I. Averbakh, Minimizing the makespan in multiserver network restoration problems, Networks, vol.70, issue.1, p.48, 2017.

J. Bb-la?-zewicz, M. Dror, and J. W¸eglarzw¸eglarz, Mathematical programming formulations for machine scheduling: A survey, European Journal of Operational Research, vol.51, issue.3, p.44, 1991.

P. Baptiste and V. G. Timkovsky, On preemption redundancy in scheduling unit processing time jobs on two parallel machines, Operations Research Letters, vol.28, issue.5, pp.205-212, 2001.

P. Baptiste, P. Brucker, S. Knust, and V. G. Timkovsky, Ten notes on equal-processing-time scheduling, Quarterly Journal of the Belgian, vol.2, issue.2, p.48, 2004.
DOI : 10.1007/s10288-003-0024-4

URL : https://hal.archives-ouvertes.fr/inria-00124157

P. Brucker, Scheduling algorithms, vol.3, 2007.

P. Brucker, M. R. Garey, and D. S. Johnson, Scheduling equal-length tasks under treelike precedence constraints to minimize maximum lateness, Mathematics of Operations Research, vol.2, issue.3, p.27, 1977.
DOI : 10.1287/moor.2.3.275

P. Brucker, J. L. Hurink, and S. Knust, A polynomial algorithm for P |p j = 1, r j , outtree| C j, Math. Methods Oper. Res, vol.8, p.27, 2001.
DOI : 10.1007/s001860200228

P. Brucker, S. Heitmann, and J. Hurink, How useful are preemptive schedules?, Operations Research Letters, vol.31, issue.2, p.23, 2003.
DOI : 10.1016/s0167-6377(02)00220-1

URL : https://ris.utwente.nl/ws/files/5112989/1605.pdf

J. Bruno, E. G. Coffman, and R. Sethi, Scheduling independent tasks to reduce mean finishing time, Communications of the ACM, vol.17, issue.7, pp.382-387, 1974.
DOI : 10.1145/361011.361064

M. Chardon and A. Moukrim, The coffman-graham algorithm optimally solves uet task systems with overinterval orders, SIAM Journal on Discrete Mathematics, vol.19, issue.1, pp.109-121, 2005.
DOI : 10.1137/s0895480101394999

E. G. Coffman and R. L. Graham, Optimal scheduling for two-processor systems, Acta informatica, vol.1, issue.3, pp.200-213, 1972.
DOI : 10.1007/bf00288685

R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of scheduling. eading. Massachussets, 1967.

Y. Demir and S. K. I¸sleyeni¸sleyen, Evaluation of mathematical models for flexible job-shop scheduling problems, Applied Mathematical Modelling, vol.37, issue.3, p.44, 2013.

K. Djellab, Scheduling preemptive jobs with precedence constraints on parallel machines, European journal of operational research, vol.117, issue.2, pp.355-367, 1999.
DOI : 10.1016/s0377-2217(98)00234-3

D. Dolev and M. K. Warmuth, Scheduling precedence graphs of bounded height, Journal of Algorithms, vol.5, issue.1, pp.48-59, 1984.

D. Dolev and M. K. Warmuth, Profile scheduling of opposing forests and level orders, SIAM Journal on Algebraic Discrete Methods, vol.6, issue.4, pp.665-687, 1985.

J. Du, J. Y. Leung, and G. H. Young, Scheduling chain-structured tasks to minimize makespan and mean flow time, Information and Computation, vol.92, issue.2, pp.219-236, 1991.

P. C. Fishburn, Interval orders and interval graphs: A study of partially ordered sets, 1985.

J. Gao, M. Gen, and L. Sun, Scheduling jobs and maintenances in flexible job shop with a hybrid genetic algorithm, Journal of Intelligent Manufacturing, vol.17, issue.4, p.43, 2006.

