S. A?ao?lu, D. Nursel, and A. Sueleyman, Antimicrobial Activity of Some Spices Used in the Meat Industry, Bull Vet Inst Pulawy, vol.51, pp.53-57, 2007.

, Agence Française de Sécurité Sanitaire des Aliments, 2002.

A. Aldrete-tapia, M. C. Escobar-ramírez, M. L. Tamplin, and M. Hernández-iturriaga, High-Throughput Sequencing of Microbial Communities in Poro Cheese, an Artisanal Mexican Cheese, Food Microbiology, vol.44, pp.136-177, 2014.

A. Alegria, P. Szczesny, B. Mayo, J. Bardowski, and M. Kowalczyk, Biodiversity in Oscypek, a Traditional Polish Cheese, Determined by Culture-Dependent andIndependent Approaches, Applied and Environmental Microbiology, vol.78, issue.6, pp.1890-98, 2012.

M. Almeida, A. Hébert, A. Abraham, S. Rasmussen, C. Monnet et al., Construction of a Dairy Microbial Genome Catalog Opens New Perspectives for the Metagenomic Analysis of Dairy Fermented Products, BMC Genomics, vol.15, pp.1471-2164, 1101.
URL : https://hal.archives-ouvertes.fr/hal-01195502

A. Álvarez-ordóñez, A. Fernández, A. Bernardo, and M. López, A comparative study of thermal and acid inactivation kinetics in fruit juices of Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Senftenberg grown at acidic conditions, Foodborne Pathogens and Disease, vol.6, issue.9, pp.1147-1155, 2009.

A. Álvarez-ordóñez, M. Prieto, A. Bernardo, C. Hill, and M. López, The Acid Tolerance Response of Salmonella Spp.: An Adaptive Strategy to Survive in Stressful Environments Prevailing in Foods and the Host, Food Research International, vol.45, issue.2, pp.482-92, 2012.

R. I. Amann, L. Wolfgang, and K. Schleifer, Phylogenetic Identification and in Situ Detection of Individual Microbial Cells without Cultivation, Microbiological Reviews, vol.59, issue.1, pp.143-69, 1995.

L. Ambard and E. Beaujard, Causes de l'hypertension arterielle, Arch Gen Med, vol.1, pp.520-533, 1904.

S. Ammor, E. Dufour, M. Zagorec, S. Chaillou, and C. I. , Characterization and Selection of Lactobacillus Sakei Strains Isolated from Traditional Dry Sausage for Their Potential Use as Starter Cultures, Food Microbiology, vol.22, issue.6, pp.529-567, 2005.

M. Anbalagan, P. Ganesh-prabu, R. E. Krishnaveni, and M. S. , Effect of Sodium Chloride (NaCl) on the Bacterial Load in Chicken, Mutton and Beef Meat Samples in Relation to Meat Spoilage, Internation Journal of Research in Zoology, vol.4, issue.1, pp.1-5, 2014.

S. Andrews, FastQC: a quality control tool for high throughput sequence data, 2010.

J. Bailly, L. Fraissinet-tachet, M. Verner, J. Debaud, M. Lemaire et al., Soil Eukaryotic Functional Diversity, 2007.

M. Approach, International Society for Microbial Ecology, vol.1, pp.632-674

G. C. Baker, J. Smith, and D. A. Cowan, Review and re-analysis of domain-specific 16S primers, Journal of Microbiological Methods, vol.55, issue.3, pp.541-555, 2003.

L. Barco, S. Belluco, A. Roccato, and A. Ricci, A Systematic Review of Studies on Escherichia Coli and Enterobacteriaceae on Beef Carcasses at the Slaughterhouse, International Journal of Food Microbiology, vol.207, pp.30-39, 2015.

M. A. Bayoumi and M. W. Griffiths, In Vitro Inhibition of Expression of Virulence Genes Responsible for Colonization and Systemic Spread of Enteric Pathogens Using Bifidobacterium Bifidum Secreted Molecules, International Journal of Food Microbiology, vol.156, issue.3, pp.255-63, 2012.

N. Beales, Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH, and Osmotic Stress: A Review, Comprehensive Reviews in Food Science and Food Safety, vol.3, 2004.

M. Begon, C. R. Townsend, and J. L. Harper, Ecology from Individuals to Ecosystems, 2006.

V. Benes, J. Blake, and D. K. , Ribo-Zero Gold Kit: Improved RNA-Seq Results after Removal of Cytoplasmic and Mitochondrial Ribosomal RNA, Nature Methods, 2011.

A. K. Benson, J. R. David, S. E. Gilbreth, G. Smith, J. Nietfeldt et al., Microbial Successions Are Associated with Changes in Chemical Profiles of a Model Refrigerated Fresh Pork Sausage during an 80-Day Shelf Life Study, Applied and Environmental Microbiology, vol.80, issue.17, pp.5178-94, 2014.

D. A. Benson, M. Cavanaugh, K. Clark, I. Karsch-mizrachi, D. J. Lipman et al., Nucleic Acids Research, vol.41, pp.36-42, 2013.

M. R. Beresford, P. W. Andrews, and G. Shama, Listeria Monocytogenes Adheres to Many Materials Found in Food-Processing Environments, Journal of Applied Microbiology, vol.90, pp.1000-1005, 2001.

J. Björkroth, Microbiological Ecology of Marinated Meat Products, Meat Science, vol.70, issue.3, pp.477-80, 2005.

J. Björkroth, Microbial ecology from the perspective of food spoilage, 2016.

D. Blankenberg, A. Gordon, V. Kuster, G. Coraor, N. Taylor et al., Manipulation of Fastq data with Galaxy, Bioinformatics, vol.26, issue.14, pp.1783-1785, 2010.

E. Blickstaf and G. Molin, Carbon Dioxide as a Controller of the Spoilage Flora of Pork, with Special Reference to Temperature and Sodium Chloride, Journal of Food Protection®, vol.8, issue.9, pp.756-822, 1983.

R. H. Boers and K. E. Djikmann, Shelf-Life of Vacuum-Packaged Wild Boar Meat in Relation to that of Vacuum-Packaged Pork: Relevance of Intrinsic Factors, Meat Science, vol.37, pp.91-102, 1994.

N. A. Bokulich and D. A. Mills, Differentiation of Mixed Lactic Acid Bacteria Communities in Beverage Fermentations Using Targeted Terminal Restriction Fragment Length Polymorphism, Food Microbiology, vol.31, issue.1, pp.126-158, 2012.

L. Bombrun, P. Gatellier, S. Portanguen, and K. A. , Analysis of the Juice and Water Losses in Salted and Unsalted Pork Samples Heated in Water Bath. Consequences for the Prediction of Weight Loss by Transfer Models, Meat Science, vol.99, pp.113-135, 2015.

C. C. Booijink, J. Boekhorst, E. G. Zoetendal, H. Smidt, M. Kleerebezem et al., Metatranscriptome Analysis of the Human Fecal Microbiota Reveals Subject-Specific Expression Profiles, with Genes Encoding Proteins Involved in Carbohydrate Metabolism Being Dominantly Expressed, Applied and Environmental Microbiology, vol.76, issue.16, pp.5533-5573, 2010.

E. Borch, M. Kant-muermans, and Y. Blixt, Bacterial Spoilage of Meat and Cured Meat Product, International Journal of Food Microbiology, vol.33, pp.103-123, 1996.

G. Bornert, Importance Des Bactéries Psychrotrophes En Hygiène Des Denrées Alimentaires, Revue Méd. Vét, vol.151, issue.11, pp.1003-1013, 2000.

F. Bowe, C. J. Lipps, R. M. Tsolis, E. Groisman, F. Heffron et al., At Least Four Percent of the Salmonella Typhimurium Genome Is Required for Fatal Infection of Mice, Infection and Immunity, vol.66, issue.7, pp.3372-77, 1998.

C. Brady, I. Cleenwerck, S. Venter, T. Coutinho, D. Vos et al., Taxonomic Evaluation of the Genus Enterobacter Based on Multilocus Sequence Analysis (MLSA): Proposal to Reclassify E. Nimipressuralis and E. Amnigenus into Lelliottia Gen. Nov. as Lelliottia Nimipressuralis Comb. Nov. and Lelliottia Amnigena Comb. Nov., Respectively, E. Gergoviae and E. Pyrinus into Pluralibacter Gen. Nov. as Pluralibacter Gergoviae Comb. Nov. and Pluralibacter Pyrinus Comb. Nov., Respectively, E. Cowanii, E. Radicincitans, E. Oryzae and E. Arachidis into Kosakonia Gen. Nov. as Kosakonia Cowanii Comb. Nov., Kosakonia Radicincitans Comb. Nov., Kosakonia Oryzae Comb. Nov. and Kosakonia Arachidis Comb. Nov., Respectively, and E. Turicensis, E. Helveticus and E. Pulveris into Cronobacter as Cronobacter Zurichensis Nom. Nov., Cronobacter Helveticus Comb. Nov. and Cronobacter Pulveris Comb. Nov., Respectively, and Emended Description of the Genera Enterobacter and Cronobacter, vol.36, pp.309-328, 2013.

A. Bremges, I. Maus, P. Belmann, F. Eikmeyer, A. Winkler et al., Deeply Sequenced Metagenome and Metatranscriptome of a Biogas-Producing Microbial Community from an Agricultural Production-Scale Biogas Plant, GigaScience, vol.4, issue.1, 2015.

M. S. Brewer, F. Mckeith, S. E. Martin, A. W. Dallmier, and M. J. , Sodium Lactate Effects on Shelf-Life, Sensory, and Physical Characteristics of Fresh Pork Sausage, Journal of Food Science, vol.56, issue.5, pp.1176-78, 1991.

.. Brillet-anne, I. J. Brown, I. Tzoulaki, V. Candeias, and E. P. , Sélection et Caractérisation de Souches de Carnobacterium Pour La Biopréservation Du Saumon Fumé, International Journal of Epidemiology, vol.38, issue.3, pp.791-813, 2005.

N. Browne and B. C. Dowds, Heat and Salt Stress in the Food Pathogen Bacillus Cereus, Journal of Applied Microbiology, vol.91, pp.1085-94, 2001.

C. ,

F. P. Cappuccio, R. Kalaitzidis, S. Duneclift, and J. B. Eastwood, Unravelling the Links between Calcium Excretion, Salt Intake, Hypertension, Kidney Stones and Bone Metabolism, Journal of Nephrology, vol.13, issue.3, pp.169-77, 2000.

L. Carraro, M. Maifreni, I. Bartolomeoli, M. E. Martino, E. Novelli et al., Comparison of Culture-Dependent and -Independent Methods for 7. Références bibliographiques -195-Bacterial Community Monitoring during Montasio Cheese Manufacturing, Research in Microbiology, vol.162, issue.3, pp.231-270, 2011.

A. Casaburi, A. Nasi, I. Ferrocino, D. Monaco, R. Mauriello et al., Spoilage-Related Activity of Carnobacterium Maltaromaticum Strains in AirStored and Vacuum-Packed Meat, Applied and Environmental Microbiology, vol.77, pp.7382-93, 1920.

A. Casaburi, F. De-filippis, F. Villani, and E. D. , Activities of Strains of Brochothrix Thermosphacta in Vitro and in Meat, Food Research International, vol.62, pp.366-74, 2014.

A. Casaburi, P. Piombino, G. Nychas, F. Villani, and E. D. , Bacterial Populations and the Volatilome Associated to Meat Spoilage, Food Microbiology, vol.45, pp.83-102, 2015.

E. Casey, N. S. Mosier, J. Adamec, Z. Stockdale, N. Ho et al., Effect of Salts on the Co-Fermentation of Glucose and Xylose by a Genetically Engineered Strain of Saccharomyces Cerevisiae, Biotechnology for Biofuels, vol.6, issue.83, 2013.

, Contrôle des salmonelles et d'autres agents zoonotiques sépécifiques présents dans la chaîne alimentaire, CE, 2003.

S. Chaillou, M. C. Champomier-vergès, M. Cornet, C. Coq, A. Dudez et al., The Complete Genome Sequence of the Meat-Borne Lactic Acid Bacterium Lactobacillus Sakei 23K, Nature Biotechnology, vol.23, issue.12, pp.1527-1560, 2005.

