J. E. Casida, Pest toxicology: the primary mechanisms of pesticide action, Chem Res Toxicol, vol.22, pp.609-619, 2009.

P. Jeschke, R. Nauen, M. Schindler, and A. Elbert, Overview of the status and global strategy for neonicotinoids, J Agric Food Chem, vol.59, pp.2897-2908, 2011.

P. Jeschke, R. Nauen, and M. E. Beck, Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection, Angew Chem Int Ed Engl, vol.52, pp.9464-9485, 2013.

S. Alexander, J. A. Peters, E. Kelly, N. Marrion, H. E. Benson et al., The Concise Guide to PHARMACOLOGY 2015/16: Ligand-gated ion channels, Br J Pharmacol, vol.172, pp.5870-5903, 2015.

Y. Benzidane, S. Touinsi, E. Motte, A. Jadas-hecart, P. Y. Communal et al., Effect of thiamethoxam on cockroach locomotor activity is associated with its metabolite clothianidin, Pest Manag Sci, vol.66, pp.1351-1359, 2010.

J. M. References-blagburn and D. B. Sattelle, Nicotinic acetylcholine receptors on a cholinergic nerve terminal in the cockroach, Periplaneta americana, J. Comp. Physiol. A, vol.161, issue.2, pp.215-225, 1987.

C. B. Breckenridge, L. Holden, N. Sturgess, M. Weiner, L. Sheets et al., Evidence for a separate mechanism of toxicity for the Type I and the Type II pyrethroid insecticides, Neuro Toxicol, vol.30, issue.1, pp.17-31, 2009.

S. Buckingham, B. Lapied, H. Corronc, and F. Sattelle, Imidacloprid actions on insect neuronal acetylcholine receptors, J. Exp. Biol, vol.200, pp.2685-2692, 1997.

J. J. Callec, Synaptic Transmission in the Central Nervous System of Insects, American Elsevier, 1974.

J. J. Callec and J. Boistel, Phenomena of excitation and inhibition at the level of the last abdominal ganglion of the cockroach, periplaneta americana L, 1966.

, Biol. Fil, vol.160, issue.12, pp.2418-2424

J. J. Callec and D. B. Sattelle, A simple technique for monitoring the synaptic actions of pharmacological agents, J. Exp. Biol, vol.59, issue.3, pp.725-738, 1973.

J. J. Callec, D. B. Sattelle, B. Hue, and M. Pelhate, Central synaptic actions of pharmacological agents in insects : oil-gap and mannitol-gap studies, Neurotox 79, pp.93-100, 1980.

V. Corbel, M. Stankiewicz, J. Bonnet, F. Grolleau, J. M. Hougard et al., Synergism between insecticides permethrin and propoxur occurs through activation of presynaptic muscarinic negative feedback of acetylcholine release in the insect central nervous system, NeuroToxicol, vol.27, issue.4, pp.508-519, 2006.

F. Darriet and F. Chandre, Efficacy of six neonicotinoid insecticides alone and in combination with deltamethrin and piperonyl butoxide against pyrethroid-resistant Aedes aegypti and Anopheles gambiae (Diptera: Culicidae), Pest Manage. Sci, 2012.

S. M. Farris, A. I. Abrams, and N. J. Strausfeld, Development and morphology of class II Kenyon cells in the mushroom bodies of the honey bee, Apis mellifera, J. Comp. Neurol, vol.474, issue.3, pp.325-339, 2004.

R. F. Flattum and D. L. Shankland, Acetylcholine receptors and the diphasic action of nicotine in the American cockroach, Periplaneta americana (L.), Comp. Gen. Pharmacol, vol.2, issue.6, pp.159-167, 1971.

F. Grolleau and B. Lapied, Dorsal unpaired median neurones in the insect central nervous system: towards a better understanding of the ionic mechanisms underlying spontaneous electrical activity, J. Exp. Biol, vol.203, pp.1633-1648, 2000.

J. Guillen and P. Bielza, Thiamethoxam acts as a target-site synergist of spinosad in resistant strains of Frankliniella occidentalis, Pest Manage. Sci, 2012.

I. D. Harrow, B. Hue, J. I. Gepner, L. M. Hall, and D. B. Sattelle, An alpha-bungarotoxin sensitive acetylcholine receptor in the central nervous system of the cockroach, Periplaneta Americana, Neurotox 79, pp.137-144, 1980.

E. S. Hill and J. M. Blagburn, Presynaptic effects of biogenic amines modulating synaptic transmission between identified sensory neurons and giant interneurons in the first instar cockroach, J. Comp. Physiol. A, vol.187, issue.8, pp.633-645, 2001.

B. Hue and J. J. Callec, Electrophysiology and pharmacology of synaptic transmission in the central nervous system of the cockroach, Cockroaches as Models for Neurobiology: Applications in Biomedical Researchs, pp.149-167, 1990.

