W. V. Holt, Basic aspects of frozen storage of semen, Anim Reprod Sci, vol.62, pp.3-22, 2000.

S. Salamon and W. Maxwell, Storage of ram semen, Anim Reprod Sci, vol.62, pp.77-111, 2000.

J. Gil, M. Rodriguez-irazoqui, N. Lundeheim, L. Söderquist, and H. Rodriguez-martinez, Fertility of ram semen frozen in Bioexcell® and used for cervical artificial insemination

, Theriogenology, vol.59, pp.1157-70, 2003.

W. V. Holt, Basic aspects of frozen storage of semen, Animal Reproduction Science, vol.62, p.322, 2000.

R. Vishwanath and P. Shannon, Storage of bovine semen in liquid and frozen state, Animal Reproduction Science, vol.62, p.2353, 2000.

P. H. Phillips, Preservation of Bull Semen, J Biol Chem, vol.130, p.415415, 1939.

H. Paulenz, L. Söderquist, R. Pérez-pé, A. Berg, and K. , Effect of different extenders and storage temperatures on sperm viability of liquid ram semen, Theriogenology, vol.57, p.82336, 2002.

S. Salamon and W. Maxwell, Storage of ram semen, Animal Reproduction Science, vol.62, p.77111, 2000.

A. Bergeron, Y. Brindle, P. Blondin, and P. Manjunath, Milk Caseins Decrease the Binding of the Major Bovine Seminal Plasma Proteins to Sperm and Prevent Lipid Loss from the Sperm Membrane During Sperm Storage, Biol Reprod, vol.77, p.1206, 2007.

M. Lusignan, A. Bergeron, M. Lafleur, and P. Manjunath, The Major Proteins of Bovine Seminal Plasma Interact with Caseins and Whey Proteins of Milk Extender, Biol Reprod, vol.85, p.45764, 2011.

A. Bergeron and P. Manjunath, New insights towards understanding the mechanisms of sperm protection by egg yolk and milk, Mol Reprod Dev, vol.73, p.133844, 2006.

S. Bousseau, J. P. Brillard, B. Marquant-le-guienne, B. Guérin, A. Camus et al., Comparison of bacteriological qualities of various egg yolk sources and the in vitro and in vivo fertilizing potential of bovine semen frozen in egg yolk or lecithin based diluents, Theriogenology, vol.50, p.699706, 1998.

V. A. Aires, K. Hinsch, F. Mueller-schloesser, K. Bogner, S. Mueller-schloesser et al., In vitro and in vivo comparison of egg yolk-based and soybean lecithin-based extenders for cryopreservation of bovine semen, Theriogenology, vol.60, p.26979, 2003.

P. Shannon and B. Curson, Kinetics of the aromatic l-amino acid oxidase from dead bovine spermatozoa and the effect of catalase on fertility of diluted bovine semen stored at 5°C and ambient temperatures, J Reprod Fertil, vol.64, p.4637, 1982.

J. Gil, M. Rodriguez-irazoqui, N. Lundeheim, L. Söderquist, and H. Rodriguez-martinez, Fertility of ram semen frozen in Bioexcell® and used for cervical artificial insemination, Theriogenology, vol.59, p.115770, 2003.

J. Gil, N. Lundeheim, and L. Söderquist, Rodrí guez-Martí nez H. Influence of extender, temperature, and addition of glycerol on post-thaw sperm parameters in ram semen, Theriogenology, vol.59, p.124155, 2003.

M. Sharafi, M. Zhandi, A. Sharif, and A. , Supplementation of soybean lecithin-based semen extender by antioxidants: complementary flow cytometric study on post-thawed ram spermatozoa, Cell and Tissue Banking, vol.16, p.2619, 2015.

K. Nishijima, S. Kitajima, C. Koshimoto, M. Morimoto, T. Watanabe et al., Motility and fertility of rabbit sperm cryopreserved using soybean lecithin as an alternative to egg yolk, Theriogenology, vol.84, p.11725, 2015.

M. S. Ansari, B. A. Rakha, S. Akhter, and M. Ashiq, OPTIXcell improves the postthaw quality and fertility of buffalo bull sperm, Theriogenology, vol.85, p.52832, 2016.

D. D. Lasic, On the thermodynamic stability of liposomes, Journal of Colloid and Interface Science, vol.140, p.3024, 1990.

M. Jurga, N. Forraz, C. Basford, G. Atzeni, A. J. Trevelyan et al., Neurogenic Properties and a Clinical Relevance of Multipotent Stem Cells Derived from Cord Blood Samples Stored in the References 1. Holt WV. Basic aspects of frozen storage of semen, Animal Reproduction Science, vol.62, p.322, 2000.

S. Salamon and W. Maxwell, Storage of ram semen, Animal Reproduction Science, vol.62, p.77111, 2000.

J. Gil, M. Rodriguez-irazoqui, N. Lundeheim, L. Söderquist, and H. Rodriguez-martinez, Fertility of ram semen frozen in Bioexcell® and used for cervical artificial insemination, Theriogenology, vol.59, p.115770, 2003.

P. H. Phillips, Preservation of Bull Semen, J Biol Chem, vol.130, p.415415, 1939.

H. Paulenz, L. Söderquist, R. Pérez-pé, A. Berg, and K. , Effect of different extenders and storage temperatures on sperm viability of liquid ram semen, Theriogenology, vol.57, p.82336, 2002.

S. Bousseau, J. P. Brillard, B. Marquant-le-guienne, B. Guérin, A. Camus et al., Comparison of bacteriological qualities of various egg yolk sources and the in vitro and in vivo fertilizing potential of bovine semen frozen in egg yolk or lecithin based diluents, Theriogenology, vol.50, p.699706, 1998.

V. A. Aires, K. Hinsch, F. Mueller-schloesser, K. Bogner, S. Mueller-schloesser et al., In vitro and in vivo comparison of egg yolk-based and soybean lecithin-based extenders for cryopreservation of bovine semen, Theriogenology, vol.60, p.26979, 2003.

P. Shannon and B. Curson, Kinetics of the aromatic l-amino acid oxidase from dead bovine spermatozoa and the effect of catalase on fertility of diluted bovine semen stored at 5°C and ambient temperatures, J Reprod Fertil, vol.64, p.4637, 1982.

R. Vishwanath and P. Shannon, Storage of bovine semen in liquid and frozen state, Animal Reproduction Science, vol.62, p.2353, 2000.

J. Gil, N. Lundeheim, and L. Söderquist, Rodrí guez-Martí nez H. Influence of extender, temperature, and addition of glycerol on post-thaw sperm parameters in ram semen, Theriogenology, vol.59, p.124155, 2003.

M. Sharafi, M. Zhandi, A. Sharif, and A. , Supplementation of soybean lecithin-based semen extender by antioxidants: complementary flow cytometric study on post-thawed ram spermatozoa, Cell and Tissue Banking, vol.16, p.2619, 2015.

K. Nishijima, S. Kitajima, C. Koshimoto, M. Morimoto, T. Watanabe et al., Motility and fertility of rabbit sperm cryopreserved using soybean lecithin as an alternative to egg yolk, Theriogenology, vol.84, p.11725, 2015.

M. S. Ansari, B. A. Rakha, S. Akhter, and M. Ashiq, OPTIXcell improves the postthaw quality and fertility of buffalo bull sperm, Theriogenology, vol.85, p.52832, 2016.

S. Maljean-dubois and . La, Convention de Rio sur la diversité biologique. La diversité dans la gouvernance internationale. Bruylant, p.15, 2013.

T. Joly, Etablissement d'une cryobanque de semence ou d'embryons pour la conservation ex situ de la diversité génétique chez les mammifères domestiques : l'exemple du lapin

I. Lyon, , 1997.

T. B. Hildebrandt, R. Hermes, S. Colleoni, S. Diecke, S. Holtze et al., Embryos and embryonic stem cells from the white rhinoceros, Nature Communications, vol.9, p.2589, 2018.

T. Joly, P. Salvetti, and V. Neto, Cryopreservation of Genetic Diversity in Rabbit Species (Oryctolagus Cuniculus)

D. Sur,

P. Bruyère, Evaluation thermodynamique et biologique d'un substituant synthétique aux produits d'origine animale dans les solutions de cryoconservation pour embryons de mammiferes

V. Sup, , 2014.

D. Sur,

C. Polge, A. Smith, and A. Parkes, Revival of spermatozoa after vitrification and dehydration at low temperature, Nature London, p.1646, 1949.

J. Karlsson and M. Toner, Long-term storage of tissues by cryopreservation: critical issues, Biomaterials, vol.17, p.24356, 1996.
DOI : 10.1016/0142-9612(96)85562-1

A. Baudot, Cryopreservation d'organes par vitrification mesures calorimetriques et mesures dielectriques

I. Grenoble, , 1997.

D. Sur,

H. T. Meryman, Cryopreservation of living cells: principles and practice, Transfusion, vol.47, p.93545, 2007.
DOI : 10.1111/j.1537-2995.2007.01212.x

J. Karlsson and M. Toner, Long-term storage of tissues by cryopreservation: critical issues, Biomaterials, vol.17, p.24356, 1996.
DOI : 10.1016/0142-9612(96)85562-1

H. T. Meryman, Cryopreservation of living cells: principles and practice, Transfusion, vol.47, p.93545, 2007.
DOI : 10.1111/j.1537-2995.2007.01212.x

P. Mazur, Freezing of living cells: mechanisms and implications, American Journal of PhysiologyCell Physiology, vol.247, p.12542, 1984.
DOI : 10.1152/ajpcell.1984.247.3.c125

P. Mazur, S. P. Leibo, and G. E. Seidel, Cryopreservation of the Germplasm of Animals Used in Biological and Medical Research: Importance, Impact, Status, and Future Directions, Biol Reprod, vol.78, p.212, 2008.

A. Baudot and P. Boutron, Glass-Forming Tendency and Stability of Aqueous Solutions of Diethylformamide and Dimethylformamide, Cryobiology, vol.37, p.18799, 1998.
DOI : 10.1006/cryo.1998.2112

P. Mazur, S. P. Leibo, and G. E. Seidel, Cryopreservation of the Germplasm of Animals Used in Biological and Medical Research: Importance, Impact, Status, and Future Directions, Biology of Reproduction, vol.78, p.212, 2008.

A. Arav, Cryopreservation of oocytes and embryos, Theriogenology, vol.81, p.96102, 2014.
DOI : 10.1016/j.theriogenology.2013.09.011

M. Teixeira, L. Commin, L. Gavin-plagne, P. Bruyère, S. Buff et al., Rapid cooling of rabbit embryos in a synthetic medium, Cryobiology, 2018.

D. Sur,

F. Tan, K. H. Lee, S. S. Gouk, and R. Magalhães, Optimization of cryopreservation of stem cells cultured as neurospheres: comparison between vitrification, slow-cooling and rapid cooling "freezing, protocols. Cryoletters, vol.28, p.44560, 2007.

J. Morris, G. Acton, E. Murray, B. J. Fonseca, and F. , Freezing injury: The special case of the sperm cell, Cryobiology, vol.64, p.7180, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01564145

J. Morris, G. Acton, E. Murray, B. J. Fonseca, and F. , Freezing injury: The special case of the sperm cell, Cryobiology, vol.64, p.7180, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01564145

R. R. Maurer, Freezing mammalian embryos: A review of the techniques, Theriogenology, vol.9, p.4568, 1978.

Y. Li and T. Ma, Bioprocessing of Cryopreservation for Large-Scale Banking of Human Pluripotent Stem Cells, BioResearch Open Access, vol.1, p.20514, 2012.

C. Hunt, Cryopreservation of Human Stem Cells for Clinical Application: A Review, Transfusion Medicine and Hemotherapy, vol.38, p.10723, 2011.

J. Liebermann, J. Dietl, P. Vanderzwalmen, and M. J. Tucker, Recent developments in human oocyte, embryo and blastocyst vitrification: where are we now?, Reproductive BioMedicine Online, vol.7, p.62333, 2003.

J. Morris, G. Acton, and E. , Controlled ice nucleation in cryopreservation -A review, Cryobiology, vol.66, p.8592, 2013.

J. Saragusty, J. Osmers, and T. B. Hildebrandt, Controlled ice nucleation-Is it really needed for largevolume sperm cryopreservation?, Theriogenology, vol.85, p.132833, 2016.

J. Morris, G. Acton, and E. , Controlled ice nucleation in cryopreservation -A review, Cryobiology, vol.66, p.8592, 2013.

P. Mazur, Freezing of living cells: mechanisms and implications, American Journal of PhysiologyCell Physiology, vol.247, p.12542, 1984.

B. J. Fuller, Cryoprotectants: the essential antifreezes to protect life in the frozen state, Cryoletters, vol.25, p.37588, 2004.

C. Medeiros, F. Forell, A. Oliveira, and J. L. Rodrigues, Current status of sperm cryopreservation: why isn't it better?, Theriogenology, vol.57, p.32744, 2002.

C. Medeiros, F. Forell, A. Oliveira, and J. L. Rodrigues, Current status of sperm cryopreservation: why isn't it better?, Theriogenology, vol.57, p.32744, 2002.

A. Lemma, Effect of Cryopreservation on Sperm Quality and Fertility, Manafi M, éditeur. Artificial Insemination in Farm Animals, 2011.

D. Sur,

B. J. Fuller, Cryoprotectants: the essential antifreezes to protect life in the frozen state, Cryoletters, vol.25, p.37588, 2004.

C. Polge, A. Smith, and A. Parkes, Revival of spermatozoa after vitrification and dehydration at low temperature, Nature London, p.1646, 1949.

E. Mocé and J. S. Vicente, Rabbit sperm cryopreservation: A review, Animal Reproduction Science, vol.110, p.124, 2009.

J. P. Barbas and R. D. Mascarenhas, Cryopreservation of domestic animal sperm cells, Cell and tissue banking, vol.10, pp.49-62, 2009.

A. Lemma, Effect of Cryopreservation on Sperm Quality and Fertility, Manafi M, éditeur. Artificial Insemination in Farm Animals, 2011.

D. Sur,

E. Aboagla and T. Terada, Trehalose-Enhanced Fluidity of the Goat Sperm Membrane and Its Protection During Freezing, Biol Reprod, vol.69, p.124550, 2003.

L. Ji, J. J. De-pablo, and S. P. Palecek, Cryopreservation of adherent human embryonic stem cells, Biotechnol Bioeng, vol.88, p.299312, 2004.

C. F. Wu, H. C. Tsung, W. J. Zhang, Y. Wang, J. H. Lu et al., Improved cryopreservation of human embryonic stem cells with trehalose, Reprod Biomed Online, vol.11, p.7339, 2005.

A. Ntai, L. Spada, A. , D. Blasio, P. et al., Trehalose to cryopreserve human pluripotent stem cells. Stem Cell Research, 2018.
DOI : 10.1016/j.scr.2018.07.021

URL : https://doi.org/10.1016/j.scr.2018.07.021

D. Sur,

E. Aboagla and T. Terada, Trehalose-Enhanced Fluidity of the Goat Sperm Membrane and Its Protection During Freezing, Biol Reprod, vol.69, p.124550, 2003.

L. L. Kuleshova, J. M. Shaw, and A. O. Trounson, Studies on Replacing Most of the Penetrating Cryoprotectant by Polymers for Embryo Cryopreservation, Cryobiology, vol.43, p.2131, 2001.

J. Kopeika, A. Thornhill, and Y. Khalaf, The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence, Hum Reprod Update, vol.21, p.20927, 2015.

