J. W. Semple, J. E. Italiano, J. Freedman, and J. , Platelets and the immune continuum, Nature reviews Immunology, vol.11, issue.4, 2011.

E. Boilard, P. Blanco, and P. A. Nigrovic, Platelets: active players in the pathogenesis of arthritis and SLE, Nature reviews Rheumatology, vol.8, issue.9, pp.534-576, 2012.

A. Mantovani and C. Garlanda, Platelet-macrophage partnership in innate immunity and inflammation, Nat Immunol, vol.14, issue.8, 2013.

P. Pubmed, , p.23867924

O. Garraud, H. Hamzeh-cognasse, and F. Cognasse, Platelets and cytokines: How and why? Transfusion clinique et biologique : journal de la Societe francaise de transfusion sanguine, vol.19, 2012.

O. Garraud, H. Hamzeh-cognasse, B. Pozzetto, J. M. Cavaillon, and F. Cognasse, Bench-tobedside review: Platelets and active immune functions -new clues for immunopathology?, Critical care, vol.17, issue.4, p.4055978, 2013.

S. W. Whiteheart, Platelet granules: surprise packages, Blood, vol.118, issue.5, pp.1190-1191, 2011.

J. E. Peterson, D. Zurakowski, J. E. Italiano, J. Michel, L. V. Fox et al., Normal ranges of angiogenesis regulatory proteins in human platelets, American journal of hematology, issue.7, p.20575035, 2010.

C. N. Jenne, R. Urrutia, and P. Kubes, Platelets: bridging hemostasis, inflammation, and immunity, International journal of laboratory hematology, vol.35, issue.3, pp.254-61, 2013.

J. W. Semple, J. E. Italiano, J. Freedman, and J. , Platelets and the immune continuum, Nat Rev Immunol, vol.11, pp.264-74, 2011.

M. Stolla, M. A. Refaai, J. M. Heal, S. L. Spinelli, O. Garraud et al., Platelet transfusion -the new immunology of an old therapy, Frontiers in immunology, vol.6, p.28, 2015.

F. Cognasse, C. Aloui, A. Nguyen, K. Hamzeh-cognasse, H. Fagan et al., Platelet components associated with adverse reactions: predictive value of mitochondrial DNA relative to biological response modifiers, Transfusion, vol.56, pp.497-504, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01203813

K. A. Nguyen, H. Hamzeh-cognasse, M. Sebban, E. Fromont, P. Chavarin et al., A computerized prediction model of hazardous inflammatory platelet transfusion outcomes, PloS one, vol.9, p.97082, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01011939

H. Hamzeh-cognasse, D. P. Nguyen, K. A. Arthaud, C. A. Eyraud, M. A. Chavarin et al., Immune-reactive soluble OX40 ligand, soluble CD40 ligand, and interleukin-27 are simultaneously oversecreted in platelet components associated with acute transfusion reactions, Transfusion, vol.54, pp.613-638, 2014.

O. Garraud, H. Hamzeh-cognasse, B. Pozzetto, J. M. Cavaillon, and F. Cognasse, Bench-tobedside review: Platelets and active immune functions -new clues for immunopathology?, Crit Care, vol.17, p.236, 2013.

C. N. Morrell, Immunomodulatory mediators in platelet transfusion reactions, Hematology Am Soc Hematol Educ Program, pp.470-474, 2011.

D. V. Devine and K. Serrano, Preparation of blood products for transfusion: is there a best method, Biologicals : journal of the International Association of Biological Standardization, vol.40, pp.187-90, 2012.

H. Schrezenmeier and E. Seifried, Buffy-coat-derived pooled platelet concentrates and apheresis platelet concentrates: which product type should be preferred?, Vox sanguinis, vol.99, pp.1-15, 2010.

K. A. Nguyen, P. Chavarin, C. A. Arthaud, F. Cognasse, and O. Garraud, Do manual and automated processes with distinct additive solutions affect whole blood-derived platelet components differently? Blood transfusion, Trasfusione del sangue, vol.11, pp.152-155, 2013.

F. Cognasse, C. Sut, E. Fromont, S. Laradi, H. Hamzeh-cognasse et al., Platelet soluble CD40-Ligand level is associated with transfusion adverse reactions in a mixed threshold and hit model, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581312

P. F. Van-der-meer, J. L. Kerkhoffs, J. Curvers, J. Scharenberg, D. De-korte et al., In vitro comparison of platelet storage in plasma and in four platelet additive solutions, and the effect of pathogen reduction: a proposal for an in vitro rating system, Vox Sang, 2009.

N. Tynngard, M. Trinks, and G. Berlin, In vitro quality of platelets during prolonged storage after washing with three platelet additive solutions, Vox Sang, 2011.

N. Tynngard, M. Trinks, and G. Berlin, In vitro properties of platelets stored in three different additive solutions, Transfusion, vol.52, pp.1003-1012, 2012.

G. C. Leitner, J. List, M. Horvath, B. Eichelberger, S. Panzer et al., Additive solutions differentially affect metabolic and functional parameters of platelet concentrates, Vox sanguinis, vol.110, pp.20-26, 2016.

P. F. Van-der-meer, PAS or plasma for storage of platelets? A concise review, Transfusion medicine, vol.26, pp.339-381, 2016.

H. Gulliksson, Platelet storage media, Vox sanguinis, vol.107, pp.205-217, 2014.

H. Schrezenmeier and E. Seifried, Buffy-coat-derived pooled platelet concentrates and apheresis platelet concentrates: which product type should be preferred?, Vox Sang, vol.99, pp.1-15, 2010.

O. Garraud, Platelet components: is there need or room for quality control assays of storage lesions?, Blood Transfus, vol.2016, pp.1-3

J. W. Semple, J. E. Italiano, J. Freedman, and J. , Platelets and the immune continuum, Nat Rev Immunol, vol.11, pp.264-74, 2011.

M. Stolla, M. A. Refaai, J. M. Heal, S. L. Spinelli, O. Garraud et al., Platelet transfusion -the new immunology of an old therapy, Front Immunol, vol.6, p.28, 2015.

F. Cognasse, F. Boussoulade, P. Chavarin, S. Acquart, P. Fabrigli et al., Release of potential immunomodulatory factors during platelet storage, Transfusion, vol.46, pp.1184-1193, 2006.

F. Cognasse, C. Aloui, A. Nguyen, K. Hamzeh-cognasse, H. Fagan et al., Platelet components associated with adverse reactions: predictive value of mitochondrial DNA relative to biological response modifiers, Transfusion, vol.56, pp.497-504, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01203813

K. A. Nguyen, H. Hamzeh-cognasse, M. Sebban, E. Fromont, P. Chavarin et al., A computerized prediction model of hazardous inflammatory platelet transfusion outcomes, PLoS One, vol.9, p.97082, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01011939

H. Hamzeh-cognasse, D. P. Nguyen, K. A. Arthaud, C. A. Eyraud, M. A. Chavarin et al., Immune-reactive soluble OX40 ligand, soluble CD40 ligand, and interleukin-27 are simultaneously oversecreted in platelet components associated with acute transfusion reactions, Transfusion, vol.54, pp.613-638, 2014.

K. A. Nguyen, . Cf, F. Boussoulade, P. Fabrigli, H. Odent-malaure et al., Les concentrés plaquettaires en transfusion sanguine : préparation, normes et principes de sécurité pour une meilleure tolérance et l'éviction d'effets indésirables, Hématologie, vol.19, pp.371-82, 2013.

O. Garraud, S. Tariket, C. Sut, A. Haddad, C. Aloui et al., Transfusion as an Inflammation Hit: Knowns and Unknowns. Front Immunol, vol.7, p.534, 2016.

D. V. Devine and K. Serrano, The platelet storage lesion, Clin Lab Med, vol.30, pp.475-87, 2010.

G. Andreu, J. Vasse, R. Tardivel, and G. Semana, , 2009.

, Transfus Clin Biol, vol.16, pp.118-151

G. Andreu, J. Vasse, F. Herve, R. Tardivel, and G. Semana, , 2007.

, Transfus Clin Biol, vol.14, pp.100-106

B. Willaert, M. P. Vo-mai, and C. Caldani, French Haemovigilance Data on Platelet Transfusion, Transfus Med Hemother, vol.35, pp.118-139, 2008.