S. Chaillou, S. Christieans, M. Rivollier, I. Lucquin, M. C. Champomier-vergès et al., Quantification and Efficiency of Lactobacillus Sakei Strain Mixtures Used as Protective Cultures in Ground Beef, Meat Science, vol.97, issue.3, pp.332-370, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01053883

S. Chaillou, A. Chaulot-talmon, H. Caekebeke, M. Cardinal, S. Christieans et al., Origin and Ecological Selection of Core and FoodSpecific Bacterial Communities Associated with Meat and Seafood Spoilage, The ISME Journal, vol.9, issue.5, pp.1105-1123, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204375

S. Chakravorty, D. Helb, M. Burday, N. Connel, and A. D. , A Detailed Analysis of 16S Ribosomal RNA Gene Segments for the Diagnosis of Pathogenic Bacteria, Journal of Microbiological Methods, vol.69, issue.2, pp.330-369, 2007.

M. Champomier-vergès, S. Chaillou, M. Cornet, and M. Zagorec, Lactobacillus Sakei: Recent Developments and Future Prospects, Research in Microbiology, vol.152, pp.839-887, 2001.

C. Wendy, K. M. Joo, S. Faustman, C. Sun, Q. Vieth et al., Effect of Pseudomonas Fluorescens on Beef Discoloration and Oxymyoglobin Oxidation In Vitro, Journal of Food Protection®, vol.6, issue.10, pp.1265-1407, 1998.

. Chao-anne, Nonparametric Estimation of the Number of Classes in a Population, Scandinavian Journal of Statistics, vol.11, pp.265-70, 1984.

. Ciqual, Table de composition des aliments Ciqual, 2013.

L. Cocolin, M. Manzano, D. Aggio, C. Cantoni, and C. G. , A Novel Polymerase Chain Reaction (PCR) Denaturing Gradient Gel Electrophoresis (DGGE) for the Identification of Micrococcaceae Strains Involved in Meat Fermentations. Its Application to Naturally Fermented Italian Sausages, Meat Science, vol.57, pp.59-64, 2001.

L. Cocolin, K. Rantsiou, L. Iacumin, R. Urso, C. Cantoni et al., Study of the Ecology of Fresh Sausages and Characterization of Populations of Lactic Acid Bacteria by Molecular Methods, Applied and Environmental Microbiology, vol.70, issue.4, pp.1883-94, 2004.

J. A. Cocores and M. S. Gold, The Salted Food Addiction Hypothesis May Explain Overeating and the Obesity Epidemic, Medical Hypotheses, vol.73, issue.6, pp.892-99, 2009.

C. Alimentarius, Norme CODEX pour le sel de qualité alimentaire, CODEX STAN 150-1985, 1985.

J. R. Cole, Q. Wang, J. A. Fish, B. Chai, D. M. Mcgarrell et al., Ribosomal Database Project: Data and Tools for High Throughput rRNA Analysis, Nucleic Acids Research, vol.42, issue.D1, pp.633-642, 2014.
DOI : 10.1093/nar/gkt1244

URL : https://academic.oup.com/nar/article-pdf/42/D1/D633/16952330/gkt1244.pdf

M. D. Collins, J. Samelis, J. Metaxopoulos, and W. S. , Taxonomic Studies on Some Leuconostoc-like Organisms from Fermented Sausages: Description of a New Genus Weissella for the Leuconostoc Paramesenteroides Group of Species, Journal of Applied Bacteriology, vol.75, pp.595-603, 1993.

G. Comi and L. Iacumin, Identification and Process Origin of Bacteria Responsible for Cavities and Volatile off-Flavour Compounds in Artisan Cooked Ham: Spoilage of Cooked Ham, International Journal of Food Science & Technology, vol.47, issue.1, pp.114-135, 2012.

C. Cre?u, V. Flori?tean, M. Carp-c?rare, and I. E. Br?d??an-gh, The Influence of pH and Temperature on Salmonella Spp. from Fresh, Chilled and Frozen Poultry Carcasses, Accessed October, vol.28, 2016.

L. Csonka, Physiological and Genetic Responses of Bacteria to Osmotic Stress, Microbiological Reviews, vol.53, issue.1, pp.121-147, 1989.

D. , Salmonella in Foodborne Bacterial Pathogens, pp.327-445, 1989.

D. , Pathogenicity of Foodborne Salmonella, International Journal of Food Microbiology, vol.12, pp.17-40, 1991.

R. H. Dainty and C. M. Hibbard, Precursors of the Major End Products of Aerobic Metabolism of Brochothrix Thermosphacta, Journal of Applied Bacteriology, vol.55, issue.1, pp.127-160, 1983.

R. H. Dainty, R. A. Edwards, C. M. Hibbard, and S. V. Ramantanis, Bacterial Sources of Putrescine and Cadaverine in Chill Stored Vacuum-Packaged Beef, Journal of Applied Bacteriology, vol.61, issue.2, pp.117-140, 1986.

R. H. Dainty and B. M. Mackey, The Relationship between the Phenotypic Properties of Bacteria from Chill-Stored Meat and Spoilage Processes, International of Applied Bacteriology Symposium Supplement, vol.73, pp.103-117, 1992.

C. Damon, F. Lehembre, C. Oger-desfeux, P. Luis, J. Ranger et al., Metatranscriptomics Reveals the Diversity of Genes Expressed by Eukaryotes in Forest Soils, PLoS ONE, vol.7, issue.1, p.28967, 2012.

D. D. Ghaly and A. E. , Meat Spoilage Mechanisms and Preservation Techniques: A Critical Review, American Journal of Agricultural and Biological Sciences, vol.6, issue.4, pp.486-510, 2011.

P. M. Davidson, Chemical preservatives and natural antimicrobial compounds, Food microbiology: Fundamentals and frontiers, 2001.
DOI : 10.1128/9781555815912.ch33

D. Filippis, F. Pennacchia, C. Di-pasqua, R. Fiore, A. Fogliano et al., Decarboxylase Gene Expression and Cadaverine and Putrescine Production by Serratia Proteamaculans in Vitro and in Beef, International Journal of Food Microbiology, vol.165, issue.3, pp.332-370, 2013.

D. Filippis, F. , L. Storia, A. Villani, F. et al., Exploring the Sources of Bacterial Spoilers in Beefsteaks by Culture-Independent High-Throughput Sequencing, PLoS ONE, vol.8, issue.7, p.70222, 2013.

D. Filippis, F. Genovese, A. Ferranti, P. Gilbert, J. A. et al., Metatranscriptomics Reveals Temperature-Driven Functional Changes in Microbiome Impacting Cheese Maturation Rate, Scientific Reports, vol.6, p.21871, 2016.

N. Degirmencioglu, O. K. Esmer, R. Irkin, and A. Degirmencioglu, Effects of Vacuum and Modified Atmosphere Packaging on Shelf Life Extention of Minced Meat Chemical and Microbiological Changes, Journal of Animal and Veterinary Advances, vol.11, issue.7, pp.898-911, 2012.

V. Delcenserie, B. Taminiau, L. Delhalle, C. Nezer, P. Doyen et al., Microbiota Characterization of a Belgian Protected Designation of Origin Cheese, Herve Cheese, Using Metagenomic Analysis, Journal of Dairy Science, vol.97, issue.10, pp.6046-56, 2014.

, Production de Viandes Hachées et Préparations de Viande Dans Les Établissements Agréés Ou Dérogataires À L'agrément, DGAL -Direction Générale de l'Alimentation, 2012.

A. M. Diez, J. Björkroth, I. Jaime, and R. J. , Microbial, Sensory and Volatile Changes during the Anaerobic Cold Storage of Morcilla de Burgos Previously Inoculated with Weissella Viridescens and Leuconostoc Mesenteroides, International Journal of Food Microbiology, vol.131, issue.2-3, pp.168-77, 2009.

W. Ding, H. Wang, and M. W. Griffiths, Probiotics Down-Regulate flaA ?28 Promoter in Campylobacter Jejuni, Journal of Food Protection®, vol.6, issue.11, pp.2256-2484, 2005.

N. M. Dixon and D. B. Kell, The Inhibition by COz of the Growth and Metabolism of Micro-Organisms, Journal of Applied Bacteriology, vol.67, pp.109-145, 1989.

A. I. Doulgeraki, S. Paramithiotis, D. M. Kagkli, and G. E. Nychas, Lactic Acid Bacteria Population Dynamics during Minced Beef Storage under Aerobic or Modified Atmosphere Packaging Conditions, Food Microbiology, vol.27, issue.8, pp.1028-1062, 2010.

A. I. Doulgeraki, S. Paramithiotis, and G. E. Nychas, Characterization of the Enterobacteriaceae Community That Developed during Storage of Minced Beef under Aerobic or Modified Atmosphere Packaging Conditions, International Journal of Food Microbiology, vol.145, issue.1, pp.77-83, 2011.

A. I. Doulgeraki, D. Ercolini, F. Villani, and N. , Spoilage Microbiota Associated to the Storage of Raw Meat in Different Conditions, International Journal of Food Microbiology, vol.157, issue.2, pp.130-171, 2012.

E. Dugat-bony, C. Straub, A. Teissandier, D. Onésime, V. Loux et al., Overview of a Surface-Ripened Cheese Community Functioning by MetaOmics Analyses, PLOS ONE, vol.10, issue.4, p.124360, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01195505

F. Duranton, S. Guillou, H. Simonin, R. Chéret, and M. De-lamballerie, Combined Use of High Pressure and Salt or Sodium Nitrite to Control the Growth of Endogenous Microflora in Raw Pork Meat, Innovative Food Science & Emerging Technologies, vol.16, pp.373-80, 2012.

. Efsa, The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-Borne Outbreaks in 2013: EU Summary Report on Zoonoses, Zoonotic Agents and Food-Borne Outbreaks, vol.13, p.3991, 2013.

F. Elijovich, M. H. Weinberger, C. A. Anderson, L. J. Appel, M. Bursztyn et al., Salt Sensitivity of Blood Pressure: A Scientific Statement From the American Heart Association, Hypertension, vol.68, issue.3, pp.7-46, 2016.

E. Elmossalami and N. Wassf, Penetration of some microorganism in meat, ZentralBlattfur Veterinar, Med, vol.18, pp.229-336, 1971.

D. Ercolini, F. Russo, E. Torrieri, P. Masi, and F. Villani, Changes in the SpoilageRelated Microbiota of Beef during Refrigerated Storage under Different Packaging Conditions, Applied and Environmental Microbiology, vol.72, issue.7, pp.4663-71, 2006.

D. Ercolini, F. Russo, G. Blaiotta, O. Pepe, G. Mauriello et al., Simultaneous Detection of Pseudomonas Fragi, P. Lundensis, and P. Putida from Meat by Use of a Multiplex PCR Assay Targeting the carA Gene, Applied and Environmental Microbiology, vol.73, issue.7, pp.2354-59, 2007.

D. Ercolini, F. Russo, A. Nasi, P. Ferranti, and F. Villani, Mesophilic and Psychrotrophic Bacteria from Meat and Their Spoilage Potential In Vitro and in Beef, Applied and Environmental Microbiology, vol.75, issue.7, pp.1990-2001, 2009.

D. Ercolini, A. Casaburi, . Nasia, I. Ferrocino, D. Monaco et al., Different Molecular Types of Pseudomonas Fragi Have the Same Overall Behaviour as Meat Spoilers, International Journal of Food Microbiology, vol.142, issue.1-2, pp.120-151, 2010.

D. Ercolini, F. De-filippis, L. Storia, A. Iacono, and M. , Remake by High-Throughput Sequencing of the Microbiota Involved in the Production of Water Buffalo Mozzarella Cheese, Applied and Environmental Microbiology, vol.78, issue.22, pp.8142-8187, 2012.

D. Ercolini, High-Throughput Sequencing and Metagenomics: Moving Forward in the Culture-Independent Analysis of Food Microbial Ecology, Applied and Environmental Microbiology, vol.79, issue.10, pp.3148-55, 2013.

S. Eriksson, S. Lucchini, A. Thompson, M. Rhen, and J. C. Hinton, Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica, Molecular Microbiology, vol.47, issue.1, pp.103-118, 2003.