E. Z. Drobnis, L. M. Crowe, T. Berger, T. J. Anchordoguy, J. W. Overstreet et al., Cold shock damage is due to lipid phase transitions in cell membranes: A demonstration using sperm as a model, Journal of Experimental Zoology, vol.265, p.4327, 1993.
DOI : 10.1002/jez.1402650413

E. Sparr, L. Hallin, N. Markova, and H. Wennerström, Phospholipid-Cholesterol Bilayers under Osmotic Stress, Biophysical Journal, vol.83, 2002.
DOI : 10.1016/s0006-3495(02)73963-5

URL : https://doi.org/10.1016/s0006-3495(02)73963-5

D. White and I. , Influence of the cholesterol content of mammalian spermatozoa on susceptibility to cold-shock, 1977.

C. Labbé, Stress subi par les cellules au cours de la congélation-décongélation et méthodes de cryoconservation. Sciences et techniques de l'animal de laboratoire, vol.39, p.1520, 2013.

M. Companyó, A. Iborra, J. Villaverde, P. Martínez, and A. Morros, Membrane fluidity changes in goat sperm induced by cholesterol depletion using beta-cyclodextrin, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1768, p.224655, 2007.

P. Mazur and C. Koshimoto, Is intracellular ice formation the cause of death of mouse sperm frozen at high cooling rates?, Biol Reprod, vol.66, p.148590, 2002.

G. J. Morris, Rapidly cooled human sperm: no evidence of intracellular ice formation, Hum Reprod, vol.21, p.207583, 2006.
DOI : 10.1093/humrep/del116

G. J. Morris, K. Faszer, J. E. Green, D. Draper, B. Grout et al., Rapidly cooled horse spermatozoa: Loss of viability is due to osmotic imbalance during thawing, not intracellular ice formation, Theriogenology, vol.68, p.80412, 2007.
DOI : 10.1016/j.theriogenology.2007.06.009

J. Karlsson, E. G. Cravalho, and M. Toner, A model of diffusion-limited ice growth inside biological cells during freezing, Journal of Applied Physics, vol.75, p.444255, 1994.
DOI : 10.1063/1.355959

B. C. Heng, C. P. Ye, H. Liu, W. S. Toh, A. J. Rufaihah et al., Loss of viability during freezethaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis, J Biomed Sci, vol.13, p.43345, 2006.

R. Wong, M. F. Pera, and A. Pébay, Role of Gap Junctions in Embryonic and Somatic Stem Cells, Stem Cell Rev, vol.4, p.28392, 2008.

J. P. Acker, J. Elliott, and L. E. Mcgann, Intercellular Ice Propagation: Experimental Evidence for Ice Growth through Membrane Pores, Biophysical Journal, vol.81, p.138997, 2001.
DOI : 10.1016/s0006-3495(01)75794-3

URL : https://doi.org/10.1016/s0006-3495(01)75794-3

S. F. Mullen and J. K. Critser, The Science of Cryobiology. Oncofertility Fertility Preservation for Cancer Survivors

B. Springer and M. ;. , , p.83109, 2007.

G. Colas, Fertility in the ewe after artificial insemination with fresh and frozen semen at the induced oestrus, and influence of the photoperiod on the semen quality of the ram, Livestock Production Science, 1979.

T. Lindahl, Instability and decay of the primary structure of DNA, Nature, vol.362, p.70915, 1993.

M. Aye, D. Giorgio, C. , D. Mo, M. Botta et al., Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: Dimethyl sulfoxide, ethylene glycol and propylene glycol, Food and Chemical Toxicology, vol.48, 2010.

R. G. Nelson, C. Johnson, and W. , Conformation of DNA in ethylene glycol, Biochemical and Biophysical Research Communications, vol.41, p.2116, 1970.

A. M. Schwartz and G. D. Fasman, Thermal denaturation of chromatin and lysine copolymer-DNA complexes. Effects of ethylene glycol, Biopolymers, vol.18, p.104563, 1979.

W. Hu, D. Marchesi, J. Qiao, and H. L. Feng, Effect of slow freeze versus vitrification on the oocyte: an animal model, Fertility and Sterility, vol.98, pp.752-760, 2012.

S. Nakanishi, S. Adhya, M. Gottesman, and I. Pastan, Activation of Transcription at Specific Promoters by Glycerol, J Biol Chem, vol.249, p.40506, 1974.

R. Fernández-gonzalez, P. N. Moreira, M. Pérez-crespo, M. Sánchez-martín, M. A. Ramirez et al., Long-Term Effects of Mouse Intracytoplasmic Sperm Injection with DNAFragmented Sperm on Health and Behavior of Adult Offspring, Biol Reprod, vol.78, p.76172, 2008.

M. Tachataki, R. Winston, and D. M. Taylor, Quantitative RT-PCR reveals tuberous sclerosis gene, TSC2, mRNA degradation following cryopreservation in the human preimplantation embryo, Mol Hum Reprod, vol.9, p.593601, 2003.

S. Y. Park, E. Y. Kim, X. S. Cui, J. C. Tae, W. D. Lee et al., Increase in DNA fragmentation and apoptosis-related gene expression in frozen-thawed bovine blastocysts, Zygote, vol.14, p.12531, 2006.

M. G. Larman, M. G. Katz-jaffe, B. Mccallie, J. A. Filipovits, and D. K. Gardner, Analysis of global gene expression following mouse blastocyst cryopreservation, Hum Reprod, vol.26, p.267280, 2011.

M. D. Saenz-de-juano, F. Marco-jiménez, D. S. Peñaranda, T. Joly, and J. S. Vicente, Effects of Slow Freezing Procedure on Late Blastocyst Gene Expression and Survival Rate in Rabbit, Biol Reprod, vol.87

L. Shaw, S. F. Sneddon, D. R. Brison, and S. J. Kimber, Comparison of gene expression in fresh and frozenthawed human preimplantation embryos, Reproduction, vol.144, p.56982, 2012.

R. M. Rivera, P. Stein, J. R. Weaver, J. Mager, R. M. Schultz et al., Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development, Hum Mol Genet, vol.17, p.114, 2008.

R. Gosden, J. Trasler, D. Lucifero, and M. Faddy, Rare congenital disorders, imprinted genes, and assisted reproductive technology, The Lancet, vol.361, 2003.

J. M. Davis, S. D. Rowley, H. G. Braine, S. Piantadosi, and G. W. Santos, Clinical toxicity of cryopreserved bone marrow graft infusion, Blood, vol.75, p.7816, 1990.

S. Thirumala, W. S. Goebel, and E. J. Woods, Clinical grade adult stem cell banking, Organogenesis, vol.5, p.14354, 2009.

P. Windrum and T. Morris, Severe neurotoxicity because of dimethyl sulphoxide following peripheral blood stem cell transplantation, Bone Marrow Transplantation, vol.31, p.315, 2003.

J. F. Abrahamsen, A. M. Bakken, and Ø. Bruserud, Cryopreserving human peripheral blood progenitor cells with 5-percent rather than 10-percent DMSO results in less apoptosis and necrosis in CD34+ cells, Transfusion, vol.42, pp.1573-1580, 2002.

E. P. Alessandrino, P. Bernasconi, D. Caldera, A. Colombo, M. Bonfichi et al., Adverse events occurring during bone marrow or peripheral blood progenitor cell infusion: analysis of 126 cases, Bone Marrow Transplantation, vol.23, p.5337, 1999.

M. Benekli, B. Anderson, D. Wentling, S. Bernstein, M. Czuczman et al., Severe respiratory depression after dimethylsulphoxide-containing autologous stem cell infusion in a patient with AL amyloidosis, Bone Marrow Transplantation, vol.25, p.1299301, 2000.

C. Morris, . Wreede-l-de, M. Scholten, R. Brand, . Biezen-a-van et al., Should the standard dimethyl sulfoxide concentration be reduced? Results of a European Group for Blood and Marrow Transplantation prospective noninterventional study on usage and side effects of dimethyl sulfoxide, Transfusion, vol.54, p.251422, 2014.

N. H. Choulis and J. K. Aronson, Miscellaneous drugs and materials, medical devices, and techniques. In: Aronson JK, éditeur. Side Effects of Drugs Annual, p.587601, 2005.

B. Linderoth and G. Lind, Chapter 123 -Retrogasserian Glycerol Rhizolysis in Trigeminal Neuralgia, Quiñones-Hinojosa A, éditeur. Schmidek and Sweet Operative Neurosurgical Techniques, p.1393408

J. D. Svalgaard, M. S. Talkhoncheh, E. K. Haastrup, L. Munthe-fog, C. Clausen et al.,

. Pentaisomaltose, Engraftment of Cryopreserved Human CD34+ Cells in Immunodeficient NSG Mice, Pentaisomaltose, an Alternative to DMSO. Engraftment of Cryopreserved Human CD34+ Cells in Immunodeficient NSG Mice, Cell Transplant, p.0963689718786226, 2018.

, Bielanski A. A review of the risk of contamination of semen and embryos during cryopreservation and measures to limit cross-contamination during banking to prevent disease transmission in ET practices, OIE. Code sanitaire pour les animaux terrestres, vol.77, p.46782, 2012.

R. Tedeschi and P. D. Paoli, Collection and Preservation of Frozen Microorganisms, Methods in Biobanking

, , p.31326, 2011.

R. S. Tedder, R. J. Gilson, M. Briggs, C. Loveday, C. H. Cameron et al., Hepatitis C virus: evidence for sexual transmission, BMJ, vol.302, p.1299302, 1991.

C. Wallis and J. L. Melnick, Stabilization of enveloped viruses by dimethyl sulfoxide, J Virol, vol.2, p.9534, 1968.

A. Bielanski, S. Nadin-davis, T. Sapp, and C. Lutze-wallace, Viral Contamination of Embryos Cryopreserved in Liquid Nitrogen, Cryobiology, vol.40, p.1106, 2000.

A. Bielanski, H. Bergeron, P. Lau, and J. Devenish, Microbial contamination of embryos and semen during long term banking in liquid nitrogen, Cryobiology, vol.46, p.14652, 2003.

F. Mazzilli, M. Delfino, N. Imbrogno, J. Elia, and F. Dondero, Survival of Micro-organisms in Cryostorage of Human Sperm, Cell and Tissue Banking, vol.7, p.759, 2006.

H. Glander, M. Rytter, L. Baumann, and C. Schönborn, Risk of Transmission of Sexually Transmitted Diseases by Cryopreserved Semen, Andrologia, vol.18, p.3235, 2009.

Y. Miyamoto-shinohara, T. Imaizumi, J. Sukenobe, Y. Murakami, S. Kawamura et al., Survival Rate of Microbes after Freeze-Drying and Long-Term Storage, Cryobiology, vol.41, p.2515, 2000.

P. Thorsen, B. R. Møller, L. Halkier-sørensen, E. From, and N. C. Nielsen, Survival of chlamydiae in human semen prepared for artificial insemination by donor, Acta Obstetricia et Gynecologica Scandinavica, vol.70, p.1335

Y. Pannekoek, S. M. Westenberg, J. De-vries, S. Repping, L. Spanjaard et al., PCR Assessment of Chlamydia trachomatis Infection of Semen Specimens Processed for Artificial Insemination, J Clin Microbiol, vol.38, p.37637, 2000.

J. Mitra, S. Chowdhury, S. Panda, M. Chakraborty, and A. Singha, Microbiological evaluation of bovine frozen semen samples in west bengal, india. Explor Anim Med Res, vol.6, p.18591, 2016.

N. Júnior, G. Megid, J. Mathias, L. A. Paulin, L. Vicente et al., Performance of microbiological, serological, molecular, and modified seminal plasma methods in the diagnosis of Brucella abortus in semen and serum of bovine bulls, Biologicals, 2017.

D. Sur,

V. Hoyos-marulanda, K. L. Goularte, K. R. Martins, F. Voloski, J. Redü et al., Bacterial resistance to antibiotics commonly included in extenders for cryopreserved bull semen, Animal Reproduction, vol.14, p.225225, 2017.

G. N. Clarke, Sperm cryopreservation: is there a significant risk of cross-contamination?, Hum Reprod, vol.14, p.29413, 1999.

M. S. Even, C. B. Sandusky, and N. D. Barnard, Serum-free hybridoma culture: ethical, scientific and safety considerations, Trends in Biotechnology, vol.24, p.1058, 2006.

G. H. Perry, Risk assessment of transmission of bovine viral diarrhea virus (BVDV) in abattoirderived in vitro produced embryos, Theriogenology, vol.68, p.3855, 2007.

D. M. Taylor, Inactivation of Transmissible Degenerative Encephalopathy Agents: A Review, The Veterinary Journal, vol.159, p.107, 2000.

R. W. Nims, G. Gauvin, and M. Plavsic, Gamma irradiation of animal sera for inactivation of viruses and mollicutes -A review, Biologicals, vol.39, p.3707, 2011.

S. Bousseau, J. P. Brillard, B. Marquant-le-guienne, B. Guérin, A. Camus et al., Comparison of bacteriological qualities of various egg yolk sources and the in vitro and in vivo fertilizing potential of bovine semen frozen in egg yolk or lecithin based diluents, Theriogenology, vol.50, p.699706, 1998.

J. Kim, H. Lee, H. Choi, J. Kim, I. Chu et al., Heterogeneous Niche Activity of Ex-Vivo Expanded MSCs as Factor for Variable Outcomes in Hematopoietic Recovery, PLOS ONE, vol.11, p.168036, 2016.

P. Bruyère, A. Baudot, C. Guyader-joly, P. Guérin, G. Louis et al., Improved cryopreservation of in vitro-produced bovine embryos using a chemically defined freezing medium, Theriogenology, vol.78, p.1294302, 2012.

P. Bruyère, A. Baudot, T. Joly, L. Commin, E. Pillet et al., A Chemically Defined Medium for Rabbit Embryo Cryopreservation, PLOS ONE, vol.8, p.71547, 2013.

R. Kulaks?z, Ç. Çebi, E. Akçay, and A. Da?k?n, The protective effect of egg yolk from different avian species during the cryopreservation of Karayaka ram semen, Small Ruminant Research, vol.88, p.125, 2010.

M. Gholami, Z. Faraji, and M. J. Zamiri, Effect of egg yolk of four avian species on the cryopreserved ram spermatozoa, Iranian Journal of Veterinary Research, vol.13, p.237, 2012.

S. Akhter, B. A. Rakha, M. S. Ansari, A. U. Husna, S. Iqbal et al., Evaluation of quail and turkey egg yolk for cryopreservation of Nili-Ravi buffalo bull semen, Theriogenology, vol.87, p.25965, 2017.

V. A. Aires, K. Hinsch, F. Mueller-schloesser, K. Bogner, S. Mueller-schloesser et al., In vitro and in vivo comparison of egg yolk-based and soybean lecithin-based extenders for cryopreservation of bovine semen, Theriogenology, vol.60, p.26979, 2003.

R. Vishwanath and P. Shannon, Storage of bovine semen in liquid and frozen state, Animal Reproduction Science, vol.62, p.2353, 2000.

T. Pini, J. P. Rickard, T. Leahy, B. Crossett, X. Druart et al., Cryopreservation and egg yolk medium alter the proteome of ram spermatozoa, Journal of Proteomics, vol.181, p.7382, 2018.

A. Sarnowska, A. Jablonska, M. Jurga, M. Dainiak, L. Strojek et al., Encapsulation of Mesenchymal Stem Cells by Bioscaffolds Protects Cell Survival and Attenuates Neuroinflammatory Reaction in Injured Brain Tissue after Transplantation, Cell Transplantation, vol.22, p.6782, 2013.

M. Jurga, N. Forraz, C. Basford, G. Atzeni, A. J. Trevelyan et al., Neurogenic Properties and a Clinical Relevance of Multipotent Stem Cells Derived from Cord Blood Samples Stored in the Biobanks, Stem Cells and Development, vol.21, p.92336, 2012.

A. A. Mueller, N. Forraz, S. Gueven, G. Atzeni, O. Degoul et al., Osteoblastic Differentiation of Wharton Jelly Biopsy Specimens and Their Mesenchymal Stromal Cells after Serum-Free Culture: Plastic and Reconstructive Surgery, vol.134, pp.59-69, 2014.

