GPa
Es Face-plate Young’s modulus U [56, 84] GPa
hc Core layer thickness U [16, 24] mm
hs Face-plate thickness U [0.8, 1.2] mm
l Non-vertical meso-structural length U [2.08, 3.12] mm
lh Vertical meso-structural length U [2.08, 3.12] mm
t Meso-structural wall thickness U [0.08, 0.12] mm
η Structural damping factor U [0.004, 0.006] -
θ Meso-structural angle U [24, 36] deg
νc Core material Poisson’s ratio U [0.272, 0.408] -
νs Face-plate Poisson’s ratio U [0.16, 0.24] -
ρc Core material density U [2160, 3240] kg/m3

ρs Face-plate density U [2440, 3760] kg/m3

Output
TL Acoustic Transmission Loss - dB
Parameter
f Frequency Exp[100, 10000] Hz

Element models[Yang 2017] are required to avoid the error generated in the homog-
enization.

Their relation is very like the one between FAST and RF. The analytical one
is robust and computationally faster while the numerical one is sometimes more
powerful and easier in presentation

4.4 Results comparison and discussion

Before comparing the results of the two methods, some parametric details of the
algorithms need to be detailed first.

FAST is a non-parametric distribution-based method and RF is a parametric
sample-based method. So the methodology is to generate the samples by FAST,
getting the sensitivity indices, and then reuse these samples in RF.

Some important parameters of RF: percentage of samples used in construction
of each tree: 65%; number of trees: 260 (20 trees per input); number of variables to
be screened at each node: 4; number of split points to be tested for each variables:
20; largest error from exact value to be considered as correct: 5%.

Last point to be mentioned is that Si is theoretically normalized with a sum
smaller than one but SOOBi has no mathematical restrictions. So in order to get
them visually easier to be compared, the values of SOOBi are also normalized by∑
Si.
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4.4.1 Analytical model dataset

Concerning the honeycomb sandwich composite material’s sound transmission prop-
erties evaluated using analytical methods, the frequency-based sensitivity indices
obtained by FAST is shown in Figure 4.2, and the variable importance sorted by
RF OOB validation is shown in Figure 4.3 .
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Figure 4.2: Sensitivity indices obtained by FAST, samples from analytical model.
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Figure 4.3: Variable importance sorted by RF OOB validation and normalized with
the results of FAST, samples from analytical model.

In global view, these two graphs are quite similar to each other, not only because
Figure 4.3 is normalized with the value of Figure 4.2, but also the values of each
sensitivity indices are in the same trend of evolution along the Frequency axe. In
general, both of the graphs represent the fact that the material densities (mass) are
quite influential at low frequency while the thickness of the panel become more or
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less dominant at mid-high frequency. The order of variables’ importance selected
by the two methods keeps in agreement at least within this frequency bounds, and
is very reasonable when referring to physical facts.

Both of them also represented some details in this model. At around 350Hz,
the sensitivity index of hc gradually get decreased and then regrow into the most
influential input, and the similar phenomena can also be observed for hs at 400Hz.
Deeper analyze shows that at 340Hz, TL and hc transfer from negative correlation
to positive correlation. At that point, TL is almost in function irrelevant with hc.
Same reason for hs, but as hs has a much smaller value than hc, its evolution is less
evident than the former. Another important point is that at about 700Hz, the sum
of variance-based sensitivity indices becomes suddenly very small. This frequency
corresponds to the critical frequency of the panel, where the panel get resonated by
the acoustic wave and almost non of the input variables can handle this situation.
At this point, a small sum of Si indicates that great error has been observed and
FAST can no longer guarantee the effectiveness of these values. At similar frequency
a bit smaller than 700Hz, the RF OOB error curve also reaches to a peak higher
than 50%, meaning extremely bad approximation by RF, so as well the results of
OOB importance selection can neither be trusted.

Some of the only annoying point is that the curve in 4.3 is not as smooth as the
one in 4.2, this is probably because of the random permutation of the variables. In
real ’random’ case, some 1% error and a -20% error will eventually make a differ-
ence. The fact that all inputs have taken uniform distribution instead of gaussian
distribution may also have an impact on this vibration.

4.4.2 WFE model dataset

And for the samples generated by the WFE model, Figure 4.4 refers to the re-
sults obtained by FAST and Figure 4.5 refers to the results obtained by RF OOB
validation.

Comparing Figure 4.4 to Figure 4.2, it can be clearly seen that the two models
reflect eventually to the same problem, though with a bit difference at the results
plot. Most of the particular points mentioned in last part can be refound in these
graphs, such as the critical frequency, the point of property transfer and even the
fact that Es is only influential around the critical frequency.

And comparing Figure 4.5 to Figure 4.3, no similar unsmoothed points can be
found in common. The fact shows that the unsmoothed curves are likely to be caused
by random errors, but not some strange singular points. Some small vibration on
the curve can even also be observed in Figure 4.4 at high frequency.

It’s very nice to see that the RF OOB results are more graphically similar to
the ones of SA results under the same group than the ones in the analytical model
group. This gives a solider proof of the numerical similarity between these two sets
of values: one from analytical development, another from experimental observation,
the two under totally different definition but for the same objective of uncertainty
quantification.
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Figure 4.4: Sensitivity indices obtained by FAST, samples from WFE model.

4.4.3 Discussion

Random Forest, like other data mining tools, is quite ’subjective’ towards different
industrial cases. There are always the samples that it can treat perfectly and the
ones that don’t really fit the algorithm. In this research, even the OOB error curve
keeps very steadily low except at the critical frequency, some unperfect details can
be found regarding to Fig. 6.1:

The reason that this kind of biased estimation occurs is obvious: it’s an estima-
tion made by a large group of decisioners, so the results will always tend to become
closer to the global average value. An example of how this phenomena can ruin the
estimation can be seen in Fig. 6.2:

The quasi-continuous output design of the RF and the CARTs makes the estima-
tion tending to vary very smoothly along the variation of some certain inputs. This
property in inverse prevents the estimation from fast reaction towards discontinuity.

It is a problem, but regarding to Figure 6.1, the error may be reduced as the
values are biased in linear form. It means if a ’rotation’ or some kind of correction can
be applied towards the bias, there’s a good opportunity to improve its estimation.

4.5 Chapter conclusion

This paper presents a step of exploration into the possibility of inter-explanation
among uncertainty quantification methods. FAST is a classic statistic global sen-
sitivity analysis method, with well established theory basis and high calculation
efficiency, but sometimes its results can be difficult to interpret in industrial cases.
Random Forest is an upcoming data mining based regressionier and classifier, ca-
pable to construct metamodels based on different kinds of inputs and as well to tell
the importance of each variable, but its selection feature is still intuitively defined
and can not be recognized when not using RF. These are two different methods
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Figure 4.5: Variable importance sorted by RF OOB validation and normalized with
the results of FAST, samples from WFE model.

with different theoretical structures but can both achieve the goal of uncertainty
quantification.