B. Hue and L. Mony, Actions of deltamethrin and tralomethrin on cholinergic synaptic transmission in the central nervous system of the cockroach, 1987.

. Comp, Biochem. Physiol. C, vol.86, issue.2, pp.349-352

B. Hue, S. D. Buckingham, D. Buckingham, and D. B. Sattelle, Actions of snake neurotoxins on an insect nicotinic cholinergic synapse, Invert Neurosci, vol.7, issue.3, pp.173-178, 2007.

P. Jeschke, R. Nauen, M. Schindler, and A. Elbert, Overview of the status and global strategy for neonicotinoids, J. Agric. Food Chem, vol.59, issue.7, pp.2897-2908, 2011.

P. Jeschke, R. Nauen, and M. E. Beck, Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection, Angew. Chem, vol.52, issue.36, pp.9464-9485, 2013.

L. Questel, J. Y. Graton, J. Ceron-carrasco, J. P. Jacquemin, D. Planchat et al., New insights on the molecular features and electrophysiological properties of dinotefuran, imidacloprid and acetamiprid neonicotinoid insecticides, Bioorg. Med. Chem, vol.19, issue.24, pp.7623-7634, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02143148

E. Lienard, E. Bouhsira, P. Jacquiet, S. Warin, V. Kaltsatos et al., Efficacy of dinotefuran, permethrin and pyriproxyfen combination spot-on on dogs against Phlebotomus perniciosus and Ctenocephalides canis, Parasitol. Res, vol.112, issue.11, pp.3799-3805, 2013.

O. List, D. Calas-list, E. Taillebois, M. Juchaux, E. Heuland et al., Inhibition of PaCaMKII-E isoform in the dorsal unpaired median neurosecretory cells of cockroach reduces nicotine-and clothianidin-induced currents, J. Neurochem, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209989

S. Miyagi, I. Komaki, and Y. Ozoe, Identification of a high-affinity binding site for dinotefuran in the nerve cord of the American cockroach, Pest Manage. Sci, vol.62, issue.4, pp.293-298, 2006.

C. Ngufor, A. Fongnikin, M. Rowland, and R. N'guessan, Indoor residual spraying with a mixture of clothianidin (a neonicotinoid insecticide) and deltamethrin provides improved control and long residual activity against pyrethroid resistant Anopheles gambiae sl in Southern Benin, PLoS One, vol.12, issue.12, p.189575, 2017.

R. M. Pitman, Comprehensive insect physiology pharmacology, Nervous System, pp.5-54, 1985.

D. B. Sattelle, I. D. Harrow, B. Hue, M. Pelhate, J. I. Gepner et al., ?-bungarotoxin blocks excitatory synaptic transmission between cercal sensory neurones and giant interneurone 2 of the cockroach, Periplaneta americana, J. Exp. Biol, vol.107, pp.473-489, 1983.

D. M. Soderlund, J. M. Clark, L. P. Sheets, L. S. Mullin, V. J. Piccirillo et al., Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment, Toxicology, vol.171, issue.1, pp.3-59, 2002.

D. Tahir, B. Davoust, M. Varloud, J. M. Berenger, D. Raoult et al., Assessment of the anti-feeding and insecticidal effects of the combination of dinotefuran, permethrin and pyriproxyfen (Vectra((R)) 3D) against Triatoma infestans on rats, Med. Vet. Entomol, vol.31, issue.2, pp.132-139, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01573738

E. Taillebois and S. H. Thany, The differential effect of Low-dose mixtures of Four pesticides on the Pea Aphid Acyrthosiphon pisum, Insects, vol.7, issue.4, 2016.

S. H. Thany, Agonist actions of clothianidin on synaptic and extrasynaptic nicotinic acetylcholine receptors expressed on cockroach sixth abdominal ganglion, NeuroToxicol, vol.30, issue.6, pp.1045-1052, 2009.

S. H. Thany, Thiamethoxam, a poor agonist of nicotinic acetylcholine receptors expressed on isolated cell bodies, acts as a full agonist at cockroach cercal afferent/ giant interneuron synapses, Neuropharmacology, vol.60, issue.4, pp.587-592, 2011.

M. Tomizawa and J. E. Casida, Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors, Annu. Rev. Entomol, vol.48, pp.339-364, 2003.

M. Tomizawa and J. E. Casida, Neonicotinoid insecticide toxicology: mechanisms of selective action, Annu. Rev. Pharmacol. Toxicol, vol.45, pp.247-268, 2005.

M. Varloud and J. J. Fourie, Onset of efficacy and residual speed of kill over one month of a topical dinotefuran-permethrin-pyriproxyfen combination (Vectra (R) 3D) against the adult cat flea (Ctenocephalides felis felis) on dogs, Vet. Parasitol, vol.211, issue.1-2, pp.89-92, 2015.

