
HAL Id: tel-02101466
https://tel.archives-ouvertes.fr/tel-02101466

Submitted on 16 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel machine scheduling with precedence constraints
Tianyu Wang

To cite this version:
Tianyu Wang. Parallel machine scheduling with precedence constraints. Computer science. École
centrale de Nantes, 2018. English. �NNT : 2018ECDN0025�. �tel-02101466�

https://tel.archives-ouvertes.fr/tel-02101466
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L'ÉCOLE CENTRALE DE NANTES
COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : Ordonnancement

Ordonnancement Parallèle avec Contraintes de Précédence

Thèse présentée et soutenue à Nantes, le 05/10/2018
Unité de recherche : Laboratoire des Sciences du Numérique de Nantes (LS2N)

Par

Tianyu WANG

Rapporteurs avant soutenance :

Christophe Dürr Directeur de recherche, Sorbonne Université
Julien Moncel Maître de conférences HDR, IUT de Roadez

Composition du Jury :

Président : Julien Moncel Maître de conférences HDR, IUT de Roadez

Examinateurs : André Rossi Professeur, Université d’Angers
 Pierre Lemaire Maître de conférences, Grenoble INP
 Olivier Henri Roux Professeur, Ecole Centrale de Nantes
 Christophe Dürr Directeur de recherche, Sorbonne Université

Dir. de thèse : Odile Bellenguez-Morineau Maître assistant HDR, IMT Atlantique

Titre : Ordonnancement parallèle avec contraintes de précédence

Mots clés : Ordonnancement, complexité, contraintes de précédence

Résumé : Dans cette thèse, nous considérons
une famille des problèmes d’ordonnancement
avec machine parallèle identique et contraintes
de précédences. Ce champ de recherche fait
l’objet de nombreuses études. Malgré tout, la
complexité de ces problèmes varie selon de
nombreux paramètres, notamment le type de
graphe de précédence ou le critère retenu. De
plus, il existe encore de nombreux problèmes
ouverts. Nous étudions certains de ces
problèmes dans cette thèse. Nous montrons
notamment que le problème ouvert avec
tâches de durée unitaires et graphe de
précédence de type intree est NP-complet.
Puis, nous prouvons que le problème avec
graphe de précédence de type levelorder
est NP-complet aussi. La preuve est ensuite
étendue à des problèmes connexes.

Par la suite, on améliore un algorithme
exponentiel pour un problème spécifique qui
est NP-complet.
Enfin, nous proposons un modèle linéaire pour
le problème avec contraintes de précédence
quelconque, améliorant aussi les résultats de
littérature.

Title : Parallel machine scheduling with precedence constraints

Keywords : Scheduling, complexity, precedence constraints

Abstract : The main problem studied in this
thesis is that of parallel machine scheduling
with precedence constraints. The complexity
depends on the shape that the precedence
graph takes and the objective function. We
prove that one minimum-open problem of
scheduling equal-processing-time jobs which
subject to in-tree precedence constrains is
NPcomplete while minimizing the total
competition time. Then, we prove that the open
problem of scheduling level-order precedence
constrains is NP-complete too. We adapted the
second proof to other scheduling problems as
well.

On the other hand, we improved an
exponential algorithm designed for a specific
NP-hard problem. At the end, we propose a
linear programming model for the general
scheduling problem with arbitrary precedence
constraints and processing-time. We adapt the
existing models which are originally designed
for other scheduling problems to parallel
scheduling problem and compare these models
with ours.

Acknowledgement

Foremost, I would like to express my sincere gratitude to my supervisor, Odile BELLENGUEZ-MORINEAU
for her contributions of time, for her patience, for her continuous support in both academic life and paperwork,
and for her trust in me. I could not have imagined having a better supervisor.

I would like to thank the jury and CST members: Christoph DÜRR, Julien MONCEL, André ROSSI,
Pierre LEMAIRE, Olivier HENRI ROUX, Federico DELLA CROCE, and Christophe RAPINE, for their
interest in my research and insightful comments.

I am grateful to all members of SLP with whom I have had the pleasure to work. My sincere thanks also
go to all my friends in Nantes for all the fun we have had. I would also like to thank the financial support of
China Scholarship Council.

I owe my deepest gratitude to my dear family for their continuous encouragement, unconditional love and
support. Also, for my loving and beloved Qianyi, her faithful support is appreciated.

Contents

I Introduction 1

1 General framework 4
1.1 Notation . 4

1.1.1 Machine environment . 4
1.1.2 Constraints environment . 4
1.1.3 Objective function . 5

1.2 Precedence Graphs . 5
1.3 Complexity result overview . 7

1.3.1 Minimizing the makespan . 7
1.3.2 Minimizing the total completion time . 8
1.3.3 Additional results . 8

1.4 Conclusion . 9

II Computational complexity 10

2 P |pj = 1, i.t.|
∑
Cj 12

2.1 Transformation . 12
2.2 Proof for If . 12
2.3 Proof for Only If . 15

3 P |pj = 1, l.o., pmtn|Cmax and other problems 19
3.1 Transformation . 19
3.2 Proof for If . 20
3.3 Proof for Only If . 21
3.4 Other problems . 23

3.4.1 Level-order graph and total completion time . 23
3.4.2 Out-trees, Maximum Lateness . 24
3.4.3 Opposing-forest, makespan . 25
3.4.4 Opposing-forest, total completion time . 26

3.5 Conclusion . 27

III Problem solving 28

4 An improved algorithm for P |pj = p, i.t.|
∑
Cj 30

4.1 Previous studies . 30
4.2 Further analysis . 30

4.2.1 Definitions . 30
4.2.2 Construction of regular optimal schedule (S) from an arbitrary optimal schedule (S∗) 32
4.2.3 Properties of (S) . 33
4.2.4 Proof for the regularity . 37

4.3 The algorithm . 38
4.3.1 Example . 38

ii

4.4 Experiments . 40
4.5 Conclusion . 41

5 Modeling P |prec|Cmax 42
5.1 Preliminary . 42
5.2 Time-Indexed Model (TIM) . 42
5.3 Relative-Order-Indexed Model1 (ROIM1) . 43

5.3.1 Relative-Order-Indexed Model 2 (ROIM2) . 43
5.3.2 Absolute-Order-Indexed Model (AOIM) . 44
5.3.3 Compact Model (CM) . 44

5.4 Test Result and Analysis . 45
5.5 Conclusion and Perspective . 46

IV Conclusion 47

iii

List of Tables

1.1 An overview of open parallel scheduling problems with equal-processing-time jobs 9

3.1 An updated overview of complexity of P |pj = 1, β|γ . 27

4.1 Experimental results: average time in seconds, where B,N stand for Baptiste’s algorithm and
the new algorithm . 40

5.1 Performance of various models . 45
5.2 Number of variables and constraints, where BV/IV/C means number of binary variables/integer

variables/constraints . 45
5.3 Performance of ROIM1 and CM with/without redundant constraints, average time in sec. . . 46
5.4 Performance of AOIM with/without redundant constraints, average time in sec. 46
5.5 Models’ performance solving instances of n = 30,m = 4 with/without Cj 46

iv

List of Figures

1.1 Opposing forest, where the left component is an in-tree and the right component is an out-tree 6
1.2 level vs height. 6
1.3 Example of a level-order graph with two components . 6
1.4 Graphs relations . 7
1.5 Complexity Hierarchies (Pinedo, 2012) . 7

2.1 in-tree of x-jobs . 13
2.2 in-tree of u-jobs and v-jobs for each a ∈ A . 13
2.3 Gantt graph of (S∗) . 14

3.1 x-jobs . 20
3.2 the u-jobs and v-jobs, u-jobs and v-jobs . 20
3.3 A full non-preemptive schedule (S∗) where blue (yellow, red) represents the x-jobs (resp. v-

jobs, u-jobs) . 20
3.4 x-jobs built by out-tree . 24
3.5 x-jobs built by an opposing-forest where green (brown) points represent an in-tree (out-tree) 25

4.1 Profile of an optimal schedule . 31
4.2 The in-tree graph. Job j is in red, set X is in box �, LX(j) = ∅, PX(j) is solid, and SX(j) is in

the oval. 31
4.3 example: JT in graph G and an optimal schedule (S∗) . 32
4.4 example: (S) . 32
4.5 example: J′ ∪ J1 in G and its reverse graph GR. The relation of height and level. 33
4.6 example: schedule by Hu’s algorithm and its reverse schedule 33
4.7 GR: when executing jR1 , the available jobs in pred(B∗)R prior to jR2 are in the oval. 36
4.8 Example, where P is in the rectangle when L = {16} . 39

v

Part I

Introduction

1

The scheduling theory is widely applied in various scenarios such as manufacturing processes, practical
computer systems, distribution settings, project management, etc. Thus, the scheduling problems are de-
scribed as an allocation of resources to tasks over given time periods and its goal is to optimize one or more
objectives in (Pinedo, 2012). This allocation indicates the information about the order of jobs to be executed,
which is known as the sequencing problem when time is not considered. This thesis deals primarily with
job-machine scheduling models, where the resources, such as real machines in workshop, processing units at
a construction site, are modeled as machines and the tasks to be scheduled are modeled by jobs.

In scheduling problems, variables are usually considered as discrete. As a combinatorial optimization
problem, a scheduling problem has various constraints and an objective function. In particular, constraints
that we study include precedence constraints between jobs (or precedence relations in some literature). This
relation between jobs can commonly be found in project management, logistics, routing, assembly flow, and
networking. In precedence constraints, jobs are partially-ordered and can be represented by nodes in a
directed acyclic graph (DAG). Jobs must be scheduled with respect to their priority order given by these
constraints. Ordinarily, the objective function to minimize is the makespan (length) or the total completion
time of all jobs. The makespan describes the utilization of machines while the total completion time reflects
holding time (flow time) incurred by the schedule.

An early systematic mathematical study of scheduling problem can be traced back to the 60th (Conway
et al., 1967). Then, during the past 50 years, the scheduling theory has been developed in a variety of
directions:

In terms of decision time, the scheduling problem exists in two forms: static (off-line) and dynamic
(on-line). In static scheduling, the data, including jobs’ processing times, precedence constraints and syn-
chronizations, are known beforehand. On the opposite in dynamic scheduling, which is also referred to as
real-time scheduling, few assumptions can be made before execution, and thus, scheduling decisions must
be made on-the-fly. According to the fact that we are interested in complexity, we address only the static
scheduling problem in this study.

In terms of number of machines, scheduling problems have single-machine and multi-resources versions.
Recently, as the development of High-performance computing (HPC) is explored, it is widely recognized that
multi-machine scheduling is becoming more and more important. We consider a special case of multi-machine
scheduling problem: parallel scheduling, where machines are identical, which means each one can execute all
the jobs with the same speed. This assumption does not necessarily hold in real world but could be seen as a
simplified version of unrelated parallel machines (RM). It is significant as a lower bound. Another extensively
studied multi-machines case is shop scheduling problem, where jobs have to be processed at different stages
in series. When machines are partitioned into work centers for different stages, the model is called flexible or
hybrid, and is a generalization of parallel scheduling problem as well because machines in each work center
are used in parallel. The related research is so abundant that some valuable results can be applied to parallel
scheduling.

For the general case, when the processing time and the precedence graph are arbitrary, the parallel
scheduling problem is NP-complete, yet some specially simplified version can be optimally solved by a
polynomial-time algorithm. A common simplification assumes that jobs are released at the beginning and
have equal-processing-time (even unit-processing-time) and have no due date. However, the intractability
also stems from the structure of the precedence graph to a large extent. A considerable amount of studies
have been carried out since the 70th on the computational complexity of problems with specific precedence
graphs (Ullman, 1975). They reveal that the complexity varies with the form, such as chains or trees, that the
precedence graphs take. Prot and Bellenguez-Morineau (2017) surveyed these relevant results and pointed
out that there exists still great number of open problems. Hence, we focus on these open problems in this
thesis. This work goes on with the age-old research issue of studying scheduling problems’ complexity which
aims for sake of clarifying and understanding the borderline between the “hard” and “easy” cases. As all
efforts to find polynomial time algorithms for the NP-complete problems have failed, the significance is to
close open problems in order to avoid wasteful attempt to optimally solve these NP-complete problems by
a polynomial algorithm, unless P = NP . We give the proof of NP-completeness for some problems. The
results of these works will have implications for range of practical applications which can be modeled by the
parallel scheduling problem with precedence constraints.

Once a problem has been closed, a wide range of methods can be proposed to solve it. Polynomial algo-
rithms are designed for tractable problems. Many of them choose a dispatching rule, such as the Shortest
Processing Time (SPT) or Highest Level First (HLF). They are called list scheduling and can be used as

2

heuristic or even approximate methods for intractable problems. Add to this, there exist several exponential
methods. For general scheduling problems, some integer-programming-based models already exist. In the
second part of this thesis, we study different existing models and adaptation in order to improve resolution
of parallel scheduling problem and add precedence constraints. We propose a new model which requires
less variables (space) and less time for a linear-programing solver such as CPLEX. Furthermore, exponen-
tial algorithms can be used to solve optimally NP-hard problems. These algorithms have an exponential
complexity, where the exponents are widely the number of machines m. When m is fixed, the problem is
polynomial solvable. We consider the problem where the precedence graph is an in-tree while minimizing the
total completion time, and propose an improvement of an exact method for this problem.

In the following reminder we describe in detail the organization of this thesis:
Chapter 1 defines the notion of scheduling problems, including different precedence constraints and a

sketch of complexity results in literature.
Then, in part II, we present our NP-completeness results of different scheduling problems with unit-

processing time jobs. We first introduce the 3-Partition problem. Then, two scheduling problems, P |pj =
1, i.t.|

∑
Cj and P |pj = 1, l.o., pmtn|Cmax, are separately considered in chapter 2 and 3. In the latter chapter,

we adapt the proof to other scheduling problems as well.
Part III is dedicated to solve some NP-complete scheduling problems. We first study the problem

P |pj = p, i.t.|
∑
Cj in chapter 4. We put forward an algorithm which is both theoretically and experimentally

faster than the existing algorithm. Then, chapter 5 is developed to model the general scheduling problem
P |prec|Cmax. We adapted the existing models which are originally designed for other problems, and propose
a new one. We compare their performance and show that our model outperforms the others.

Finally, in part IV, we conclude by presenting a synthesis of all the results and by providing perspectives.

3

Chapter 1

General framework

In this thesis, we consider deterministic and off-line scheduling problems. We consider mainly parallel schedul-
ing problem with precedence constraints. In this chapter, we first present the notations and the framework
of problems we study throughout this thesis. Then, we are interested in the relation between the precedence
constraints and the complexity. So, we introduce in section 1.2 the different graphs that will be considered.
The general complexity result will be presented in section 1.3, while we point out the background where our
research begins.

1.1 Notation

As mentioned, the scheduling problems are about allocating resources to a set of jobs over the time. We use
JT to represent the set of all the n jobs to be scheduled. Similarly, a blackboard bold typeface such as J and
X represent always a set of jobs. We use always j to represent a job throughout the text.

The problems can be precisely described in terms of machines, constraints and objective function. Re-
spectively, a triplet α|β|γ, called 3-field notation, is generally used to represent scheduling problems. This
notation is introduced by Graham et al. (1979) and updated by Brucker (2007).

1.1.1 Machine environment

The machine environment is described by the α-field, in the following we will consider one of those cases:

P parallel identical machines environment. Most problems studied in this thesis consider parallel machine
environment, where machines have the same processing speed and no relationship between each other.
The number of machines is represented by m throughout the text.

Pm The number of machines m is considered as a constant. If the variable m is chosen as a fixed parameter,
some NP-hard problem may have polynomial algorithms.

profile In some studies, such as (Dolev and Warmuth, 1985), the number of available machines varies along
the time as a function. This is called profile scheduling.

1.1.2 Constraints environment

The constraints environment is described by β-field:

prec The precedence constraints can be represented by a directed acyclic graph (DAG): G = (JT , E), where
job j1 precedes j2 is represented by respectively j1 ≺ j2 or j1 → j2. In some literature, it is represented
by a partial order (≺, JT), which is equivalent to a DAG.

