.. .. Propriétés-physico-chimiques,

.. .. Conclusion,

F. L. Harding and D. R. Rossington, Wetting of Ceramic Oxides by Molten Metals Under Ultrahigh Vacuum, Journal of the American Ceramic Society, pp.87-90, 1969.

F. Ernst, Metal-oxide interfaces, Materials Science and Engineering, vol.14, pp.97-156, 1995.

C. T. Campbell, Ultrathin metal films and particles on oxide surfaces, Surf. Sci. Rep, vol.27, p.1435, 1997.
DOI : 10.1016/s0167-5729(96)00011-8

G. Renaud, Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering, Surface Science Reports, vol.32, pp.5-90, 1998.

Q. Fu and T. Wagner, Interaction of nanostructured metal overlayers with oxide surfaces, Surface Science Reports, vol.62, pp.431-498, 2007.

. In and . Stranski, Zur theorie des kristallwachstums, degruyter.com, 1928.

F. C. Frank and J. Van-der-merwe, One-Dimensional Dislocations. I. Static Theory, Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences, vol.198, pp.205-216, 1949.

S. Mokkapati, C. Jagadish, . Iii-v-compound, and . Sc, Materials Today, vol.12, pp.22-32, 2009.

K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer et al., 5%-efficient GaInP/GaAs tandem solar cells, Applied Physics Letters, vol.29, pp.989-991, 1994.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm et al., & Fontcuberta i Morral A. Single-nanowire solar cells beyond the Shockley-Queisser limit, Nature Photonics, vol.7, pp.306-310, 2013.

N. Kornienko, N. Gibson, H. Zhang, and S. Eaton, Growth and photoelectrochemical energy conversion of wurtzite indium phosphide nanowire arrays, ACS Nano, vol.10, pp.5325-5335, 2016.

J. Kammhuber, M. C. Cassidy, H. Zhang, Ö. Gül, F. Pei et al., Conductance Quantization at Zero Magnetic Field in InSb Nanowires, Nano Letters, vol.16, pp.3482-3486, 2016.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao et al., Optically pumped room-temperature GaAs nanowire lasers, Nature Photonics, vol.7, pp.963-968, 2013.

E. Bermúdez-ureña, G. Tutuncuoglu, J. Cuerda, C. L. Smith, J. Bravoabad et al., Nano Letters, vol.17, pp.747-754, 2017.

J. C. Wang, S. Q. Feng, and D. P. Yu, High-quality GaN nanowires synthesized using a CVD approach, Applied Physics a-Materials Science & Processing, vol.75, pp.691-693, 2002.

, Ioffe. NSM Archive -Physical Properties of Semiconductors, 2015.

G. Niu, J. Penuelas, L. Largeau, B. Viliquin, J. L. Marice et al., & Saint-Girons G. Evidence for the formation of two phases during the growth of SrTiO3 on silicon, Physical Review B, vol.83, pp.54101-54105, 2011.

R. A. Mckee, F. J. Walker, and M. F. Chisholm, Crystalline Oxides on Silicon : The First Five Monolayers, Physical Review Letters, vol.81, pp.3014-3017, 1998.

B. Meunier, Epitaxie d'hétérostructures combinant oxydes fonctionnels et semiconducteurs III-V pour la réalisation de nouvelles fonctions photoniques, 2016.

U. W. Pohl, . Methods, and . Epitaxy, , 2013.

X. Guan, J. Becdelievre, B. Meunier, A. Benali, R. Bachelet et al., Gendry M. & Penuelas J. GaAs Core/SrTiO3 Shell Nanowires Grown by Molecular Beam Epitaxy, vol.16, pp.2393-2399, 2016.

C. S. Fadley, X-ray photoelectron spectroscopy : Progress and perspectives, Journal of Electron Spectroscopy and Related Phenomena, pp.178-179, 2010.

A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Annalen der Physik, vol.322, pp.132-148, 1905.
DOI : 10.1002/andp.19053220607

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19053220607

L. O. Werme, J. Nordgren, H. Ägren, and C. Nordling, & Siegbahn K. X-ray emission spectra of small molecules, Zeitschrift für Physik A : Atoms and Nuclei, vol.272, pp.131-141, 1975.

D. Ferrah, Etude des propriétés physico-chimiques d'interfaces par photoé-mission, 2013.

M. Seah and W. Dench, Quantitative electron spectroscopy of surfaces : A Standard Data Base for Electron Inelastic Mean Free Paths in Solids, Surface and Interface Analysis, p.1, 1979.