N. Blumberg, S. L. Spinelli, C. W. Francis, M. B. Taubman, and R. P. Phipps, The platelet as an immune cell-CD40 ligand and transfusion immunomodulation, Immunol Res, vol.45, pp.251-60, 2009.

H. Andrew, . Wei, R. K. Sms, S. P. Andrews, and . Jackson, New insights into the haemostatic function of platelets, British Journal of Haematology, vol.147, pp.415-445, 2009.

G. Baimukanova, B. Miyazawa, D. R. Potter, M. O. Muench, R. Bruhn et al., Platelets regulate vascular endothelial stability: assessing the storage lesion and donor variability of apheresis platelets, Transfusion, vol.56, issue.1, pp.65-75, 2016.

D. F. Stroncek and P. Rebulla, Platelet transfusions, Lancet, vol.370, pp.427-465, 2007.

M. Shrivastava, The platelet storage lesion, Transfus Apher Sci, vol.41, pp.105-118, 2009.

F. Cognasse, F. Boussoulade, P. Chavarin, S. Acquart, P. Fabrigli et al., Release of potential immunomodulatory factors during platelet storage, Transfusion, vol.46, pp.1184-1193, 2006.

K. A. Nguyen, H. Hamzeh-cognasse, M. Sebban, E. Fromont, P. Chavarin et al., A computerized prediction model of hazardous inflammatory platelet transfusion outcomes, PLoS One, vol.9, p.97082, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01011939

J. S. Pober and W. C. Sessa, Evolving functions of endothelial cells in inflammation, Nat Rev Immunol, vol.7, pp.803-818, 2007.

F. Cognasse, C. Aloui, A. Nguyen, K. Hamzeh-cognasse, H. Fagan et al., Platelet components associated with adverse reactions: predictive value of mitochondrial DNA relative to biological response modifiers, Transfusion, vol.56, pp.497-504, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01203813

F. Cognasse, C. Sut, E. Fromont, S. Laradi, H. Hamzeh-cognasse et al., Platelet soluble CD40-Ligand level is associated with transfusion adverse reactions in a mixed threshold and hit model, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581312

H. Hamzeh-cognasse, D. P. Nguyen, K. A. Arthaud, C. A. Eyraud, M. A. Chavarin et al., Immune-reactive soluble OX40 ligand, soluble CD40 ligand, and interleukin-27 are simultaneously oversecreted in platelet components associated with acute transfusion reactions, Transfusion, vol.54, pp.613-638, 2014.

M. Ghasemzadeh and E. Hosseini, Platelet granule release is associated with reactive oxygen species generation during platelet storage: A direct link between platelet proinflammatory and oxidation states, Thromb Res, vol.156, pp.101-105, 2017.

M. A. Refaai, R. P. Phipps, S. L. Spinelli, and N. Blumberg, Platelet transfusions: impact on hemostasis, thrombosis, inflammation and clinical outcomes, Thromb Res, vol.127, pp.287-91, 2011.

P. Sandgren, S. Meinke, E. Eckert, I. Douagi, A. Wikman et al., Random aggregates in newly produced platelet units are associated with platelet activation and release of the immunomodulatory factors sCD40L and RANTES, Transfusion, vol.54, pp.602-614, 2014.

C. J. Edgell, C. C. Mcdonald, and J. B. Graham, Permanent cell line expressing human factor VIIIrelated antigen established by hybridization, Proc Natl Acad Sci U S A, vol.80, pp.3734-3741, 1983.

T. D. Warner, Influence of endothelial mediators on the vascular smooth muscle and circulating platelets and blood cells, Int Angiol, vol.15, pp.93-102, 1996.

P. S. Frenette, C. V. Denis, L. Weiss, K. Jurk, S. Subbarao et al., P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo, J Exp Med, vol.191, pp.1413-1435, 2000.

M. Gawaz, H. Langer, and A. E. May, Platelets in inflammation and atherogenesis, J Clin Invest, vol.115, pp.3378-84, 2005.

M. Gawaz, F. J. Neumann, T. Dickfeld, W. Koch, K. L. Laugwitz et al., Activated platelets induce monocyte chemotactic protein-1 secretion and surface expression of intercellular adhesion molecule-1 on endothelial cells, Circulation, vol.98, pp.1164-71, 1998.

V. Henn, J. R. Slupsky, M. Grafe, I. Anagnostopoulos, R. Forster et al., CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells, Nature, vol.391, pp.591-595, 1998.

S. Nhek, R. Clancy, K. A. Lee, N. M. Allen, T. J. Barrett et al., Activated Platelets Induce Endothelial Cell Activation via an Interleukin-1beta Pathway in Systemic Lupus Erythematosus, Arterioscler Thromb Vasc Biol, 2017.

J. K. Cha, M. H. Jeong, H. R. Bae, J. Y. Han, S. J. Jeong et al., Activated platelets induce secretion of interleukin-1beta, monocyte chemotactic protein-1, and macrophage inflammatory protein-1alpha and surface expression of intercellular adhesion molecule-1 on cultured endothelial cells, J Korean Med Sci, vol.15, pp.273-281, 2000.

M. Urner, I. K. Herrmann, F. Buddeberg, C. Schuppli, Z. Roth et al., Effects of blood products on inflammatory response in endothelial cells in vitro, PLoS One, vol.7, p.33403, 2012.

A. Witte, M. Chatterjee, F. Lang, and M. Gawaz, Platelets as a Novel Source of ProInflammatory Chemokine CXCL14, Cell Physiol Biochem, vol.41, pp.1684-96, 2017.

M. Chatterjee and M. Gawaz, Platelet-derived CXCL12 (SDF-1alpha): basic mechanisms and clinical implications, J Thromb Haemost, vol.11, pp.1954-67, 2013.

G. Baimukanova, B. Miyazawa, D. R. Potter, S. L. Gibb, S. Keating et al., The effects of 22 degrees C and 4 degrees C storage of platelets on vascular endothelial integrity and function, Transfusion, vol.56, issue.1, pp.52-64, 2016.

E. I. Buzas, B. Gyorgy, G. Nagy, A. Falus, and S. Gay, Emerging role of extracellular vesicles in inflammatory diseases, Nat Rev Rheumatol, vol.10, pp.356-64, 2014.

O. Garraud,

, Transfus Clin Biol, vol.20, issue.2, pp.231-239, 2013.

O. Garraud, Blood transfusion and inflammation as of yesterday

, Transfus Clin Biol, 2015.

O. Garraud, Transfusion as an Inflammation Hit: Knowns and Unknowns. Front Immunol, vol.7, p.534, 2016.

T. S. Rogers, M. K. Fung, and S. K. Harm, Recent Advances in Preventing Adverse Reactions to Transfusion, 1000.

A. Brand, Immunological complications of blood transfusions, Presse Med, vol.45, issue.7-8 Pt 2, pp.313-337, 2016.

, ANSM, 2016.

D. Timler, Analysis of complications after blood components' transfusions, Pol Przegl Chir, vol.87, issue.4, pp.166-73, 2015.

F. Hirayama, Current understanding of allergic transfusion reactions: incidence, pathogenesis, laboratory tests, prevention and treatment, Br J Haematol, vol.160, issue.4, pp.434-478, 2013.

P. M. Mertes and K. Boudjedir,

, Transfus Clin Biol, vol.20, issue.2, pp.239-281, 2013.

W. J. Savage, Scratching the surface of allergic transfusion reactions, Transfusion, vol.53, issue.6, pp.1361-71, 2013.

E. A. Hod and E. A. Godbey, The outsider adverse event in transfusion: Inflammation, Presse Med, vol.45, issue.7, pp.325-334, 2016.

C. C. Silliman and N. J. Mclaughlin, Transfusion-related acute lung injury, Blood Rev, vol.20, issue.3, pp.139-59, 2006.

M. Delaney, Transfusion reactions: prevention, diagnosis, and treatment, Lancet, vol.388, pp.2825-2836, 2016.

K. A. Nguyen, Les concentrés plaquettaires en transfusion sanguine : préparation, normes et principes de sécurité pour une meilleure tolérance et l'éviction d'effets indésirables. Hématologie, vol.19, pp.371-382, 2013.