O. K. Esmer, R. Irkin, N. Degirmencioglu, and A. Degirmencioglu, The Effects of Modified Atmosphere Gas Composition on Microbiological Criteria, Color and Oxidation Values of Minced Beef Meat, Meat Science, vol.88, issue.2, pp.221-247, 2011.

A. Fabrega and J. Vila, Salmonella Enterica Serovar Typhimurium Skills To Succeed in the Host: Virulence and Regulation, Clinical Microbiology Reviews, vol.26, issue.2, pp.308-349, 2013.

J. M. Fettweis, M. G. Serrano, P. H. Girerd, K. K. Jefferson, and G. A. Buck, A New Era of the Vaginal Microbiome: Advances Using Next-Generation Sequencing, Chemistry & Biodiversity, vol.9, issue.5, pp.965-76, 2012.

C. Feurer, F. Irlinger, H. E. Spinnler, P. Glaser, and T. Vallaeys, Assessment of the Rind Microbial Diversity in a Farmhouse-Produced vs a Pasteurized Industrially Produced Soft Red-Smear Cheese Using Both Cultivation and rDNA-Based Methods, Journal of Applied Microbiology, vol.97, issue.3, pp.546-56, 2004.

, FICT -Fédéraction Française des Industriels Charcutiers Traiteurs, 2016.

G. Figueroa, M. Troncoso, C. López, P. Rivas, and M. Toro, Occurrence and Enumeration of Campylobacter Spp. during the Processing of Chilean Broilers, BMC Microbiology, vol.9, issue.1, p.94, 2009.

A. J. Fontana, Water Activity's Role in Food Safety and Quality, 2001.

B. M. Forde and P. W. Toole, Next-Generation Sequencing Technologies and Their Impact on Microbial Genomics, Briefings in Functional Genomics, vol.12, issue.5, pp.440-53, 2013.

L. Fougy, M. Desmonts, G. Coeuret, C. Fassel, E. Hamon et al., Reducing Salt in Raw Pork Sausages Increases Spoilage and Correlates with Reduced Bacterial Diversity, Applied and Environmental Microbiology, vol.82, issue.13, pp.3928-3967, 2016.

L. Franceagrimer-;-franzetti and M. Scarpellini, Characterisation of Pseudomonas Spp. Isolated from Foods, Annals of Microbiology, vol.57, issue.1, pp.39-47, 2007.

E. A. Franzosa, X. C. Morgan, N. Segata, L. Waldron, J. Reyes et al., Relating the Metatranscriptome and Metagenome of the Human Gut, Proceedings of the National Academy of Sciences, vol.111, issue.22, 2014.

P. Fravalo, M. Laisney, M. Gillard, G. Salvat, and M. , Campylobacter Transfer from Naturally Contaminated Chicken Thighs to Cutting Boards Is Inversely Related to Initial Load, Journal of Food Protection®, vol.72, issue.9, pp.1836-1876, 2009.

M. M. Fuka, S. Wallisch, M. Engel, G. Welzl, J. Havranek et al., Dynamics of Bacterial Communities during the Ripening Process of Different Croatian Cheese Types Derived from Raw Ewe's Milk Cheeses, PLoS ONE, vol.8, issue.11, p.80734, 2013.

F. Vincenzina, V. Quero, G. M. Cho, G. Kabisch, J. Meske et al., The Genus Weissella: Taxonomy, Ecology and Biotechnological Potential, Frontiers in Microbiology, vol.6, 2015.

V. Giaccone, P. Catellani, and L. Alberghini, Food as Cause of Human SalmonellosisSalmonella: a Dangerous Foodborne Pathogen, pp.47-73, 2012.

J. A. Gilbert, D. Field, Y. Huang, R. Edwards, W. Li et al., Detection of Large Numbers of Novel Sequences in the Metatranscriptomes of Complex Marine Microbial Communities, PLoS ONE, vol.3, issue.8, p.3042, 2008.

C. O. Gill and B. J. , The Presence of Escherichia Coli, Salmonella and Campylobacter in Pig Carcasses Dehairing Equipement, Food Microbiology, vol.10, pp.337-381, 1993.

G. Giraffa and N. E. , DNA-based, culture-independent strategies for evaluating microbial communities in food-associated ecosystems, International Journal of Food Microbiology, vol.20, issue.1-2, pp.19-34, 2001.

K. Gkatzionis, D. Yunita, R. S. Linforth, M. Dickinson, and C. E. Dodd, Diversity and Activities of Yeasts from Different Parts of a Stilton Cheese, International Journal of Food Microbiology, vol.177, pp.109-125, 2014.

D. Gómez, L. Iguácel, M. Rota, J. Carramiñana, A. Ariño et al., Occurrence of Listeria Monocytogenes in Ready-to-Eat Meat Products and Meat Processing Plants in Spain, Foods, vol.4, issue.3, pp.271-82, 2015.

P. A. Grimont and F. Weill, Antigenic formulae of the Salmonella serovars, 2007.

I. Hautefort, A. Thompson, S. Eriksson-ygberg, M. L. Parker, S. Lucchini et al., During Infection of Epithelial Cells Salmonella Enterica Serovar Typhimurium Undergoes a TimeDependent Transcriptional Adaptation That Results in Simultaneous Expression of Three Type 3 Secretion Systems, Cellular Microbiology, vol.10, issue.4, pp.958-84, 2008.

M. Hensel, Evolution of Pathogenicity Islands of Salmonella Enterica, International Journal of Medical Microbiology, vol.294, issue.2-3, pp.95-102, 2004.

M. L. Hernández-macedo, C. J. Contreras-castillo, S. M. Tsai, S. H. Da-cruz, C. I. Sarantopoulos et al., Gases and Volatile Compounds Associated with Micro-Organisms in Blown Pack Spoilage of Brazilian VacuumPacked Beef, Letters in Applied Microbiology, vol.55, issue.6, pp.467-75, 2012.

Y. Hocheberg and Y. Benjamin, More powerful procedures for multiple significance testing, Stat Med, vol.9, issue.7, pp.811-819, 1990.

P. Hu, X. L. Xu, G. H. Zhou, Y. Q. Han, B. C. Xu et al., Study of the Lactobacillus Sakei Protective Effect towards Spoilage Bacteria in Vacuum Packed Cooked Ham Analyzed by PCR-DGGE, Meat Science, vol.80, issue.2, pp.462-69, 2008.

P. Hugenholtz, B. M. Goebel, and P. N. , Impact of Culture-Independent Studies on the Emerging Phylogenetic View of Bacterial Diversity, Journal of Bacteriology, vol.180, issue.18, pp.4765-74, 1998.

R. Hulánková, G. Bo?ilová, and S. I. , Influence of Modified Atmosphere Packaging on the Survival of Salmonella Enteritidis PT 8 on the Surface of Chilled Chicken Legs, Acta Veterinaria Brno, vol.79, issue.9, 2010.

H. Jenni, R. Rahkila, J. Ali, J. Rousu, and K. Björkroth, Meat Processing Plant Microbiome and Contamination Patterns of Cold-Tolerant Bacteria Causing Food Safety and Spoilage Risks in the Manufacture of VacuumPackaged Cooked Sausages, Applied and Environmental Microbiology, vol.81, pp.7088-97, 1920.

C. Humblot and J. Guyot, Pyrosequencing of Tagged 16S rRNA Gene Amplicons for Rapid Deciphering of the Microbiomes of Fermented Foods Such as Pearl Millet Slurries, Applied and Environmental Microbiology, vol.75, issue.13, pp.4354-61, 2009.

J. Jääskelainen, E. Johansson, P. Kostiainen, O. Nieminen, T. Schmidt et al., Significance of HemeBased Respiration in Meat Spoilage Caused by Leuconostoc Gasicomitatum, Applied and Environmental Microbiology, vol.79, issue.4, pp.1078-85, 2013.

E. Jääskeläinen, J. Hultman, J. Parshintsev, M. Riekkola, and J. Björkroth, Development of Spoilage Bacterial Community and Volatile Compounds in Chilled Beef under Vacuum or High Oxygen Atmospheres, International Journal of Food Microbiology, vol.223, pp.25-32, 2016.

T. Jacobsen, B. B. Budde, and A. G. Koch, Application of Leuconostoc Carnosum for Biopreservation of Cooked Meat Products, Journal of Applied Microbiology, vol.95, pp.242-291, 2003.

J. M. Jay, J. P. Vilai, and M. E. Hughes, Profile and Activity of the Bacterial Biota of Ground Beef Held from Freshness to Spoilage at 5-7 °C, International Journal of Food Microbiology, vol.81, issue.2, pp.105-116, 2003.

P. Johansson, L. Paulin, E. Sade, N. Salovuori, E. R. Alatalo et al., Genome Sequence of a Food Spoilage Lactic Acid Bacterium, Leuconostoc Gasicomitatum LMG 18811T, in Association with Specific Spoilage Reactions, Applied and Environmental Microbiology, vol.77, issue.13, pp.4344-51, 2011.

S. B. Jovanovich, M. Martinell, M. T. Record, and R. R. Burgess, Rapid Response to Osmotic Upshift by Osmoregulated Genes in Escherichia Coli and Salmonella Typhimurium, Journal of Bacteriology, vol.170, issue.2, pp.534-573, 1988.

J. Y. Jung, S. H. Lee, J. M. Kim, M. S. Park, J. Bae et al., Metagenomic Analysis of Kimchi, a Traditional Korean Fermented Food, Applied and Environmental Microbiology, vol.77, issue.7, pp.2264-74, 2011.

J. Y. Jung, S. H. Lee, H. M. Jin, Y. Hahn, E. L. Madsen et al., Metatranscriptomic Analysis of Lactic Acid Bacterial Gene Expression during Kimchi Fermentation, International Journal of Food Microbiology, vol.163, issue.2-3, pp.171-79, 2013.

Y. Kato, R. M. Sakala, H. Hayashidani, A. Kiuchi, C. Kaneuchi et al., Lactobacillus Algidus Sp. Nov., a Psychrophilic Lactic Acid Bacterium Isolated from Vacuum-Packaged Refrigerated Beef, Interantional Journal of Systematic Evolutionary Microbiology, vol.50, pp.1143-1192, 2000.

R. Keast, . Sj, and P. A. Breslin, An Overview of Binary Taste-taste Interactions, Food Quality and Preference, vol.14, issue.2, pp.111-135, 2003.

G. Kergourlay, B. Taminiau, G. Daube, C. Vergès, and M. , Metagenomic Insights into the Dynamics of Microbial Communities in Food, International Journal of Food Microbiology, vol.213, pp.31-39, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01536517

D. Kim and A. B. , Characterization of Probiotic Carnobacteria Isolated from Rainbow Trout (Oncorhynchus Mykiss) Intestine, Letters in Applied Microbiology, vol.47, issue.3, pp.141-188, 2008.

M. Kim and C. J. , Bacterial Community Structure in Kimchi, a Korean Fermented Vegetable Food, as Revealed by 16S rRNA Gene Analysis, International Journal of Food Microbiology, vol.103, issue.1, pp.91-96, 2005.

M. Kim, M. Morrison, and Y. Z. , Evaluation of Different Partial 16S rRNA Gene Sequence Regions for Phylogenetic Analysis of Microbiomes, Journal of Microbiological Methods, vol.84, issue.1, pp.81-87, 2011.

O. Kim, Y. Cho, K. Lee, S. Yoon, M. Kim et al., Introducing EzTaxon-E: A Prokaryotic 16S rRNA Gene Sequence Database with Phylotypes That Represent Uncultured Species, International journal of systematic and evolutionary microbiology, vol.62, pp.716-737, 2012.

M. Kiyohara, T. Koyanagi, H. Matsui, K. Yamamoto, H. Take et al., Changes in Microbiota Population during Fermentation of Narezushi as Revealed by Pyrosequencing Analysis, Bioscience, Biotechnology, and Biochemistry, vol.76, issue.1, pp.48-52, 2012.

J. Kjeldgaard, S. Henriksen, M. T. Cohn, S. Aabo, and H. Ingmer, Method Enabling Gene Expression Studies of Pathogens in a Complex Food Matrix, Applied and Environmental Microbiology, vol.77, issue.23, pp.8456-58, 2011.