. Editorial, The interface is still the device, vol.11, p.91, 2012.

R. S. Wagner and W. Ellis, Vapor-Liquid-Solid Mechanism of Single Crystal Growth, Applied Physics Letters, vol.4, p.89, 1964.
DOI : 10.1063/1.1753975

E. Givargizov, Fundamental aspects of VLS growth, Journal of Crystal Growth, vol.31, pp.20-30, 1975.

M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers, Applied Physics Letters, vol.61, pp.2051-2053, 1992.

A. Fontcuberta-i-morral, C. Colombo, G. Abstreiter, J. Arbiol, and J. R. Morante, Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires, Applied Physics Letters, p.92, 2008.

C. Colombo, D. Spirkoska, M. Frimmer, and G. Abstreiter, & Fontcuberta I Morral A. Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy, Physical Review B -Condensed Matter and Materials Physics, vol.77, pp.2-6, 2008.

H. Küpers, F. Bastiman, E. Luna, C. Somaschini, and L. Geelhaar, Ga predeposition for the Ga-assisted growth of GaAs nanowire ensembles with low number density and homogeneous length, Journal of Crystal Growth, vol.459, pp.43-49, 2017.

F. Matteini, G. Tütüncüoglu, H. Potts, and F. Jabeen, & Fontcuberta i Morral A. Wetting of Ga on SiO x and Its Impact on GaAs Nanowire Growth, Crystal Growth & Design, vol.15, pp.3105-3109, 2015.

T. Tauchnitz, T. Nurmamytov, R. Hübner, M. Engler, S. Facsko et al., Decoupling the two roles of Ga droplets in the self-catalyzed growth of GaAs nanowires on SiOx/Si(111) substrates, Crystal Growth and Design, vol.17, pp.5276-5282, 2017.

E. Russo-averchi, J. Vukajlovic-plestina, G. Tütüncüoglu, F. Matteini, A. Dalmau-mallorqui et al., Conesa-Boj S. & Fontcuberta I. Morral A. High yield of gaas nanowire arrays on si mediated by the pinning and contact angle of Ga, Nano Letters, vol.15, pp.2869-2874, 2015.

F. Matteini, G. Tütüncüoglu, and D. Rüffer, Alarcón-Lladó E. & Fontcuberta I Morral A. Ga-assisted growth of GaAs nanowires on silicon, comparison of surface SiOx of different nature, Journal of Crystal Growth, vol.404, pp.246-255, 2014.

M. H. Madsen, M. Aagesen, P. Krogstrup, C. Sørensen, and J. Nygård, Influence of the oxide layer for growth of self-assisted InAs nanowires on Si(111), Nanoscale research letters, vol.6, p.516, 2011.

S. L. Tan, Y. Genuist, M. I. Den-hertog, E. Bellet-amalric, H. Mariette et al., Highly uniform zinc blende GaAs nanowires on Si(111) using a controlled chemical oxide template, Nanotechnology, vol.28, p.255602, 2017.
DOI : 10.1088/1361-6528/aa7169

URL : https://hal.archives-ouvertes.fr/hal-01638616

A. M. Munshi, D. L. Dheeraj, V. T. Fauske, D. C. Kim, J. Huh et al., O. & Weman H. Position-Controlled Uniform GaAs Nanowires on Silicon using Nanoimprint Lithography, Nano Letters, vol.14, pp.960-966, 2014.

M. Heiss, E. Russo-averchi, A. Dalmau-mallorquí, G. Tütüncüo?lu, F. Matteini et al., Alarcon-Lladó E. & Fontcuberta i Morral A. III-V nanowire arrays : growth and light interaction, Nanotechnology, vol.25, p.14015, 2014.

Y. B. Samsonenko, G. E. Cirlin, A. I. Khrebtov, A. D. Bouravleuv, N. K. Polyakov et al., Study of processes of self-catalyzed growth of gaas crystal nanowires by molecular-beam epitaxy on modified Si (111) surfaces, Semiconductors, vol.45, pp.431-435, 2011.