Most particular structures of precedence constraints which are widely discussed are more intuitive when
described by DAG, such as chains, trees, and forests to be presented in the next section, while some
others are originally defined as a partial order, such as interval orders (Fishburn, 1985). As those
representations are equivalent, to facilitate discussion, DAG are more generally used and also called

4

precedence graphs. Precisely, when the precedence graph takes a particular structure, its acronym will
replace the item prec. We will successively consider:

1. chains (ch.)

2. in-tree (i.t.)

3. out-tree (o.t.)

4. opposing forests (o.f.)

5. level-order (l.o.)

6. series parallel (s.p.)

Those particular graphs will be detailed in section 1.2.

pmtn During a schedule, preemption may be allowed, it means a job may be preempted by other job (s)
and resumed later. We assume that the preemption and resumption of jobs are immediate and take no
time.

rj Each job is given an integer release date rj , which is the moment of time when the job arrives, and it
cannot start before rj .

d̄j Each job is given a deadline d̄j , as its name implies, it is the maximum completion time of one job in a
feasible schedule. The term feasible is used to describe a schedule which satisfies all the constraints.

dj A relaxation of deadline is the due date dj of jobs. It is not a constraint, but a committed completion
date (Pinedo, 2012). A job that finishes after the due date is called a tardy job.

pj = p Each job requires a processing time, or execution time in some literature, represented by pj . A
simplified case can be considered when they have equal processing time, noted as pj = p. A further
simplified one is unit processing time, or UET in some literature, i.e. pj = 1. Those two cases are not
distinguished when the release date, due date, and deadline are integer multiples of p.

1.1.3 Objective function

The γ-field describes the objective function, which may be:

Cmax The makespan, which is the largest completion time. The completion time of job j is note Cj , then
Cmax = max

j∈JT
Cj . Besides, the starting time of job j in a schedule is represented as Sj .

Lmax The maximum lateness, where the lateness of a job is defined as Lj = Cj − dj and Lmax = max
j∈JT

Lj .∑
Cj The total completion time, also named as total flow time or mean flow time in some literature when

all jobs are released at the beginning as flow time is usually defined as Cj− rj . When jobs are weighted
differently, this can be written as

∑
wjCj , the total weighted completion time.∑

Uj The number of tardy jobs where the binary Uj takes value 1 if and only if job j is tardy, i.e. Cj > dj .
When jobs are weighted differently, this can be written as

∑
wjUj .∑

Tj The total tardiness, where the tardiness is defined as Tj = max {Lj , 0}. When jobs are weighted
differently, this can be written as

∑
wjTj .

1.2 Precedence Graphs

In this section, we give the full definitions of the different precedence graphs that will be used in this study.
First of all, we use the term predecessor and successor only in the sense of precedence constraints, to

distinguish from the jobs executed before or after in a certain schedule. We define the job which does not
have a successor (predecessor) as a final (initial) job.

The first considered graph is chains (abbrv. ch), where each job has at most one direct predecessor and
at most one direct successor. An in-tree (abbrv. i.t.) is a connected graph where each job has at most one

5

direct successor. In an opposite way, an out-tree (abbrv. o.t.) is a connected graph where each job has at
most one direct predecessor.

It should be remarked that in some literature, the in-trees (out-trees) or in-forests (out-forests) is a
collection of in-trees (out-trees). But by adding into this graph a dummy job which precedes (successes)
all others, we combine the components1 in a single in-tree (out-tree). It has been showed that non-delay
schedule are dominant in (Weiss and Pinedo, 2012), which means solutions without enforced idle time. So,
this dummy job will clearly be scheduled right after (before) the schedule of the sub-components. Then, it is
clear that in-trees can be transformed into an equivalent in-tree. So, only the term in-tree (out-tree) is used
in this thesis. Nevertheless, a combination of in-tree and out-tree, which is defined as an opposing forest
(abbrv. o.f.), is worth discussing.

Figure 1.1: Opposing forest, where the left component is an in-tree and the right component is an out-tree

For the next definition, we consider the level in a graph. But it is defined using different ways in literature.
It is sometimes confused with term height. We hereby choose the following definition:

The height of job j, h(j) is the length of the longest chain from j to a final job. The height of the graph
is the largest height of job in this graph, noted as h. The level of job j, l(j) is recursively defined as:

l(j) =

{
h if j is initial task in G

min{l(p)|p ∈ pred(j)} − 1 otherwise

Their difference can be seen in Figure 1.2.

l = 1

1

4

3

5l = 3

7

l = 4

l = 2

2

6

h = 3

h = 2

h = 0

h = 1 4

5

2

6 3

7

1

Level Height

l = 1

1

4

3

5l = 3

7

l = 4

l = 2

2

6

h = 3

h = 2

h = 0

h = 1 4

5

2

6 3

7

1

Level Height

Figure 1.2: level vs height.

The term level represents the set of jobs on the same level when there is no ambiguity. Then, we may
introduce the definition of a level-order graph, such that in each component, jobs on the same level precede
all jobs of the next level.

Figure 1.3: Example of a level-order graph with two components

1A component is a subgraph where there is a path connecting any two nodes

6

Finally, a more general class of graph which covers all the graphs above: series-parallel (abbrv. s.p.)
(Lawler, 1978) .

The relation between these classes can be seen in Fig. 1.4.

Figure 1.4: Graphs relations

1.3 Complexity result overview

In this section, we give here a general overview of complexity results and open problems. Pinedo (2012)
illustrates the complexity hierarchies of scheduling problems on objective functions, see Fig. 1.5, in which
γ1 → γ2 means that minimizing γ1 is a sub-case of minimizing γ2. So, if it is NP-hard to minimize γ1, then,
it is NP-hard to minimize γ2; if the problem can be solved for γ2, then it can be solved for γ1.

2.4 Complexity Hierarchy 27

(b)

(c)

(a)

rj

0

�w jTj �w jUj

�T j

L max

Cmax

�w jCj

�C j

�U j

0 0 0

sjk prmp prec

0

brkdwn

0

Mj

0

block

0

nwt

0

recrc

Rm

Qm FFc Jm

Pm Fm

1

Om

FJc

Fig. 2.7 Complexity hierarchies of deterministic scheduling problems:
(a) Machine environments (b) Processing restrictions and constraints

(c) Objective functions

(iii) F 2 || Cmax ,
(iv) Jm || Cmax ,
(v) F F c || Cmax .

The complexity hierarchy is depicted in Figure 2.8. ||

Example 2.4.2 (A Complexity Hierarchy)

Consider the problems

(i) 1 || L max ,
(ii) 1 | prmp | L max ,
(iii) 1 | r j | L max ,

Figure 1.5: Complexity Hierarchies (Pinedo, 2012)

As it can be seen, all objective functions are generated from two basic criteria: Cmax and
∑
Cj . In this

thesis, we study problems with these two basic objective functions for the most part.
Considering the makespan Lenstra et al. (1977) proved that the general problem, P2||Cmax, is NP-

complete even without any precedence for 2 machines while minimizing the makespan. Minimizing the total
completion time seems to be more tractable: Bruno et al. (1974) proposed an optimal polynomial algorithm
for a generalized problem without precedence constraints where machines are allowed to be unrelated, i.e.
R||
∑
Cj . However, when the simplest precedence constraints, chains, are added, the problem (P2|ch|

∑
Cj

or P2|ch|Cmax) is NP-complete no matter for total completion time or for makespan even with only two
machines (Du et al., 1991).

A common simplification is to consider the unit-processing-time jobs. However, the problem P |prec, pj =
1|Cmax is still NP-complete for arbitrary precedence constraints no matter whether preemption is allowed
(Ullman, 1976) or not (Ullman, 1975). But when the precedence graph is chains, in-tree, out-tree, level-order
or opposing forests presented in the last subsection, the complexity results may change according to objective
functions.

In the following two subsections, we present the complexity results separately for minimizing the makespan
and total completion time, when focusing on equal-processing-time jobs.

1.3.1 Minimizing the makespan

Now, we consider the makespan as the objective function. A well-known scheduling algorithm is proposed
by Coffman and Graham (1972). It is termed as Coffman-Graham algorithm, or CG algorithm as well.

7

This algorithm minimizes the makespan for two machines scheduling with an arbitrary precedence graph,
P2|prec, pj = 1|Cmax. This algorithm labels jobs according to certain rules. Then, it executes jobs with the
largest labels when there are more than m available jobs. This kind of strategy is called list scheduling in
some literature, because it gives jobs a priority order, and then simply executes jobs according to this order.
Another well-know list scheduling algorithm which labels jobs according to their height in the precedence
graph is proposed by Hu (1961). It solves optimally the problem P |i.t., pj = 1|Cmax with unit-processing-
time jobs when preemption is not allowed and the precedence graph is in-tree.

Then, as a reversed in-tree can be seen as an out-tree, Hu’s algorithm can also be used to give a minimum
makespan for out-tree precedence graph P |o.t., pj = 1|Cmax. After that, we could consider the generalization
P |o.t., rj , pj = p|Cmax where jobs have release date and equal-processing-time. It can be optimally solved
by an algorithm proposed by Brucker et al. (1977). They also proved that another generalized problem
P |o.t., pj = p|Lmax with due dates is NP-complete.

When it comes to the combination of in-tree and out-tree, called the opposing forest, the problem
P |o.f., pj = 1|Cmax is proved NP-complete by Garey et al. (1983). They proposed a polynomial algorithm
when m is fixed. Another problem scheduling with level-order precedence graph, i.e. Pm|l.o., pj = 1|Cmax
is also polynomial solvable if m is fixed (Dolev and Warmuth, 1985). However, when m is not fixed, the
problem P |l.o., pj = 1|Cmax is still open.

Moreover, we can consider the case when preemption is allowed. The problem P |i.t., pmtn|Lmax and
P |o.t., pmtn|Lmax are proved NP-complete by Lawler (1982). When it comes to equal-processing-time jobs,
i.e. P |o.t., pmtn, pj = 1|Lmax, the complexity is open.

Baptiste and Timkovsky (2001) showed that preemption is advantageous2 for minimizing the makespan.
So, despite the complexity results of their non-preemptive version, problems P |l.o., pmtn, pj = 1|Cmax,
P |o.f., pmtn, pj = 1|Cmax and P |o.t., pmtn, pj = 1|Lmax are open.

1.3.2 Minimizing the total completion time

In the literature, Hu’s algorithm is cited as an optimal algorithm for solving the problem with out-tree
precedence graph while minimizing the total completion time, though there is no definite proof in (Hu,
1961), which is dedicated for makespan, but it can be extended. Add to this, the generalized problem
P |o.t., rj , pj = 1|

∑
Cj is indeed polynomially solvable (Brucker et al., 2001).

On the other side, Hu’s algorithm cannot optimally solve the problem for in-tree P |i.t., pj = 1|
∑
Cj as

Huo and Leung (2006) provided a counter-example. Although Baptiste et al. (2004) find an algorithm for
a fixed m, it is among the minimal open problems according to Knust and Brucker (2009) and Prot and
Bellenguez-Morineau (2017). The problem is open for level-order or opposing forests too, even when m is
fixed.

Now, let us consider the problem with preemption. Preemption is useless for problem with chains prece-
dence constraints even when jobs have arbitrary processing time (Du et al., 1991). Brucker et al. (2003)
proved that it is even redundant3 for

∑
Tj when there is no precedence. But for in-tree and out-tree, (Bap-

tiste and Timkovsky, 2001) illustrated that preemption is advantageous. So, to the best of our knowledge,
P |o.f., pmtn, pj = 1|

∑
Cj and P |l.o., pmtn, pj = 1|

∑
Cj are open.

1.3.3 Additional results

A considerable amount of researches about other graphs have been done as well.
The studies about interval order, where each job can be described by an interval and the precedence

constraints are given by the relations between the intervals, are given by (Papadimitriou and Yannakakis,
1979), (Möhring, 1989) and (Djellab, 1999).

In bounded height graph, as its name suggests, the height of the graph is not larger than a given number.
It is also a fixed parameter problem, where the parameter is chosen as the graph height. The studies about
the complexity can be seen in (Lenstra and Rinnooy Kan, 1978) and (Dolev and Warmuth, 1984).

Some other graphs are not extensively studied. For example, Quasi interval order and over interval order
are two extended version of interval order. They are defined and studied respectively in (Moukrim, 1999)

2Preemption is advantageous means that there is always preemption in an optimal schedule.
3Preemption is redundant means that there exists always an optimal schedule where there is no preemption even preemption

is allowed.

8

β
γ

Cmax

∑
Cj Lmax

i.t. P(Hu, 1961) OPEN P(Brucker et al., 1977)
l.o. OPEN OPEN OPEN
o.f. NPH(Garey et al.,

1983)
OPEN (NPH)

s.p. (NPH) OPEN (NPH)
i.t.,pmtn P(Gonzalez and

Johnson, 1980)
OPEN P(Lawler, 1982)

o.t.,pmtn P(Lawler, 1982) P(Brucker et al., 2001) OPEN
l.o.,pmtn OPEN OPEN OPEN
o.f.,pmtn OPEN OPEN OPEN
s.p.,pmtn OPEN OPEN OPEN

Table 1.1: An overview of open parallel scheduling problems with equal-processing-time jobs

and (Chardon and Moukrim, 2005). The divide-and-conquer graph is defined and studied in (Kubiak et al.,
2009) graphs.

These precedence graphs are not studied and detailed in this thesis, but a complete survey can be seen
in (Prot and Bellenguez-Morineau, 2017).

1.4 Conclusion

In this chapter, we presented a view on the state of the art of the computational complexity of the scheduling
problems with specific precedence constraints and objective functions. Specific results to be used will be
discussed later. According to the complexity hierarchies shown in Figure 1.5, in Table 1.1, we briefly remind
the open problems with equal-processing-time jobs, i.e. P |pj = 1, β|γ, where () means the result derived
directly from the complexity hierarchy.

One aim of the thesis is to close as much as possible open problems in this table. The last part will be
dedicated to solve some NP-hard problems.

9

Part II

Computational complexity

10

In this part, we prove the NP-completeness of different scheduling problems with unit-processing time
jobs. For the different proofs, we employ reductions from a well-known NP-complete problem: 3-Partition.
An instance π3P of the 3-Partition problem is defined as hereunder (Garey and Johnson, 2002):

Definition 1. Let A be a set of 3q elements and B an integer, ∀a ∈ A, ∃wa ∈ Z+, B
4 < wa < B

2
and

∑
a∈A

wa = qB. The decision question is whether there is a partition A1, A2, . . . , Aq of A, such that∑
a∈Ai

wa = B, ∀i = 1, . . . , q.

WLOG, we assume that wa is an integer multiple of 10q10, i.e.

wa = 10q10w
′

a w
′

a ∈ Q (1.1)

This is because when each wa and B are multiplied by 10q2, the answer to the decision question does not
change.

3-Partition is NP-complete in the strong sense (Garey and Johnson, 1979), which enables us to con-
struct a pseudo-polynomial transformation from π3P to an instance of a given scheduling problem. This

means the number of jobs n is polynomial in B
′
, and therefore polynomial in B.

The reduction from 3-Partition to the scheduling problem consists of 2 steps. First, we transform any
instance π3P to a decision version of an instance of scheduling problem. Then, we prove that π3P is a
yes-instance if and only if the instance of scheduling problem is a yes-instance.

11

Chapter 2

P |pj = 1; i:t:|
∑

Cj

This section discuses the problem P |pj = 1, i.t.|
∑
Cj . We first transform any instance π3P to an instance of

this scheduling problem. Then, we prove the equivalence of these instances in the next two sections, which
reveals the NP-completeness of the scheduling problem.