J. Koort, A. Murros, T. Coenye, S. Eerola, P. Vandamme et al., Associated with Spoilage of ModifiedAtmosphere-Packaged Poultry Products, Lactobacillus Oligofermentans Sp. Nov, vol.71, issue.8, pp.4400-4406, 2005.

A. Kopf, I. Kostadinov, A. Wichels, C. Quast, and F. O. Glöckner, Metatranscriptome of Marine Bacterioplankton during Winter Time in the North Sea Assessed by Total RNA Sequencing, Marine Genomics, vol.19, pp.45-46, 2015.

H. Korkeala, T. Suortti, and P. Mäkela, Ropy Slime Formation in Vacuum-Packed Cooked Meat Products Caused by Heterofermentative Lactobacilli and a Leuconostoc Species, International Journal of Food Microbiology, vol.7, pp.339-386, 1988.

K. Koutsoumanis and J. N. Sofos, Microbial Contamination of Carcasses and Cuts, Encyclopedia of Meat Sciences, pp.727-764, 2004.

K. P. Koutsoumanis, A. P. Stamatiou, E. H. Drosinos, and N. E. , Control of Spoilage Microorganisms in Minced Pork by a Self-Developed Modified Atmosphere Induced by the Respiratory Activity of Meat Microflora, Food Microbiology, vol.25, issue.7, pp.915-936, 2008.

J. Labadie, Consequences of Packaging on Bacterial Growth. Meat Is an Ecological Niche, Meat Science, vol.52, pp.299-305, 1999.

L. Lafay, Évolution et Origine Des Apports En Sel Chez Les Adultes: Résultats de L'étude INCA 2, 2007.

J. Lamkey, F. W. Leak, W. B. Tuley, D. D. Johnson, and R. L. West, Assessment of Sodium Lactate Addition to Fresh Pork Sausage, Journal of Food Science, vol.56, issue.1, pp.220-243, 1991.

B. Langmead and S. L. Salzberg, Fast Gapped-Read Alignment with Bowtie 2, Nature Methods, vol.9, issue.4, pp.357-59, 2012.

L. Storia, A. Ferrocino, I. Torrieri, E. , D. Monaco et al., A Combination of Modified Atmosphere and Antimicrobial Packaging to Extend the Shelf-Life of Beefsteaks Stored at Chill Temperature, International Journal of Food Microbiology, vol.158, issue.3, pp.186-94, 2012.

M. L. Latorre-moratalla, S. Bover-cid, J. Bosch-fusté, and M. C. Vidal-carou, Influence of Technological Conditions of Sausage Fermentation on the Aminogenic Activity of L. Curvatus CTC273, Food Microbiology, vol.29, issue.1, pp.43-48, 2012.

M. Law, Salt, Blood Pressure and Cardiovascular Diseases, European Journal of Cardiovascular Risk, vol.7, issue.1, pp.5-8, 2000.
DOI : 10.1177/204748730000700102

R. A. Lawrie, Meat science, 1991.

M. M. Leimena, J. Ramiro-garci, M. Davids, B. Van-den-bogert, H. Smidt et al., A Comprehensive Metatranscriptome Analysis Pipeline and Its Validation Using Human Small Intestine Microbiota Datasets, BMC Genomics, vol.14, issue.530, pp.1471-2164, 2013.
DOI : 10.1186/1471-2164-14-530

URL : https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/1471-2164-14-530

J. J. Leisner, B. G. Laursen, H. Prévost, D. Drider, and D. P. , Carnobacterium: Positive and Negative Effects in the Environment and in Foods, FEMS Microbiology Reviews, vol.31, issue.5, pp.592-613, 2007.

L. Leistner, Food preservation by combined methods, Food Research International, vol.25, pp.151-159, 1992.
DOI : 10.1016/0963-9969(92)90158-2

B. Leporq, J. Membre, C. Dervin, P. Buche, and G. J. , The ?Sym'Previus? Software, a Tool to Support Decisions to the Foodstuff Safety, vol.100, pp.231-268, 2005.

F. Leroi, P. A. Fall, M. F. Pilet, F. Chevalier, and B. R. , Influence of Temperature, pH and NaCl Concentration on the Maximal Growth Rate of Brochothrix Thermosphacta and a Bioprotective Bacteria Lactococcus Piscium CNCM I-4031, Food Microbiology, vol.31, issue.2, pp.222-250, 2012.

F. Leroy, C. Vasilopoulos, S. Vanhemelryck, G. Falony, and D. L. , Volatile Analysis of Spoiled, Artisan-Type, Modified-Atmosphere-Packaged Cooked Ham Stored under Different Temperatures, Food Microbiology, vol.26, issue.1, pp.94-102, 2009.

M. Lessard, C. Viel, D. St-gelais, and S. Labrie, Metatranscriptome Analysis of Fungal Strains Penicillium Camemberti and Geotrichum Candidum Reveal Cheese Matrix Breakdown and Potential Development of Sensory Properties of Ripened Camembert-Type Cheese, BMC Genomics, vol.15, issue.235, pp.1471-2164, 2014.

G. Lewis, M. Randall, N. Thermodynamics, G. J. Leyer, and J. E. , Acid Adaptation Promotes Survival of Salmonella Spp. in Cheese, Applied and Environmental Microbiology, vol.58, issue.6, pp.2075-80, 1923.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment/Map Format and SAMtools, Bioinformatics, vol.25, issue.16, pp.2078-79, 1000.
DOI : 10.1093/bioinformatics/btp352

URL : https://academic.oup.com/bioinformatics/article-pdf/25/16/2078/531810/btp352.pdf

W. Li and G. A. , Cd-Hit: A Fast Program for Clustering and Comparing Large Sets of Protein or Nucleotide Sequences, Bioinformatics Application Note, vol.22, issue.13, pp.1658-59, 2006.

X. Li, E. Ma, L. Yan, H. Meng, X. Du et al., Bacterial and Fungal Diversity in the Traditional Chinese Liquor Fermentation Process, International Journal of Food Microbiology, vol.146, issue.1, pp.31-37, 2011.
DOI : 10.1016/j.ijfoodmicro.2011.01.030

D. G. Liem, F. Miremadi, and R. Keast, Reducing Sodium in Foods: The Effect on Flavor, Nutrients, vol.3, issue.12, pp.694-711, 2011.
DOI : 10.3390/nu3060694

URL : http://www.mdpi.com/2072-6643/3/6/694/pdf

F. Liu, R. Yang, and Y. Li, Correlations between Growth Parameters of Spoilage Micro-Organisms and Shelf-Life of Pork Stored under Air and Modified Atmosphere at ?2, 4 and 10°C, Food Microbiology, vol.23, issue.6, pp.578-83, 2006.

D. M. Lo-fo-wong, T. Hald, P. J. Van-der-wolf, and M. Swanenburg, Epidemiology and Control Measures for Salmonella in Pigs and Pork, Livestock Production Science, vol.76, pp.215-237, 2002.

F. E. López, M. De-las, M. Pescaretti, R. Morero, and M. A. Delgado, Salmonella Typhimurium General Virulence Factors: A Battle of David against Goliath?, Food Research International, vol.45, issue.2, pp.842-51, 2012.

J. M. Lorenzo, A. Cachaldora, S. Fonseca, M. Gómez, I. Franco et al., Production of Biogenic Amines 'in Vitro' in Relation to the Growth Phase by Enterobacteriaceae Species Isolated from Traditional Sausages, Meat Science, vol.86, issue.3, pp.684-91, 2010.

A. Losantos, C. Sanabria, I. Cornejo, and A. V. Carrascosa, Characterization of Enterobacteriaceae Strains Isolated from Spoiled Dry-Cured Hams, Food Microbiology, vol.17, issue.5, pp.505-517, 2000.
DOI : 10.1006/fmic.2000.0350

M. I. Love, W. Huber, and A. S. , Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2, Genome Biology, vol.15, issue.12, 2014.

T. S. Lusk, A. R. Ottesen, J. R. White, M. W. Allard, E. W. Brown et al., Characterization of Microflora in Latin-Style Cheeses by next-Generation Sequencing Technology, BMC Microbiology, vol.12, issue.254, pp.1471-2180, 2012.

M. ,

S. Macé, J. Cornet, F. Chevalier, M. Cardinal, M. Pilet et al., Characterisation of the Spoilage Microbiota in Raw Salmon (Salmo Salar) Steaks Stored under Vacuum or Modified Atmosphere Packaging Combining Conventional Methods and PCR-TTGE, Food Microbiology, vol.30, issue.1, pp.164-72, 2012.

A. Malicki, A. Jarmoluk, and S. Bruzcwicz, Effect of Sodium Lactate Used Alone or in Combination with Lysozyme on the Physico-Chemical and Microbiological Properties of Steamed Sausage Stored under the Refrigeration, Bulletin-Veterinary Institute In pulawy, vol.48, issue.1, pp.47-52, 2004.

E. Mann, S. U. Wetzels, B. Pinior, B. U. Metzler-zebeli, M. Wagner et al., Psychrophile Spoilers Dominate the Bacterial Microbiome in Musculature Samples of Slaughter Pigs, Meat Science, vol.117, pp.36-40, 2016.

P. A. Maragkoudakis, K. C. Mountzouris, D. Psyrras, S. Cremonese, J. Fischer et al., Functional Properties of Novel Protective Lactic Acid Bacteria and Application in Raw Chicken Meat against Listeria Monocytogenes and Salmonella Enteritidis, International Journal of Food Microbiology, vol.130, issue.3, pp.219-245, 2009.

A. Marceau, M. Zagorec, and M. Champomier-vergès, Positive Effects of Growth at Suboptimal Temperature and High Salt Concentration on Long-Term Survival of Lactobacillus Sakei, Research in Microbiology, vol.154, issue.1, pp.10-14, 2003.

A. Marchetti, D. M. Schruth, C. A. Durkin, M. S. Parker, R. B. Kodner et al., Comparative Metatranscriptomics Identifies Molecular Bases for the Physiological Responses of Phytoplankton to Varying Iron Availability, Proceedings of the National Academy of Sciences of the United States of America, vol.109, issue.6, pp.317-342, 2012.

S. L. Marcus, J. H. Brumell, C. G. Pfeifer, and B. B. Finlay, Salmonella Pathogenicity Islands: Big Virulence in Small Packages, Microbes and Infection, vol.2, issue.2, pp.145-56, 2000.

L. Martínez, D. Djenane, I. Cilla, J. A. Beltrán, and R. P. , Effect of Different Concentrations of Carbon Dioxide and Low Concentration of Carbon Monoxide on the Shelf-Life of Fresh Pork Sausages Packaged in Modified Atmosphere, Meat Science, vol.71, issue.3, pp.563-70, 2005.

M. O. Masana and J. Baranyi, Growth/no Growth Interface of Brochothrix Thermosphacta as a Function of pH and Water Activity, Food Microbiology, vol.17, issue.5, pp.485-93, 2000.

L. Masco, T. Vanhoutte, R. Temmerman, J. Swings, and G. Huys, Evaluation of RealTime PCR Targeting the 16S rRNA and recA Genes for the Enumeration of Bifidobacteria in Probiotic Products, International Journal of Food Microbiology, vol.113, issue.3, pp.351-57, 2007.

O. U. Mason, T. C. Hazen, S. Borglin, P. Chain, . Sg et al., Metagenome, Metatranscriptome and Single-Cell Sequencing Reveal Microbial Response to Deepwater Horizon Oil Spill, International Society for Microbial Ecology, vol.6, pp.1715-1742, 2012.

E. Mbandi and L. A. Shelef, Enhanced Antimicrobial Effects of Combination of Lactate and Diacetate on Listeria Monocytogenes and Salmonella Spp. in Beef Bologna, International Journal of Food Microbiology, vol.76, issue.3, pp.191-98, 2002.

J. M. Mcevoy, A. M. Doherty, M. Finnerty, J. J. Sheridan, L. Mcguire et al., The Relationship between Hide Cleanliness and Bacterial Numbers on Beef Carcasses at a Commercial Abattoir, Letters in Applied Microbiology, vol.30, issue.5, pp.390-95, 2000.

P. J. Mcmurdie and S. Holmes, Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data, PLoS ONE, vol.8, issue.4, p.61217, 2013.

M. J. Medellin-pena, H. Wang, R. Johnson, S. Anand, and M. W. Griffiths, Probiotics Affect Virulence-Related Gene Expression in Escherichia Coli O157:H7, Applied and Environmental Microbiology, vol.73, issue.13, pp.4259-67, 2007.

