L. Rui, Energy metabolism in the liver, Compr Physiol, vol.4, pp.177-197, 2014.

J. E. Gerich, Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications, Diabet Med, vol.27, pp.136-142, 2010.

M. Soty, A. Gautier-stein, F. Rajas, and G. Mithieux, Gut-Brain Glucose Signaling in Energy Homeostasis, Cell Metab, vol.25, pp.1231-1242, 2017.

K. Sharabi, C. D. Tavares, A. K. Rines, and P. Puigserver, Molecular pathophysiology of hepatic glucose production, Mol Aspects Med, vol.46, pp.21-33, 2015.

P. Karagianni and I. Talianidis, Transcription factor networks regulating hepatic fatty acid metabolism, Biochim Biophys Acta, vol.1851, pp.2-8, 2015.

M. H. Oosterveer and K. Schoonjans, Hepatic glucose sensing and integrative pathways in the liver, Cell Mol Life Sci, vol.71, pp.1453-1467, 2014.

H. V. Lin and D. Accili, Hormonal regulation of hepatic glucose production in health and disease, Cell Metab, vol.14, pp.9-19, 2011.

S. J. Pilkis and D. K. Granner, Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis, Annu Rev Physiol, vol.54, pp.885-909, 1992.

M. R. El-maghrabi, A. J. Lange, L. Kummel, and S. J. Pilkis, The rat fructose-1,6-bisphosphatase gene. Structure and regulation of expression, J Biol Chem, vol.266, pp.2115-2120, 1991.

J. C. Hutton and R. M. O'brien, Glucose-6-phosphatase catalytic subunit gene family, J Biol Chem, vol.284, pp.29241-29245, 2009.

N. Shen, S. Jiang, J. M. Lu, X. Yu, S. S. Lai et al., The constitutive activation of Egr

, C/EBPa mediates the development of type 2 diabetes mellitus by enhancing hepatic gluconeogenesis, Am J Pathol, vol.185, pp.513-523, 2015.

A. K. Rines, K. Sharabi, C. D. Tavares, and P. Puigserver, Targeting hepatic glucose metabolism in the treatment of type 2 diabetes, Nat Rev Drug Discov, vol.15, pp.786-804, 2016.

C. Mazuy, A. Helleboid, B. Staels, and P. Lefebvre, Nuclear bile acid signaling through the farnesoid X receptor, Cell Mol Life Sci, vol.72, pp.1631-1650, 2015.

J. Prawitt, M. Abdelkarim, J. H. Stroeve, I. Popescu, H. Duez et al., Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity, Diabetes, vol.60, pp.1861-1871, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00605738

M. S. Trabelsi, M. Daoudi, J. Prawitt, S. Ducastel, V. Touche et al., Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells, Nat Commun, vol.6, p.7629, 2015.

D. Duran-sandoval, B. Cariou, F. Percevault, N. Hennuyer, A. Grefhorst et al., The Farnesoid X Receptor Modulates Hepatic Carbohydrate Metabolism during the Fasting-Refeeding Transition, Journal of Biological Chemistry, vol.280, pp.29971-29979, 2005.

S. Caron, S. C. Huaman, H. Dehondt, M. Ploton, O. Briand et al., Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes, Mol Cell Biol, vol.33, pp.2202-2211, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00806064

Y. Zhang, F. Y. Lee, G. Barrera, H. Lee, C. Vales et al., Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice, Proc Natl Acad Sci, vol.103, pp.1006-1011, 2006.

S. Cipriani, A. Mencarelli, G. Palladino, and S. Fiorucci, FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats, J Lipid Res, vol.51, pp.771-784, 2010.

K. Ma, P. K. Saha, L. Chan, and D. D. Moore, Farnesoid X receptor is essential for normal glucose homeostasis, J Clin Invest, vol.116, pp.1102-1109, 2006.

L. Jin, X. Feng, H. Rong, Z. Pan, Y. Inaba et al., The antiparasitic drug ivermectin is a novel FXR ligand that regulates metabolism, Nat Commun, vol.4, 1937.

Y. Ma, Y. Huang, L. Yan, M. Gao, and D. Liu, Synthetic FXR agonist GW4064 prevents diet-induced hepatic steatosis and insulin resistance, Pharm Res, vol.30, pp.1447-1457, 2013.

M. J. Park, H. J. Kong, H. Y. Kim, H. H. Kim, J. H. Kim et al., Transcriptional repression of the gluconeogenic gene PEPCK by the orphan nuclear receptor SHP through inhibitory interaction with C/EBPalpha, Biochem J, vol.402, pp.567-574, 2007.

K. Yamagata, H. Daitoku, Y. Shimamoto, H. Matsuzaki, K. Hirota et al., Bile Acids Regulate Gluconeogenic Gene Expression via Small Heterodimer Partner-mediated Repression of Hepatocyte Nuclear Factor 4 and Foxo1, Journal of Biological Chemistry, vol.279, pp.23158-23165, 2004.

B. Cariou, E. Bouchaert, M. Abdelkarim, J. Dumont, S. Caron et al., FXR-deficiency confers increased susceptibility to torpor, FEBS Lett, vol.581, pp.5191-5198, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00409558

B. Cariou, K. Van-harmelen, D. Duran-sandoval, T. Van-dijk, A. Grefhorst et al., Transient impairment of the adaptive response to fasting in FXR-deficient mice, FEBS Lett, vol.579, pp.4076-4080, 2005.

B. Cariou, H. K. Van, D. Duran-sandoval, T. H. Van-dijk, A. Grefhorst et al., The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice, J Biol Chem, vol.281, pp.11039-11049, 2006.

B. Renga, A. Mencarelli, D. 'amore, C. Cipriani, S. Baldelli et al., Glucocorticoid receptor mediates the gluconeogenic activity of the farnesoid X receptor in the fasting condition, FASEB J, vol.26, pp.3021-3031, 2012.

G. Porez, B. Gross, J. Prawitt, C. Gheeraert, W. Berrabah et al., The hepatic orosomucoid/alpha1-acid glycoprotein gene cluster is regulated by the nuclear bile acid receptor FXR, Endocrinology, vol.154, pp.3690-3701, 2013.

C. J. Sinai, M. Tohkin, M. Miyata, J. M. Ward, G. Lambert et al., Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis, Cell, vol.102, pp.731-744, 2000.

W. Berrabah, P. Aumercier, C. Gheeraert, H. Dehondt, E. Bouchaert et al., Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR), Hepatology, vol.59, pp.2022-2033, 2014.

F. Lien, A. Berthier, E. Bouchaert, C. Gheeraert, J. Alexandre et al., Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk, J Clin Invest, vol.124, pp.1037-1051, 2014.

R. Gineste, A. Sirvent, R. Paumelle, S. Helleboid, A. Aquilina et al., Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity, Mol Endocrinol, vol.22, pp.2433-2447, 2008.

X. J. Fang, S. X. Yu, Y. L. Lu, R. C. Bast, J. R. Woodgett et al., Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A, P Natl Acad Sci, vol.97, pp.11960-11965, 2000.

A. M. Thomas, S. N. Hart, B. Kong, J. Fang, X. B. Zhong et al., Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine, Hepatology, vol.51, pp.1410-1419, 2010.

L. J. Everett, L. J. Le, S. Lukovac, D. Bernstein, D. J. Steger et al., Integrative genomic analysis of CREB defines a critical role for transcription factor networks in mediating the fed/fasted switch in liver, BMC Genomics, vol.14, p.337, 2013.

, The Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome, Nature, vol.489, pp.57-74, 2012.

B. M. Forman, E. Goode, J. Chen, A. E. Oro, D. J. Bradley et al., Identification of a nuclear receptor that is activated by farnesol metabolites, Cell, vol.81, pp.687-693, 1995.

J. J. Howell and M. Stoffel, Nuclear export-independent inhibition of Foxa2 by insulin, J Biol Chem, vol.284, pp.24816-24824, 2009.

C. Wolfrum, D. Besser, E. Luca, and M. Stoffel, Insulin regulates the activity of forkhead transcription factor Hnf-3beta/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization, Proc Natl Acad Sci U S A, vol.100, pp.11624-11629, 2003.

I. M. Bochkis, J. Schug, N. E. Rubins, A. R. Chopra, B. W. O'malley et al., Foxa2-dependent hepatic gene regulatory networks depend on physiological state, Physiol Genomics, vol.38, pp.186-195, 2009.

R. E. Soccio, G. Tuteja, L. J. Everett, Z. Li, M. A. Lazar et al., Species-specific strategies underlying conserved functions of metabolic transcription factors, Mol Endocrinol, vol.25, pp.694-706, 2011.

T. Sekiya, U. M. Muthurajan, K. Luger, A. V. Tulin, and K. S. Zaret, Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA, Genes Dev, vol.23, pp.804-809, 2009.

O. Chavez-talavera, A. Tailleux, P. Lefebvre, and B. Staels, Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease, Gastroenterology, vol.152, pp.1679-1694, 2017.

K. R. Stayrook, K. S. Bramlett, R. S. Savkur, J. Ficorilli, T. Cook et al., Regulation of carbohydrate metabolism by the farnesoid X receptor, Endocrinology, vol.146, pp.984-991, 2005.

M. Watanabe, Y. Horai, S. M. Houten, K. Morimoto, T. Sugizaki et al., Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure, J Biol Chem, vol.286, pp.26913-26920, 2011.

J. K. Kemper, Z. Xiao, B. Ponugoti, J. Miao, S. Fang et al., FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states, Cell Metab, vol.10, pp.392-404, 2009.

J. L. Garcia-rodriguez, L. Barbier-torres, S. Fernandez-alvarez, J. Gutierrez-de, V. et al.,

E. Halilbasic, SIRT1 controls liver regeneration by regulating bile acid metabolism through farnesoid X receptor and mammalian target of rapamycin signaling, Hepatology, vol.59, pp.1972-1983, 2014.

J. Wang, D. Mauvoisin, E. Martin, F. Atger, A. N. Galindo et al., Nuclear Proteomics Uncovers Diurnal Regulatory Landscapes in Mouse Liver, Cell Metab, vol.25, pp.102-117, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02187195

M. S. Robles, S. J. Humphrey, and M. Mann, Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology, Cell Metab, vol.25, pp.118-127, 2017.

J. Dubois-chevalier, V. Dubois, H. Dehondt, P. Mazrooei, C. Mazuy et al., The logic of transcriptional regulator recruitment architecture at cis-regulatory modules controlling liver functions, Genome Res, vol.27, pp.985-996, 2017.

P. Lefebvre, B. Cariou, F. Lien, F. Kuipers, and B. Staels, Role of bile acids and bile acid receptors in metabolic regulation, Physiol Rev, vol.89, pp.147-191, 2009.

Y. Zhang, C. H. Hagedorn, and L. Wang, Role of nuclear receptor SHP in metabolism and cancer, Biochim Biophys Acta, vol.1812, pp.893-908, 2011.

J. Y. Kim, H. J. Kim, K. T. Kim, Y. Y. Park, H. A. Seong et al., Orphan nuclear receptor small heterodimer partner represses hepatocyte nuclear factor 3/Foxa transactivation via inhibition of its DNA binding, Mol Endocrinol, vol.18, pp.2880-2894, 2004.

F. Von-meyenn, T. Porstmann, E. Gasser, N. Selevsek, A. Schmidt et al., Glucagoninduced acetylation of Foxa2 regulates hepatic lipid metabolism, Cell Metab, vol.17, pp.436-447, 2013.

C. Wolfrum, E. Asilmaz, E. Luca, J. M. Friedman, and M. Stoffel, Whole cell extracts from siRNA-treated MPHs were characterized by WES analysis. (F) Glucose production in FOXO1-depleted MPHs. MPHs were isolated and transfected for 48 hours with either a scramble siRNA (control) or a Foxo1-targeting siRNA. Glucose production was assayed 8 hours later and normalized to protein content. Results are the mean +/-SEM (n=3) and values were compared using a 2-way ANOVA with a Bonferroni post hoc test, expression level arbitrarily set to 1. Data were compared using a 2-way ANOVA with a Bonferroni post hoc test. *, p<0.05, **, p<0.01, ***, p<0.005. (D), vol.432, pp.1027-1059, 2004.

. ***,

F. Lien, A. Berthier, E. Bouchaert, C. Gheeraert, J. Alexandre et al., Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk, J Clin Invest, vol.124, pp.1037-1051, 2014.

T. D. Schmittgen and K. J. Livak, Analyzing real-time PCR data by the comparative CT method, Nature Protocols, vol.3, pp.1101-1108, 2008.

B. Lefebvre, Y. Benomar, A. Guedin, A. Langlois, N. Hennuyer et al., Proteasomal degradation of retinoid X receptor alpha reprograms transcriptional activity of PPARgamma in obese mice and humans, J Clin Invest, vol.120, pp.1454-1468, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00472906

W. Berrabah, P. Aumercier, C. Gheeraert, H. Dehondt, E. Bouchaert et al., Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR), Hepatology, vol.59, pp.2022-2033, 2014.

R. E. Soccio, G. Tuteja, L. J. Everett, Z. Li, M. A. Lazar et al., Species-specific strategies underlying conserved functions of metabolic transcription factors, Mol Endocrinol, vol.25, pp.694-706, 2011.

A. M. Thomas, S. N. Hart, B. Kong, J. Fang, X. B. Zhong et al., Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine, Hepatology, vol.51, pp.1410-1419, 2010.

L. J. Everett, L. J. Le, S. Lukovac, D. Bernstein, D. J. Steger et al., Integrative genomic analysis of CREB defines a critical role for transcription factor networks in mediating the fed/fasted switch in liver, BMC Genomics, vol.14, p.337, 2013.

Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson et al., Model-based analysis of ChIP-Seq (MACS)

, Genome Biol, vol.9, p.137, 2008.

J. Feng, T. Liu, B. Qin, Y. Zhang, and X. S. Liu, Identifying ChIP-seq enrichment using MACS, Nat Protoc, vol.7, pp.1728-1740, 2012.

J. K. Pickrell, D. J. Gaffney, Y. Gilad, and J. K. Pritchard, False positive peaks in ChIP-seq and other sequencing-based functional assays caused by unannotated high copy number regions, Bioinformatics, vol.27, pp.2144-2146, 2011.

C. Y. Mclean, D. Bristor, M. Hiller, S. L. Clarke, B. T. Schaar et al., GREAT improves functional interpretation of cis-regulatory regions, Nat Biotechnol, vol.28, pp.495-501, 2010.

A. Medina-rivera, M. Defrance, O. Sand, C. Herrmann, J. A. Castro-mondragon et al., Regulatory Sequence Analysis Tools, vol.43, pp.50-56, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01624369

T. Liu, J. A. Ortiz, L. Taing, C. A. Meyer, B. Lee et al., Cistrome: an integrative platform for transcriptional regulation studies, Genome Biol, vol.12, p.83, 2011.

K. Cartharius, K. Frech, K. Grote, B. Klocke, M. Haltmeier et al., MatInspector and beyond: promoter analysis based on transcription factor binding sites, Bioinformatics, vol.21, pp.2933-2942, 2005.

R. Gineste, A. Sirvent, R. Paumelle, S. Helleboid, A. Aquilina et al., Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity, Mol Endocrinol, vol.22, pp.2433-2447, 2008.

J. Wang, J. Zhuang, S. Iyer, X. Lin, T. W. Whitfield et al., Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors, Genome Res, vol.22, pp.1798-1812, 2012.

J. A. Van-diepen, P. A. Jansen, D. B. Ballak, and A. Hijmans, PPAR-alpha dependent regulation of vanin-1 mediates hepatic lipid metabolism, J Hepatol, vol.61, issue.2, pp.366-72, 2014.

C. Vollmers, S. Gill, L. Ditacchio, and S. R. Pulivarthy, Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression, Proc Natl Acad Sci U S A, vol.106, issue.50, pp.21453-21461, 2009.

G. Porez, B. Gross, J. Prawitt, C. Gheeraert, W. Berrabah et al., The hepatic orosomucoid/?1-acid glycoprotein gene cluster is regulated by the nuclear bile acid receptor FXR, Endocrinology, vol.154, issue.10, pp.3690-701, 2013.

F. Oger, C. Gheeraert, D. Mogilenko, Y. Benomar, O. Molendi-coste et al.,

D. Dombrowicz, F. Pattou, H. Duez, J. Eeckhoute, B. Staels et al., Cell-specific dysregulation of microRNA expression in obese white adipose tissue, J Clin Endocrinol Metab, vol.99, issue.8, pp.2821-2854, 2014.

F. F. Firmin, F. Oger, C. Gheeraert, J. Dubois-chevalier, A. S. Vercoutter-edouart et al., The RBM14/CoAA-interacting, long intergenic non-coding RNA, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02159068

, Oct, vol.26, issue.1, p.14087

M. M. Bibliographie-aagaard, R. Siersbaek, and S. Mandrup, Molecular basis for gene-specific transactivation by nuclear receptors, Biochim Biophys Acta, vol.1812, pp.824-835, 2011.