2.1 Transformation

We propose a pseudo-polynomial transformation. So, we build an instance of the scheduling problem with
in-tree precedence constraints from π3P. We set the number of machines m := 3q + 1 + B. First, we build
some dummy jobs, named x-jobs. We define

mk := B + 3k − 3 ∀k ≤ q + 1

K := B5

The number of x-jobs on kth level is set as m −mk and tree height is set as K3. The corresponding tree is
presented in the Figure 2.1. Those x-jobs subject to in-tree precedence constraints. In that tree, we fix for
any k ≤ q + 1, x1

k−1 ≺ x1
k, x2

k−1 ≺ x1
k and x3

k−1 ≺ x1
k. Then, ∀i ∈ {4, 5, . . . ,m−mk−1}, we set xik−1 ≺ x

i−3
k .

Thereafter, for ∀k ∈ {q + 2, q + 3, . . . ,K3}, xk−1 ≺ xk, so, this part forms a chain.
Thereafter, for each a ∈ A of π3P, we create two sets of jobs, which are u-jobs and v-jobs: u1

a, u
2
a, . . . , u

wa
a ,

and v1
a, v

2
a, . . . , v

Kwa
a . All the u-jobs precede directly v1

a, i.e. ∀i ≤ wa, uia ≺ v1
a. Subsequent to that, we set

via ≺ vi+1
a , ∀i < Kwa, so, they form a chain. The corresponding tree of the u-jobs and v-jobs for a given

a ∈ A can be observed in the Figure 2.2. As there are 3q elements in A, they form 3q in-tree components.
Thus, we transformed π3P to an instance πi.t. of the considered scheduling problem. The construction

is made in polynomial time of B and q (pseudo-polynomial). We build a decision version π
P
Cj

i.t. by asking:

whether πi.t. has a schedule such that
∑
Cj ≤ TCT ∗, where:

TCT ∗ :=

q∑
i=1

i(3(q + 1− i) + 1) +

K3∑
i=q+1

i+B

q∑
i=1

i+
∑
a∈A

Kwa∑
i=1

i+KB

q∑
i=1

i

To establish the NP-completeness, we hereafter prove that π
P
Cj

i.t. is a yes-instance if and only if π3P is
a yes-instance.

2.2 Proof for If

We firstly show that if π3P is a yes-instance, i.e. there exists a partition A1, A2, . . . , Aq for π3P, such that∑
a∈Ai

wa = B , then, we can build a feasible schedule (S∗) for πi.t. such that
∑
Cj ≤ TCT ∗. W.l.o.g. we

assume that, for each subset Ak in the partition for k = 1, . . . , q, the three elements in it are ak1 , a
k
2 and ak3 .

12

x1
1 x2

1 x3
1 x4

1 x5
1 x6

1 x7
1 x8

1 x9
1 x10

1 xm−m1
1

x1
2 x2

2 x3
2 x4

2 x5
2 x6

2 x7
2 xm−m2

2

x1
3 x2

2 x3
2 x4

2 xm−m3
3

x4
qx1

q

xq+1

xq+2

xq+3

xq+4

xq+5

xK3

x3
qx2

q

... ...

......

Figure 2.1: in-tree of x-jobs

u1
a u2

a u3
a uwa

a

v1a

v2a

v3a

v4a

v5a

vKwa
a

Figure 2.2: in-tree of u-jobs and v-jobs for each a ∈ A

13

0 1 2 3 4 q � 1 q q + 1t 5 6

Figure 2.3: Gantt graph of (S∗)

We make use of notation TCT ∗x (resp. TCT ∗v and TCT ∗u) for representing the total completion time of
x-jobs (resp. v-jobs and u-jobs) in (S∗). In the subsequent part, we show how jobs are scheduled in (S∗)
together with calculating the TCT (total completion time).

Firstly, x-jobs are executed once they are ready, which means every x-job begins immediately after the
completion time of its last-finished predecessor. Formally, ∀i ≤ q,∀j ≤ m − mi, Cxj

i
= i; ∀q ≤ i ≤ K3,

Cxi = i.
Accordingly, we consider TCT for the x-jobs:

TCT ∗x =

q∑
i=1

m−mi∑
j=1

Cxj
i

+

K3∑
i=q+1

Cxi
(2.1)

as ∀i ≤ K3,∀j ≤ m−mi, Cxj
i

= i, the first part is equivalent to:

q∑
i=1

m−mi∑
j=1

Cxj
i

=

q∑
i=1

m−mi∑
j=1

i =

q∑
i=1

i(m−mi)

and as m−mi = 3(q + 1− i) + 1, we have:

q∑
i=1

m−mi∑
j=1

Cxj
i

=

q∑
i=1

i(3(q + 1− i) + 1)

Then, for i > q, we also have Cxi = i, so the second part of (2.1) is:

K3∑
i=q+1

Cxi =

K3∑
i=q+1

i

14

Accordingly, we can obtain the TCT of all x-jobs:

TCT ∗x =

q∑
i=1

i(3(q + 1− i) + 1) +

K3∑
i=q+1

i (2.2)

In the second step, considering the x-jobs, the kth time-slot for k ≤ q + 1 has mk available machines for
both u-jobs and v-jobs. All the u-jobs corresponding to the subset Ak are executed in the same time-slot,
the kth time-slot. They need exactly B machines by definition of 3-Partition. Formally, ∀k ≤ q, ∀a ∈ Ak,
∀i ∈ {1, 2, 3}, and ∀j ≤ waki , Cuj

ak
i

= k. Thus, there are exactly B u-jobs executed in each time slot, i.e.

|{u|Cu = t}|= B, ∀t ≤ q. So, we are able to deduce that all the u-jobs are accomplished before t = q, and we
have:

TCT ∗u =

q∑
t=1

t|{u|Cu = t}|= B

q∑
i=1

i (2.3)

Thereafter, every v-job is executed without any delay in accordance with the precedence constraints.
Formally, ∀a ∈ A, Cv1

a
= Cu1

a
+ 1 and ∀i ∈ {2, 3, . . . ,Kwa}, Cvia = Cvi−1

a
+ 1.

So, for each v-chain corresponding to the element a ∈ A, we have Cvia = Cvi−1
a

+ 1, ∀i ∈ {2, 3, . . . ,Kwa},
that is equivalent to Cvia = Cv1

a
+ i − 1. Let ua be any u-job preceding v1

a, as Cv1
a

= Cua + 1, we have
Cvia = Cua + i. Now, we calculate the TCT for this given chain:

Kwa∑
i=1

Cvia =

Kwa∑
i=1

Cua
+

Kwa∑
i=1

i = KwaCua
+

Kwa∑
i=1

i

Then, we deduce the TCT for all the v-chains, i.e. all the v-jobs:

TCT ∗v =
∑
a∈A

Kwa∑
i=1

Cvia = K
∑
a∈A

waCua
+
∑
a∈A

Kwa∑
i=1

i

We know the fact that, for each subset a ∈ Ai, we have Cua = i. So, we are able to deduce that the first part
is equivalent to:

K
∑
a∈A

waCua = K

q∑
i=1

∑
a∈Ai

wai = K

q∑
i=1

i
∑
a∈Ai

wa = K

q∑
i=1

iB

So,

TCT ∗v = K

q∑
i=1

iB +
∑
a∈A

Kwa∑
i=1

i (2.4)

In kth time slot of (S∗), k < q + 1, there are exactly m − mk x-jobs, B v-jobs and 3k − 3 v-jobs. By
definition of mk, there are exactly m jobs in progress. After t = q, there are only one x-job and at most 3q
v-jobs executed in parallel. Thus, there are no more than m jobs. So, this schedule respects the availability
of machines.

Then, we deduce that the total completion time of (S∗), which is a feasible schedule for πi.t., is:∑
Cj = TCT ∗v + TCT ∗u + TCT ∗x = TCT ∗

2.3 Proof for Only If

Now, we prove that if πi.t. has a feasible schedule respecting the TCT ∗, then π3P has a partition. WLOG,
let (S) be a feasible active schedule, defined in (Pinedo, 2012). We prove in the following part that (S) takes
the same shape as (S∗) and show how to get a partition from (S).

15

For that purpose, we first define the TCT of u-jobs, v-jobs and x-jobs in (S) as TCTu, TCTv and TCTx.
Subsequent to that, we define the following gaps:

∆u = TCTu − TCT ∗u

∆v = TCTv − TCT ∗v
∆x = TCTx − TCT ∗x

In order to have (S) respecting the TCT ∗, we clearly have:

∆x + ∆u + ∆v ≤ 0 (2.5)

First of all, let us consider the x-jobs. We show that the x-jobs must have the same profile as in (S∗),
which corresponds to the following lemma:

Proposition 1. The x-jobs are scheduled once they are ready, i.e. ∆x = 0.

Proof. By contradiction: assume that there is at least one delayed x-job. (S) is active; accordingly, this x-job
can be delayed only by insertion of u-jobs or v-jobs.

Notice that the x-jobs can take no more than m −m1 machines in parallel because of their precedence
constraints. At any moment, there are at least m1 = B available machines for both the v-jobs and u-jobs.
Moreover, in an active schedule, the makespan (Cmax) is not larger than the number of jobs. As the total
number of v-jobs and u-jobs is KB+qB, the last v-job or u-job finishes before or at KB+qB. Consequently,
the delay must happen before KB + qB.

As the length of the final x-chain is K3, at least K3− (KB+ qB) jobs are right-shifted. We observe that
when a chain of nc jobs is right-shifted by one time slot, then its TCT will be increased by nc. Following
this observation, we have

∆x ≥ K3 −KB − qB

Remind that by definition, TCT ∗u � K2, TCT ∗v � K2, and K = B5, B � K. Thus, we have:

∆x � TCT ∗u + TCT ∗v

In accordance with the definition, we have ∆u > −TCT ∗u and ∆v > −TCT ∗v , then

∆x + ∆v + ∆u > ∆x − TCT ∗u − TCT ∗v � 0

This is a contradiction to (2.5). So, our assumption is false, there is no delay during the execution of the
x-jobs.

Since ∆x = 0, (2.5) becomes
∆u + ∆v ≤ 0 (2.6)

Here we conclude that the number of available machines in (S) is the same as in (S∗) to schedule u-jobs
and v-jobs. Now, let us deal with the u-jobs.

Definition 2. We define the u-jobs in the same component as a u-set and define Ut as the number of u-jobs
in all the u-sets, which are completed exactly at time t.

Proposition 2. At time t∗ ≤ q,
t∗∑
t=1

Ut ≤ t∗B.

Proof. The number of jobs finished at t∗ ≤ q is at most t∗m which is:

t∗m = t∗B + t∗(3q + 1) ≤ t∗B + 3q3

Considering that the number of u-jobs in a u-set is wa, which is integer times q5, so, the number of u-jobs in
u-sets which are executed before or at t∗ is at most t∗B.

Now, let us move on to the v-jobs.

16

Definition 3. We define Vt as the number of v-jobs in the chains starting exactly at the time t for t < q in
(S), and Vq as the number of v-jobs in the chains starting at or after t = q.

Proposition 3. In (S), at any time t ≤ q, the total length of the v-chains beginning at t in (S) is exactly
KB, i.e. Vt = KB.

Proof. First, according to the precedence constraints, we have a relation between Vt and Ut:

t∗∑
t=1

Vt ≤ K
t∗∑
t=1

Ut ∀t∗ < q

So, from Proposition 2, we can deduce:

t∗∑
t=1

Vt ≤ t∗BK ∀t∗ < q

which is:

(2.7)

V1 ≤ KB
V1 + V2 ≤ 2KB
V1 + V2 + V3 ≤ 3KB

. . .

. . .

V1 + V2 + V3 + · · ·+ Vq−1 ≤ (q − 1)KB

If we sum them up, we get:

(q − 1)V1 + (q − 2)V2 + · · ·+ Vq−1 ≤ KB
q2 − q

2
(2.8)

By definition, we understand that
q∑
t=1

Vt corresponds to the norm of whole set of v-jobs and it is equal to

KqB:
q∑
t=1

Vt = KqB (2.9)

Then, by multiplying (2.9) by q, we get:

qV1 + qV2 + . . . qVq = KBq2 (2.10)

With (2.10)- (2.8), we get

V1 + 2V2 + · · ·+ (q − 1)Vq−1 + qVq ≥ KB
q2 + q

2

which leads to conclude:
q∑
i=1

iVi ≥ KB
q∑
i=1

i

Now, suppose by absurd that
q∑
i=1

iVi > KB
q∑
i=1

i. By definition, Vi is the total length of some v-chains,

which implies that Vi is integer multiple of K. So, we have:

q∑
i=1

iVi ≥ KB
q∑
i=1

i+K (2.11)

When all the v-jobs in one chain are executed without any delay, the v-jobs have the following minimum
TCT:

TCTv ≥
∑
a∈A

Kwa∑
i=1

i+

q∑
i=1

iVi (2.12)

17

Reminding the expression of TCT ∗v in (2.4), we can deduce that:

∆v ≥
q∑
i=1

iVi −KB
q∑
i=1

i (2.13)

By (2.13) and (2.11), we have ∆v ≥ K. Then, by (2.6), we have ∆u ≤ −K. This contradicts the fact that

∆u ≥ −TCT ∗u � −K. Thus, we demonstrated that
q∑
i=1

iVi = KB
q∑
i=1

i. So, every decomposition of group

(2.7) is written with an equality, which indicates that V1 = V2 = · · · = Vq = KB.
Finally, we can conclude that ∆v = 0 and Vt = KB, ∀t ≤ q. This suggests that, at any t, the length of

v-chains that start is exactly KB.

The 3 propositions above allows us to build a partition from Vi by selecting the elements corresponding
to its 3 v-chains of KB jobs. Thus, we accomplished the proof for Only If. So, we are able to reduce π3P to

π
P
Cj

i.t. , then, we have:

Theorem 1. P |pj = 1, i.t.|
∑
Cj is NP-complete.

We finished the proof for the problem with in-tree precedence constraints. The transformation and the
proof in this chapter is dedicated merely to the problem P |pj = 1, i.t.|

∑
Cj , while in the next chapter, we

move on to other scheduling problems with different precedence constraints, which requires a new reduction,
where the transformation and the proof are reused.

18

Chapter 3

P |pj = 1; l:o:; pmtn|Cmax and other
problems

In this chapter, we begin with the problem P |pj = 1, l.o., pmtn|Cmax. Then, we show how to adapt the proof
to other open scheduling problems in the following order:

1. P |pj = 1, l.o.|Cmax

2. P |pj = 1, l.o., pmtn|
∑
Cj

3. P |pj = 1, l.o.|
∑
Cj

4. P |pj = 1, o.t., pmtn|Lmax

5. P |pj = 1, o.f., pmtn|Cmax

6. P |pj = 1, o.f., pmtn|
∑
Cj

3.1 Transformation

We transform π3P to an instance of the scheduling problem with level-order precedence graph, noted as πl.o..
We set the number of machines m = B + 2, then build 3 sets of jobs.

First, we build a set of dummy jobs, noted x-jobs. They form a component of qB + 1 levels. Let the
number of x-jobs on level i be Li, we set:

Li =

1 i = kB + 1,∀k = 1, . . . , q − 1

2 i = qB + 1

B + 1 otherwise

(3.1)

x-jobs are subject to precedence relations where jobs on level l, which are noted x1
i , . . . , x

Li
i , precede every

job on level l + 1 (see Figure 3.1).
Then, the second set contains u-jobs and the third v-jobs. For each a ∈ A, we create a component of wa u-

jobs and wa v-jobs. In each component, the u-jobs form a chain, and they precede all the v-jobs which have no
precedence constraint between each other to form a unique level. Formally, we create u1

a ≺ u2
a . . . ≺ uwa

a ≺ vka ,
∀k = 1, . . . , wa, which corresponds, by definition, to a level-order graph (see Figure 3.2). As |A|= 3q, there
are 3q non-dummy components.

In addition, remind that the term profile introduced in 1.1.1, is used to describe the number of available
machines along the time.We define a specific profile, the profile P, such as mt = m−Lt. This profile will be
used in all this chapter. A profile of available machines is said to be filled by a set of jobs if those jobs are
scheduled on the available machines without any idle time.

We have transformed π3P to πl.o. by creating (qB+1)(B+2) = O(qB2) jobs, which is pseudo-polynomial.