F. Jabeen, V. Grillo, S. Rubini, and F. Martelli, Self-catalyzed growth of GaAs nanowires on cleaved Si by molecular beam epitaxy, Nanotechnology, vol.19, p.275711, 2008.
DOI : 10.1088/0957-4484/19/27/275711

H. Okamoto, T. T. Massalski, and . Au-si, Gold-Silicon) system. Bulletin of Alloy Phase Diagrams, vol.4, p.362, 1983.

R. Olesinski, N. Kanani, and G. Abbaschian, The Ga-Si system, Journal of Phase Equilibria, vol.6, pp.362-364, 1985.

D. R. Lide, CRC Handbook of Chemistry and Physics, 2005.

C. Kittel, Introduction to Solid State Physics, 2005.

J. J. Yeh, Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters, 1993.

G. Hollinger, Y. Jugnet, and P. Pertosa, & Minh Duc T. X-ray photoelectron spectroscopy of thermally grown silicon dioxide films on silicon, Chemical Physics Letters, vol.36, pp.441-445, 1975.

S. Wright and H. Kroemer, Reduction of oxides on silicon by heating in a gallium molecular beam at 800C), Applied Physics Letters, vol.36, pp.210-211, 1980.

M. Ichikawa, Selective growth of nanometer-scale ga dots on si(111) surface windows formed in an ultrathin (formula presented) film, Physical Review B -Condensed Matter and Materials Physics, vol.59, pp.10289-10295, 1999.

S. W. King, R. F. Davis, and R. J. Nemanich, Kinetics of Ga and In desorption from (7 × 7) Si(1 1 1) and (3 × 3) 6H-SiC(0 0 0 1) surfaces, Surface Science, vol.602, pp.405-415, 2008.

X. Guan, J. Becdelievre, A. Benali, C. Botella, G. Grenet et al., GaAs nanowires with oxidation-proof arsenic capping for the growth of an epitaxial shell, Nanoscale, vol.8, pp.15637-15644, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01489104

J. Becdelievre, Etude des propriétés électriques et mécaniques de nanofils de GaAs : vers une modulation du transport par effet piézoélectrique ou ferroélectrique, 2017.

Z. R. Wasilewski, J. Baribeau, M. Beaulieu, X. Wu, and G. I. Sproule, Studies of oxide desorption from GaAs substrates via Ga2O3 to Ga2O conversion by exposure to Ga flux, Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures, vol.22, p.1534, 2004.

P. H. Keck and J. Broder, The Solubility of Silicon and Germanium in Gallium and Indium, Physical Review, vol.90, pp.521-522, 1953.

F. Matteini, G. Tütüncüoglu, D. Mikulik, J. Vukajlovic-plestina, H. Potts et al., & Fontcuberta i Morral A. Impact of the Ga Droplet Wetting, Morphology, and Pinholes on the Orientation of GaAs Nanowires, Crystal Growth & Design, vol.16, pp.5781-5786, 2016.

D. Rudolph, S. Hertenberger, S. Bolte, W. Paosangthong, D. D. Spirkoska et al., Direct Observation of a Noncatalytic Growth Regime for GaAs Nanowires, Nano Letters, vol.11, pp.3848-3854, 2011.

A. I. Serykh and M. D. Amiridis, In-situ X-ray photoelectron spectroscopy study of supported gallium oxide, Surface Science, vol.604, pp.1002-1005, 2010.

R. Carli and C. Bianchi, XPS analysis of gallium oxides, Applied Surface Science, p.4332, 1994.

Y. Mizokawa, H. Iwasaki, R. Nishitani, and S. Nakamura, Esca studies of Ga, As, GaAs, Ga2O3, As2O3and As2O5, vol.14, pp.129-141, 1978.

G. Cossu, G. Ingo, G. Mattogno, and G. Padeletti, & Proietti G. XPS investigation on vacuum thermal desorption of UV/ozone treated GaAs(100) surfaces, Applied Surface Science, pp.81-88, 1992.

J. V. Holm, H. I. Jørgensen, P. Krogstrup, J. Nygård, H. Liu et al., Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon, Nature Communications, vol.4, p.1498, 2013.

P. A. Alekseev, M. S. Dunaevskiy, V. P. Ulin, T. V. Lvova, D. O. Filatov et al., Nitride surface passivation of GaAs nanowires : Impact on surface state density, Nano Letters, vol.15, pp.63-68, 2015.

M. Hjort, S. Lehmann, J. Knutsson, R. Timm, D. Jacobsson et al., Direct imaging of atomic scale structure and electronic properties of GaAs wurtzite and zinc blende nanowire surfaces, Nano Letters, vol.13, pp.4492-4498, 2013.

