L. Ambrosio, N. Gigli, and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math, vol.195, issue.2, pp.289-391, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00769378

L. Ambrosio, N. Gigli, and G. Savaré, Bakry-´ emery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab, vol.43, issue.1, pp.339-404, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00769363

S. Artstein, K. M. Ball, F. Barthe, and A. Naor, On the rate of convergence in the entropic central limit theorem, Probab. Theory Related Fields, vol.129, issue.3, pp.381-390, 2004.

S. Artstein, K. M. Ball, F. Barthe, and A. Naor, Solution of Shannon's problem on the monotonicity of entropy, J. Amer. Math. Soc, vol.17, issue.4, pp.975-982, 2004.

S. Artstein-avidan, B. Klartag, and V. Milman, The Santaló point of a function, and a functional form of the Santaló inequality, Mathematika, vol.51, issue.1-2, pp.33-48, 2004.

D. Bakry and M. Emery, Diffusions hypercontractives, Séminaire de probabilités, XIX, vol.84, pp.177-206, 1983.

D. Bakry and M. Ledoux, Lévy-Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator, Invent. Math, vol.123, issue.2, pp.259-281, 1996.

D. Bakry, I. Gentil, and M. Ledoux, Analysis and geometry of Markov diffusion operators, vol.348
URL : https://hal.archives-ouvertes.fr/hal-00929960

C. Springer, , 2014.

D. Bakry, I. Gentil, and M. Ledoux, On harnack inequalities and optimal transportation, Annali della Scuola Normale Superiore di Pisa, vol.14, pp.705-727, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00742654

K. Ball and . Van-hoang-nguyen, Entropy jumps for isotropic log-concave random vectors and spectral gap, Studia Math, vol.213, issue.1, pp.81-96, 2012.

M. Barchiesi, A. Brancolini, and V. Julin, Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality, Ann. Probab, vol.45, issue.2, pp.668-697, 2017.

F. Barthe and A. V. Kolesnikov, Mass transport and variants of the logarithmic Sobolev inequality, J. Geom. Anal, vol.18, issue.4, pp.921-979, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00634530

F. Bauer, P. Horn, Y. Lin, G. Lippner, D. Mangoubi et al., Li-Yau inequality on graphs, J. Differential Geom, vol.99, issue.3, pp.359-405, 2015.

J. Benamou and Y. Brenier, A numerical method for the optimal time-continuous mass transport problem and related problems, Monge Ampère equation: applications to geometry and optimization, vol.226, pp.1-11, 1997.

J. Robert, B. Berman, and . Berndtsson, Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties, Ann. Fac. Sci. Toulouse Math, vol.22, issue.6, pp.649-711, 2013.

P. Biane and R. Speicher, Free diffusions, free entropy and free Fisher information, Ann. Inst. H. Poincaré Probab. Statist, vol.37, issue.5, pp.581-606, 2001.

S. G. Bobkov and F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal, vol.163, issue.1, pp.1-28, 1999.

S. G. Bobkov, N. Gozlan, C. Roberto, and P. Samson, Bounds on the deficit in the logarithmic Sobolev inequality, J. Funct. Anal, vol.267, issue.11, pp.4110-4138, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01053507

G. Sergey and . Bobkov, Berry-Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances, vol.170, pp.229-262, 2018.

G. Sergey, G. P. Bobkov, F. Chistyakov, and . Götze, Rate of convergence and Edgeworth-type expansion in the entropic central limit theorem, Ann. Probab, vol.41, issue.4, pp.2479-2512, 2013.

G. Sergey, P. Bobkov, P. Nayar, and . Tetali, Concentration properties of restricted measures with applications to non-Lipschitz functions, Geometric aspects of functional analysis, vol.2169, pp.25-53, 2017.

E. Bolthausen, An estimate of the remainder in a combinatorial central limit theorem, Z. Wahrsch. Verw. Gebiete, vol.66, issue.3, pp.379-386, 1984.