M. Adlanmerini, R. Solinhac, A. Abot, A. Fabre, and I. Raymond-letron, Mutation of the palmitoylation site of estrogen receptor ? in vivo reveals tissue-specific roles for membrane versus nuclear actions, Proc Natl Acad Sci U S A, vol.111, pp.283-90, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01015486

L. B. Agellon, V. Drover, S. K. Cheema, G. F. Gbaguidi, and A. Walsh, Dietary cholesterol fails to stimulate the human cholesterol 7alpha-hydroxylase gene (CYP7A1) in transgenic mice, J Biol Chem, vol.277, pp.20131-20134, 2002.

L. Agius, Glucokinase and molecular aspects of liver glycogen metabolism, Biochem J, vol.414, pp.1-18, 2008.

H. Akita, H. Suzuki, K. Ito, S. Kinoshita, and N. Sato, Characterization of bile acid transport mediated by multidrug resistance associated protein 2 and bile salt export pump, Biochim Biophys Acta, vol.1511, pp.7-16, 2001.

M. Alsahli and J. E. Gerich, Renal glucose metabolism in normal physiological conditions and in diabetes, Diabetes Res Clin Pract, vol.133, pp.1-9, 2017.

J. Y. Altarejos and M. Montminy, CREB and the CRTC co-activators: sensors for hormonal and metabolic signals, Nat Rev Mol Cell Biol, vol.12, pp.141-151, 2011.

G. Alvarez-sola, I. Uriarte, M. U. Latasa, M. G. Fernandez-barrena, and R. Urtasun, Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: development of an FGF19-based chimeric molecule to promote fatty liver regeneration, Gut, vol.66, pp.1818-1828, 2017.

G. Alvarez-sola, I. Uriarte, M. U. Latasa, M. Jimenez, and M. Barcena-varela, Bile acids, FGF15/19 and liver regeneration: From mechanisms to clinical applications, Biochim Biophys Acta, vol.1864, pp.1326-1334, 2018.

Y. Alwarawrah, K. Kiernan, and N. J. Maciver, Changes in Nutritional Status Impact Immune Cell Metabolism and Function. Front Immunol, vol.9, p.1055, 2018.

M. Ananthanarayanan, N. Balasubramanian, M. Makishima, D. J. Mangelsdorf, and F. J. Suchy, Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor, J Biol Chem, vol.276, pp.28857-28865, 2001.

M. Anbalagan, B. Huderson, L. Murphy, and B. G. Rowan, Post-translational modifications of nuclear receptors and human disease, Nucl Recept Signal, vol.10, p.1, 2012.

B. Angelin, I. Björkhem, K. Einarsson, and S. Ewerth, Hepatic uptake of bile acids in man. Fasting and postprandial concentrations of individual bile acids in portal venous and systemic blood serum, J Clin Invest, vol.70, pp.724-731, 1982.

A. M. Anisfeld, H. R. Kast-woelbern, M. E. Meyer, S. A. Jones, and Y. Zhang, Syndecan-1 expression is regulated in an isoform-specific manner by the farnesoid-X receptor, J Biol Chem, vol.278, pp.20420-20428, 2003.

K. Anyamaneeratch, P. Rojvirat, W. Sukjoi, and S. Jitrapakdee, Insights into Transcriptional Regulation of Hepatic Glucose Production, Int Rev Cell Mol Biol, vol.318, pp.203-253, 2015.

A. Aranda and A. Pascual, Nuclear hormone receptors and gene expression, Physiol Rev, vol.81, pp.1269-1304, 2001.

F. Authier and B. Desbuquois, Glucagon receptors, Cell Mol Life Sci, vol.65, pp.1880-1899, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00289267

J. A?imovi?, R. Ko?ir, D. Kastelec, M. Per?e, and G. Majdi?, Circadian rhythm of cholesterol synthesis in mouse liver: a statistical analysis of the post-squalene metabolites in wild-type and Crem-knock-out mice, Biochem Biophys Res Commun, vol.408, pp.635-641, 2011.

L. L. Baggio and D. J. Drucker, Biology of incretins: GLP-1 and GIP. Gastroenterology, vol.132, pp.2131-2157, 2007.

D. M. Baker, S. L. Wang, D. J. Bell, C. A. Drevon, and R. A. Davis, One or more labile proteins regulate the stability of chimeric mRNAs containing the 3'-untranslated region of cholesterol7alpha -hydroxylase mRNA, J Biol Chem, vol.275, pp.19985-19991, 2000.

N. Balasubramaniyan, M. Ananthanarayanan, and F. J. Suchy, Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes, Am J Physiol Gastrointest Liver Physiol, vol.302, pp.937-984, 2012.

N. Balasubramaniyan, Y. Luo, A. Sun, and F. J. Suchy, SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes, J Biol Chem, vol.288, pp.13850-13862, 2013.

N. Ballatori, W. V. Christian, J. Y. Lee, P. A. Dawson, and C. J. Soroka, OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia, Hepatology, vol.42, pp.1270-1279, 2005.

P. S. Banerjee, O. Lagerlöf, and G. W. Hart, Roles of O-GlcNAc in chronic diseases of aging, Mol Aspects Med, vol.51, pp.1-15, 2016.

A. J. Bannister and T. Kouzarides, Regulation of chromatin by histone modifications, Cell Res, vol.21, pp.381-395, 2011.

O. Barbier, I. P. Torra, A. Sirvent, T. Claudel, and C. Blanquart, FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity, Gastroenterology, vol.124, pp.1926-1940, 2003.

K. E. Barrett, S. M. Barman, S. Boitano, and H. L. Brooks, Ganong's review of medical physiology. McGraw-Hill Education, pp.479-487, 2016.

K. Bartlett and S. Eaton, Mitochondrial beta-oxidation, Eur J Biochem, vol.271, pp.462-469, 2004.

L. P. Bechmann, R. A. Hannivoort, G. Gerken, G. S. Hotamisligil, and M. Trauner, The interaction of hepatic lipid and glucose metabolism in liver diseases, J Hepatol, vol.56, pp.952-964, 2012.

M. G. Belinsky, P. A. Dawson, I. Shchaveleva, L. J. Bain, and R. Wang, Analysis of the in vivo functions of Mrp3, Mol Pharmacol, vol.68, pp.160-168, 2005.

M. Benet, C. Guzmán, S. Pisonero-vaquero, M. V. García-mediavilla, and S. Sánchez-campos, Repression of the nuclear receptor small heterodimer partner by steatotic drugs and in advanced nonalcoholic fatty liver disease, Mol Pharmacol, vol.87, pp.582-594, 2015.

C. Benoist and P. Chambon, In vivo sequence requirements of the SV40 early promotor region, Nature, vol.290, pp.304-310, 1981.

G. Benoit, M. Malewicz, and T. Perlmann, Digging deep into the pockets of orphan nuclear receptors: insights from structural studies, Trends Cell Biol, vol.14, pp.369-376, 2004.

J. Berg, J. L. Tymoczko, and L. Stryer, The complex regulation of cholesterol biosynthesis takes place at several levels, 2002.

W. Berrabah, P. Aumercier, C. Gheeraert, H. Dehondt, and E. Bouchaert, Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR), Hepatology, vol.59, pp.2022-2033, 2014.

W. Berrabah, P. Aumercier, P. Lefebvre, and B. Staels, Control of nuclear receptor activities in metabolism by post-translational modifications, FEBS Lett, vol.585, pp.1640-1650, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00587038

S. Bhatnagar, H. A. Damron, and F. B. Hillgartner, Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis, J Biol Chem, vol.284, pp.10023-10033, 2009.

D. D. Bikle, Vitamin D metabolism, mechanism of action, and clinical applications, Chem Biol, vol.21, pp.319-329, 2014.

I. Billas and D. Moras, Allosteric controls of nuclear receptor function in the regulation of transcription, J Mol Biol, vol.425, pp.2317-2329, 2013.

S. Bilodeau, V. Caron, J. Gagnon, A. Kuftedjian, and A. Tremblay, A CK2-RNF4 interplay coordinates non-canonical SUMOylation and degradation of nuclear receptor FXR, J Mol Cell Biol, vol.9, pp.195-208, 2017.

S. Bilz, V. Samuel, K. Morino, D. Savage, and C. S. Choi, Activation of the farnesoid X receptor improves lipid metabolism in combined hyperlipidemic hamsters, Am J Physiol Endocrinol Metab, vol.290, pp.716-738, 2006.

H. Bismuth, Revisiting liver anatomy and terminology of hepatectomies, Ann Surg, vol.257, pp.383-386, 2013.

R. K. Bledsoe, V. G. Montana, T. B. Stanley, C. J. Delves, and C. J. Apolito, Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition, Cell, vol.110, pp.93-105, 2002.

R. D. Blind, E. P. Sablin, K. M. Kuchenbecker, H. Chiu, and A. M. Deacon, The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1, Proc Natl Acad Sci U S A, vol.111, pp.15054-15059, 2014.

I. M. Bochkis, N. E. Rubins, P. White, E. E. Furth, and J. R. Friedman, Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress, Nat Med, vol.14, pp.828-836, 2008.

M. Boesjes, V. W. Bloks, J. Hageman, T. Bos, and T. H. Van-dijk, Hepatic farnesoid Xreceptor isoforms ?2 and ?4 differentially modulate bile salt and lipoprotein metabolism in mice, PLoS One, vol.9, p.115028, 2014.

G. Bohlen, Special circulations, pp.276-289, 2003.

L. J. Borgius, K. R. Steffensen, J. Gustafsson, and E. Treuter, Glucocorticoid signaling is perturbed by the atypical orphan receptor and corepressor SHP, J Biol Chem, vol.277, pp.49761-49766, 2002.

P. Borude, G. Edwards, C. Walesky, F. Li, and X. Ma, Hepatocyte-specific deletion of farnesoid X receptor delays but does not inhibit liver regeneration after partial hepatectomy in mice, Hepatology, vol.56, pp.2344-2352, 2012.

J. N. Boustead, B. T. Stadelmaier, A. M. Eeds, P. O. Wiebe, and C. A. Svitek, Hepatocyte nuclear factor-4 alpha mediates the stimulatory effect of peroxisome proliferator-activated receptor gamma co-activator-1 alpha (PGC-1 alpha) on glucose-6-phosphatase catalytic subunit gene transcription in H4IIE cells, Biochem J, vol.369, pp.17-22, 2003.

M. Bouvier, Peripheral actions of GPCRs in energy homeostasis: view from the Chair, Int J Obes Suppl, vol.4, pp.3-4, 2014.

J. L. Boyer, M. Trauner, A. Mennone, C. J. Soroka, and S. Cai, Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents, Am J Physiol Gastrointest Liver Physiol, vol.290, pp.1124-1154, 2006.

A. Brandoni, M. H. Hazelhoff, R. P. Bulacio, and A. M. Torres, Expression and function of renal and hepatic organic anion transporters in extrahepatic cholestasis, World J Gastroenterol, vol.18, pp.6387-6397, 2012.

A. M. Brzozowski, A. C. Pike, Z. Dauter, R. E. Hubbard, and T. Bonn, Molecular basis of agonism and antagonism in the oestrogen receptor, Nature, vol.389, pp.753-758, 1997.

Y. A. Bulynko, O. Malley, and B. W. , Nuclear receptor coactivators: structural and functional biochemistry, Biochemistry, vol.50, pp.313-328, 2011.

C. I. Bungard and J. D. Mcgivan, Identification of the promoter elements involved in the stimulation of ASCT2 expression by glutamine availability in HepG2 cells and the probable involvement of FXR/RXR dimers, Arch Biochem Biophys, vol.443, pp.53-59, 2005.

T. P. Burris, L. A. Solt, Y. Wang, C. Crumbley, and S. Banerjee, Nuclear receptors and their selective pharmacologic modulators, Pharmacol Rev, vol.65, pp.710-778, 2013.

G. Cahill, Starvation in man, N Engl J Med, vol.282, pp.668-675, 1970.

G. Cahill, Fuel metabolism in starvation, Annu Rev Nutr, vol.26, pp.1-22, 2006.

B. Cariou, K. Van-harmelen, D. Duran-sandoval, T. Van-dijk, and A. Grefhorst, Transient impairment of the adaptive response to fasting in FXR-deficient mice, FEBS Lett, vol.579, pp.4076-4080, 2005.

C. Carlberg and S. Seuter, Dynamics of nuclear receptor target gene regulation, Chromosoma, vol.119, pp.479-484, 2010.

S. Caron, H. Samanez, C. Dehondt, H. Ploton, M. Briand et al., Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes, Mol Cell Biol, vol.33, pp.2202-2211, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00806064

D. Carter, L. Chakalova, C. S. Osborne, Y. Dai, and P. Fraser, Long-range chromatin regulatory interactions in vivo, Nat Genet, vol.32, pp.623-626, 2002.

S. Cassim, V. Raymond, P. Lapierre, and M. Bilodeau, From in vivo to in vitro: Major metabolic alterations take place in hepatocytes during and following isolation, PLoS One, vol.12, p.190366, 2017.

H. Cassuto, K. Kochan, K. Chakravarty, H. Cohen, and B. Blum, Glucocorticoids regulate transcription of the gene for phosphoenolpyruvate carboxykinase in the liver via an extended glucocorticoid regulatory unit, J Biol Chem, vol.280, pp.33873-33884, 2005.

R. Chandra and R. A. Liddle, Curr Opin Endocrinol Diabetes Obes, vol.14, pp.63-67, 2007.

V. Chandra, P. Huang, Y. Hamuro, S. Raghuram, and Y. Wang, Structure of the intact PPAR-gamma-RXR-nuclear receptor complex on DNA, Nature, vol.456, pp.350-356, 2008.

M. J. Charron and P. M. Vuguin, Lack of glucagon receptor signaling and its implications beyond glucose homeostasis, J Endocrinol, vol.224, pp.123-153, 2015.

B. Chatterjee, I. Echchgadda, and C. S. Song, Vitamin D receptor regulation of the steroid/bile acid sulfotransferase SULT2A1, Methods Enzymol, vol.400, pp.165-191, 2005.

F. Chen, L. Ma, P. A. Dawson, C. J. Sinal, and E. Sehayek, Liver receptor homologue-1 mediates species-and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter, J Biol Chem, vol.278, pp.19909-19916, 2003.

W. Chen and J. Chiang, Regulation of human sterol 27-hydroxylase gene (CYP27A1) by bile acids and hepatocyte nuclear factor 4alpha (HNF4alpha), Gene, vol.313, pp.71-82, 2003.

W. Chen, Y. Wang, L. Zhang, S. Shiah, and M. Wang, Farnesoid X receptor alleviates age-related proliferation defects in regenerating mouse livers by activating forkhead box m1b transcription, Hepatology, vol.51, pp.953-962, 2010.

Y. Chen, X. Song, L. Valanejad, A. Vasilenko, and V. More, Bile salt export pump is dysregulated with altered farnesoid X receptor isoform expression in patients with hepatocellular carcinoma, Hepatology, vol.57, pp.1530-1541, 2013.

J. Cheng, D. Z. Pan, Z. T. Tsai, and H. Tsai, Genome-wide analysis of enhancer RNA in gene regulation across 12 mouse tissues, Sci Rep, vol.5, p.12648, 2015.

J. Y. Chiang, Recent advances in understanding bile acid homeostasis, 2017.

J. Y. Chiang, R. Kimmel, and D. Stroup, Regulation of cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRalpha), Gene, vol.262, pp.257-265, 2001.

J. Chiang, Bile acids: regulation of synthesis, J Lipid Res, vol.50, pp.1955-1966, 2009.

J. Chiang, Bile acid metabolism and signaling, Compr Physiol, vol.3, pp.1191-1212, 2013.

J. Chiang and J. M. Ferrell, Bile Acid Metabolism in Liver Pathobiology, Gene Expr, vol.18, pp.71-87, 2018.

N. Chignard, M. Mergey, V. Barbu, L. Finzi, and E. Tiret, VPAC1 expression is regulated by FXR agonists in the human gallbladder epithelium, Hepatology, vol.42, pp.549-557, 2005.

N. Chignard, M. Mergey, D. Veissière, R. Parc, and J. Capeau, Bile acid transport and regulating functions in the human biliary epithelium, Hepatology, vol.33, pp.496-503, 2001.

D. H. Cho, C. P. Thienes, S. E. Mahoney, E. Analau, and G. N. Filippova, Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF, Mol Cell, vol.20, pp.483-489, 2005.

D. Choi, K. Oh, H. Han, Y. Yoon, and C. Jung, Protein arginine methyltransferase 1 regulates hepatic glucose production in a FoxO1-dependent manner, Hepatology, vol.56, pp.1546-1556, 2012.

H. K. Chong, A. M. Infante, Y. Seo, T. Jeon, and Y. Zhang, Genome-wide interrogation of hepatic FXR reveals an asymmetric IR-1 motif and synergy with LRH-1, Nucleic Acids Res, vol.38, pp.6007-6017, 2010.

O. Chávez-talavera, A. Tailleux, P. Lefebvre, and B. Staels, Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease, Gastroenterology, vol.152, pp.1679-1694, 2017.

C. Cicione, C. Degirolamo, and A. Moschetta, Emerging role of fibroblast growth factors 15/19 and 21 as metabolic integrators in the liver, Hepatology, vol.56, pp.2404-2411, 2012.

S. Cipriani, A. Mencarelli, G. Palladino, and S. Fiorucci, FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats, J Lipid Res, vol.51, pp.771-784, 2010.