We build the first decision version πCmax

l.o.
of πl.o. by asking: whether πl.o.has a schedule such that Cmax ≤

qB + 1.

19

B B B B B

Figure 3.1: x-jobs

Figure 3.2: the u-jobs and v-jobs, u-jobs and v-jobs

3.2 Proof for If

In this section, we show that if π3P is a yes-instance, which means it admits a partition, then πCmax

l.o.
is a

yes-instance, i.e. πl.o.has a schedule such that Cmax ≤ qB + 1.
We build such a schedule (S∗) by executing the x-jobs once they are ready. Formally, C

xi
′

i

= i, ∀i =

1, . . . , qB + 1 and ∀i′ = 1, . . . ,Li. The Gantt chart of (S∗) is given in Figure 3.3.
By observation, the x-jobs enforce the profile P. Now, we show that the u-jobs and v-jobs can fill it

non-preemptively:
We use [t1, t2[to represent the half-open time interval from t1 to t2.∀i = 1, . . . , q,

1. In [(i − 1)B, iB − 1[, successively execute the 3 corresponding u-chains of Ai = {ai1, ai2, ai3}, which

corresponds to jobs: u1
ai1
, . . . , u

w
ai

1

ai1
, u1
ai2
, . . . , u

w
ai

2

ai2
, u1
ai3
, . . . , u

w
ai

3

ai3
.

B

B B B B

B

B

Figure 3.3: A full non-preemptive schedule (S∗) where blue (yellow, red) represents the x-jobs (resp. v-jobs,
u-jobs)

20

2. In [iB, iB+1[, execute in the same time slot the corresponding v-jobs ofAi, v
1
ai1
, . . . , v

w
ai

1

ai1
, v1
ai2
, . . . , v

w
ai

2

ai2
, v1
ai3
, . . . , v

w
ai

3

ai3
.

Thus, we built a schedule which finishes all jobs exactly at t = qB + 1 and finish the proof.
Because the profile P is filled, we set the following proposition:

Proposition 4. If π3P is a yes-instance, then the u-jobs and v-jobs can fill the profile P non-preemptively.

The schedule (S)∗ we built has no idle time. We call this a full schedule. In fact, a schedule such that
Cmax = n

m is full and vice versa. So,

Proposition 5. πCmax

l.o.
is a yes-instance if and only if πl.o. has a full schedule.

we have also proved:

Proposition 6. If π3P is a yes-instance, then πl.o. has a full non-preemptive schedule.

3.3 Proof for Only If

In this section, we prove that when preemption is allowed, if πCmax

l.o.
is a yes-instance, i.e. πl.o.has a schedule

(S) such that Cmax ≤ qB + 1 , then π3P is a yes-instance.
We first show that the x-jobs enforce the profile P in (S). By observation, any delay of the x-jobs (which

means they are not executed once they are ready) or preemption resumed later will right-shift the jobs on
the last level (the qB+1th level). It will be finished strictly after t = qB+1, which contradicts the makespan
of (S). So, the x-jobs are executed continuously once they are ready. As the x-jobs enforce the profile P,
the u-jobs and v-jobs should fill the profile P to complete a full schedule.
∀i = 1, . . . , q, we define Φi = [iB, iB + ξ[as a half-open interval, where each machine executes at most

one piece of job, ξ is a positive number as small as needed.
Define Vi as v-jobs executed in Φi, and PVi as the set of u-jobs predecessors of the jobs in Vi.
∀i = 1, . . . , q, define the pipeline intervals: PIi = [(i− 1)B + 1, iB[. ∀i = 0, . . . , q, define the column

intervals: CIi = [iB, iB + 1[. They are noted in Figure 3.3.
We now prove that ∀i = 1, . . . , q, |PVi|= B. We use a mathematical induction. First, we prove that this

proposition holds for i = 1, i.e. |PV1|= B.
By definition, PV1 should be finished before t = B. They can only be executed in CI0 and PI1.

Lemma 1. There are at most 3q u-jobs executed in parallel at any time.

Proof. Only one u-job in the chain of each component can be executed because of the precedence of constraints
and there are 3q components in total.

By definition of u-jobs and Lemma 1, we have:

Lemma 2. The amount of work of u-jobs in any column interval is at most 3q, so, the total amount of work
of u-jobs in all column intervals is at most 3q2.

In addition, we can set:

Lemma 3. The total amount of work in any pipeline interval is at most B − 1.

Proof. The total amount of work in any pipeline interval, where there is only one available machine in the
profile P, cannot be greater than its length, i.e. B − 1.

By Lemma 3 and 2, we know that the total amount of work of PV1 in CI0 and PI1 is at most B−1 + 3q.

Lemma 4. ∀i = 1, . . . , q, if |PVi|< B + 10q2, then |PVi|= B.

Proof. We first prove that ∀i = 1, . . . , q, |Vi|≥ B − 3q for preparation. Suppose by contradiction that
∃i = 1, . . . , q, s.t. |Vi|< B − 3q. In Φi, each machine executes at most one job in parallel. As the profile
P indicates, the number of available machines for u-jobs is: miB − |Vi|> B − (B − 3q) > 3q. So, there
must be more than 3q u-jobs in parallel to fill the profile P, which is a contradiction to Lemma 1. With our
assumption, we can deduce that |Vi|≥ B − 3q.

21

The number of u-jobs in one component, which is wa in (1.1), is an integer multiple of 10q2. As PVi
consists only of entire u-chains, |PVi| is an integer multiple of 10q2 too. By definition, the u-jobs and v-jobs
of a component consists of the same number of u-jobs and v-jobs, using |Vi|≥ B−3q we just proved, we have
|PVi|≥ |Vi|≥ B − 3q > B − 10q2. As we have already |PVi|< B + 10q2, so B − 10q2 < |PVi|< B + 10q2, the
only value that |PVi| can take is B.

As we have B + 3q − 1 ≥ |PV1|, by Lemma 4, we have |PV1|= B.
Now, we assume that the proposition |PVi|= B holds for i = 1, . . . , k, where k = 1, . . . , q − 1. We aim at

proving that it holds for k + 1.
As PV1,PV2, . . . ,PVk are all finished no later than t = kB, they are executed in CI0,PI1, . . . , CIk−1,PIk.

We regroup this amount of work in two parts:

• Note the work of PV1,PV2, . . . ,PVk in PI1,PI2, . . . ,PIk as W≤kPI≤k
;

• Note the work of PV1,PV2, . . . ,PVk in CI1, CI2, . . . , CIk−1 as W≤kCI≤k−1
.

By Lemma 2, we have WCI ≤ 3q2. As the total amount is W≤kPI≤k
+W≤kCI≤k−1

= |PV1|+|PV2|+ · · ·+|PVk|=
kB. Thus, we have:

W≤kPI≤k
≥ kB − 3q2. (3.2)

Then, consider PVk+1, which should be finished no later than t = (k+1)B. It is executed in CI0,PI1, CI1

, . . . , CIk,PIk+1. We regroup this amount of work in three parts:

• Note the work of PVk+1 in PI1,PI2, . . . ,PIk as W k+1
PI≤k

;

• Note the work of PVk+1 in PIk+1 as W k+1
PIk+1

;

• Note the work of PVk+1 in CI0, CI1, . . . , CIk as W k+1
CI≤k

.

Similarly by Lemma 2, we have:
W k+1
CI≤k

≤ 3q2. (3.3)

By Lemma 3, we have:

W k+1
PIk+1

≤ B. (3.4)

Using Lemma 3, we can directly deduce that the total amount of works in PI1,PI2, . . . ,PIk is at most
kB. Remind that in (3.2), the jobs in PV1,PV2, . . . ,PVk take at least kB − 3q2 of these works. So, W k+1

PI≤k

takes at most the rest 3q2, which is:
W k+1
PI≤k

≤ 3q2. (3.5)

See (3.3), (3.4) and (3.5) in all:

|PVk+1|= W k+1
CI≤k

+W k+1
PIk+1

+W k+1
PI≤k

≤ B + 6q2 < B + 10q2. (3.6)

By Lemma 4, we have |PVk+1|= B. As we finished the mathematical induction, we proved that PVi = B,
∀i = 1, . . . , q.

To obtain a partition of A, we only need to check the v-jobs executed in each Φi. The number of their
predecessors is exactly B, and the elements corresponding to each Φi can form a partition.

Add to this, by Proposition 5, we proved that:

Proposition 7. When preemption is allowed, if πl.o. has a full schedule, then π3P is a yes-instance.

and

Proposition 8. When preemption is allowed, if the u-jobs and v-jobs can fill the profile P, then π3P is a
yes-instance.

As we finished the proof for both if and only if, we conclude:

22

Theorem 2. P |pj = 1, l.o., pmtn|Cmax is NP-complete.

As the discussion about the preemptive case is done, we now assume that the preemption is forbidden.
We aim at showing that π3P and πCmax

l.o.
are still equivalent. First, we set the following proposition:

Proposition 9. πl.o.has a full non-preemptive schedule if and only if π3P is a yes-instance.

Proof. If: It can be directly given by Proposition 6.
Only If: Assume that πl.o.has a full non-preemptive schedule, then of course, it can still have a (the

same) full schedule when preemption is allowed. By Proposition 7, π3P is a yes-instance.

This leads directly to conclude:

Theorem 3. P |pj = 1, l.o.|Cmax is NP-complete.

In the next section, we change the objective function to the total completion time and consider other
precedence constraints graph. We do a similar transformation and adapt the proof to show the equivalence
of their decision questions.

3.4 Other problems

3.4.1 Level-order graph and total completion time

In this section, we prove the considered problem is NP-complete when the objective function is changed

to the total completion time. To that purpose, we only need to build another decision version π
P
Cj

l.o.
of

instance πl.o. by setting the question as: whether πl.o. has a schedule such that
∑
Cj ≤ TCT ∗, where

TCT ∗ =
qB+1∑
i=1

im.

We first discuss the preemptive case. As a preliminary step, we begin with a property of scheduling
n = km unit processing time jobs, where k is an integer:

Proposition 10. Let π∗ be an instance of a scheduling problem with n = km unit processing time jobs where

k is an integer. The decision version π
P
Cj

∗ asks: whether it has a schedule such that
∑
Cj ≤ TCT ∗, where

TCT ∗ =
∑k
i=1 im. π

P
Cj

∗ is a yes-instance if and only if π∗ has a non-preemptive full schedule.

Proof. If : A full non-preemptive schedule of π∗ has exactly
∑
Cj =

∑k
i=1 im.

Only If: If π∗ has a non-preemptive schedule such that
∑
Cj ≤

∑k
i=1 im, this schedule itself is a full

schedule.
For the preemptive case, Brucker et al. (2003) proved that preemption is redundant for the problem

P |pj = p|
∑
Tj , in which P |pj = 1|

∑
Cj is a subcase by setting dj = 0 and pj = 1 for all job j. Even in

P |pj = 1|
∑
Cj , where there is no precedence constraint, preemption cannot reduce the total completion time

from a full non-preemptive schedule which is optimal for
∑
Cj . An optimal preemptive schedule exists only

when there already is a non-preemptive one.

As π
P
Cj

l.o.
contains only unit-processing-time jobs and n is defined as (qB + 1)m where qB + 1 is integer,

the problem π
P
Cj

l.o.
is a yes-instance if and only if πl.o. has a full non-preemptive schedule. Furthermore,

Proposition 6 and 9 state that πl.o. has a full non-preemptive schedule if and only if π3P is a yes instance.

So, we have directly π
P
Cj

l.o.
is a yes-instance if and only if π3P is a yes-instance. Then, we can set:

Theorem 4. P |pj = 1, l.o., pmtn|
∑
Cj is NP-complete.

Then, we discuss the case when preemption is not allowed. In this case, a non-preemptive schedule such

that
∑
Cj ≤

qB+1∑
i=1

im is equivalent to a full non-preemptive schedule too. Similarly, we have:

Theorem 5. P |pj = 1, l.o.|
∑
Cj is NP-complete.

23

B B B BB

Figure 3.4: x-jobs built by out-tree

Up to the present, we have proved that for both total completion time and makespan, scheduling unit-
processing-time jobs with level-order precedence constraints is NP-complete whether it is preemptive or not.
In the precedence graph we built, the u-jobs and v-jobs can be recognized not only as level-order, but also
as out-trees. Based on this fact, in the following two sections, we extend this proof to scheduling problems
with other precedence graphs by rebuilding only the x-jobs to respect the considered graph shape but keep
the profile P.

3.4.2 Out-trees, Maximum Lateness

Similarly, we transform π3P to πo.t., an instance of the given scheduling problem with out-trees precedence
constraints.

We build the u-jobs and v-jobs as previously. Their due dates are set as qB + 1.
The x-jobs are rebuilt as following:

• ∀i = 1, . . . , qB + 1, build Li x-jobs on the ith level, where Li is defined as the same as in (3.1):

x1
1, . . . x

L1
1 x1

i , . . . x
Li
i x1

qB+1, . . . x
LqB+1

qB+1

• ∀i′ = 1, . . . ,Li, set the due date of jobs on the ith level as d
xi
′

i

= i.

• The precedence constraints are set as: x1
i ≺ xi

′

i+1. They can be seen as an out-tree (see Figure 3.4).

The number of machines is still m = B + 2.
We give the decision version πLmax

o.t. of the problem by asking whether πo.t. has a schedule whose Lmax ≤ 0.
Then, this section is dedicated to prove its equivalence with π3P, i.e. it is a yes-instance if and only if π3P
is a yes-instance.

Proof for If

Here, we show that if π3P is a yes-instance then we can create a schedule whose Lmax ≤ 0 for πo.t..
Execute the x-jobs once they are ready to respect the due date constraints. We observe that the x-

jobs enforce the number of available machines for u-jobs and v-jobs to the profile P. Then, according to
Proposition 4 we fill the profile P by the u-jobs and v-jobs, in which all jobs are finished before qB + 1, i.e.
Lmax ≤ 0. This answers yes to πLmax

o.t. .

Proof for Only If

Let (S) be a schedule whose Lmax ≤ 0 for πo.t.. First, consider a x-job xi
′

i for i
′ ≤ Li. It cannot be started

before t = i− 1 according to the precedence constraints. However, to meet its due date, it must be finished

at t = i. These two rules force xi
′

i to get started once ready. As x-jobs enforce the profile P, and the u-jobs
and v-jobs in (S) finish before qs+1 to satisfy Lmax ≤ 0, the u-jobs and v-jobs must fill the profile P. Then,
by Proposition 8, we know that π3P is a yes-instance.

As we finished the proof for both If and Only If directions, we conclude:

Theorem 6. P |pj = 1, o.t., pmtn|Lmax is NP-complete.

Up to this point, we finish the proof for NP-completeness of scheduling problem with out-tree precedence
constraints. In the following two sections, we consider the opposing-forest while minimizing the makespan
and the total completion time.

24

3.4.3 Opposing-forest, makespan

Now, we transform π3P to πo.f., an instance of the scheduling problem with unit-processing-time jobs where
the precedence constraints are opposing-forest.

We build the u-jobs and v-jobs as previously.
The x-jobs are built to compose in-trees and out-trees, see Figure 3.5.

B B B

BBB

Figure 3.5: x-jobs built by an opposing-forest where green (brown) points represent an in-tree (out-tree)

First, we build an in-tree of qB + 1 levels, such that

• for i ≤ qB + 1, recursively define

LI i =

2qB i = 1

LI i−1 −B i = kB + 1,∀k = 1, 2 . . . , q − 1

LIqB −B + 1 i = qB + 1

LI i−1 otherwise

(3.7)

• On the ith level, build LI i jobs x1
I,i, . . . x

LIi

I,i

• set the precedence constraints as:

– if LI i = LI i−1, xi
′

I,i−1 ≺ xi
′

I,i, for i
′

= 1, . . . ,LI i

– if LI i < LI i−1, let ∆ = LI i−1 − LI i−1 + 1, then set xi
′

I,i−1 ≺ x1
I,i, for i

′
= 1, . . . ,∆; and

xi
′
+∆
I,i−1 ≺ xi

′

I,i for i
′

= 1, . . . ,LI i −∆.