C. N. Jenne, R. Urrutia, and P. Kubes, Platelets: bridging hemostasis, inflammation, and immunity, Int J Lab Hematol, vol.35, issue.3, pp.254-61, 2013.

A. Vieira-de-abreu, Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum, Semin Immunopathol, vol.34, issue.1, pp.5-30, 2012.

D. D. Wagner and P. C. Burger, Platelets in inflammation and thrombosis, Arterioscler Thromb Vasc Biol, vol.23, issue.12, pp.2131-2138, 2003.

M. T. Rondina, A. S. Weyrich, and G. A. Zimmerman, Platelets as cellular effectors of inflammation in vascular diseases, Circ Res, vol.112, issue.11, pp.1506-1525, 2013.

R. Kapur, Nouvelle Cuisine: Platelets Served with Inflammation, J Immunol, vol.194, issue.12, pp.5579-5587, 2015.

O. Garraud and F. Cognasse,

, Transfus Clin Biol, vol.16, issue.2, pp.106-123, 2009.

H. P. Mònica-arman, T. Ponomaryov, and A. Brill, Role of Platelets in Inflammation. The Non-Thrombotic Role of Platelets in Health and Disease, 22. Rondina, M.T. and O. Garraud, vol.5, p.653, 2014.

M. R. Yeaman, Platelets: at the nexus of antimicrobial defence, Nat Rev Microbiol, vol.12, issue.6, pp.426-463, 2014.

E. Boilard, P. Blanco, and P. A. Nigrovic, Platelets: active players in the pathogenesis of arthritis and SLE, Nat Rev Rheumatol, vol.8, issue.9, pp.534-576, 2012.

J. W. Semple, J. E. Italiano, J. , and J. Freedman, Platelets and the immune continuum, Nat Rev Immunol, vol.11, issue.4, pp.264-74, 2011.

D. G. Menter, Platelet "first responders" in wound response, cancer, and metastasis, Cancer Metastasis Rev, 2017.

V. R. Deutsch and A. Tomer, Advances in megakaryocytopoiesis and thrombopoiesis: from bench to bedside, Br J Haematol, vol.161, issue.6, pp.778-93, 2013.

J. N. George, Platelets. Lancet, vol.355, issue.9214, pp.1531-1540, 2000.

E. Lefrancais, The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors, Nature, 2017.

J. N. Thon and J. E. Italiano, Platelets: production, morphology and ultrastructure, Handb Exp Pharmacol, vol.2012, issue.210, pp.3-22

G. White and J. Platelet-structure, Platelets, 2013.

J. H. Hartwig, The platelet: form and function, Semin Hematol, vol.43, issue.1, pp.94-100, 2006.

J. G. White, The submembrane filaments of blood platelets, Am J Pathol, vol.56, issue.2, pp.267-77, 1969.

J. G. White and C. C. Clawson, The surface-connected canalicular system of blood platelets--a fenestrated membrane system, Am J Pathol, vol.101, issue.2, pp.353-64, 1980.

J. Boyles, Organization of the cytoskeleton in resting, discoid platelets: preservation of actin filaments by a modified fixation that prevents osmium damage, J Cell Biol, vol.101, issue.4, pp.1463-72, 1985.

J. E. Fox, Identification of a membrane skeleton in platelets, J Cell Biol, vol.106, issue.5, pp.1525-1563, 1988.

M. F. Vidal, Microvésiculation plaquettaire et réarrangements du cytosquelette d'actine. Hématologie, vol.5, pp.279-88, 1999.

J. E. Fox and D. R. Phillips, Inhibition of actin polymerization in blood platelets by cytochalasins, Nature, vol.292, issue.5824, pp.650-652, 1981.

A. Tabuchi and W. M. Kuebler, Endothelium-platelet interactions in inflammatory lung disease, Vascul Pharmacol, vol.49, pp.141-50, 2008.

S. W. Whiteheart, Platelet granules: surprise packages, Blood, vol.118, issue.5, pp.1190-1191, 2011.

S. M. King and G. L. Reed, Development of platelet secretory granules, Semin Cell Dev Biol, vol.13, issue.4, pp.293-302, 2002.

J. A. Coppinger, Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions, Blood, vol.103, issue.6, pp.2096-104, 2004.

J. L. Fitch-tewfik and R. Flaumenhaft, Platelet granule exocytosis: a comparison with chromaffin cells, Front Endocrinol (Lausanne), issue.4, p.77, 2013.

A. S. Weyrich, S. Lindemann, and G. A. Zimmerman, The evolving role of platelets in inflammation, J Thromb Haemost, vol.1, issue.9, pp.1897-905, 2003.

P. Blair and R. Flaumenhaft, Platelet alpha-granules: basic biology and clinical correlates, Blood Rev, vol.23, issue.4, pp.177-89, 2009.

G. Berger, J. M. Masse, and E. M. Cramer, Alpha-granule membrane mirrors the platelet plasma membrane and contains the glycoproteins Ib, IX, and V. Blood, vol.87, pp.1385-95, 1996.

D. M. Maynard, Proteomic analysis of platelet alpha-granules using mass spectrometry, J Thromb Haemost, vol.5, issue.9, pp.1945-55, 2007.

J. E. Italiano, E. M. Jr, and . Battinelli, Selective sorting of alpha-granule proteins, J Thromb Haemost, issue.7, pp.173-179, 2009.

J. Kamykowski, Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet alpha-granules, Blood, vol.118, issue.5, pp.1370-1373, 2011.

T. Gremmel, A. L. Frelinger, and A. D. Michelson, Platelet Physiology. Semin Thromb Hemost, vol.42, issue.3, pp.191-204, 2016.

N. Kieffer, Biosynthesis of major platelet proteins in human blood platelets, Eur J Biochem, vol.164, issue.1, pp.189-95, 1987.

A. Mcnicol and S. J. Israels, Platelet dense granules: structure, function and implications for haemostasis, Thromb Res, vol.95, issue.1, pp.1-18, 1999.

M. E. Bentfeld-barker and D. F. Bainton, Identification of primary lysosomes in human megakaryocytes and platelets, Blood, vol.59, issue.3, pp.472-81, 1982.

J. G. White, Ultrastructural studies of the gray platelet syndrome, Am J Pathol, vol.95, issue.2, pp.445-62, 1979.

J. N. Thon, T granules in human platelets function in TLR9 organization and signaling, J Cell Biol, vol.198, issue.4, pp.561-74, 2012.

B. P. Nuyttens, Platelet adhesion to collagen, Thromb Res, vol.127, issue.2, pp.26-35, 2011.

H. Chen, The platelet receptor GPVI mediates both adhesion and signaling responses to collagen in a receptor density-dependent fashion, J Biol Chem, vol.277, issue.4, pp.3011-3020, 2002.

I. Canobbio, C. Balduini, and M. Torti, Signalling through the platelet glycoprotein Ib-V-IX complex, Cell Signal, vol.16, issue.12, pp.1329-1373, 2004.

S. P. Jackson, Arterial thrombosis--insidious, unpredictable and deadly, Nat Med, vol.17, issue.11, pp.1423-1459, 2011.

L. K. Jennings, Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis, Thromb Haemost, vol.102, issue.2, pp.248-57, 2009.

T. J. Stalker, Platelet signaling, Handb Exp Pharmacol, vol.2012, issue.210, pp.59-85

P. Savi, Role of P2Y1 purinoceptor in ADP-induced platelet activation, FEBS Lett, vol.422, issue.3, pp.291-296, 1998.

J. Jin and S. P. Kunapuli, Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation, Proc Natl Acad Sci, vol.95, issue.14, pp.8070-8074, 1998.

E. De-candia, Mechanisms of platelet activation by thrombin: a short history, Thromb Res, vol.129, issue.3, pp.250-256, 2012.

K. A. Nguyen, Specific activation, signalling and secretion profiles of human platelets following PAR-1 and PAR-4 stimulation, Platelets, vol.26, issue.8, pp.795-803, 2015.

E. L. Bearer, J. M. Prakash, and Z. Li, Actin dynamics in platelets, Int Rev Cytol, vol.217, pp.137-82, 2002.

R. Flaumenhaft, Molecular basis of platelet granule secretion, Arterioscler Thromb Vasc Biol, vol.23, issue.7, pp.1152-60, 2003.