M. Varloud, J. J. Fourie, B. L. Blagburn, and A. Deflandre, Expellency, anti-feeding and speed of kill of a dinotefuran-permethrin-pyriproxyfen spot-on (Vectra(R)3D) in dogs weekly challenged with adult fleas (Ctenocephalides felis) for 1 month-comparison to a spinosad tablet, Comfortis(R)). Parasitol. Res, vol.114, issue.7, pp.2649-2657, 2015.

Y. Yan, Y. Yang, J. You, G. Yang, Y. Xu et al., Permethrin modulates cholinergic mini-synaptic currents by partially blocking the calcium channel, Toxicol. Lett, vol.201, issue.3, pp.258-263, 2011.

R. X. Yu, Y. H. Wang, X. Q. Hu, S. G. Wu, L. M. Cai et al., Individual and joint Acute Toxicities of selected insecticides against Bombyx mori (Lepidoptera: Bombycidae), J. Econ. Entomol, vol.109, issue.1, pp.327-333, 2016.

A. Cartereau,

M. Gauthier, M. Dacher, S. H. Thany, C. Niggebrügge, P. Déglise et al., Involvement of ?-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00170352

, Neurobiology of Learning and Memory, vol.86, pp.164-174

J. K. Gill, M. Savolainen, G. T. Young, R. Zwart, E. Sher et al., , 2011.

J. K. Gill-thind, P. Dhankher, J. M. D'oyley, T. D. Sheppard, and N. S. Millar, , 2015.

F. Goldberg, B. Grünewald, H. Rosenboom, and R. Menzel, , 1999.

, Apis mellifera, The Journal of Physiology, vol.514, pp.759-768

C. Gotti, F. Clementi, A. Fornari, A. Gaimarri, S. Guiducci et al.,

M. Moretti, P. Pedrazzi, L. Pucci, and M. Zoli, Structural and functional diversity of native brain neuronal nicotinic receptors, Biochemical Pharmacology, vol.78, pp.703-711, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00509504

C. Gotti, M. Moretti, A. Gaimarri, A. Zanardi, F. Clementi et al., , 2007.

, Heterogeneity and complexity of native brain nicotinic receptors, Biochemical Pharmacology, vol.74, pp.1102-1111

J. H. Grønlien, M. Håkerud, H. Ween, K. Thorin-hagene, C. A. Briggs et al., , 2007.

J. H. Grønlien, H. Ween, K. Thorin-hagene, S. Cassar, J. Li et al., , 2010.

, European Journal of Pharmacology, vol.647, pp.37-47

T. Grutter and J. Changeux, , 2001.

S. Gu, J. A. Matta, B. Lord, A. W. Harrington, S. W. Sutton et al., Brain α7 Nicotinic Acetylcholine Receptor Assembly Requires NACHO, 2016.

S. Halevi, J. Mckay, M. Palfreyman, L. Yassin, M. Eshel et al., EMBO Journal, vol.21, pp.1012-1020, 2002.

M. Hans, M. Wilhelm, and D. Swandulla, , 2012.

S. B. Hansen, G. Sulzenbacher, T. Huxford, P. Marchot, P. Taylor et al.,

, conformations. The EMBO Journal, vol.24, pp.3635-3646

S. B. Hansen, T. T. Talley, Z. Radi?, T. , and P. , , vol.279, pp.24197-24202, 2004.

R. E. Hibbs, G. Sulzenbacher, J. Shi, T. T. Talley, S. Conrod et al.,

P. Taylor, P. Marchot, and Y. Bourne, , 2009.

C. W. Holyoke, . Jr, W. Zhang, T. F. Pahutski, . Jr et al., Triflumezopyrim, Discovery and Optimization of a Mesoionic Insecticide for Rice, Discovery and Synthesis of Crop Protection Products, pp.365-378, 2015.

R. A. Holt, G. M. Subramanian, A. Halpern, G. G. Sutton, R. Charlab et al.,

P. Wincker, A. G. Clark, J. C. Ribeiro, R. Wides, S. L. Salzberg et al.,

W. H. Majoros, D. B. Rusch, Z. Lai, and C. L. Kraft, The Genome Sequence of the Malaria Mosquito Anopheles gambiae, Science, vol.298, pp.129-149, 2002.

Y. Huang, M. S. Williamson, A. L. Devonshire, J. D. Windass, S. J. Lansdell et al., Molecular Characterization and Imidacloprid Selectivity of Nicotinic Acetylcholine Receptor Subunits from the Peach-Potato Aphid Myzus persicae, Journal of Neurochemistry, vol.73, pp.380-389, 1999.