J. Metaxopoulos, M. Mataragas, and D. E. , Microbial Interaction in Cooked Cured Meat Products under Vacuum or Modified Atmosphere at 4°C, Journal of Clinical Microbiology, vol.93, pp.363-73, 2002.

Y. Millemann, Le Pouvoir Pathogène Des Salmonelles : Facteurs de Virulence et Modèles D'étude, Veterinary Research, vol.29, pp.385-407, 1998.

P. Miller, X. Liu, and L. M. Mcmullen, Microbiota of Regular Sodium and SodiumReduced Ready-to-Eat Meat Products Obtained from the Retail Market, Canadian Journal of Microbiology, vol.61, issue.2, pp.150-54, 2015.

T. Y. Mills, N. R. Sandoval, and R. T. Gill, Cellulosic Hydrolysate Toxicity and Tolerance Mechanisms in Escherichia Coli, Biotechnology for Biofuels, vol.2, issue.1, p.26, 2009.

C. O. Møller, Y. Ilg, S. Aabo, B. B. Christensen, P. Dalgaard et al., Effect of Natural Microbiota on Growth of Salmonella Spp. in Fresh Pork -A Predictive Microbiology Approach, Food Microbiology, vol.34, issue.2, pp.284-95, 2013.

C. Monnet, E. Dugat-bony, D. Swennen, J. Beckerich, F. Irlinger et al., Investigation of the Activity of the Microorganisms in a Reblochon-Style Cheese by Metatranscriptomic Analysis, Frontiers in Microbiology, vol.7, 2016.

M. Montel, S. Buchin, S. Mallet, A. Delbes-paus, C. Vuitton et al., Traditional Cheeses: Rich and Diverse Microbiota with Associated Benefits, International Journal of Food Microbiology, vol.177, pp.136-54, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02086940

N. Najjari, A. Ouzari, H. Boudabous, A. Zagorec, and M. , Method for Reliable Isolation of Lactobacillus Sakei Strains Originating from Tunisian Seafood and Meat Products, International Journal of Food Microbiology, vol.121, issue.3, pp.342-51, 2008.

U. Nalbantoglu, A. Cakar, H. Dogan, N. Abaci, D. Ustek et al., Metagenomic Analysis of the Microbial Community in Kefir Grains, Food Microbiology, vol.41, pp.42-51, 2014.

Y. Nam, S. Lee, and S. Lim, Microbial Community Analysis of Korean Soybean Pastes by next-Generation Sequencing, International Journal of Food Microbiology, vol.155, issue.1-2, pp.36-42, 2012.

L. T. Ngoan and Y. T. , Work, Salt Intake and the Development of Stomach Cancer, Medical Hypotheses, vol.60, issue.4, pp.552-56, 2003.

D. S. Nielsen, T. Jacobsen, L. Jespersen, A. G. Koch, and A. N. , Occurrence and Growth of Yeasts in Processed Meat Products -Implications for Potential Spoilage, Meat Science, vol.80, issue.3, pp.919-945, 2008.

T. T. Nieminen, M. Nummela, and J. Björkroth, Packaging Gas Selects Lactic Acid Bacterial Communities on Raw Pork, Journal of Applied Microbiology, vol.119, issue.5, pp.1310-1326, 2015.

C. Nishida, R. Uauy, S. Kumanyika, and P. Shetty, The Joint WHO/FAO Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases: Process, Product and Policy Implications, Public Health Nutrition, vol.7, issue.1a, 2004.

A. Nowak, A. Rygala, E. Oltuszak-walczak, and P. Walczak, The Prevalence and Some Metabolic Traits of Brochothrix Thermosphacta in Meat and Meat Products Packaged in Different Ways, Journal of the Science of Food and Agriculture, vol.92, issue.6, pp.1304-1314, 2012.

G. E. Nychas and C. C. Tassou, Growth/survival of Salmonella Enteritidis on Fresh Poultry and Fish Stored under Vacuum or Modified Atmosphere, Letters in Applied Microbiology, vol.23, issue.2, pp.115-134, 1996.

G. E. Nychas, P. N. Skandamis, C. C. Tassou, and K. P. Koutsoumanis, Meat Spoilage during Distribution, Meat Science, vol.78, issue.1-2, pp.77-89, 2008.

D. J. O'sullivan, P. D. Cotter, O. O'sullivan, L. Giblin, P. L. Mcsweeney et al., Temporal and Spatial Differences in Microbial Composition during the Manufacture of a Continental-Type Cheese, Applied and Environmental Microbiology, vol.81, issue.7, pp.2525-2558, 2015.

J. B. Ochieng, N. Boisen, B. Lindsay, A. Santiago, C. Ouma et al., Serratia Marcescens Is Injurious to Intestinal Epithelial Cells, Gut Microbes, vol.5, issue.6, pp.729-765, 2014.

B. D. Ondov, N. H. Bergman, and A. M. Phillippy, Interactive Metagenomic Visualization in a Web Browser, BMC Bioinformatics, vol.12, issue.385, pp.1471-2105, 2011.

T. P. Oscar, Validation of a Tertiary Model for Predicting Variation of Salmonella Typhimurium DT104 (ATCC 700408) Growth from a Low Initial Density on Ground Chicken Breast Meat with a Competitive Microflora, Journal of Food Protection®, vol.10, issue.9, pp.2048-2303, 2006.

B. Ouattara, R. E. Simard, R. A. Holley, G. Piette, J. Bégin et al., Antibacterial Activity of Selected Fatty Acids and Essential Oils against Six Meat Spoilage Organisms, International Journal of Food Microbiology, vol.37, issue.2, pp.155-62, 1997.

O. S. Papadopoulou, A. I. Doulgeraki, C. Botta, L. Cocolin, and G. E. Nychas, Genotypic Characterization of Brochothrix Thermosphacta Isolated during Storage of Minced Pork under Aerobic or Modified Atmosphere Packaging Conditions, Meat Science, vol.92, issue.4, pp.735-773, 2012.

E. Park, J. Chun, C. Cha, W. Park, C. O. Jeon et al., Bacterial Community Analysis during Fermentation of Ten Representative Kinds of Kimchi with Barcoded Pyrosequencing, Food Microbiology, vol.30, issue.1, pp.197-204, 2012.

M. Peirson, Thermal Resistances and Lactate and Diacetate Sensitivities of Bacteria Causing Bologna Discolouration, International Journal of Food Microbiology, vol.86, issue.3, 2003.

K. J. Perez, R. V. Valim-ceccon, P. Da-silva-malheiros, E. V. Jong, C. Tondo et al., Influence of acid adaptation on the survival of Salmonella enteritidis and Salmonella Typhimurium in simulated gastric fluid and in rattus norvegicus intestine infection, Journal of Food Safety, vol.30, issue.2, pp.398-414, 2010.

G. L. Pettipher, R. J. Fulford, and L. A. Mabbitt, Collaborative trial of the direct epifluorescent filter technique (DEFT), a rapid method for counting bacteria in milk, Journal of Applied Bacteriology, vol.54, issue.2, pp.177-82, 1983.

C. Pin, T. Hansen, M. Muñoz-cuevas, R. De-jonge, J. T. Rosenkrantz et al., The Transcriptional Heat Shock Response of Salmonella Typhimurium Shows Hysteresis and Heated Cells Show Increased Resistance to Heat and Acid Stress, PLoS ONE, vol.7, issue.12, p.51196, 2012.

A. Piotrowska-cyplik, K. Myszka, J. Czarny, K. Ratajczak, R. Kowalski et al., Characterization of Specific Spoilage Organisms (SSOs) in Vacuum-Packed Ham by Culture-Plating Techniques and MiSeq next-Generation Sequencing Technologies, Journal of the Science of Food and Agriculture, 2016.

V. Pisacane, M. L. Callegari, E. Puglisi, G. Dallolio, and R. A. , Microbial Analyses of Traditional Italian Salami Reveal Microorganisms Transfer from the Natural Casing to the Meat Matrix, International Journal of Food Microbiology, vol.207, pp.57-65, 2015.

T. Poga?i?, M. Maillard, A. Leclerc, C. Hervé, V. Chuat et al., A Methodological Approach to Screen Diverse Cheese-Related Bacteria for Their Ability to Produce Aroma Compounds, Food Microbiology, vol.46, pp.145-53, 2015.

V. Pothakos, C. Snauwaert, P. De-vos, G. Huys, and D. F. , Psychrotrophic Members of Leuconostoc Gasicomitatum, Leuconostoc Gelidum and Lactococcus Piscium Dominate at the End of Shelf-Life in Packaged and Chilled-Stored Food Products in Belgium, Food Microbiology, vol.39, pp.61-67, 2014.

V. Pothakos, F. Devlieghere, F. Villani, J. Björkroth, and E. D. , Lactic Acid Bacteria and Their Controversial Role in Fresh Meat Spoilage, Meat Science, vol.109, pp.66-74, 2015.

E. Pruesse, J. Peplies, and F. O. Glockner, SINA: Accurate High-Throughput Multiple Sequence Alignment of Ribosomal RNA Genes, Bioinformatics, vol.28, issue.14, pp.1823-1852, 2012.

J. Qin, R. Li, J. Raes, M. Arumugam, K. S. Burgdorf et al., A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing, Nature, vol.464, issue.7285, pp.59-65, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00908974

C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer et al., The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools, Nucleic Acids Research, vol.41, issue.D1, pp.590-596, 2013.

L. Quigley, O. O'sullivan, T. P. Beresford, R. P. Ross, G. F. Fitzgerald et al., High-Throughput Sequencing for Detection of Subpopulations of Bacteria Not Previously Associated with Artisanal Cheeses, Applied and Environmental Microbiology, vol.78, issue.16, pp.5717-5740, 2012.

A. R. Quinlan and I. M. Hall, BEDTools: A Flexible Suite of Utilities for Comparing Genomic Features, Bioinformatics Application Note, vol.26, issue.6, pp.841-883, 2010.

B. Rao, L. Y. Zhang, J. Sun, G. Su, D. Wei et al., Characterization and Regulation of the 2,3-Butanediol Pathway in Serratia Marcescens, Applied Microbiology and Biotechnology, vol.93, issue.5, pp.2147-59, 2012.

A. Rasooly and H. K. , Food Microbial Pathogen Detection and Analysis Using DNA Microarray Technologies, Foodborne Pathogens and Disease, vol.5, issue.4, 2008.

M. C. Rea, S. Görges, R. Gelsomino, N. M. Brennan, J. Mounier et al., Stability of the Biodiversity of the Surface Consortia of Gubbeen, a Red-Smear Cheese, Journal of Dairy Science, vol.90, issue.5, pp.2200-2210, 2007.

C. Reid, S. M. Avery, M. L. Hutchison, and S. Buncic, Evaluation of Sampling Methods to Assess the Microbiological Status of Cattle Hides, Food Control, vol.13, issue.6, pp.405-415, 2002.

B. Remenant, E. Jaffrès, X. Dousset, M. Pilet, and M. Zagorec, Bacterial Spoilers of Food: Behavior, Fitness and Functional Properties, Food Microbiology, vol.45, pp.45-53, 2015.

E. Ringo, M. Seppola, A. Berg, R. E. Olsen, U. Schillinger et al., Characterization of Carnobacterium Divergens Strain 6251 Isolated from Intestine of Arctic Charr (Salvelinus Alpinus L.), Systematic and Applied Microbiology, vol.25, pp.120-149, 2002.

E. Ritz, Salt and Hypertension: Salt and Hypertension, Nephrology, vol.15, pp.49-52, 2010.

M. B. Rodriguez, C. Junior, C. A. Carneiro, C. S. Franco, R. M. Mano et al., The Effect of Carbon Dioxide on the Shelf Life of Ready-to-Eat Shredded Chicken Breast Stored under Refrigeration, Poultry Science, vol.93, pp.194-99, 2014.

A. Rohde, J. A. Hammerl, B. Appel, R. Dieckmann, A. Dahouk et al., FISHing for Bacteria in Food -A Promising Tool for the Reliable Detection of Pathogenic Bacteria?, Food Microbiology, vol.46, pp.395-407, 2015.