K. Ghoshal and M. Bhattacharyya, Overview of platelet physiology: its hemostatic and nonhemostatic role in disease pathogenesis, ScientificWorldJournal, p.781857, 2014.

H. Heijnen and P. Van-der-sluijs, Platelet secretory behaviour: as diverse as the granules ... or not?, J Thromb Haemost, vol.13, issue.12, pp.2141-51, 2015.

S. Yadav and B. Storrie, The cellular basis of platelet secretion: Emerging structure/function relationships, Platelets, vol.28, issue.2, pp.108-118, 2017.

S. Offermanns, Activation of platelet function through G protein-coupled receptors, Circ Res, vol.99, issue.12, pp.1293-304, 2006.

M. Jandrot-perrus, M. G. Thibault-lhermusier, P. Sié, and B. Payrastre, New targeted drugs and modulation of platelet functions, vol.16, 2010.

R. H. Lee and W. Bergmeier, Platelet immunoreceptor tyrosine-based activation motif (ITAM) and hemITAM signaling and vascular integrity in inflammation and development, J Thromb Haemost, vol.14, issue.4, pp.645-54, 2016.

K. Broos, Blood platelet biochemistry, Thromb Res, vol.129, issue.3, pp.245-254, 2012.

K. Jurk and B. E. Kehrel, Platelets: physiology and biochemistry, Semin Thromb Hemost, vol.31, issue.4, pp.381-92, 2005.

D. N. Mannel and G. E. Grau, Role of platelet adhesion in homeostasis and immunopathology, Mol Pathol, vol.50, issue.4, pp.175-85, 1997.

B. Nieswandt, D. Varga-szabo, and M. Elvers, Integrins in platelet activation, J Thromb Haemost, issue.7, pp.206-215, 2009.

P. Von-hundelshausen and C. Weber, Platelets as immune cells: bridging inflammation and cardiovascular disease, Circ Res, vol.100, issue.1, pp.27-40, 2007.

J. M. Van-gils, J. J. Zwaginga, and P. L. Hordijk, Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases, J Leukoc Biol, vol.85, issue.2, pp.195-204, 2009.

P. Andre, Platelet-derived CD40L: the switch-hitting player of cardiovascular disease, Circulation, vol.106, issue.8, pp.896-905, 2002.

S. A. Quezada, CD40/CD154 interactions at the interface of tolerance and immunity, Annu Rev Immunol, vol.22, pp.307-335, 2004.

V. Henn, The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40, Blood, vol.98, issue.4, pp.1047-54, 2001.

A. Iwasaki and R. Medzhitov, Regulation of adaptive immunity by the innate immune system, Science, vol.327, issue.5963, pp.291-296, 2010.

J. W. Semple and J. Freedman, Platelets and innate immunity, Cell Mol Life Sci, vol.67, issue.4, pp.499-511, 2010.

O. Garraud, Pathogen sensing, subsequent signalling, and signalosome in human platelets, Thromb Res, vol.127, issue.4, pp.283-289, 2011.

K. Newton and V. M. Dixit, Signaling in innate immunity and inflammation, Cold Spring Harb Perspect Biol, vol.4, issue.3, 2012.

T. Kawai and S. Akira, The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors, Nat Immunol, vol.11, issue.5, pp.373-84, 2010.

J. D. Mcfadyen and Z. S. Kaplan, Platelets are not just for clots, Transfus Med Rev, vol.29, issue.2, pp.110-119, 2015.

L. M. Beaulieu and J. E. Freedman, The role of inflammation in regulating platelet production and function: Toll-like receptors in platelets and megakaryocytes, Thromb Res, vol.125, issue.3, pp.205-214, 2010.

F. Cognasse, Evidence of Toll-like receptor molecules on human platelets, Immunol Cell Biol, vol.83, issue.2, pp.196-204, 2005.

O. Garraud, Blood platelets and biological response to 'danger' signals and subsequent inflammation

, Transfus Clin Biol, vol.18, issue.2, pp.165-73, 2011.

E. A. Middleton, A. S. Weyrich, and G. A. Zimmerman, Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases, Physiol Rev, vol.96, issue.4, pp.1211-59, 2016.

S. Akira, S. Uematsu, and O. Takeuchi, Pathogen recognition and innate immunity, vol.124, pp.783-801, 2006.

F. Cognasse, Lipopolysaccharide induces sCD40L release through human platelets TLR4, but not TLR2 and TLR9. Intensive Care Med, vol.33, pp.382-386, 2007.

F. Cognasse, Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets, Br J Haematol, vol.141, issue.1, pp.84-91, 2008.

R. Aslam, Platelet Toll-like receptor expression modulates lipopolysaccharideinduced thrombocytopenia and tumor necrosis factor-alpha production in vivo, Blood, vol.107, issue.2, pp.637-678, 2006.

S. R. Clark, Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood, Nat Med, vol.13, issue.4, pp.463-472, 2007.

V. Papayannopoulos and A. Zychlinsky, NETs: a new strategy for using old weapons, Trends Immunol, vol.30, issue.11, pp.513-534, 2009.

V. Brinkmann, Neutrophil extracellular traps kill bacteria, Science, vol.303, issue.5663, pp.1532-1537, 2004.

F. Cognasse, H. Hamzeh-cognasse, and O. Garraud, Toll-like receptor" engagement stimulates the release of immunomodulating molecules

, Transfus Clin Biol, vol.15, issue.4, pp.139-186, 2008.

J. Berthet, Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion, Clin Immunol, vol.145, issue.3, pp.189-200, 2012.

P. Blair, Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase, Circ Res, vol.104, issue.3, pp.346-54, 2009.

S. Panigrahi, Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyperreactivity and thrombosis, Circ Res, vol.112, issue.1, pp.103-115, 2013.

L. P. D'atri and M. Schattner, Platelet toll-like receptors in thromboinflammation, Front Biosci, vol.22, pp.1867-1883, 2017.

S. Zhang, Nucleotide-binding oligomerization domain 2 receptor is expressed in platelets and enhances platelet activation and thrombosis, Circulation, vol.131, issue.13, pp.1160-70, 2015.

E. D. Hottz, Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation, Blood, vol.122, pp.3405-3419, 1920.

P. Murthy, The NLRP3 inflammasome and bruton's tyrosine kinase in platelets coregulate platelet activation, aggregation, and in vitro thrombus formation, Biochem Biophys Res Commun, vol.483, issue.1, pp.230-236, 2017.

P. R. Crocker, Siglecs in innate immunity, Curr Opin Pharmacol, vol.5, issue.4, pp.431-438, 2005.

K. A. Nguyen, Role of Siglec-7 in apoptosis in human platelets, PLoS One, vol.9, issue.9, p.106239, 2014.

O. Garraud, Bench-to-bedside review: Platelets and active immune functionsnew clues for immunopathology? Crit Care, vol.17, p.236, 2013.

E. M. Golebiewska and A. W. Poole, Platelet secretion: From haemostasis to wound healing and beyond, Blood Rev, vol.29, issue.3, pp.153-62, 2015.

E. Brandt, The beta-thromboglobulins and platelet factor 4: blood plateletderived CXC chemokines with divergent roles in early neutrophil regulation, J Leukoc Biol, vol.67, issue.4, pp.471-479, 2000.

T. M. Mcintyre, Cell-cell interactions: leukocyte-endothelial interactions, Curr Opin Hematol, vol.10, issue.2, pp.150-158, 2003.

S. Danese, Cutting edge: T cells trigger CD40-dependent platelet activation and granular RANTES release: a novel pathway for immune response amplification, J Immunol, vol.172, issue.4, pp.2011-2016, 2004.

C. A. Gleissner, Macrophage Phenotype Modulation by CXCL4 in Atherosclerosis, Front Physiol, vol.3, p.1, 2012.

F. Petersen, Platelet factor 4-induced neutrophil-endothelial cell interaction: involvement of mechanisms and functional consequences different from those elicited by interleukin-8. Blood, vol.94, pp.4020-4028, 1999.

F. W. Lam, K. V. Vijayan, and R. E. Rumbaut, Platelets and Their Interactions with Other Immune Cells, Compr Physiol, vol.5, issue.3, pp.1265-80, 2015.