The two set of numeric experimental results shows that even the two differently
defined sensitivity indicators Si and SOOBi can numerically reach in great agree-
ment. Such results show a potential of numeric tools being mixed in applications.
The variance-based sensitivity indices can hardly be explained in engineering word,
but the RF OOB variable importance indicator can help it. A run of constructing
and evaluating a RF takes quite long time but FAST can save the time and even
give a reasonable proof for the results. The potential of combining the advantages
of each tools may worth something for researchers and engineers.

Lastly, in this research with a vibroacoustic background, the special properties
of sandwich composite panel also help to find out some weakness of the mentioned
algorithms. Some more dive into this problem can possibly make another step of
improvement.
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Figure 4.6: A mapping of estimated values (y values) on original sampling values (x
values).
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5.1 Chapter introduction

In previous studies of FAST series Sensitivity Analysis (SA) algorithms, many im-
provements have been made for their compatibility under various engineering con-
ditions. Correlation and parametric dependency exist universally and is taken into
consideration. Data-based sensitivity analysis was only active in traditional statis-
tics field but is becoming quite hot in deep learning, so the data-based FAST got
developed and was taken into comparison with random forest algorithm.

In these former studies, periodic structures are always taken as test cases, one
is elastic porous material, the other is sandwich composite material. During the
modelization of these two different kind of materials, two different methodologies
were shown. In case of porous material, as the geometrical parameters are difficult
to be measured precisely, homogenized mechanical parameters are thus introduced
to replace the geometrical ones. This is like an empirical solution to complex system,
extra uncertainty is introduced and can hardly be estimated. In this case, though SA
can still be applied on such multi-input single-output model, its results can hardly
be directly used for industrial improvements such as structural optimization and
uncertainty control. In opposition, for the model of sandwich composite materials,
all the meso-geometrical parameters are directly taken into calculation, but with the
assumption of perfect periodic structures. So different from the porous material case,
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here the SA is applied in a way that makes direct help to engineering decisions, but
the main cause of input uncertainties — the deformation of cells is totally ignored.

Of cause the two methodologies are not wrong, at least they are supported by
mechanicians in practical aspects. Both homogenization simplification and uniform
hypothesis are like negotiations to insufficient calculation resources in numerical
simulations. However, with more and more powerful computers been made, such
kind of calculation-saving approaches became less necessary especially for low di-
mension models. Thus finally it becomes possible to well characterize each unit of
some finite periodical structures.

The main purpose of this piece of work is to give a conception of enhanced FAST
algorithm that can be used in SA of a system with multiple similar but not uniform
units, and to taken this uncertainty among units into consideration of the overall
output uncertainty quantification. Some small sampling strategies are modified from
traditional FAST methods and then the enhanced FAST algorithm, called FAST-pe,
is tested on a vibroacoustic model of 1-D damper array system.

5.2 FAST-pe: multi-sampling curves design and para-
metric configurations

5.2.1 Basic structure of FAST-pe

For the applications of traditional FAST in a system with N inputs and 1 output,
each of the input sampling vector Xi∈N is given a different periodicity of ωi from
each other. After a FFT of the output vector Y , the sensitivity indices of each
input xi can directly be obtained by regarding to its corresponding amplitudes of
ωi. The mapping of 1 input towards 1 frequency is the core of original FAST method.
Figure 5.1 is an example of uniformly distributed periodic sampling curve for Xi:

Figure 5.1: Uniform periodic sampling curve for traditional FAST method.

In case of multi-unity systems with U units, the entire entry dataset becomes
a 3-D matrix with Xj∈U

i∈N representing the input vector of xi on jth unit. For the
objective of estimating the overall sensitivity of xi for all the units, the input vector
- frequency mapping is no longer 1 to 1 but thus set to be U to 1. In practice the
frequency of all the U input vectors Xj∈U

i are given the same frequency ωi. The
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after processing of FFT is same as before and this time the amplitude of ωi does
not correspond to a certain input vector, but a series of vectors of a same variable.
Figure 5.2 is an example of uniformly distributed periodic sampling curves forXj∈U

i :

Figure 5.2: Multiple uniform periodic sampling curves for FAST-pe method.

Taking an example, for a system y = f(x1
1, x

2
1, ..., x

5
1, x

1
2, ..., x

4
3, x

5
3), it is treated

almost in the same way as y = f(x1, x2, x3, ..., x14, x15), where the only difference
is that the sampling curve for each set of inputs xj=1,2,...,5

i uses the same given
periodicity. This modification generally has two objectives: first, the influence of
multiple variables can be measured by one sensitivity index; second, with only 3
frequencies required, the algorithm of FAST may ask for less sampling numbers,
thus the calculation can be done with higher efficiency.

As a brief conclusion, the expansion from traditional FAST to FAST-pe takes
these following steps:
1) Enlarge the original model from y = f(x1, x2, ..., x(N)) to y =

f(x1
1, x

2
1, ..., x

U
1 , x

1
2, ..., x

U−1
N , xU3 ), where the model contrains N inputs for each of

U similar units.
2) Construct sampling curves for all N ×U inputs, where all the vectors of the same
parameter Xj∈U

i are given the same periodicity ωi.
3) Evaluating the model to obtain the output vector Y .
4) Executing FFT on Y and estimating the amplitudes on {ω1, ω2, ..., ωN}, where
each Si represents the co-effect of multiple sampling curves Xj∈U

i for multiple units.

5.2.2 Configurations of the raw algorithm

Conventionally the FAST algorithms are all no-parametric ones with given datasets,
but in case of design or optimization applications where no enough datasets can
be obtained, some more parameters on sampling phase can greatly increase the
reliability of SA results.

Firstly, the marginal distributions can be freely set as in all the FAST algo-
rithms. Former studies have already shown the importance of properly set marginal
distributions in various applications. To be possible for a mathematical profile ap-
proximation, boundaries must be set for the values of sampling dataset.

Secondly, the maximum dephasage among sampling curves of the same variables
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can be adjusted. This parameter is originally designed for this FAST-pe method,
which measures the likelihood among system units. Well known as presented by the
6-omega principle, the error of the outputs is composed by the random distribution
and the bias of standard value. In industrial cases, this bias of standard value will
mainly be observed as a correlation of parameters for multiple units from a same
production line. Here the dephasage has a direct relation with the correlation among
units and and thus the bias of standard value. Simply, a smaller dephasage interval
means higher correlation and greater bias, which means all the units have the similar
trend to be a bit greater or lesser at some properties. In practice, such condition
may be caused by a aged 3-D printer or any other kind of quality decline. When
the dephasage is set to be 0, it means all the units are exactly the same, and the SA
results will be the same as the conventional synchronized solution; oppositely when
the dephasage is set to 2π (maximum), it means no dependency among units so
no bias occurs, thus the SA results will show some homogenized characteristics. A
measurement C is taken as an indicator where 0 means non correlated and 1 means
fully correlated. FIgure 5.3 shows a comparison of sampling curves under different
dephasage intervals.