F. Claessens and D. T. Gewirth, DNA recognition by nuclear receptors, Essays Biochem, vol.40, pp.59-72, 2004.

C. R. Clapier, J. Iwasa, B. R. Cairns, and C. L. Peterson, Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes, Nat Rev Mol Cell Biol, vol.18, pp.407-422, 2017.

T. Claudel, Y. Inoue, O. Barbier, D. Duran-sandoval, and V. Kosykh, Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression, Gastroenterology, vol.125, pp.544-555, 2003.

T. Claudel, E. Sturm, H. Duez, I. P. Torra, and A. Sirvent, Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element, J Clin Invest, vol.109, pp.961-971, 2002.

S. Colnot and . Pc, Molecular pathology of liver diseases, pp.7-16, 2011.

Y. Cormerais, P. A. Massard, M. Vucetic, S. Giuliano, and E. Tambutté, The glutamine transporter ASCT2 (SLC1A5) promotes tumor growth independently of the amino acid transporter LAT1 (SLC7A5), J Biol Chem, vol.293, pp.2877-2887, 2018.

J. C. Correia, J. Massart, J. F. De-boer, M. Porsmyr-palmertz, and V. Martínez-redondo, Bioenergetic cues shift FXR splicing towards FXR?2 to modulate hepatic lipolysis and fatty acid metabolism, Mol Metab, vol.4, pp.891-902, 2015.

D. Cotnoir-white, D. Laperrière, and S. Mader, Evolution of the repertoire of nuclear receptor binding sites in genomes, Mol Cell Endocrinol, vol.334, pp.76-82, 2011.

M. Crestani, A. Sadeghpour, D. Stroup, G. Galli, and J. Y. Chiang, Transcriptional activation of the cholesterol 7alpha-hydroxylase gene (CYP7A) by nuclear hormone receptors, J Lipid Res, vol.39, pp.2192-2200, 1998.

I. L. Csanaky, L. M. Aleksunes, Y. Tanaka, and C. D. Klaassen, Role of hepatic transporters in prevention of bile acid toxicity after partial hepatectomy in mice, Am J Physiol Gastrointest Liver Physiol, vol.297, pp.419-452, 2009.

H. A. Cyphert, X. Ge, A. B. Kohan, L. M. Salati, and Y. Zhang, Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21, J Biol Chem, vol.287, pp.25123-25138, 2012.

I. Côté, N. Sock, E. T. Lévy, É. Lavoie, and J. , An atherogenic diet decreases liver FXR gene expression and causes severe hepatic steatosis and hepatic cholesterol accumulation: effect of endurance training, Eur J Nutr, vol.52, pp.1523-1532, 2013.

D. D&apos;alessio, The role of dysregulated glucagon secretion in type 2 diabetes, Diabetes Obes Metab, vol.13, pp.126-132, 2011.

A. M. D&apos;souza, Y. Jiang, A. Cast, L. Valanejad, and M. Wright, Gankyrin Promotes Tumor-Suppressor Protein Degradation to Drive Hepatocyte Proliferation, Cell Mol Gastroenterol Hepatol, vol.6, pp.239-255, 2018.

P. A. Dawson, M. L. Hubbert, and A. Rao, Getting the mOST from OST: Role of organic solute transporter, OSTalpha-OSTbeta, in bile acid and steroid metabolism, Biochim Biophys Acta, vol.1801, pp.994-1004, 2010.

P. A. Dawson and S. J. Karpen, Intestinal transport and metabolism of bile acids, J Lipid Res, vol.56, pp.1085-1099, 2015.

E. De-fabiani, N. Mitro, F. Gilardi, D. Caruso, and G. Galli, Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle, J Biol Chem, vol.278, pp.39124-39132, 2003.

B. J. Deegan, V. Bhat, K. L. Seldeen, C. B. Mcdonald, and A. Farooq, Genetic variations within the ERE motif modulate plasticity and energetics of binding of DNA to the ER? nuclear receptor, Arch Biochem Biophys, vol.507, pp.262-270, 2011.

G. U. Denk, C. J. Soroka, Y. Takeyama, W. Chen, and J. D. Schuetz, Multidrug resistanceassociated protein 4 is up-regulated in liver but down-regulated in kidney in obstructive cholestasis in the rat, J Hepatol, vol.40, pp.585-591, 2004.

L. A. Denson, E. Sturm, W. Echevarria, T. L. Zimmerman, and M. Makishima, The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp, Gastroenterology, vol.121, pp.140-147, 2001.

U. Deuschle, J. Schüler, A. Schulz, T. Schlüter, and O. Kinzel, FXR controls the tumor suppressor NDRG2 and FXR agonists reduce liver tumor growth and metastasis in an orthotopic mouse xenograft model, PLoS One, vol.7, p.43044, 2012.

S. Dhe-paganon, K. Duda, M. Iwamoto, Y. Chi, and S. E. Shoelson, Crystal structure of the HNF4 alpha ligand binding domain in complex with endogenous fatty acid ligand, J Biol Chem, vol.277, pp.37973-37976, 2002.

D. Leva, F. S. Festa, C. , D. &apos;amore, C. et al., Binding mechanism of the farnesoid X receptor marine antagonist suvanine reveals a strategy to forestall drug modulation on nuclear receptors. Design, synthesis, and biological evaluation of novel ligands, J Med Chem, vol.56, pp.4701-4717, 2013.

C. Ding, Y. Li, F. Guo, Y. Jiang, and Y. W. , A Cell-type-resolved Liver Proteome, Mol Cell Proteomics, vol.15, pp.3190-3202, 2016.

I. Doignon, B. Julien, V. Serrière-lanneau, I. Garcin, and A. G. , Immediate neuroendocrine signaling after partial hepatectomy through acute portal hyperpressure and cholestasis, J Hepatol, vol.54, pp.481-488, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00692502

Z. Dong and B. H. Lee, Bile salt hydrolases: Structure and function, substrate preference, and inhibitor development, Protein Sci, 2018.

M. G. Donner and D. Keppler, Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver, Hepatology, vol.34, pp.351-359, 2001.

M. Downes, M. A. Verdecia, A. J. Roecker, R. Hughes, and J. B. Hogenesch, A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR, Mol Cell, vol.11, pp.1079-1092, 2003.

J. Dubois-chevalier, V. Dubois, H. Dehondt, P. Mazrooei, and C. Mazuy, The logic of transcriptional regulator recruitment architecture at, Genome Res, vol.27, pp.985-996, 2017.

J. Dubois-chevalier, F. Oger, H. Dehondt, F. F. Firmin, and C. Gheeraert, A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation, Nucleic Acids Res, vol.42, pp.10943-10959, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02159046

D. Duran-sandoval, B. Cariou, F. Percevault, N. Hennuyer, and A. Grefhorst, The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition, J Biol Chem, vol.280, pp.29971-29979, 2005.

D. Duran-sandoval, G. Mautino, G. Martin, F. Percevault, and O. Barbier, Glucose regulates the expression of the farnesoid X receptor in liver, Diabetes, vol.53, pp.890-898, 2004.

, An integrated encyclopedia of DNA elements in the human genome, ENCODE, vol.489, pp.57-74, 2012.

H. M. Eggink, J. E. Oosterman, P. De-goede, E. M. De-vries, and E. Foppen, Complex interaction between circadian rhythm and diet on bile acid homeostasis in male rats, Chronobiol Int, vol.34, pp.1339-1353, 2017.

R. Ehsani, S. Bahrami, and F. Drabløs, Feature-based classification of human transcription factors into hypothetical sub-classes related to regulatory function, BMC Bioinformatics, vol.17, p.459, 2016.

H. Escriva, S. Bertrand, and V. Laudet, The evolution of the nuclear receptor superfamily, Essays Biochem, vol.40, pp.11-26, 2004.

L. J. Everett, L. Lay, J. Lukovac, S. Bernstein, D. Steger et al., Integrative genomic analysis of CREB defines a critical role for transcription factor networks in mediating the fed/fasted switch in liver, BMC Genomics, vol.14, p.337, 2013.

C. N. Falany, M. R. Johnson, S. Barnes, and R. B. Diasio, Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase, J Biol Chem, vol.269, pp.19375-19379, 1994.

S. Fang, J. M. Suh, S. M. Reilly, Y. E. Osborn, and O. , Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance, Nat Med, vol.21, pp.159-165, 2015.

S. Fang, S. Tsang, R. Jones, B. Ponugoti, and H. Yoon, The p300 acetylase is critical for ligand-activated farnesoid X receptor (FXR) induction of SHP, J Biol Chem, vol.283, pp.35086-35095, 2008.

R. V. Farese and M. P. Sajan, Metabolic functions of atypical protein kinase C: "good" and "bad" as defined by nutritional status, Am J Physiol Endocrinol Metab, vol.298, pp.385-94, 2010.

N. Fausto, J. S. Campbell, and K. J. Riehle, Liver regeneration, J Hepatol, vol.57, pp.692-694, 2012.

K. Feingold, C. Grunfeld, and . Dungan-k, Introduction to lipids and lipoproteins, 2018.

P. Fickert and M. Wagner, Biliary bile acids in hepatobiliary injury -What is the link?, J Hepatol, vol.67, pp.619-631, 2017.

B. Flatt, R. Martin, T. Wang, P. Mahaney, and B. Murphy, Discovery of XL335 (WAY-362450), a highly potent, selective, and orally active agonist of the farnesoid X receptor (FXR), J Med Chem, vol.52, pp.904-907, 2009.

F. Fontana, Functions of cells and human bodymultimedia textbook, 3rd Faculty of Medicine, 2014.

B. M. Forman, E. Goode, J. Chen, A. E. Oro, and D. J. Bradley, Identification of a nuclear receptor that is activated by farnesol metabolites, Cell, vol.81, pp.687-693, 1995.

T. Frankenberg, T. Miloh, F. Y. Chen, M. Ananthanarayanan, and A. Sun, The membrane protein ATPase class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid X receptor, Hepatology, vol.48, pp.1896-1905, 2008.

J. R. Friedman and K. H. Kaestner, The Foxa family of transcription factors in development and metabolism, Cell Mol Life Sci, vol.63, pp.2317-2328, 2006.

T. Fu, Y. Kim, S. Byun, D. Kim, and S. Seok, FXR Primes the Liver for Intestinal FGF15 Signaling by Transient Induction of ?-Klotho, Mol Endocrinol, vol.30, pp.92-103, 2016.

R. M. Gadaleta, M. Cariello, C. Sabbà, and A. Moschetta, Tissue-specific actions of FXR in metabolism and cancer, Biochim Biophys Acta, vol.1851, pp.30-39, 2015.

R. M. Gadaleta and L. Magnani, Nuclear receptors and chromatin: an inducible couple, J Mol Endocrinol, vol.52, pp.137-186, 2014.

R. M. Gadaleta, K. J. Van-erpecum, B. Oldenburg, E. Willemsen, and W. Renooij, , 2011.

, Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease, Gut, vol.60, pp.463-472

N. Gallastegui, J. Mackinnon, R. J. Fletterick, and E. Estébanez-perpiñá, Advances in our structural understanding of orphan nuclear receptors, Trends Biochem Sci, vol.40, pp.25-35, 2015.

J. L. García-rodríguez, L. Barbier-torres, S. Fernández-Álvarez, G. Juan, V. et al., SIRT1 controls liver regeneration by regulating bile acid metabolism through farnesoid X receptor and mammalian target of rapamycin signaling, Hepatology, vol.59, pp.1972-1983, 2014.

C. Gardmo, A. Tamburro, S. Modica, and A. Moschetta, Proteomics for the discovery of nuclear bile acid receptor FXR targets, Biochim Biophys Acta, vol.1812, pp.836-841, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00706533

M. D. Gearhart, S. Holmbeck, R. M. Evans, H. J. Dyson, and P. E. Wright, Monomeric complex of human orphan estrogen related receptor-2 with DNA: a pseudo-dimer interface mediates extended half-site recognition, J Mol Biol, vol.327, pp.819-832, 2003.

J. E. Gerich, C. Meyer, H. J. Woerle, and M. Stumvoll, Renal gluconeogenesis: its importance in human glucose homeostasis, Diabetes Care, vol.24, pp.382-391, 2001.

P. Germain, B. Staels, C. Dacquet, M. Spedding, and V. Laudet, Overview of nomenclature of nuclear receptors, Pharmacol Rev, vol.58, pp.685-704, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00187929

M. B. Gerstein, A. Kundaje, M. Hariharan, S. G. Landt, and K. Yan, Architecture of the human regulatory network derived from ENCODE data, Nature, vol.489, pp.91-100, 2012.

R. H. Ghoneim, N. Sock, E. T. Lavoie, J. Piquette-miller, and M. , Effect of a high-fat diet on the hepatic expression of nuclear receptors and their target genes: relevance to drug disposition, Br J Nutr, vol.113, pp.507-516, 2015.

G. F. Gibbons, K. Islam, and R. J. Pease, Mobilisation of triacylglycerol stores, Biochim Biophys Acta, vol.1483, pp.37-57, 2000.

R. Gineste, A. Sirvent, R. Paumelle, S. Helleboid, and A. Aquilina, Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity, Mol Endocrinol, vol.22, pp.2433-2447, 2008.

C. K. Glass, Going nuclear in metabolic and cardiovascular disease, J Clin Invest, vol.116, pp.556-560, 2006.

C. Gnerre, S. Blättler, M. R. Kaufmann, R. Looser, and U. A. Meyer, Regulation of CYP3A4 by the bile acid receptor FXR: evidence for functional binding sites in the CYP3A4 gene, Pharmacogenetics, vol.14, pp.635-645, 2004.

F. Gofflot, N. Chartoire, L. Vasseur, S. Heikkinen, and D. Dembele, Systematic gene expression mapping clusters nuclear receptors according to their function in the brain, Cell, vol.131, pp.405-418, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00187825

I. Goldstein, S. Baek, D. M. Presman, V. Paakinaho, and E. E. Swinstead, Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response, Genome Res, vol.27, pp.427-439, 2017.

F. J. Gonzalez, C. Jiang, and A. D. Patterson, An Intestinal Microbiota-Farnesoid X Receptor Axis Modulates Metabolic Disease, Gastroenterology, vol.151, pp.845-859, 2016.

G. A. Gonzalez and M. R. Montminy, Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133, Cell, vol.59, pp.675-680, 1989.

E. Gonzalez-sanchez, D. Firrincieli, C. Housset, and N. Chignard, Expression patterns of nuclear receptors in parenchymal and non-parenchymal mouse liver cells and their modulation in cholestasis, Biochim Biophys Acta, vol.1863, pp.1699-1708, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01510262

B. Goodwin, S. A. Jones, R. R. Price, M. A. Watson, and D. D. Mckee, A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis, Mol Cell, vol.6, pp.517-526, 2000.

M. Gordillo, T. Evans, and V. Gouon-evans, Orchestrating liver development, Development, vol.142, pp.2094-2108, 2015.

J. M. Gray, T. Kim, A. E. West, A. S. Nord, and E. Markenscoff-papadimitriou, Genomic Views of Transcriptional Enhancers: Essential Determinants of Cellular Identity and ActivityDependent Responses in the CNS, J Neurosci, vol.35, pp.13819-13826, 2015.

C. D. Green and J. J. Han, Epigenetic regulation by nuclear receptors, Epigenomics, vol.3, pp.59-72, 2011.

S. I. Grivennikov and M. Karin, Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer, Cytokine Growth Factor Rev, vol.21, pp.11-19, 2010.

J. Grober, I. Zaghini, H. Fujii, S. A. Jones, and S. A. Kliewer, Identification of a bile acidresponsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor heterodimer, J Biol Chem, vol.274, pp.29749-29754, 1999.

H. Gronemeyer, J. Gustafsson, and V. Laudet, Principles for modulation of the nuclear receptor superfamily, Nat Rev Drug Discov, vol.3, pp.950-964, 2004.

P. Gruss, R. Dhar, and G. Khoury, Simian virus 40 tandem repeated sequences as an element of the early promoter, Proc Natl Acad Sci U S A, vol.78, pp.943-947, 1981.

C. Gälman, B. Angelin, and M. Rudling, Bile acid synthesis in humans has a rapid diurnal variation that is asynchronous with cholesterol synthesis, Gastroenterology, vol.129, pp.1445-1453, 2005.

R. A. Haeusler, S. Camastra, M. Nannipieri, B. Astiarraga, and J. Castro-perez, Increased Bile Acid Synthesis and Impaired Bile Acid Transport in Human Obesity, J Clin Endocrinol Metab, vol.101, pp.1935-1944, 2016.

B. Hagenbuch, I. D. Adler, and T. E. Schmid, Molecular cloning and functional characterization of the mouse organic-anion-transporting polypeptide 1 (Oatp1) and mapping of the gene to chromosome X, Biochem J 345 Pt, vol.1, pp.115-120, 2000.

N. Hah, S. Murakami, A. Nagari, C. G. Danko, and W. L. Kraus, Enhancer transcripts mark active estrogen receptor binding sites, Genome Res, vol.23, pp.1210-1223, 2013.

K. B. Halpern, R. Shenhav, O. Matcovitch-natan, B. Toth, and D. Lemze, Single-cell spatial reconstruction reveals global division of labour in the mammalian liver, Nature, vol.542, pp.352-356, 2017.