M. R. Garey and D. S. Johnson, Computers and intractability: a guide to np-completeness, p.11, 1979.

M. R. Garey and D. S. Johnson, Computers and intractability, wh freeman, vol.29, p.11, 2002.

M. R. Garey, D. S. Johnson, E. Tarjan, and M. Yannakakis, Scheduling opposing forests, SIAM Journal on Algebraic Discrete Methods, vol.4, issue.1, p.27, 1983.

T. F. Gonzalez and D. B. Johnson, A new algorithm for preemptive scheduling of trees, Journal of the ACM (JACM), vol.27, issue.2, p.27, 1980.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan, Optimization and approximation in deterministic sequencing and scheduling: a survey, Annals of discrete mathematics, vol.5, issue.4, pp.287-326, 1979.

T. C. Hu, Parallel sequencing and assembly line problems, Operations research, vol.9, issue.6, p.30, 1961.

Y. Huo, J. , and Y. Leung, Minimizing mean flow time for UET tasks, ACM Transactions on Algorithms (TALG), vol.2, issue.2, pp.244-262, 2006.

S. Knust and P. Brucker, Complexity results for scheduling problems, 2009.

R. Kolisch and A. Sprecher, Psplib -a project scheduling problem library, EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, vol.42, p.45, 1996.

W. Kubiak, D. Rebaine, and C. Potts, Optimality of hlf for scheduling divide-and-conquer uet task graphs on identical parallel processors, Discrete Optimization, vol.6, issue.1, pp.79-91, 2009.

E. L. Lawler, Sequencing jobs to minimize total weighted completion time subject to precedence constraints, Annals of Discrete Mathematics, vol.2, pp.75-90, 1978.

E. L. Lawler, Preemptive scheduling of. precedence-constrained jobs on parallel machines, Deterministic and stochastic scheduling, vol.8, p.27, 1982.

J. K. Lenstra, A. , and R. Kan, Complexity of scheduling under precedence constraints, Operations Research, vol.26, issue.1, pp.22-35, 1978.

J. K. Lenstra, A. R. Kan, and P. Brucker, Complexity of machine scheduling problems, Annals of discrete mathematics, vol.1, p.42, 1977.

C. Low, Y. Yip, and T. Wu, Modelling and heuristics of fms scheduling with multiple objectives, Computers & operations research, vol.33, issue.3, p.43, 2006.

R. H. Möhring, Computationally tractable classes of ordered sets, Algorithms and order, pp.105-193, 1989.

A. Moukrim, Non-preemptive profile scheduling and quasi interval orders, Electronic Notes in Discrete Mathematics, vol.3, issue.8, pp.133-139, 1999.

C. Ozgüven, L. Ozbak?r, and Y. Yavuz, Mathematical models for job-shop scheduling problems with routing and process plan flexibility, Applied Mathematical Modelling, vol.34, issue.6, p.43, 2010.

C. H. Papadimitriou and M. Yannakakis, Scheduling interval-ordered tasks, SIAM Journal on Computing, vol.8, issue.3, pp.405-409, 1979.

M. L. Pinedo, Scheduling: theory, algorithms, and systems, vol.7, p.15, 2005.

D. Prot and O. Bellenguez-morineau, A survey on how the structure of precedence constraints may change the complexity class of scheduling problems, Journal of Scheduling, vol.8, issue.2, p.9, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01836884

C. S. Thomalla, Job shop scheduling with alternative process plans, International Journal of Production Economics, vol.74, issue.1, p.42, 2001.

J. D. Ullman, NP-complete scheduling problems, Journal of Computer and System sciences, vol.10, issue.3, p.7, 1975.

J. D. Ullman and ;. , Complexity of sequencing problems

Y. Unlu and S. J. Mason, Evaluation of mixed integer programming formulations for non-preemptive parallel machine scheduling problems, Computers & Industrial Engineering, vol.58, issue.4, p.43, 2010.

G. Weiss and M. Pinedo, Scheduling: Theory, algorithms, and systems, 2012.