Figure 5.3: Multiple uniform periodic sampling curves for FAST-pe method under
different dephasage restrictions.

Lastly, the correlation among variables, as already been proposed by former
studies which introduced FAST-C. The correlation among variables exists every-
where in natural datasets and can also be resulted by constraints in multi-objective
optimization process. Different from the 2-D sampling matrix in FAST-C, FAST-pe
adds another dimension as the number of units U . In order to apply Iman’s trans-
form, the 3-D sampling matrix X must firstly be divided to 2-D matrices Xj∈M

i∈N (1),
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X(2), ..., X(U). By applying Iman’s transform, the re-ordered sampling matri-
ces with correlation can be obtained by XC(k) = IMANk(X(k)), and later in the
phase of after process the periodicity can be recovered by X(k) = IMAN−1

k (XC(k)).
Then the problem is that the reverse process is not executed once per analysis,
so only one reordering process can be chosen as the standard order, tradition-
ally IMAN1() and IMAN−1

1 (). For this purpose, all the other re-ordered sampling
matrices XC(k = 2, ..., U) must be reordered for another time to XC1(k) that
X(k) = IMAN−1

1 (XC1(k)). This second arrangement can be achieved by a compo-
sition of two array re-ordering operations.

5.3 The occur of random characteristic frequency move-
ment and its essentials

In this piece of work, a simple multi-resonator model is taken into application. In
brief, 15 similar resonators printed by a same 3-D printer are put on a 1-D beam
with several configurable parameters including m the mass, k the stiffness and z

the distance between each of the resonators. Damping factor is also considered
but finally chosen to be proportional to the stiffness matrix, like a constant. The
objective output of this model is the width of acoustic band gap created by these
resonators, as shown in Figure 5.4.

Figure 5.4: Stop band created by the array of resonators.

Considering that this is a conceptional model, and referring to the users’ guide
of the 3-D printer, uniform distribution with 15% of variance is given to each of
these inputs. While some preliminary studies with traditional SA and data mining
algorithms show that the unity distance z will only become influential when the
variance is lifted above 100%. But some serious bugs such as resonator order reverse
may occur under that setting, so finally in this part of work only the influence of m
and k are focused.

With only 3 variables, 250 sampling curves are generated where the samples of k
are given a periodicity of 11Hz and the samples of m are given a periodicity of 21Hz.
Figure 5.5 presents the fourier amplitude given by the traditional FAST algorithm:
the two great peak at 11Hz and 21Hz insisted on the dominance of k and m on the
uncertainty of output.
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Table 5.1: Table of variables and their corresponding sensitivity indices

Notation Variable Sampling frequency SI
m(x1) Mass 11Hz(ω1) S1

k(x2) Stiffness 21Hz(ω2) S2

z(x3) Distance between resonators 27Hz Ignorable

Figure 5.5: Fourier amplitude given by FAST algorithm.

Surprisingly the FAST-pe algorithm with 50% dephasage gives a spectrum a bit
different from the FAST one, seeing Figure 5.6. In this graph, the peaks at 21Hz,
22Hz and 42Hz still stand out apparently, while another unexpected peak at 32Hz
eventually draws the attention. This peak can only be regarded as an error because
there is not a single sampling periodicity as 32Hz or any of its divisor. During
multiple SA tests, the value at 32Hz peak seems very unstable, some times higher,
some times lower and sometimes even moved to 10Hz. This phenomenon makes the
SA results of FAST-pe very unstable and thus no accurate conclusions can be drawn
directly using conventional FAST post-proceeding based on FFT.

5.4 Studies into the problem

In order to further investigate into the occurrence of unexpected spectrum, some
more simulations under the same configuration have been made. In most of their
results the peak of either or both 10Hz and 32Hz can be observed. Til now, no
theoretical explanations can be found for this movement of fourier amplitude, but
some rules can be found.

Just like the given periodicity 11Hz and 21Hz, the two ’unusual’ characteristic
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Figure 5.6: Fourier amplitude given by FAST-pe algorithm.

frequencies also have influences on high order spectrums such as 22Hz or 64Hz.
Except for these mentioned frequencies, peaks sometimes also appears at like 20Hz
or 63Hz as shown in Table 5.2, while usually with a less great amplitude. Looking
at all these frequencies, it seems that they are all linear combinations of the given
frequencies 11Hz and 21Hz, among which the first order sum 32Hz and the first
order difference 10Hz have the biggest proportion and the higher order ones owns
less amplitude.

Table 5.2: Table of some most observed spectrums with input frequencies with
ω1=11Hz and ω2=21Hz

ω (ω1,ω2) Peak value Unusual frequency
32Hz ω1 + ω2 High Yes
10Hz ω2 − ω1 High Yes
42Hz 2ω2 High
22Hz 2ω1 High
11Hz ω1 Medium
20Hz 2ω2 − 2ω1 Medium Yes
21Hz ω2 Medium
64Hz 2ω1 + 2ω2 Medium Yes
63Hz 3ω2 Low
52Hz 3ω2 − ω1 Low Yes
74Hz ω1 + 3ω2 Low Yes

So what’s the meaning of these spectrums, well they should may be put along
with the normal spectrums to see their essence. In Figure 5.7, ten sets of SA results
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are put together in proportioned bar graphs, in which S1 is directly related to 11Hz
and its multiples, S2 related to 21Hz and multiples while other proportion explained
by 10Hz and 32Hz.

Figure 5.7: SA results of ten simulations accounting the frequencies 10Hz and 32Hz.

Sure in the 10 repetitions not even a single sensitivity index maintains a stable
value, but their sum somehow keeps quite near the average value. The test 10 seems
a bit away from the general case but it is caused by some important higher order
terms not account in this bargram. At the same time the average value of Ssum is
very close to the sum of S1max and S2max.

With the given statistics, an assumption is made. The sum of sensitivity indices
still depends mainly on the value of S1 and S2, but some times their corresponding
amplitudes at 11Hz and 21Hz may be partially or completely moved to these new
frequencies. Like the amplitude at 43Hz can be partially taken from 22Hz and
partially taken from 21Hz, but the proportion seems not certainly to be 50%-50%.
No rules have already been discovered to transform these amplitudes back to their
original ones. Base on this assumption, it’s very likely that the real S1 is about 0.39
and the real S2 about 0.36, which means k and m are almost equally influential on
the width of band gap created by the resonators.

Remembering that taking SA by using traditional FAST algorithms will not
cause this problem, it is very likely that this problem is caused by the newly intro-
duced multiple sampling curve design. In order to prove this, a set of tests with
different dephasage limits have been taken, from 0 dephasage to 2π dephasage, where
the 0 dephasage case actually equals to the results of traditional FAST.

Quite clearly, the problem of spectrum movement becomes more serious with
increasing dephasage interval, with regards to Figure 5.8. The sum of sensitivity
indices increases when the dephasage limit increases from 0 to 20%, and stayed
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Figure 5.8: FAST-pe test results with different dephasage limits.

around this level. Interestingly, at 0 dephasage m has much larger influence on out-
put uncertainty than k, while with increasing dephasage, which means less similarity
among units, the importance of k gradually increases to a similar level as m.