A. Rouger, J. Hultman, B. Remenant, H. Prévost, J. Björkroth et al., Understanding bacterial community dynamics to improve the quality of poultry meat during refrigerated storage, 2016.

F. Russo, D. Ercolini, G. Mauriello, and F. Villani, Behaviour of Brochothrix Thermosphacta in Presence of Other Meat Spoilage Microbial Groups, Food Microbiology, vol.23, issue.8, pp.797-802, 2006.

M. Ruusunen, Saltiness of Coarsely Ground Cooked Ham with Reduced Salt Content, Agricultural and Food Science in Finland, vol.10, pp.27-32, 2001.

E. Säde, A. Murros, and J. Björkroth, Predominant Enterobacteria on ModifiedAtmosphere Packaged Meat and Poultry, Food Microbiology, vol.34, issue.2, pp.252-58, 2013.

R. M. Sakala, H. Hayashidani, Y. Kato, C. Kaneuchi, and M. Ogawa, Isolation and Characterization of Lactococcus Piscium Strains from Vacuum-Packaged Refrigerated Beef, Journal of Applied Microbiology, vol.92, pp.173-79, 2002.

N. Sakamoto, S. Tanaka, K. Sonomoto, and J. Nakayama, 16S rRNA PyrosequencingBased Investigation of the Bacterial Community in Nukadoko, a Pickling Bed of Fermented Rice Bran, International Journal of Food Microbiology, vol.144, issue.3, pp.352-59, 2011.

I. Sakaridis, N. Soultos, C. I. Dovas, E. Papavergou, I. Ambrosiadis et al., Lactic Acid Bacteria from Chicken Carcasses with Inhibitory Activity against Salmonella Spp. and Listeria Monocytogenes, Anaerobe, vol.18, issue.1, pp.62-66, 2012.

J. Samelis and K. G. Georgiadou, The Microbial Association of Greek Taverna Sausage Stored at 4 and 10 °C in Air, Vacuum or 100% Carbon Dioxide, and Its Spoilage Potential, Journal of Applied Microbiology, vol.88, issue.1, pp.58-68, 2000.

P. W. Sanders, Salt-Sensitive Hypertension: Lessons From Animal Models, American Journal of Kidney Diseases, vol.28, issue.5, pp.775-762, 1996.

T. Saraoui, F. Leroi, J. Björkroth, and M. F. Pilet, Lactococcus Piscium : A Psychrotrophic Lactic Acid Bacterium with Bioprotective or Spoilage Activity in Food-a Review, Journal of Applied Microbiology, vol.121, issue.4, pp.907-925, 2016.

B. C. Schirmer, E. Heir, and L. S. , Characterization of the Bacterial Spoilage Flora in Marinated Pork Products, Journal of Applied Microbiology, vol.106, issue.6, pp.2106-2122, 2009.

B. C. Schirmer and L. S. , Evaluation of Natural Antimicrobials on Typical Meat Spoilage Bacteria In Vitro and in Vacuum-Packed Pork Meat, Journal of Food Science, vol.75, issue.2, pp.98-102, 2010.

R. Schmieder and R. Edwards, Quality Control and Preprocessing of Metagenomic Datasets, Bioinformatics, vol.27, issue.6, pp.863-64, 2011.

S. C. Seideman, H. R. Cross, G. C. Smith, and P. R. Durland, Factors Associated with Fresh Meat Color: A Review, Journal of Food Quality, vol.6, issue.3, pp.211-248, 1984.

I. J. Seymour, M. B. Cole, and P. J. Coote, A substrate-mediate assay of bacterial proton efflux/influx to predict the degree of spoilage of beef mince stored at chill temperatures, Journal of Applied Microbiology, vol.76, issue.6, pp.608-615, 1994.

H. Shen, R. Yu, and C. Chou, Acid Adaptation Affects the Viability of Salmonella Typhimurium during the Lactic Fermentation of Skim Milk and Product Storage, International Journal of Food Microbiology, vol.114, issue.3, pp.380-85, 2007.

S. A. Sirsat, A. Muthaiyan, and R. S. , Optimization of the RNA Extraction Method for Transcriptome Studies of Salmonella Inoculated on Commercial Raw Chicken Breast Samples, BMC Research Notes, vol.4, issue.60, 2011.

P. Skandamis, E. Tsigarida, and G. E. Nychas, The Effect of Oregano Essential Oil on Survival/death of Salmonella Typhimurium in Meat Stored at 5°C under Aerobic, VP/MAP Conditions, Food Microbiology, vol.19, issue.1, pp.97-103, 2002.

L. Stein, Generic feature format version 3 (GFF3), Seq. Ontol. Proj, pp.1-21, 2013.

J. Stoops, S. Ruyters, P. Busschaert, R. Spaepen, C. Verreth et al., Bacterial Community Dynamics during Cold Storage of Minced Meat Packaged under Modified Atmosphere and Supplemented with Different Preservatives, Food Microbiology, vol.48, pp.192-99, 2015.

W. Tangkam, J. Comeaux, C. E. Ferguson, and F. M. Lemieux, Effect of Sodium Lactate and Sodium Acetate on Shelf-Life of Raw Chicken Breasts, African Journal of Food Science, vol.6, issue.13, pp.375-80, 2012.

P. J. Taormina, Implications of Salt and Sodium Reduction on Microbial Food Safety, Critical Reviews in Food Science and Nutrition, vol.50, issue.3, pp.209-236, 2010.

M. Todaro, N. Francesca, S. Reale, G. Moschetti, F. Vitale et al., Effect of Different Salting Technologies on the Chemical and Microbiological Characteristics of PDO Pecorino Siciliano Cheese, European Food Research and Technology, vol.233, issue.6, pp.931-971, 2011.

F. Toldrá, Proteolysis and Lipolysis in Flavour Development of Dry-Cured Meat Products, Meat Science, vol.49, pp.101-111, 1998.

H. Tuomisto, An Updated Consumer's Guide to Evenness and Related Indices, Oikos, vol.121, issue.8, pp.1203-1221, 2012.

M. Uhart, N. Maks, and R. S. , Effect of spices on growth and survival of salmonella typhimurium dt 104 in ground beef stored at 4 and 8°C, Journal of Food Safety, vol.26, pp.115-140, 2006.

T. Urich, A. Lanzén, J. Qi, H. Huson, D. H. Schleper et al., Simultaneous Assessment of Soil Microbial Community Structure and Function through Analysis of the Meta-Transcriptome, PLoS ONE, vol.3, issue.6, p.2527, 2008.

D. Vallenet, S. Engelen, D. Mornico, S. Cruveiller, L. Fleury et al., MicroScope: A Platform for Microbial Genome Annotation and Comparative Genomics, Database, issue.0, pp.21-021, 2009.

C. Vasilopoulos, E. De-mey, L. Dewulf, H. Paelinck, A. De-smedt et al., Interactions between Bacterial Isolates from ModifiedAtmosphere-Packaged Artisan-Type Cooked Ham in View of the Development of a Bioprotective Culture, Food Microbiology, vol.27, issue.8, pp.1086-94, 2010.

L. Vermeiren, F. Devlieghere, I. Vandekinderen, and D. J. , The Interaction of the Non-Bacteriocinogenic Lactobacillus Sakei 10A and Lactocin S Producing Lactobacillus Sakei 148 towards Listeria Monocytogenes on a Model Cooked Ham, Food Microbiology, vol.23, issue.6, pp.511-529, 2006.

J. Verzani, UsingR: Data Sets, Etc. for the Text 'Using R for Introductory Statistics, 2015.

J. Wakamatsu, T. Nishimura, and A. Hattori, A Zn-porphyrin Complex Contributes to Bright Red Color in Parma Ham, Meat Science, vol.67, issue.1, pp.95-100, 2004.

A. Wald, Tests of statistical hypotheses concerning several parameters when the number of observations is large(x), 1943.

P. Wheatley, E. S. Giotis, and A. I. Mckevitt, Effects of Slaughtering Operations on Carcass Contamination in an Irish Pork Production Plant, Irish Veterinary Journal, vol.67, issue.1, p.1, 2014.

R. C. Whiting, R. C. Benedict, C. A. Kunsch, and J. H. Woychik, Effect of Sodium Chloride Levels in Frankfurters on the Growth of Clostridium Sporogenes and Staphylococcus Aureus, Journal of Food Science, vol.49, pp.351-55, 1984.

H. Wickham, W. Chang, and M. H. Wickham, ggplot2: Elegant Graphics for Data Analysis, 2013.

B. E. Wolfe, J. E. Button, M. Santarelli, and R. J. Dutton, Cheese Rind Communities Provide Tractable Systems for In Situ and In Vitro Studies of Microbial Diversity, Cell, vol.158, issue.2, pp.422-455, 2014.

E. S. Wright, L. S. Yilmaz, and D. R. Noguera, DECIPHER, a Search-Based Approach to Chimera Identification for 16S rRNA Sequences, Applied and Environmental Microbiology, vol.78, issue.3, pp.717-742, 2012.

B. Yang, Y. Wang, and P. Qian, Sensitivity and Correlation of Hypervariable Regions in 16S rRNA Genes in Phylogenetic Analysis, BMC Bioinformatics, vol.17, issue.1, 2016.

S. Yu and S. A. Palumbo, Enumeration of aeromonas for verification of the hygienic adequacy of swine carcass dressing processes1, Journal of Food Safety, vol.20, issue.1, pp.43-52, 2000.

S. M. Zaher and H. Fujikawa, Effect of Native Microflora on the Growth Kinetics of Salmonella Enteritidis Strain 04-137 in Raw Ground Chicken, Journal of Food Protection®, vol.8, issue.5, pp.700-864, 2011.

Y. Zhang, S. Wu, S. Xia, Y. , and S. J. , Salmonella-Infected Crypt-Derived Intestinal Organoid Culture System for Host-bacterial Interactions, Physiological Reports, vol.2, issue.9, 2014.

F. Zhao, G. Zhou, K. Ye, S. Wang, X. Xu et al., Microbial Changes in VacuumPacked Chilled Pork during Storage, Meat Science, vol.100, pp.145-194, 2015.

M. Zhong, Y. Yuan, S. Shu, J. Sun, S. Guo et al., Effects of Exogenous Putrescine on Glycolysis and Krebs Cycle Metabolism in Cucumber Leaves Subjected to Salt Stress, Plant Growth Regulation, vol.79, issue.3, pp.319-349, 2016.

K. Zhou, S. M. George, A. Metris, P. L. Li, and J. Baranyi, Lag Phase of Salmonella Enterica under Osmotic Stress Conditions, Applied and Environmental Microbiology, vol.77, issue.5, pp.1758-62, 2011.