D. Álvarez, A. Xu, T. Tütüncüoglu, G. Demonchaux, T. Nys et al., Low-Temperature Grown GaAs Nanowires, Nano Letters, vol.15, pp.6440-6445, 2015.

J. Bolinsson, The Crystal Structure of III-V Semiconductor Nanowires : Growth and Characterization, 2010.

D. Spirkoska, J. Arbiol, A. Gustafsson, S. Conesa-boj, F. Glas et al., & Fontcuberta I Morral A. Structural and optical properties of high quality zincblende/wurtzite GaAs nanowire heterostructures, Physical Review BCondensed Matter and Materials Physics, vol.80, pp.1-9, 2009.

D. Jacobsson, F. Panciera, J. Tersoff, M. C. Reuter, S. Lehmann et al., Interface dynamics and crystal phase switching in GaAs nanowires, Nature, vol.531, pp.317-322, 2016.

F. Glas, J. C. Harmand, and G. Patriarche, Why does wurtzite form in nanowires of III-V zinc blende semiconductors ?, Physical Review Letters, vol.99, pp.3-6, 2007.

D. B. Williams and C. B. Carter, , 1996.

M. Liu, D. Jing, Z. Zhou, and L. Guo, Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation, Nature Communications, vol.4, pp.1-8, 2013.
DOI : 10.1038/ncomms3278

URL : https://www.nature.com/articles/ncomms3278.pdf

D. Schiferl and C. S. Barrett, The crystal structure of arsenic at 4.2, 78 and 299°K, Journal of Applied Crystallography, vol.2, pp.30-36, 1969.

M. Simeckova and A. Hruby, A study on the crystallization of amorphous Arsenic, Mat. Res. Bull, vol.12, pp.65-72, 1977.

U. Resch, N. Esser, Y. S. Raptis, W. Richter, J. Wasserfall et al., Arsenic passivation of MBE grown GaAs(100) : structural and electronic properties of the decapped surfaces, Surface Science, pp.797-803, 1992.

J. Avila, I. Razado-colambo, S. Lorcy, B. Lagarde, J. L. Giorgetta et al., ANTARES, a scanning photoemission microscopy beamline at SOLEIL, Journal of Physics : Conference Series, p.425, 2013.
DOI : 10.1088/1742-6596/425/19/192023

URL : http://iopscience.iop.org/article/10.1088/1742-6596/425/19/192023/pdf

G. Priante, F. Glas, G. Patriarche, K. Pantzas, F. Oehler et al., Sharpening the Interfaces of Axial Heterostructures in Self-Catalyzed AlGaAs Nanowires : Experiment and Theory, Nano Letters, vol.16, pp.1917-1924, 2016.

J. Wu, A. Ramsay, A. Sanchez, Y. Zhang, D. Kim et al., Defect-Free Self-Catalyzed GaAs/GaAsP Nanowire Quantum Dots Grown on Silicon Substrate, Nano Letters, vol.16, pp.504-511, 2016.
DOI : 10.1021/acs.nanolett.5b04142

URL : http://discovery.ucl.ac.uk/1474123/7/quantum%20dots%20grown%20on%20silicon%20substrate%20R1.pdf

N. Vainorius, S. Lehmann, A. Gustafsson, L. Samuelson, K. A. Dick et al., GaAs Quantum Wires : One-Dimensional Subband Formation, Nano Letters, vol.16, pp.2774-2780, 2016.
DOI : 10.1021/acs.nanolett.6b00482

B. Loitsch, D. Rudolph, S. Morkötter, M. Döblinger, G. Grimaldi et al., Tunable Quantum Confinement in Ultrathin, Optically Active Semiconductor Nanowires Via Reverse-Reaction Growth, Advanced Materials, vol.27, pp.2195-2202, 2015.

C. T. Foxon, J. A. Harvey, and B. A. Joyce, The evaporation of GaAs under equilibrium and non-equilibrium conditions using a modulated beam technique, Journal of Physics and Chemistry of Solids, vol.34, pp.1693-1701, 1973.

P. Krogstrup, N. L. Ziino, W. Chang, S. M. Albrecht, M. H. Madsen et al., Epitaxy of semiconductor-superconductor nanowires, Nature Materials, vol.14, pp.400-406, 2015.