S. L. Hammond, K. A. Popichak, X. Li, L. G. Hunt, and E. H. Richman, The Nurr1, 2018.

. Ligand, J Pharmacol Exp Ther, vol.1, issue.3, pp.636-651

S. L. Hammond, S. Safe, and R. B. Tjalkens, A novel synthetic activator of Nurr1 induces dopaminergic gene expression and protects against 6-hydroxydopamine neurotoxicity in vitro, Neurosci Lett, vol.607, pp.83-89, 2015.

C. Y. Han, Update on FXR Biology: Promising Therapeutic Target?, Int J Mol Sci, vol.19, 2018.

J. Han, W. Lin, and Y. Chen, Inhibition of ATP-induced calcium influx in HT4 cells by glucocorticoids: involvement of protein kinase A, Acta Pharmacol Sin, vol.26, pp.199-204, 2005.

S. Han, T. Li, E. Ellis, S. Strom, and J. Chiang, A novel bile acid-activated vitamin D receptor signaling in human hepatocytes, Mol Endocrinol, vol.24, pp.1151-1164, 2010.

S. Han, R. Zhang, R. Jain, H. Shi, and L. Zhang, Circadian control of bile acid synthesis by a KLF15-Fgf15 axis, Nat Commun, vol.6, p.7231, 2015.

L. Handoko, H. Xu, G. Li, C. Y. Ngan, and E. Chew, CTCF-mediated functional chromatin interactome in pluripotent cells, Nat Genet, vol.43, pp.630-638, 2011.

G. W. Hart, C. Slawson, G. Ramirez-correa, and O. Lagerlof, Cross talk between OGlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease, Annu Rev Biochem, vol.80, pp.825-858, 2011.

T. Hashiguchi, S. Arakawa, S. Takahashi, F. J. Gonzalez, and T. Sueyoshi, Phosphorylation of Farnesoid X Receptor at Serine 154 Links Ligand Activation With Degradation, Mol Endocrinol, vol.30, pp.1070-1080, 2016.

Y. Hashimoto and H. Miyachi, Nuclear receptor antagonists designed based on the helixfolding inhibition hypothesis, Bioorg Med Chem, vol.13, pp.5080-5093, 2005.

M. J. Hawrylycz, E. S. Lein, A. L. Guillozet-bongaarts, E. H. Shen, and L. Ng, An anatomically comprehensive atlas of the adult human brain transcriptome, Nature, vol.489, pp.391-399, 2012.

N. Hay, Akt isoforms and glucose homeostasis -the leptin connection, Trends Endocrinol Metab, vol.22, pp.66-73, 2011.

J. He, K. Zhao, L. Zheng, Z. Xu, and W. Gong, Upregulation of microRNA-122 by farnesoid X receptor suppresses the growth of hepatocellular carcinoma cells, Mol Cancer, vol.14, p.163, 2015.

R. B. Heath, F. Karpe, R. W. Milne, G. C. Burdge, and S. A. Wootton, Dietary fatty acids make a rapid and substantial contribution to VLDL-triacylglycerol in the fed state, Am J Physiol Endocrinol Metab, vol.292, pp.732-741, 2007.

S. Heinz, C. E. Romanoski, C. Benner, and C. K. Glass, The selection and function of cell typespecific enhancers, Nat Rev Mol Cell Biol, vol.16, pp.144-154, 2015.

C. Helsen and F. Claessens, Looking at nuclear receptors from a new angle, Mol Cell Endocrinol, vol.382, pp.97-106, 2014.

C. Helsen, S. Kerkhofs, L. Clinckemalie, L. Spans, and M. Laurent, Structural basis for nuclear hormone receptor DNA binding, Mol Cell Endocrinol, vol.348, pp.411-417, 2012.

S. Herzig, F. Long, U. S. Jhala, S. Hedrick, and R. Quinn, CREB regulates hepatic gluconeogenesis through the coactivator PGC-1, Nature, vol.413, pp.179-183, 2001.

S. Herzig and R. J. Shaw, AMPK: guardian of metabolism and mitochondrial homeostasis, Nat Rev Mol Cell Biol, vol.19, pp.121-135, 2018.

B. S. Hijmans, A. Grefhorst, M. H. Oosterveer, and A. K. Groen, Zonation of glucose and fatty acid metabolism in the liver: mechanism and metabolic consequences, Biochimie, vol.96, pp.121-129, 2014.

H. Hirokane, M. Nakahara, S. Tachibana, M. Shimizu, and R. Sato, , vol.279, pp.45685-45692, 2004.

D. Hnisz, J. Schuijers, C. Y. Lin, A. S. Weintraub, and B. J. Abraham, Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers, Mol Cell, vol.58, pp.362-370, 2015.

A. F. Hofmann, Why bile acid glucuronidation is a minor pathway for conjugation of endogenous bile acids in man, Hepatology, vol.45, pp.1083-1087, 2007.

J. A. Holt, G. Luo, A. N. Billin, J. Bisi, and Y. Y. Mcneill, Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis, Genes Dev, vol.17, pp.1581-1591, 2003.

G. Holzer, G. V. Markov, and V. Laudet, Evolution of Nuclear Receptors and Ligand Signaling: Toward a Soft Key-Lock Model?, Curr Top Dev Biol, vol.125, pp.1-38, 2017.

D. L. Howarth, L. R. Hagey, S. Law, A. N. Krasowski, and M. D. , Two farnesoid X receptor alpha isoforms in Japanese medaka (Oryzias latipes) are differentially activated in vitro, Aquat Toxicol, vol.98, pp.245-255, 2010.

J. J. Howell and M. Stoffel, Nuclear export-independent inhibition of Foxa2 by insulin, J Biol Chem, vol.284, pp.24816-24824, 2009.

X. Hu, Q. Zhang, J. Zheng, W. Kong, and H. Zhang, Alteration of FXR phosphorylation and sumoylation in liver in the development of adult catch-up growth, Exp Biol Med (Maywood), vol.242, pp.297-304, 2017.

J. Huang, E. Marco, L. Pinello, and G. Yuan, Predicting chromatin organization using histone marks, Genome Biol, vol.16, p.162, 2015.

J. Huang and D. A. Rudnick, Elucidating the metabolic regulation of liver regeneration, Am J Pathol, vol.184, pp.309-321, 2014.

P. Huang, V. Chandra, and F. Rastinejad, Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics, Annu Rev Physiol, vol.72, pp.247-272, 2010.

W. Huang, K. Ma, J. Zhang, M. Qatanani, and J. Cuvillier, Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration, Science, vol.312, pp.233-236, 2006.

X. Huang, W. Zhao, and W. Huang, FXR and liver carcinogenesis, Acta Pharmacol Sin, vol.36, pp.37-43, 2015.

R. M. Huber, K. Murphy, B. Miao, J. R. Link, and M. R. Cunningham, Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters, Gene, vol.290, pp.35-43, 2002.

O. M. Ighodaro, Molecular pathways associated with oxidative stress in diabetes mellitus, Biomed Pharmacother, vol.108, pp.656-662, 2018.

T. Inagaki, M. Choi, A. Moschetta, L. Peng, and C. L. Cummins, Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis, Cell Metab, vol.2, pp.217-225, 2005.

T. Inagaki, A. Moschetta, Y. Lee, L. Peng, and G. Zhao, Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor, Proc Natl Acad Sci U S A, vol.103, pp.3920-3925, 2006.

H. A. Ingraham and M. R. Redinbo, Orphan nuclear receptors adopted by crystallography, Curr Opin Struct Biol, vol.15, pp.708-715, 2005.

M. G. Ismair, B. Stieger, V. Cattori, B. Hagenbuch, and M. Fried, Hepatic uptake of cholecystokinin octapeptide by organic anion-transporting polypeptides OATP4 and OATP8 of rat and human liver, Gastroenterology, vol.121, pp.1185-1190, 2001.

P. Jansen and U. Beuers, Oude Elferink R (2012) Zakim and boyer's hepatology

T. Jenuwein and C. D. Allis, Translating the histone code, Science, vol.293, pp.1074-1080, 2001.

S. Jeon, Regulation and function of AMPK in physiology and diseases, Exp Mol Med, vol.48, p.245, 2016.

C. Jiang, C. Xie, Y. Lv, J. Li, and K. W. Krausz, Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction, Nat Commun, vol.6, p.10166, 2015.

G. Jiang and B. B. Zhang, Glucagon and regulation of glucose metabolism, Am J Physiol Endocrinol Metab, vol.284, pp.671-679, 2003.

Y. Jiang, P. Iakova, J. J. Sullivan, E. Sharin, and V. , Farnesoid X receptor inhibits gankyrin in mouse livers and prevents development of liver cancer, Hepatology, vol.57, pp.1098-1106, 2013.

J. Jin, I. Hong, K. Lewis, P. Iakova, and M. Breaux, Cooperation of C/EBP family proteins and chromatin remodeling proteins is essential for termination of liver regeneration, Hepatology, vol.61, pp.315-325, 2015.

L. Jin and Y. Li, Structural and functional insights into nuclear receptor signaling, Adv Drug Deliv Rev, vol.62, pp.1218-1226, 2010.

S. Jitrapakdee, Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis, Int J Biochem Cell Biol, vol.44, pp.33-45, 2012.

S. John, P. J. Sabo, R. E. Thurman, M. Sung, and S. C. Biddie, Chromatin accessibility predetermines glucocorticoid receptor binding patterns, Nat Genet, vol.43, pp.264-268, 2011.

S. E. Joseph, N. Heaton, D. Potter, A. Pernet, and M. A. Umpleby, Renal glucose production compensates for the liver during the anhepatic phase of liver transplantation, Diabetes, vol.49, pp.450-456, 2000.

D. Jung, D. J. Mangelsdorf, and U. A. Meyer, Pregnane X receptor is a target of farnesoid X receptor, J Biol Chem, vol.281, pp.19081-19091, 2006.

D. Jung, M. Podvinec, U. A. Meyer, D. J. Mangelsdorf, and M. Fried, Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor, Gastroenterology, vol.122, pp.1954-1966, 2002.

K. Jungermann, Metabolic zonation of liver parenchyma, Semin Liver Dis, vol.8, pp.329-341, 1988.

M. H. Kagey, J. J. Newman, S. Bilodeau, Y. Zhan, and D. A. Orlando, Mediator and cohesin connect gene expression and chromatin architecture, Nature, vol.467, pp.430-435, 2010.

J. A. Kallen, J. Schlaeppi, F. Bitsch, S. Geisse, and M. Geiser, X-ray structure of the hRORalpha LBD at 1.63 A: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORalpha, Structure, vol.10, pp.1697-1707, 2002.

K. Kaneko, M. Soty, C. Zitoun, A. Duchampt, and M. Silva, The role of kidney in the inter-organ coordination of endogenous glucose production during fasting, Mol Metab, vol.16, pp.203-212, 2018.

Y. Kanno, N. Tanuma, A. Takahashi, and Y. Inouye, TO901317, a potent LXR agonist, is an inverse agonist of CAR, J Toxicol Sci, vol.38, pp.309-315, 2013.

H. R. Kast, B. Goodwin, P. T. Tarr, S. A. Jones, and A. M. Anisfeld, Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor, J Biol Chem, vol.277, pp.2908-2915, 2002.

H. R. Kast, C. M. Nguyen, C. J. Sinal, S. A. Jones, and B. A. Laffitte, Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids, Mol Endocrinol, vol.15, pp.1720-1728, 2001.

V. Katritch, V. Cherezov, and R. C. Stevens, Structure-function of the G protein-coupled receptor superfamily, Annu Rev Pharmacol Toxicol, vol.53, pp.531-556, 2013.

S. Katsuma, A. Hirasawa, and G. Tsujimoto, Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1, Biochem Biophys Res Commun, vol.329, pp.386-390, 2005.

Y. Kawamata, R. Fujii, M. Hosoya, M. Harada, and H. Yoshida, A G protein-coupled receptor responsive to bile acids, J Biol Chem, vol.278, pp.9435-9440, 2003.

J. K. Kemper, Z. Xiao, B. Ponugoti, J. Miao, and S. Fang, FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states, Cell Metab, vol.10, pp.392-404, 2009.

A. A. Khan, E. Chow, R. J. Porte, K. S. Pang, and G. Groothuis, Expression and regulation of the bile acid transporter, OSTalpha-OSTbeta in rat and human intestine and liver, Biopharm Drug Dispos, vol.30, pp.241-258, 2009.

S. Khorasanizadeh and F. Rastinejad, Nuclear-receptor interactions on DNA-response elements, Trends Biochem Sci, vol.26, pp.384-390, 2001.

T. Kietzmann, Metabolic zonation of the liver: The oxygen gradient revisited, Redox Biol, vol.11, pp.622-630, 2017.

D. Kim, G. Gang, D. Ryu, M. Koh, and Y. Kim, Inverse agonist of nuclear receptor ERR? mediates antidiabetic effect through inhibition of hepatic gluconeogenesis, Diabetes, vol.62, pp.3093-3102, 2013.

D. Kim, Z. Xiao, S. Kwon, X. Sun, and D. Ryerson, A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity, EMBO J, vol.34, pp.184-199, 2015.

I. Kim, K. Morimura, Y. Shah, Q. Yang, and J. M. Ward, Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice, Carcinogenesis, vol.28, pp.940-946, 2007.

J. Kim, H. Kim, K. T. Kim, Y. Park, and H. Seong, Orphan nuclear receptor small heterodimer partner represses hepatocyte nuclear factor 3/Foxa transactivation via inhibition of its DNA binding, Mol Endocrinol, vol.18, pp.2880-2894, 2004.

K. Kim, N. Thu, B. Saville, and S. Safe, Domains of estrogen receptor alpha (ERalpha) required for ERalpha/Sp1-mediated activation of GC-rich promoters by estrogens and antiestrogens in breast cancer cells, Mol Endocrinol, vol.17, pp.804-817, 2003.

M. S. Kim, J. Shigenaga, A. Moser, K. Feingold, and C. Grunfeld, Repression of farnesoid X receptor during the acute phase response, J Biol Chem, vol.278, pp.8988-8995, 2003.

T. Kim, M. Hemberg, J. M. Gray, A. M. Costa, and D. M. Bear, Widespread transcription at neuronal activity-regulated enhancers, Nature, vol.465, pp.182-187, 2010.

T. Kim, S. Nason, C. Holleman, M. Pepin, and L. Wilson, Glucagon Receptor Signaling Regulates Energy Metabolism via Hepatic Farnesoid X Receptor and Fibroblast Growth Factor 21, Diabetes, vol.67, pp.1773-1782, 2018.

Y. D. Kim, T. Li, S. Ahn, D. Kim, and J. Lee, Orphan nuclear receptor small heterodimer partner negatively regulates growth hormone-mediated induction of hepatic gluconeogenesis through inhibition of signal transducer and activator of transcription 5 (STAT5) transactivation, J Biol Chem, vol.287, pp.37098-37108, 2012.

Y. D. Kim, K. Park, Y. Lee, Y. Park, and D. Kim, Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP, Diabetes, vol.57, pp.306-314, 2008.

C. D. King, G. R. Rios, M. D. Green, and T. R. Tephly, UDP-glucuronosyltransferases, Curr Drug Metab, vol.1, pp.143-161, 2000.

M. Kininis and W. L. Kraus, A global view of transcriptional regulation by nuclear receptors: gene expression, factor localization, and DNA sequence analysis, Nucl Recept Signal, vol.6, p.5, 2008.

S. Kir, S. A. Beddow, V. T. Samuel, P. Miller, and S. F. Previs, FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis, Science, vol.331, pp.1621-1624, 2011.

S. Kir, Y. Zhang, R. D. Gerard, S. A. Kliewer, and D. J. Mangelsdorf, Nuclear receptors HNF4? and LRH-1 cooperate in regulating Cyp7a1 in vivo, J Biol Chem, vol.287, pp.41334-41341, 2012.

S. A. Kliewer and D. J. Mangelsdorf, Bile Acids as Hormones: The FXR-FGF15/19 Pathway, Dig Dis, vol.33, pp.327-331, 2015.

D. Knutti, A. Kaul, and A. Kralli, A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen, Mol Cell Biol, vol.20, pp.2411-2422, 2000.

D. J. Kojetin and T. P. Burris, Small molecule modulation of nuclear receptor conformational dynamics: implications for function and drug discovery, Mol Pharmacol, vol.83, pp.1-8, 2013.

B. Kong, J. Huang, Y. Zhu, G. Li, and J. Williams, Fibroblast growth factor 15 deficiency impairs liver regeneration in mice, Am J Physiol Gastrointest Liver Physiol, vol.306, pp.893-902, 2014.

B. Kong, L. Wang, J. Chiang, Y. Zhang, and C. D. Klaassen, Mechanism of tissuespecific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice, Hepatology, vol.56, pp.1034-1043, 2012.

S. Koo, L. Flechner, L. Qi, X. Zhang, and R. A. Screaton, The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism, Nature, vol.437, pp.1109-1111, 2005.

A. Kosters, R. Frijters, F. G. Schaap, E. Vink, and T. Plösch, Relation between hepatic expression of ATP-binding cassette transporters G5 and G8 and biliary cholesterol secretion in mice, J Hepatol, vol.38, pp.710-716, 2003.

J. Kovár, M. Lenícek, M. Zimolová, L. Vítek, and M. Jirsa, Regulation of diurnal variation of cholesterol 7alpha-hydroxylase (CYP7A1) activity in healthy subjects, Physiol Res, vol.59, pp.233-238, 2010.