, Utiliser : Identifiy > 5' -> 3' > unculture Sur les OTU dont l'alignement est moyen et les mauvais alignements # attribution de l'annotation taxonomique à chaque OTU cat sample.repseq.blastn.good.multiple.selected >> sample.repseq.good.unique.fasta cat sample.repseq.Eztaxon >> sample.repseq.good.unique.fasta Utilisation du script Rename-FastaID2.pl pour nommer les séquences obtenues avec l, Pour les OTU à alignements multiples, une expertise est apportée pour le choix de la séquence représentative (sur le fichier sample.repseq.blastn.good

, Acinetobacter.baumannii.ACICU Acinetobacter.baumannii.ACICU, p.1

. B. Acinetobacter and . Acicu, , p.2

. Acinetobacter and . Baumannii, , p.17978

. Acinetobacter and . Baumannii,

. Acinetobacter and . Baumannii,

. Acinetobacter and . Beijerinckii, , vol.3835, p.6

. Acinetobacter and . Beijerinckii,

, Acinetobacter.calcoaceticus.CIP81, vol.8, p.7

, Acinetobacter.calcoaceticus, vol.2, p.1

. G. Acinetobacter and . Cip63, , vol.46, p.16

. Acinetobacter,

. Acinetobacter and . Johnsonii,

, Acinetobacter.junii.CIP64, vol.5, p.7

. Acinetobacter and . Junii,

. Acinetobacter and . Lwoffii,

. Acinetobacter and . Lwoffii,

. Acinetobacter and . Pittii,

. Acinetobacter and . Pittii,

. Acinetobacter and . Soli,

. Acinetobacter and . Soli,

. Acinetobacter and . Sp, , vol.12, p.107

. Acinetobacter and . Sp,

. Aerococcus and . Urinaeequi,

. Aerococcus and . Viridans,

. Anoxybacillus and . Flavithermus,

. Anoxybacillus and . Flavithermus, , p.1

, Brochothrix.campestris, p.4217

, Brochothrix.campestris, vol.4217, p.1

. Brochothrix and . Thermosphacta, , p.20171

. Brochothrix and . Thermosphacta, , pp.160-168

. Brochothrix and . Thermosphacta, , pp.160-168

. Brochothrix and . Thermosphacta, , p.814

. Carnobacterium, , vol.5972, pp.5972-5973

. Carnobacterium, , vol.5972, pp.5972-5974

. Carnobacterium, , vol.5972, pp.5972-5975

. Carnobacterium, , vol.5972, p.5972

. Carnobacterium, , vol.5972, p.5972

. Carnobacterium, , vol.5972, p.5972

. Carnobacterium and . Divergens, , p.20623

. Carnobacterium and . Divergens, , pp.43-57

, Carnobacterium.divergens.MFPA43A14-05.pA Carnobacterium.divergens.MFPA43A14-05.pB Carnobacterium.divergens.MFPA43A14-05.pC Carnobacterium.funditum.DSM5970.WGS_2

. Carnobacterium and . Funditum, , vol.5970, p.5970

. Carnobacterium and . Gallinarum,

. Carnobacterium and . Inhibens,

. Carnobacterium and . Inhibens,

, Carnobacterium.inhibens.DSM13024, p.13024

. Carnobacterium and . Inhibens,

. Carnobacterium and . Inhibens,

. Carnobacterium and . Jeotgali,

. Carnobacterium and . Maltaromaticum, , p.35586

. Carnobacterium and . Maltaromaticum, , p.20342

. Carnobacterium and . Maltaromaticum,

. Carnobacterium and . Maltaromaticum,

, Carnobacterium.maltaromaticum.DSM20342.pB Carnobacterium.maltaromaticum.DSM20342.pC Carnobacterium.maltaromaticum.LMA28

. Carnobacterium, , vol.4848, p.6

. Carnobacterium and . Pleistocenium,

. Carnobacterium and . Sp, 17-4.CHRO Carnobacterium.sp.17-4.pCAR50

. Carnobacterium and . Sp,

. S. Carnobacterium and . Wn1359, , p.15

. S. Carnobacterium and . Wn1359, , p.47

. Carnobacterium and . Sp,

. S. Carnobacterium and . Wn1359, , p.9

. Carnobacterium and . Sp,

. Carnobacterium and . Sp,

. Citrobacter and . Freundii,

. Citrobacter and . Freundii,

. Citrobacter and . Freundii,

. Citrobacter,

. Clostridium, , vol.3, p.1

, Clostridium.botulinum.B, vol.17

. Empedobacter and . Falsenii, , vol.282, p.237

. Enterobacter,

, Enterobacter.cloacae.subsp.cloacae, p.13047

. Enterobacter, subsp.dissolvens.SDM Enterobacter

. Enterobacter and . Mori,

. Enterococcus, , p.14025

. Enterococcus and . Casseliflavus,

. Enterococcus and . Casseliflavus, , p.20

. Enterococcus and . Durans, , p.6056

, Enterococcus.durans.ATCC6056.pB Enterococcus.durans.IPLA665.WGS_145

. Enterococcus and . Faecalis, , p.32

. Enterococcus,

. Enterococcus and . Faecalis, , p.583

. Enterococcus and . Faecalis, , vol.583, p.1

. Enterococcus and . Faecalis, , vol.583, p.2

. Enterococcus and . Faecalis, , vol.583, p.3

. Enterococcus, , p.9790

. Enterococcus, , vol.9790, p.9790

. Enterococcus,

. Enterococcus,

. Enterococcus and . Malodoratus,

. Enterococcus and . Malodoratus,

. Enterococcus and . Mundtii,

. Enterococcus and . Mundtii,

. Enterococcus and . Mundtii, , p.25

. Enterococcus and . Mundtii, , vol.25, p.24

. Enterococcus and . Mundtii, , vol.25, p.39

. Enterococcus and . Mundtii, , vol.25, p.82

. Enterococcus and . Mundtii, , vol.25, p.182

. Facklamia and . Tabacinasalis,

. Hafnia,

. Hafnia,

. Hafnia, , p.1

. Janthinobacterium and . Lividum,

. Janthinobacterium and . Lividum,

. Lactobacillus, , p.10

, Lactobacillus.algidus.CMTALT10.pB Lactobacillus.algidus.DSM15638

. Lactobacillus, , p.15638

, Lactobacillus.curvatus, p.705

, Lactobacillus.curvatus.CRL705, p.18

, Lactobacillus.curvatus, p.20019

, Lactobacillus.curvatus, pp.16-25

, Lactobacillus.curvatus, vol.16, issue.9, pp.16-25

, Lactobacillus.curvatus, p.3

, Lactobacillus.curvatus.FLEC03, p.1

, Lactobacillus.curvatus, p.822

, Lactobacillus.curvatus, vol.0822, p.1

, Lactobacillus.curvatus.NRIC0822.pB Lactobacillus.farciminis.DSM20184.WGS_5

. Lactobacillus and . Fuchuensis, , p.11249

. Lactobacillus and . Fuchuensis, , pp.41-69

. Lactobacillus and . Fuchuensis, MFPC41A28A-01.pA Lactobacillus.graminis, p.20719

. Lactobacillus and . Graminis,

. Lactobacillus and . Hokkaidonensis, , p.260

. Lactobacillus and . Hokkaidonensis, , vol.260, p.1

. Lactobacillus and . Hokkaidonensis, , vol.260, p.2

. Lactobacillus and . Malefermentans,

. Lactobacillus and . Oligofermentans, , p.15707

. Lactobacillus and . Ruminis, , p.27782

. Lactobacillus and . Sakei, , p.23

. Lactobacillus and . Sakei, , pp.23-24

. Lactobacillus and . Sakei, , p.15521

. Lactobacillus and . Sakei,

. Lactobacillus and . Sakei,

. Lactobacillus and . Sakei, , vol.01, p.2

. Lactobacillus and . Sakei, FLEC01.pB Lactobacillus.sakei.FLEC01.pC Lactobacillus.sakei.JOUY112

. Lactobacillus and . Sakei, , vol.112, p.1

. Lactobacillus and . Sakei, JOUY112.pB Lactobacillus.sakei.JOUY112.pC Lactobacillus.sakei.JOUY112.pD Lactobacillus.sakei.JOUY156

. Lactobacillus and . Sakei, , vol.156, p.1

. Lactobacillus and . Sakei, JOUY156.pB Lactobacillus.sakei.JOUY156.pC Lactobacillus.sakei.JOUY156.pD Lactobacillus.sakei.JOUY156.pE Lactobacillus.sakei.JOUY160X1

. Lactobacillus and . Sakei, , vol.160, p.1

. Lactobacillus and . Sakei, , p.54

. Lactobacillus and . Sakei, , vol.54, p.1

. Lactobacillus and . Sakei, , vol.64, p.2

. Lactobacillus and . Sakei, , p.25

. Lactobacillus and . Sakei, , vol.25, p.1

. Lactobacillus and . Sakei, , pp.16-30

. Lactobacillus and . Sakei,

. Lactobacillus and . Sakei, , pp.19-34

. Lactobacillus and . Sakei,

. Lactobacillus and . Sakei, MFPB19A15-01.pB Lactobacillus.sakei

. Lactobacillus and . Sakei, , vol.22, p.2

. Lactococcus, , p.2

. Lactococcus and . Lactis, , p.1403

. Lactococcus and . Piscium, , p.2

, Lactococcus.piscium.CMTALT02.pA Lactococcus.piscium.CMTALT02.pB Lactococcus.piscium.CMTALT02.pC Lactococcus.piscium.CMTALT17

. Lactococcus and . Piscium, , p.47

. Lactococcus and . Piscium, , vol.47, p.1

. Lactococcus and . Piscium, , vol.47, p.2

. Lactococcus and . Raffinolactis, , p.4877

. Lelliottia,

, Leuconostoc.carnosum.JB16.CHRO Leuconostoc.carnosum, vol.16, p.1

. Leuconostoc and . Carnosum, , vol.16, p.2

. Leuconostoc and . Carnosum, , vol.16, p.3

. Leuconostoc and . Carnosum, , vol.16, p.4

. Leuconostoc and . Carnosum, , pp.29-43

. Leuconostoc and . Carnosum, MFPA29A14-05.pB Leuconostoc.carnosum.MFPA29A14-05.pC Leuconostoc.carnosum, pp.16-28

. Leuconostoc and . Carnosum, MFPC16A28-03.pA Leuconostoc.carnosum.MFPC16A28-03.pB Leuconostoc.carnosum.MFPC16A28-03.pC Leuconostoc.carnosum.MFPC16A28-03.pE Leuconostoc.citreum.KM20

. Leuconostoc and . Citreum, , vol.20, p.1

. Leuconostoc and . Citreum, , vol.20, p.2

. Leuconostoc and . Citreum, , vol.20, p.3

. Leuconostoc and . Citreum, , vol.20, p.4

. Leuconostoc and . Fallax,

, Leuconostoc.gelidum.subsp.gasicomitatum, p.18811

. Leuconostoc and . Gelidum, subsp.gasicomitatum, pp.44-58

. Leuconostoc and . Gelidum, subsp.gasicomitatum.MFPA44A14-01.pB Leuconostoc.gelidum.subsp.gelidum.JB7

, Leuconostoc.gelidum.subsp.gelidum, p.3537

. Leuconostoc and . Gelidum, subsp.gelidum.KCTC3537.pB Leuconostoc.inhae.KCTC3774.WGS_893

. Leuconostoc and . Kimchii, , p.11154

. Leuconostoc and . Kimchii,

. Leuconostoc and . Kimchii,

. Leuconostoc and . Kimchii,

. Leuconostoc and . Kimchii,

. Leuconostoc and . Kimchii,

. Leuconostoc and . Lactis,

. Leuconostoc and . Lactis,

. Leuconostoc and . Lactis,

, Leuconostoc.mesenteroides.ATCC8293.CHRO Leuconostoc.mesenteroides, vol.8293, p.1

. Leuconostoc and . Mesenteroides,

. Leuconostoc and . Mesenteroides, , p.18

. Leuconostoc and . Mesenteroides, , vol.18, p.1

. Leuconostoc and . Mesenteroides, , vol.18, p.2

. Leuconostoc and . Mesenteroides, , vol.18, p.3

. Leuconostoc and . Mesenteroides, , vol.18, p.4

. M. Leuconostoc and . Kfri-mg-leuconostoc,

. Leuconostoc,

, Leuconostoc.mesenteroides.subsp.cremoris, vol.26, p.123

, Leuconostoc.mesenteroides.subsp.cremoris, vol.8, p.173

. Leuconostoc,

. Leuconostoc and . Pseudomesenteroides, , vol.4882, p.106

. Leuconostoc and . Pseudomesenteroides,

. Leuconostoc and . Pseudomesenteroides,

. Leuconostoc and . Sp, C2.WGS_1 Listeria.monocytogenes.EGD Macrococcus.caseolyticus.ATCC13458.WGS_50