T. Bonis, Rates in the central limit theorem and diffusion approximation via Stein's method. Arxiv preprint, 2018.

A. A. Borovkov and S. A. Utev, An inequality and a characterization of the normal distribution connected with it, Teor. Veroyatnost. i Primenen, vol.28, issue.2, pp.209-218, 1983.

S. Boucheron, G. Lugosi, and P. Massart, A nonasymptotic theory of independence, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00794821

L. Brasco and G. De-philippis, Spectral inequalities in quantitative form, Shape optimization and spectral theory, pp.201-281, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01478992

Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math, vol.44, issue.4, pp.375-417, 1991.

R. Bubley and M. Dyer, Path coupling: A technique for proving rapid mixing in markov chains, 38th Annual Symposium on Foundations of Computer Science, p.223231, 1997.

P. Buser, A note on the isoperimetric constant, Ann. Sci. ´ Ecole Norm. Sup, vol.15, issue.4, pp.213-230, 1982.

L. A. Caffarelli, Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. Math. Phys, vol.214, issue.3, pp.547-563, 2000.

P. Caputo, P. D. Pra, and G. Posta, Convex entropy decay via the Bochner-BakryEmery approach, Ann. Inst. Henri Poincaré Probab. Stat, vol.45, issue.3, pp.734-753, 2009.

E. A. Carlen and A. Soffer, Entropy production by block variable summation and central limit theorems, Comm. Math. Phys, vol.140, issue.2, pp.339-371, 1991.

E. A. Carlen, Superadditivity of Fisher's information and logarithmic Sobolev inequalities, J. Funct. Anal, vol.101, issue.1, pp.194-211, 1991.

E. A. Carlen and A. Figalli, Stability for a GNS inequality and the log-HLS inequality, with application to the critical mass Keller-Segel equation, Duke Math. J, vol.162, issue.3, pp.579-625, 2013.

E. A. Carlen, R. L. Frank, and E. H. Lieb, Stability estimates for the lowest eigenvalue of a Schrödinger operator, Geom. Funct. Anal, vol.24, issue.1, pp.63-84, 2014.

E. A. Carlen and J. Maas, An analog of the 2-Wasserstein metric in non-commutative probability under which the fermionic Fokker-Planck equation is gradient flow for the entropy, Comm. Math. Phys, vol.331, issue.3, pp.887-926, 2014.

E. A. Carlen and J. Maas, Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance, J. Funct. Anal, vol.273, issue.5, pp.1810-1869, 2017.

P. Cattiaux and A. Guillin, Functional inequalities via Lyapunov conditions, Optimal transportation, vol.413, pp.274-287, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00446104

D. Chafa¨?chafa¨?, From Boltzmann to random matrices and beyond, Ann. Fac. Sci. Toulouse Math, vol.24, issue.6, pp.641-689, 2015.

S. Chatterjee, Fluctuations of eigenvalues and second order Poincaré inequalities, vol.143, pp.1-40, 2009.

S. Chatterjee, Spin glasses and Stein's method, Probab. Theory Related Fields, vol.148, issue.3-4, pp.567-600, 2010.

S. Chatterjee, A short survey of Stein's method, Proceedings of the International Congress of Mathematicians-Seoul, vol.IV, pp.1-24, 2014.

S. Chatterjee and E. Meckes, Multivariate normal approximation using exchangeable pairs, ALEA Lat. Am. J. Probab. Math. Stat, vol.4, pp.257-283, 2008.

J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math, vol.144, issue.2, pp.189-237, 1996.

J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry, vol.6, p.72, 1971.

L. H. Chen, Poisson approximation for dependent trials, Ann. Probab, vol.3, issue.3, pp.534-545, 1975.

X. Cheng and D. Zhou, Eigenvalues of the drifted Laplacian on complete metric measure spaces, Commun. Contemp. Math, vol.19, issue.1, p.17, 2017.

S. Chow, W. Huang, Y. Li, and H. Zhou, Fokker-Planck equations for a free energy functional or Markov process on a graph, Arch. Ration. Mech. Anal, vol.203, issue.3, pp.969-1008, 2012.