R. Krattinger, A. Boström, H. B. Schiöth, W. E. Thasler, and J. Mwinyi, microRNA-192 suppresses the expression of the farnesoid X receptor, Am J Physiol Gastrointest Liver Physiol, vol.310, pp.1044-51, 2016.

G. A. Kullak-ublick, M. G. Ismair, B. Stieger, L. Landmann, and R. Huber, Organic aniontransporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver, Gastroenterology, vol.120, pp.525-533, 2001.

C. Kunne, A. Acco, S. Hohenester, S. Duijst, and D. R. De-waart, Defective bile salt biosynthesis and hydroxylation in mice with reduced cytochrome P450 activity, Hepatology, vol.57, pp.1509-1517, 2013.

L. Laffel, Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes, Diabetes Metab Res Rev, vol.15, pp.412-426, 1999.

B. A. Laffitte, H. R. Kast, C. M. Nguyen, A. M. Zavacki, and D. D. Moore, Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor, J Biol Chem, vol.275, pp.10638-10647, 2000.

M. Lam, H. Cho, H. P. Lesch, D. Gosselin, and S. Heinz, Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription, Nature, vol.498, pp.511-515, 2013.

B. Lambert, Drugs and receptors, vol.181, 2004.

C. Langhi, E. Pedraz-cuesta, Y. Donate, P. F. Marrero, and D. Haro, Regulation of NMyc downstream regulated gene 2 by bile acids, Biochem Biophys Res Commun, vol.434, pp.102-109, 2013.

K. N. Lazaridis, P. Tietz, T. Wu, S. Kip, and P. A. Dawson, Alternative splicing of the rat sodium/bile acid transporter changes its cellular localization and transport properties, Proc Natl Acad Sci U S A, vol.97, pp.11092-11097, 2000.

L. Lay, J. Kaestner, and K. H. , The Fox genes in the liver: from organogenesis to functional integration, Physiol Rev, vol.90, pp.1-22, 2010.

L. Lay, J. Tuteja, G. White, P. Dhir, R. Ahima et al., CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis, Cell Metab, vol.10, pp.55-62, 2009.

D. C. Lee, Y. K. Kang, W. H. Kim, Y. J. Jang, and D. J. Kim, Functional and clinical evidence for NDRG2 as a candidate suppressor of liver cancer metastasis, Cancer Res, vol.68, pp.4210-4220, 2008.

F. Y. Lee, T. Q. De-aguiar-vallim, H. K. Chong, Y. Zhang, and Y. Liu, Activation of the farnesoid X receptor provides protection against acetaminophen-induced hepatic toxicity, Mol Endocrinol, vol.24, pp.1626-1636, 2010.

H. Lee, Y. Zhang, F. Y. Lee, S. F. Nelson, and F. J. Gonzalez, FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine, J Lipid Res, vol.47, pp.201-214, 2006.

J. Lee, F. Azzaroli, L. Wang, C. J. Soroka, and A. Gigliozzi, Adaptive regulation of bile salt transporters in kidney and liver in obstructive cholestasis in the rat, Gastroenterology, vol.121, pp.1473-1484, 2001.

J. Lee, W. Seo, K. Song, C. D. Kim, and Y. D. , AMPK-dependent repression of hepatic gluconeogenesis via disruption of CREB.CRTC2 complex by orphan nuclear receptor small heterodimer partner, J Biol Chem, vol.285, pp.32182-32191, 2010.

J. Lee, S. Seok, P. Yu, K. Kim, and Z. Smith, Genomic analysis of hepatic farnesoid X receptor binding sites reveals altered binding in obesity and direct gene repression by farnesoid X receptor in mice, Hepatology, vol.56, pp.108-117, 2012.

Y. Lee, D. Kim, Y. D. Kim, K. C. Park, and M. Shong, Orphan nuclear receptor SHP interacts with and represses hepatocyte nuclear factor-6 (HNF-6) transactivation, Biochem J, vol.413, pp.559-569, 2008.

Y. K. Lee, H. Dell, D. H. Dowhan, M. Hadzopoulou-cladaras, and D. D. Moore, The orphan nuclear receptor SHP inhibits hepatocyte nuclear factor 4 and retinoid X receptor transactivation: two mechanisms for repression, Mol Cell Biol, vol.20, pp.187-195, 2000.

L. M. Leesnitzer, D. J. Parks, R. K. Bledsoe, J. E. Cobb, and J. L. Collins, Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662, Biochemistry, vol.41, pp.6640-6650, 2002.

B. Lefebvre, Y. Benomar, A. Guédin, A. Langlois, and N. Hennuyer, Proteasomal degradation of retinoid X receptor alpha reprograms transcriptional activity of PPARgamma in obese mice and humans, J Clin Invest, vol.120, pp.1454-1468, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00472906

P. Lefebvre, B. Cariou, F. Lien, F. Kuipers, and B. Staels, Role of bile acids and bile acid receptors in metabolic regulation, Physiol Rev, vol.89, pp.147-191, 2009.

B. Lenhard, A. Sandelin, and P. Carninci, Metazoan promoters: emerging characteristics and insights into transcriptional regulation, Nat Rev Genet, vol.13, pp.233-245, 2012.

G. Li, B. Kong, Y. Zhu, L. Zhan, and J. A. Williams, Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice, Toxicol Appl Pharmacol, vol.272, pp.299-305, 2013.

G. Li, A. M. Thomas, S. N. Hart, X. Zhong, and D. Wu, Farnesoid X receptor activation mediates head-to-tail chromatin looping in the Nr0b2 gene encoding small heterodimer partner, Mol Endocrinol, vol.24, pp.1404-1412, 2010.

G. Li, Y. Zhu, O. Tawfik, B. Kong, and J. A. Williams, Mechanisms of STAT3 activation in the liver of FXR knockout mice, Am J Physiol Gastrointest Liver Physiol, vol.305, pp.829-866, 2013.

J. Li, A. Wilson, R. Kuruba, Q. Zhang, and X. Gao, FXR-mediated regulation of eNOS expression in vascular endothelial cells, Cardiovasc Res, vol.77, pp.169-177, 2008.

S. Li and J. D. Lin, Transcriptional control of circadian metabolic rhythms in the liver, Diabetes Obes Metab, vol.17, pp.33-38, 2015.

T. Li and J. Chiang, Bile acid signaling in metabolic disease and drug therapy, Pharmacol Rev, vol.66, pp.948-983, 2014.

T. Li, X. Kong, E. Owsley, E. Ellis, and S. Strom, Insulin regulation of cholesterol 7alpha-hydroxylase expression in human hepatocytes: roles of forkhead box O1 and sterol regulatory element-binding protein 1c, J Biol Chem, vol.281, pp.28745-28754, 2006.

T. Li, M. Matozel, S. Boehme, B. Kong, and L. Nilsson, Overexpression of cholesterol 7?-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis, Hepatology, vol.53, pp.996-1006, 2011.

W. Li, D. Notani, Q. Ma, B. Tanasa, and E. Nunez, Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation, Nature, vol.498, pp.516-520, 2013.

X. Li, R. Liu, L. Yu, Z. Yuan, and R. Sun, Alpha-naphthylisothiocyanate impairs bile acid homeostasis through AMPK-FXR pathways in rat primary hepatocytes, Toxicology, vol.370, pp.106-115, 2016.

Y. Li, K. E. Swales, G. J. Thomas, T. D. Warner, and D. Bishop-bailey, Farnesoid x receptor ligands inhibit vascular smooth muscle cell inflammation and migration, Arterioscler Thromb Vasc Biol, vol.27, pp.2606-2611, 2007.

Z. Li, J. K. Kruijt, R. J. Van-der-sluis, V. Berkel, T. Hoekstra et al., Nuclear receptor atlas of female mouse liver parenchymal, endothelial, and Kupffer cells, Physiol Genomics, vol.45, pp.268-275, 2013.

F. Lien, A. Berthier, E. Bouchaert, C. Gheeraert, and J. Alexandre, Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk, J Clin Invest, vol.124, pp.1037-1051, 2014.

B. C. Lin, M. Wang, C. Blackmore, and L. R. Desnoyers, Liver-specific activities of FGF19 require Klotho beta, J Biol Chem, vol.282, pp.27277-27284, 2007.

H. V. Lin and D. Accili, Hormonal regulation of hepatic glucose production in health and disease, Cell Metab, vol.14, pp.9-19, 2011.

T. H. Little, Y. Zhang, C. K. Matulis, J. Weck, and Z. Zhang, Sequence-specific deoxyribonucleic acid (DNA) recognition by steroidogenic factor 1: a helix at the carboxy terminus of the DNA binding domain is necessary for complex stability, Mol Endocrinol, vol.20, pp.831-843, 2006.

H. Liu, Y. Hu, S. W. French, F. J. Gonzalez, and Y. Y. Wan, Forced expression of fibroblast growth factor 21 reverses the sustained impairment of liver regeneration in hPPAR?(PAC) mice due to dysregulated bile acid synthesis, Oncotarget, vol.6, pp.9686-9700, 2015.

H. Liu, T. Lee, and J. Liao, GW4064 attenuates lipopolysaccharide-induced hepatic inflammation and apoptosis through inhibition of the Toll-like receptor 4-mediated p38 mitogen-activated protein kinase signaling pathway in mice, Int J Mol Med, vol.41, pp.1455-1462, 2018.

N. Liu, Z. Meng, G. Lou, W. Zhou, and X. Wang, Hepatocarcinogenesis in FXR-/-mice mimics human HCC progression that operates through HNF1? regulation of FXR expression, Mol Endocrinol, vol.26, pp.775-785, 2012.

X. Liu, R. Xue, J. L. Zhang, X. Wu, and J. , Activation of farnesoid X receptor (FXR) protects against fructose-induced liver steatosis via inflammatory inhibition and ADRP reduction, Biochem Biophys Res Commun, vol.450, pp.117-123, 2014.

Y. Liu, J. Binz, M. J. Numerick, S. Dennis, and G. Luo, Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra-and extrahepatic cholestasis, J Clin Invest, vol.112, pp.1678-1687, 2003.

Y. Liu, A. Song, X. Yang, Y. Zhen, and W. Chen, Farnesoid X receptor agonist decreases lipid accumulation by promoting hepatic fatty acid oxidation in db/db mice, Int J Mol Med, vol.42, pp.1723-1731, 2018.

D. M. Lonard, O. Malley, and B. W. , Nuclear receptor coregulators: modulators of pathology and therapeutic targets, Nat Rev Endocrinol, vol.8, pp.598-604, 2012.

T. T. Lu, M. Makishima, J. J. Repa, K. Schoonjans, and T. A. Kerr, Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors, Mol Cell, vol.6, pp.507-515, 2000.

Y. Lu, J. Heydel, X. Li, S. Bratton, and T. Lindblom, Lithocholic acid decreases expression of UGT2B7 in Caco-2 cells: a potential role for a negative farnesoid X receptor response element, Drug Metab Dispos, vol.33, pp.937-946, 2005.

T. Lundåsen, C. Gälman, B. Angelin, and M. Rudling, Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man, J Intern Med, vol.260, pp.530-536, 2006.

F. Lívero, A. M. Stolf, A. A. Dreifuss, A. L. Bastos-pereira, and R. Chicorski, The FXR agonist 6ECDCA reduces hepatic steatosis and oxidative stress induced by ethanol and lowprotein diet in mice, Chem Biol Interact, vol.217, pp.19-27, 2014.

K. Ma, P. K. Saha, L. Chan, and D. D. Moore, Farnesoid X receptor is essential for normal glucose homeostasis, J Clin Invest, vol.116, pp.1102-1109, 2006.

Y. Ma, Y. Huang, L. Yan, M. Gao, and D. Liu, Synthetic FXR agonist GW4064 prevents dietinduced hepatic steatosis and insulin resistance, Pharm Res, vol.30, pp.1447-1457, 2013.

J. M. Maglich, J. A. Caravella, M. H. Lambert, T. M. Willson, and J. T. Moore, The first completed genome sequence from a teleost fish (Fugu rubripes) adds significant diversity to the nuclear receptor superfamily, Nucleic Acids Res, vol.31, pp.4051-4058, 2003.

M. Makishima, T. T. Lu, W. Xie, G. K. Whitfield, and H. Domoto, Vitamin D receptor as an intestinal bile acid sensor, Science, vol.296, pp.1313-1316, 2002.

M. Makishima, A. Y. Okamoto, J. J. Repa, H. Tu, and R. M. Learned, Identification of a nuclear receptor for bile acids, Science, vol.284, pp.1362-1365, 1999.

P. R. Maloney, D. J. Parks, C. D. Haffner, A. M. Fivush, and G. Chandra, Identification of a chemical tool for the orphan nuclear receptor FXR, J Med Chem, vol.43, pp.2971-2974, 2000.

H. U. Marschall, U. Broomé, C. Einarsson, G. Alvelius, and H. G. Thomas, Isoursodeoxycholic acid: metabolism and therapeutic effects in primary biliary cirrhosis, J Lipid Res, vol.42, pp.735-742, 2001.

E. Martinot, L. Sèdes, M. Baptissart, J. Lobaccaro, and F. Caira, Bile acids and their receptors, Mol Aspects Med, vol.56, pp.2-9, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01925171

V. Massafra, A. Milona, H. R. Vos, B. Burgering, and S. Van-mil, Quantitative liver proteomics identifies FGF19 targets that couple metabolism and proliferation, PLoS One, vol.12, p.171185, 2017.

V. Massafra, A. Milona, H. R. Vos, R. Ramos, and J. Gerrits, Farnesoid X Receptor Activation Promotes Hepatic Amino Acid Catabolism and Ammonium Clearance in Mice, Gastroenterology, vol.152, pp.1462-1476, 2017.

V. Massafra, R. Pellicciari, A. Gioiello, and S. Van-mil, Progress and challenges of selective Farnesoid X Receptor modulation, Pharmacol Ther, 2018.

V. Massafra and S. Van-mil, Farnesoid X receptor: A "homeostat" for hepatic nutrient metabolism, Biochim Biophys Acta, vol.1864, pp.45-59, 2018.

M. Matic, A. Mahns, M. Tsoli, A. Corradin, and P. Polly, Pregnane X receptor: promiscuous regulator of detoxification pathways, Int J Biochem Cell Biol, vol.39, pp.478-483, 2007.

D. Mauvoisin, F. Atger, L. Dayon, N. Galindo, A. Wang et al., Circadian and Feeding Rhythms Orchestrate the Diurnal Liver Acetylome, Cell Rep, vol.20, pp.1729-1743, 2017.

B. Mayr and M. Montminy, Transcriptional regulation by the phosphorylation-dependent factor CREB, Nat Rev Mol Cell Biol, vol.2, pp.599-609, 2001.

C. Mazuy, Etude de l'interaction entre le récepteur nucléaire FXR et le facteur de transcription FOXA2 dans le foie, 2015.

C. Mazuy, A. Helleboid, B. Staels, and P. Lefebvre, Nuclear bile acid signaling through the farnesoid X receptor, Cell Mol Life Sci, 2014.

M. V. Mcewan, M. R. Eccles, and J. A. Horsfield, Cohesin is required for activation of MYC by estradiol, PLoS One, vol.7, p.49160, 2012.

J. D. Mcgivan and C. I. Bungard, The transport of glutamine into mammalian cells, Front Biosci, vol.12, pp.874-882, 2007.

P. J. Meier, U. Eckhardt, A. Schroeder, B. Hagenbuch, and B. Stieger, Substrate specificity of sinusoidal bile acid and organic anion uptake systems in rat and human liver, Hepatology, vol.26, pp.1667-1677, 1997.

P. J. Meier and B. Stieger, Bile salt transporters, Annu Rev Physiol, vol.64, pp.635-661, 2002.

S. H. Meijsing, M. A. Pufall, A. Y. So, D. L. Bates, and L. Chen, DNA binding site sequence directs glucocorticoid receptor structure and activity, Science, vol.324, pp.407-410, 2009.

K. J. Menzies, H. Zhang, E. Katsyuba, and J. Auwerx, Protein acetylation in metabolismmetabolites and cofactors, Nat Rev Endocrinol, vol.12, pp.43-60, 2016.

G. Merlen, J. Ursic-bedoya, V. Jourdainne, N. Kahale, and M. Glenisson, Bile acids and their receptors during liver regeneration: "Dangerous protectors, Mol Aspects Med, vol.56, pp.25-33, 2017.

L. Mi, S. Devarakonda, J. M. Harp, Q. Han, and R. Pellicciari, Structural basis for bile acid binding and activation of the nuclear receptor FXR, Mol Cell, vol.11, pp.1093-1100, 2003.

O. Mikhaylichenko, V. Bondarenko, D. Harnett, I. E. Schor, and M. Males, The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription, Genes Dev, vol.32, pp.42-57, 2018.

S. Mili?, D. Luli?, and D. ?timac, Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations, World J Gastroenterol, vol.20, pp.9330-9337, 2014.

C. J. Millard, P. J. Watson, L. Fairall, and J. Schwabe, An evolving understanding of nuclear receptor coregulator proteins, J Mol Endocrinol, vol.51, pp.23-36, 2013.

L. A. Mirny, Nucleosome-mediated cooperativity between transcription factors, Proc Natl Acad Sci U S A, vol.107, pp.22534-22539, 2010.