C. M. Hawrylowicz, G. L. Howells, and M. Feldmann, Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production, J Exp Med, vol.174, issue.4, pp.785-90, 1991.

C. Aloui, The signaling role of CD40 ligand in platelet biology and in platelet component transfusion, Int J Mol Sci, vol.15, issue.12, pp.22342-64, 2014.

S. Vogel, Platelet-derived HMGB1 is a critical mediator of thrombosis, J Clin Invest, vol.125, issue.12, pp.4638-54, 2015.

X. Yang, HMGB1: a novel protein that induced platelets active and aggregation via Toll-like receptor-4, NF-kappaB and cGMP dependent mechanisms, Diagn Pathol, vol.10, p.134, 2015.

J. R. Klune, HMGB1: endogenous danger signaling, Mol Med, vol.14, issue.7-8, pp.476-84, 2008.

N. Maugeri, Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps, J Thromb Haemost, vol.12, issue.12, pp.2074-88, 2014.

S. Ivanov, A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood, vol.110, pp.1970-81, 2007.

S. Mathivanan, H. Ji, and R. J. Simpson, Exosomes: extracellular organelles important in intercellular communication, J Proteomics, vol.73, issue.10, pp.1907-1927, 2010.

H. F. Heijnen, Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules, Blood, vol.94, issue.11, pp.3791-3800, 1999.

S. F. Mause and C. Weber, Microparticles: protagonists of a novel communication network for intercellular information exchange, Circ Res, vol.107, issue.9, pp.1047-57, 2010.

E. I. Buzas, Emerging role of extracellular vesicles in inflammatory diseases, Nat Rev Rheumatol, vol.10, issue.6, pp.356-64, 2014.

R. J. Berckmans, Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation, Thromb Haemost, vol.85, issue.4, pp.639-685, 2001.

T. Burnouf, Platelet microparticles: detection and assessment of their paradoxical functional roles in disease and regenerative medicine, Blood Rev, vol.28, issue.4, pp.155-66, 2014.

Z. T. Wang, Z. Wang, and Y. W. Hu, Possible roles of platelet-derived microparticles in atherosclerosis, Atherosclerosis, vol.248, pp.10-16, 2016.

C. Sun, Higher Plasma Concentrations of Platelet Microparticles in Patients With Acute Coronary Syndrome: A Systematic Review and Meta-analysis, Can J Cardiol, vol.32, issue.11, p.10, 2016.

E. Vasina, Platelets and platelet-derived microparticles in vascular inflammatory disease, Inflamm Allergy Drug Targets, vol.9, issue.5, pp.346-54, 2010.

T. Burnouf, An overview of the role of microparticles/microvesicles in blood components: Are they clinically beneficial or harmful?, Transfus Apher Sci, vol.53, issue.2, pp.137-182, 2015.

E. I. Sinauridze, Platelet microparticle membranes have 50-to 100-fold higher specific procoagulant activity than activated platelets, Thromb Haemost, vol.97, issue.3, pp.425-459, 2007.

A. Risitano, Platelets and platelet-like particles mediate intercellular RNA transfer, Blood, vol.119, issue.26, pp.6288-95, 2012.

P. Diehl, Microparticles: major transport vehicles for distinct microRNAs in circulation, Cardiovasc Res, vol.93, issue.4, pp.633-677, 2012.

E. Van-der-pol, Classification, functions, and clinical relevance of extracellular vesicles, Pharmacol Rev, vol.64, issue.3, pp.676-705, 2012.

B. Laffont, Activated platelets can deliver mRNA regulatory Ago2*microRNA complexes to endothelial cells via microparticles, Blood, vol.122, issue.2, pp.253-61, 2013.

P. Provost, The clinical significance of platelet microparticle-associated microRNAs, Clin Chem Lab Med, vol.55, issue.5, pp.657-666, 2017.

A. T. Nurden, Platelets, inflammation and tissue regeneration, Thromb Haemost, vol.105, issue.1, pp.13-33, 2011.

Q. Zhang, Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature, vol.464, issue.7285, pp.104-111, 2010.

L. H. Boudreau, Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation, Blood, vol.124, issue.14, pp.2173-83, 2014.

J. J. Bei, Staphylococcal SSL5-induced platelet microparticles provoke proinflammatory responses via the CD40/TRAF6/NFkappaB signalling pathway in monocytes, Thromb Haemost, vol.115, issue.3, pp.632-677, 2016.

C. Stumpf, Platelet CD40 contributes to enhanced monocyte chemoattractant protein 1 levels in patients with resistant hypertension, Eur J Clin Invest, vol.46, issue.6, pp.564-71, 2016.

S. A. Bhat, Platelet CD40L induces activation of astrocytes and microglia in hypertension, Brain Behav Immun, vol.59, pp.173-189, 2017.

Y. Kubo, Predicting neurological deficit severity due to subarachnoid haemorrhage: soluble CD40 ligand and platelet-derived growth factor-BB, Crit Care Resusc, vol.18, issue.4, pp.242-246, 2016.

M. J. Kuijpers, Platelet CD40L Modulates Thrombus Growth Via Phosphatidylinositol 3-Kinase beta, and Not Via CD40 and IkappaB Kinase alpha, Arterioscler Thromb Vasc Biol, vol.35, issue.6, pp.1374-81, 2015.

N. Gerdes, Platelet CD40 Exacerbates Atherosclerosis by Transcellular Activation of Endothelial Cells and Leukocytes, Arterioscler Thromb Vasc Biol, vol.36, issue.3, pp.482-90, 2016.

C. Aloui, Levels of human platelet-derived soluble CD40 ligand depend on haplotypes of CD40LG-CD40-ITGA2. Sci Rep, vol.6, p.24715, 2016.

O. Surgit, Assessment of mean platelet volume and soluble CD40 ligand levels in patients with non-dipper hypertension, dippers and normotensives, Clin Exp Hypertens, vol.37, issue.1, pp.70-74, 2015.

P. Napoleao, Changes of soluble CD40 ligand in the progression of acute myocardial infarction associate to endothelial nitric oxide synthase polymorphisms and vascular endothelial growth factor but not to platelet CD62P expression, Transl Res, vol.166, issue.6, pp.650-659, 2015.

F. Mobarrez, CD40L expression in plasma of volunteers following LPS administration: A comparison between assay of CD40L on platelet microvesicles and soluble CD40L, Platelets, vol.26, issue.5, pp.486-90, 2015.

O. Garraud and F. Cognasse, Are Platelets Cells? And if Yes, are They Immune Cells? Front Immunol, vol.6, p.70, 2015.

D. V. Devine and K. Serrano, The platelet storage lesion, Clin Lab Med, vol.30, issue.2, pp.475-87, 2010.

F. Cognasse, Release of potential immunomodulatory factors during platelet storage, Transfusion, vol.46, issue.7, pp.1184-1193, 2006.

M. Stolla, Platelet transfusion -the new immunology of an old therapy. Front Immunol, vol.6, p.28, 2015.

O. Garraud, H. Hamzeh-cognasse, and F. Cognasse, Platelets and cytokines: How and why?, Transfus Clin Biol, vol.19, issue.3, pp.104-112, 2012.

R. R. Vassallo and S. Murphy, A critical comparison of platelet preparation methods, Curr Opin Hematol, vol.13, issue.5, pp.323-353, 2006.

E. A. Burgstaler, Blood component collection by apheresis, J Clin Apher, vol.21, issue.2, pp.142-51, 2006.

D. Dierickx and E. Macken, The ABC of apheresis, Acta Clin Belg, vol.70, issue.2, pp.95-104, 2015.

D. F. Stroncek and P. Rebulla, Platelet transfusions. Lancet, vol.370, pp.427-465, 2007.

A. Jain, Serial changes in morphology and biochemical markers in platelet preparations with storage, Asian J Transfus Sci, vol.9, issue.1, pp.41-48, 2015.

K. A. Nguyen, Do manual and automated processes with distinct additive solutions affect whole blood-derived platelet components differently? Blood Transfus, vol.11, pp.152-155, 2013.

S. Macher, Function and activation state of platelets in vitro depend on apheresis modality, Vox Sang, vol.99, issue.4, pp.332-372, 2010.

A. Black, Analysis of platelet-derived extracellular vesicles in plateletpheresis concentrates: a multicenter study, Transfusion, 2017.