, Macrococcus.caseolyticus, p.5402

, Macrococcus.caseolyticus, vol.5402, p.2

. Morganella and . Psychrotolerans, , vol.925, p.82

. Myroides and . Odoratimus,

. Myroides and . Profundi,

. Photobacterium and . Iliopiscarium,

. Photobacterium and . Iliopiscarium,

. Photobacterium and . Kishitanii, ATCCBAA-1194.WGS_117

. Photobacterium and . Kishitanii,

. Photobacterium and . Phosphoreum,

. Photobacterium and . Phosphoreum,

. Pseudomonas, , vol.17, p.107

. Pseudomonas, , p.1

. Pseudomonas,

. Pseudomonas, , vol.34, p.18

. Pseudomonas, , p.28

. Pseudomonas and . Bausanensis,

. Pseudomonas and . Brassicacearum, , p.421

, Pseudomonas.chloritidismutans

. Pseudomonas and . Chlororaphis, , p.37

. Pseudomonas and . Chlororaphis, , p.23

. Pseudomonas and . Chlororaphis, , p.1606

. Pseudomonas and . Chlororaphis,

, Pseudomonas.cichorii.JBC1.PSY-GROUP Pseudomonas.extremaustralis, pp.14-17

, Pseudomonas.fluorescens, p.113

. Pseudomonas and . Fluorescens, , pp.0-1

, Pseudomonas.fluorescens, p.25

. Pseudomonas and . Fragi, , pp.1-26

. Pseudomonas and . Fragi, , p.22

. Pseudomonas and . Fragi, , p.25

. Pseudomonas and . Ludensis, , pp.15-27

. Pseudomonas and . Ludensis, , vol.2

. Pseudomonas and . Protegens, , p.0

. Pseudomonas and . Protegens, , p.5

. Pseudomonas and . Psychrophila, HA-4

. Pseudomonas and . Psychrotolerans, , p.19

. Pseudomonas and . Putida, , p.1

. Pseudomonas and . Putida, GB-1

. Pseudomonas and . Putida, , p.619

, Pseudomonas.sp.1E44 Pseudomonas.syringae, vol.728

. Pseudomonas, , p.1557

. Psychrobacter,

. Psychrobacter, , pp.273-277

. Psychrobacter and . Celer, , vol.91, p.102

. Psychrobacter and . Cryohalolentis, , p.5

. Psychrobacter and . Faecalis,

. Psychrobacter and . Immobilis,

. Psychrobacter,

. Psychrobacter,

. S. Psychrobacter and . Wgs_1,

. Psychrobacter and . Sp,

. Psychrobacter,

. Rahnella,

. Rahnella, , p.2

. Rahnella, , vol.2, p.1

. Rahnella, , vol.2, p.2

. Rahnella, , vol.2, p.22

. Raoultella and . Ornithinolytica, , vol.6, p.1

. Raoultella and . Ornithinolytica,

. Raoultella and . Planticola,

. Serratia and . Grimesii, , vol.2

. Serratia and . Liquefaciens, , p.27592

, Serratia.liquefaciens.ATCC27592.pA Serratia.liquefaciens.FK01.WGS_28

. Serratia,

, Serratia.marcescens, vol.11, p.1

. Serratia and . Marcescens, , p.94

, Serratia.marcescens.SM39, p.1

, Serratia.marcescens, vol.39, p.1

, Serratia.marcescens, vol.39, p.2

, Serratia.marcescens, vol.4, p.1

. Serratia and . Marcescens, , p.4

. Serratia and . Plymuthica, , pp.4-13

. Serratia and . Plymuthica, , vol.4, p.75

. Serratia and . Plymuthica, , p.9

. Serratia and . Plymuthica, , p.1

. Serratia and . Plymuthica, , p.13

. Serratia and . Proteamaculans, , pp.1-2

, Serratia.proteamaculans.1C2F.pA Serratia.proteamaculans, vol.568

. Serratia and . Proteamaculans, , vol.568, p.1

. Serratia and . Proteamaculans, , pp.44-58

, Serratia.proteamaculans.subsp.quinivorans, p.4597

, Serratia.proteamaculans.subsp.quinivorans.DSM4597.pA Serratia.proteamaculans.subsp.quinivorans.DSM4597.pB Serratia.proteamaculans.subsp.quinivorans.DSM4597.pC

. Serratia and . Rubidaea,

. Serratia and . Sp, , p.12

, Serratia.sp.AS13 Staphylococcus.arlettae.CVD059.WGS_57 Staphylococcus.aureus.MRSA252 Staphylococcus.aureus.MU50

, Staphylococcus.aureus.MU50.pVRSA Staphylococcus.carnosus.LTH7013.WGS_34 Staphylococcus.carnosus.TM300.WGS_1 Staphylococcus.cohnii.532.WGS_16 Staphylococcus.cohnii.57.WGS_20 Staphylococcus.epidermidis.ATCC12228

. Staphylococcus and . Epidermidis,

. Staphylococcus and . Epidermidis,

, Staphylococcus.epidermidis.RP62A Staphylococcus.epidermidis.RP62A.pSERP Staphylococcus.equorum.G8HB1.WGS_22 Staphylococcus.equorum.MU2.WGS_30

, Staphylococcus.fleurettii.CIP106114.WGS_88 Staphylococcus.haemolyticus.JCSC1435

, Staphylococcus.haemolyticus.JCSC1435.pSHAEA Staphylococcus.haemolyticus.JCSC1435.pSHAEC Staphylococcus.haemolyticus.SH29 Staphylococcus.lentus.CA2.WGS_51 Staphylococcus.lentus.F1142.WGS_169 Staphylococcus.pasteuri.BAB3.WGS_32 Staphylococcus.pasteuri.SP1.WGS_1 Staphylococcus.saprophyticus.ATCC15305 Staphylococcus.saprophyticus.SU8.WGS_44 Staphylococcus.succinus.DSM14617.WGS_162 Staphylococcus.vitulinus.F1028.WGS_223 Staphylococcus.vitulinus.MA1.WGS_106 Staphylococcus.warneri.NGS-ED1001.WGS_12 Staphylococcus.warneri.SG1 Staphylococcus.xylosus.C2A

, Staphylococcus.xylosus, p.121

. Streptococcus and . Parauberis, , p.11537

. Streptococcus and . Parauberis,

. Vagococcus and . Fluvialis, , p.102976

. Vagococcus and . Fluvialis,

. Vagococcus and . Fluvialis, , p.819

. Vagococcus and . Fluvialis, BH819pA Vagococcus.fluvialis.BH819pB Vagococcus.fluvialis.BH819pC Vagococcus.lutrae, p.208

. Vagococcus, , p.1

. Weissella and . Ceti, , p.8

. Weissella and . Ceti, , p.105

. Weissella and . Ceti, , p.74

. Weissella and . Cibaria, , p.3

. Weissella and . Cibaria, , vol.3, p.1

. Weissella and . Cibaria, , p.1

. Weissella and . Cibaria, , vol.1, p.1

. Weissella and . Confusa, , p.392

. Weissella and . Halotolerans, , p.20190

. Weissella and . Hellenica,

. Weissella and . Koreensis, , p.15510

. Weissella and . Koreensis,

. Weissella and . Koreensis, , p.3631

. Weissella and . Paramesenteroides, , p.33313

. Weissella and . Viridescens, , p.102810

. Weissella and . Viridescens, , pp.16-28

. Weissella,

. Yersinia,

, Yersinia.enterocolitica.subsp.enterocolitica, vol.8081, p.1

, Yersinia.enterocolitica.subsp.enterocolitica, vol.8081, p.8081

, Yersinia.enterocolitica.subsp.paleartica, p.11

. Yersinia and . Intermedia,

. Yersinia and . Intermedia,

. Yersinia and . Kristensenii,

. Yersinia and . Kristensenii,

. Yersinia and . Mollaretii,

. Aerococcus and . Viridans,

. Brochothrix and . Thermosphacta, , p.814

. Brochothrix and . Thermosphacta, , pp.160-168

. Brochothrix and . Thermosphacta, , vol.160, p.1

. Carnobacterium and . Divergens, , p.20623

. Carnobacterium and . Maltaromaticum, , p.35586

. Citrobacter and . Freundii,

. Citrobacter,

, Enterobacter.cloacae.subsp.cloacae, p.13047

. Enterobacter, subsp.cloacae.ATCC13047.pECL_A Enterobacter.cloacae.subsp.cloacae.ATCC13047.pECL_B Enterobacter.ludwidgii

. Enterobacter and . Mori,

. Enterococcus, , p.14025

. Enterococcus and . Durans, , p.6056

, Enterococcus.durans.ATCC6056.pB Enterococcus.durans.IPLA665.WGS_145

. Enterococcus and . Faecalis, , p.583

. Enterococcus and . Faecalis, , vol.583, p.1

. Enterococcus and . Faecalis, , vol.583, p.2

. Enterococcus and . Faecalis, , vol.583, p.3

. Enterococcus, , p.9790

. Enterococcus, , vol.9790, p.9790

. Enterococcus and . Malodoratus,

. Lactobacillus, , p.10

, Lactobacillus.algidus.CMTALT10.pB Lactobacillus.algidus.DSM15638

. Lactobacillus, , p.15838

, Lactobacillus.curvatus, p.3

, Lactobacillus.curvatus.FLEC03, p.1

. Lactobacillus and . Fuchuensis, , pp.41-69

. Lactobacillus and . Fuchuensis,

. Lactobacillus and . Graminis,

. Lactobacillus and . Hokkaidonensis, , p.260

. Lactobacillus and . Hokkaidonensis, , vol.260, p.1

. Lactobacillus and . Hokkaidonensis, , vol.260, p.2

. Lactobacillus and . Malefermentans,

. Lactobacillus and . Oligofermentans, , p.15707

. Lactobacillus and . Sakei, , p.23

. Lactobacillus and . Sakei, JOUY112.pA Lactobacillus.sakei.JOUY112.pB Lactobacillus.sakei.JOUY112.pC Lactobacillus.sakei.JOUY112.pD Lactobacillus.sakei.JOUY156

. Lactobacillus and . Sakei, , vol.156, p.1

. Lactobacillus and . Sakei, JOUY156.pB Lactobacillus.sakei.JOUY156.pC Lactobacillus.sakei.JOUY156.pD Lactobacillus.sakei.JOUY156.pE Lactobacillus.sakei.JOUY160X1

. Lactobacillus and . Sakei, , vol.160, p.1

. Lactobacillus and . Sakei, , p.25

. Lactobacillus and . Sakei, , vol.25, p.1

. Lactobacillus and . Sakei, , pp.16-30

. Lactobacillus and . Sakei,

. Lactococcus and . Piscium, , p.2

. Lactococcus and . Piscium, , vol.02, p.1

, Lactococcus.piscium.CMTALT02.pB Lactococcus.piscium.CMTALT02.pC Lactococcus.piscium.CMTALT17

. Lactococcus and . Piscium, , p.47

. Lactococcus and . Piscium, , vol.47, p.1

. Lactococcus and . Piscium, , vol.47, p.2

. Lelliottia,

. Leuconostoc and . Carnosum, MFPC16A28-03.pA Leuconostoc.carnosum.MFPC16A28-03.pB Leuconostoc.carnosum.MFPC16A28-03.pC Leuconostoc.carnosum.MFPC16A28-03.pE Leuconostoc.citreum.LBAEC11.WGS_83

. Leuconostoc and . Gelidum, , p.3537

, Leuconostoc.gelidum.KCTC3537.pB Leuconostoc.gelidum, pp.44-58

. Leuconostoc and . Gelidum, MFPA44A14-01.pB Leuconostoc.mesenteroides.ATCC8293.CHRO Leuconostoc.mesenteroides, vol.8293, p.1

. Morganella and . Psychrotolerans, , vol.925, p.82

. Pseudomonas, , p.1

. Rahnella, , p.2

. Rahnella, , vol.2, p.1

. Rahnella, , vol.2, p.2

. Rahnella, , vol.2, p.22

. Raoultella and . Ornithinolytica,

. Serratia and . Grimesii, , vol.2

. Serratia and . Liquefaciens, , p.27592

. Serratia and . Marcescens, , p.94

. Serratia and . Plymuthica, , p.9

. Serratia and . Plymuthica, , p.13

. Serratia and . Proteamaculans, , pp.1-2

. Serratia and . Proteamaculans, , pp.1-2

. Serratia and . Proteamaculans, , pp.44-58

. Vagococcus and . Fluvialis, , p.819

, Vagococcus.fluvialis.BH819.pA Vagococcus.fluvialis.BH819.pB Vagococcus.fluvialis.BH819.pC Weissella.hellenica.WIKIM14.WGS_30

, Yersinia.enterocolitica.subsp.enterocolitica, vol.8081, p.1

, Yersinia.enterocolitica.subsp.enterocolitica, vol.8081, p.8081

. Yersinia and . Intermedia,

. Yersinia and . Kristensenii,

, a Cette référence génomique correspond à la référence génomique Enterobacter.amingenus.CV9.WGS_180 de la, p.7

, Les gènes indiqués en vert sont les gènes sous-exprimés, p.5

, Le facteur de sous-expression du gène entre les deux teneurs en sel