B. Cloez and C. Delplancke, Intertwinings and stein's magic factors for birth-death processes, IHP: Probab. Stat, 2018.

B. Cloez and M. Thai, Quantitative results for the fleming-viot particle system in discrete space, Stoch. Proc. Appl, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00915981

D. Cordero-erausquin and B. Klartag, Moment measures, J. Funct. Anal, vol.268, issue.12, pp.3834-3866, 2015.

D. Cordero-erausquin, Some applications of mass transport to Gaussian-type inequalities, Arch. Ration. Mech. Anal, vol.161, issue.3, pp.257-269, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00693655

D. Cordero-erausquin, Transport inequalities for log-concave measures, quantitative forms, and applications, Canad. J. Math, vol.69, issue.3, pp.481-501, 2017.

D. Cordero-erausquin, R. J. Mccann, and M. Schmuckenschläger, A Riemannian interpolation inequalityàinequalityà la Borell, Brascamp and Lieb. Invent. Math, vol.146, issue.2, pp.219-257, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00693677

T. A. Courtade and M. Fathi, Stability of the Bakry-Emery theorem on R n . Arxiv preprint, 2018.

T. A. Courtade, A. Pananjady, and M. Fathi, Existence of stein kernels under a spectral gap, and discrepancy bounds. to appear in Ann, IHP Probab. Stat, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01968938

T. A. Courtade, A. Pananjady, and M. Fathi, Wasserstein stability of the entropy power inequality for log-concave densities, IEEE Transactions on Information Theory, vol.64, issue.8, pp.5691-5703, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01874831

T. A. Courtade, A strong entropy power inequality, IEEE Trans. Inform. Theory, vol.64, issue.4, pp.2173-2192, 2018.

G. De-philippis and A. Figalli, Rigidity and stability of Caffarelli's log-concave perturbation theorem, Nonlinear Anal, vol.154, pp.59-70, 2017.

A. Dembo, A. Kagan, and L. A. Shepp, Remarks on the maximum correlation coefficient, Bernoulli, vol.7, issue.2, pp.343-350, 2001.

J. Ding and E. Mossel, Mixing under monotone censoring, Electron. Commun. Probab, vol.19, issue.46, 2014.

R. L. Dobrusin, Definition of a system of random variables by means of conditional distributions, Teor. Verojatnost. i Primenen, vol.15, pp.469-497, 1970.

J. Dolbeault and G. Toscani, Stability results for logarithmic Sobolev and GagliardoNirenberg inequalities, Int. Math. Res. Not. IMRN, issue.2, pp.473-498, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01081098

A. Eberle, Reflection couplings and contraction rates for diffusions, Probab. Theory Related Fields, vol.166, issue.3-4, pp.851-886, 2016.

R. Eldan, A two-sided estimate for the Gaussian noise stability deficit, Invent. Math, vol.201, issue.2, pp.561-624, 2015.

R. Eldan, Gaussian-width gradient complexity, reverse log-Sobolev inequalities and nonlinear large deviations, Funct. Anal, 2018.

R. Eldan and B. Klartag, Dimensionality and the stability of the Brunn-Minkowski inequality, Ann. Sc. Norm. Super. Pisa Cl. Sci, vol.13, issue.5, pp.975-1007, 2014.

R. Eldan, J. R. Lee, and J. Lehec, Transport-entropy inequalities and curvature in discrete-space Markov chains, A journey through discrete mathematics, pp.391-406, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01428953

R. Eldan, D. Mikulincer, and A. Zhai, The CLT in high dimensions: quantitative bounds via martingale embedding, 2018.

M. Erbar, Gradient flows of the entropy for jump processes, Ann. Inst. Henri Poincaré Probab. Stat, vol.50, issue.3, pp.920-945, 2014.

M. Erbar, A gradient flow approach to the Boltzmann equation, 2016.

M. Erbar and M. Fathi, Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature, J. Funct. Anal, vol.274, issue.11, pp.3056-3089, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01874829

M. Erbar, M. Fathi, V. Laschos, and A. Schlichting, Gradient flow structure for McKean-Vlasov equations on discrete spaces, Discrete Contin. Dyn. Syst, vol.36, issue.12, pp.6799-6833, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01874835

M. Erbar, C. Henderson, G. Menz, and P. Tetali, Ricci bounds for weakly interacting markov chains, Electron. J. Probabl, vol.22, issue.40, pp.1-23, 2017.