J. Kamhieh-milz, Secretome profiling of apheresis platelet supernatants during routine storage via antibody-based microarray, J Proteomics, vol.150, pp.74-85, 2017.

E. Noulsri, Differences in levels of platelet-derived microparticles in platelet components prepared using the platelet rich plasma, buffy coat, and apheresis procedures, Transfus Apher Sci, vol.56, issue.2, pp.135-140, 2017.

E. Maurer-spurej, Microparticle content of platelet concentrates is predicted by donor microparticles and is altered by production methods and stress, Transfus Apher Sci, vol.55, issue.1, pp.35-43, 2016.

P. Sandgren, G. Berlin, and N. Tynngard, Treatment of platelet concentrates with ultraviolet C light for pathogen reduction increases cytokine accumulation, Transfusion, vol.56, issue.6, pp.1377-83, 2016.

M. Wadhwa, Cytokine levels as performance indicators for white blood cell reduction of platelet concentrates, Vox Sang, vol.83, issue.2, pp.125-161, 2002.

M. Shrivastava, The platelet storage lesion, Transfus Apher Sci, vol.41, issue.2, pp.105-118, 2009.

T. Wagner, Ultrastructural changes and activation differences in platelet concentrates stored in plasma and additive solution, Transfusion, vol.42, issue.6, pp.719-746, 2002.

H. Gulliksson, Platelet storage media, Vox Sang, vol.107, issue.3, pp.205-217, 2014.

J. D. Tissot, The storage lesions: From past to future, Transfus Clin Biol, 2017.

F. Cognasse, J. C. Osselaer, and O. Garraud,

, Transfus Clin Biol, vol.14, issue.1, pp.69-78, 2007.

M. Ghasemzadeh and E. Hosseini, Platelet granule release is associated with reactive oxygen species generation during platelet storage: A direct link between platelet proinflammatory and oxidation states, Thromb Res, vol.156, pp.101-104, 2017.

B. T. Kile, The role of the intrinsic apoptosis pathway in platelet life and death, J Thromb Haemost, issue.7, pp.214-221, 2009.

K. D. Mason, Programmed anuclear cell death delimits platelet life span, Cell, vol.128, issue.6, pp.1173-86, 2007.

V. Leytin, Apoptosis in the anucleate platelet, Blood Rev, vol.26, issue.2, pp.51-63, 2012.

J. Li, The mechanism of apoptosis in human platelets during storage, Transfusion, vol.40, issue.11, pp.1320-1329, 2000.

V. Leytin, Platelet activation and apoptosis are different phenomena: evidence from the sequential dynamics and the magnitude of responses during platelet storage, Br J Haematol, vol.142, issue.3, pp.494-501, 2008.

G. C. Leitner, Additive solutions differentially affect metabolic and functional parameters of platelet concentrates, Vox Sang, vol.110, issue.1, pp.20-26, 2016.

P. F. Van-der-meer, PAS or plasma for storage of platelets? A concise review, Transfus Med, vol.26, issue.5, pp.339-342, 2016.

A. Daurat, Apheresis platelets are more frequently associated with adverse reactions than pooled platelets both in recipients and in donors: a study from French hemovigilance data, Transfusion, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01908399

B. D. Elzey, Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments, Immunity, vol.19, issue.1, pp.9-19, 2003.

H. Hamzeh-cognasse, Immune-reactive soluble OX40 ligand, soluble CD40 ligand, and interleukin-27 are simultaneously oversecreted in platelet components associated with acute transfusion reactions, Transfusion, vol.54, issue.3, pp.613-638, 2014.
DOI : 10.1111/trf.12378

M. A. Refaai, Platelet transfusions: impact on hemostasis, thrombosis, inflammation and clinical outcomes, Thromb Res, vol.127, issue.4, pp.287-91, 2011.
DOI : 10.1016/j.thromres.2010.10.012

URL : http://europepmc.org/articles/pmc3062691?pdf=render

J. Sahler, CD40 ligand (CD154) involvement in platelet transfusion reactions, Transfus Clin Biol, vol.19, issue.3, pp.98-103, 2012.
DOI : 10.1016/j.tracli.2012.02.003

URL : http://europepmc.org/articles/pmc3879724?pdf=render

C. N. Morrell, Immunomodulatory mediators in platelet transfusion reactions, Hematology Am Soc Hematol Educ Program, pp.470-474, 2011.
DOI : 10.1182/asheducation-2011.1.470

URL : http://asheducationbook.hematologylibrary.org/content/2011/1/470.full.pdf

R. R. Vassallo, In vitro and in vivo evaluation of apheresis platelets stored for 5 days in 65% platelet additive solution/35% plasma, Transfusion, vol.50, issue.11, pp.2376-85, 2010.

A. Shanwell, Paired in vitro and in vivo comparison of apheresis platelet concentrates stored in platelet additive solution for 1 versus 7 days. Transfusion, vol.46, pp.973-982, 2006.

R. P. Phipps, J. Kaufman, and N. Blumberg, Platelet derived CD154 (CD40 ligand) and febrile responses to transfusion, Lancet, vol.357, issue.9273, pp.2023-2027, 2001.
DOI : 10.1016/s0140-6736(00)05108-4

F. Cognasse, Platelet components associated with acute transfusion reactions: the role of platelet-derived soluble CD40 ligand, Blood, vol.112, issue.12, pp.4780-4781, 2008.

N. Blumberg, The platelet as an immune cell-CD40 ligand and transfusion immunomodulation, Immunol Res, vol.45, issue.2-3, pp.251-60, 2009.
DOI : 10.1007/s12026-009-8106-9

URL : http://europepmc.org/articles/pmc2891252?pdf=render

K. A. Nguyen, A computerized prediction model of hazardous inflammatory platelet transfusion outcomes, PLoS One, vol.9, issue.5, p.97082, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01011939

K. Yasui, Mitochondrial damage-associated molecular patterns as potential proinflammatory mediators in post-platelet transfusion adverse effects, Transfusion, vol.56, issue.5, pp.1201-1213, 2016.
DOI : 10.1111/trf.13535

F. Cognasse, Platelet components associated with adverse reactions: predictive value of mitochondrial DNA relative to biological response modifiers, Transfusion, vol.56, issue.2, pp.497-504, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01203813

Y. L. Lee, Blood transfusion products contain mitochondrial DNA damageassociated molecular patterns: a potential effector of transfusion-related acute lung injury, J Surg Res, vol.191, issue.2, pp.286-295, 2014.

L. Muylle, The role of cytokines in blood transfusion reactions, Blood Rev, vol.9, issue.2, pp.77-83, 1995.

A. Kriebardis, Cell-derived microparticles in stored blood products: innocentbystanders or effective mediators of post-transfusion reactions?, Blood Transfus, vol.10, issue.2, pp.25-38, 2012.

A. Osman, Differential Expression Analysis by RNA-Seq Reveals Perturbations in the Platelet mRNA Transcriptome Triggered by Pathogen Reduction Systems, PLoS One, vol.10, issue.7, p.133070, 2015.

A. Osman, Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function, Platelets, vol.26, issue.2, pp.154-63, 2015.

S. Danese, E. Dejana, and C. Fiocchi, Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation, J Immunol, vol.178, issue.10, pp.6017-6039, 2007.

J. S. Pober and W. C. Sessa, Evolving functions of endothelial cells in inflammation, Nat Rev Immunol, vol.7, issue.10, pp.803-818, 2007.

V. W. Van-hinsbergh, Endothelium--role in regulation of coagulation and inflammation, Semin Immunopathol, vol.34, issue.1, pp.93-106, 2012.

D. B. Cines, Endothelial cells in physiology and in the pathophysiology of vascular disorders, Blood, vol.91, issue.10, pp.3527-61, 1998.

P. C. Delekta, Thrombin-dependent NF-{kappa}B activation and monocyte/endothelial adhesion are mediated by the CARMA3.Bcl10.MALT1 signalosome, J Biol Chem, vol.285, issue.53, pp.41432-41474, 2010.

R. B. Claytor, The cleaved peptide of PAR1 is a more potent stimulant of plateletendothelial cell adhesion than is thrombin, J Vasc Surg, vol.37, issue.2, pp.440-445, 2003.