G. Saint-girons, R. Bachelet, R. Moalla, B. Meunier, L. Louahadj et al., Epitaxy of SrTiO 3 on Silicon : The Knitting Machine Strategy. chemistry of materials, vol.28, pp.5347-5355, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01848688

S. Mokkapati, D. Saxena, N. Jiang, P. Parkinson, J. Wong-leung et al., Polarization Tunable, Multicolor Emission from Core -Shell Photonic III-V Semiconductor Nanowires, Nano Letters, vol.12, pp.6428-6431, 2012.
DOI : 10.1021/nl303787a

J. H. Kang, A. Grivnin, E. Bor, J. Reiner, N. Avraham et al., & Beidenkopf H. Robust Epitaxial Al Coating of Reclined InAs Nanowires, Nano Letters, vol.17, pp.7520-7527, 2017.

H. Chen, L. Shao, Q. Li, and J. Wang, Gold nanorods and their plasmonic properties, Chemical Society Reviews, vol.42, pp.2679-2724, 2013.
DOI : 10.1039/c2cs35367a

M. Wulf, A. De-hoogh, N. Rotenberg, and L. Kuipers, Ultrafast Plasmonics on Gold Nanowires : Confinement, Dispersion, and Pulse Propagation, ACS Photonics, vol.1, pp.1173-1180, 2014.
DOI : 10.1021/ph500260t

E. Farrokhtakin, D. Rodríguez-fernández, V. Mattoli, D. M. Solís, J. M. Taboada et al., Radial growth of plasmon coupled gold nanowires on colloidal templates, Journal of Colloid and Interface Science, vol.449, pp.87-91, 2015.

G. A. Prinz, J. M. Ferrari, and M. Goldenberg, Molecular beam epitaxial growth of single-crystal Al films on GaAs (110), Applied Physics Letters, vol.39, p.397, 1981.

W. C. Marra, P. Eisenberger, and A. Y. Cho, X-ray total-external-reflectionBragg diffraction : A structural study of the GaAs-Al interface, Journal of Applied Physics, vol.50, pp.6927-6933, 1979.

B. Gobaut, Systèmes épitaxiés faiblement liés : le cas Ge/SrTiO3, 2012.

J. R. Levine, J. B. Cohen, Y. W. Chung, and P. Georgopoulos, Grazingincidence small-angle X-ray scattering : new tool for studying thin film growth, Journal of Applied Crystallography, vol.22, pp.528-532, 1989.

G. Renaud, R. Lazzari, C. Revenant, A. Barbier, M. Noblet et al., Scheurer F., Mane-Mane J. & Fruchart O. Real-time monitoring of growing nanoparticles, Science, vol.300, pp.1416-1419, 2003.

T. Hofmann, E. Dobisz, and B. M. Ocko, Grazing incident small angle xray scattering : A metrology to probe nanopatterned surfaces, Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures, vol.27, p.3238, 2009.

X. Lu, K. G. Yager, D. Johnston, C. T. Black, and B. M. Ocko, Grazingincidence transmission X-ray scattering : Surface scattering in the Born approximation, Journal of Applied Crystallography, vol.46, pp.165-172, 2013.

D. R. Rueda, I. Martín-fabiani, M. Soccio, N. Alayo, F. Pérez-murano et al., Grazing-incidence small-angle X-ray scattering of soft and hard nanofabricated gratings, Journal of Applied Crystallography, vol.45, pp.1038-1045, 2012.

R. Lazzari, IsGISAXS : a program for grazing-incidence small-angle X-ray scattering analysis from supported islands, J. Appl. Cryst, vol.35, pp.406-421, 2002.

J. Eymery, F. Rieutord, V. Favre-nicolin, O. Robach, Y. M. Niquet et al., Strain and shape of epitaxial InAs/InP nanowire superlattice measured by grazing incidence Xray techniques, Nano Letters, vol.7, pp.2596-2601, 2007.

L. Vina and W. I. Wang, AlGaAs/GaAs(111) heterostructures grown by molecular beam epitaxy, Applied Physics Letters, vol.48, pp.36-37, 1986.
DOI : 10.1063/1.96753

P. M. Petroff, L. C. Feldman, A. Y. Cho, and R. S. Williams, Properties of aluminum epitaxial growth on GaAs, Journal of Applied Physics, vol.52, pp.7317-7320, 1981.

H. Kusko, A. Cahill, and W. Mccolm, Au-GaAs(110) interface : Photoemission studies of the effects of temperature, Physical Review B, vol.14, pp.38-44, 1986.

R. A. Mckee, F. J. Walker, and M. F. Chisholm, Physical structure and inversion charge at a semiconductor interface with a crystalline oxide, Science, vol.293, pp.468-471, 2001.