S. Mita, H. Suzuki, H. Akita, H. Hayashi, and R. Onuki, Inhibition of bile acid transport across Na+/taurocholate cotransporting polypeptide (SLC10A1) and bile salt export pump (ABCB 11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs, Drug Metab Dispos, vol.34, pp.1575-1581, 2006.

G. Mithieux, A novel function of intestinal gluconeogenesis: central signaling in glucose and energy homeostasis, Nutrition, vol.25, pp.881-884, 2009.

G. Mithieux, Metabolic effects of portal vein sensing, Diabetes Obes Metab, vol.16, issue.1, pp.56-60, 2014.

G. Mithieux, I. Bady, A. Gautier, M. Croset, and F. Rajas, Induction of control genes in intestinal gluconeogenesis is sequential during fasting and maximal in diabetes, Am J Physiol Endocrinol Metab, vol.286, pp.370-375, 2004.

G. Mithieux and A. Gautier-stein, Intestinal glucose metabolism revisited, Diabetes Res Clin Pract, vol.105, pp.295-301, 2014.

G. Mithieux, P. Misery, C. Magnan, B. Pillot, and A. Gautier-stein, Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein, Cell Metab, vol.2, pp.321-329, 2005.

I. B. Mitre-aguilar, A. J. Cabrera-quintero, and A. Zentella-dehesa, Genomic and nongenomic effects of glucocorticoids: implications for breast cancer, Int J Clin Exp Pathol, vol.8, pp.1-10, 2015.

M. Miyata, Y. Sakaida, H. Matsuzawa, K. Yoshinari, and Y. Yamazoe, Fibroblast growth factor 19 treatment ameliorates disruption of hepatic lipid metabolism in farnesoid X receptor (Fxr)-null mice, Biol Pharm Bull, vol.34, pp.1885-1889, 2011.

S. Modica, E. Bellafante, and A. Moschetta, Master regulation of bile acid and xenobiotic metabolism via the FXR, PXR and CAR trio, Front Biosci (Landmark Ed), vol.14, pp.4719-4745, 2009.

S. Modica, M. Cariello, A. Morgano, I. Gross, and M. C. Vegliante, Transcriptional regulation of the intestinal nuclear bile acid farnesoid X receptor (FXR) by the caudal-related homeobox 2 (CDX2), J Biol Chem, vol.289, pp.28421-28432, 2014.

S. Modica, R. M. Gadaleta, and A. Moschetta, Deciphering the nuclear bile acid receptor FXR paradigm, Nucl Recept Signal, vol.8, p.5, 2010.

A. Molinaro, A. Wahlström, and H. Marschall, Role of Bile Acids in Metabolic Control, Trends Endocrinol Metab, vol.29, pp.31-41, 2018.

M. C. Moore, A. D. Cherrington, and D. H. Wasserman, Regulation of hepatic and peripheral glucose disposal, Best Pract Res Clin Endocrinol Metab, vol.17, pp.343-364, 2003.

A. Moschetta, A. L. Bookout, and D. J. Mangelsdorf, Prevention of cholesterol gallstone disease by FXR agonists in a mouse model, Nat Med, vol.10, pp.1352-1358, 2004.

T. D. Müller, B. Finan, C. Clemmensen, R. D. Dimarchi, and M. H. Tschöp, The New Biology and Pharmacology of Glucagon, Physiol Rev, vol.97, pp.721-766, 2017.

C. A. Nr-nomenclature-committee, A unified nomenclature system for the nuclear receptor superfamily, Cell, vol.97, pp.161-163, 1999.

M. Nagahashi, K. Takabe, R. Liu, K. Peng, and X. Wang, Conjugated bile acid-activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression, Hepatology, vol.61, pp.1216-1226, 2015.

S. Nagpal, S. Na, and R. Rathnachalam, Noncalcemic actions of vitamin D receptor ligands, Endocr Rev, vol.26, pp.662-687, 2005.

H. Nakai, Molecular pathology of liver diseases, pp.343-371, 2011.

S. Naqvi, K. J. Martin, and J. Arthur, CREB phosphorylation at Ser133 regulates transcription via distinct mechanisms downstream of cAMP and MAPK signalling, Biochem J, vol.458, pp.469-479, 2014.

W. E. Naugler, Bile acid flux is necessary for normal liver regeneration, PLoS One, vol.9, p.97426, 2014.

E. Neimark, F. Chen, X. Li, and B. L. Shneider, Bile acid-induced negative feedback regulation of the human ileal bile acid transporter, Hepatology, vol.40, pp.149-156, 2004.

S. Neph, J. Vierstra, A. B. Stergachis, A. P. Reynolds, and E. Haugen, An expansive human regulatory lexicon encoded in transcription factor footprints, Nature, vol.489, pp.83-90, 2012.

. Neuschwander-tetri and . Ba, Targeting the FXR nuclear receptor to treat liver disease, Gastroenterology, vol.148, pp.704-706, 2015.

P. Nguyen, V. Leray, M. Diez, S. Serisier, L. Bloc&apos;h et al., Liver lipid metabolism, J Anim Physiol Anim Nutr (Berl), vol.92, pp.272-283, 2008.

H. Nie, C. Song, D. Wang, S. Cui, and T. Ren, MicroRNA-194 inhibition improves dietary-induced non-alcoholic fatty liver disease in mice through targeting on FXR, Biochim Biophys Acta, vol.1863, pp.3087-3094, 2017.

R. Nielsen, T. A. Pedersen, D. Hagenbeek, P. Moulos, and R. Siersbaek, Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis, Genes Dev, vol.22, pp.2953-2967, 2008.

J. Noe, G. A. Kullak-ublick, W. Jochum, B. Stieger, and R. Kerb, Impaired expression and function of the bile salt export pump due to three novel ABCB11 mutations in intrahepatic cholestasis, J Hepatol, vol.43, pp.536-543, 2005.

R. T. Nolte, G. B. Wisely, S. Westin, J. E. Cobb, and M. H. Lambert, Ligand binding and coactivator assembly of the peroxisome proliferator-activated receptor-gamma, Nature, vol.395, pp.137-143, 1998.

F. Q. Nuttall, A. Ngo, and M. C. Gannon, Regulation of hepatic glucose production and the role of gluconeogenesis in humans: is the rate of gluconeogenesis constant?, Diabetes Metab Res Rev, vol.24, pp.438-458, 2008.

R. H. Oakley and J. A. Cidlowski, The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease, J Allergy Clin Immunol, vol.132, pp.1033-1044, 2013.

A. Odermatt, D. Cunha, T. Penno, C. A. Chandsawangbhuwana, C. Reichert et al., Hepatic reduction of the secondary bile acid 7-oxolithocholic acid is mediated by 11?-hydroxysteroid dehydrogenase 1, Biochem J, vol.436, pp.621-629, 2011.

M. Ogura, S. Nishida, M. Ishizawa, K. Sakurai, and M. Shimizu, Vitamin D3 modulates the expression of bile acid regulatory genes and represses inflammation in bile duct-ligated mice, J Pharmacol Exp Ther, vol.328, pp.564-570, 2009.

K. Oh, H. Han, M. Kim, and S. Koo, Transcriptional regulators of hepatic gluconeogenesis, Arch Pharm Res, vol.36, pp.189-200, 2013.

K. Oh, H. Han, M. Kim, and S. Koo, CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis, BMB Rep, vol.46, pp.567-574, 2013.

P. Ordóñez-morán, M. J. Larriba, H. G. Pálmer, R. A. Valero, and A. Barbáchano, RhoA-ROCK and p38MAPK-MSK1 mediate vitamin D effects on gene expression, phenotype, and Wnt pathway in colon cancer cells, J Cell Biol, vol.183, pp.697-710, 2008.

P. Ordóñez-morán and A. Muñoz, Nuclear receptors: genomic and non-genomic effects converge, Cell Cycle, vol.8, pp.1675-1680, 2009.

K. Otte, H. Kranz, I. Kober, P. Thompson, and M. Hoefer, Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol, Mol Cell Biol, vol.23, pp.864-872, 2003.

O. E. Owen, M. A. Mozzoli, G. Boden, M. S. Patel, and G. Reichard, Substrate, hormone, and temperature responses in males and females to a common breakfast, Metabolism, vol.29, pp.511-523, 1980.

S. Padrissa-altés, M. Bachofner, R. L. Bogorad, L. Pohlmeier, and T. Rossolini, Control of hepatocyte proliferation and survival by Fgf receptors is essential for liver regeneration in mice, Gut, vol.64, pp.1444-1453, 2015.

Y. Pan, C. Tsai, B. Ma, and R. Nussinov, Mechanisms of transcription factor selectivity, Trends Genet, vol.26, pp.75-83, 2010.

M. J. Park, H. J. Kong, H. Y. Kim, H. H. Kim, and J. H. Kim, Transcriptional repression of the gluconeogenic gene PEPCK by the orphan nuclear receptor SHP through inhibitory interaction with C/EBPalpha, Biochem J, vol.402, pp.567-574, 2007.

D. J. Parks, S. G. Blanchard, R. K. Bledsoe, G. Chandra, and T. G. Consler, Bile acids: natural ligands for an orphan nuclear receptor, Science, vol.284, pp.1365-1368, 1999.

S. R. Patel and D. F. Skafar, Modulation of nuclear receptor activity by the F domain, Mol Cell Endocrinol, vol.418, pp.298-305, 2015.

P. Pathak, H. Liu, S. Boehme, C. Xie, and K. W. Krausz, Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism, J Biol Chem, vol.292, pp.11055-11069, 2017.

P. Pathak, C. Xie, R. G. Nichols, J. M. Ferrell, and S. Boehme, Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism, Hepatology, 2018.

M. Pawlak, P. Lefebvre, and B. Staels, General molecular biology and architecture of nuclear receptors, Curr Top Med Chem, vol.12, pp.486-504, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00662279

D. E. Peavy, The endocrine pancreas, pp.623-633, 2003.

B. A. Pedersen, W. Wang, J. F. Taylor, O. S. Khattab, and Y. Chen, Hepatic proteomic analysis revealed altered metabolic pathways in insulin resistant Akt1(+/-)/Akt2(-/-) mice, Metabolism, vol.64, pp.1694-1703, 2015.

D. J. Peet, S. D. Turley, W. Ma, B. A. Janowski, and J. M. Lobaccaro, Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha, Cell, vol.93, pp.693-704, 1998.

R. Pellicciari, S. Fiorucci, E. Camaioni, C. Clerici, and G. Costantino, ) 6alpha-ethylchenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity, J Med Chem, vol.45, pp.3569-3572, 2002.

A. Pellicoro, F. Van-den-heuvel, M. Geuken, H. Moshage, and P. Jansen, Human and rat bile acid-CoA:amino acid N-acyltransferase are liver-specific peroxisomal enzymes: implications for intracellular bile salt transport, Hepatology, vol.45, pp.340-348, 2007.

A. Penhoat, L. Fayard, A. Stefanutti, G. Mithieux, and F. Rajas, Intestinal gluconeogenesis is crucial to maintain a physiological fasting glycemia in the absence of hepatic glucose production in mice, Metabolism, vol.63, pp.104-111, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01859366

M. Perez and O. Briz, Bile-acid-induced cell injury and protection, World J Gastroenterol, vol.15, pp.1677-1689, 2009.

V. Perissi, K. Jepsen, C. K. Glass, and M. G. Rosenfeld, Deconstructing repression: evolving models of co-repressor action, Nat Rev Genet, vol.11, pp.109-123, 2010.

V. Perissi and M. G. Rosenfeld, Controlling nuclear receptors: the circular logic of cofactor cycles, Nat Rev Mol Cell Biol, vol.6, pp.542-554, 2005.

M. Perreault, A. Bia?ek, J. Trottier, M. Verreault, and P. Caron, Role of glucuronidation for hepatic detoxification and urinary elimination of toxic bile acids during biliary obstruction, PLoS One, vol.8, p.80994, 2013.

M. Perreault, E. Wunsch, A. Bia?ek, J. Trottier, and M. Verreault, Urinary Elimination of Bile Acid Glucuronides under Severe Cholestatic Situations: Contribution of Hepatic and Renal Glucuronidation Reactions, Can J Gastroenterol Hepatol, p.8096314, 2018.

M. Peterlik, Role of bile acid secretion in human colorectal cancer, Wien Med Wochenschr, vol.158, pp.539-541, 2008.

S. J. Pilkis, T. H. Claus, I. J. Kurland, and A. J. Lange, 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a metabolic signaling enzyme, Annu Rev Biochem, vol.64, pp.799-835, 1995.

P. C. Pircher, J. L. Kitto, M. L. Petrowski, R. K. Tangirala, and E. D. Bischoff, Farnesoid X receptor regulates bile acid-amino acid conjugation, J Biol Chem, vol.278, pp.27703-27711, 2003.

A. Pocai, P. E. Carrington, J. R. Adams, M. Wright, and G. Eiermann, Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice, Diabetes, vol.58, pp.2258-2266, 2009.

I. R. Popescu, A. Helleboid-chapman, A. Lucas, B. Vandewalle, and J. Dumont, The nuclear receptor FXR is expressed in pancreatic beta-cells and protects human islets from lipotoxicity, FEBS Lett, vol.584, pp.2845-2851, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00485665

C. Postic, R. Dentin, and J. Girard, Role of the liver in the control of carbohydrate and lipid homeostasis, Diabetes Metab, vol.30, pp.398-408, 2004.

S. Pott and J. D. Lieb, What are super-enhancers?, Nat Genet, vol.47, pp.8-12, 2015.

M. J. Potthoff, J. Boney-montoya, M. Choi, T. He, and N. E. Sunny, FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1? pathway, Cell Metab, vol.13, pp.729-738, 2011.

J. Prawitt, M. Abdelkarim, J. Stroeve, I. Popescu, and H. Duez, Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity, Diabetes, vol.60, pp.1861-1871, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00605738

X. Prieur, H. Coste, and J. C. Rodriguez, The human apolipoprotein AV gene is regulated by peroxisome proliferator-activated receptor-alpha and contains a novel farnesoid X-activated receptor response element, J Biol Chem, vol.278, pp.25468-25480, 2003.

P. Puigserver, J. Rhee, J. Donovan, C. J. Walkey, and J. C. Yoon, Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction, Nature, vol.423, pp.550-555, 2003.

P. Puigserver and B. M. Spiegelman, Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator, Endocr Rev, vol.24, pp.78-90, 2003.

A. Purushotham, Q. Xu, J. Lu, J. F. Foley, and X. Yan, Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1?/farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice, Mol Cell Biol, vol.32, pp.1226-1236, 2012.

B. K. Putcha and E. J. Fernandez, Direct interdomain interactions can mediate allosterism in the thyroid receptor, J Biol Chem, vol.284, pp.22517-22524, 2009.

. Rappaport-am, The structural and functional unit in the human liver (liver acinus), 1958.

, Anat Rec, vol.130, pp.673-689

S. Raghuram, K. R. Stayrook, P. Huang, P. M. Rogers, and A. K. Nosie, Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta, Nat Struct Mol Biol, vol.14, pp.1207-1213, 2007.

F. Rajas, N. Bruni, S. Montano, C. Zitoun, and G. Mithieux, The glucose-6 phosphatase gene is expressed in human and rat small intestine: regulation of expression in fasted and diabetic rats, Gastroenterology, vol.117, pp.132-139, 1999.

F. Rajas, M. Croset, C. Zitoun, S. Montano, and G. Mithieux, Induction of PEPCK gene expression in insulinopenia in rat small intestine, Diabetes, vol.49, pp.1165-1168, 2000.

F. Rastinejad, Retinoid X receptor and its partners in the nuclear receptor family, Curr Opin Struct Biol, vol.11, pp.33-38, 2001.

F. Rastinejad, P. Huang, V. Chandra, and S. Khorasanizadeh, Understanding nuclear receptor form and function using structural biology, J Mol Endocrinol, vol.51, pp.1-21, 2013.

F. Rastinejad, V. Ollendorff, and I. Polikarpov, Nuclear receptor full-length architectures: confronting myth and illusion with high resolution, Trends Biochem Sci, vol.40, pp.16-24, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837582

F. Rastinejad, T. Perlmann, R. M. Evans, and P. B. Sigler, Structural determinants of nuclear receptor assembly on DNA direct repeats, Nature, vol.375, pp.203-211, 1995.

M. Razandi, A. Pedram, G. L. Greene, and E. R. Levin, Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERalpha and ERbeta expressed in Chinese hamster ovary cells, Mol Endocrinol, vol.13, pp.307-319, 1999.

J. P. Renaud, N. Rochel, M. Ruff, V. Vivat, and P. Chambon, Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid, Nature, vol.378, pp.681-689, 1995.

B. Renga, D. &apos;amore, C. Cipriani, S. Mencarelli, A. Carino et al., FXR mediates a chromatin looping in the GR promoter thus promoting the resolution of colitis in rodents, Pharmacol Res, vol.77, pp.1-10, 2013.

B. Renga, A. Mencarelli, S. Cipriani, D. &apos;amore, C. Zampella et al., The nuclear receptor FXR regulates hepatic transport and metabolism of glutamine and glutamate, Biochim Biophys Acta, vol.1812, pp.1522-1531, 2011.