M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Ration. Mech. Anal, vol.206, issue.3, pp.997-1038, 2012.

M. Erbar, J. Maas, and M. Wirth, On the geometry of geodesics in discrete optimal transport, 2018.

M. Erbar, M. Rumpf, B. Schmitzer, and S. Simon, Computation of optimal transport on discrete metric measure spaces, 2017.

M. Fathi, A sharp symmetrized form of talagrand's transport-entropy inequality for the gaussian measure, Comm. Probab, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01968935

M. Fathi, Stein kernels and moment maps, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01968940

M. Fathi, E. Indrei, and M. Ledoux, Quantitative logarithmic Sobolev inequalities and stability estimates, Discrete Contin. Dyn. Syst, vol.36, issue.12, pp.6835-6853, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01874822

M. Fathi and J. Maas, Entropic Ricci curvature bounds for discrete interacting systems, Ann. Appl. Probab, vol.26, issue.3, pp.1774-1806, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01358648

M. Fathi and B. Nelson, Free Stein kernels and an improvement of the free logarithmic Sobolev inequality, Adv. Math, vol.317, pp.193-223, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01874834

M. Fathi and Y. Shu, Curvature and transport inequalities for Markov chains in discrete spaces, Bernoulli, vol.24, issue.1, pp.672-698, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01874828

F. Feo, E. Indrei, M. R. Posteraro, and C. Roberto, Some remarks on the stability of the log-Sobolev inequality for the Gaussian measure, Potential Anal, vol.47, issue.1, pp.37-52, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01691775

A. Figalli, Stability in geometric and functional inequalities, Proceedings of the 6th European Congress of Mathematics, 2012.

A. Figalli and D. Jerison, Quantitative stability for the Brunn-Minkowski inequality, Adv. Math, vol.314, pp.1-47, 2017.

A. Figalli, F. Maggi, and C. Mooney, The sharp quantitative Euclidean concentration inequality, Camb. J. Math, vol.6, issue.1, pp.59-87, 2018.

A. Figalli, F. Maggi, and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math, vol.182, issue.1, pp.167-211, 2010.

N. Gigli, An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature, Anal. Geom. Metr. Spaces, vol.2, pp.169-213, 2014.

L. Goldstein and G. Reinert, Stein's method and the zero bias transformation with application to simple random sampling, Ann. Appl. Probab, vol.7, issue.4, pp.935-952, 1997.

N. Gozlan and C. Léonard, Transport inequalities. A survey. Markov Process. Related Fields, vol.16, pp.635-736, 2010.

N. Gozlan, A characterization of dimension free concentration in terms of transportation inequalities, Ann. Probab, vol.37, issue.6, pp.2480-2498, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00274548

N. Gozlan, C. Roberto, and P. Samson, From concentration to logarithmic Sobolev and Poincaré inequalities, J. Funct. Anal, vol.260, issue.5, pp.1491-1522, 2011.

L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math, vol.97, issue.4, pp.1061-1083, 1975.

N. Grunewald, F. Otto, C. Villani, and M. G. Westdickenberg, A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit, Ann. Inst. Henri Poincaré Probab. Stat, vol.45, issue.2, pp.302-351, 2009.
DOI : 10.1214/07-aihp200

URL : https://doi.org/10.1214/07-aihp200

A. Guionnet and D. Shlyakhtenko, Free monotone transport, Invent. Math, vol.197, issue.3, pp.613-661, 2014.

E. Indrei and D. Kim, Deficit estimates for the logarithmic sobolev inequality, 2018.

E. Indrei and D. Marcon, A quantitative log-Sobolev inequality for a two parameter family of functions, Int. Math. Res. Not. IMRN, issue.20, pp.5563-5580, 2014.