According to the rule of the frequencies to be given to each inputs:

n∑
i=1

riωi 6= 0; ri = integer and
n∑
i=1

|ri| ≤M + 1, (5.1)

then linear combination was considered as a kind of interference by early researchers
of FAST. While this portion of Fourier amplitude kept always insignificant and thus
become no longer taken into the calculation of first-order sensitivity indices. For
some reason, this interference get re-discovered with FAST-pe sampling strategies.
For the solutions to this problem, actually non has yet been found. Several configu-
rations on sampling curves have been tested, mainly on their beginning phases, but
there is not enough evidence to say if the problem really got improved or not.

The next direction of this research might be on the choice of preset frequencies.
Before the set of frequencies only consider to avoid low order interferences, but with
the phenomenon of linear frequencial combinations, some more criterions should
probably be considered.

5.5 Chapter conclusion

In this piece of work a new enhanced FAST algorithm called FAST-pe is proposed to
solve the GSA problem of systems with multiple similar units like periodic structures.
This algorithm is later applied on a vibraoacoustic model of 1-D damper array,
though quite big problem still exist, some of the results do worth a discussion.
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Though the sensitivity indices obtained by FAST-pe seem to be very unstable
with the disturb of unexpected fourier amplitude spectrum, some results can still
possibly be read after several repetitive executions. With original FAST method, m
the mass has a dominant role on the output uncertainty, k the stiffness has moderate
influence and z the geometrical parameter can almost be ignored. While the results
obtained by FAST-pe shows that with no commitment of uniform units, k might be
able to gain the same level of influence as m, upon the overall structural damping
property.

The core part of this work is the occurrence of the unexpected fourier amplitude
spectrums. After many tests, it can be recognized that these spectrums are very
likely to be portions of the original spectrum on given sampling frequencies, and
they locate mainly on the frequencies as linear combinations of the original ones’.
The reason of their occurrence can not yet be explained by theoretical analysis, but
statistics have shown that the increasing dephasage of sampling curves has a positive
correlation with this problem.

Objectively speaking, the FAST-pe is just an intuitive test of algorithm compati-
bility improvement for new requirements of GSA methods. Actually no new theories
is introduced and it is not surprising that FAST-pe doesn’t work perfectly. Quite
some researches have presented how hard it is to satisfy them conditions of unique
ANOVA decomposition. Til now, FAST has already been largely improved, and it’s
natural to see the path becoming harder and harder. But if the objective of this
research can be achieved, maybe not with FAST-pe, that will absolutely become a
milestone of this cross-field academic research concerning GSA and vibro-acoustics.
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6.1 Chapter introduction

In former chapters, the main roles are the FAST-series SA algorithms, all the studies
have the same objective of deeper investigating and improving their performance in
various environments. At first FAST has already been proven as an accurate and
efficient method, and FAST-c enables it to treat samples with correlations. When
coming against the problem of not unique multi-variable distribution generated by
Iman’s transform, FAST-orig is thus proposed to fit better the cases with given
dependent or independent sampling datasets. Considering the essence of the current
research institution, FAST-pe is also on its way of development, for the sake of
better modelling the multi-units systems where each of them could have independent
uncertainties. Some other related researches concerning its comparison with machine
learning methods have also been made and the results are quite interesting.

When focused on the algorithms themselves, the vibro-acoustic models taken
into tests are generally chosen to be not very complex: elastic porous materials
with isotropic and homogenetic hypothesis; sandwich honeycomb panels with perfect
periodicity; and a 1-D damper system with limited units of simplest structures.
These models are simply analytical and have been very deeply, if not completely
studied. It doesn’t mean that the SA can only be meaningful when applied to models
without preliminary studies, which is actually useless in scientific aspect, but these
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models doesn’t reach the industrial complexity level in mechanical or acoustical
area. So in this chapter, two extra SA application cases will be briefly presented,
they both have moderate structural complexity and specific parametric constraints.
Some deep analysis will be made in the aspects of the choice of FAST algorithms
based on different environmental conditions and of SA experimental design for each
cases.

And, if still remembered, there was a discussion left in a previous chapter con-
cerning some observed estimation bias of Random Forest. Here in this chapter a
kind of simple correction for the regression trees will also be tested. There were
several unsatisfying estimation results left in that chapter and they can potentially
be eliminated or recovered with this correction.

So in this chapter, there will be two main sections. The first section mainly
introduces a simple correction of RF for its estimation bias problem, comparisons
will be made to see if the problems left in previous researches can all be solved. The
second section of this chapter will contain some brief introductions of two different
SA applications in relative complex models: a multi-layer sandwich honeycomb
model and a 5-pad journal bearing model. The focus of sight on these two models
is mainly on the experimental design, thus how to choose a proper algorithm and
to adopt it correctly on the model in respect of their research objectives.

6.2 Correction of biased RF estimations

In previous RF applications, CART trees have been chosen to fulfill the structure
of the forest, for the purpose of treating continuous statistics. Thus as a regression
algorithm, this RF algorithm also has similar defects as the others: capable to work
only with enough training datasets covering the whole sampling space and value
field; conservative estimation results are tend to be given for the points near the
edge of sampling space. These weakness have already been observed in its previous
application on acoustic transmission model, seeing the mapping of estimated value
- real value in Figure 6.1:

The graph shows clearly that the spread of data mapping is in form of spindle,
most of the estimations stays near the central value while several points at the two
ends poked out of the error limits. And the tendency of conservative estimations also
compressed the spindle in vertical direction, which makes the linear regression of
the estimated points biased from the original values. Thus the following Figure 6.2
shows more exactly how conservative the estimated values are when compared to
original training values.

Apparently the estimated values form a band narrower than the originals, which
is a result of value compress at the y-axe. And in another point, the regression algo-
rithm based on weighted average always tend to give continuous results, which causes
great error near the acoustic critical frequency where the panel’s vibro-acoustic prop-
erty has a sudden change.

The plan of recovery for the first problem is to give a geometric estimation value
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Figure 6.1: Estimated value mapping of RF results based on regression decision
trees.

correction based on the angle of bias, all the estimated values will be extended along
the y-axe. And for the second problem of continuous estimation, it will exist as long
as the algorithm is applied on continuous datasets, but hopefully the case would get
better with the solvation of the first problem.

6.2.1 Correction and comparison

As have noticed before, the spindle-like data spread has a linear-like bias and the
correction is operated in a simplest geometrical way. Firstly we have the perfect
estimation line L1 : y = x, and the actual estimated center value line L2 : y =

ax + b obtained by a linear least square approximation. Then all the estimated
value y0 will then be corrected by a linear relation of ynew/y0 = y0/(ay0 + b), thus
ynew = y2

0/(ay0 + b). Though on the data mapping the x value of each point is fixed
and can not move, the correction on y value finally realized a rotation-like operation.