R. S. Hurst, M. Hajós, M. Raggenbass, T. M. Wall, N. R. Higdon et al., , 2005.

M. Ihara, L. A. Brown, C. Ishida, H. Okuda, D. B. Sattelle et al., , 2006.

M. Ihara, K. Hirata, C. Ishida, S. Kagabu, and K. Matsuda, , 2007.

R. H. Osborne, Insect neurotransmission: Neurotransmitters and their receptors, 1996.

, Pharmacology & Therapeutics, vol.69, pp.117-142

E. Palma, L. Maggi, R. Miledi, and F. Eusebi, Effects of Zn2+ on wild and mutant neuronal ?7 nicotinic receptors, Proceedings of the National Academy of Sciences, vol.95, pp.10246-10250, 1998.

E. Palma, F. Trettel, S. Fucile, M. Renzi, R. Miledi et al., , vol.100, pp.2896-2900, 2003.

R. L. Papke, P. R. Sanderg, and R. D. , Analysis of Mecamylamine Stereoisomers on Human Nicotinic Receptor Subtypes, pp.1-11, 2001.

D. Paterson and A. Nordberg, Neuronal nicotinic receptors in the human brain, Progress in Neurobiology, vol.61, pp.75-111, 2000.

E. F. Pereira, C. Hilmas, M. D. Santos, M. Alkondon, A. Maelicke et al., Unconventional ligands and modulators of nicotinic receptors, Journal of Neurobiology, vol.53, pp.479-500, 2002.

D. Philippou, L. Field, and G. Moores, , 2009.

L. W. Pisa, V. Amaral-rogers, L. P. Belzunces, J. M. Bonmatin, C. A. Downs et al.,

J. Settele, N. Simon-delso, J. D. Stark, J. P. Van-der-sluijs, H. Van-dyck et al., to the concentration of non-labeled probe needed to inhibit 50% of the specific binding of the labeled probe; Ki is the inhibition constant calculated according to Cheng and Prusoff formula, 2014.

E. Taillebois, Annexe References

E. D. Levin and B. B. Simon, Nicotinic acetylcholine involvement in cognitive function in animals, Psychopharmacology, vol.138, pp.217-230, 1998.

E. Taillebois,

G. Bicker, Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee, Microsc. Res. Tech, vol.45, pp.174-183, 1999.

H. Breer, Properties of putative nicotinic and muscarinic cholinergic receptors in the central nervous system of Locusta migratoria, Neurochem. Int, vol.3, pp.43-52, 1981.

L. A. Brown, M. Ihara, S. D. Buckingham, K. Matsuda, and D. B. Sattelle, Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors, J. Neurochem, vol.99, pp.608-615, 2006.

K. Charaabi, S. Boukhris-bouhachem, M. Makni, and I. Denholm, Occurrence of targetsite resistance to neonicotinoids in the aphid Myzus persicae in Tunisia, and its status on different host plants: resistance to neonicotinoids in Myzus persicae, Pest Manag. Sci, 2018.

A. S. Huseth, T. M. Chappell, A. Chitturi, A. L. Jacobson, and G. G. Kennedy, Insecticide resistance signals negative consequences of widespread neonicotinoid use on multiple field crops in the, Environ. Sci. Technol, vol.52, pp.2314-2322, 2018.

C. Chen, X. Shi, N. Desneux, P. Han, and X. Gao, Detection of insecticide resistance in Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae) in China, Ecotoxicology, vol.26, pp.868-875, 2017.

C. C. Voudouris, M. S. Williamson, P. J. Skouras, A. N. Kati, A. J. Sahinoglou et al., Evolution of imidacloprid resistance in Myzus persicae in Greece and susceptibility data for spirotetramat: M. persicae susceptibility to two insecticides, Pest Manag. Sci, vol.73, pp.1804-1812, 2017.

A. Brandt, K. Grikscheit, R. Siede, R. Grosse, M. D. Meixner et al., Immunosuppression in honeybee queens by the neonicotinoids Thiacloprid and Clothianidin, vol.7, 2017.

S. Tosi, J. C. Nieh, F. Sgolastra, R. Cabbri, and P. Medrzycki, Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees, Proc. R. Soc. B Biol. Sci, vol.284, 2017.

S. C. Wood, I. V. Kozii, R. V. Koziy, T. Epp, and E. Simko, Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees, vol.13, p.190517, 2018.

P. R. Whitehorn, C. Wallace, and M. Vallejo-marin, Neonicotinoid pesticide limits improvement in buzz pollination by bumblebees, Sci. Rep, vol.7, 2017.

S. H. Thany, G. Lenaers, V. Raymond-delpech, D. B. Sattelle, and B. Lapied, Exploring the pharmacological properties of insect nicotinic acetylcholine receptors, Trends Pharmacol. Sci, vol.28, pp.14-22, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00168267

N. Simon-delso, V. Amaral-rogers, L. P. Belzunces, J. M. Bonmatin, M. Chagnon et al., Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites, Environ. Sci. Pollut. Res, vol.22, pp.5-34, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01171969

T. C. Marrs and R. L. Maynard, Neurotranmission systems as targets for toxicants: a review, Cell Biol. Toxicol, vol.29, pp.381-396, 2013.