R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the FokkerPlanck equation, SIAM J. Math. Anal, vol.29, issue.1, pp.1-17, 1998.

A. Joulin, A new Poisson-type deviation inequality for Markov jump processes with positive Wasserstein curvature, Bernoulli, vol.15, issue.2, pp.532-549, 2009.
DOI : 10.3150/08-bej158

URL : https://doi.org/10.3150/08-bej158

A. Joulin and Y. Ollivier, Curvature, concentration and error estimates for Markov chain Monte Carlo, Ann. Probab, vol.38, issue.6, pp.2418-2442, 2010.
DOI : 10.1214/10-aop541

URL : https://doi.org/10.1214/10-aop541

A. Jüngel and S. Schuchnigg, A discrete Bakry-Emery method and its application to the porous-medium equation, Discrete Contin. Dyn. Syst, vol.37, issue.11, pp.5541-5560, 2017.

A. Jüngel and W. Yue, Discrete Beckner inequalities via the Bochner-Bakry-Emery approach for Markov chains, Ann. Appl. Probab, vol.27, issue.4, pp.2238-2269, 2017.

C. Kipnis and C. Landim, Scaling limits of interacting particle systems, Grundlehren der Mathematischen Wissenschaften, vol.320
DOI : 10.1007/978-3-662-03752-2

. Springer-verlag, , 1999.

C. Kipnis and S. R. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm. Math. Phys, vol.104, issue.1, pp.1-19, 1986.

. Bo'az-klartag, A central limit theorem for convex sets, Invent. Math, vol.168, issue.1, pp.91-131, 2007.

. Bo'az-klartag, Logarithmically-concave moment measures I, Geometric aspects of functional analysis, vol.2116, pp.231-260, 2014.

A. V. Kolesnikov, Hessian metrics, CD(K, N )-spaces, and optimal transportation of logconcave measures, Discrete Contin. Dyn. Syst, vol.34, issue.4, pp.1511-1532, 2014.

M. Ledoux, A simple analytic proof of an inequality by P, Buser. Proc. Amer. Math. Soc, vol.121, issue.3, pp.951-959, 1994.

M. Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs, vol.89, 2001.

M. Ledoux, Chaos of a Markov operator and the fourth moment condition, Ann. Probab, vol.40, issue.6, pp.2439-2459, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00934894

M. Ledoux, I. Nourdin, and G. Peccati, Stein's method, logarithmic Sobolev and transport inequalities, Geom. Funct. Anal, vol.25, issue.1, pp.256-306, 2015.
DOI : 10.1007/s00039-015-0312-0

URL : http://arxiv.org/pdf/1403.5855

M. Ledoux, I. Nourdin, and G. Peccati, A Stein deficit for the logarithmic Sobolev inequality, Sci. China Math, vol.60, issue.7, pp.1163-1180, 2017.
DOI : 10.1007/s11425-016-0134-7

URL : http://arxiv.org/pdf/1602.08235

Y. Lee and S. S. Vempala, Eldan's stochastic localization and the KLS hyperplane conjecture: an improved lower bound for expansion, 58th Annual IEEE Symposium on Foundations of Computer Science-FOCS 2017, pp.998-1007, 2017.
DOI : 10.1109/focs.2017.96

Y. Lee and S. S. Vempala, The kannan-lovász-simonovits conjecture, 2017.

J. Lehec, Representation formula for the entropy and functional inequalities, Ann. Inst. Henri Poincaré Probab. Stat, vol.49, issue.3, pp.885-899, 2013.
DOI : 10.1214/11-aihp464

URL : https://doi.org/10.1214/11-aihp464

. Tonylelì-evre, A general two-scale criteria for logarithmic Sobolev inequalities, J. Funct. Anal, vol.256, issue.7, pp.2211-2221, 2009.