In the test of this algorithm correction, another set of statistics is taken from
the same vibro-acoustic model. This time the dataset is taken from the points
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Figure 6.2: RF estimated value mapping along frequency axe.

near 550Hz, where the critical frequency locates. At this frequency, the acoustic
characteristics of sandwich panel have a rapid transition which caused a nearly
non-continuous performance. The former performance of RF estimation at this
correction is not very satisfying, with an OOB error over 50%. The mapping of
estimated values is shown in Figure 6.3. The overall spread of these points is like
a eclipse but weighted more at the end of smaller values, and with the bias of
estimation, these large number of estimated points are all situated out of the 5%
safety zone.

Then by applying the anti-bias correction, the new estimated points are mapped
in Figure 6.4. In the new results mapping, though the large width of data spread
still causes more than 40% of OOB estimations, comparatively about 15% of the
points at the bigger end of spindle get well adjusted and become acceptable. And for
the ordinary cases with quite low OOB error like in Figure 6.1, using this correction
can make the accuracy of estimation over 99%.

For the case of data mapping on the complete frequency band, its corrected
version is shown in Figure 6.5. The most direct impression is that the spread of
points becomes much wider and can almost cover the training data spread, which
means the conservative estimation problem has been mostly recovered. And with
this correction, even not exactly for the continuouity problem, the data mapping
seems better at around 500Hz, where a clearer separation can be observed. The
only annoying point is the visible segmentation at around 2000Hz, which already
exists in the pre-correction mapping but becomes really ugly after the correction.
The reason for its occurrence is still under investigation.
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Figure 6.3: OOB error of RF estimation at 550Hz of vibro-acoustic model, before
correction.

6.2.2 Discussion

Same as original biased estimation results from similar mathematical models, Fig-
ure 6.1 and Figure 6.3 give different degrees of bias, which means the correction
parameter determined with the first training dataset can not work perfectly on the
second test dataset. Such evidence sets a quite strict condition for the use this
correction, where the training datasets and the testing datasets must be generated
from exactly the same source under the same environmental conditions. This would
be a great challenge for its application in industrial cases where the training sets are
mainly empirical observed data and the testing sets come from anywhere possible.
Some preliminary studies to ensure the similarities between these two datasets is
obligated.

Also it should be mentioned that the two datasets in this study both obey quite
regular spread shape, either like a spindle or an eclipse, so the linear least square can
properly show the overall bias of statistics. While in common cases some irregular
data spread can also be found, taking Figure 6.6 as an example:

This data mapping presents all the RF estimations of the vibro-acoustic model
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Figure 6.4: OOB error of RF estimation at 550Hz of vibro-acoustic model, after
correction.

in the whole frequency band. Yet as have been observed before, these segmentally
estimated point don’t have a spatial continuous distribution, and a ’tail’ at small
values can also be observed. This kind of irregular form of mapping spread is
physically caused by the rapid transform of sandwich panel’s mechanical properties,
especially near its critical frequency. Already seen that the linear bias is very small,
so a comparably weak effect of correction operation can be expected, as shown in
Figure 6.7:

Eventually, 1% more incorrectly estimated statistics are obtained. So as a con-
clusion, two conditions of applying this correction process have been discovered, one
is the reliability of training datasets, and another is a regular form of estimated data
mapping.

6.3 FAST sampling strategies in various research cases

Other than the previous applications of FAST series algorithms and RF on porous
elastic materials and sandwich composite materials, SA methods have also played
an role in some inter-group cooperation. In this section, two cases of meta material
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Figure 6.5: Corrected RF estimated value mapping along frequency axe.

and journal bearing are introduced, their SA results could possibly be found else
where in some publications so only the preliminary studies would be analyzed in
this section.

6.3.1 Case 1: SA on muli-layer honeycomb structure optimization
process

Sandwich composite materials with honeycomb meso-structure has been developed
and studied for several decades, there are also two chapters in this thesis taking
this model as example. While in recent years, with higher and higher performance
with required, some more structurally complex, multi-layer sandwich materials are
becoming the main roles in industries. So in this subsection, some details of the
sampling strategies are discussed in a preliminary study of a double layer honeycomb
sandwich design phase. The model of this sandwich panel can be seen in Figure 6.8:

The objective of this study is to optimize the vibro-acoustic performance of the
sandwich panel near its critical frequency, where the multi-layer design can work
out. Generally speaking the honeycomb structure of each layer is defined with 4
geometrical parameters α, β, a and sh, while the two layers use two different set of
parameters so their critical frequencies would not get synchronized. The SA is thus
conducted to its numeric model to find out which among the 4 parameters has the
greatest influence on the TL curve.

During the preparation and sampling phase of FAST method, some model con-
straints and characteristic properties should also be firstly verified. First of all, as
the two layers are structurally the same with different geometrical parameters, it
is economically preferred to estimate only the sensitivity indices of the parameters
of the first layer. Secondly, in order to make the optimization convincible, the 4
parameters vary in the sampling space with a constraint of fixed panel mass, as
the objective of optimization is to improve the performance without adding extra
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Figure 6.6: OOB error of RF estimation on the whole frequency band of vibro-
acoustic model.

weights.
The first request indicate exactly to the advantage of GSA where the ’Global’

means a continuous sampling space. Using conventional LSA methods, there’s
mainly two solutions: either to fix the second layer and vary the parameters of
the first layer, not even together, or to set a map between the parameters of the
two layers, where the simplest way is to suppose that the two layers are exactly
the same. Obviously such approaches can not satisfy the need of research, but with
GSA methods, such as FAST, it will be possible to let all the parameters varying
together and to only measure the influence of 4 parameters among them. Techni-
cally, estimating the sensitivity indices of only part of the variables will cause the
sum of sensitivity indices less than 1, but it doesn’t matter if only for ranking their
importance, and such approach can greatly reduce the number of samples required
for this GSA.

As just mentioned, the number of samples is a quite important value to be
controlled, mainly because of the fixed mass constraints. According to the model,
there is a function to calculate the overall mass with these geometrical parameter
given, only the combinations that result to a certain mass with a very small variance
are accepted in FAST algorithm, and the marginal distributions of each variable can
then be obtained. As the constraint is relatively strong, large amount of samples
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Figure 6.7: OOB error of RF estimation on the whole frequency band of vibro-
acoustic model, after correction.

were abandoned before being used in SA algorithm, that explains the reason of
insisting on analyzing as less inputs as possible. Thus, as the samples are strongly
correlated with irregular distribution rules, FAST-orig is chosen as the best solution,
it respects best the original statistics as well as being able to work with a flexible
number of samples.

A last technical point to mention in this case is how to generate a sampling
curve for the 8 variables of sandwich material’s two layers. As these two layers are
totally independently designed, the sampling curves must not contain the correlation
between them. A common solution is to generate a sampling curve firstly for a single
layer and to calculate the acoustic properties of all possible combinations. But the
traversal of all combinations is so computational heavy that it is actually even less
efficient than making a SA of all 8 parameters. The solution proposed in this study
is to make a 2-D Latin Hypercube sampling of the two layers, which at the same
time eliminated the requirement of extra samples and simulations, and satisfied the
need of non-correlated sampling strategy.
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Figure 6.8: A photo of a double-layer sandwich sample made by 3D-printing.