M. Ducret, H. Fabre, J. Farges, O. Degoul, G. Atzeni et al., Production of Human Dental Pulp Cells with a Medicinal Manufacturing Approach, J Endod, vol.41, p.14929, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02132058

R. L. Biltonen and D. Lichtenberg, The use of differential scanning calorimetry as a tool to characterize liposome preparations, Chemistry and Physics of Lipids, vol.64, p.12942, 1993.

C. Demetzos, Differential Scanning Calorimetry (DSC): A Tool to Study the Thermal Behavior of Lipid Bilayers and Liposomal Stability, Journal of Liposome Research, vol.18, p.15973, 2008.

M. H. Chiu and E. J. Prenner, Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions, J Pharm Bioallied Sci, vol.3, p.3959, 2011.

P. Salvetti, T. Joly, and A. Baudot, Effect of antibiotics on thermodynamic properties of freezing media in rabbit species: A first calorimetric approach, Cryobiology, vol.53, p.26875, 2006.

R. V. Devireddy, D. J. Swanlund, T. Olin, W. Vincente, M. Troedsson et al., Cryopreservation of Equine Sperm: Optimal Cooling Rates in the Presence and Absence of Cryoprotective Agents Determined Using Differential Scanning Calorimetry, Biol Reprod, vol.66, p.22231, 2002.

S. Seki, F. W. Kleinhans, and P. Mazur, Intracellular ice formation in yeast cells vs. cooling rate: Predictions from modeling vs. experimental observations by differential scanning calorimetry, Cryobiology, vol.58, p.15765, 2009.

S. Clas, C. R. Dalton, and B. C. Hancock, Differential scanning calorimetry: applications in drug development, Pharmaceutical Science & Technology Today, vol.2, p.31120, 1999.

V. M. Odagescu, Etudes liées à la vitrification sans fracture de solutions cryoprotectrices, 2005.

M. Abidalla and P. F. Roversi, Vitrification Assessment: Thermal Analysis of Cryoprotective Aqueous Solutions 1,2 Propanediol and Ethylene Glycol, Biopreservation and Biobanking, vol.16, p.20716, 2018.

J. F. Peyridieu, A. Baudot, P. Boutron, J. Mazuer, O. J. Ray et al., Critical Cooling and Warming Rates to Avoid Ice Crystallization in Small Pieces of Mammalian Organs Permeated with Cryoprotective Agents, Cryobiology, vol.33, p.43646, 1996.

T. Nishigaki, Y. Teramura, A. Nasu, K. Takada, J. Toguchida et al., Highly efficient cryopreservation of human induced pluripotent stem cells using a dimethyl sulfoxide-free solution, Int J Dev Biol, vol.55, p.30511, 2011.

A. Ota, K. Matsumura, J. Lee, S. Sumi, and S. Hyon, StemCell Keep TM is Effective for Cryopreservation of Human Embryonic Stem Cells by Vitrification, Cell Transplantation, vol.26, p.77387, 2017.

R. V. Devireddy, D. J. Swanlund, K. P. Roberts, and J. C. Bischof, Subzero Water Permeability Parameters of Mouse Spermatozoa in the Presence of Extracellular Ice and Cryoprotective Agents, Biol Reprod, vol.61, p.76475, 1999.

R. V. Devireddy, The effect of extracellular ice and cryoprotective agents on the water permeability parameters of human sperm plasma membrane during freezing, Human Reproduction, vol.15, p.112535, 2000.

R. Alapati, K. Goff, H. M. Kubisch, and R. V. Devireddy, Water transport in epididymal and ejaculated rhesus monkey (Macaca mulatta) sperm during freezing, Cryobiology, vol.57, p.1825, 2008.

S. Thirumala, M. S. Ferrer, A. , A. Eilts, B. E. Paccamonti et al., Cryopreservation of canine spermatozoa: theoretical prediction of optimal cooling rates in the presence and absence of cryoprotective agents, Cryobiology, vol.47, p.10924, 2003.

R. V. Devireddy, B. Fahrig, R. A. Godke, and S. P. Leibo, Subzero water transport characteristics of boar spermatozoa confirm observed optimal cooling rates. Molecular Reproduction and Development, vol.67, p.44657, 2004.

D. Pinisetty, C. Huang, Q. Dong, T. R. Tiersch, and R. V. Devireddy, Subzero water permeability parameters and optimal freezing rates for sperm cells of the southern platyfish, Xiphophorus maculatus, Cryobiology, vol.50, p.25063, 2005.

S. Thirumala, C. Huang, Q. Dong, T. R. Tiersch, and R. V. Devireddy, A theoretically estimated optimal cooling rate for the cryopreservation of sperm cells from a live-bearing fish, the green swordtail Xiphophorus helleri, Theriogenology, vol.63, p.2395415, 2005.

R. V. Devireddy, W. T. Campbell, J. T. Buchanan, and T. R. Tiersch, Freezing response of white bass (Morone chrysops) sperm cells, Cryobiology, vol.52, p.4405, 2006.

S. Thirumala, W. T. Campbell, M. R. Vicknair, T. R. Tiersch, and R. V. Devireddy, Freezing response and optimal cooling rates for cryopreserving sperm cells of striped bass, Morone saxatilis, Theriogenology, vol.66, p.96473, 2006.

R. V. Devireddy, G. Li, and S. P. Leibo, Suprazero cooling conditions significantly influence subzero permeability parameters of mammalian ovarian tissue. Molecular Reproduction and Development, vol.73, p.33041, 2005.

T. Gidenne, Le lapin, de la biologie à l'élevage. Quae, 2015.

D. Boussit, Reproduction et insémination artificielle en cuniculture, 1989.

D. Sur,

I. David, P. Kohnke, G. Lagriffoul, O. Praud, F. Plouarboué et al., Mass sperm motility is associated with fertility in sheep, Animal Reproduction Science, vol.161, p.7581, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01228837

M. Albert, J. Auer, J. Auger, M. De-almeida, E. Dulioust et al., Exploration de la fonction de reproduction versant masculin

, BIOFORMA Formation continue des biologistes, 2009.

B. C. Dunphy, R. Kay, C. Barratt, and I. D. Cooke, Quality Control During the Conventional Analysis of Semen, An Essential Exercise, Journal of Andrology, vol.10, p.37885, 1989.

R. P. Amann and D. Waberski, Computer-assisted sperm analysis (CASA): Capabilities and potential developments, Theriogenology, vol.81, pp.5-17, 2014.

J. Lammers, C. Splingart, P. Barrière, M. Jean, and T. Fréour, Double-blind prospective study comparing two automated sperm analyzers versus manual semen assessment, J Assist Reprod Genet, vol.31, p.3543, 2014.

J. Auger, F. Eustache, B. Ducot, T. Blandin, M. Daudin et al., Intra-and inter-individual variability in human sperm concentration, motility and vitality assessment during a workshop involving ten laboratories, Hum Reprod, vol.15, p.23608, 2000.

J. K. Graham and E. Mocé, Fertility evaluation of frozen/thawed semen, Theriogenology, vol.64, p.492504, 2005.

L. Björndahl, I. Söderlund, and U. Kvist, Evaluation of the one-step eosin-nigrosin staining technique for human sperm vitality assessment, Hum Reprod, vol.18, p.8136, 2003.

R. S. Jeyendran, H. Ven, . Der, M. Perez-pelaez, B. G. Crabo et al., Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics, J Reprod Fertil, vol.70, p.21928, 1984.

M. Zubair, M. Ahmad, and H. Jamil, Review on the screening of semen by hypo-osmotic swelling test, Andrologia, 2014.

R. S. Jeyendran, H. Ven, . Der, M. Perez-pelaez, B. G. Crabo et al., Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics, J Reprod Fertil, vol.70, p.21928, 1984.

J. K. Graham and E. Mocé, Fertility evaluation of frozen/thawed semen, Theriogenology, vol.64, p.492504, 2005.

D. L. Garner and L. A. Johnson, Viability assessment of mammalian sperm using SYBR-14 and propidium iodide, Biol Reprod, vol.53, p.27684, 1995.

T. Leahy and B. M. Gadella, Sperm surface changes and physiological consequences induced by sperm handling and storage, Reproduction, vol.142, p.75978, 2011.

J. K. Graham, Assessment of sperm quality: a flow cytometric approach, Animal Reproduction Science, vol.68, p.23947, 2001.

S. Nagy, J. Jansen, E. K. Topper, and B. M. Gadella, A Triple-Stain Flow Cytometric Method to Assess Plasma-and Acrosome-Membrane Integrity of Cryopreserved Bovine Sperm Immediately after Thawing in Presence of Egg-Yolk Particles, Biol Reprod, vol.68, p.182835, 2003.

X. Ronot, D. Grunwald, J. Mayol, and J. Boutonna, La cytométrie en flux

, Editions Tec & Doc. Editions Tec & Doc, 2006.

D. Sur,

D. L. Garner and C. A. Thomas, Organelle-specific probe JC-1 identifies membrane potential differences in the mitochondrial function of bovine sperm. Molecular Reproduction and Development, vol.53, p.2229, 1999.

F. Martinez-pastor, A. Johannisson, J. Gil, M. Kaabi, L. Anel et al., Use of chromatin stability assay, mitochondrial stain JC-1, and fluorometric assessment of plasma membrane to evaluate frozen-thawed ram semen, Animal Reproduction Science, vol.84, p.12133, 2004.

T. Kasai, K. Ogawa, K. Mizuno, S. Nagai, Y. Uchida et al., Relationship between sperm mitochondrial membrane potential, sperm motility, and fertility potential, Asian Journal of Andrology, p.97103, 2002.

K. E. Young, W. A. Robbins, L. Xun, D. Elashoff, S. A. Rothmann et al., Evaluation of Chromosome Breakage and DNA Integrity in Sperm: An Investigation of Remote Semen Collection Conditions, Journal of Andrology, vol.24, p.85361, 2013.

H. Rodríguez-martínez, Semen evaluation techniques and their relationship with fertility, Anim Reprod, vol.10, p.14859, 2013.

D. P. Evenson, Z. Darzynkiewicz, and M. R. Melamed, Relation of mammalian sperm chromatin heterogeneity to fertility, Science, vol.210, p.11313, 1980.

J. M. Morrell, A. Johannisson, A. Dalin, L. Hammar, T. Sandebert et al., Sperm morphology and chromatin integrity in Swedish warmblood stallions and their relationship to pregnancy rates, Acta Vet Scand, vol.50, issue.2, 2008.

A. Zini, J. M. Boman, E. Belzile, and A. Ciampi, Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis, Hum Reprod, vol.23, p.26638, 2008.

C. De-jonge, Biological basis for human capacitation-revisited, Hum Reprod Update, vol.23, p.28999, 2017.

M. S. Hossain, A. Johannisson, M. Wallgren, S. Nagy, A. P. Siqueira et al., Flow cytometry for the assessment of animal sperm integrity and functionality: state of the art, Asian J Androl, vol.13, p.40619, 2011.

L. R. Fraser, L. R. Abeydeera, and K. Niwa, Ca2+ Regulating mechanisms that modulate bull sperm capacitation and acrosomal exocytosis as determined by chlortetracycline analysis. Molecular Reproduction and Development, vol.40, p.23341, 1995.

E. Gil-guzman, M. Ollero, M. C. Lopez, R. K. Sharma, J. G. Alvarez et al., Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation, Hum Reprod, vol.16, 2001.

R. R. Henkel, Leukocytes and oxidative stress: dilemma for sperm function and male fertility, Asian J Androl, vol.13, p.4352, 2011.

S. Kim, Y. Kim, and Y. , Apoptosis-like change, ROS, and DNA status in cryopreserved canine sperm recovered by glass wool filtration and Percoll gradient centrifugation techniques, Animal Reproduction Science, vol.119, p.10614, 2010.

J. Gadea, D. Gumbao, B. Gómez-giménez, and J. C. Gardón, Supplementation of the thawing medium with reduced glutathione improves function of frozen-thawed goat spermatozoa, Reproductive Biology, vol.13, p.2433, 2013.

Á. Domínguez-rebolledo, F. Martínez-pastor, M. R. Fernández-santos, E. D. Olmo, A. Bisbal et al., Comparison of the TBARS Assay and BODIPY C11 Probes for Assessing Lipid Peroxidation in Red Deer Spermatozoa, Reproduction in Domestic Animals, vol.45, p.3608, 2010.

R. J. Aitken, Reactive oxygen species as mediators of sperm capacitation and pathological damage

, Mol Reprod Dev, 2017.

A. Ledesma, L. Zalazar, E. Fernández-alegre, F. Hozbor, and A. Cesari, Martínez-Pastor F. Seminal plasma proteins modify the distribution of sperm subpopulations in cryopreserved semen of rams with lesser fertility, Animal Reproduction Science, 2017.

D. Sur,

I. Barrier-battut, A. Kempfer, J. Becker, L. Lebailly, S. Camugli et al., Development of a new fertility prediction model for stallion semen, including flow cytometry, Theriogenology, vol.86, p.111131, 2016.

E. Sellem, M. Broekhuijse, L. Chevrier, S. Camugli, E. Schmitt et al., Use of combinations of in vitro quality assessments to predict fertility of bovine semen, Theriogenology, vol.84, pp.1447-1454, 2015.

I. David, P. Kohnke, J. Fehrenbach, A. Simoes, E. Debreuve et al., New objective measurements of semen wave motion are associated with fertility in sheep, Reprod Fertil Dev, vol.30, p.88996, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01808988

P. Santolaria, S. Vicente-fiel, I. Palacín, E. Fantova, M. E. Blasco et al., Predictive capacity of sperm quality parameters and sperm subpopulations on field fertility after artificial insemination in sheep, Animal Reproduction Science, vol.163, p.828, 2015.

C. M. O'-meara, J. P. Hanrahan, N. S. Prathalingam, J. S. Owen, A. Donovan et al., Relationship between in vitro sperm functional tests and in vivo fertility of rams following cervical artificial insemination of ewes with frozen-thawed semen, Theriogenology, vol.69, p.51322, 2008.

D. Olmo, E. Bisbal, A. Maroto-morales, A. García-alvarez, O. Ramon et al., Fertility of cryopreserved ovine semen is determined by sperm velocity, Animal Reproduction Science, vol.138, p.1029, 2013.

A. Januskauskas, A. Johannisson, L. Söderquist, and H. Rodriguez-martinez, Assessment of sperm characteristics post-thaw and response to calcium ionophore in relation to fertility in Swedish dairy AI bulls, Theriogenology, vol.53, p.85975, 2000.

L. Gillan, G. Evans, and W. Maxwell, Flow cytometric evaluation of sperm parameters in relation to fertility potential, Theriogenology, vol.63, p.44557, 2005.

A. M. Petrunkina and E. Töpfer-petersen, Heterogeneous osmotic behaviour in boar sperm populations and its relevance for detection of changes in plasma membrane, Reprod Fertil Dev, vol.12, p.297305, 2000.

X. Druart, J. Gatti, S. Huet, J. Dacheux, and P. Humblot, Hypotonic resistance of boar spermatozoa: sperm subpopulations and relationship with epididymal maturation and fertility, Reproduction, vol.137, p.20513, 2009.

R. Asadpour, S. M. Alavi-shoushtari, S. A. Rezaii, and M. Ansari, SDS-polyacrylamide gel electrophoresis of buffalo bulls seminal plasma proteins and their relation with semen freezability, Animal Reproduction Science, vol.102, p.30813, 2007.

J. P. Rickard, T. Leahy, C. Soleilhavoup, G. Tsikis, V. Labas et al., The identification of proteomic markers of sperm freezing resilience in ram seminal plasma, Journal of Proteomics, vol.126, p.30311, 2015.

J. Dacheux, F. Dacheux, and X. Druart, Epididymal protein markers and fertility, Animal Reproduction Science, vol.169, p.7687, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01406209

S. P. Leibo and N. Songsasen, Cryopreservation of gametes and embryos of non-domestic species, Theriogenology, vol.57, p.30326, 2002.