T. Evre and G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics, Acta Numer, vol.25, pp.681-880, 2016.

C. Ley, G. Reinert, and Y. Swan, Stein's method for comparison of univariate distributions, Probab. Surv, vol.14, pp.1-52, 2017.
DOI : 10.1214/16-ps278

URL : https://doi.org/10.1214/16-ps278

P. Li and S. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math, vol.156, issue.3-4, pp.153-201, 1986.

Y. Lin and S. Yau, Ricci curvature and eigenvalue estimate on locally finite graphs, Math. Res. Lett, vol.17, issue.2, pp.343-356, 2010.
DOI : 10.4310/mrl.2010.v17.n2.a13

URL : http://www.intlpress.com/site/pub/files/_fulltext/journals/mrl/2010/0017/0002/MRL-2010-0017-0002-a013.pdf

S. Liu, F. Münch, and N. Peyerimhoff, Rigidity properties of the hypercube via bakry-emery curvature. arxiv preprint, 2017.

S. Liu, F. Münch, and N. Peyerimhoff, Bakry-´ emery curvature and diameter bounds on graphs, Calc. Var. Partial Differential Equations, vol.57, issue.2, 2018.
DOI : 10.1007/s00526-018-1334-x

URL : http://arxiv.org/pdf/1608.07778

J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math, vol.169, issue.2, pp.903-991, 2009.
DOI : 10.4007/annals.2009.169.903

URL : http://annals.math.princeton.edu/wp-content/uploads/annals-v169-n3-p04.pdf

J. Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal, vol.261, issue.8, pp.2250-2292, 2011.

J. Maas and D. Matthes, Long-time behavior of a finite volume discretization for a fourth order diffusion equation, Nonlinearity, vol.29, issue.7, pp.1992-2023, 2016.

F. Maggi and C. Villani, Balls have the worst best Sobolev inequalities, J. Geom. Anal, vol.15, issue.1, pp.83-121, 2005.
DOI : 10.1007/bf02921860

K. Marton, A measure concentration inequality for contracting Markov chains, Geom. Funct. Anal, vol.6, issue.3, pp.556-571, 1996.
DOI : 10.1007/bf02249263

R. J. Mccann, Existence and uniqueness of monotone measure-preserving maps, Duke Math. J, vol.80, issue.2, pp.309-323, 1995.

R. J. Mccann, A convexity principle for interacting gases, Adv. Math, vol.128, issue.1, pp.153-179, 1997.

E. Meckes, On the approximate normality of eigenfunctions of the Laplacian, Trans. Amer. Math. Soc, vol.361, issue.10, pp.5377-5399, 2009.

A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains, Calc. Var. Partial Differential Equations, vol.48, issue.1-2, pp.1-31, 2013.

E. Milman, On the role of convexity in isoperimetry, spectral gap and concentration, Invent. Math, vol.177, issue.1, pp.1-43, 2009.

E. Milman, Isoperimetric and concentration inequalities: equivalence under curvature lower bound, Duke Math. J, vol.154, issue.2, pp.207-239, 2010.

V. D. Milman, New proof of the theorem of Dvoretzky on sections of convex bodies, Funct. Anal. Appl, vol.5, pp.28-37, 1971.

G. Monge, Mémoire sur la théorie des déblais et des remblais, 1784.

B. Muckenhoupt, Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, Studia Math, vol.44, pp.31-38, 1972.

R. Munroe,

I. Nourdin and G. Peccati, Stein's method on Wiener chaos, vol.145, pp.75-118, 2009.

I. Nourdin and G. Peccati, Normal approximations with Malliavin calculus, Cambridge Tracts in Mathematics, vol.192, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01314406

I. Nourdin, G. Peccati, and A. Réveillac, Multivariate normal approximation using Stein's method and Malliavin calculus, Ann. Inst. Henri Poincaré Probab. Stat, vol.46, issue.1, pp.45-58, 2010.

I. Nourdin, G. Peccati, and Y. Swan, Entropy and the fourth moment phenomenon, J. Funct. Anal, vol.266, issue.5, pp.3170-3207, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00807589

D. Nualart and G. Peccati, Central limit theorems for sequences of multiple stochastic integrals, Ann. Probab, vol.33, issue.1, pp.177-193, 2005.