P. Déglise, B. Grünewald, and M. Gauthier, The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells, Neurosci. Lett, vol.321, pp.13-16, 2002.

J. Tan, J. J. Galligan, and R. M. Hollingworth, Agonist actions of neonicotinoids on nicotinic acetylcholine receptors expressed by cockroach neurons, Neurotoxicology, vol.28, pp.829-842, 2007.

V. L. Salgado and R. Saar, Desensitizing and non-desensitizing subtypes of alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in cockroach neurons, J. Insect Physiol, vol.50, pp.867-879, 2004.

G. S. Barbara, B. Grünewald, S. Paute, M. Gauthier, and V. Raymond-delpech, Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains, Invertebr. Neurosci, vol.8, pp.19-29, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00318761

H. Sun, Y. Liu, J. Li, X. Cang, H. Bao et al., The potential subunits involved in two subtypes of ?-Bgt-resistant nAChRs in cockroach dorsal unpaired median (DUM) neurons, Insect Biochem. Mol. Biol, vol.81, pp.32-40, 2017.

R. A. El-hajj, S. B. Mckay, and D. B. Mckay, Pharmacological and immunological identification of native alpha7 nicotinic receptors: evidence for homomeric and heteromeric alpha7 receptors, Life Sci, vol.81, pp.1317-1322, 2007.

M. García-guzmán, F. Sala, S. Sala, A. Campos-caro, W. Stühmer et al., alpha-Bungarotoxin-sensitive nicotinic receptors on bovine chromaffin cells: molecular cloning, functional expression and alternative splicing of the alpha 7 subunit, Eur. J. Neurosci, vol.7, pp.647-655, 1995.

P. Séguéla, J. Wadiche, K. Dineley-miller, J. A. Dani, and J. W. Patrick, Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium, J. Neurosci, vol.13, pp.596-604, 1993.

A. B. Elgoyhen, D. E. Vetter, E. Katz, C. V. Rothlin, S. F. Heinemann et al., alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.3501-3506, 2001.

F. Sgard, E. Charpantier, S. Bertrand, N. Walker, D. Caput et al., A novel human nicotinic receptor subunit, alpha10, that confers functionality to the alpha9-subunit, Mol. Pharmacol, vol.61, pp.150-159, 2002.

R. Courjaret, F. Grolleau, and B. Lapied, Two distinct calcium-sensitive and -insensitive PKC up-and down-regulate an alpha-bungarotoxin-resistant nAChR1 in insect neurosecretory cells (DUM neurons), Eur. J. Neurosci, vol.17, pp.2023-2034, 2003.

R. Courjaret and B. Lapied, Complex intracellular messenger pathways regulate one type of neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (dorsal unpaired median neurons), Mol. Pharmacol, vol.60, pp.80-91, 2001.

O. List, D. Calas-list, E. Taillebois, M. Juchaux, E. Heuland et al., Inhibition of PaCaMKII-E isoform in the dorsal unpaired median neurosecretory cells of cockroach reduces nicotine-and clothianidin-induced currents, J. Neurochem, vol.130, pp.507-513, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209989

D. Calas-list, O. List, S. Quinchard, and S. H. Thany, Calcium pathways such as cAMP modulate clothianidin action through activation of ?-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors, Neurotoxicology, vol.37, pp.127-133, 2013.

B. Bodereau-dubois, O. List, D. Calas-list, O. Marques, P. Communal et al., Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the Imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides, J. Pharmacol. Exp. Ther, vol.341, pp.326-339, 2012.

V. L. Salgado, Antagonist pharmacology of desensitizing and non-desensitizing nicotinic acetylcholine receptors in cockroach neurons, Neurotoxicology, vol.56, pp.188-195, 2016.

A. K. Jones and D. B. Sattelle, The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum, BMC Genomics, vol.8, p.327, 2007.

Z. Liu, M. S. Williamson, S. J. Lansdell, I. Denholm, Z. Han et al., A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper), Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.8420-8425, 2005.

Y. Huang, M. S. Williamson, A. L. Devonshire, J. D. Windass, S. J. Lansdell et al., Molecular characterization and imidacloprid selectivity of nicotinic acetylcholine receptor subunits from the peach-potato aphid Myzus persicae, J. Neurochem, vol.73, pp.380-389, 1999.

R. P. Dale, A. K. Jones, C. Tamborindeguy, T. G. Davies, J. S. Amey et al., Identification of ion channel genes in the Acyrthosiphon pisum genome

, Biol, vol.19, pp.141-153, 2010.