B. Renga, A. Mencarelli, D. &apos;amore, C. Cipriani, S. Baldelli et al., Glucocorticoid receptor mediates the gluconeogenic activity of the farnesoid X receptor in the fasting condition, FASEB J, vol.26, pp.3021-3031, 2012.

V. I. Reshetnyak, Physiological and molecular biochemical mechanisms of bile formation, World J Gastroenterol, vol.19, pp.7341-7360, 2013.

J. M. Ridlon, D. Kang, and P. B. Hylemon, Isolation and characterization of a bile acid inducible 7alpha-dehydroxylating operon in Clostridium hylemonae TN271, Anaerobe, vol.16, pp.137-146, 2010.

J. M. Ridlon, D. J. Kang, P. B. Hylemon, and J. S. Bajaj, Bile acids and the gut microbiome, Curr Opin Gastroenterol, vol.30, pp.332-338, 2014.

A. K. Rines, K. Sharabi, C. Tavares, and P. Puigserver, Targeting hepatic glucose metabolism in the treatment of type 2 diabetes, Nat Rev Drug Discov, vol.15, pp.786-804, 2016.

C. M. Rivera and B. Ren, Mapping human epigenomes, Cell, vol.155, pp.39-55, 2013.

M. S. Robles, S. J. Humphrey, and M. Mann, Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology, Cell Metab, vol.25, pp.118-127, 2017.

N. Rochel, F. Ciesielski, J. Godet, E. Moman, and M. Roessle, Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings, Nat Struct Mol Biol, vol.18, pp.564-570, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00667005

D. S. Roseman, T. Khan, F. Rajas, L. S. Jun, and K. H. Asrani, G6PC mRNA Therapy Positively Regulates Fasting Blood Glucose and Decreases Liver Abnormalities in a Mouse Model of Glycogen Storage Disease 1a, Mol Ther, vol.26, pp.814-821, 2018.

M. G. Rosenfeld, V. V. Lunyak, and C. K. Glass, Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response, Genes Dev, vol.20, pp.1405-1428, 2006.

C. S. Ross-innes, G. D. Brown, and J. S. Carroll, A co-ordinated interaction between CTCF and ER in breast cancer cells, BMC Genomics, vol.12, p.593, 2011.

D. Rost, J. König, G. Weiss, E. Klar, and W. Stremmel, Expression and localization of the multidrug resistance proteins MRP2 and MRP3 in human gallbladder epithelia, Gastroenterology, vol.121, pp.1203-1208, 2001.

S. B. Rothbart and B. D. Strahl, Interpreting the language of histone and DNA modifications, Biochim Biophys Acta, vol.1839, pp.627-643, 2014.

H. Ruan, J. P. Singh, M. Li, J. Wu, and X. Yang, Cracking the O-GlcNAc code in metabolism, Trends Endocrinol Metab, vol.24, pp.301-309, 2013.

L. Rui, Energy metabolism in the liver, Compr Physiol, vol.4, pp.177-197, 2014.

M. Ruse, M. L. Privalsky, and F. M. Sladek, Competitive cofactor recruitment by orphan receptor hepatocyte nuclear factor 4alpha1: modulation by the F domain, Mol Cell Biol, vol.22, pp.1626-1638, 2002.

D. W. Russell, The enzymes, regulation, and genetics of bile acid synthesis, Annu Rev Biochem, vol.72, pp.137-174, 2003.

D. W. Russell, Fifty years of advances in bile acid synthesis and metabolism, J Lipid Res, vol.50, pp.120-125, 2009.

E. P. Sablin, R. D. Blind, I. N. Krylova, J. G. Ingraham, and F. Cai, Structure of SF-1 bound by different phospholipids: evidence for regulatory ligands, Mol Endocrinol, vol.23, pp.25-34, 2009.

E. P. Sablin, R. D. Blind, R. Uthayaruban, H. Chiu, and A. M. Deacon, Structure of Liver Receptor Homolog-1 (NR5A2) with PIP3 hormone bound in the ligand binding pocket, J Struct Biol, vol.192, pp.342-348, 2015.

E. P. Sablin, I. N. Krylova, R. J. Fletterick, and H. A. Ingraham, Structural basis for ligandindependent activation of the orphan nuclear receptor LRH-1, Mol Cell, vol.11, pp.1575-1585, 2003.

M. A. Sacta, Y. Chinenov, and I. Rogatsky, Glucocorticoid Signaling: An Update from a Genomic Perspective, Annu Rev Physiol, vol.78, pp.155-180, 2016.

M. P. Sajan, M. C. Lee, F. Foufelle, J. Sajan, and C. C. , Coordinated regulation of hepatic FoxO1, PGC-1? and SREBP-1c facilitates insulin action and resistance, Cell Signal, vol.43, pp.62-70, 2018.

F. Sanders and J. L. Griffin, De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose, Biol Rev Camb Philos Soc, vol.91, pp.452-468, 2016.

G. M. Santos, L. Fairall, and J. Schwabe, Negative regulation by nuclear receptors: a plethora of mechanisms, Trends Endocrinol Metab, vol.22, pp.87-93, 2011.

S. Sanyal, A. Båvner, A. Haroniti, L. Nilsson, and T. Lundåsen, Involvement of corepressor complex subunit GPS2 in transcriptional pathways governing human bile acid biosynthesis, Proc Natl Acad Sci U S A, vol.104, pp.15665-15670, 2007.

R. S. Savkur, K. S. Bramlett, L. F. Michael, and T. P. Burris, Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor, Biochem Biophys Res Commun, vol.329, pp.391-396, 2005.

F. G. Schaap, N. A. Van-der-gaag, D. J. Gouma, and P. Jansen, High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis, Hepatology, vol.49, pp.1228-1235, 2009.

G. L. Scheffer, M. Kool, M. De-haas, J. De-vree, and A. Pijnenborg, Tissue distribution and induction of human multidrug resistant protein 3, Lab Invest, vol.82, pp.193-201, 2002.

J. Schmitt, B. Kong, B. Stieger, O. Tschopp, and S. M. Schultze, Protective effects of farnesoid X receptor (FXR) on hepatic lipid accumulation are mediated by hepatic FXR and independent of intestinal FGF15 signal, Liver Int, vol.35, pp.1133-1144, 2015.

J. A. Schwartz, L. Zhong, S. Deighton-collins, C. Zhao, and D. F. Skafar, Mutations targeted to a predicted helix in the extreme carboxyl-terminal region of the human estrogen receptoralpha alter its response to estradiol and 4-hydroxytamoxifen, J Biol Chem, vol.277, pp.13202-13209, 2002.

G. Sebastiani, E. Ceccarelli, M. G. Castagna, and F. Dotta, G-protein-coupled receptors (GPCRs) in the treatment of diabetes: Current view and future perspectives, Best Pract Res Clin Endocrinol Metab, vol.32, pp.201-213, 2018.

A. Sendensky and J. F. Dufour, Liver physiology. In: . Clinical gastroenterology: chronic liver failure, pp.33-45, 2011.

S. Seok, T. Fu, S. Choi, Y. Li, and R. Zhu, Transcriptional regulation of autophagy by an FXR-CREB axis, Nature, vol.516, pp.108-111, 2014.

V. Sepe, E. Distrutti, S. Fiorucci, and A. Zampella, Farnesoid X receptor modulators (2011 -2014): a patent review, Expert Opin Ther Pat, vol.25, pp.885-896, 2015.

V. Sepe, E. Distrutti, S. Fiorucci, and A. Zampella, Farnesoid X receptor modulators 2014-present: a patent review, Expert Opin Ther Pat, vol.28, pp.351-364, 2018.

F. B. Shaik, D. Prasad, and V. R. Narala, Role of farnesoid X receptor in inflammation and resolution, Inflamm Res, vol.64, pp.9-20, 2015.

Y. Shang, X. Hu, J. Direnzo, M. A. Lazar, and M. Brown, Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription, Cell, vol.103, pp.843-852, 2000.

D. Shao and M. A. Lazar, Modulating nuclear receptor function: may the phos be with you, J Clin Invest, vol.103, pp.1617-1618, 1999.

K. Sharabi, C. Tavares, A. K. Rines, and P. Puigserver, Molecular pathophysiology of hepatic glucose production, Mol Aspects Med, vol.46, pp.21-33, 2015.

R. I. Sherwood, T. Hashimoto, O. Donnell, C. W. Lewis, S. Barkal et al., Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape, Nat Biotechnol, vol.32, pp.171-178, 2014.

D. Q. Shih, M. Bussen, E. Sehayek, M. Ananthanarayanan, and B. L. Shneider, Hepatocyte nuclear factor-1alpha is an essential regulator of bile acid and plasma cholesterol metabolism, Nat Genet, vol.27, pp.375-382, 2001.

D. Shin, J. A. Campos, G. Gil, and T. F. Osborne, PGC-1alpha activates CYP7A1 and bile acid biosynthesis, J Biol Chem, vol.278, pp.50047-50052, 2003.

D. Shlyueva, G. Stampfel, and A. Stark, Transcriptional enhancers: from properties to genome-wide predictions, Nat Rev Genet, vol.15, pp.272-286, 2014.

C. J. Sinal, M. Tohkin, M. Miyata, J. M. Ward, and G. Lambert, Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis, Cell, vol.102, pp.731-744, 2000.

T. D. Singh, S. Y. Jeong, S. Lee, J. Ha, and I. Lee, Inverse Agonist of Estrogen-Related Receptor ? Enhances Sodium Iodide Symporter Function Through Mitogen-Activated Protein Kinase Signaling in Anaplastic Thyroid Cancer Cells, J Nucl Med, vol.56, pp.1690-1696, 2015.

D. F. Skafar and S. Koide, Understanding the human estrogen receptor-alpha using targeted mutagenesis, Mol Cell Endocrinol, vol.246, pp.83-90, 2006.

F. M. Sladek, What are nuclear receptor ligands?, Mol Cell Endocrinol, vol.334, pp.3-13, 2011.

F. M. Sladek, M. Ruse, L. Nepomuceno, S. M. Huang, and M. R. Stallcup, Modulation of transcriptional activation and coactivator interaction by a splicing variation in the F domain of nuclear receptor hepatocyte nuclear factor 4alpha1, Mol Cell Biol, vol.19, pp.6509-6522, 1999.

M. Slattery, T. Zhou, L. Yang, D. Machado, A. C. Gordân et al., Absence of a simple code: how transcription factors read the genome, Trends Biochem Sci, vol.39, pp.381-399, 2014.

G. Smushkin, M. Sathananthan, F. Piccinini, D. Man, C. Law et al., The effect of a bile acid sequestrant on glucose metabolism in subjects with type 2 diabetes, Diabetes, vol.62, pp.1094-1101, 2013.

R. E. Soccio, G. Tuteja, L. J. Everett, Z. Li, and M. A. Lazar, Species-specific strategies underlying conserved functions of metabolic transcription factors, Mol Endocrinol, vol.25, pp.694-706, 2011.

S. M. Soisson, G. Parthasarathy, A. D. Adams, S. Sahoo, and A. Sitlani, Identification of a potent synthetic FXR agonist with an unexpected mode of binding and activation, Proc Natl Acad Sci U S A, vol.105, pp.5337-5342, 2008.

C. S. Song, I. Echchgadda, B. S. Baek, S. C. Ahn, and T. Oh, Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor, J Biol Chem, vol.276, pp.42549-42556, 2001.

K. Song and J. Chiang, Glucagon and cAMP inhibit cholesterol 7alpha-hydroxylase (CYP7A1) gene expression in human hepatocytes: discordant regulation of bile acid synthesis and gluconeogenesis, Hepatology, vol.43, pp.117-125, 2006.

K. Song, T. Li, E. Owsley, S. Strom, and J. Chiang, Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression, Hepatology, vol.49, pp.297-305, 2009.

X. Song, Y. Chen, L. Valanejad, R. Kaimal, and B. Yan, Mechanistic insights into isoform-dependent and species-specific regulation of bile salt export pump by farnesoid X receptor, J Lipid Res, vol.54, pp.3030-3044, 2013.

C. J. Soroka, J. M. Lee, F. Azzaroli, and J. L. Boyer, Cellular localization and up-regulation of multidrug resistance-associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver, Hepatology, vol.33, pp.783-791, 2001.

A. Soto-gutierrez, A. Gough, L. A. Vernetti, D. L. Taylor, and S. P. Monga, Pre-clinical and clinical investigations of metabolic zonation in liver diseases: The potential of microphysiology systems, Exp Biol Med (Maywood), vol.242, pp.1605-1616, 2017.

F. Spitz and E. Furlong, Transcription factors: from enhancer binding to developmental control, Nat Rev Genet, vol.13, pp.613-626, 2012.

J. L. Staudinger, B. Goodwin, S. A. Jones, D. Hawkins-brown, and K. I. Mackenzie, The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity, Proc Natl Acad Sci U S A, vol.98, pp.3369-3374, 2001.

D. A. Stavreva, A. Coulon, S. Baek, M. Sung, and S. John, Dynamics of chromatin accessibility and long-range interactions in response to glucocorticoid pulsing, Genome Res, vol.25, pp.845-857, 2015.

K. R. Stayrook, K. S. Bramlett, R. S. Savkur, J. Ficorilli, and T. Cook, Regulation of carbohydrate metabolism by the farnesoid X receptor, Endocrinology, vol.146, pp.984-991, 2005.

S. E. Step, H. Lim, J. M. Marinis, A. Prokesch, and D. J. Steger, Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPAR?-driven enhancers, Genes Dev, vol.28, pp.1018-1028, 2014.

B. Stieger, The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation, Handb Exp Pharmacol, pp.205-259, 2011.

M. H. Stipanuk, Biochemical, physiological and molecular aspects of human nutrition. Saunders, pp.434-460, 2012.

S. S. Strautnieks, J. A. Byrne, L. Pawlikowska, D. Cebecauerová, and A. Rayner, Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families, Gastroenterology, vol.134, pp.1203-1214, 2008.

E. Studer, X. Zhou, R. Zhao, Y. Wang, and K. Takabe, Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes, Hepatology, vol.55, pp.267-276, 2012.

H. Su, C. Ma, J. Liu, N. Li, and M. Gao, Downregulation of nuclear receptor FXR is associated with multiple malignant clinicopathological characteristics in human hepatocellular carcinoma, Am J Physiol Gastrointest Liver Physiol, vol.303, pp.1245-53, 2012.

S. Svensson, T. Ostberg, M. Jacobsson, C. Norström, and K. Stefansson, Crystal structure of the heterodimeric complex of LXRalpha and RXRbeta ligand-binding domains in a fully agonistic conformation, EMBO J, vol.22, pp.4625-4633, 2003.

K. Søberg, T. Jahnsen, T. Rognes, B. S. Skålhegg, and J. K. Laerdahl, Evolutionary paths of the cAMP-dependent protein kinase (PKA) catalytic subunits, PLoS One, vol.8, p.60935, 2013.

J. H. Tabibian, A. I. Masyuk, T. V. Masyuk, S. P. O&apos;hara, and N. F. Larusso, Physiology of cholangiocytes. Compr Physiol, vol.3, pp.541-565, 2013.

L. Tappy, E. Jéquier, and P. Schneiter, Autoregulation of Glucose Production, News Physiol Sci, vol.15, pp.198-202, 2000.

A. M. Thomas, S. N. Hart, B. Kong, J. Fang, and X. Zhong, Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine, Hepatology, vol.51, pp.1410-1419, 2010.

C. Thomas, A. Gioiello, L. Noriega, A. Strehle, and J. Oury, TGR5-mediated bile acid sensing controls glucose homeostasis, Cell Metab, vol.10, pp.167-177, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00420823

C. Thomas, R. Pellicciari, M. Pruzanski, J. Auwerx, and K. Schoonjans, Targeting bile-acid signalling for metabolic diseases, Nat Rev Drug Discov, vol.7, pp.678-693, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00311230

M. Thomas-chollier, L. C. Watson, S. B. Cooper, M. A. Pufall, and J. S. Liu, A naturally occurring insertion of a single amino acid rewires transcriptional regulation by glucocorticoid receptor isoforms, Proc Natl Acad Sci U S A, vol.110, pp.17826-17831, 2013.

C. S. Thummel, Powered by gas--a ligand for a fruit fly nuclear receptor, Cell, vol.122, pp.151-153, 2005.

R. E. Thurman, E. Rynes, R. Humbert, J. Vierstra, and M. T. Maurano, The accessible chromatin landscape of the human genome, Nature, vol.489, pp.75-82, 2012.

M. T. Timlin and E. J. Parks, Temporal pattern of de novo lipogenesis in the postprandial state in healthy men, Am J Clin Nutr, vol.81, pp.35-42, 2005.

M. Togashi, S. Borngraeber, B. Sandler, R. J. Fletterick, and P. Webb, Conformational adaptation of nuclear receptor ligand binding domains to agonists: potential for novel approaches to ligand design, J Steroid Biochem Mol Biol, vol.93, pp.127-137, 2005.

B. Tolhuis, R. J. Palstra, E. Splinter, F. Grosveld, and W. De-laat, Looping and interaction between hypersensitive sites in the active beta-globin locus, Mol Cell, vol.10, pp.1453-1465, 2002.

C. Torre, C. Perret, and S. Colnot, Molecular determinants of liver zonation, Prog Mol Biol Transl Sci, vol.97, pp.127-150, 2010.