Y. Ollivier, Ricci curvature of Markov chains on metric spaces, J. Funct. Anal, vol.256, issue.3, pp.810-864, 2009.

Y. Ollivier, A survey of Ricci curvature for metric spaces and Markov chains, Probabilistic approach to geometry, vol.57, pp.343-381, 2010.

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal, vol.173, issue.2, pp.361-400, 2000.

F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, vol.26, issue.1-2, pp.101-174, 2001.

Y. Polyanskiy and Y. Wu, Wasserstein continuity of entropy and outer bounds for interference channels, IEEE Trans. Inform. Theory, vol.62, issue.7, pp.3992-4002, 2016.

T. Povel, Confinement of Brownian motion among Poissonian obstacles in R d , d ? 3. Probab. Theory Related Fields, vol.114, pp.177-205, 1999.

M. Raginsky and I. Sason, Concentration of measure inequalities in information theory, communications, and coding. Foundations and Trends in Communications and Information Theory, vol.10, pp.1-246, 2013.

E. Rio, Upper bounds for minimal distances in the central limit theorem, Ann. IHP: Probab. Stat, vol.45, issue.3, pp.802-817, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00679848

O. Rioul, Yet another proof of the entropy power inequality, IEEE Trans. Inform. Theory, vol.63, issue.6, pp.3595-3599, 2017.

N. Ross, Fundamentals of Stein's method, Probab. Surv, vol.8, pp.210-293, 2011.

F. Santambrogio, Dealing with moment measures via entropy and optimal transport, J. Funct. Anal, vol.271, issue.2, pp.418-436, 2016.
DOI : 10.1016/j.jfa.2016.04.009

URL : https://hal.archives-ouvertes.fr/hal-01176170

A. Saumard, Weighted poincaré inequalities, concentration inequalities and tail bounds related to the behavior of the stein kernel in dimension one, 2018.

M. Schmuckenschläger, Curvature of nonlocal Markov generators, Convex geometric analysis, vol.34, pp.189-197, 1996.

C. E. Shannon and W. Weaver, The Mathematical Theory of Communication. The University of Illinois Press, 1949.

D. Shlyakhtenko, Shannon's monotonicity problem for free and classical entropy, Proc. Natl. Acad. Sci. USA, vol.104, issue.39, pp.15254-15258, 2007.
DOI : 10.1073/pnas.0706451104

URL : http://www.pnas.org/content/104/39/15254.full.pdf

C. Stein, A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol.II, pp.583-602, 1970.

C. Stein, Approximate computation of expectations, Institute of Mathematical Statistics Lecture Notes-Monograph Series. Institute of Mathematical Statistics, vol.7, 1986.

K. Sturm, On the geometry of metric measure spaces, I. Acta Math, vol.196, issue.1, pp.65-131, 2006.

K. Sturm, On the geometry of metric measure spaces, II. Acta Math, vol.196, issue.1, pp.133-177, 2006.

A. Sznitman, Fluctuations of principal eigenvalues and random scales, Comm. Math. Phys, vol.189, issue.2, pp.337-363, 1997.
DOI : 10.1007/s002200050206

M. Talagrand, Transportation cost for Gaussian and other product measures, Geom. Funct. Anal, vol.6, issue.3, pp.587-600, 1996.
DOI : 10.1007/bf02249265

C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol.58, 2003.
DOI : 10.1090/gsm/058

C. Villani, Optimal transport, Grundlehren der Mathematischen Wissenschaften, vol.338
URL : https://hal.archives-ouvertes.fr/hal-00923320

. Springer-verlag, Old and new, 2009.

D. Villemonais, Lower bound for the coarse Ricci curvature of continuous-time pure jump processes, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01652879

-. K. Max, K. Von-renesse, and . Sturm, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math, vol.58, issue.7, pp.923-940, 2005.

J. Xu, X. Wang, and . Zhu, Kähler-Ricci solitons on toric manifolds with positive first Chern class, Adv. Math, vol.188, issue.1, pp.87-103, 2004.

Z. Weinersmith,

B. Zegarlinski, The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice, Comm. Math. Phys, vol.175, issue.2, pp.401-432, 1996.