E. Mocé, E. Blanch, A. Talaván, and M. P. Viudes-de-castro, Reducing the time rabbit sperm are held at 5 °C negatively affects their fertilizing ability after cryopreservation, Theriogenology, vol.82, p.104953, 2014.

M. Mehdipour, D. Kia, H. Nazari, M. Najafi, and A. , Effect of lecithin nanoliposome or soybean lecithin supplemented by pomegranate extract on post-thaw flow cytometric, microscopic and oxidative parameters in ram semen, Cryobiology, 2017.

D. Sur,

S. Salamon and W. Maxwell, Storage of ram semen, Animal Reproduction Science, vol.62, p.77111, 2000.

R. Masoudi, Z. Shahneh, A. Towhidi, A. Kohram, H. Akbarisharif et al., Fertility response of artificial insemination methods in sheep with fresh and frozen-thawed semen, Cryobiology, vol.74, p.7780, 2017.

M. J. Palomo, W. García, and A. Tabarez, Effect of seminal plasma and butylated hydroxytoluene (BHT) concentration on ram sperm freezability, Small Ruminant Research, vol.153, p.6670, 2017.

G. Stradaioli, T. Noro, L. Sylla, and M. Monaci, Decrease in glutathione (GSH) content in bovine sperm after cryopreservation: Comparison between two extenders, Theriogenology, vol.67, p.124955, 2007.

L. Gillan, T. Kroetsch, C. Maxwell, W. M. Evans, and G. , Assessment of in vitro sperm characteristics in relation to fertility in dairy bulls, Animal Reproduction Science, vol.103, 2008.

R. Muiño, M. M. Rivera, T. Rigau, J. E. Rodriguez-gil, and A. I. Peña, Effect of different thawing rates on post-thaw sperm viability, kinematic parameters and motile sperm subpopulations structure of bull semen, Animal Reproduction Science, vol.109, p.5064, 2008.

R. Muiño, A. I. Peña, A. Rodríguez, C. Tamargo, and C. O. Hidalgo, Effects of cryopreservation on the motile sperm subpopulations in semen from Asturiana de los Valles bulls, Theriogenology, vol.72, p.8608, 2009.

J. Beran, L. Stádník, J. Bezdí?ek, F. Louda, J. ?ítek et al., Effect of sire and extender on sperm motility and share of live or dead sperm in bulls' fresh ejaculate and in AI doses after thawing, Archives Animal Breeding, vol.55, p.20718, 2012.

M. Ferraz, R. Morató, M. Yeste, N. Arcarons, A. I. Pena et al., Evaluation of sperm subpopulation structure in relation to in vitro sperm-oocyte interaction of frozen-thawed semen from Holstein bulls, Theriogenology, vol.81, p.106772, 2014.

S. Sar?özkan, M. N. Bucak, P. B. Tuncer, S. Büyükleblebici, A. Eken et al., Influence of fetuin and hyaluronan on the post-thaw quality and fertilizing ability of Holstein bull semen, Cryobiology, vol.71, p.11924, 2015.

M. Hernández, J. Roca, M. A. Gil, J. M. Vázquez, and E. A. Martínez, Adjustments on the cryopreservation conditions reduce the incidence of boar ejaculates with poor sperm freezability, Theriogenology, vol.67, p.143645, 2007.

S. S. Layek, T. K. Mohanty, A. Kumaresan, and J. E. Parks, Cryopreservation of bull semen: Evolution from egg yolk based to soybean based extenders, Animal Reproduction Science, vol.172, p.19, 2016.

T. Miki, W. Wong, E. Zhou, A. Gonzalez, I. Garcia et al., Biological impact of xeno-free chemically defined cryopreservation medium on amniotic epithelial cells, Stem Cell Research & Therapy, vol.7, issue.8, 2016.

G. Colas, Effect of initial freezing temperature addition of glycerol and dilution on the survival and fertilizing ability of deep-frozen ram semen, Journal of the Society for Reproduction and Fertility, p.27785, 1975.

M. T. Wessel and B. A. Ball, Step-wise dilution for removal of glycerol from fresh and cryopreserved equine spermatozoa, Animal Reproduction Science, vol.84, p.14756, 2004.

E. F. Graham, B. G. Crabo, and M. M. Pace, Current status of semen preservation in the ram, boar and stallion, J Anim Sci, vol.47, p.80119, 1978.

R. Jerez, N. González, M. Olaciregui, V. Luño, . Blas-i-de et al., Use of soy milk combined with different cryoprotectants for the ram semen cryopreservation, Small Ruminant Research, vol.134, p.348, 2016.

M. García, B. , O. Ferrusola, C. Aparicio, I. M. Miró-morán et al., Toxicity of glycerol for the stallion spermatozoa: Effects on membrane integrity and cytoskeleton, lipid peroxidation and mitochondrial membrane potential, Theriogenology, vol.77, p.12809, 2012.

I. I. Katkov, N. Katkova, J. K. Critser, and P. Mazur, Mouse spermatozoa in high concentrations of glycerol: chemical toxicity vs osmotic shock at normal and reduced oxygen concentrations, Cryobiology, vol.37, pp.325-338, 1998.

E. G. Aisen, V. H. Medina, and A. Venturino, Cryopreservation and post-thawed fertility of ram semen frozen in different trehalose concentrations, Theriogenology, vol.57, p.18018, 2002.

E. Aisen, M. Quintana, V. Medina, H. Morello, and A. Venturino, Ultramicroscopic and biochemical changes in ram spermatozoa cryopreserved with trehalose-based hypertonic extenders, Cryobiology, vol.50, p.23949, 2005.

M. N. Bucak, A. Ate??ahin, Ö. Var??l?, A. Yüce, N. Tekin et al., The influence of trehalose, taurine, cysteamine and hyaluronan on ram semen: Microscopic and oxidative stress parameters after freeze-thawing process, Theriogenology, vol.67, p.10607, 2007.

A. Najafi, M. Zhandi, A. Towhidi, M. Sharafi, A. Sharif et al., Trehalose and glycerol have a dose-dependent synergistic effect on the post-thawing quality of ram semen cryopreserved in a soybean lecithin-based extender, Cryobiology, vol.66, p.27582, 2013.

M. Jafaroghli, B. Khalili, A. Farshad, and M. J. Zamiri, The effect of supplementation of cryopreservation diluents with sugars on the post-thawing fertility of ram semen, Small Ruminant Research, vol.96, p.5863, 2011.

Y. Chen, R. H. Foote, and C. C. Brockett, Effect of Sucrose, Trehalose, Hypotaurine, Taurine, and Blood Serum on Survival of Frozen Bull Sperm, Cryobiology, vol.30, p.42331, 1993.

J. H. Hu, L. S. Zan, X. L. Zhao, Q. W. Li, Z. L. Jiang et al., Effects of trehalose supplementation on semen quality and oxidative stress variables in frozen-thawed bovine semen, Journal of Animal Science, vol.88, p.165762, 2010.

R. I. El-sheshtawy, G. A. Sisy, and W. S. El-nattat, Effects of different concentrations of sucrose or trehalose on the post-thawing quality of cattle bull semen, Asian Pacific Journal of Reproduction, vol.4, p.2631, 2015.

P. H. Phillips and H. A. Lardy, A Yolk-Buffer Pabulum for the Preservation of Bull Semen1, Journal of Dairy Science, vol.23, p.399404, 1940.

A. Bergeron and P. Manjunath, New insights towards understanding the mechanisms of sperm protection by egg yolk and milk, Mol Reprod Dev, vol.73, p.133844, 2006.

P. Manjunath, New insights into the understanding of the mechanism of sperm protection by extender components, Animal Reproduction Science, vol.9, pp.809-815, 2012.

M. Moussa, V. Martinet, A. Trimeche, D. Tainturier, and A. M. , Low density lipoproteins extracted from hen egg yolk by an easy method: cryoprotective effect on frozen-thawed bull semen, Theriogenology, vol.57, p.1695706, 2002.

L. Amirat, D. Tainturier, L. Jeanneau, C. Thorin, O. Gérard et al., Bull semen in vitro fertility after cryopreservation using egg yolk LDL: a comparison with Optidyl®, a commercial egg yolk extender, Theriogenology, vol.61, p.895907, 2004.

E. .. Pillet and . France, Mise au point d'un milieu pour la cryopréservation de la semence équine et mécanismes de cryoprotection impliqués, 2008.

B. J. Macdonald and J. A. Foulkes, A spectrofluorometric investigation, using 1-anilino-naphthalene-8-sulphonate, of the interaction between washed bovine spermatozoa and seminal plasma or egg-yolk lipoprotein, J Reprod Fertil, vol.63, p.40714, 1981.

P. J. Quinn, P. Chow, and I. G. White, Evidence that phospholipid protects ram spermatozoa from cold shock at a plasma membrane site, J Reprod Fertil, vol.60, p.4037, 1980.

J. K. Graham and R. H. Foote, Effect of several lipids, fatty acyl chain length, and degree of unsaturation on the motility of bull spermatozoa after cold shock and freezing, Cryobiology, vol.24, p.4252, 1987.

M. Lusignan, A. Bergeron, M. Lafleur, and P. Manjunath, The Major Proteins of Bovine Seminal Plasma Interact with Caseins and Whey Proteins of Milk Extender, Biol Reprod, vol.85, p.45764, 2011.

G. Plante and P. Manjunath, Epididymal Binder of SPerm genes and proteins: what do we know a decade later?, Andrology, vol.3, p.81724, 2015.

N. Srivastava, S. Srivastava, S. Ghosh, A. Jerome, G. Das et al., Sequestration of PDC-109 Protein by Specific Antibodies and Egg Yolk Cryoprotects Bull Spermatozoa, Reprod Domest Anim, vol.48, p.72431, 2013.

J. Fan, J. Lefebvre, and P. Manjunath, Bovine seminal plasma proteins and their relatives: A new expanding superfamily in mammals, Gene, vol.375, p.6374, 2006.

P. Manjunath, J. Lefebvre, P. S. Jois, J. Fan, and M. W. Wright, New Nomenclature for Mammalian BSP Genes, Biol Reprod, vol.80, p.3947, 2009.

P. Manjunath, V. Nauc, A. Bergeron, and M. Ménard, Major Proteins of Bovine Seminal Plasma Bind to the Low-Density Lipoprotein Fraction of Hen's Egg Yolk, Biol Reprod, vol.67, p.12508, 2002.

B. Barrios, R. Pérez-pé, M. Gallego, A. Tato, J. Osada et al., Seminal plasma proteins revert the cold-shock damage on ram sperm membrane, Biology of reproduction, vol.63, pp.1531-1537, 2000.

A. Bernardini, F. Hozbor, E. Sanchez, M. W. Fornés, R. H. Alberio et al., Conserved ram seminal plasma proteins bind to the sperm membrane and repair cryopreservation damage, Theriogenology, vol.76, p.43647, 2011.

T. Pini, K. Farmer, X. Druart, A. P. Teixeira-gomes, G. Tsikis et al., Binder of Sperm Proteins protect ram spermatozoa from freeze-thaw damage, Cryobiology

D. Sur,

D. White and I. , Influence of the cholesterol content of mammalian spermatozoa on susceptibility to cold-shock, 1977.

T. Pini, S. P. De-graaf, X. Druart, G. Tsikis, V. Labas et al., Binder of Sperm Proteins 1 and 5 have contrasting effects on the capacitation of ram spermatozoa, Biology of Reproduction, vol.98, p.76575, 2018.

L. Amirat, A. M. Tainturier, D. Chatagnon, G. Battut, I. Courtens et al., Modifications of bull spermatozoa induced by three extenders: Biociphos, low density lipoprotein and Triladyl, before, during and after freezing and thawing, Reproduction, vol.129, p.53543, 2005.

J. Gil, N. Lundeheim, and L. Söderquist, Rodrí guez-Martí nez H. Influence of extender, temperature, and addition of glycerol on post-thaw sperm parameters in ram semen, Theriogenology, vol.59, p.124155, 2003.

J. Gil, L. Söderquist, and H. Rodriguez-martinez, Influence of centrifugation and different extenders on post-thaw sperm quality of ram semen, Theriogenology, vol.54, p.93108, 2000.

V. A. Aires, K. Hinsch, F. Mueller-schloesser, K. Bogner, S. Mueller-schloesser et al., In vitro and in vivo comparison of egg yolk-based and soybean lecithin-based extenders for cryopreservation of bovine semen, Theriogenology, vol.60, p.26979, 2003.

T. Khalifa, A. Lymberopoulos, and E. Theodosiadou, Association of soybean-based extenders with field fertility of stored ram (Ovis aries) semen: A randomized double-blind parallel group design, Theriogenology, vol.79, p.51727, 2013.

M. Sharafi, M. Zhandi, A. Sharif, and A. , Supplementation of soybean lecithin-based semen extender by antioxidants: complementary flow cytometric study on post-thawed ram spermatozoa, Cell and Tissue Banking, vol.16, p.2619, 2015.

M. B. Toker, S. Alcay, E. Gokce, and B. Ustuner, Cryopreservation of ram semen with antioxidant supplemented soybean lecithin-based extenders and impacts on incubation resilience, Cryobiology, vol.72, p.2059, 2016.

I. Lima-verde, A. Johannisson, T. Ntallaris, E. Al-essawe, A. et al., Effect of freezing bull semen in two non-egg yolk extenders on post-thaw sperm quality, Reprod Dom Anim, vol.110, 2017.

D. Valle, I. Gómez-durán, A. Holt, W. V. Muiño-blanco, T. Cebrián-pérez et al., Soy Lecithin Interferes With Mitochondrial Function in Frozen-Thawed Ram Spermatozoa, Journal of Andrology, vol.33, p.71725, 2012.

D. Valle-si, A. Casao, R. Perez-pe, W. V. Holt, C. Perez et al., Seminal Plasma Proteins Prevent Detrimental Effects of Ram Sperm Cryopreservation and Enhance the Protective Effect of Lecithin, Biochemistry & Analytical Biochemistry, 2017.

R. Thun, M. Hurtado, and J. F. , Comparison of Biociphos-Plus® and TRIS-egg yolk extender for cryopreservation of bull semen, Theriogenology, vol.57, p.108794, 2002.

T. Röpke, H. Oldenhof, C. Leiding, H. Sieme, H. Bollwein et al., Liposomes for cryopreservation of bovine sperm, Theriogenology, vol.76, p.146572, 2011.

M. S. Ansari, B. A. Rakha, S. Akhter, and M. Ashiq, OPTIXcell improves the postthaw quality and fertility of buffalo bull sperm, Theriogenology, vol.85, p.52832, 2016.

D. D. Lasic, On the thermodynamic stability of liposomes, Journal of Colloid and Interface Science, vol.140, p.3024, 1990.

H. Rodriguez-martinez, P. Tienthai, M. Atikuzzaman, A. Vicente-carrillo, M. Rubér et al., The ubiquitous hyaluronan: Functionally implicated in the oviduct?, Theriogenology, vol.86, p.1826, 2016.

D. K. Gardner and M. Lane, Culture of viable human blastocysts in defined sequential serum-free media, Human Reproduction, vol.13, p.14859, 1998.

X. Lu, M. N. Kamat, L. Huang, and X. Huang, Chemical Synthesis of a Hyaluronic Acid Decasaccharide, J Org Chem, vol.74, p.760817, 2009.

D. K. Gardner, H. Rodriegez-martinez, and M. Lane, Fetal development after transfer is increased by replacing protein with the glycosaminoglycan hyaluronan for mouse embryo culture and transfer, Hum Reprod, vol.14, p.257580, 1999.

T. Joly, M. Nibart, and M. Thibier, Hyaluronic acid as a substitute for proteins in the deep-freezing of embryos from mice and sheep: An in vitro investigation, Theriogenology, vol.37, p.47380, 1992.