S. J. Lansdell, T. Collins, J. Goodchild, and N. S. Millar, The Drosophila nicotinic acetylcholine receptor subunits D?5 and D?7 form functional homomeric and heteromeric ion channels, BMC Neurosci, vol.13, p.73, 2012.
DOI : 10.1186/1471-2202-13-73

URL : https://bmcneurosci.biomedcentral.com/track/pdf/10.1186/1471-2202-13-73

E. Taillebois, A. Beloula, S. Quinchard, S. Jaubert-possamai, A. Daguin et al., Neonicotinoid binding, toxicity and expression of nicotinic acetylcholine receptor subunits in the aphid Acyrthosiphon pisum, PLoS One, vol.9, p.96669, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01208711

A. K. Jones and D. B. Sattelle, Diversity of insect nicotinic acetylcholine receptor subunits, Adv. Exp. Med. Biol, vol.683, pp.25-43, 2010.

J. Li, Y. Shao, Z. Ding, H. Bao, Z. Liu et al., Native subunit composition of two insect nicotinic receptor subtypes with differing affinities for the insecticide imidacloprid, Insect Biochem. Mol. Biol, vol.40, pp.17-22, 2010.

K. Chamaon, K. Smalla, U. Thomas, and E. D. Gundelfinger, Nicotinic acetylcholine receptors of Drosophila: three subunits encoded by genomically linked genes can co-assemble into the same receptor complex, J. Neurochem, vol.80, pp.149-157, 2002.

E. C. Hulme and M. A. Trevethick, Ligand binding assays at equilibrium: validation and interpretation, Br. J. Pharmacol, vol.161, pp.1219-1237, 2010.
DOI : 10.1111/j.1476-5381.2009.00604.x

URL : https://bpspubs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1476-5381.2009.00604.x

D. B. Bylund and M. L. Toews, Radioligand binding methods: practical guide and tips, Am. J. Phys, vol.265, pp.421-429, 1993.
DOI : 10.1016/1056-8719(94)90020-5

F. Goldberg, B. Grünewald, H. Rosenboom, and R. Menzel, Nicotinic acetylcholine currents of cultured Kkenyon cells from the mushroom bodies of the honey bee Aapis mellifera, J. Physiol, vol.514, pp.759-768, 1999.

D. G. Wüstenberg and B. Grünewald, Pharmacology of the neuronal nicotinic acetylcholine receptor of cultured Kenyon cells of the honeybee, Apis mellifera, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol, vol.190, pp.807-821, 2004.

S. H. Thany, Electrophysiological studies and pharmacological properties of insect native nicotinic acetylcholine receptors, Adv. Exp. Med. Biol, vol.683, pp.53-63, 2010.

R. Lind, Characterisation of multiple ?-bungarotoxin binding sites in the aphid Myzus persicae (Hemiptera: Aphididae), vol.29, pp.979-988, 1999.

H. M. Eastham, R. J. Lind, J. L. Eastlake, B. S. Clarke, P. Towner et al., Characterization of a nicotinic acetylcholine receptor from the insect Manduca sexta, Eur. J. Neurosci, vol.10, pp.879-889, 1998.

M. Tomizawa, H. Otsuka, T. Miyamoto, M. E. Eldefrawi, and I. Yamamoto, Pharmacological characteristics of insect nicotinic Acetyicholine receptor with its ion channel and the comparison of the effect of nicotinoids and neonicotinoids, J. Pestic. Sci, vol.20, pp.57-64, 1995.

P. Wiesner and H. Kayser, Characterization of nicotinic acetylcholine receptors from the insects Aphis craccivora, Myzus persicae, and Locusta migratoria by radioligand binding assays: relation to thiamethoxam action, J. Biochem. Mol. Toxicol, vol.14, pp.221-230, 2000.

N. Zhang, M. Tomizawa, and J. E. Casida, Drosophila nicotinic receptors: evidence for imidacloprid insecticide and alpha-bungarotoxin binding to distinct sites, Neurosci. Lett, vol.371, pp.56-59, 2004.

P. Schloss, I. Hermans-borgmeyer, H. Betz, and E. D. Gundelfinger, Neuronal acetylcholine receptors in Drosophila: the ARD protein is a component of a high-affinity alpha-bungarotoxin binding complex, EMBO J, vol.7, pp.2889-2894, 1988.

M. Grauso, R. A. Reenan, E. Culetto, and D. B. Sattelle, Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing, Genetics, vol.160, pp.1519-1533, 2002.

J. Gao, J. M. Deacutis, and J. G. Scott, The nicotinic acetylcholine receptor subunits Mdalpha5 and Mdbeta3 on autosome 1 of Musca domestica are not involved in spinosad resistance, Insect Mol. Biol, vol.16, pp.691-701, 2007.

