Skip to Main content Skip to Navigation
Theses

Joint radio and power resource optimal management for wireless cellular networks interconnected through smart grids

Abstract : Pushed by an unprecedented increase in data traffic, Mobile Network Operators (MNOs) are densifying their networks through the deployment of Small-cell Base Stations (SBS), low-range radio-access transceivers that offer enhanced capacity and improved coverage. This new infrastructure – Heterogeneous cellular Network (HetNet) -- uses a hierarchy of high-power Macro-cell Base Stations overlaid with several low-power (SBSs).The augmenting deployment and operation of the HetNets raise a new crucial concern regarding their energy consumption and carbon footprint. In this context, the use of energy-harvesting technologies in mobile networks have gained particular interest. The environment-friendly power sources coupled with energy storage capabilities have the potential to reduce the carbon emissions as well as the electricity operating expenditures of MNOs.The integration of renewable energy (solar panel) and energy storage capability (battery) in SBSs gain in efficiency thanks to the technological and economic enablers brought by the Smart Grid (SG). However, the obtained architecture, which we call Green Small-Cell Base Station (GSBS), is complex. First, the multitude of power sources, the system aging, and the dynamic electricity price in the (SG) are factors that require design and management to enable the (GSBS) to efficiently operate. Second, there is a close dependence between the system sizing and control, which requires an approach to address these problems simultaneously. Finally, the achievement of a holistic management in a (HetNet) requires a network-level energy-aware scheme that jointly optimizes the local energy resources and radio collaboration between the SBSs.Accordingly, we have elaborated pre-deployment and post-deployment optimization frameworks for GSBSs that allow the MNOs to jointly reduce their electricity expenses and the equipment degradation. The pre-deployment optimization consists in an effective sizing of the GSBS that accounts for the battery aging and the associated management of the energy resources. The problem is formulated and the optimal sizing is approximated using average profiles, through an iterative method based on the non-linear solver “fmincon”. The post-deployment scheme relies on learning capabilities to dynamically adjust the GSBS energy management to its environment (weather conditions, traffic load, and electricity cost). The solution is based on the fuzzy Q-learning that consists in tuning a fuzzy inference system (which represents the energy arbitrage in the system) with the Q-learning algorithm. Then, we formalize an energy-aware load-balancing scheme to extend the local energy management to a network-level collaboration. We propose a two-stage algorithm to solve the formulated problem by combining hierarchical controllers at the GSBS-level and at the network-level. The two stages are alternated to continuously plan and adapt the energy management to the radio collaboration in the HetNet.Simulation results show that, by considering the battery aging and the impact of the system design and the energy strategy on each other, the optimal sizing of the GSBS is able to maximize the return on investment with respect to the technical and economic conditions of the deployment. Also, thanks to its learning capabilities, the GSBSs can be deployed in a plug-and-play fashion, with the ability to self-organize, improve the operating energy cost of the system, and preserves the battery lifespan.
Complete list of metadatas

Cited literature [107 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02102201
Contributor : Abes Star :  Contact
Submitted on : Wednesday, April 17, 2019 - 10:13:08 AM
Last modification on : Tuesday, October 6, 2020 - 4:24:20 PM

File

MENDIL_2018_diffusion.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02102201, version 1

Collections

STAR | CNRS | CEA | DRT | LETI | CEA-GRE | UGA | G2ELAB

Citation

Mouhcine Mendil. Joint radio and power resource optimal management for wireless cellular networks interconnected through smart grids. Signal and Image processing. Université Grenoble Alpes, 2018. English. ⟨NNT : 2018GREAT087⟩. ⟨tel-02102201⟩

Share

Metrics

Record views

167

Files downloads

125