K. Suzuki, A. Asano, B. Eriksson, K. Niwa, T. Nagai et al., Capacitation status and in vitro fertility of boar spermatozoa: effects of seminal plasma, cumulus-oocyte-complexesconditioned medium and hyaluronan, International Journal of Andrology, vol.25, p.8493, 2002.

M. Sbracia, J. Grasso, N. Sayme, J. Stronk, and G. Huszar, Hyaluronic acid substantially increases the retention of motility in cryopreserved/thawed human spermatozoa, Hum Reprod, vol.12, 1997.

M. Álvarez-rodriguez, A. Vicente-carrillo, and H. Rodriguez-martinez, Hyaluronan improves neither the long-term storage nor the cryosurvival of liquid-stored CD44-bearing AI boar spermatozoa, Journal of Reproduction and Development, vol.64, p.35160, 2018.

L. Desnoyers and P. Manjunath, Major proteins of bovine seminal plasma exhibit novel interactions with phospholipid, J Biol Chem, vol.267, p.1014955, 1992.

G. J. Killian, D. A. Chapman, and L. A. Rogowski, Fertility-associated proteins in Holstein bull seminal plasma, Biology of Reproduction, vol.49, p.12027, 1993.

M. Jobim, E. R. Oberst, C. G. Salbego, D. O. Souza, V. B. Wald et al., Twodimensional polyacrylamide gel electrophoresis of bovine seminal plasma proteins and their relation with semen freezability, Theriogenology, vol.61, p.25566, 2004.

J. W. Baas, P. C. Molan, and P. Shannon, Factors in seminal plasma of bulls that affect the viability and motility of spermatozoa, J Reprod Fertil, vol.68, p.27580, 1983.

W. Maxwell, G. Evans, S. T. Mortimer, G. L. Gellatly, E. S. Mcphie et al., Normal fertility in ewes after cervical insemination with frozen-thawed spermatozoa supplemented with seminal plasma, Reprod Fertil Dev, vol.11, p.1236, 1999.

A. Ledesma, E. Fernández-alegre, A. Cano, F. Hozbor, F. Martínez-pastor et al., Seminal plasma proteins interacting with sperm surface revert capacitation indicators in frozen-thawed ram sperm, Animal Reproduction Science, vol.173, p.3541, 2016.

C. M. O'meara, A. Donovan, J. P. Hanrahan, P. Duffy, S. Fair et al., Resuspending ram spermatozoa in seminal plasma after cryopreservation does not improve pregnancy rate in cervically inseminated ewes, Theriogenology, vol.67, p.12628, 2007.

T. Leahy, J. I. Marti, G. Evans, and W. Maxwell, Seasonal variation in the protective effect of seminal plasma on frozen-thawed ram spermatozoa, Animal Reproduction Science, vol.119, p.14753, 2010.

M. P. Domínguez, A. Falcinelli, F. Hozbor, E. Sánchez, A. Cesari et al., Seasonal variations in the composition of ram seminal plasma and its effect on frozen-thawed ram sperm, Theriogenology, vol.69, p.56473, 2008.

T. Leahy, G. Evans, W. Maxwell, and J. I. Marti, Seminal plasma proteins do not consistently improve fertility after cervical insemination of ewes with non-sorted or sex-sorted frozen-thawed ram spermatozoa, Reprod Fertil Dev, vol.22, p.60612, 2010.

R. Muiño, C. Tamargo, C. O. Hidalgo, and A. I. Peña, Identification of sperm subpopulations with defined motility characteristics in ejaculates from Holstein bulls: Effects of cryopreservation and between-bull variation, Animal Reproduction Science, vol.109, p.2739, 2008.

F. Saravia, M. Wallgren, A. Johannisson, J. J. Calvete, L. Sanz et al., Exposure to the seminal plasma of different portions of the boar ejaculate modulates the survival of spermatozoa cryopreserved in MiniFlatPacks, Theriogenology, vol.71, p.66275, 2009.

E. Mocé, R. Lavara, and J. Vicente, Effect of Cooling Rate to 5°C, Straw Size and Farm on Fertilizing Ability of Cryopreserved Rabbit Sperm, Reproduction in Domestic Animals, vol.45, p.17, 2010.

E. Mocé, E. Blanch, C. Tomás, and J. Graham, Use of Cholesterol in Sperm Cryopreservation: Present Moment and Perspectives to Future, Reproduction in Domestic Animals, vol.45, p.5766, 2010.

A. I. Moore, E. L. Squires, and J. K. Graham, Adding cholesterol to the stallion sperm plasma membrane improves cryosurvival, Cryobiology, vol.51, p.2419, 2005.

P. H. Purdy and J. K. Graham, Effect of Adding Cholesterol to Bull Sperm Membranes on Sperm Capacitation, the Acrosome Reaction, and Fertility, Biol Reprod, vol.71, p.5227, 2004.

D. Blommaert, T. Franck, I. Donnay, J. Lejeune, J. Detilleux et al., Substitution of egg yolk by a cyclodextrin-cholesterol complex allows a reduction of the glycerol concentration into the freezing medium of equine sperm, Cryobiology, vol.72, p.2732, 2016.

R. J. Aitken and M. A. Baker, Oxidative stress, sperm survival and fertility control, Molecular and Cellular Endocrinology, vol.250, p.669, 2006.

C. Malo, L. Gil, N. Gonzalez, F. Martínez, R. Cano et al., Anti-oxidant supplementation improves boar sperm characteristics and fertility after cryopreservation: Comparison between cysteine and rosemary (Rosmarinus officinalis), Cryobiology, vol.61, p.1427, 2010.

G. Kalthur, S. Raj, A. Thiyagarajan, S. Kumar, P. Kumar et al., Vitamin E supplementation in semen-freezing medium improves the motility and protects sperm from freeze-thaw-induced DNA damage, Fertility and Sterility, vol.95, p.114951, 2011.

M. N. Bucak, S. Sar?özkan, P. B. Tuncer, P. A. Uluta?, and H. ?. Akçada?, Effect of antioxidants on microscopic semen parameters, lipid peroxidation and antioxidant activities in Angora goat semen following cryopreservation, Small Ruminant Research, vol.81, p.905, 2009.

A. I. Mihajlovi? and A. W. Bruce, The first cell-fate decision of mouse preimplantation embryo development: integrating cell position and polarity, Open Biology, vol.7, p.170210, 2017.

M. Jaber, S. Sebban, and Y. Buganim, Acquisition of the pluripotent and trophectoderm states in the embryo and during somatic nuclear reprogramming, Current Opinion in Genetics & Development, vol.46, p.3743, 2017.

R. Beddington, Histogenetic and neoplastic potential of different regions of the mouse embryonic egg cylinder, Development, vol.75, p.189204, 1983.

R. Osorno, A. Tsakiridis, F. Wong, N. Cambray, C. Economou et al., The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression, Development, vol.139, p.228898, 2012.

K. Takahashi and S. Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, vol.126, p.66376, 2006.

G. R. Martin and M. J. Evans, Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro, Proceedings of the National Academy of Sciences, vol.72, p.14415, 1975.

M. J. Evans and M. H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos, Nature, vol.292, p.1546, 1981.

J. Rossant and P. Tam, New Insights into Early Human Development: Lessons for Stem Cell Derivation and Differentiation, Cell Stem Cell, vol.20, p.1828, 2017.

Y. Sun, H. Li, H. Yang, M. S. Rao, M. Zhan et al., A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo, Nature, vol.16, p.68692, 1990.

S. Masui, Y. Nakatake, Y. Toyooka, D. Shimosato, R. Yagi et al., Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells, Nature Cell Biology, vol.9, p.62535, 2007.

H. Niwa, T. Burdon, I. Chambers, and A. Smith, Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3, Genes Dev, vol.12, p.204860, 1998.

T. Burdon, C. Stracey, I. Chambers, J. Nichols, and A. Smith, Suppression of SHP-2 and ERK Signalling Promotes Self-Renewal of Mouse Embryonic Stem Cells, Developmental Biology, vol.210, p.3043, 1999.

N. Paling, H. Wheadon, H. K. Bone, and M. J. Welham, Regulation of Embryonic Stem Cell Selfrenewal by Phosphoinositide 3-Kinase-dependent Signaling, J Biol Chem, vol.279, p.4806370, 2004.

H. Niwa, K. Ogawa, D. Shimosato, and K. Adachi, A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells, Nature, vol.460, p.11822, 2009.

G. Martello, T. Sugimoto, E. Diamanti, A. Joshi, R. Hannah et al., Esrrb Is a Pivotal Target of the Gsk3/Tcf3 Axis Regulating Embryonic Stem Cell Self-Renewal, Cell Stem Cell, vol.11, p.491504, 2012.

Y. Tapponnier, Cellules souches pluripotentes induites de lapin: caractérisation moléculaire et fonctionnelle des états naïf et amorcé

D. Sur,

Q. Ying, J. Nichols, I. Chambers, and A. Smith, BMP Induction of Id Proteins Suppresses Differentiation and Sustains Embryonic Stem Cell Self-Renewal in Collaboration with STAT3, Cell, vol.115, p.28192, 2003.

Z. Li, T. Fei, J. Zhang, G. Zhu, L. Wang et al., BMP4 Signaling Acts via Dual-Specificity Phosphatase 9 to Control ERK Activity in Mouse Embryonic Stem Cells, Cell Stem Cell, vol.10, p.17182, 2012.

Q. Ying, J. Wray, J. Nichols, L. Batlle-morera, B. Doble et al., The ground state of embryonic stem cell self-renewal, Nature, vol.453, p.51923, 2008.

L. Batlle-morera, A. Smith, and J. Nichols, Parameters influencing derivation of embryonic stem cells from murine embryos, Genesis, vol.46, p.75867, 2008.

M. I. Aladjem, B. T. Spike, L. W. Rodewald, T. J. Hope, M. Klemm et al., ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage, Current Biology, vol.8, p.14555, 1998.

M. Martí, L. Mulero, C. Pardo, C. Morera, M. Carrió et al., Characterization of pluripotent stem cells, Nature Protocols, vol.8, p.22353, 2013.

C. E. Senner and N. Brockdorff, Xist gene regulation at the onset of X inactivation, Current Opinion in Genetics & Development, vol.19, p.1226, 2009.

E. Habibi and H. G. Stunnenberg, Transcriptional and epigenetic control in mouse pluripotency: lessons from in vivo and in vitro studies, Current Opinion in Genetics & Development, vol.46, p.11422, 2017.

A. Bradley, M. Evans, M. H. Kaufman, and E. Robertson, Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines, Nature, vol.309, p.2556, 1984.

S. Pease and R. L. Williams, Formation of germ-line chimeras from embryonic stem cells maintained with recombinant leukemia inhibitory factor, Exp Cell Res, vol.190, p.20911, 1990.

M. Hirabayashi, M. Kato, T. Kobayashi, M. Sanbo, T. Yagi et al., Establishment of rat embryonic stem cell lines that can participate in germline chimerae at high efficiency. Molecular Reproduction and Development, vol.77, p.9494, 2009.

A. Nagy, E. Gocza, E. M. Diaz, V. R. Prideaux, E. Ivanyi et al., Embryonic stem cells alone are able to support fetal development in the mouse, Development, vol.110, p.81521, 1990.

K. Eggan, H. Akutsu, J. Loring, L. Jackson-grusby, M. Klemm et al., Hybrid Vigor, Fetal Overgrowth, and Viability of Mice Derived by Nuclear Cloning and Tetraploid Embryo Complementation, Proceedings of the National Academy of Sciences of the United States of America, vol.98, p.620914, 2001.

K. C. Davidson, E. A. Mason, and M. F. Pera, The pluripotent state in mouse and human, Development, vol.142, p.30909, 2015.

Y. Huang, R. Osorno, A. Tsakiridis, and V. Wilson, In Vivo Differentiation Potential of Epiblast Stem Cells Revealed by Chimeric Embryo Formation, Cell Reports, vol.2, p.15718, 2012.

P. J. Tesar, J. G. Chenoweth, F. A. Brook, T. J. Davies, E. P. Evans et al., New cell lines from mouse epiblast share defining features with human embryonic stem cells, Nature, vol.448, 1969.

K. Hawkins, L. Mohamet, S. Ritson, C. Merry, and C. M. Ward, E-cadherin and, in Its Absence, Ncadherin Promotes Nanog Expression in Mouse Embryonic Stem Cells via STAT3 Phosphorylation, STEM CELLS, vol.30, p.184251, 2012.

C. Bernemann, B. Greber, K. Ko, J. Sterneckert, D. W. Han et al., Distinct Developmental Ground States of Epiblast Stem Cell Lines Determine Different Pluripotency Features, STEM CELLS, vol.29, p.1496503, 2011.

J. Rossant, Stem Cells and Early Lineage Development, Cell, vol.132, p.52731, 2008.

J. Nichols and A. Smith, Naive and Primed Pluripotent States, Cell Stem Cell, vol.4, p.48792, 2009.

K. Debowski, R. Warthemann, J. Lentes, G. Salinas-riester, R. Dressel et al., NonViral Generation of Marmoset Monkey iPS Cells by a Six-Factor-in-One-Vector Approach, PLOS ONE, vol.10, p.118424, 2015.

T. Nakamura, Y. Yabuta, I. Okamoto, K. Sasaki, C. Iwatani et al., Single-cell transcriptome of early embryos and cultured embryonic stem cells of cynomolgus monkeys, Scientific Data, vol.4, p.170067, 2017.

S. N. Brimble, E. S. Sherrer, E. W. Uhl, E. Wang, S. Kelly et al., The Cell Surface Glycosphingolipids SSEA-3 and SSEA-4 Are Not Essential for Human ESC Pluripotency, STEM CELLS, vol.25, p.5462, 2009.

Y. Shen, Y. Matsuno, S. D. Fouse, N. Rao, S. Root et al., X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations, Proc Natl Acad Sci U S A, vol.105, p.470914, 2008.

L. Vallier, M. Alexander, and R. A. Pedersen, Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells, Journal of Cell Science, vol.118, p.4495509, 2005.

B. E. Reubinoff, M. F. Pera, C. Fong, A. Trounson, and A. Bongso, Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro, Nature Biotechnology, vol.18, p.399404, 2000.

B. Fischer, P. Chavatte-palmer, C. Viebahn, A. N. Santos, and V. Duranthon, Rabbit as a reproductive model for human health, Reproduction, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01019868

B. Püschel, N. Daniel, E. Bitzer, M. Blum, J. Renard et al., The rabbit (Oryctolagus cuniculus): a model for mammalian reproduction and early embryology, Cold Spring Harb Protoc, p.139, 2010.

D. Graur, L. Duret, and M. Gouy, Phylogenetic position of the order Lagomorpha (rabbits, hares and allies), Nature, vol.379, p.3335, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00435019

J. Fan and T. Watanabe, Transgenic rabbits as therapeutic protein bioreactors and human disease models, Pharmacology & Therapeutics, vol.99, p.26182, 2003.

V. Duranthon, N. Beaujean, M. Brunner, K. E. Odening, A. N. Santos et al., On the emerging role of rabbit as human disease model and the instrumental role of novel transgenic tools, Transgenic Res, vol.21, p.699713, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01019505

M. Khrouf, O. Morel, A. Hafiz, P. Chavatte-palmer, and H. Fernandez, Evaluation of the rabbit as an experimental model for human uterine synechia, J Hum Reprod Sci, vol.5, p.17580, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01000767

. Menesr, Décret n° 2013-118 du 1er février 2013 relatif à la protection des animaux utilisés à des fins scientifiques

, JORF n°0032 févr 7, p.2199, 2013.

J. Idkowiak, G. Weisheit, J. Plitzner, and C. Viebahn, Hypoblast controls mesoderm generation and axial patterning in the gastrulating rabbit embryo, Dev Genes Evol, vol.214, p.591605, 2004.