Then, we build an out-tree of qB + 1 levels

• for i ≤ qB + 1, recursively define

LOi =

1 i = 1

LOi−1 +B i = kB + 2,∀k = 1, 2 . . . , q − 1

LOi−1 otherwise

(3.8)

• On the ith level, build LOi jobs x1
O,i, . . . x

LOi

O,i

• set the precedence constraints as:

– if LOi = LOi−1, xi
′

O,i−1 ≺ xi
′

O,i, i
′

= 1, . . . ,LI i

– if LOi < LOi−1, let ∆ = LOi − LOi−1 + 1 = B + 1, then set x1
O,i−1 ≺ xi

′

O,i, for i
′ ≤ ∆; and

xi
′

O,i−1 ≺ x
i
′
+∆
O,i for i

′
= 1, . . .LOi−1 −∆.

25

In this instance, the number of machines is set to m = 2qB + 2. We compare number of x-jobs on the
ith level LOi + LI i = Li + δ, where δ = 2qB + 2− (B + 2) = 2qB − B. It is exactly the difference between
m defined in πo.f. and πl.o.. We find that scheduling the x-jobs once they are ready still enforces the profile
P of available machines for u-jobs and v-jobs and the previous propositions about the v-jobs, u-jobs and the
profile P still yield.

The first decision version πCmax

o.f.
asks: whether πo.f. has a feasible schedule such that Cmax ≤ qB + 1.

Then, we prove its equivalence with π3P by showing that π3P is a yes-instance if and only if πCmax

o.f.
is a

yes-instance.

Proof for If

As πo.f. contains (qB + 1)m jobs, then πCmax

o.f.
is a yes-instance if and only if πo.f. has a full schedule. In this

subsection, we set that:

Proposition 11. If π3P is a yes-instance, then πo.f. has a full non-preemptive schedule.

Proof. Using Proposition 4, as π3P is a yes-instance, the u-jobs and v-jobs can fill the profile P non-
preemptively. Thus, we can build a schedule by letting the x-jobs be executed once they are ready and filling
the profile P with the u-jobs and v-jobs.

As all jobs are finished before qB+ 1, and there are exactly (qB+ 1)m jobs in πo.f., this is a full schedule
without preemption.

Proof for Only If

In this subsection, we prove that if πo.f. has a full schedule, then π3P is a yes-instance. We begin with
studying the u-jobs and v-jobs and the profile P.

First, by observation, whether in the in-tree or in the out-tree, every x-job has a successor in the (qB+1)th

level. So, any delay will right-shift this job. It will be finished strictly after t = qB + 1, which contradicts
the makespan qB + 1. So, the x-jobs are executed once ready and enforce the profile P. Thus, the u-jobs
and v-jobs must fill the profile P to finish before qB + 1.

Then, by Proposition 8, we have:

Proposition 12. When preemption is allowed, if πo.f. has a full schedule, then π3P is a yes-instance.

Proposition 11 and 12 bring out:

Theorem 7. P |pj = 1, o.f., pmtn|Cmax is NP-complete.

If πo.f. has a non-preemptive full schedule, then it has one full schedule when preemption is allowed, so
by Proposition 12, we have:

Proposition 13. If πo.f. has a non-preemptive full schedule, then π3P is a yes-instance.

We move to another objective function, the total completion time, and prove that the problem is still
NP-complete.

3.4.4 Opposing-forest, total completion time

Considering the total completion time, we build another decision version π
P
Cj

o.f.
of πo.f.. We set the decision

question as: whether πo.f. has a feasible schedule such that
∑
Cj ≤ TCT ∗, where TCT ∗ =

∑qB+1
i=1 im.

As πo.f. contains (qB+ 1)m jobs, when preemption is allowed, by Proposition 10, π
P
Cj

o.f.
is a yes-instance

if and only if πo.f. has a full non-preemptive schedule. Furthermore, Proposition 11 and 13 show that πo.f.
has a full non-preemptive schedule if and only if 3-Partition is a yes-instance, which brings out:

Theorem 8. P |pj = 1, o.f., pmtn|
∑
Cj is NP-complete.

26

β
γ

Cmax

∑
Cj Lmax

i.t. P(Hu, 1961) NPH P(Brucker et al., 1977)
l.o. NPH NPH (NPH)
o.f. NPH(Garey et al.,

1983)
(NPH) (NPH)

s.p. (NPH) (NPH) (NPH)
i.t.,pmtn P(Gonzalez and

Johnson, 1980)
OPEN P(Lawler, 1982)

o.t.,pmtn P(Lawler, 1982) P(Brucker et al., 2001) NPH
l.o.,pmtn NPH NPH (NPH)
o.f.,pmtn NPH NPH NPH
s.p.,pmtn (NPH) (NPH) (NPH)

Table 3.1: An updated overview of complexity of P |pj = 1, β|γ

3.5 Conclusion

In this chapter, we first put forward a proof of NP-completeness for P |pj = 1, in-tree|
∑
Cj . Then, we

proved that scheduling unit-processing-time jobs under level-order or opposing-forests precedence constraints
is NP-complete, for both Cmax and

∑
Cj whether or not preemptive. Scheduling out-trees is shown to

be NP-complete by using similar proof when minimizing Lmax. This work updates the earlier study of
scheduling problems’ complexity in literature. The Table 1.1 can be updated. New complexity results of
parallel scheduling unit-processing-time jobs under different precedence constraints are shown in Table 3.1.

Another result comes from the complexity hierarchy. When the criterion is the total tardiness
∑
Ti =∑

max{Lmax, 0} or the total number of tardy jobs
∑
Uj (binary Uj equals 1 if and only if j is tardy), our

result also implies that P |o.t., pj = 1, pmtn|
∑
Tj and P |o.t., pj = 1, pmtn|

∑
Uj are NP-complete as well.

With this hierarchy, the results can be extended to other open problem not included in Table 3.1.
The table also shows that when preemption is allowed, the complexity of the problem P |pj = 1, i.t., pmtn|

∑
Cj

is still open. However, the preemption is not redundant to reduce the total completion timeand previous
results cannot be directly extended.

Despite the fact that preemption may reduce the total completion time, we still conjecture that, with the

same transformation, the equivalence of π3P and π
P
Cj

i.t. still holds even if preemption is allowed, and the
problem shall be NP-complete as well.

Considering the fixed parameter m, there are still some other problems whose complexity is open, such
as Pm|pj = 1, l.o., pmtn|Cmax. Our next research avenue may be dedicated to study these open problems.

As the problems are NP-complete, they have no polynomial algorithm unless P = NP . In the next part,
we focus on how to exponentially solve these problems.

27

Part III

Problem solving

28

In this part, we focus on how the scheduling problems we study can be solved. We put forward an
algorithm for the specific problem P |pj = p, i.t.|

∑
Cj , which is both theoretically and experimentally faster

than the existing algorithm for this problem. Then, we study the general problem P |prec|Cmax by integer
programming models. We adapted the existing models which are originally designed for other problems, and
propose a new one. We compare their performance and show that our model outperforms the others.

29

Chapter 4

An improved algorithm for
P |pj = p; i:t:|

∑
Cj

In this chapter, we study how to solve the problem P |pj = p, i.t.|
∑
Cj , which deals with in-tree precedence

graph while minimizing the total completion time. We proved in Chapter 2 that the problem is NP-hard.
However, when the number of machines m is fixed, the problem, written as Pm|pj = p, i.t.|

∑
Cj , can be

polynomially solved in O(nm) by an algorithm by Baptiste et al. (2004). We here propose a new algorithm
in O(hm) where h is the height of the tree, and show that it is also experimentally faster than Baptiste’s
algorithm.

First, we introduce the state of the art in the following section. Second, we propose and prove a theorem,
on which the optimality of our algorithm is based. Third, we illustrate the algorithm with an example. Then,
we compare it to Baptiste’s algorithm and present the experiment results.

4.1 Previous studies

This section is dedicated to introduce the work of Hu (1961) and Baptiste et al. (2004), that will be useful
for next parts.

Let us recall that in (Hu, 1961) the height of job j is defined as the length of longest chain from j to the
final job, noted as h(j). He proved that an algorithm who executes the highest jobs (with largest h(j)) when
there are more than m candidates, is optimal for makespan, i.e. P |pj = p, i.t.|Cmax.

On the other hand, Baptiste et al. (2004) showed that an optimal schedule who minimizes the total flow
time always takes the shape described in Fig. 4.1. The set of jobs in the first incomplete slot is noted as J∗.
J∗ separates jobs into 2 parts. As the second part J2 is composed of successors of J∗, when J∗ is given, the 2
parts can be immediately obtained. Thus, an optimal schedule can be generated in polynomial time from J∗:
the full partial schedule of the first part can be obtained by Hu’s algorithm, and any active partial schedule
of J2 is optimal. To obtain J∗, they proposed to check all sets of at most m− 1 jobs, which requires O(nm)
iterations. When m is fixed, this method finds an optimal schedule in polynomial time.

4.2 Further analysis

We aim at a more efficient way to find a J∗ instead of checking all combinations. In this section, we prove
that there exists always a J∗ who satisfies some properties.

4.2.1 Definitions

We first formally define different sets of jobs in an optimal schedule. As J∗ is the set of jobs in the first slot
with less than m jobs, and J2 is its successors, we define J′ as the set of jobs in the previous slot of J∗. Then,
let J1 be the jobs executed before J′ .

We partition set J∗ into A∗ and B∗: each job in B∗ has predecessor in J′ , and jobs in A∗ do not. Reversely,
we define B′ ⊂ J′ , the set of predecessors of B∗, and A′ := J′ \ B′ . See Fig. 4.1.

30

Figure 4.1: Profile of an optimal schedule

Figure 4.2: The in-tree graph. Job j is in red, set X is in box �, LX(j) = ∅, PX(j) is solid, and SX(j) is in
the oval.

Then, we recall the level of a job introduced in section 1.2: h minus the length of the longest chain from
an initial job to j, represented by l(j) to distinguish from h(j), the length of the longest chain from j to a
final job. Their difference can be seen in Fig. 1.2. The terms high (higher, highest) and low (lower, lowest)
are used to describe l(j) from now on.

The formal definition of l(j) is:

l(j) :=

{
h if j is initial task in G

min{l(p)|p ∈ pred(j)} − 1 otherwise

Then, we consider 3 different operators on a job j and a set X. They return a set of jobs.

1. The set of jobs in X which are strictly lower than j :

LX(j) := {j∗ ∈ X|l(j∗) < l(j)}

2. A pruned tree:
PX(j) := {j1 ∈ JT |l(j1) > l(j2),∀j2 ∈ LX(j)} \ pred(LX(j))

It removes all predecessors of LX(j) from jobs strictly higher than jobs in LX(j).

3. The set of jobs in PX(j) which are on the same level as j :

SX(j) := {js|l(js) = l(j), js ∈ PX(j)}

See Fig. 4.2 for an illustration.
∀j ∈ X, if |SX(j)|≤ k, then j is called k-limited in X, where k is a positive number. Furthermore, a set

X is pure-k-limited when all jobs in it are k-limited.

31

31 2 4 5 6 7 8

9 10 11

12 13 14

15 16

17

18

Figure 4.3: example: JT in graph G and an optimal schedule (S∗)

Figure 4.4: example: (S)

Finally, a set X ⊂ JT is defined as regular if either it has a pure-m-limited superset V, such that |V|≤ m;
or the jobs in X can be partitioned into 3 groups:

Group 1 in which jobs are m-limited in X, i.e. |PX(j)|≤ m.

Group 2 in which jobs are 2m-limited in X and admit the same level, noted as lGroup 2, i.e. ∀j ∈Group 2,

|PX(j)|≤ 2m and l(j) = lGroup 2.

Group 3 in which each job j is the lexicographically first one in SX(j), and l(j) ≥ lGroup 2.

Using this definition, we set:

Theorem 9. For any instance of P |pj = p, i.t.|
∑
Cj, there exist an optimal schedule with a regular J∗.

For convenience, a schedule is also called a regular schedule if J∗ is regular. The following of this section
is dedicated to prove the Theorem, i.e. the existence of a regular J∗. To show the existence of a regular J∗,
we first build a particular schedule (S) from an arbitrary optimal one (S∗). Then, we prove that the J∗ of
(S) is regular. W.l.o.g. we assume that J1 ∪ J′ 6= ∅, otherwise any active schedule is optimal.

4.2.2 Construction of regular optimal schedule (S) from an arbitrary optimal
schedule (S�)

Let (S∗) be any optimal solution for P |pj = p, i.t.|
∑
Cj .

Step 1: Build the reverse graph GR = {J′ ∪ J1, ER}. Set j1 ≺R j2, ∀j2 ≺ j1, where ≺R means edges in ER. An
example can be seen in Fig. 4.3 and the reverse graph of J′ ∪ J1 in Fig. 4.5.

Step 2: Use Hu’s algorithm to get a full schedule (S1) for jobs in GR. For jobs of the same height in GR, the
priority is given to those who have a successor in J∗ in G. Jobs with same priority are executed in
lexicographical order.

32

l = 1

2 4

10

13

63

14

9l = 3

15

8l = 4

l = 2

1

12

11

75 2

10

h = 0

14

119

12

7

h = 1

h = 3

8

13

41

h = 2

15

53 6

Figure 4.5: example: J′ ∪ J1 in G and its reverse graph GR. The relation of height and level.

Figure 4.6: example: schedule by Hu’s algorithm and its reverse schedule

Step 3: Reverse (S1). See Fig. 4.6.

Step 4: Replace the sub-schedule of J′ ∪ J1 in (S∗) by (S1). See Fig. 4.4.

Step 5: ∀jA∗ ∈ A∗, ∀jJ′J1 ∈ J′ ∪ J1, if

1. l(jJ′J1) < l(jA∗), or l(jJ′J1) = l(jA∗) but jJ′J1 lexicographically precedes jA∗ , and

2. pred(jA∗) = ∅, or pred(jA∗) finishes before SjJ′ J1
, and

3. succ(jJ′J1) = ∅, or succ(jJ′J1) begins after CjA∗ ,

then, switch jJ′J1 and jA∗ . Go back to Step 1.

After these operations, the schedule (S∗) is renamed as (S). Notice that Hu’s algorithm is optimal for
makespan and out-tree. The reverse schedule of a feasible schedule of the reverse graph is feasible. The
switch in Step 5 respects the precedence constraints. The profile of the Gantt chart is unchanged, (S) is
still optimal. Finally, we underline that the go-back-loop finishes within n2 repetitions because every time it
moves the level of a jobs in A∗ down.

4.2.3 Properties of (S)

Before completing proof of the Theorem, we introduce the following properties, which will be used to prove
the regularity of (S).

Propriety 1. If A∗ 6= ∅ and A′ 6= ∅, then ∀jA∗ ∈ A∗, ∀jA′ ∈ A′ , l(jA′) ≥ l(jA∗).

Proof. By definition, jobs in A∗ have no predecessor in J′ and jobs in A′ have no successor in J∗. If l(jA′) <
l(jA∗), jA′ and jA∗ should have been switched in Step 5.

33

Propriety 2. ∀jJ′ ∈ J′ , ∀jJ′J1 ∈ J1 ∪ J′ if l(jJ′) > l(jJ′J1) and jJ′J1 does not have a successor in J′ , then

jJ′J1 ∈ J′ .

Proof. Separately consider two cases:

Case 1: jJ′J1 does not have a successor in J1. Let j
′

be the image of job j in the reverse graph GR. We
find a relationship between l and h:

l(j) + h(j
′
) = h (4.1)

This relationship is clearly shown in Fig. 4.5.

As jJ′J1 does not have a successor in J1 ∪ J′ , when the precedence graph is reversed, its image jRJ′J1

becomes an initial job in GR. We have h(jRJ′J1) > h(jRJ′).

jRJ′J1 have priority over jRJ′ according to Hu’s algorithm. As jRJ′ is executed in J′ , which is the first time

slot of (S1), and as jRJ′J1 is also initial, we deduce that jRJ′J1 is in the first slot of (S1) too, i.e. jJ′J1 is

in J′ .