S. Gandrille, Protéine C activée : de la relation structure/activité à la conception de molécules à propriétés thérapeutiques ciblées. Hématologie, vol.18, pp.96-108, 2012.

J. D. Pearson, Endothelial cell function and thrombosis, Baillieres Best Pract Res Clin Haematol, vol.12, issue.3, pp.329-370, 1999.

R. Carnemolla, Platelet endothelial cell adhesion molecule targeted oxidantresistant mutant thrombomodulin fusion protein with enhanced potency in vitro and in vivo, J Pharmacol Exp Ther, vol.347, issue.2, pp.339-384, 2013.

J. K. Cha, Activated platelets induce secretion of interleukin-1beta, monocyte chemotactic protein-1, and macrophage inflammatory protein-1alpha and surface expression of intercellular adhesion molecule-1 on cultured endothelial cells, J Korean Med Sci, vol.15, issue.3, pp.273-281, 2000.

R. E. Unger, In vitro expression of the endothelial phenotype: comparative study of primary isolated cells and cell lines, including the novel cell line HPMEC-ST1.6R. Microvasc Res, vol.64, pp.384-97, 2002.

P. S. Frenette, Platelet-endothelial interactions in inflamed mesenteric venules, Blood, vol.91, issue.4, pp.1318-1342, 1998.

U. M. Vischer and D. D. Wagner, CD63 is a component of Weibel-Palade bodies of human endothelial cells, Blood, vol.82, issue.4, pp.1184-91, 1993.

J. Etulain and M. Schattner, Glycobiology of platelet-endothelial cell interactions. Glycobiology, vol.24, issue.12, pp.1252-1261, 2014.

S. Massberg, Platelet-endothelial cell interactions during ischemia/reperfusion: the role of P-selectin, Blood, vol.92, issue.2, pp.507-522, 1998.

Z. M. Ruggeri and G. L. Mendolicchio, Adhesion mechanisms in platelet function, Circ Res, vol.100, issue.12, pp.1673-85, 2007.

P. Andre, Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins, Blood, vol.96, issue.10, pp.3322-3330, 2000.

J. M. Herter, J. Rossaint, and A. Zarbock, Platelets in inflammation and immunity, J Thromb Haemost, vol.12, issue.11, pp.1764-75, 2014.

M. Gawaz, H. Langer, and A. E. May, Platelets in inflammation and atherogenesis, J Clin Invest, vol.115, issue.12, pp.3378-84, 2005.

Z. Li, Platelets as immune mediators: their role in host defense responses and sepsis, Thromb Res, vol.127, issue.3, pp.184-192, 2011.

P. S. Frenette, Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin, Proc Natl Acad Sci, vol.92, issue.16, pp.7450-7454, 1995.

P. S. Frenette, Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow, Proc Natl Acad Sci, vol.95, issue.24, pp.14423-14431, 1998.

G. M. Romo, The glycoprotein Ib-IX-V complex is a platelet counterreceptor for Pselectin, J Exp Med, vol.190, issue.6, pp.803-817, 1999.

J. Chen and J. A. Lopez, Interactions of platelets with subendothelium and endothelium. Microcirculation, vol.12, pp.235-281, 2005.

D. Meza, Platelets modulate endothelial cell response to dynamic shear stress through PECAM-1, Thromb Res, vol.150, pp.44-50, 2016.

P. S. Frenette, P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo, J Exp Med, vol.191, issue.8, pp.1413-1435, 2000.

T. Bombeli, B. R. Schwartz, and J. M. Harlan, Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha, J Exp Med, vol.187, issue.3, pp.329-368, 1998.

T. E. Warkentin, W. C. Aird, and J. H. Rand, Platelet-endothelial interactions: sepsis, HIT, and antiphospholipid syndrome, Hematology Am Soc Hematol Educ Program, pp.497-519, 2003.

S. Nhek, Activated Platelets Induce Endothelial Cell Activation via an Interleukin1beta Pathway in Systemic Lupus Erythematosus, Arterioscler Thromb Vasc Biol, 2017.

M. Gawaz, Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1-dependent mechanism. Implications for atherogenesis, Atherosclerosis, vol.148, issue.1, pp.75-85, 2000.

G. Kaplanski, Interleukin-1 induces interleukin-8 secretion from endothelial cells by a juxtacrine mechanism, Blood, vol.84, issue.12, pp.4242-4250, 1994.

V. Henn, CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells, Nature, vol.391, issue.6667, pp.591-595, 1998.

K. Stach, Simvastatin and atorvastatin attenuate VCAM-1 and uPAR expression on human endothelial cells and platelet surface expression of CD40 ligand, Cardiol J, vol.19, issue.1, pp.20-28, 2012.

P. Seizer and A. E. May, Platelets and matrix metalloproteinases, Thromb Haemost, vol.110, issue.5, pp.903-912, 2013.

M. R. Fabian, N. Sonenberg, and W. Filipowicz, Regulation of mRNA translation and stability by microRNAs, Annu Rev Biochem, vol.79, pp.351-79, 2010.

R. C. Friedman, Most mammalian mRNAs are conserved targets of microRNAs, Genome Res, vol.19, issue.1, pp.92-105, 2009.

Y. Pan, Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor, J Immunol, vol.192, issue.1, pp.437-483, 2014.

O. Gidlof, Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression, Blood, vol.121, pp.1-26, 2013.

P. Von-hundelshausen, RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium, Circulation, vol.103, issue.13, pp.1772-1779, 2001.

A. Schober, Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury, Circulation, vol.106, issue.12, pp.1523-1532, 2002.

S. F. Mause, Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium, Arterioscler Thromb Vasc Biol, vol.25, issue.7, pp.1512-1520, 2005.

A. H. Wei, S. M. Robert, K. Andrews, and S. P. Jackson, New insights into the haemostatic function of platelets, British Journal of Haematology, vol.147, pp.415-430, 2009.

W. J. Savage, Transfusion Reactions, Hematol Oncol Clin North Am, vol.30, issue.3, pp.619-653, 2016.

S. Sahu, A. Hemlata, and . Verma, Adverse events related to blood transfusion, Indian J Anaesth, vol.58, issue.5, pp.543-51, 2014.

R. Dasararaju and M. B. Marques, Adverse effects of transfusion, Cancer Control, vol.22, issue.1, pp.16-25, 2015.

V. Kiefel, Reactions Induced by Platelet Transfusions, Transfus Med Hemother, vol.35, issue.5, pp.354-358, 2008.

N. Blumberg, An association of soluble CD40 ligand (CD154) with adverse reactions to platelet transfusions, Transfusion, vol.46, issue.10, pp.1813-1834, 2006.

F. Cognasse, Platelet soluble CD40-Ligand level is associated with transfusion adverse reactions in a mixed threshold and hit model, Blood, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581312

C. Tan, H. Chen, and W. Zhu, Application of boosting classification and regression to modeling the relationships between trace elements and diseases, Biol Trace Elem Res, vol.134, issue.2, pp.146-59, 2010.

C. Aloui, Are polymorphisms of the immunoregulatory factor CD40LG implicated in acute transfusion reactions? Sci Rep, vol.4, p.7239, 2014.

A. Malarstig, Soluble CD40L levels are regulated by the -3459 A>G polymorphism and predict myocardial infarction and the efficacy of antithrombotic treatment in non-ST elevation acute coronary syndrome, Arterioscler Thromb Vasc Biol, vol.26, issue.7, pp.1667-73, 2006.

J. M. Cholette, Washing red blood cells and platelets transfused in cardiac surgery reduces postoperative inflammation and number of transfusions: results of a prospective, randomized, controlled clinical trial. Pediatr Crit Care Med, vol.13, pp.290-299, 2012.

S. Tanaka, A hollow-fibre column system to effectively prepare washed platelets, Vox Sang, vol.109, issue.3, pp.239-286, 2015.

H. Schrezenmeier and E. Seifried, Buffy-coat-derived pooled platelet concentrates and apheresis platelet concentrates: which product type should be preferred? Vox Sang, vol.99, pp.1-15, 2010.

O. Garraud, Platelet components: is there need or room for quality control assays of storage lesions?, Blood Transfus, pp.1-3, 2016.

P. F. Van-der-meer, In vitro comparison of platelet storage in plasma and in four platelet additive solutions, and the effect of pathogen reduction: a proposal for an in vitro rating system, Vox Sang, vol.98, issue.4, pp.517-541, 2010.