C. Manes, The participation of the embryonic genome during early cleavage in the rabbit, Developmental Biology, vol.32, p.4539, 1973.

N. A. Telford, A. J. Watson, and G. A. Schultz, Transition from maternal to embryonic control in early mammalian development: A comparison of several species. Molecular Reproduction and Development, vol.26, p.90100, 1990.

P. K. Nicholls, Z. Sun, S. Heng, Y. Li, J. Wang et al., Embryo implantation is closely associated with dynamic expression of proprotein convertase 5/6 in the rabbit uterus, Reprod Biol Endocrinol, vol.9, p.43, 2011.

N. Kirchhof, J. W. Carnwath, E. Lemme, K. Anastassiadis, H. Schöler et al., Expression Pattern of Oct-4 in Preimplantation Embryos of Different Species, Biol Reprod, vol.63, p.1698705, 2000.

E. W. Kuijk, L. Van-tol, H. Van-de-velde, R. Wubbolts, M. Welling et al., The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos, Development, vol.139, p.87182, 2012.

A. Honda, M. Hirose, M. Hatori, S. Matoba, H. Miyoshi et al., Generation of Induced Pluripotent Stem Cells in Rabbits POTENTIAL EXPERIMENTAL MODELS FOR HUMAN REGENERATIVE MEDICINE, J Biol Chem, vol.285, p.313629, 2010.

P. Osteil, Y. Tapponnier, S. Markossian, M. Godet, B. Schmaltz-panneau et al., Induced pluripotent stem cells derived from rabbits exhibit some characteristics of naïve pluripotency, Biology Open, p.20134242, 2013.

Z. Táncos, C. Nemes, E. Varga, I. Bock, S. Rungarunlert et al., Establishment of a rabbit induced pluripotent stem cell (RbiPSC) line using lentiviral delivery of human pluripotency factors, Stem Cell Research, vol.21, p.168, 2017.

A. Honda, M. Hirose, K. Inoue, N. Ogonuki, H. Miki et al., Stable embryonic stem cell lines in rabbits: potential small animal models for human research, Reproductive BioMedicine Online, vol.17, p.70615, 2008.

S. Wang, X. Tang, Y. Niu, H. Chen, B. Li et al., Generation and Characterization of Rabbit Embryonic Stem Cells, STEM CELLS, vol.25, p.4819, 2007.

A. Honda, M. Hirose, and A. Ogura, Basic FGF and Activin/Nodal but not LIF signaling sustain undifferentiated status of rabbit embryonic stem cells, Experimental Cell Research, vol.315, p.203342, 2009.

Y. Hsieh, P. Intawicha, K. Lee, Y. Chiu, N. Lo et al., LIF and FGF cooperatively support stemness of rabbit embryonic stem cells derived from parthenogenetically activated embryos, Cell Reprogram, vol.13, p.24155, 2011.

N. Lo, P. Intawicha, Y. Chiu, K. Lee, H. Lu et al., Leukemia Inhibitory Factor and Fibroblast Growth Factor 2 Critically and Mutually Sustain Pluripotency of Rabbit Embryonic Stem Cells, Leukemia Inhibitory Factor and Fibroblast Growth Factor 2 Critically and Mutually Sustain Pluripotency of Rabbit Embryonic Stem Cells, Cell Transplant, vol.24, p.31938, 2015.

P. Intawicha, Y. Ou, N. Lo, S. Zhang, Y. Chen et al., Characterization of Embryonic Stem Cell Lines Derived from New Zealand White Rabbit Embryos, Cloning and Stem Cells, vol.11, p.2738, 2009.

A. Honda, Isolation and Culture of Rabbit Embryonic Stem Cells. Epiblast Stem Cells

, , p.3949, 2013.

V. Zakhartchenko, T. Flisikowska, S. Li, T. Richter, H. Wieland et al., Cell-Mediated Transgenesis in Rabbits: Chimeric and Nuclear Transfer Animals, Biol Reprod, vol.84, p.22937, 2011.

Y. Tapponnier, M. Afanassieff, I. Aksoy, A. M. Moulin, A. Medjani et al., Reprogramming of rabbit induced pluripotent stem cells toward epiblast and chimeric competency using Krüppel-like factors, Stem Cell Research, vol.24, p.10617, 2017.

J. Gearhart, New Potential for Human Embryonic Stem Cells, Science, vol.282, p.10612, 1998.

J. J. Buzzard, N. M. Gough, J. M. Crook, and A. Colman, Karyotype of human ES cells during extended culture, Nat Biotechnol, vol.22, p.3812, 2004.

B. E. Reubinoff, M. F. Pera, G. Vajta, and A. O. Trounson, Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method, Hum Reprod, vol.16, p.218794, 2001.

S. Sart, T. Ma, and Y. Li, Cryopreservation of pluripotent stem cell aggregates in defined protein-free formulation, Biotechnol Progress, vol.29, p.14353, 2013.

M. Richards, C. Fong, S. Tan, W. Chan, and A. Bongso, An Efficient and Safe Xeno-Free Cryopreservation Method for the Storage of, Human Embryonic Stem Cells. STEM CELLS, vol.22, p.77989, 2004.

S. Mollamohammadi, A. Taei, M. Pakzad, M. Totonchi, A. Seifinejad et al., A simple and efficient cryopreservation method for feeder-free dissociated human induced pluripotent stem cells and human embryonic stem cells, Hum Reprod, vol.24, p.246876, 2009.

Y. Yan, S. Sart, C. Bejarano, F. Muroski, M. E. Strouse et al., Cryopreservation of embryonic stem cell-derived multicellular neural aggregates labeled with micron-sized particles of iron oxide for magnetic resonance imaging, Biotechnol Progress, vol.31, p.51021, 2015.

S. W. Baran and C. B. Ware, Cryopreservation of Rhesus Macaque Embryonic Stem Cells, Stem Cells and Development, vol.16, p.33944, 2007.

R. Martin-ibañez, C. Unger, A. Strömberg, D. Baker, J. M. Canals et al., Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor, Hum Reprod, vol.23, p.274454, 2008.

Y. Li, J. Tan, and L. Li, Comparison of three methods for cryopreservation of human embryonic stem cells, Fertility and Sterility, vol.93, p.9991005, 2010.

P. Lin, Y. , Y. Hung, S. Lee, S. Lee et al., Cryopreservation of human embryonic stem cells by a programmed freezer with an oscillating magnetic field, Cryobiology, vol.66, p.25660, 2013.

D. A. Claassen, M. M. Desler, and A. Rizzino, ROCK inhibition enhances the recovery and growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells, Mol Reprod Dev, vol.76, p.72232, 2009.

M. Iwatani, K. Ikegami, Y. Kremenska, N. Hattori, S. Tanaka et al., Dimethyl sulfoxide has an impact on epigenetic profile in mouse embryoid body, Stem Cells, vol.24, p.254956, 2006.

I. I. Katkov, M. S. Kim, R. Bajpai, Y. S. Altman, M. Mercola et al., Cryopreservation by slow cooling with DMSO diminished production of Oct-4 pluripotency marker in human embryonic stem cells, Cryobiology, vol.53, p.194205, 2006.

I. I. Katkov, N. G. Kan, F. Cimadamore, B. Nelson, E. Y. Snyder et al., DMSO-Free Programmed Cryopreservation of Fully Dissociated and Adherent Human Induced Pluripotent Stem Cells. Stem Cells Int, 2011.

K. Watanabe, M. Ueno, D. Kamiya, A. Nishiyama, M. Matsumura et al., A ROCK inhibitor permits survival of dissociated human embryonic stem cells, Nature Biotechnology, vol.25, p.6816, 2007.

I. Barbaric, M. Jones, K. Buchner, D. Baker, P. W. Andrews et al., Pinacidil enhances survival of cryopreserved human embryonic stem cells, Cryobiology, vol.63, p.298305, 2011.

M. F. Olson, Applications for ROCK kinase inhibition, Current Opinion in Cell Biology, vol.20, p.2428, 2008.

H. Kurosawa, Application of Rho-associated protein kinase (ROCK) inhibitor to human pluripotent stem cells, Journal of Bioscience and Bioengineering, vol.114, p.57781, 2012.

H. Ichikawa, N. Nakata, Y. Abo, S. Shirasawa, T. Yokoyama et al., Gene pathway analysis of the mechanism by which the Rho-associated kinase inhibitor Y-27632 inhibits apoptosis in isolated thawed human embryonic stem cells, Cryobiology, vol.64, p.1222, 2012.

B. C. Heng, M. V. Clement, and T. Cao, Caspase Inhibitor Z-VAD-FMK Enhances the Freeze-Thaw Survival Rate of Human Embryonic Stem Cells, Bioscience Reports, vol.27, p.25764, 2007.

X. Xu, S. Cowley, C. J. Flaim, W. James, L. Seymour et al., The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells, Biotechnol Progress, vol.26, p.82737, 2010.

R. J. Krawetz, X. Li, and D. E. Rancourt, Human embryonic stem cells: caught between a ROCK inhibitor and a hard place, Bioessays, vol.31, p.33643, 2009.

X. Wang, G. Lin, K. Martins-taylor, H. Zeng, and R. Xu, Inhibition of Caspase-mediated Anoikis Is Critical for Basic Fibroblast Growth Factor-sustained Culture of Human Pluripotent Stem Cells, J Biol Chem, vol.284, p.3405464, 2009.

M. Ohgushi, M. Matsumura, M. Eiraku, K. Murakami, T. Aramaki et al., Molecular Pathway and Cell State Responsible for Dissociation-Induced Apoptosis in Human Pluripotent Stem Cells, Cell Stem Cell, vol.7, p.22539, 2010.

J. Grossmann, Molecular mechanisms of « detachment-induced apoptosis--Anoikis », Apoptosis, vol.7, p.24760, 2002.

Q. Zhou, H. Duan, Y. Wang, M. Qu, L. Yang et al., ROCK Inhibitor Y-27632 Increases the Cloning Efficiency of Limbal Stem/Progenitor Cells by Improving Their Adherence and ROSScavenging Capacity, Tissue Eng Part C Methods, vol.19, p.5317, 2013.

J. Zhang, H. Wang, H. Wang, L. Ruan, Y. Zhang et al., Oxidative stress and activities of caspase-8, -9, and -3 are involved in cryopreservation-induced apoptosis in granulosa cells, European Journal of Obstetrics and Gynecology and Reproductive Biology, vol.166, p.525, 2013.

P. Li, Z. Li, B. Dzyuba, M. Hulak, M. Rodina et al., Evaluating the Impacts of Osmotic and Oxidative Stress on Common Carp (Cyprinus carpio, L.) Sperm Caused by Cryopreservation Techniques, Biol Reprod, vol.83, p.8528, 2010.

M. X. Jia, Y. Shi, W. Di, X. R. Jiang, J. Xu et al., ROS-induced oxidative stress is closely related to pollen deterioration following cryopreservation, In Vitro CellDevBiol-Plant, vol.53, p.4339, 2017.

S. Kim, Y. Kim, and Y. , Apoptosis-like change, ROS, and DNA status in cryopreserved canine sperm recovered by glass wool filtration and Percoll gradient centrifugation techniques, Animal Reproduction Science, vol.119, p.10614, 2010.

K. Matsumura and S. Hyon, Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties, Biomaterials, vol.30, p.48429, 2009.

Y. Miyamoto, N. Teramoto, S. Hayashi, and S. Enosawa, An Improvement in the Attaching Capability of Cryopreserved Human Hepatocytes by a Proteinaceous High Molecule, Sericin, in the Serum-Free Solution, Cell Transplant, vol.19, p.7016, 2010.

S. Thirumala, W. S. Goebel, and E. J. Woods, Clinical grade adult stem cell banking, Organogenesis, vol.5, p.14354, 2009.

S. Adler, C. Pellizzer, M. Paparella, T. Hartung, and S. Bremer, The effects of solvents on embryonic stem cell differentiation, Toxicology in Vitro, vol.20, p.26571, 2006.

D. Clarke, D. Yadock, I. Nicoud, A. Mathew, and S. Heimfeld, Improved Post-Thaw Recovery of Peripheral Blood Stem/Progenitor Cells Using a Novel Intracellular-like Cryopreservation Solution, Cytotherapy, vol.11, p.4729, 2009.

T. Nishigaki, Y. Teramura, H. Suemori, and H. Iwata, Cryopreservation of primate embryonic stem cells with chemically-defined solution without Me2SO, Cryobiology, vol.60, p.15964, 2010.

K. Matsumura, J. Y. Bae, and S. H. Hyon, Polyampholytes as Cryoprotective Agents for Mammalian Cell Cryopreservation, Cell Transplant, vol.19, p.6919, 2010.

K. Matsumura, J. Y. Bae, and S. H. Hyon, Polyampholytes as Cryoprotective Agents for Mammalian Cell Cryopreservation, Cell Transplantation, vol.19, p.6919, 2010.

K. Matsumura, J. Y. Bae, H. H. Kim, and S. H. Hyon, Effective vitrification of human induced pluripotent stem cells using carboxylated ?-poly-l-lysine, Cryobiology, vol.63, p.7683, 2011.

X. Xu, S. Cowley, C. J. Flaim, W. James, L. W. Seymour et al., Enhancement of Cell Recovery for Dissociated Human Embryonic Stem Cells After Cryopreservation, Biotechnol Prog, vol.26, p.7818, 2010.

S. Y. Ha, B. C. Jee, C. S. Suh, H. S. Kim, S. K. Oh et al., Cryopreservation of human embryonic stem cells without the use of a programmable freezer, Hum Reprod, vol.20, p.177985, 2005.

G. Vanroose, A. V. Soom, and A. D. Kruif, From Co-culture to Defined Medium: State of the Art and Practical Considerations, Reproduction in Domestic Animals, vol.36, p.258, 2001.

N. Bryan, K. D. Andrews, M. J. Loughran, N. P. Rhodes, and J. A. Hunt, Elucidating the contribution of the elemental composition of fetal calf serum to antigenic expression of primary human umbilical-vein endothelial cells in vitro, Bioscience Reports, vol.31, 2011.

G. Grilli, A. Porcellini, and G. Lucarelli, Role of serum on cryopreservation and subsequent viability of mouse bone marrow hemopoietic stem cells, Cryobiology, vol.17, p.51620, 1980.

J. F. Hasler, Synthetic media for culture, freezing and vitrification of bovine embryos, Reprod Fertil Dev, vol.22, p.11925, 2009.

S. Jitraruch, A. Dhawan, R. D. Hughes, C. Filippi, S. C. Lehec et al., Cryopreservation of Hepatocyte Microbeads for Clinical Transplantation, Cell Transplant, vol.26, p.134154, 2017.

W. Liu and G. Chen, Cryopreservation of Human Pluripotent Stem Cells in Defined Medium, Curr Protoc Stem Cell Biol, vol.31, 2014.

F. Holm, S. Strom, J. Inzunza, D. Baker, A. M. Stromberg et al., An effective serum-and xeno-free chemically defined freezing procedure for human embryonic and induced pluripotent stem cells, Human Reproduction, vol.25, p.12719, 2010.

Y. Miyamoto, H. Noguchi, H. Yukawa, K. Oishi, K. Matsushita et al., Cryopreservation of Induced Pluripotent Stem Cells, Cell Medicine, vol.3, p.8995, 2012.

T. Fujioka, K. Yasuchika, Y. Nakamura, N. Nakatsuji, and H. Suemori, A simple and efficient cryopreservation method for primate embryonic stem cells, Int J Dev Biol, vol.48, p.114954, 2004.

C. Xu, S. Police, M. Hassanipour, Y. Li, Y. Chen et al., Efficient generation and cryopreservation of cardiomyocytes derived from human embryonic stem cells, Regen Med, vol.6, p.5366, 2011.