X. Yu, M. Wang, M. Kang, L. Liu, X. Guo et al., Molecular cloning and characterization of two nicotinic acetylcholine receptor ? subunit genes from Apis cerana cerana, Arch. Insect Biochem. Physiol, vol.77, pp.163-178, 2011.

J. A. Martin and S. F. Garczynski, Putative nicotinic acetylcholine receptor subunits express differentially through the life cycle of codling moth

E. Taillebois, Lepidoptera: Tortricidae), vol.23, pp.277-287, 2016.

G. Xu, S. Wu, Z. Teng, H. Yao, Q. Fang et al., Molecular characterization and expression profiles of nicotinic acetylcholine receptors in the rice striped stem borer, Chilo suppressalis (Lepidoptera: Crambidae), Insect Sci, vol.24, pp.371-384, 2017.

R. J. Lind, M. S. Clough, S. E. Reynolds, and F. G. Earley, Imidacloprid labels highand low-affinity nicotinic acetylcholine receptor-like binding sites in the AphidMyzus persicae(Hemiptera: Aphididae), Pestic, Biochem. Physiol, vol.62, pp.3-14, 1998.

M. Tomizawa, N. S. Millar, and J. E. Casida, Pharmacological profiles of recombinant and native insect nicotinic acetylcholine receptors, Insect Biochem. Mol. Biol, vol.35, pp.1347-1355, 2005.

N. Orr, A. J. Schaffner, and G. B. Watson, Pharmacological characterization of an epibatidine binding site in the nerve cord of Periplaneta americana, Pestic, Biochem. Physiol, pp.183-192, 1997.

K. Mori, T. Okumoto, N. Kawahara, and Y. Ozoe, Interaction of dinotefuran and its analogues with nicotinic acetylcholine receptors of cockroach nerve cords, Pest Manag. Sci, vol.58, pp.190-196, 2002.

S. L. Chao, T. J. Dennehy, and J. E. Casida, Whitefly (Hemiptera: Aleyrodidae) binding site for imidacloprid and related insecticides: a putative nicotinic acetylcholine receptor, J. Econ. Entomol, vol.90, pp.879-882, 1997.

M. Tomizawa, H. Otsuka, T. Miyamoto, M. E. Eldefrawi, and I. Yamamoto, Pharmacological characteristics of insect nicotinic acetylcholine receptor with its ion channel and the comparison of the effect of nicotinoids and neonicotinoids, Insect Biochem. Mol. Biol, pp.1347-1355, 2005.

M. Tomizawa and J. E. Casida, Neonicotinoid insecticide toxicology: mechanisms of selective action, Annu. Rev. Pharmacol. Toxicol, vol.45, pp.247-268, 2005.

K. Matsuda, S. D. Buckingham, D. Kleier, J. J. Rauh, M. Grauso et al., Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors, Trends Pharmacol. Sci, vol.22, pp.573-580, 2001.
DOI : 10.1016/s0165-6147(00)01820-4

A. Zhang, H. Kayser, P. Maienfisch, and J. E. Casida, Insect nicotinic acetylcholine receptor: conserved neonicotinoid specificity of, J. Neurochem, vol.75, issue.3, pp.1294-1303, 2000.

M. Liu and J. E. Casida, High affinity binding of [3H]Imidacloprid in the insect acetylcholine receptor, Pestic, Biochem. Physiol, vol.46, p.40, 1993.

H. Bao, Y. Liu, Y. Zhang, and Z. Liu, Two distinctive ? subunits are separately involved in two binding sites of imidacloprid with different affinities in Locusta migratoria manilensis, Pestic, Biochem. Physiol, vol.140, pp.36-41, 2017.

H. Kayser, C. Lee, A. Decock, M. Baur, J. Haettenschwiler et al., Comparative analysis of neonicotinoid binding to insect membranes: I. A structureactivity study of the mode of [3H]imidacloprid displacement in Myzus persicae and Aphis craccivora, Pest Manag. Sci, vol.60, pp.945-958, 2004.

H. Wellmann, M. Gomes, C. Lee, and H. Kayser, Comparative analysis of neonicotinoid binding to insect membranes: II. An unusual high affinity site for [3H]thiamethoxam in Myzus persicae and Aphis craccivora, Pest Manag. Sci, vol.60, pp.959-970, 2004.

H. Kayser, K. Lehmann, M. Gomes, W. Schleicher, K. Dotzauer et al., Binding of imidacloprid, thiamethoxam and N-desmethylthiamethoxam to nicotinic receptors of Myzus persicae: pharmacological profiling using neonicotinoids, natural agonists and antagonists, Pest Manag. Sci, vol.72, pp.2166-2175, 2016.

P. Cutler, R. Slater, A. J. Edmunds, P. Maienfisch, R. G. Hall et al., Investigating the mode of action of sulfoxaflor: a fourth-generation neonicotinoid, Pest Manag. Sci, vol.69, pp.607-619, 2013.