Case 2: jJ′J1 has a successor in J1. This case does not actually exist, we show it by a contradiction. Let

jfsJ′J1 be its last successor in J1. As l(jfsJ′J1) < l(jJ′J1) < l(jJ′), we find that jfsJ′J1 is in Case 1 we just

proved. So, jfsJ′J1 ∈ J′ . It is a contradiction to the fact that jfsJ′J1 is in J1.

Corollary 14. ∀jJ′ ∈ J′ , ∀jJ1 ∈ J1, if l(jJ′) > l(jJ1), then jJ1 has a successor in J′ .

Propriety 3. If A′ 6= ∅, ∀jA′ ∈ A′ , ∀jJ′J1 ∈ J1 ∪ J′ if l(jA′) ≥ l(jJ′J1) and jJ′J1 has a direct successor in J∗

then jJ′J1 ∈ J′ .

Proof. jJ′J1 has a direct successor in J∗ means that jJ′J1 does not have a successor in J′ because every job has

only one successor by definition of in-tree. So, their images jRA′ and jRJ′J1 are initial jobs in GR, the reverse

graph.

Case 1 l(jA′) > l(jJ′J1)

Propriety 2 holds. jJ′J1 ∈ J′ .

Case 2 l(jA′) = l(jJ′J1)

As jJ′J1 has a direct successor in J∗, and by definition jA′ does not, according to Step 2, j
′

J′J1 takes

priority over j
′

A′ and finishes no later than j
′

A′ . So, jJ′J1 ∈ J′ .

Propriety 4. If A∗ 6= ∅ and A′ 6= ∅, jobs in A∗ and A′ are on the same level.

Proof. First, prove that all jobs in A∗ are on the same level.
Suppose by absurd that ∃j1

A∗ , j
2
A∗ ∈ A∗ such that l(j1

A∗) 6= l(j2
A∗), w.l.o.g. we assume l(j1

A∗) < l(j2
A∗).

Because of the definition of level, we can find a direct predecessor of j1
A∗ on level l(j1

A∗) + 1, let it be j1dp
A∗ . So,

we have l(j1dp
A∗) ≤ l(j2

A∗). ∀jA′ ∈ A′ , according to Propriety 1, l(j2
A∗) ≤ l(jA′), so l(j1dp

A∗) ≤ l(jA′). As j1dp
A∗ has

a successor in J∗, according to Propriety 3, we have j1dp
A∗ ∈ J′ , which is a contradiction to definition of A∗.

So, all jobs in A∗ are on the same level. Now, we show that ∀jA′ ∈ A′ , ∀jA∗ ∈ A∗, l(jA∗) = l(jA′) to finish
the proof.

Let jlpA∗ be a lowest predecessor of jA∗ on level l(jA∗) + 1.

If l(jlpA∗) ≤ l(jA′), as jlpA∗ has a successor in J∗, according to Propriety 3, we have jlpA∗ ∈ J′ , which is a

contradiction to definition of A∗. So, we have l(jlpA∗) > l(jA′). So, l(jA′) < l(jA∗) + 1, which is l(jA′) ≤ l(jA∗).
By Propriety 1, we have l(jA′) ≥ l(jA∗). So, l(jA′) = l(jA∗).

34

Propriety 5. Let X be a set of jobs on level lX, if either X ∩ (J′ ∪ J1) = ∅ or X ∩ (A∗ ∪ J1 ∪ B′) = ∅, then
we have |X|≤ m.

Proof. We first consider the case when X ∩ (J′ ∪ J1) = ∅ .
We build a partition of X: XJ∗ and XJ2 , which represent the subset of X resp. in J∗ and J2. As all jobs in

XJ2 have predecessors in J∗, define these predecessors as XJ2

J∗ . Then, ∀jXJ2

J∗
∈ XJ2

J∗ , we have l(jXJ2

J∗
) > lX. So,

XJ2

J∗ has no intersection with XJ∗ .

In an in-tree, different jobs on the same level have different predecessors, we have |XJ2

J∗ |≥ |XJ2 |, so |X|=
|XJ∗ |+|XJ2 |≤ |XJ∗ |+|XJ2

J∗ |< m, which closes the first case.

Now, we consider the second case, where X ∩ (A∗ ∪ J1 ∪ B′) = ∅.
Partition X into XA′ , XB∗ , and XJ2 , which represent resp. subset of X in A′ , B∗ and J2. Similarly, we

define the predecessors of XJ2 in A∗ and B∗ as XJ2

A∗ and XJ2

B∗ , we have |XJ2

A∗ |+|X
J2

B∗ |≥ |XJ2 |.
XA′ , XB∗ , XJ2

A∗ and XJ2

B∗ have no intersection with each other because jobs in XJ2

A∗ and XJ2

B∗ are not on level
lX.

Case 1 If XJ2

A∗ 6= ∅ :

If A′ = ∅, XA′ = ∅; if A′ 6= ∅, we still have XA′ = ∅ because applying Propriety 4 leads to know that

jobs in XA′ would be on the same level as jobs in XJ2

A∗ , which is, however, strictly higher than lX. As

XB∗ , XJ2

A∗ and XJ2

B∗ are subset of J∗, we have:

|X|≤ |XJ2

A∗ |+|X
J2

B∗ |+|XB∗ |≤ |J∗|< m

Case 2 If XJ2

A∗ = ∅:

Define XB
′

the predecessors of XB∗ and XJ2

B∗ in B′ .

As jobs in XB
′

are not on level lX, we have XB
′

∩ X = ∅. As subsets of J′ , we have:

|XB
′

|+|XA′ |≤ |J
′
|= m

As |XB
′

|≥ |XJ2

B∗ |+|XB∗ |≥ |XJ2 |+|XB∗ |, we have

|X|= |XA′ |+|XJ2 |+|XB∗ |≤ m

Propriety 6. ∀X ⊂ JT , ∀j ∈ X, jobs in SX(j) have no successor in X.

Proof. Suppose by absurd that jS ∈ SX(j) has a successor jsS in X. As l(jsS) < l(jS), l(jsS) < l(j), and we have
jsS ∈ LX(j), which is a contradiction to definition of SX(j).

Corollary 15. Let X be any superset of B∗, jobs in SX(j) neither are in B′ nor have successor in B′ .

Proof. ∀jS ∈ SX(j), whether jS ∈ B′ or jS has a successor in B′ , can we find a successor of jS in B∗, which is
also in X. This contradicts Propriety 6.

Propriety 7. If A∗ 6= ∅ and B∗ 6= ∅, then ∀jA∗ ∈ A∗, ∀jB∗ ∈ B∗, we have l(jA∗) ≥ l(jB∗)

Proof. Suppose by absurd that l(jA∗) < l(jB∗). We can find a lowest direct predecessor jldpA∗ of jA∗ , and a

predecessor jpB∗ of jB∗ in B′ . We have l(jpB∗) > l(jB∗) ≥ l(jldpA∗). As the only direct successor of jldpA∗ is in J∗,
jldpA∗ cannot have any successor in J′ . Using Propriety 2, jldpA∗ ∈ J′ , which is a contradiction to definition of
A∗.

Propriety 8. ∀jA∗ ∈ A∗, each job in SJ∗(jA∗) ∩ J2 has a predecessor in A∗.

35

jR1

jR2

Pred(B∗)
R

Pred(B∗)R

Figure 4.7: GR: when executing jR1 , the available jobs in pred(B∗)R prior to jR2 are in the oval.

Proof. Each job in SJ∗(jA∗) ∩ J2 has a predecessor in J∗. This predecessor is strictly higher than jA∗ , and
according to Propriety 7, jobs in B∗ are not higher than jA∗ . So, this predecessor can only be in A∗.

Propriety 9. If A′ = ∅, ∀j1, j2 two final jobs in J1 \ pred(B∗), such that l(j1) < l(j2), then Cj1
> Cj2

.

Proof. According to the fact that J1 ∪ J′ is scheduled by reversing the result of Hu’s algorithm of GR. Let
jR1 , j

R
2 be the images of j1, j2 in GR. As jR1 , j

R
2 are initial jobs, by (4.1), h(jR1) > h(jR2), and according to Hu’s

algorithm, we have CjR1 ≤ CjR2 . We now prove that they are not in the same time slot, i.e. CjR1 6= CjR2 .

We separate J1 ∪ J′ into two parts: pred(B∗) and pred(B∗) =: J1 ∪ J′ \ pred(B∗). Then, note their images

as pred(B∗)R and pred(B∗)
R

. As A′ = ∅, pred(B∗)R contains at least m initial jobs. Any finished job
in pred(B∗)R can release at least one successor by the structure out-tree of GR. As pred(B∗)R are higher

than pred(B∗)
R

, when it comes to the execution of jR1 , at least m jobs in pred(B∗)R with priority to jR2 are
available, see Fig. 4.7. They fill this slot, and jR2 has to be executed later. So, CjR1 < CjR2 , i.e. Cj1

> Cj2
.

Propriety 10. If A∗ 6= ∅, ∀jB∗ ∈ B∗, then |SJ∗(jB∗)|≤ 2m. Furthermore, if l(jB∗) < l(jlowestA∗), where jlowestA∗
is a lowest job in A∗, then |SJ∗(jB∗)|≤ m.

Proof. We first prove SJ∗(jB∗) ∩ J1 = ∅. Suppose by absurd that ∃jS ∈ SJ∗(jB∗) ∩ J1. By Corollary 14, jS
has a successor in J′ , let it be jsS . By Corollary 15, jsS /∈ B′ , so jsS ∈ A′ . As Propriety 4 and 7 hold, we have
l(jsS) ≥ l(jhB∗), where jhB∗ is the highest job in B∗. However, jsS is a successor of jS, l(jS) = l(jB∗) > l(jsS) ≥
l(jhB∗), contradicts the fact that jhB∗ is the highest job in B∗.

Then, by Corollary 15, we have SB∗(jB∗) ∩ (J1 ∪ B′) = ∅.
Partition SB∗(jB∗) into SB∗(jB∗) \ A∗ and SB∗(jB∗) ∩ A∗. According to Propriety 5, |SB∗(jB∗) \ A∗|≤ m.

We also have |SB∗(jB∗) ∩ A∗|≤ |A∗|< m. So, |SB∗(jB∗)|= |SB∗(jB∗) \ A∗|+|SB∗(jB∗) ∩ A∗|< 2m.
In particular, when l(jB∗) < l(jlowestA∗), SB∗(jB∗) ∩ A∗ = ∅. In this case, |SB∗(jB∗)|≤ m.

Propriety 11. If A′ = ∅, ∀jA∗ ∈ A∗ such that SJ∗(jA∗) ∩ J1 6= ∅ then

1. jA∗ is a highest job in A∗ and jobs in SJ∗(jA∗) ∩ J1 are final.

2. SJ∗(jA∗) \ J∗ ⊂ J1.

36

Proof. First, let jhA∗ be a highest job of A∗ and its last finished predecessor be jlpA∗ . ∀jS ∈ SJ∗(jA∗) ∩ J1,

consider its last successor jfsS in J1, if jS is final then jfsS = jS. We have

l(jfsS) ≤ l(jS) = l(jA∗) ≤ l(jhA∗) < l(jlpA∗)

In Step 5 when constructing (S), we exchange jobs when the 3 conditions are satisfied. Now, check the

following conditions of switching jfsS and jhA∗ :

1. by Propriety 9, jlpA∗ is finished strictly before jfsS ;

2. by Propriety 6, jS has no successor in J∗, which implies that jfsS is final and has no successor in J∗.

If l(jfsS) < l(jhA∗), j
fs
S should have been switched with jhA∗ by Step 5. So, we have l(jfsS) = l(jhA∗) and the

inequality above becomes
l(jfsS) = l(jS) = l(jA∗) = l(jhA∗) < l(jlpA∗)

This implies jS = jfsS , i.e. jS is final; and l(jA∗) = l(jhA∗), i.e. jA∗ is a highest job.
Now, we prove the SJ∗(jA∗) \ J∗ ⊂ J1. Job in SJ∗(jA∗) ∩ J2 would have predecessor in A∗ by Propriety 8,

which contradicts the fact that jA∗ is already a highest job in A∗, so SJ∗(jA∗)∩J2 = ∅. Then, SJ∗(jA∗)∩J
′

= ∅
can be deduced by Corollary 15. While we have both SJ∗(jA∗) ∩ J2 = ∅ and SJ∗(jA∗) ∩ J′ = ∅, we have
SJ∗(jA∗) \ J∗ ⊂ J1.

4.2.4 Proof for the regularity

Using all the previous properties of (S), we prove the regularity of J∗.

Case 1: A∗ = ∅

We assume that A∗ = ∅. We prove that in this case, J∗, which is B∗, has a pure-m-limited superset.
Let us define such a superset as B∗ unions the jobs in A′ which are strictly lower than jobs in B∗:

V := {jA′ ∈ A
′
|∀jB∗ ∈ B∗, l(jA′) < l(jB∗)} ∪ B∗

We prove that V is pure-m-limited: ∀j ∈ V, |SV(j)|≤ m. Consider ∀jS ∈ SV(j), we show that jS /∈ J1.
We find jhB′ the highest job in B′ , and we have l(jS) < l(jhB′). If jS ∈ J1, according to Corollary 14, jS has

a successor in J′ , let it be jsS . However, jsS ∈ A′ implies that jsS ∈ V because l(jsS) < l(jS); jsS ∈ B′ implies
that jsS has successor in B∗. In both case can we find a successor of jS in V, which contradicts Propriety 6.

Corollary 15 indicates that SV(j) ∩ B′ = ∅, so, SV(j) ∩ (B′ ∪ J1) = ∅. By Propriety 5, as A∗ = ∅, we have
|SV(j)|≤ m.

As we proved that V is pure-m-limited, J∗ is regular when A∗ = ∅.

Case 2: A∗ 6= ∅

The rest of our proof shows that when A∗ 6= ∅, jobs in J∗ are in one of the 3 groups: Group 1, Group 2, and
Group 3.

Firstly, consider jobs in B∗. ∀jB∗ ∈ B∗, we prove that jB∗ is in either Group 1 or Group 2.

Proof. By Propriety 10, if l(jB∗) < l(jlowestA∗), then jB∗ is m-limited. Otherwise, jB∗ is 2m-limited. Jobs in
Group 2 are the highest jobs of B∗, on the same level.

Secondly, let us consider A∗ in the subcase where A′ 6= ∅. ∀jA∗ ∈ A∗, we prove that jA∗ is in Group 3.

Proof. Suppose by absurd that jS is the lexicographically first job in SJ∗(jA∗), jS 6= jA∗ , and jS /∈ J∗. If
jS ∈ J2, according to Propriety 8, it has a predecessor in A∗. However, this contradicts the fact that jobs in
A∗ are on the same level according to Propriety 4. So, jS ∈ J1 ∪ J′ .

As A′ 6= ∅, Propriety 4 also tells that jobs in A′ is on the same level as jS. This means during Hu’s
algorithm in Step 2 when constructing (S), jS has the same priority as jobs in A′ . As we execute jobs in

37

lexicographic order and jS is the lexicographically first one, we have jS ∈ J′ . By Corollary 15, jS /∈ B′ . So,
jS ∈ A′ .

However, in Step 5 when constructing (S), we exchange jobs when 3 conditions are satisfied. Now, check
the following 3 conditions:

1. As jS ∈ A′ , succ(jS) begins strictly after J∗.

2. As jA∗ ∈ A∗, prec(jA∗) finishes strictly before J′ .

3. l(jS) = l(jA∗), and jS lexicographically precedes jA∗ .

jS should have been switched with jA∗ by Step 5. So, we have a contradiction. As jA∗ is the lexicographically
first one, it is in Group 3.

Thirdly, we consider the other subcase, i.e. A′ = ∅. ∀jA∗ ∈ A∗, we prove that jA∗ is in either Group 1 or
Group 3.