6.3.2 Case 2: SA on tilting pad journal bearing performance

Known that meta-materials are very hot as SA research topics in recent years, in
traditional mechanical systems there are also occasions where SA can play its role,
such as this multi-pad journal bearing model. Journal bearing with rotative pads is
a kind of advanced design which has better compatibility and stability under various
working conditions. The only obvious disadvantage of this kind of journal bearing
is its structural complexity, where a lot of parameters must be controlled during
production and assemblage phase. So this is how SA is required in this research.

Figure 6.9 presents a clear illustration of the whole journal bearing and the pad
in photo stands for the main object of this SA. In this research, the uncertainty
at the inputs of the system mainly focuses on the geometrical error induced to the
pads during fabrication. Five among all these geometrical parameters are studied,
seeing Figure 6.10:

Unlike the former case of double layer sandwich panel, this time the uncertain-
ties are generated during fabrication, some more realistic sampling curves would
be used in this SA. As the experimental basis is in China and the pads are also
produced there, some chinese standards of material proceeding have been referred.
According to that quite old standard, Gaussian distributions with 3-σ accuracy is
confirmed. Compared to former cases where very large uncertainty interval with uni-
form distribution is common used, the errors identified in industrial cases is rather
small.

Still this is not the end, as the oil film in bearing structure must keep extremely
thin, which means very small space between the pads and other parts of the bear-
ing. Thus, even with very small input uncertainties, there still will be rare cases
of structural bugs during simulations, thus these bugged sampling sets need to be
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Figure 6.9: Photo of a single bearing pad (left) and the illustration of complete
5-pad bearing system (right).

treated before putting into simulation. There are several possible solutions for this
case:
1) Directly eliminate these datasets or manually replace them by acceptable ones,
while the elimination of several datasets can damage the overall periodicity of sam-
pling curves and the replacement can only be done manually which prevents efficient
computation.
2) Take a control at the phase of sampling curve generation to ensure that the
over-biased data will not occur, well this approach does not strictly respect the ISO
standards which is the basis of these sampling curves.
3) Make a first run of simulation, then eliminate the unacceptable datasets, the rest
could be re-evaluated by FAST-orig algorithm, where the calculation efficiency and
the accuracy of SI estimation might be a problem.
Apparently all these solutions have their pros and cons, but regarding to the fact
that the bugged datasets are quite rare, the first two approaches are preferred. In
practice the first approach of data elimination is taken, and the sampling curve
seems still periodical enough for the FFT.

Another discussable point of this research case about the structure which con-
tains 5 similar pads. Several similar structure with each some fabrication errors, at
first sight it seems to be a perfect case for FAST-pe to take on a test. But at last
this thought was not applied and there are two main reasons: firstly, the FAST-pe
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Figure 6.10: Five geometrical parameters of the tilting pad journal to be studied:
(a): r the shaft radius, (b): R the pad internal radius, (c): Rp the pivot radius, (d):
β the pivot location, (e): α the pad extent angle.

didn’t work well in previous tests and some key problems have not been solved;
secondly, though these five pads are structurally similar, their working conditions
are totally different, the bottom pad actually hold the main load and the upper ones
just helps to keep the stability. So at last in this research, only the uncertainty of
the bottom pad is evaluated while the others are considered to be constants without
uncertainty.

6.4 Chapter conclusion

The first section of this chapter is an additional research following the former study
of SA and deep learning comparison. This section is the only section which hasn’t
any relation with sensitivity analysis or FAST methods. Briefly speaking, the bias
of estimation is a kind of common error for Random Forest with regression trees,
some direct correction is applied and the results becomes thus more reasonable.

The second section of this chapter presented two more application cases of FAST
series algorithms on models of multi-layers sandwich panel and moving pad journal
bearing. In both cases, the choices of the exact FAST algorithm are quite interest-
ing. In former chapters, the traditional FAST and FAST-c methods are regarded as
standard solution for optimization problems and FAST-orig is more suitable in in-
dustrial cases. But in this chapter, FAST-orig become the only choice when there’s
a strong non-linear constraint in optimization problem, while FAST is considered
more efficient in industrial cases with precise documentation.

Many researchers have expressed the fact that researches based on statistical or
deep learning methods can only become scientific when enough comprehension of
the objective models have been achieved. Such comprehension reflected in a SA is
not only in the conclusion part but more on how the sampling curves are generated
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and thus can work perfectly with a properly chosen SA algorithm. Also, one of the
former chapters has presented how statistic based methods and deep learning based
methods can give similar results upon the same case, the pre-proceeding part has
yet become the critical part of tell the effectiveness of one uncertainty quantification
process.

As for the exact SA results these two models, they are not included in this
chapter but some related publications might be able to be found recently or in
near future. Simply concluded, the SA conducted to the multi-layer sandwich panel
model confirmed many theoretical predictions and is now guiding the design of
experiments using 3-D printed sandwich samples; and the other one on the 5-pad
journal bearing gives several new aspects of how influential are the inputs with
extremely small sampling space.





Part 2: Conclusions

The main contents of this part 2, chapter 4 and 5 are both original researches and
thus the concepts seem to be a bit futuristic. In one aspect, till now we can not
imagine one uncertainty quantification application using both machine learning
and GSA methods; and in another aspect, the FAST-pe algorithm does not yet
work and can not even be proven to be robust. They both are steps forward to the
universe of uncertainty, one in a macroscopic view of common similarity, other in a
microscopic view of precision in a certain industrial case. These steps might, and
are very likely to be, not on the right path of technology development, but at least
enriched our experience and broaded the horizon of possibility.

Based on the experience of FAST, FAST-c and FAST-orig, and under the need
of multi-units correlation identification, a prototype of FAST-pe is developed. In
the technical point of sampling and post proceeding, FAST-pe can theoretically
replace all these algorithms above, except for the problem that its results don’t
converge. Compared to other ANOVA-based SA algorithms like CRM or Sobol’-
Jensen, the FAST-series algorithms seem to have bigger potentials in compatibility
developments. Thanks to the design of periodic sampling and FFT, most of the
current data-based algorithm are much slower than FAST. Thus, if the objective of
certain application is uncertainty quantification without constructing a meta-model,
FAST is potentially a competitive algorithm.

For me, the chapter 6 is my favorite in this thesis, not only because I can choose
to only write the most essential part of applications, but also it reminds me of the
joy of teamwork. Throughout these years, I’m nearly always the only one working on
statistics in our group, digging alone the codes of FAST can not be very interesting
but cooperating with other mechanicians are real enjoyments. One characteristic of
generation sampling curves from physical models is that the variables always have
different constraints, commonly presented by their co-distributions. This means the
correlation always exists, and way different from the form of correlation matrix. In
chapter 5 and 6, actually three different solutions are presented: add compatibility
modules onto GSA algorithms; fix on the main objective of GSA and simplify the
model; transfer a distribution-based design into a data-based design. When treating
problems with concrete objectives, except for the case of very high sampling cost,
data-based solutions are generally recommended.