I. Nicoud, C. Nourigat, and C. Delaney, A preclinical safety study of intravenous injection of biopreservation solutions as a vehicle for cellular products, Poster, 2008.

W. F. Rall and G. M. Fahy, Ice-free cryopreservation of mouse embryos at ?196 °C by vitrification, Nature, vol.313, p.5735, 1985.

P. C. Santos-neto, F. Cuadro, N. Barrera, M. Crispo, and A. Menchaca, Embryo survival and birth rate after minimum volume vitrification or slow freezing of in vivo and in vitro produced ovine embryos, Cryobiology, vol.78, p.814, 2017.

J. S. Vicente, M. P. Viudes-de-castro, J. I. Cedano-castro, M. , and F. , Cryosurvival of rabbit embryos obtained after superovulation with corifollitropin alfa with or without LH, Animal Reproduction Science, 2018.

D. Sur,

G. Vajta, P. Holm, M. Kuwayama, P. J. Booth, H. Jacobsen et al., Open Pulled Straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos, Mol Reprod Dev, vol.51, p.538, 1998.

A. Yacoub, M. Gauly, and W. Holtz, Open pulled straw vitrification of goat embryos at various stages of development, Theriogenology, vol.73, p.101823, 2010.

L. Parmegiani, A. Accorsi, S. Bernardi, A. Arnone, G. E. Cognigni et al., A reliable procedure for decontamination before thawing of human specimens cryostored in liquid nitrogen: three washes with sterile liquid nitrogen (SLN2), Fertility and Sterility, vol.98, p.8705, 2012.

D. Valbuena, M. E. Póo, C. Aguilar-gallardo, S. Martinez, A. C. Cobo et al., Comparison of Cryotip vs. Cryotop for mouse and human blastomere vitrification, Fertility and Sterility, vol.97, p.20917, 2012.

V. Isachenko, I. I. Katkov, S. Yakovenko, A. Lulat, M. Ulug et al., Vitrification of human laser treated blastocysts within cut standard straws (CSS): Novel aseptic packaging and reduced concentrations of cryoprotectants, Cryobiology, vol.54, p.3059, 2007.

Y. Kitiyanant, J. Saikhun, J. Guocheng, and K. Pavasuthipaisit, Establishment and Long-Term Maintenance of Bovine Embryonic Stem Cell Lines Using Mouse and Bovine Mixed Feeder Cells and Their Survival after Cryopreservation, vol.6, 2000.

T. Li, C. Zhou, C. Liu, Q. Mai, and G. Zhuang, Bulk vitrification of human embryonic stem cells, Hum Reprod, vol.23, p.35864, 2008.

T. Li, Q. Mai, J. Gao, and C. Zhou, Cryopreservation of Human Embryonic Stem Cells with a New Bulk Vitrification Method, Biol Reprod, vol.82, p.84853, 2010.

C. Q. Zhou, Q. Y. Mai, T. Li, and G. L. Zhuang, Cryopreservation of human embryonic stem cells by vitrification, Chin Med J (Engl), vol.117, p.10505, 2004.

A. Beier, J. C. Schulz, D. Dörr, A. Katsen-globa, A. Sachinidis et al., Effective surface-based cryopreservation of human embryonic stem cells by vitrification, Cryobiology, vol.63, p.17585, 2011.

M. Antinori, E. Licata, G. Dani, F. Cerusico, C. Versaci et al., Cryotop vitrification of human oocytes results in high survival rate and healthy deliveries, Reproductive BioMedicine Online, vol.14, p.729, 2007.

J. J. Stachecki, J. Garrisi, S. Sabino, J. P. Caetano, K. E. Wiemer et al., A new safe, simple and successful vitrification method for bovine and human blastocysts, Reproductive BioMedicine Online, vol.17, p.3607, 2008.

T. Miyazaki and H. Suemori, Slow Cooling Cryopreservation Optimized to Human Pluripotent Stem Cells. Biobanking and Cryopreservation of Stem Cells

C. Springer, , 2016.

, Disponible sur, p.5765

B. C. Heng, S. M. Bested, S. H. Chan, and T. Cao, A proposed design for the cryopreservation of intact and adherent human embryonic stem cell colonies, In Vitro CellDevBiol-Animal, vol.41, p.779, 2005.

A. Dinnyés, Y. Dai, S. Jiang, and X. Yang, High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer, Biol Reprod, vol.63, p.5138, 2000.

J. Aerts, D. Clercq, J. Andries, S. Leroy, J. Van-aelst et al., Follicle survival and growth to antral stages in short-term murine ovarian cortical transplants after Cryologic solid surface vitrification or slow-rate freezing, Cryobiology, vol.57, p.1639, 2008.

G. Vajta and Z. P. Nagy, Are programmable freezers still needed in the embryo laboratory? Review on vitrification, Reproductive BioMedicine Online, vol.12, p.77996, 2006.

C. B. Ware, A. M. Nelson, and C. A. Blau, Controlled-rate freezing of human ES cells, Biotechniques, vol.38, p.879, 2005.

P. Yang, T. Hua, J. Wu, Z. Chang, H. Tsung et al., Cryopreservation of human embryonic stem cells: A protocol by programmed cooling, CryoLetters, vol.27, p.3618, 2006.

D. Valbuena, S. Sánchez-luengo, A. Galán, E. Sánchez, E. Gómez et al., Efficient method for slow cryopreservation of human embryonic stem cells in xeno-free conditions, Reproductive BioMedicine Online, vol.17, p.12735, 2008.

Y. Nie, V. Bergendahl, D. J. Hei, J. M. Jones, and S. P. Palecek, Scalable culture and cryopreservation of human embryonic stem cells on microcarriers, Biotechnol Progress, vol.25, p.2031, 2009.

K. J. Amps, M. Jones, D. Baker, and H. D. Moore, In situ cryopreservation of human embryonic stem cells in gas-permeable membrane culture cassettes for high post-thaw yield and good manufacturing practice, Cryobiology, vol.60, p.34450, 2010.

J. Y. Lee, J. E. Lee, D. K. Kim, T. K. Yoon, H. M. Chung et al., High concentration of synthetic serum, stepwise equilibration and slow cooling as an efficient technique for large-scale cryopreservation of human embryonic stem cells, Fertility and Sterility, vol.93, p.97685, 2010.

M. Serra, C. Correia, R. Malpique, C. Brito, J. Jensen et al., Microencapsulation Technology: A Powerful Tool for Integrating Expansion and Cryopreservation of Human Embryonic Stem Cells, Nat Biotechnol, vol.27, p.60613, 2009.

C. N. Lee and R. L. Ax, Concentrations and composition of glycosaminoglycans in the female bovine reproductive tract, J Dairy Sci, vol.67, 1984.

C. N. Lee, M. K. Clayton, S. M. Bushmeyer, N. L. First, and R. L. Ax, Glycosaminoglycans in ewe reproductive tracts and their influence on acrosome reactions in bovine spermatozoa in vitro, J Anim Sci, vol.63, p.8617, 1986.

A. Palasz, S. Alkemade, and R. J. Mapletoft, The Use of Sodium Hyaluronate in Freezing Media for Bovine and Murine Embryos, Cryobiology, vol.30, p.1728, 1993.

J. P. Barfield, P. M. Mccue, E. L. Squires, and G. E. Seidel, Effect of dehydration prior to cryopreservation of large equine embryos, Cryobiology, vol.59, p.3641, 2009.

R. P. Amann and D. Waberski, Computer-assisted sperm analysis (CASA): Capabilities and potential developments, Theriogenology, vol.81, pp.5-17, 2014.

M. E. King, W. Mckelvey, W. S. Dingwall, K. P. Matthews, F. E. Gebbie et al., Lambing rates and litter sizes following intrauterine or cervical insemination of frozen/thawed semen with or without oxytocin administration, Theriogenology, vol.62, p.123644, 2004.

S. Fair, J. P. Hanrahan, C. M. O'meara, P. Duffy, D. Rizos et al., Differences between Belclare and Suffolk ewes in fertilization rate, embryo quality and accessory sperm number after cervical or laparoscopic artificial insemination, Theriogenology, vol.63, 2005.

M. Hiwasa, H. Kohno, T. Togari, K. Okabe, and Y. Fukui, Fertility after Different Artificial Insemination Methods Using a Synthetic Semen Extender in Sheep, J Reprod Dev, vol.55, p.504, 2009.

A. Quintero-moreno, T. Rigau, and J. E. Rodrí-guez-gil, Regression analyses and motile sperm subpopulation structure study as improving tools in boar semen quality analysis, Theriogenology, vol.61, p.67390, 2004.

A. Quintero-moreno, T. Rigau, and J. E. Rodríguez-gil, Multivariate Cluster Analysis Regression Procedures as Tools to Identify Motile Sperm Subpopulations in Rabbit Semen and to Predict Semen Fertility and Litter Size, Reproduction in Domestic Animals, vol.42, p.3129, 2007.

L. Larsen, T. Scheike, T. K. Jensen, J. P. Bonde, E. Ernst et al., Computer-assisted semen analysis parameters as predictors for fertility of men from the general population, Hum Reprod, vol.15, p.15627, 2000.

L. Gillan, G. Evans, and W. Maxwell, Flow cytometric evaluation of sperm parameters in relation to fertility potential, Theriogenology, vol.63, p.44557, 2005.

S. A. Holden, B. Fernandez-fuertes, C. Murphy, H. Whelan, A. O'gorman et al., Relationship between in vitro sperm functional assessments, seminal plasma composition, and field fertility after AI with either non-sorted or sex-sorted bull semen, Theriogenology, vol.87, p.2218, 2017.

R. G. Saacke, J. C. Dalton, S. Nadir, R. L. Nebel, and J. H. Bame, Relationship of seminal traits and insemination time to fertilization rate and embryo quality, Animal Reproduction Science, vol.6061, p.66377, 2000.

J. J. Stachecki, B. L. Dresser, C. E. Pope, and D. R. Armant, Stimulation of Ejaculated Domestic Cat Sperm Motility with Caffeine, Pentoxifylline, and 2?-Deoxyadenosine, Archives of Andrology, vol.34, p.638, 1995.

N. Nabavi, F. Todehdehghan, and A. Shiravi, Effect of caffeine on motility and vitality of sperm and in vitro fertilization of outbreed mouse in T6 and M16 media, Iran J Reprod Med, vol.11, p.7416, 2013.

J. R. Pariz and J. Hallak, Effects of caffeine supplementation in post-thaw human semen over different incubation periods, Andrologia, vol.48, p.104954, 2016.

S. Yamaguchi, C. Suzuki, M. Noguchi, S. Kasa, M. Mori et al., Effects of caffeine on sperm characteristics after thawing and inflammatory response in the uterus after artificial insemination with frozen-thawed boar semen, Theriogenology, vol.79, p.8793, 2013.

L. Anel, M. Kaabi, B. Abroug, M. Alvarez, E. Anel et al., Factors influencing the success of vaginal and laparoscopic artificial insemination in churra ewes: a field assay, Theriogenology, vol.63, p.123547, 2005.

J. Gadea, Sperm factors related to in vitro and in vivo porcine fertility, Theriogenology, vol.63, p.43144, 2005.

R. Vishwanath, Artificial insemination: the state of the art, Theriogenology, vol.59, p.57184, 2003.

R. Stahlberg, B. Harlizius, K. F. Weitze, and D. Waberski, Identification of embryo paternity using polymorphic DNA markers to assess fertilizing capacity of spermatozoa after heterospermic insemination in boars, Theriogenology, vol.53, p.136573, 2000.

J. Gadea, C. Matás, and X. Lucas, Prediction of porcine semen fertility by homologous in vitro penetration (hIVP) assay, Animal Reproduction Science, vol.54, p.95108, 1998.

Y. Hirano, H. Shibahara, H. Obara, T. Suzuki, S. Takamizawa et al., Relationships Between Sperm Motility Characteristics Assessed by the Computer-Aided Sperm Analysis (CASA) and Fertilization Rates In Vitro, J Assist Reprod Genet, vol.18, p.21520, 2001.

H. Rodríguez-martínez, Can We Increase the Estimative Value of Semen Assessment?, Reproduction in Domestic Animals, vol.41, p.210, 2006.

C. Martínez-rodríguez, L. Anel-lópez, M. Alvarez, C. Ortega-ferrusola, J. C. Boixo et al., Progesterone stimulates the long-distance migration of capacitated ram spermatozoa through viscous media under geotactic condition, Theriogenology, vol.118, p.715, 2018.

M. Ferraz, Oviduct-on-a-chip : Creating an in vitro oviduct to study bovine gamete interaction and early embryo development, 2018.

M. Ferraz, H. Henning, T. Stout, P. Vos, and B. M. Gadella, Designing 3-Dimensional In Vitro Oviduct Culture Systems to Study Mammalian Fertilization and Embryo Production, Ann Biomed Eng, vol.45, p.173144, 2017.

M. Ferraz, H. Henning, P. F. Costa, J. Malda, F. P. Melchels et al., Improved bovine embryo production in an oviduct-on-a-chip system: prevention of poly-spermic fertilization and parthenogenic activation, Lab Chip, vol.17, p.90516, 2017.

S. Akhter, M. Ansari, S. Andrabi, B. Rakha, N. Ullah et al., Soya-lecithin in Extender Improves the Freezability and Fertility of Buffalo (Bubalus bubalis) Bull Spermatozoa, Reproduction in Domestic Animals, vol.47, p.8159, 2012.

J. Gil, M. Rodriguez-irazoqui, N. Lundeheim, L. Söderquist, and H. Rodriguez-martinez, Fertility of ram semen frozen in Bioexcell® and used for cervical artificial insemination, Theriogenology, vol.59, p.115770, 2003.

E. Pillet, C. Labbe, F. Batellier, G. Duchamp, V. Beaumal et al., Liposomes as an alternative to egg yolk in stallion freezing extender, Theriogenology, vol.77, p.26879, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01129583

D. Valle, I. Souter, A. Maxwell, W. Muiño-blanco, T. Cebrián-pérez et al., Function of ram spermatozoa frozen in diluents supplemented with casein and vegetable oils, Animal Reproduction Science, vol.138, p.2139, 2013.

D. Uchoa, T. Silva, M. Filho, A. Silva, and L. , Intravaginal Artificial Insemination in Bitches Using Frozen/Thawed Semen after Dilution in Powdered Coconut Water (ACP-106c), Reprod Domest Anim, vol.47, p.28992, 2012.

M. Silva, G. Peixoto, P. Sousa, F. Bezerra, B. S. Bezerra et al., Interactions between Straw Size and Thawing Rates on the Cryopreservation of Agouti (Dasyprocta aguti) Epididymal Sperm, Reproduction in Domestic Animals, vol.47, p.46, 2012.

J. Wojtusik, M. A. Stoops, and T. L. Roth, Comparison of soy lecithin, coconut water, and coconut milk as substitutes for egg-yolk in semen cryodiluent for black rhinoceros (Diceros bicornis) and Indian rhinoceros (Rhinoceros unicornis), Theriogenology, 2018.

D. Sur,

S. Lotfi, M. Mehri, M. Sharafi, and R. Masoudi, Hyaluronic acid improves frozen-thawed sperm quality and fertility potential in rooster, Animal Reproduction Science, vol.184, p.20410, 2017.

L. Qian, S. Yu, and Y. Zhou, Protective effect of hyaluronic acid on cryopreserved boar sperm, International Journal of Biological Macromolecules, vol.87, p.2879, 2016.

M. Bakhtiari, A. Sobhani, M. Akbari, P. Pasbakhsh, and M. Abbasi, The effect of hyaluronic acid on motility, vitality and fertilization capability of mouse sperms after cryopreservation, Int J Reprod BioMed, vol.5, p.4550, 2012.

J. E. Bruemmer, C. H. Wilson, C. Da-silva, M. Squires, and E. L. , Effects of Hyaluronan Supplementation on Cryopreserved Equine Spermatozoa Hyaluronan and Cryopreserved Equine Spermatozoa, Journal of Equine Veterinary Science, vol.29, p.2238, 2009.