Proof. If jA∗ is not a highest job in A∗, we show that it is in Group 1. By Corollary 15 and Propriety 11,
SJ∗(jA∗) ∩ (B′ ∪ J1) = ∅, as B′ = J′ , by Propriety 5, |SJ∗(jA∗)|< m.

If jA∗ is a highest job, we show that it is in Group 3. Suppose by absurd that jS is the lexicographically
first job in SJ∗(jA∗), jS 6= jA∗ , and jS /∈ J∗. By Propriety 11, we have jS ∈ J1.

In Step 5 when constructing (S), we exchange jobs when 3 conditions are satisfied. Now, we can state
that:

1. The predecessors of jA∗ , which are higher than jS, finish before jS according to Propriety 9.

2. By Propriety 11, jS is final

3. l(jS) = l(jA∗), and jS lexicographically precedes jA∗ .

jS should have been switched with jA∗ in Step 5. So, we have a contradiction.

Propriety 7 reveals that Group 3 which contains jobs in A∗ are not lower than Group 2, which contains
jobs in B∗. Thus, jobs in A∗ and B∗ are in one of the 3 groups, we accomplished the proof of regularity of J∗.

4.3 The algorithm

We just proved that there always exists a regular set J∗. To find the regular J∗, we only need to explore all
regular sets, which are recursively listed by Algorithm 1.

The sets are generated by choosing jobs from bottom to the top. Jobs added to C by line 10, 16 or 20
correspond to the 3 groups:

1. A m-limited job in Group 1 is picked from at most hm candidates.

2. A 2m-limited job in Group 2 is picked from at most 2hm candidates.

3. The lexicographically first job in Group 3 is picked from at most h candidates.

As each job is picked from at most 2hm candidates, noticing that m is fixed, the complexity is O(hm). Line
26 is dedicated to the case where J∗ has a pure-m-limited superset. Creating subsets from at most m − 1
jobs is in O(2m), which is a constant when m is fixed. Thus, the total complexity of the algorithm is O(hm).

4.3.1 Example

We illustrate how the algorithm lists regular sets by the example in Fig. 4.8 where 19 jobs are to be scheduled
by m = 3 parallel machines.

When k = 0 and L = ∅, the first loop gives:

• Line 10 adds {16}, {17}, {18}, {19}, {16, 17}

• line 16 adds {1}, {12}

38

Input: set of all jobs JT
Output: C: collection of regular sets

1 Add ∅ to C;
// Partitionable into 3 groups

2 for k = 0, 1, . . . ,m− 2 do
3 foreach L ∈ C, s.t. |L|= k do
4 P = {j1 ∈ JT |l(j1) > l(j2),∀j2 ∈ L} \ pred(L);
5 foreach level l from 0 to h do
6 Let S = {j ∈ P|l(j) = l};

// Group 1

7 if |S|≤ m then

8 foreach subset S′ ⊂ S do

9 if |S′ ∪ L|≤ m− 1 then

10 add S′ ∪ L to C
11 end

12 end

13 end
// Group 2

14 if 2m ≥ |S|> m and L is pure-m-limited then

15 foreach subset S′ of S do

16 Add S′ ∪ L to C;
17 end

18 end
// Group 3

19 Let j be the lexicographically first job of S;
20 Add {j} ∪ L to C;

21 end

22 end

23 end
// pure-m-limited superset

24 foreach L ∈ C do
25 if L is pure-m-limited then
26 Add all subsets of L to C
27 end

28 end
Algorithm 1: Get all regular sets

Figure 4.8: Example, where P is in the rectangle when L = {16}

39

B N ratio B N ratio
n m = 3 m = 4

35 51.91 11.92 4.35 467.71 52.72 8.87
45 202.24 12.35 16.38 2193.58 90.64 24.20
55 550.41 13.58 40.52 7860.83 104.08 75.53
65 1513.29 92.84 16.30 22862.25 143.65 159.16
75 3249.82 75.71 42.92 62671.95 457.11 137.11
85 6751.65 98.98 68.22 132092.10 753.87 175.22
95 12653.46 310.94 40.69 277052.60 1253.26 221.07

105 22044.72 335.44 65.72 548726.40 2732.75 200.80
115 39132.76 476.69 82.09 1041885.00 3369.15 309.24

Table 4.1: Experimental results: average time in seconds, where B,N stand for Baptiste’s algorithm and the
new algorithm

• line 20 adds {13}, {14}, {15}, {12, 13},
{12, 14}, {12, 15}, {13, 14}, {13, 15}, {14, 15}.

When k = 1, several loops are done. Take an example of L = {16}

• Line 10 adds {16, 14}, {16, 15}, {16, 17}

• line 16 adds {16, 5}

• line 20 does not add any set because no level contains 4, 5 or 6 jobs.

The algorithm runs similarly for other choice of L. The final results are given by the following table:
k pure-m-limited sets impure-m-limited sets

k=0 {16}, {17}, {18}, {19}, {1} {12}, {13}, {14}, {15}
, {12, 13}, {12, 14}, {12, 15},
{13, 14}, {13, 14}, {14, 15},

k=1 {16, 14}, {16, 15}, {16, 17},
{17, 12}, {17, 13}, {17, 15},
{18, 17}, {18, 14}, {18, 15}

{16, 5}, {17, 1}, {18, 5},
{12, 3}, {13, 1}, {14, 1},
{15, 1}

As all subsets of pure-m-limited sets are already in C, line 26 does not add any other sets.
Our algorithm returns |C|= 31 sets, which is much less than Baptiste’s algorithm, who requires comparison

of
(

19
1

)
+
(

19
2

)
= 190 candidates. The set J∗ is {19}.

4.4 Experiments

Our algorithm generates all regular sets in time O(hm), while it requires extra calculation, for example,
a tree-pruning of P in every step. It is still meaningful to implement our algorithm and compare it with
Baptiste’s algorithm on the running time.

For each couple n,m, we create 5 different instances with a height from 3 to 6, on which we ran both
algorithms. The instances of in-trees are randomly generated in the following way:

1. generate a chain of length h = 3, . . . , 6

2. create n jobs

3. randomly (equiprobably) assign each job a successor from candidate jobs where candidate jobs are those
who have already at least 1 but at most h− 1 successors

We report the average time consumed in table 4.1.
As it can be seen, both algorithm consumed exponential time to n while our algorithm performs much

better. The theoretical ratio is O(nm)
O(hm) = O(wm) where w = n

h can be regarded as the average width. However,

the experimental ratio is not so perfectly exponential to n due to the randomness.

40

4.5 Conclusion

We developed an algorithm for the scheduling problem P |pj = p, i.t.|
∑
Cj , with a complexity O(hm), where

h is the height of in-tree if the number of machines is considered as a constant. This leads to the conclusion
that the complexity is mainly determined by the height of the graph.

However, based on the properties we proved, this algorithm still has large room for improvement. For
example, a more strict and efficient constraint |L|≤ m − |X| can replace |L|≤ m. Moreover, to make the
algorithm practical for real instances, several technical improvements can be made, such as checking whether
|J1 ∪ J′ | is divisible by m before generating a schedule from every candidate set. These techniques may refine
the algorithm to a certain extent, however, not in the sense of complexity.

41

Chapter 5

Modeling P |prec|Cmax

Considering the makespan, we recall that the problem is NP-hard even without precedence constraints and
a fixed number of machines equal to 2(Lenstra et al., 1977). In previous chapters, we discussed that even
when the jobs have equal-processing-time, and the precedence constraints take particular shape, the problem
is still NP-hard for most of the cases. Nevertheless, generalized as a combinatorial optimization problem, all
scheduling problems can be solved by various general problem-solving methods, such as tree-search procedures
and mixed integer programming which benefits from its intuitive modeling and efficient solvers.

We are interested in this chapter in proposing a way to solve the general scheduling problem P |prec|Cmax
with arbitrary precedence constraints and arbitrary processing-time. This method will be adaptable for
specific processing time or precedence graph.

We adapt some models, which are originally designed for other problems, to parallel scheduling problems
and propose a new one. Then, we compare their performance by testing them on benchmarks with precedence
constraints from (Kolisch and Sprecher, 1996).

5.1 Preliminary

Every model to be presented uses the variables Sj and Cj as starting time and completion time of j. The
objective function is Cmax, the following constraints hold for all models, and they are omitted hereafter:

Cj = Sj + pj , ∀j ∈ JT

Cmax ≥ Cj , ∀j ∈ JT

Sj ≥ Cj′ , ∀j
′
, j ∈ JT and j

′ ≺ j

where pj is the processing time of job j and j
′ ≺ j means j

′
precedes j. JT and MT are the sets of all

jobs and machines. In the following sections, j
′
, j ∈ JT and θ ∈ MT . M represents a large number, which

can be defined as
∑
pj .

Indeed, any one of Cj and Sj can be represented by the other one. However, the model is solved faster
using both Cj and Sj then using just one of them, as we can see from the experimental results.

5.2 Time-Indexed Model (TIM)

The time-indexed model (TIM) is formulated in Thomalla (2001) for job shop scheduling problems. The
principal variables it uses are xθt,j which is 1 if j starts on θ at t. It requires an estimation of an upper bond
of Cmax, which is noticed as tmax. We proposed a version for TIM by using a nominal variable Cj :

(5.1a)Sj′ ≥ tx
θ
t,j′

, ∀j′ ∈ JT , t ≤ tmax; θ ∈MT

(5.1b)xθ1

t1,j
′ + xθ2

t2,j
≤ 1, ∀j′ ≺ j, t1 + pj′ ≥ t2, θ1, θ2 ∈MT

(5.1c)
∑

t ≤tmax

∑
θ ∈MT

xθ
t,j′

= 1, ∀j′ ∈ JT

42

(5.1d)
∑
j′ ∈JT

xθ
t,j′
≤ 1, ∀θ ∈MT , j

′ ∈ JT

(5.1a) defines Cj′ . (5.1b) describes the precedence constraints. (5.1c) and (5.1d) make sure that each job
is executed only once.

In TIM, the variables has a time index t. In the following, we present the other models, in their principal
variables, the solution are represented by the order of jobs executed in the schedule.

5.3 Relative-Order-Indexed Model1 (ROIM1)

This model uses binaries yθ
j′ ,j

and zθ
j′ ,j

as decision variables. yθ
j′ ,j

= 1 if j
′

is executed immediately before j

on θ; zθ
j′ ,j

= 1 if j
′

is executed before j on θ. The relative order of job j
′

and j is implied in yθ
j′ ,j

and zθ
j′ ,j

if

they are on the same machine.
Different formulations of this model can be seen in B lażewicz et al. (1991) and Unlu and Mason (2010)

for parallel scheduling problems without precedence constraints. We introduce Sj and Cj for precedence
constraints by adding (5.2b), and we propose the following formulation:

(5.2a)yθ
j′ ,j
≤ zθ

j′ ,j
, ∀j′ , j ∈ JT , θ ∈MT

(5.2b)M(1− zθ
j′ ,j

) + Sj ≥ Cj′ , ∀j
′
, j ∈ JT , θ ∈MT

(5.2c)M(1− zθ
j′ ,j

) ≥
∑
θ′ 6=k

∑
q

(zθ
′

j′ ,j
+ zθ

′

q,j + zθ
′

q,j′
+ zθ

′

j,q + zθ
′

j′ ,q
), ∀j′ , j ∈ JT , θ ∈MT

(5.2d)
∑
θ

(yθ
j′ ,j

+ yθ
j,j′

) ≤ 1, ∀j′ , j ∈ JT

(5.2e)
∑
θ

∑
j′

yθ
j′ ,j

= 1, ∀j ∈ JT

(5.2f)
∑
θ

∑
j

yθ
j′ ,j

= 1, ∀j′ ∈ JT

(5.2a) ensures that zθ
j′ ,j

= 1 if yθ
j′ ,j

= 1. (5.2c), (5.2d), (5.2e) and (5.2f) enforce each job to have exactly

one predecessor and one successor. Notice that in (5.2e) and (5.2f), each job has to be executed before (after)
some other job. In practice, some dummy jobs are created to represent jobs after (before) the last (first)
executed jobs on each machine.

In fact, (5.2e) and (5.2f) convey the same meaning: if every job follows another (except the first one),
then every job has a follower (except the last one). If we remove one of (5.2e) and (5.2f), experimental results
show that the model still works well, but slower. So, we kept them. We call them redundant constraints.

5.3.1 Relative-Order-Indexed Model 2 (ROIM2)

We present another relative-order-indexed model, which uses binaries zθ
j′ ,j

and xθ
j′

as decision variables.

xθj = 1 if j is on θ.
To associate these two variables, Low et al. (2006) and Gao et al. (2006) use the following non-linear

constraint for job shop problems:

xθ
j′
xθj = zθ

j′ ,j
+ zθ

j,j′
, ∀j′ , j, θ

The version for job shop problem in Özgüven et al. (2010) is linear. However, it introduces new integer
variables. Here, we proposed a new formulation, which is linear and does not introduce new integer variables:

43

(5.3a)
∑
θ

xθj = 1, ∀j ∈ JT

(5.3b)Cj′ ≤ Sj +M(1− zθ
j′ ,j

), ∀j′ , j ∈ JT , θ ∈MT

(5.3c)Mxθ
j′
≥
∑
j

(zθ
j′ ,j

+ zθ
j,j′

), ∀j′ ∈ JT , θ ∈MT

(5.3d)zθ
j′ ,j

+ zθ
j,j′
≤ 1, ∀j, j′ ∈ JT , θ ∈MT

(5.3e)M(zθ
j′ ,j

+ zθ
j,j′

) ≥ xθ
j′

+ xθj − 1, ∀j′ , j ∈ JT , θ ∈MT

(5.3a) forces each job to be executed once. (5.3b) ensures that Cj′ ≤ Sj if zj′ ,j = 1. (5.3c) considers one

case: xθ
j′

= 0 then ∀j ∈ JT , zθ
j′ ,j

= 0. (5.3c) means that only one of zθ
j′ ,j

and zθ
j,j′

takes value 1. (5.3e) works

when both j
′
, j are on θ, and forces one to precede the other. We remind the reader that M is a relative

large number.

5.3.2 Absolute-Order-Indexed Model (AOIM)

We consider another model which uses βlθ,j as its principal variable. The variable equals 1 if j is the lth job
on θ, where l is the absolute-order.

It was originally designed for parallel scheduling problem without precedence constraints by B lażewicz
et al. (1991). To add precedence constraints for job shop problems, Demir and İşleyen (2013) introduces T lθ
to the model, which is the starting time of the lth job of θ, and xθj to indicate the machine of jobs.

Here, we propose a similar formulation, where we removed the variables xθj from the formulation of (Demir

and İşleyen, 2013):

(5.4a)T l+1
θ − T lθ ≥ pjβlθ,j , ∀l ≤ n, j ∈ JT , θ ∈MT

(5.4b)T lθ +M(1− βlθ,j) ≥ Sj , ∀l ≤ n, j ∈ JT , θ ∈MT

(5.4c)T lθ ≤M(1− βlθ,j) + Sj , ∀l ≤ n, j ∈ JT , θ ∈MT

(5.4d)
∑
j

βlθ,j ≤ 1, ∀l ≤ n, θ ∈MT

(5.4e)
∑
θ

∑
l

βlθ,j = 1, ∀j ∈ JT

(5.4e) forces each job to be executed once. (5.4d) ensures that only one job can be executed as the lth job
on θ. (5.4c), (5.4b) and (5.4a) works when βlθ,j = 1, they guarantee T lθ = Sj and T l+1

θ − T lθ = pj .

5.3.3 Compact Model (CM)

We propose a new order-indexed model here. It can be seen as an improved ROIM. It uses δj′ ,j , which equals

1 if j
′

is executed before j on the same machine, and xθj as decision variables.