Conclusions and perspectives

General conclusions

This thesis is mainly addressed to the development of FAST-series algorithms,
categorized as ANOVA-based global sensitivity analysis methods, along with their
applications on multiple mathematical models of periodic acoustic materials. The
FAST series algorithms, including FAST, FAST-c, FAST-orig and FAST-pe, and
several other GSA algorithms, for the purpose of comparison, have been applied
respectively to three mathematical models of vibro-acoustic materials: porous
elastic material, sandwich composite material and 1-D multiple damper structure.
The context of these applications raised several requirements for the compatibility
of FAST algorithms, such as correlation and dependency among input variables,
not unique HDMR expansion and the bias of normal distribution for multiple units.
Thus based on the traditional FAST algorithm, improvements were applied to its
later versions: FAST-c introduced Iman’s transform to manually construct corre-
lated sampling curves; FAST-orig transformed from distribution-based algorithm
to data-based algorithm; FAST-pe introduced a second level correlation design
among multiple units with the compatibility to the two former algorithms. In these
algorithms, FAST-orig and FAST-pe are completely original in this thesis. Though
these mathematical models are mainly analytical and not very complex, the great
agreement between their empirical observations and GSA results has well proved
the effectiveness of these algorithms.

These ANOVA-based GSA algorithms has always been an essential part of
uncertainty quantification tools, though never entered the most popular ones. Since
very long time, GSA can barely compete with LSA methods, for the great disad-
vantage at computational complexity and at its relatively complicated theoretical
basis. Since the end of last century, the rapid development of computers helped to
solve the computational problem of many GSA algorithms and the publications of
GSA has greatly increased. While unfortunately the new coming machine learning
methods finally took the biggest piece of cake. Thus in order to figure out the differ-
ence between GSA and machine learning, a Random Forest algorithm, which is also
capable for uncertainty quantification, was chosen to make a direct comparison with
FAST on the sandwich honeycomb panel. Generally both of them can roughly give
similar SA results and are capable to self-evaluate the quality of test. In one aspect
RF has a better compatibility as it’s a data-based algorithm and can generate a
meta-model, while in another aspect FAST has a much better calculation efficiency
with a clearer analytical basis. Generally machine learning methods are exactly
suitable in this era of big data but GSA can still compete in some professional areas.
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The three GSA applications mentioned above in Chapter 2, 3 and 5 presented a
complete and standard process of ANOVA-based GSA applications, especially for
these distribution-based FAST algorithms. But in these big cases, algorithms were
pre-determined and the datasets were just perfectly generated for these algorithms.
While in real industrial or research cases, such perfect combo can hardly exist:
special sampling strategies need to be designed under various constraints; existing
data-sets need to be pretreated to respect the condition of GSA application; even
sometimes the task of uncertainty quantification might have to be splitted and
get completed by two different algorithms. These are exactly what we overcame
during the cooperations of other laboratory research projects. Yet these cases were
interesting experiences and contains some details of FAST coding mechanisms.

Perspectives

With the trend of automatization in industrial, the need of uncertainty quan-
tification will absolutely continue to increase. Concerning the complexity of
industrial models, data-based GSA algorithms might be the best choice in the
aspect of efficiency. But rarely the ultimate objective of its application will stop at
uncertainty quantification, parametric optimization and meta-model construction
are common objectives that sensitivity analysis can not achieve by itself. That’s
why data-mining and machine learning tools are much more popular than GSA
in these years. But it should be mentioned that almost all these big-data-based
algorithms are both parametric and computationally intensive. Which means it
usually takes heavy labour and time consumption to achieve their best results.
Thus, in most cases where not enough preliminary study results are accumulated,
some high efficiency non-parametric algorithms, such as FAST, are recommended.
So, as GSA methods generally can only work together with other data-based
parametric algorithms, some more improvements can potentially be made on their
compatibility. Most of these machine learning algorithms don’t really have any
relation with ANOVA-HDMR, then how to translate the SA results based on
variance proportion to their definition of sensitivity can be a valuable engineering
topic.

The core problem of my thesis begins with correlation and also breaks at
correlation. For an analytic tool based on ANOVA-HDMR, the common existence
of correlation in real world is actually catastrophic and at the same time inevitable.
Almost all these GSA algorithms mentioned in this thesis, except for the tradition-
ally ones, are either propose to or originally capable to treat correlated datasets.
But neither FAST-c towards normally correlated datasets nor FAST-pe towards
double correlated datasets are perfect perfect solutions in each case. Observation
has confirmed that FAST-c does not give a unique SA result and FAST-pe can not
even converge. Well the basis is still the problem of not unique decomposition for
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ANOVA-HDMR, thus copula seems to be the only theoretical possible solution in
this case. But former studies have already shown that to find a set of orthogonal
functions in a randomly distributed high-dimensional space is not as easy as to say.
So FAST-orig might be the best approximation at its precision and compatibility
up to now, but the research for an ultimate solution will absolutely continue.

Actually when we mentioned GSA, its main opponent in the market has never
been machine learning and data-mining, but actually the LSA that statisticians
always criticize. In common thought, with the development of computer processors,
the difference of computational intensity between GSA and LSA should be shorten
and GSA should have a total advantage towards LSA in performance. However,
there has never been a signal that the publications on GSA can reach 1% of those
on LSA. In my opinion, institutional research on statistics are becoming more and
more social directed. Publications of analysis results are more and more specifically
organized for common public and the social medias are normally eager to dig out
more numbers to draw people’s attention. For me this is not a problem or something,
at least the easy accessibility of LSA results actually make generates more social
value than these complex formulas of GSA.
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Appendix A

Apprendix A: Details of FAST
post-proceeding based on FFT

Details of portional and total variance estimation for FAST post-proseeding given
by [Saltelli 1999]:

For a model y = f(x) = (x1, x2, ..., xn) whose inputs vary in a unit hyper cube
Kn = (x|0 ≤ xi ≤ 1; i = 1, 2, ..., n) with their pdf P (x) = P (x1, x2, ..., xn). The
fomula of direct calculation of the rth moment of y is:

〈y(r)〉 =

∫
Kn

f r(x1, x2, ..., xn)P (x1, x2, ..., xn)dx. (A.1)

Based on P (x), the sampling curves of each input xi can be written in the form of:

xi(s) = Gi(sinωis), i = 1, 2, ...n, (A.2)

where s is a scalar varying over −∞ < s < +∞, and Gi is a transformation function
corresponding to the pdf of xi. And the most important parameter is ωi which
donates different periodicity to input variables. Under the strict condition of non-
interference:

n∑
i=1

riωi 6= 0, −∞ < ri < +∞, ri = integer. (A.3)