G. Killian, Physiology and endocrinology symposium: evidence that oviduct secretions influence sperm function: a retrospective view for livestock, J Anim Sci, vol.89, p.131522, 2011.

A. V. Isaac, S. Kumari, R. Nair, D. R. Urs, S. R. Salian et al., Supplementing zinc oxide nanoparticles to cryopreservation medium minimizes the freeze-thaw-induced damage to spermatozoa, Biochemical and Biophysical Research Communications, vol.494, p.65662, 2017.

J. M. Feugang, Novel agents for sperm purification, sorting, and imaging. Molecular Reproduction and Development, vol.84, p.83241, 2017.

J. Gil, M. Rodriguez-irazoqui, L. Söderquist, and H. Rodriguez-martinez, Influence of centrifugation or low extension rates prefreezing on the fertility of ram semen after cervical insemination, Theriogenology, vol.57, p.178192, 2002.

E. Celeghini, R. P. De-arruda, A. De-andrade, J. Nascimento, C. F. Raphael et al., Effects that bovine sperm cryopreservation using two different extenders has on sperm membranes and chromatin, Animal Reproduction Science, vol.104, p.11931, 2008.

O. Vera-munoz, L. Amirat-briand, T. Diaz, L. Vásquez, E. Schmidt et al., Effect of semen dilution to low-sperm number per dose on motility and functionality of cryopreserved bovine spermatozoa using low-density lipoproteins (LDL) extender: Comparison to Triladyl® and Bioxcell®, Theriogenology, vol.71, p.895900, 2009.

A. Kaka, H. Wahid, Y. Rosnina, N. Yimer, A. M. Khumran et al., ?-Linolenic acid supplementation in BioXcell® extender can improve the quality of post-cooling and frozen-thawed bovine sperm, Animal Reproduction Science, vol.153, p.17, 2015.

A. M. Khumran, N. Yimer, Y. Rosnina, M. O. Ariff, H. Wahid et al., Butylated hydroxytoluene can reduce oxidative stress and improve quality of frozen-thawed bull semen processed in lecithin and egg yolk based extenders, Animal Reproduction Science, vol.163, p.12834, 2015.

M. Emamverdi, M. Zhandi, Z. Shahneh, A. Sharafi, M. Akbari-sharif et al., Optimization of Ram Semen Cryopreservation Using a Chemically Defined Soybean Lecithin-Based Extender, Reprod Dom Anim, vol.48, p.899904, 2013.

A. Najafi, M. Najafi, Z. Zanganeh, M. Sharafi, F. Martinez-pastor et al., Cryopreservation of Ram Semen in Extenders Containing Soybean Lecithin as Cryoprotectant and Hyaluronic Acid as Antioxidant, Reprod Dom Anim, vol.49, p.93440, 2014.

K. R. Martins, S. Gheller, C. Ferreira, K. L. Goularte, C. D. Corcini et al., Postthawing quality of ram spermatozoa is impaired by inclusion of boar seminal plasma in the freezing extender, Small Ruminant Research, vol.144, p.22933, 2016.

Y. Fang, R. Zhong, X. Zhang, J. Zhang, and D. Zhou, Boar seminal plasma inhibits cryo-capacitation of frozen-thawed ram sperm and improves fertility following intracervical insemination, Theriogenology, vol.105, p.849, 2018.

R. Masoudi, M. Sharafi, Z. Shahneh, A. Towhidi, A. Kohram et al., Effect of dietary fish oil supplementation on ram semen freeze ability and fertility using soybean lecithin-and egg yolk-based extenders, Theriogenology, vol.86, p.15838, 2016.

L. L. Kuleshova and J. M. Shaw, A strategy for rapid cooling of mouse embryos within a double straw to eliminate the risk of contamination during storage in liquid nitrogen, Hum Reprod, vol.15, p.26049, 2000.

A. Gutiérrez, J. Garde, C. G. Artiga, I. Muñoz, and B. Pintado, In vitro survival of murine morulae after quick freezing in the presence of chemically defined macromolecules and different cryoprotectants, Theriogenology, vol.39, p.111120, 1993.

I. B. Nicoud, D. M. Clarke, G. Taber, K. M. Stolowski, S. E. Roberge et al., Cryopreservation of umbilical cord blood with a novel freezing solution that mimics intracellular ionic composition, Transfusion, vol.52, p.205562, 2012.

D. N. Haylock and S. K. Nilsson, The role of hyaluronic acid in hemopoietic stem cell biology, Regenerative Medicine, vol.1, p.43745, 2006.

S. Gerecht, J. A. Burdick, L. S. Ferreira, S. A. Townsend, R. Langer et al., Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells, Proc Natl Acad Sci, vol.104, p.11298303, 2007.

L. Li, X. Duan, Z. Fan, L. Chen, F. Xing et al., Mesenchymal Stem Cells in Combination with Hyaluronic Acid for Articular Cartilage Defects, vol.8

C. B. Ware and S. W. Baran, A Controlled-Cooling Protocol for Cryopreservation of Human and NonHuman Primate Embryonic Stem Cells. Stem Cell Assays, 2007.

, Disponible sur, p.439

A. Petersen, H. Schneider, G. Rau, and B. Glasmacher, A new approach for freezing of aqueous solutions under active control of the nucleation temperature, Cryobiology, vol.53, p.24857, 2006.

C. C. Pérez-marín, F. D. Requena, A. Arando, S. Ortiz-villalón, F. Requena et al., Effect of trehalose-and sucrose-based extenders on equine sperm quality after vitrification: Preliminary results, Cryobiology, 2017.

A. Arando, A. Gonzalez, J. V. Delgado, F. A. Arrebola, and C. C. Perez-marín, Storage temperature and sucrose concentrations affect ram sperm quality after vitrification, Animal Reproduction Science, vol.181, p.17585, 2017.

V. Isachenko, E. Isachenko, A. M. Petrunkina, and R. Sanchez, Human spermatozoa vitrified in the absence of permeable cryoprotectants: birth of two healthy babies, Reproduction, Fertility and Development, vol.24, p.323, 2012.

J. Liu, C. Tanrikut, D. L. Wright, G. Y. Lee, M. Toner et al., Cryopreservation of human spermatozoa with minimal non-permeable cryoprotectant, Cryobiology, vol.73, p.1627, 2016.

C. Pan, S. Yu, P. Zhang, B. Wang, Z. Zhu et al., Effect of sucrose on cryopreservation of pig spermatogonial stem cells, Journal of Integrative Agriculture, vol.16, p.11209, 2017.

N. Benaroudj, D. H. Lee, and A. L. Goldberg, Trehalose Accumulation during Cellular Stress Protects Cells and Cellular Proteins from Damage by Oxygen Radicals, J Biol Chem, vol.276, p.242617, 2001.

M. Halberstadt, M. Böhnke, S. Athmann, and M. Hagenah, Cryopreservation of human donor corneas with dextran, Invest Ophthalmol Vis Sci, vol.44, p.51105, 2003.

A. S. Teixeira, L. Deladino, C. F. Fernandes, M. Martino, and A. D. Molina-garcía, Application of Chitosan Coating on Alginate Beads for Cryopreservation Uses, Journal of Chitin and Chitosan Science, vol.2, p.4654, 2014.

M. J. Ashwood-smith and C. Warby, Studies on the molecular weight and cryoprotective properties of polyvinylpyrrolidone and dextran with bacteria and erythrocytes, Cryobiology, vol.8, p.45364, 1971.

A. Gutiérrez, J. Garde, C. G. Artiga, I. Muñoz, and B. Pintado, In vitro survival of murine morulae after quick freezing in the presence of chemically defined macromolecules and different cryoprotectants, Theriogenology, vol.39, p.111120, 1993.

Z. Shu, W. Chen, A. Q. Shen, and D. Gao, C-13: Application of hydrogel in cryopreservation as a novel cryoprotectant, encapsulation and single-cell-based functional sensing material, Cryobiology, vol.69, p.506, 2014.

B. Chen, B. Wright, R. Sahoo, and C. J. Connon, A Novel Alternative to Cryopreservation for the ShortTerm Storage of Stem Cells for Use in Cell Therapy Using Alginate Encapsulation, Tissue Engineering Part C: Methods, vol.19, p.56876, 2012.

G. Zhao, X. Liu, K. Zhu, and X. He, Hydrogel Encapsulation Facilitates Rapid-Cooling Cryopreservation of Stem Cell-Laden Core-Shell Microcapsules as Cell-Biomaterial Constructs, Advanced Healthcare Materials, vol.6, p.1700988, 2017.

J. Wolfe and G. Bryant, Cellular cryobiology: thermodynamic and mechanical effects, International Journal of Refrigeration, vol.24, p.43850, 2001.

B. Courbiere, V. Odagescu, A. Baudot, J. Massardier, C. Mazoyer et al., Cryopreservation of the ovary by vitrification as an alternative to slow-cooling protocols, Fertility and Sterility, vol.86, p.124351, 2006.

A. Baudot, B. Courbiere, V. Odagescu, C. Mazoyer, L. Caquant et al., Physical investigations aiming to achieve the cryopreservation of the whole sheep ovary by vitrification, Cryobiology, vol.53, p.3901, 2006.

P. Bruyère, A. Baudot, C. Guyader-joly, P. Guérin, G. Louis et al., Improved cryopreservation of in vitro-produced bovine embryos using a chemically defined freezing medium, Theriogenology, vol.78, p.1294302, 2012.

R. V. Devireddy and J. C. Bischof, Measurement of Water Transport During Freezing in Mammalian Liver Tissue: Part II-The Use of Differential Scanning Calorimetry, J Biomech Eng, vol.120, p.55969, 1998.

W. V. Holt and R. D. North, Determination of lipid composition and thermal phase transition temperature in an enriched plasma membrane fraction from ram spermatozoa, J Reprod Fertil, vol.73, p.28594, 1985.

W. V. Holt and R. D. North, Thermotropic phase transitions in the plasma membrane of ram spermatozoa, J Reprod Fertil, vol.78, p.44757, 1986.

E. L. Niemitz and A. P. Feinberg, Epigenetics and Assisted Reproductive Technology: A Call for Investigation, The American Journal of Human Genetics, vol.74, p.599609, 2004.

S. Manipalviratn, A. Decherney, and J. Segars, Imprinting disorders and assisted reproductive technology, Fertility and Sterility, vol.91, p.30515, 2009.

R. Urrego, N. Rodriguez-osorio, and H. Niemann, Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle, Epigenetics, vol.9, p.80315, 2014.

P. Chavatte-palmer, M. Robles, A. Tarrade, V. Duranthon, E. Gametes et al., Considerations for Equine Embryo Technologies, Journal of Equine Veterinary Science, vol.41, p.1321, 2016.

G. Egger, G. Liang, A. Aparicio, and P. A. Jones, Epigenetics in human disease and prospects for epigenetic therapy

, Nature, 2004.

D. Sur,

M. Yeste, Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs, Theriogenology, vol.85, p.4764, 2016.

C. C. Boissonnas, H. E. Abdalaoui, V. Haelewyn, P. Fauque, J. M. Dupont et al., Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men, European Journal of Human Genetics, vol.18, p.7380, 2010.

J. Perrier, E. Sellem, A. Prézelin, M. Gasselin, L. Jouneau et al., A multi-scale analysis of bull sperm methylome revealed both species peculiarities and conserved tissue-specific features, BMC Genomics, vol.19, p.404, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01975403

Z. Jiang, Y. Wang, J. Lin, J. Xu, G. Ding et al., Genetic and epigenetic risks of assisted reproduction, Best Practice & Research Clinical Obstetrics & Gynaecology, vol.44, p.90104, 2017.

L. Yan, Y. J. Qiao, J. Zhao, P. Liu, and P. , Effects of oocyte vitrification on histone modifications, Reprod Fertil Dev, vol.22, p.9205, 2010.

A. Chatterjee, D. Saha, H. Niemann, O. Gryshkov, B. Glasmacher et al., Effects of cryopreservation on the epigenetic profile of cells, Cryobiology, vol.74, p.17, 2017.

H. Santos-rosa, R. Schneider, B. E. Bernstein, N. Karabetsou, A. Morillon et al., Methylation of Histone H3 K4 Mediates Association of the Isw1p ATPase with Chromatin, Molecular Cell, vol.12, p.132532, 2003.

R. J. Sims, C. Chen, H. Santos-rosa, T. Kouzarides, S. S. Patel et al., Human but not yeast chd1 binds directly and selectively to histone h3 methylated at lysine 4 via its tandem chromodomains, J Biol Chem, vol.280, p.4178992, 2005.

L. Ringrose, H. Ehret, and R. Paro, Distinct Contributions of Histone H3 Lysine 9 and 27 Methylation to Locus-Specific Stability of Polycomb Complexes, Molecular Cell, vol.16, p.64153, 2004.

K. Siklenka, S. Erkek, M. Godmann, R. Lambrot, S. Mcgraw et al., Disruption of histone methylation in developing sperm impairs offspring health transgenerationally, Science, vol.350, p.2006, 2015.

S. Pérez-cerezales, P. Ramos-ibeas, A. Lopez-cardona, E. Pericuesta, R. Fernandez-gonzalez et al., Elimination of methylation marks at lysines 4 and 9 of histone 3 (H3K4 and H3K9) of spermatozoa alters offspring phenotype, Reprod Fertil Dev, vol.29, p.7406, 2017.

M. C. Gómez, C. E. Pope, R. H. Kutner, D. M. Ricks, L. A. Lyons et al., Nuclear Transfer of Sand Cat Cells into Enucleated Domestic Cat Oocytes is Affected by Cryopreservation of Donor Cells, Cloning and Stem Cells, vol.10, p.46984, 2008.

M. A. Khalifa, Improving cryopreservation capacity of ram spermatozoa by supplementing the diluent with melatonin, International journal of Animal Research, 2017.

D. Sur,

C. Le, Anim développe un système d'information robuste qui s'appuie sur la mise au point de nouveaux protocoles de description des échantillons permettant de documenter les collections

C. Le, Anim met en oeuvre des procédures d'assurance qualité avec la certification en cours de toutes ses collections selon la norme NF S96-900 afin de garantir la traçabilité des échantillons

C. Le, Il va proposer, via son portail WEB, un formulaire de demande d'entrée ou de sortie d'échantillons. Toute entrée ou sortie sera associée à la signature d'un accord de transfert de matériel biologique et de tout autre document rendu nécessaire par l'entrée en vigueur du Protocole de Nagoya, accord international sur l'accès aux ressources génétiques et le partage des avantages découlant de leur utilisation, Anim met au point des règles d'accès claires et transparentes pour enrichir les collections, accroitre leur valeur et faciliter la distribution des échantillons

J. Bellaiche, J. J. Lareyre, C. Cauty, A. Yano, I. Allemand et al., Spermatogonial Stem Cell Quest: nanos2, Marker of a Subpopulation of Undifferentiated A Spermatogonia in Trout Testis, BiolReprod, vol.90, issue.4, pp.79-80, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01205081

V. Labas, I. Grasseau, K. Cahier, A. Gargaros, G. Harichaux et al., Qualitative and quantitative proteomic approaches to phenotyping chicken semen, Journal of Proteomics, vol.112, pp.313-335, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01129861

M. Suquet, M. E. Arsenault-pernet, D. Ratiskol, and C. Mingant, Cryopreservation of great scallop (Pecten maximus) sperm: effect of extender, cryoprotectant and cooling rate on sperm survival, Aquatic Living Resources, vol.27, pp.35-40, 2014.

J. Plassais, E. Guaguère, L. Lagoutte, A. Guillory, D. De-citres et al., A Spontaneous KRT16 Mutation in a Dog Breed: a Model for Human Focal Non-Epidermolytic Palmoplantar Keratoderma (FNEPPK), J Invest Derm, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01116377