(5.5a)Cj′ − Sj ≤M(1− δj′ ,j), ∀j
′
, j ∈ JT

(5.5b)M(2− xθ
j′
− xθj) + δj′ ,j + δj,j′ ≥ 1, ∀j′ , j ∈ JT , θ ∈MT

(5.5c)M(2− xθ1

j′
− xθ2

j) ≥ δj′ ,j + δj,j′ , ∀j
′
, j ∈ JT , θ1, θ2 ∈MT and θ1 6= θ2

(5.5d)
∑
θ

xθj = 1, ∀j ∈ JT

(5.5a) connects δj′ ,j , Cj′ and Sj (if δj′ ,j = 1 then Cj′ ≤ Sj). When both j
′
, j are on θ, (5.5b) forces one

precedes the other. (5.5d) makes each job be executed exactly once. (5.5c) sets δj′ ,j and δj,j′ as 0 when j
′
, j

are on different machines.
Notice that when minimizing Cmax, (5.5c) is redundant because when j

′
, j are on different machines,

δj′ ,j = 1 or δj,j′ = 1 can not reduce Cmax. However, it helps to give δj′ ,j a comprehensible meaning (δj′ ,j = 1

if and only if j
′

precedes j on the same machine) and has a positive impact on the model.

44

5.4 Test Result and Analysis

We tested the models with benchmarks we built from precedence constraints in (Kolisch and Sprecher, 1996).
The instances are originally designed for scheduling problems with shared resources and multiple resource
consumption, including renewable, non-renewable or doubly constrained resources. Jobs have informations
such as due date, release date and tardiness cost etc. We removed all the constraints other than precedences
constraints, set the number of machines differently, and set a unique requirement of resources consumption.

The platform we used is: IBM ILOG CPLEX Optimization Studio V12.6.0 on Intel Core i7-4600U
@2.10GHz. We compared their average time consumed to solve instances with different scales of jobs and
machines in Table 5.1, where TC means average time consumed to solve the instances; ’-’ means the model
did not solve any instance on this scale within 6000sec.

m 4 3 5 10

n 15 30 60 30 30 30
CM 0.92 1.22 13.32 0.98 0.34 0.06

ROIM2 1.77 6.41 97.23 6.32 4.88 1.66
AOIM 3.19 14.66 - 14.32 13.98 14.53

ROIM1 15.41 79.23 - 9.36 4.28 3.32
TIM 48.39 - - - 40.26 20.94

Table 5.1: Performance of various models

Model BV IV C

CM n2 + nm 2n n2(m2 +m+ 1) + n
ROIM2 n2m+ nm 2n 2n2m+ 2mn+ n
AOIM n2m+ nm 2n+ nm 3n2m+mn+ n
ROIM1 2n2m 2n 3n2m+ n2 + 2n

TIM nm
∑
pj 2n n2m

∑
pj +mn

∑
pj +mn+ n

Table 5.2: Number of variables and constraints, where BV/IV/C means number of binary variables/integer
variables/constraints

We find that when m is set as 4, the models took longest time for solving. As it can be seen, CM stays
ahead of the others and requires less space. The different speed of models results mostly from the different
decision variables used.

The Time-Indexed Model (TIM) requires an estimation of an upper bound of Cmax. It can be as large
as
∑
pj for the worst case (single machine) in practice, which leads to large amounts of variables. In our

test, we set tmax as the exact value of Cmax, which minimizes the number of variables. In fact, the number
of variables could be extremely large if pj is not an integer. However, TIM is still the slowest even for
instances of unit-processing-time jobs. Both ROIM2 and ROIM2 use O(n2m) binary variables: ROIM1 uses
two 3-dimension variables, while ROIM2 and AOIM use only one. AOIM is the only one which requires extra
integer variable. The fastest model CM uses only 2-dimension binary variables and requires fewest variables,
which may be the principal advantage of CM.

CM does not have the fewest constraints. The fewest constraints are not necessarily another advance.
There exists some redundant constraints, such as (5.2f) and (5.5c), which exert positive effects on models,
see Table 5.3.

However, the redundant constraints does not certainly play a positive role in all models. For example, we

find that adding T lθ =
∑l−1
l′=1

∑
j β

l
′

θ,jpj to AOIM, which fix the value of T lθ immediately when the decision

variable βlθ,j is fixed, makes the model dramatically slower, see Table 5.4.
In addition to redundant constraints, the variables Cj which could totally be replaced by Sj + pj , can be

seen as redundant variables. We tested and find that they improve the models.

45

ROIM1 CM
with without with without

n = 15 15.41 17.89 0.92 1.10
n = 30 79.23 90.91 1.22 1.41

Table 5.3: Performance of ROIM1 and CM with/without redundant constraints, average time in sec.

with without

n = 15 10.01 3.19
n = 30 46.92 14.66

Table 5.4: Performance of AOIM with/without redundant constraints, average time in sec.

5.5 Conclusion and Perspective

We adapted models to the parallel scheduling problem with precedence constraints and proposed a new one
which outperforms the others in running test.

TIM, ORIM1, ORIM2 and AOIM have an original version for flexible job-shop problem (FJSP). The only
difference is that FJSP has dedicated machine constraints, which means the machines are not identical. It’s
not hard to add these constraints to our new model and adapt it to FJSP. We conjecture that it can still
win out over the others. For parallel scheduling problem, they can also be easily adapted to other objective
function such as the total completion timeor Lmax by adding a constraint on Cj . The model can be employed
not only for the scheduling problems but for other ordered assignment problems as well.

Besides, the time to solve does not depend merely on instance’s scale, but also on number of machines, the
processing time of jobs, and the shape of precedence constraints. The model is helpful to study experimentally
how the different precedence constraints impact the time to solve.

Model with without

CM 1.22 1.79
ROIM2 6.41 7.88
AOIM 14.66 19.01

ROIM1 79.32 95.17

Table 5.5: Models’ performance solving instances of n = 30,m = 4 with/without Cj

46

Part IV

Conclusion

47

In this thesis, we discussed the complexity of parallel scheduling problems with precedence constraints
and the way to solve it.

We first put forward a proof of NP-completeness for P |pj = 1, in-tree|
∑
Cj . We also proved that schedul-

ing unit-processing-time jobs under level-order or opposing-forests precedence constraints is NP-complete, for
both Cmax and

∑
Cj whether it is preemptive or not. Then, we adapt the proof to other scheduling prob-

lems, such as out-tree and opposing forests. This work updates the earlier study of scheduling problems’
complexity in literature.

On the other hand, we developed an algorithm for theNP-complete scheduling problem P |pj = p, i.t.|
∑
Cj ,

with a complexity O(hm), where h is the height of the in-tree. This algorithm is both theoretically and ex-
perimentally faster than Baptiste’s algorithm (Baptiste et al., 2004). Afterwards, we consider solving the
general scheduling problem P |prec|Cmax by linear integer programming models. We adapted some existing
models which are originally designed for other problems, and propose a new one, which uses less variables
and runs faster on LP solver such as Cplex.

All this work refines the complexity limits and closes open cases. This could be particularly useful to
classify a huge set of problems that derivate from parallel scheduling, such as hybrid shop problem. We also
proposed resolution improvement to help decision tools being faster and more efficient.

Add to those extensions and applications, several theoretical research avenues also exist. In terms of
complexity, there exist still open problems, such as P |pj = 1, i.t., pmtn|

∑
Cj , that we have to study. We

pointed out that our proof cannot be immediately adapted to this preemptive version by proposing a counter-
example. So, this need further investigation. In addition, when the number of machines is fixed, some
problems are still open such as Pm|pj = p, ch., rj |

∑
Cj . Another open problem, Pm|pj = p, l.o.|

∑
Cj , is

conjectured to be polynomial solvable.
Regarding resolution methods and practical aspects to have efficient methods for real problems, we pro-

posed some research avenues on exponential algorithms, which could be extended to other areas, such as shop
scheduling problems and other sequencing problems. For example, in ride-sharing systems such as Uber, Didi,
Lyft etc, demand list what a driver picks can be modeled as a sequence of jobs that a machine executes.

On another aspect, scheduling problems are not the only ones which depends on the shape of the graph. We
may consider other OR problems where a graph is involved, such as network restoration problem (Averbakh,
2017), in which the shortest recovery time to reach every nodes has to be found. In such a field, the complexity
may also vary when the graph takes a particular shape (e.g. tree) or some parameters are fixed. So, there
clearly exist open problems too.

48

Bibliography

I. Averbakh. Minimizing the makespan in multiserver network restoration problems. Networks, 70(1):60–68,
2017. 48

J. B lażewicz, M. Dror, and J. Wȩglarz. Mathematical programming formulations for machine scheduling: A
survey. European Journal of Operational Research, 51(3):283–300, 1991. 43, 44

P. Baptiste and V. G. Timkovsky. On preemption redundancy in scheduling unit processing time jobs on
two parallel machines. Operations Research Letters, 28(5):205–212, 2001. 8

P. Baptiste, P. Brucker, S. Knust, and V. G. Timkovsky. Ten notes on equal-processing-time scheduling.
Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 2(2):111–127, 2004. 8,
30, 48

P. Brucker. Scheduling algorithms, volume 3. Springer, 2007. 4

P. Brucker, M. R. Garey, and D. S. Johnson. Scheduling equal-length tasks under treelike precedence con-
straints to minimize maximum lateness. Mathematics of Operations Research, 2(3):275–284, 1977. 8, 9,
27

P. Brucker, J. L. Hurink, and S. Knust. A polynomial algorithm for P |pj = 1, rj , outtree|
∑
Cj . Math.

Methods Oper. Res., 2001. 8, 9, 27

P. Brucker, S. Heitmann, and J. Hurink. How useful are preemptive schedules? Operations Research Letters,
31(2):129–136, 2003. 8, 23

J. Bruno, E. G. Coffman Jr, and R. Sethi. Scheduling independent tasks to reduce mean finishing time.
Communications of the ACM, 17(7):382–387, 1974. 7

M. Chardon and A. Moukrim. The coffman–graham algorithm optimally solves uet task systems with over-
interval orders. SIAM Journal on Discrete Mathematics, 19(1):109–121, 2005. 9

E. G. Coffman and R. L. Graham. Optimal scheduling for two-processor systems. Acta informatica, 1(3):
200–213, 1972. 7

R. W. Conway, W. L. Maxwell, and L. W. Miller. Theory of scheduling. eading. Massachussets: Addison-
Wesley, 1967. 2

Y. Demir and S. K. İşleyen. Evaluation of mathematical models for flexible job-shop scheduling problems.
Applied Mathematical Modelling, 37(3):977–988, 2013. 44

K. Djellab. Scheduling preemptive jobs with precedence constraints on parallel machines. European journal
of operational research, 117(2):355–367, 1999. 8

D. Dolev and M. K. Warmuth. Scheduling precedence graphs of bounded height. Journal of Algorithms, 5
(1):48–59, 1984. 8

D. Dolev and M. K. Warmuth. Profile scheduling of opposing forests and level orders. SIAM Journal on
Algebraic Discrete Methods, 6(4):665–687, 1985. 4, 8

49

J. Du, J. Y. Leung, and G. H. Young. Scheduling chain-structured tasks to minimize makespan and mean
flow time. Information and Computation, 92(2):219–236, 1991. 7, 8

P. C. Fishburn. Interval orders and interval graphs: A study of partially ordered sets. John Wiley & Sons,
1985. 4

J. Gao, M. Gen, and L. Sun. Scheduling jobs and maintenances in flexible job shop with a hybrid genetic
algorithm. Journal of Intelligent Manufacturing, 17(4):493–507, 2006. 43

M. R. Garey and D. S. Johnson. Computers and intractability: a guide to np-completeness, 1979. 11

M. R. Garey and D. S. Johnson. Computers and intractability, volume 29. wh freeman New York, 2002. 11

M. R. Garey, D. S. Johnson, E. Tarjan, and M. Yannakakis. Scheduling opposing forests. SIAM Journal on
Algebraic Discrete Methods, 4(1):72–93, 1983. 8, 9, 27

T. F. Gonzalez and D. B. Johnson. A new algorithm for preemptive scheduling of trees. Journal of the ACM
(JACM), 27(2):287–312, 1980. 9, 27

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan. Optimization and approximation in deterministic
sequencing and scheduling: a survey. Annals of discrete mathematics, 5:287–326, 1979. 4

T. C. Hu. Parallel sequencing and assembly line problems. Operations research, 9(6):841–848, 1961. 8, 9, 27,
30

Y. Huo and J. Y.-T. Leung. Minimizing mean flow time for UET tasks. ACM Transactions on Algorithms
(TALG), 2(2):244–262, 2006. 8

S. Knust and P. Brucker. Complexity results for scheduling problems, 2009. http://www2.informatik.uni-
osnabrueck.de/knust/class/. 8

R. Kolisch and A. Sprecher. Psplib – a project scheduling problem library. EUROPEAN JOURNAL OF
OPERATIONAL RESEARCH, 1996. URL http://www.om-db.wi.tum.de/psplib/format.html. 42, 45

W. Kubiak, D. Rebaine, and C. Potts. Optimality of hlf for scheduling divide-and-conquer uet task graphs
on identical parallel processors. Discrete Optimization, 6(1):79–91, 2009. 9

E. L. Lawler. Sequencing jobs to minimize total weighted completion time subject to precedence constraints.
In Annals of Discrete Mathematics, volume 2, pages 75–90. Elsevier, 1978. 7

E. L. Lawler. Preemptive scheduling of. precedence-constrained jobs on parallel machines. In Deterministic
and stochastic scheduling, pages 101–123. Springer, 1982. 8, 9, 27

J. K. Lenstra and A. Rinnooy Kan. Complexity of scheduling under precedence constraints. Operations
Research, 26(1):22–35, 1978. 8

J. K. Lenstra, A. R. Kan, and P. Brucker. Complexity of machine scheduling problems. Annals of discrete
mathematics, 1:343–362, 1977. 7, 42

C. Low, Y. Yip, and T.-H. Wu. Modelling and heuristics of fms scheduling with multiple objectives. Computers
& operations research, 33(3):674–694, 2006. 43

R. H. Möhring. Computationally tractable classes of ordered sets. In Algorithms and order, pages 105–193.
Springer, 1989. 8

A. Moukrim. Non-preemptive profile scheduling and quasi interval orders. Electronic Notes in Discrete
Mathematics, 3:133–139, 1999. 8

C. Özgüven, L. Özbakır, and Y. Yavuz. Mathematical models for job-shop scheduling problems with routing
and process plan flexibility. Applied Mathematical Modelling, 34(6):1539–1548, 2010. 43

C. H. Papadimitriou and M. Yannakakis. Scheduling interval-ordered tasks. SIAM Journal on Computing, 8
(3):405–409, 1979. 8

50

http://www.om-db.wi.tum.de/psplib/format.html

M. L. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2012. v, 2, 5, 7, 15

D. Prot and O. Bellenguez-Morineau. A survey on how the structure of precedence constraints may change
the complexity class of scheduling problems. Journal of Scheduling, pages 1–14, 2017. 2, 8, 9

C. S. Thomalla. Job shop scheduling with alternative process plans. International Journal of Production
Economics, 74(1):125–134, 2001. 42

J. D. Ullman. NP-complete scheduling problems. Journal of Computer and System sciences, 10(3):384–393,
1975. 2, 7

J. D. Ullman. Complexity of sequencing problems. Computer and Job-Shop Scheduling Theory, EG Co man,
Jr.(ed.), 1976. 7

Y. Unlu and S. J. Mason. Evaluation of mixed integer programming formulations for non-preemptive parallel
machine scheduling problems. Computers & Industrial Engineering, 58(4):785–800, 2010. 43

G. Weiss and M. Pinedo. Scheduling: Theory, algorithms, and systems, 2012. 6

51

	I Introduction
	General framework
	Notation
	Machine environment
	Constraints environment
	Objective function

	Precedence Graphs
	Complexity result overview
	Minimizing the makespan

	Conclusion

	II Computational complexity
	 P|p_j=1,i.t.|Cj
	Transformation
	Proof for If
	Proof for Only If

	 P|p_j=1,l.o.,pmtn|C_max and other problems
	Transformation
	Proof for If

	III Problem solving
	An improved algorithm for P|p_j=p,i.t.|Cj
	Previous studies
	Further analysis

	Modeling P|prec|Cmax
	Preliminary
	Time-Indexed Model (TIM)

	IV Conclusion