R. Nauen, U. Ebbinghaus-kintscher, and R. Schmuck, Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae), Pest Manag. Sci, vol.57, pp.577-586, 2001.

Y. Benzidane, S. Touinsi, E. Motte, A. Jadas-hécart, P. Communal et al., Effect of thiamethoxam on cockroach locomotor activity is associated with its metabolite clothianidin, Pest Manag. Sci, vol.66, pp.1351-1359, 2010.

R. Nauen, U. Ebbinghaus-kintscher, V. L. Salgado, and M. Kaussmann, Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants, Pestic, Biochem. Physiol, vol.76, pp.55-69, 2003.

G. B. Watson, M. R. Loso, J. M. Babcock, J. M. Hasler, T. J. Letherer et al., Novel nicotinic action of the sulfoximine insecticide sulfoxaflor, Insect Biochem. Mol. Biol, vol.41, pp.432-439, 2011.

G. B. Watson, M. B. Olson, K. W. Beavers, M. R. Loso, and T. C. Sparks, Characterization of a nicotinic acetylcholine receptor binding site for sulfoxaflor, a new sulfoximine insecticide for the control of sap-feeding insect pests, Pestic, Biochem. Physiol, vol.143, pp.90-94, 2017.

M. Liu, B. Latli, and J. E. Casida, Imidacloprid binding site in Musca nicotinic acetylcholine recpetor: interaction with physostigmine and a variety of nicotinic antagonists with chlorpyridyl and chlorothiazolyl substituents, Pestic. Biochem. Physiol, pp.170-181, 1995.

K. Kiriyama, H. Nishiwaki, Y. Nakagawa, and K. Nishimura, Insecticidal activity and nicotinic acetylcholine receptor binding of dinotefuran and its analogues in the housefly, Musca domestica, Pest Manag. Sci, vol.59, pp.1093-1100, 2003.

T. Wakita, K. Kinoshita, E. Yamada, N. Yasui, N. Kawahara et al., The discovery of dinotefuran: a novel neonicotinoid, Pest Manag. Sci, vol.59, pp.1016-1022, 2003.

S. Miyagi, I. Komaki, and Y. Ozoe, Identification of a high-affinity binding site for dinotefuran in the nerve cord of the American cockroach, Pest Manag. Sci, vol.62, pp.293-298, 2006.

H. Bao, X. Shao, Y. Zhang, J. Cheng, Y. Wang et al., IPPA08 allosterically enhances the action of imidacloprid on nicotinic acetylcholine receptors, Insect Biochem. Mol. Biol, vol.79, pp.36-41, 2016.

N. S. Millar, A review of experimental techniques used for the heterologous expression of nicotinic acetylcholine receptors, Biochem. Pharmacol, vol.78, pp.766-776, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00509506

N. S. Millar and S. J. Lansdell, Characterisation of insect nicotinic acetylcholine receptors by heterologous expression, Adv. Exp. Med. Biol, vol.683, pp.65-73, 2010.

B. Selvam, J. Graton, A. D. Laurent, Z. Alamiddine, M. Mathé-allainmat et al., Imidacloprid and thiacloprid neonicotinoids bind more favourably to cockroach than to honeybee ?6 nicotinic acetylcholine receptor: insights from computational studies, J. Mol. Graph. Model, vol.55, pp.1-12, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01389003

Y. Onozaki, R. Horikoshi, I. Ohno, S. Kitsuda, K. A. Durkin et al., Flupyrimin: a novel insecticide acting at the nicotinic acetylcholine receptors, J. Agric. Food Chem, vol.65, pp.7865-7873, 2017.

S. H. Thany, M. Crozatier, V. Raymond-delpech, M. Gauthier, and G. Lenaers, Apisalpha2, Apisalpha7-1 and Apisalpha7-2: three new neuronal nicotinic acetylcholine receptor alpha-subunits in the honeybee brain, vol.344, pp.125-132, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00169828

S. H. Thany, G. Lenaers, M. Crozatier, C. Armengaud, and M. Gauthier, Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee, Apis mellifera, Insect Mol. Biol, vol.12, pp.255-262, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00169835

J. P. Dupuis, M. Gauthier, and V. Raymond-delpech, Expression patterns of nicotinic subunits ?2, ?7, ?8, and ?1 affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles, J. Neurophysiol, vol.106, pp.1604-1613, 2011.

M. Gauthier, M. Dacher, S. Thany, C. Niggebrugge, P. Deglise et al., Involvement of ?-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee (Apis mellifera), Neurobiol. Learn. Mem, vol.86, pp.164-174, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00170352

M. Tomizawa, B. Latli, and J. E. Casida, Novel neonicotinoid-agarose affinity column for Drosophila and Musca nicotinic acetylcholine receptors, J. Neurochem, vol.67, pp.1669-1676, 1996.

E. Taillebois,