It means that none of these frequency can be obtained as linear combination of
others, and thus these searching curves can fullfill the whole sampling space. Under
this condition, the ergodic theorem (Weyl 1938) indicates that:

〈y(r)〉 ≡ y(r) = lim
T→∞

1

2T

∫ T

−T
f r(x1(s), x2(s), ..., xn(s))ds. (A.4)

Thus the variance D of the model can be obtained by:

D = 〈y(2)〉 − 〈y(1)〉2 ≡ y(2) − (y(2))2. (A.5)

Regarding to Equation A.2, with ωi as positive integers, we can take 2π as the value
of T . Noting f(x1(s), x2(s), ..., xn(s)) as f(s), Equations A.4 and A.5 become:

yr =
1

2π

∫ π

−π
f r(s)ds, (A.6)

and

D̂ =
1

2π

∫ π

−π
f2(s)ds−

[
1

2π

∫ π

−π
f(s)ds

]2

. (A.7)



106
Appendix A. Apprendix A: Details of FAST post-proceeding based on

FFT

Then f(s) can be expanded in Fourier series:

y = f(s) =
+∞∑
j=−∞

{Aj cos js+Bj sin js}, (A.8)

where the Fourier coefficients Aj and Bj are defined as:

Aj =
1

2π

∫ π

−π
f(s) cos jsds,Bj =

1

2π

∫ π

−π
f(s) sin jsds, (A.9)

over the domain of integer frequencies j ∈ Z = {−∞, ...,−1, 0, 1, ...,+∞}. The
spectrum of each frequency is thus defined as Λj = A2

j + B2
j with j ∈ Z. Based on

their definitions, the Fourier coefficients and the spectrum have following properties:
A−j = Aj , B−j = −Bj ,Λ−j = Λj . By evaluating the spectrum for the harmonic
frequencies pωi, the portional variance Di corresponding to the input xi can then
be estimated:

D̂i =
∑
p∈Z′

Λpωi = 2
+∞∑
p=1

Λpωi , (A.10)

where Z ′ = Z − {0}. By summing up all the Λj , j ∈ Z ′, the total variance can also
be estimated:

D̂ =
∑
j∈Z′

Λj = 2

+∞∑
j=1

Λj . (A.11)

Formulas A.7 and A.11 provide the same quantity based on Parseval’s theorem:∑
j∈Z

Λj =
1

2π

∫ π

−π
f2(s)ds = y(2). (A.12)

Si, given by D̂i/D̂, is the first-order sensitivity index that estimates the main portion
of uncertainty on y explained by the input xi.



Appendix B

Apprendix B: Dataset reordering
procedure for correlation design in

FAST-pe algorithm

A brief procees of sampling re-ordering to generate correlation for the sampling
curves of multiple units in FAST-pe algorithm.

Taking the mathematical model of y = f(x1, x2, ..., xn), xi = [x1
i , x

2
i , ..., x

u
i ], 1 ≤

i ≤ n, in this model u indicates the number of similar units in this muli-units system
and n indicates the number of input variables for each unit. For the excution of
FAST-eq algorithm, multiple sampling matrices are generated for each of these units,
noted as {X1,X2, ...,Xu}, the matrices are in this form:

Xj =


xj1(1) xj2(1) · · · xjn(1)

xj1(2) xj2(2) · · · xjn(2)
...

...
. . .

...
xj1(m) xj2(m) · · · xjn(m)

 , 1 ≤ j ≤ u, (B.1)

in which m represents the number of samples for model evaluation. In the sampling
matrix, the values of each column arenoted as xji = [xji (1), xji (2), ..., xji (m)]T,
representing the actual periodical sampling datasets for the i-th input of the j-th
unit. Based on Apprendix A, all these sampling vectors are generated periodic
where all the vectors of the i-th input are donated with the same frequency ωi. For
example, x2

1 and x3
1 are both periodically sampled with the characteristic frequency

of 11Hz and with the same marginal distribution profile, but having different
original phase, as shown in Figure 5.2 of Chapter 5.

Iman’s transform gives an matrix elements re-ordering process of constructing a
new matrix with a given correlation matrix C, noted as:

Xj(C) = IMANj(Xj ,C), corr(Xj(C)) ≈ C. (B.2)

For the expression conveniency, the correlation matrix is set to C as default in this
apprendix and Equation B.2 can be shortened as Xj(C) = IMANj(Xj). Similarly,
the vector re-ordering process can be noted as:

x
j(c)
i = IMANj

i (x
j
i ). (B.3)
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Appendix B. Apprendix B: Dataset reordering procedure for

correlation design in FAST-pe algorithm

Well known that Iman’s transform makes the re-ordering based on the rank
of real value array elements, where the function rank(�) gives the position of each
elements in a row or column vector when reordering them in acsendent order, which
means 1 for the minimum and the biggest integer, notably the number of elements
in the vector, for the maximum element. For example:

[2, 4, 3, 1] = rank([−1, 3, 2,−2.2]).

Take I as the identical rank operator in column vector, where Im = [1, 2, ...,m]T.
Thus there is a relation between xji and its rank:

xji ≡ Im[rank(xji )]. (B.4)

Asm is a constant, the vector Im will be noted as I and the rank vector rank(xji ) will
be noted as rji . With the definition of rank funtion and vector reordering operation
clarified, Equation B.3 can be rewritten in the way of:

x
j(C)
i = xji [IMANj

i ]. (B.5)

Accoring to the post-proceeding design of FAST-C, after model evaluations, the
output vector y = [y(1), y(2), ..., y(m)] will be reordered:

yi = y[IMAN1′
i ], (B.6)

so that yi will contain the periodical information of xji which got eliminated after
the operation of Equation B.3. The reverse vector IMANj′

i of IMANj
i is defined

as:
IMANj

i [IMANj′
i ] ≡ IMANj′

i [IMANj
i ] ≡ I. (B.7)

By this post process, the periodicity of input x1
i is restored and can thus be

refelcted in FFT results of yi, but for other units of the system, the periodicity of
xji , 2 ≤ j ≤ u, are not restored as all the units used different re-ordering operators
IMANj

i .

In order to make the FFT post-process valide for all the input datasets, the
solution is to find a second re-ordering vector tbli for all the sampling curves so
that :

xji = x̃ji [IMAN1
i ],with x̃ji = x

j(C)
i [tbli]. (B.8)

Taking the equations B.4 and B.5 into the Fomula B.8, we can obtain:

I = IMANj
i [tbli[IMAN1

i ]]. (B.9)

Thus with the definition of Equation B.7:

tbli[IMAN1
i ] = IMANj′

i , (B.10)

so finally the secondary re-ordring vector for periodicity correction can be obtaind
as:

tbli = IMANj′
i [IMAN1′

i ], (B.11)
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with both IMAN vectors directly accessible from Iman’s transform.

It should be mentioned that the restorage of periodicity using tbli re-ordering
process only works for the estimation of i-th input’s sensitivity index, thus for the
other inputs, the whole process of ’re-ordering, evaluation, post-proceeding and FFT
estimation’ must be repeated completely.
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