K. Eisenbeiser, R. Emrick, R. Droopad, Z. Yu, J. Finder et al., & Ooms W. GaAs MESFETs fabricated on Si substrates using a SrTiO3 buffer layer, IEEE Electron Device Letters, vol.23, pp.300-302, 2002.

L. Largeau, J. Cheng, P. Regreny, G. Patriarche, A. Benamrouche et al., & Saint-Girons G. Crystal orientation of GaAs islands grown on SrTiO3 (001) by molecular beam epitaxy, Applied Physics Letters, vol.95, p.11907, 2009.

J. Cheng, A. Chettaoui, J. Penuelas, B. Gobaut, P. Regreny et al., & Saint-Girons G. Partial arsenic pressure and crystal orientation during the molecular beam epitaxy of GaAs on, Journal of Applied Physics, vol.107, p.94902, 2010.

A. B. Posadas, K. J. Kormondy, W. Guo, P. Ponath, J. Geler-kremer et al., Scavenging of oxygen from SrTiO3during oxide thin film deposition and the formation of interfacial 2DEGs, Journal of Applied Physics, p.121, 2017.

A. A. Demkov, H. Seo, X. Zhang, and J. Ramdani, Using Zintl-Klemm intermetallics in oxide-semiconductor heteroepitaxy, Applied Physics Letters, vol.100, p.71602, 2012.
DOI : 10.1063/1.3685508

F. Laves, Eduard Zintls Arbeiten über die Chemie und Struktur von Legierungen, Die Naturwissenschaften, pp.244-256, 1941.
DOI : 10.1007/978-3-642-51845-4_26

Q. Fu, T. Wagner, and . Metal, Oxide Interfacial Reactions : Oxidation of Metals on SrTiO3(100) and TiO2(110), J. Phys. chem. B, vol.3, pp.11697-11705, 2005.

J. D. Cox, D. D. Wagman, V. A. Medvedev, and . Codata, Key Values for Thermodynamics, 1989.

J. A. Verhoeven and H. V. Doveren, Ba. Applications of Surface Science, vol.5, pp.361-373, 1980.

G. A. Haas, C. R. Marrian, and A. Shih, Interatomic Auger Analysis Of The Oxidation Of Thin Ba Films, Applications of Surface Science, vol.16, pp.125-138, 1983.

K. Jacobi, C. Astaldi, and B. Frick, & Geng P. Chemical and surface corelevel shifts of barium studied by photoemission, Physical Review B, vol.19, pp.3079-3085, 1987.

L. T. Hudson, R. L. Kurtz, S. W. Robey, D. Temple, and R. L. Stockbauer, Surface core-level shifts of barium observed in photoemission of vacuumfractured BaTiO3(100), Physical Review B, vol.47, pp.10832-10838, 1993.

M. E. Preil, J. E. Fischer, S. B. Dicenzo, and G. K. Wertheim, Barium intra-atomic reconfiguration in BaC6, Physical Review B, vol.30, pp.3536-3538, 1984.

D. M. Hill, H. M. Meyer, and J. H. Weaver, Ba oxides : Core-level binding energies and deffect-related pinning, Surface Science, vol.225, pp.63-71, 1990.
DOI : 10.1016/0039-6028(90)90424-7

M. I. Sosulnikov and Y. A. Teterin, X-ray photoelectron studies of Ca , Sr and Ba and their oxides and carbonates, Journal of Electron Spectroscopy and Related Phenomena, vol.59, pp.111-126, 1992.

S. Hu, E. L. Lin, A. K. Hamze, A. Posadas, H. Wu et al., Zintl layer formation during perovskite atomic layer deposition on Ge (001), The Journal of chemical physics, p.146, 2017.

M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara et al., Koinuma H. Atomic Control of the SrTiO3 Crystal Surface. Science, vol.266, pp.1540-1542, 1994.

K. Kim and N. Winograd, Charge transfer shake-up satellites in X-ray photoelectron spectra of cations and anions of SrTiO3, TiO2 and Sc2O3, Chemical Physics Letters, vol.31, pp.312-317, 1975.

J. T. Vaughey, G. J. Miller, S. Gravelle, E. A. Leon-escamilla, and J. D. Corbett, Synthesis, Structure, and Properties of BaGe2 : A Study of Tetrahedral Cluster Packing and Other Three-Connected Nets in Zintl Phases, Journal of Solid State Chemistry, vol.133, pp.501-507, 1997.