N. Tynngard, M. Trinks, and G. Berlin, In vitro quality of platelets during prolonged storage after washing with three platelet additive solutions, Vox Sang, vol.102, issue.1, pp.32-41, 2012.

N. Tynngard, M. Trinks, and G. Berlin, In vitro properties of platelets stored in three different additive solutions, Transfusion, vol.52, issue.5, pp.1003-1012, 2012.

I. J. Bontekoe, Platelet storage performance is consistent by donor: a pilot study comparing "good" and "poor" storing platelets, 2017.

S. Y. Khan, Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusionrelated acute lung injury, Blood, vol.108, issue.7, pp.2455-62, 2006.

D. Viisoreanu and A. Gear, Effect of physiologic shear stresses and calcium on agonistinduced platelet aggregation, secretion, and thromboxane A2 formation, Thromb Res, vol.120, issue.6, pp.885-92, 2007.

N. Alexandru, D. Popov, and A. Georgescu, Intraplatelet oxidative/nitrative stress: inductors, consequences, and control, Trends Cardiovasc Med, vol.20, issue.7, pp.232-240, 2010.

D. Jonnalagadda, L. T. Izu, and S. W. Whiteheart, Platelet secretion is kinetically heterogeneous in an agonist-responsive manner, Blood, vol.120, issue.26, pp.5209-5225, 2012.

T. D. Warner, Influence of endothelial mediators on the vascular smooth muscle and circulating platelets and blood cells, Int Angiol, vol.15, issue.2, pp.93-102, 1996.

R. Tamagawa-mineoka, Important roles of platelets as immune cells in the skin, J Dermatol Sci, vol.77, issue.2, pp.93-101, 2015.

P. Paulus, C. Jennewein, and K. Zacharowski, Biomarkers of endothelial dysfunction: can they help us deciphering systemic inflammation and sepsis? Biomarkers, vol.16, pp.11-21, 2011.

A. M. Larsen, Haemostatic function and biomarkers of endothelial damage before and after RBC transfusion in patients with haematologic disease, Vox Sang, vol.109, issue.1, pp.52-61, 2015.

M. Gawaz, Activated platelets induce monocyte chemotactic protein-1 secretion and surface expression of intercellular adhesion molecule-1 on endothelial cells, Circulation, vol.98, issue.12, pp.1164-71, 1998.

J. R. Slupsky, Activated platelets induce tissue factor expression on human umbilical vein endothelial cells by ligation of CD40, Thromb Haemost, vol.80, issue.6, pp.1008-1022, 1998.

F. Cognasse, The role of microparticles in inflammation and transfusion: A concise review, Transfus Apher Sci, vol.53, issue.2, pp.159-67, 2015.

R. F. Xie, Platelet-derived microparticles induce polymorphonuclear leukocytemediated damage of human pulmonary microvascular endothelial cells, Transfusion, vol.55, issue.5, pp.1051-1058, 2015.

H. Ple, The repertoire and features of human platelet microRNAs, PLoS One, vol.7, issue.12, p.50746, 2012.

P. Landry, Existence of a microRNA pathway in anucleate platelets, Nat Struct Mol Biol, vol.16, issue.9, pp.961-967, 2009.

H. Valadi, Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat Cell Biol, vol.9, issue.6, pp.654-663, 2007.

M. Urner, Effects of blood products on inflammatory response in endothelial cells in vitro, PLoS One, vol.7, issue.3, p.33403, 2012.

C. C. Silliman, Supernatants and lipids from stored red blood cells activate pulmonary microvascular endothelium through the BLT2 receptor and protein kinase C activation, 2017.

G. Baimukanova, Platelets regulate vascular endothelial stability: assessing the storage lesion and donor variability of apheresis platelets, Transfusion, vol.56, issue.1, pp.65-75, 2016.

G. Baimukanova, The effects of 22 degrees C and 4 degrees C storage of platelets on vascular endothelial integrity and function, Transfusion, vol.56, issue.1, pp.52-64, 2016.

A. Witte, Platelets as a Novel Source of Pro-Inflammatory Chemokine CXCL14, Cell Physiol Biochem, vol.41, issue.4, pp.1684-1696, 2017.

Y. Chen, Regular plateletpheresis increased basal concentrations of soluble Pselectin in healthy donors: Possible involvement of endothelial cell activation?, Clin Chim Acta, vol.458, pp.18-22, 2016.

C. Sut, Duration of red blood cell storage and inflammatory marker generation, Blood Transfus, vol.15, issue.2, pp.145-152, 2017.

C. Sut, Properties of donated red blood cell components from patients with hereditary hemochromatosis, Transfusion, vol.57, issue.1, pp.166-177, 2017.

. Ii--publications,

F. Cognasse, C. Sut, E. Fromont, S. Laradi, H. Hamzeh-cognasse et al., Platelet soluble CD40-Ligand level is associated with transfusion adverse reactions in a mixed threshold and hit model, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581312

C. Sut, S. Tariket, F. Cognasse, and O. Garraud, Determination of predictors of severity for recipient adverse reactions duringplatelet product transfusions, Transfusion Clinique et Biologique, 2017.

C. Sut, S. Tariket, M. L. Chou, O. Garraud, S. Laradi et al., Duration of red blood cell storage and inflammatory marker generation. Blood transfusion = Trasfusione del sangue, vol.15, pp.145-52, 2017.

O. Garraud, S. Tariket, C. Sut, A. Haddad, C. Aloui et al., Transfusion as an Inflammation Hit: Knowns and Unknowns, Frontiers in immunology, vol.7, p.534, 2016.

C. Sut, H. Hamzeh-cognasse, S. Laradi, V. Bost, C. Aubrege et al., Properties of donated red blood cell components from patients with hereditary hemochromatosis, Transfusion, vol.57, issue.1, pp.166-77, 2017.

C. Aloui, A. Prigent, S. Tariket, C. Sut, J. Fagan et al., Levels of human platelet-derived soluble CD40 ligand depend on haplotypes of CD40LG-CD40-ITGA2, Scientific reports, vol.6, p.24715, 2016.

S. Tariket, C. Sut, H. Hamzeh-cognasse, S. Laradi, B. Pozzetto et al.,

, Transfusion-related acute lung injury: transfusion, platelets and biological response modifiers. Expert review of hematology, vol.9, pp.497-508, 2016.

C. Aloui, C. Sut, F. Cognasse, V. Granados, M. Hassine et al., Development of a highly resolutive method, using a double quadruplex tetra-primer-ARMS-PCR coupled with capillary electrophoresis to study CD40LG polymorphisms. Molecular and cellular probes, vol.29, pp.335-377, 2015.

C. Aloui, A. Prigent, C. Sut, S. Tariket, H. Hamzeh-cognasse et al., The signaling role of CD40 ligand in platelet biology and in platelet component transfusion, International journal of molecular sciences, vol.15, issue.12, pp.22342-64, 2014.

C. Aloui, C. Sut, A. Prigent, J. Fagan, F. Cognasse et al., Are polymorphisms of the immunoregulatory factor CD40LG implicated in acute transfusion reactions?, Scientific reports, vol.4, 2014.

C. Sut and H. Hamzeh-cognasse,

M. Acquart, N. Vignal, C. A. Boutahar, M. A. Arthaud, B. Eyraud et al., Fabrice Cognasse -25th Regional Congress of the ISBT, Juin 2015 -XXVII e Congrès de la SFTS, 2015.

, Interaction des plaquettes et des cellules endothéliales lors de l'inflammation

C. Sut, M. A. Eyraud, C. A. Arthaud, J. Fagan, and F. Cognasse, Olivier Garraud -Journée de la Recherche IFRESIS, 2016.

, Release of soluble CD40L and serum amyloid a during platelet storage: gender-specific difference

C. Sut, H. Hamzeh-cognasse, C. Arthaud, M. Eyraud, and O. Garraud, Fabrice Cognasse -34th International Congress of the ISBT, 2016.

, Apheresis platelet concentrates versus buffy-coat derived pooled platelet concentrates: focus on sCD40L and sCD62P

J. Fagan, P. Chavarin, H. Hamzeh-cognasse, S. Laradi, and O. Garraud,