M. Trabelsi, M. Daoudi, J. Prawitt, S. Ducastel, and V. Touche, Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells, Nat Commun, vol.6, p.7629, 2015.

M. Trabelsi, S. Lestavel, B. Staels, and X. Collet, Intestinal bile acid receptors are key regulators of glucose homeostasis, Proc Nutr Soc, vol.76, pp.192-202, 2017.

M. Trauner and J. L. Boyer, Bile salt transporters: molecular characterization, function, and regulation, Physiol Rev, vol.83, pp.633-671, 2003.

C. L. Triplitt, Understanding the kidneys' role in blood glucose regulation, Am J Manag Care, vol.18, pp.11-17, 2012.

P. Tsai, S. Dell&apos;orso, J. Rodriguez, K. O. Vivanco, and K. Ko, A Muscle-Specific Enhancer RNA Mediates Cohesin Recruitment and Regulates Transcription In trans, Mol Cell, vol.71, pp.129-141, 2018.

W. Tsai, S. Hsu, C. Hsu, T. Lai, and S. Chen, MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis, J Clin Invest, vol.122, pp.2884-2897, 2012.

P. Tso and J. Mcgill, The physiology of the liver, pp.514-525, 2003.

R. H. Unger and A. D. Cherrington, Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover, J Clin Invest, vol.122, pp.4-12, 2012.

A. J. Unsworth, G. D. Flora, and J. M. Gibbins, Non-genomic effects of nuclear receptors: insights from the anucleate platelet, Cardiovasc Res, vol.114, pp.645-655, 2018.

I. Uriarte, M. G. Fernandez-barrena, M. J. Monte, M. U. Latasa, and H. Chang, Identification of fibroblast growth factor 15 as a novel mediator of liver regeneration and its application in the prevention of post-resection liver failure in mice, Gut, vol.62, pp.899-910, 2013.

L. Valanejad, K. Lewis, M. Wright, Y. Jiang, D. Souza et al., FXR-Gankyrin axis is involved in development of pediatric liver cancer, Carcinogenesis, vol.38, pp.738-747, 2017.

M. A. Valverde, P. Rojas, J. Amigo, D. Cosmelli, and P. Orio, Acute activation of Maxi-K channels (hSlo) by estradiol binding to the beta subunit, Science, vol.285, pp.1929-1931, 1999.

V. Heuvel and J. P. , Nuclear Hormone Receptors: A brief Overview, 2009.

B. T. Vander-kooi, H. Onuma, J. K. Oeser, C. A. Svitek, and A. Sr, The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and negative glucocorticoid response elements, Mol Endocrinol, vol.19, pp.3001-3022, 2005.

J. Vaquero, M. J. Monte, M. Dominguez, J. Muntané, and J. Marin, Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition, Biochem Pharmacol, vol.86, pp.926-939, 2013.

P. Vavassori, A. Mencarelli, B. Renga, E. Distrutti, and S. Fiorucci, The bile acid receptor FXR is a modulator of intestinal innate immunity, J Immunol, vol.183, pp.6251-6261, 2009.

R. B. Vega, J. M. Huss, and D. P. Kelly, The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes, Mol Cell Biol, vol.20, pp.1868-1876, 2000.

V. Vlaeminck-guillem, V. Laudet, and M. Duterque-coquillaud, Negative cross-talk between nuclear receptors and transcription factors: implications in inflammation and oncogenesis, 2003.

, Med Sci (Paris), vol.19, pp.1121-1127

D. H. Volle, R. Duggavathi, B. C. Magnier, S. M. Houten, and C. L. Cummins, The small heterodimer partner is a gonadal gatekeeper of sexual maturation in male mice, Genes Dev, vol.21, pp.303-315, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00166229

J. Walter, M. Burdelski, and D. C. Bröring, Chances and risks in living donor liver transplantation, Dtsch Arztebl Int, vol.105, pp.101-107, 2008.

D. Q. Wang, D. E. Cohen, and M. C. Carey, Biliary lipids and cholesterol gallstone disease, J Lipid Res, vol.50, pp.406-417, 2009.

H. Wang, J. Chen, K. Hollister, L. C. Sowers, and B. M. Forman, Endogenous bile acids are ligands for the nuclear receptor FXR/BAR, Mol Cell, vol.3, pp.543-553, 1999.

J. Wang, D. Mauvoisin, E. Martin, F. Atger, and A. N. Galindo, Nuclear Proteomics Uncovers Diurnal Regulatory Landscapes in Mouse Liver, Cell Metab, vol.25, pp.102-117, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02187195

R. Wang, H. Chen, L. Liu, J. A. Sheps, and M. J. Phillips, Compensatory role of Pglycoproteins in knockout mice lacking the bile salt export pump, Hepatology, vol.50, pp.948-956, 2009.

T. Wang, C. Liu, and L. Jia, The roles of PKCs in regulating autophagy, J Cancer Res Clin Oncol, 2018.

X. L. Wang, R. Suzuki, K. Lee, T. Tran, and J. E. Gunton, Ablation of ARNT/HIF1beta in liver alters gluconeogenesis, lipogenic gene expression, and serum ketones, Cell Metab, vol.9, pp.428-439, 2009.

Y. Wang, W. Chen, M. Wang, D. Yu, and B. M. Forman, Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response, Hepatology, vol.48, pp.1632-1643, 2008.

Y. Wang, G. Li, J. Goode, J. C. Paz, and K. Ouyang, Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes, Nature, vol.485, pp.128-132, 2012.

Z. Wang, G. Benoit, J. Liu, S. Prasad, and P. Aarnisalo, Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors, Nature, vol.423, pp.555-560, 2003.

Z. Wang, C. Zang, K. Cui, D. E. Schones, and A. Barski, Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes, Cell, vol.138, pp.1019-1031, 2009.

M. Watanabe, S. M. Houten, L. Wang, A. Moschetta, and D. J. Mangelsdorf, Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c, J Clin Invest, vol.113, pp.1408-1418, 2004.

R. E. Watkins, G. B. Wisely, L. B. Moore, J. L. Collins, and M. H. Lambert, The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity, Science, vol.292, pp.2329-2333, 2001.

E. R. Weikum, X. Liu, and E. A. Ortlund, The nuclear receptor superfamily: A structural perspective, Protein Sci, 2018.

N. J. Wewer-albrechtsen, Glucagon receptor signaling in metabolic diseases, Peptides, vol.100, pp.42-47, 2018.

W. A. Whyte, D. A. Orlando, D. Hnisz, B. J. Abraham, and C. Y. Lin, Master transcription factors and mediator establish super-enhancers at key cell identity genes, Cell, vol.153, pp.307-319, 2013.

E. Wingender, T. Schoeps, M. Haubrock, and J. Dönitz, TFClass: a classification of human transcription factors and their rodent orthologs, Nucleic Acids Res, vol.43, pp.97-102, 2015.

E. Wingender, T. Schoeps, M. Haubrock, M. Krull, and J. Dönitz, TFClass: expanding the classification of human transcription factors to their mammalian orthologs, Nucleic Acids Res, vol.46, pp.343-347, 2018.

R. Winkler, V. Benz, M. Clemenz, M. Bloch, and A. Foryst-ludwig, Histone deacetylase 6 (HDAC6) is an essential modifier of glucocorticoid-induced hepatic gluconeogenesis, Diabetes, vol.61, pp.513-523, 2012.

G. B. Wisely, A. B. Miller, R. G. Davis, A. Thornquest, and R. Johnson, Hepatocyte nuclear factor 4 is a transcription factor that constitutively binds fatty acids, Structure, vol.10, pp.1225-1234, 2002.

H. Wittenburg, M. A. Lyons, R. Li, G. A. Churchill, and M. C. Carey, FXR and ABCG5/ABCG8 as determinants of cholesterol gallstone formation from quantitative trait locus mapping in mice, Gastroenterology, vol.125, pp.868-881, 2003.

C. Wolfrum, E. Asilmaz, E. Luca, J. M. Friedman, and M. Stoffel, Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes, Nature, vol.432, pp.1027-1032, 2004.

C. Wolfrum, D. Besser, E. Luca, and M. Stoffel, Insulin regulates the activity of forkhead transcription factor Hnf-3beta/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization, Proc Natl Acad Sci U S A, vol.100, pp.11624-11629, 2003.

C. Wolfrum and M. Stoffel, Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion, Cell Metab, vol.3, pp.99-110, 2006.

H. Wu, X. Deng, Y. Shi, Y. Su, and J. Wei, PGC-1?, glucose metabolism and type 2 diabetes mellitus, J Endocrinol, vol.229, pp.99-115, 2016.

J. Wu, C. Xia, J. Meier, S. Li, and X. Hu, The hypolipidemic natural product guggulsterone acts as an antagonist of the bile acid receptor, Mol Endocrinol, vol.16, pp.1590-1597, 2002.

A. Wärnmark, T. Almlöf, J. Leers, J. A. Gustafsson, and E. Treuter, Differential recruitment of the mammalian mediator subunit TRAP220 by estrogen receptors ERalpha and ERbeta, J Biol Chem, vol.276, pp.23397-23404, 2001.

L. Xiao and G. Pan, An important intestinal transporter that regulates the enterohepatic circulation of bile acids and cholesterol homeostasis: The apical sodium-dependent bile acid transporter (SLC10A2/ASBT), Clin Res Hepatol Gastroenterol, vol.41, pp.509-515, 2017.

C. Xie, C. Jiang, J. Shi, X. Gao, and D. Sun, An Intestinal Farnesoid X ReceptorCeramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice, Diabetes, vol.66, pp.613-626, 2017.

G. Xu, L. Pan, H. Li, B. M. Forman, and S. K. Erickson, Regulation of the farnesoid X receptor (FXR) by bile acid flux in rabbits, J Biol Chem, vol.277, pp.50491-50496, 2002.

H. E. Xu, Family reunion of nuclear hormone receptors: structures, diseases, and drug discovery, Acta Pharmacol Sin, vol.36, pp.1-2, 2015.

J. Xu, Y. Li, W. Chen, Y. Xu, and L. Yin, Hepatic carboxylesterase 1 is essential for both normal and farnesoid X receptor-controlled lipid homeostasis, Hepatology, vol.59, pp.1761-1771, 2014.

J. Xu, Y. Wang, J. Yin, M. Yin, and M. Wang, MAFB mediates the therapeutic effect of sleeve gastrectomy for obese diabetes mellitus by activation of FXR expression, Braz J Med Biol Res, vol.51, p.7312, 2018.

X. Xu, X. Shi, Y. Chen, T. Zhou, and J. Wang, HS218 as an FXR antagonist suppresses gluconeogenesis by inhibiting FXR binding to PGC-1? promoter, Metabolism, vol.85, pp.126-138, 2018.

Z. Xu, G. Huang, W. Gong, P. Zhou, and Y. Zhao, FXR ligands protect against hepatocellular inflammation via SOCS3 induction, Cell Signal, vol.24, pp.1658-1664, 2012.

K. Yamagata, H. Daitoku, Y. Shimamoto, H. Matsuzaki, and K. Hirota, Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1, J Biol Chem, vol.279, pp.23158-23165, 2004.

F. Yang, X. Huang, T. Yi, Y. Yen, and D. D. Moore, Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor, Cancer Res, vol.67, pp.863-867, 2007.

J. C. Yoon, P. Puigserver, G. Chen, J. Donovan, and Z. Wu, Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1, Nature, vol.413, pp.131-138, 2001.

J. Yoshino, K. F. Mills, M. J. Yoon, and S. Imai, Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet-and age-induced diabetes in mice, Cell Metab, vol.14, pp.528-536, 2011.

C. Yu, F. Wang, M. Kan, C. Jin, and R. B. Jones, Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4, J Biol Chem, vol.275, pp.15482-15489, 2000.

X. Yuan, T. C. Ta, M. Lin, J. R. Evans, and Y. Dong, Identification of an endogenous ligand bound to a native orphan nuclear receptor, PLoS One, vol.4, p.5609, 2009.

K. S. Zaret and J. S. Carroll, Pioneer transcription factors: establishing competence for gene expression, Genes Dev, vol.25, pp.2227-2241, 2011.

L. Zhan, H. Liu, Y. Fang, B. Kong, and Y. He, Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes, PLoS One, vol.9, p.105930, 2014.

J. Zhang, M. J. Chalmers, K. R. Stayrook, L. L. Burris, and Y. Wang, DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex, Nat Struct Mol Biol, vol.18, pp.556-563, 2011.

J. Zhang, Y. Wang, X. Liu, R. K. Dagda, and Y. Zhang, How AMPK and PKA Interplay to Regulate Mitochondrial Function and Survival in Models of Ischemia and Diabetes, Oxid Med Cell Longev, p.4353510, 2017.

L. Zhang, N. E. Rubins, R. S. Ahima, L. E. Greenbaum, and K. H. Kaestner, Foxa2 integrates the transcriptional response of the hepatocyte to fasting, Cell Metab, vol.2, pp.141-148, 2005.

L. Zhang, Y. Wang, W. Chen, X. Wang, and G. Lou, Promotion of liver regeneration/repair by farnesoid X receptor in both liver and intestine in mice, Hepatology, vol.56, pp.2336-2343, 2012.

Q. Zhang, F. He, R. Kuruba, X. Gao, and A. Wilson, FXR-mediated regulation of angiotensin type 2 receptor expression in vascular smooth muscle cells, Cardiovasc Res, vol.77, pp.560-569, 2008.

Y. Zhang, L. W. Castellani, C. J. Sinal, F. J. Gonzalez, and P. A. Edwards, Peroxisome proliferatoractivated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR, Genes Dev, vol.18, pp.157-169, 2004.

Y. Zhang, W. Gong, S. Dai, G. Huang, and X. Shen, Downregulation of human farnesoid X receptor by miR-421 promotes proliferation and migration of hepatocellular carcinoma cells, Mol Cancer Res, vol.10, pp.516-522, 2012.

Y. Zhang, H. R. Kast-woelbern, and P. A. Edwards, Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation, J Biol Chem, vol.278, pp.104-110, 2003.

Y. Zhang, F. Y. Lee, G. Barrera, H. Lee, and C. Vales, Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice, Proc Natl Acad Sci U S A, vol.103, pp.1006-1011, 2006.

Y. Zhang, P. Xu, K. Park, Y. Choi, and D. D. Moore, Orphan receptor small heterodimer partner suppresses tumorigenesis by modulating cyclin D1 expression and cellular proliferation, Hepatology, vol.48, pp.289-298, 2008.

Y. J. Zhang, G. L. Guo, and C. D. Klaassen, Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters, PLoS One, vol.6, p.16683, 2011.

W. Zheng, Y. Lu, S. Tian, F. Ma, and Y. Wei, Structural insights into the heterodimeric complex of the nuclear receptors FXR and RXR, J Biol Chem, vol.293, pp.12535-12541, 2018.

J. Zhu, M. Adli, J. Y. Zou, G. Verstappen, and M. Coyne, Genome-wide chromatin state transitions associated with developmental and environmental cues, Cell, vol.152, pp.642-654, 2013.

G. Zollner, H. Marschall, M. Wagner, and M. Trauner, Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations, Mol Pharm, vol.3, pp.231-251, 2006.

A. Zou, S. Lehn, N. Magee, and Y. Zhang, New Insights into Orphan Nuclear Receptor SHP in Liver Cancer, Nucl Receptor Res, vol.2, 2015.

W. Zwart, R. De-leeuw, M. Rondaij, J. Neefjes, and M. A. Mancini, The hinge region of the human estrogen receptor determines functional synergy between AF-1 and AF-2 in the quantitative response to estradiol and tamoxifen, J Cell Sci, vol.123, pp.1253-1261, 2010.

B. L. Zwicker and L. B. Agellon, Transport and biological activities of bile acids, Int J Biochem Cell Biol, vol.45, pp.1389-1398, 2013.

T. Q. De-aguiar-vallim, E. J. Tarling, H. Ahn, L. R. Hagey, and C. E. Romanoski, MAFG is a transcriptional repressor of bile acid synthesis and metabolism, Cell Metab, vol.21, pp.298-311, 2015.

T. Q. De-aguiar-vallim, E. J. Tarling, and P. A. Edwards, Pleiotropic roles of bile acids in metabolism, Cell Metab, vol.17, pp.657-669, 2013.

I. De-vera, P. K. Giri, P. Munoz-tello, R. Brust, and J. Fuhrmann, Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1, ACS Chem Biol, vol.11, pp.1795-1799, 2016.

I. De-vera, J. Zheng, S. Novick, J. Shang, and T. S. Hughes, Synergistic Regulation of Coregulator/Nuclear Receptor Interaction by Ligand and DNA, Lancet Diabetes Endocrinol, vol.25, pp.224-233, 2017.

K. Van-de-wetering, W. Feddema, J. B. Helms, J. F. Brouwers, and P. Borst, Targeted metabolomics identifies glucuronides of dietary phytoestrogens as a major class of MRP3 substrates in vivo, Gastroenterology, vol.137, pp.1725-1735, 2009.

F. Von-meyenn, T. Porstmann, E. Gasser, N. Selevsek, and A. Schmidt, Glucagoninduced acetylation of Foxa2 regulates hepatic lipid metabolism, Cell Metab, vol.17, pp.436-447, 2013.

J. ?vorovi? and S. Passamonti, Membrane Transporters for Bilirubin and Its Conjugates: A Systematic Review, Front Pharmacol, 2017.