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RESUME

Les interfaces cerveau machine (BCI pour Brain Computer Interfaces) non
invasives permettent a leur utilisateur de contréler une machine par la pensée.
Ce dernier doit porter un dispositif d'acquisition de signaux électroencéphalo-
graphiques (EEG), lesquels sont par la suite traités et transformés en commandes.
Cependant, les signaux EEG sont dotés d'un rapport signal sur bruit tres faible ;
a ceci s'ajoute I'importante variabilité que I'on trouve tant a travers les sessions
d'utilisation qu'a travers les utilisateurs. Par conséquent, la calibration du BCI,
pendant laquelle I'utilisateur est amené a e ectuer une tache prédé nie, doit sou-
vent précéder son utilisation. Le sujet de cette thése est I'étude des sources de
cette variabilité, dans le but d'explorer, concevoir, et implémenter des méthodes
d'autocalibration. Nous nous intéressons en particulier aux interfaces cerveau
machine qui utilisent des potentiels évoqués comme marqueur neurophysiologique
(ERP-based BCI), que nous introduisons dans la premiére partie.

La deuxieme partie de cette these porte sur I'analyse des sources de variabilité
gue l'on rencontre dans ce type d'interface cerveau machine. Nous e ectuons
une étude bibliographique de la variabilité des potentiels évoqués, en nous in-
téressant particulierement au potentiel tardif connu sous le nom de P300. Nous
réalisons aussi une analyse de la variabilité du signal EEG sur deux bases de don-
nées qui proviennent d'expériences de BCI avec potentiel évoqué. Aprés avoir
évalué les sources de variabilité de maniére quantitative, nous nous penchons sur
les méthodes adaptatives d'apprentissage automatique, notamment, les méthodes
d'apprentissage par transfert. Ces méthodes permettent aux algorithmes de classi -
cation de généraliser malgré la variabilité, et donc de ne pas avoir besoin d'étre
calibrés avant chaque utilisation du BCI. Nous analysons sur trois méthodes en
particulier pour décrire a quel type de variabilité elles sont le mieux adaptées : la
géométrie riemannienne, le transport optimal, et I'apprentissage ensembliste. Puis



nous proposons un modéle du signal EEG généré pendant |'utilisation d'un BCI

qui tient compte de la variabilité. Les parameétres résultants de nos analyses nous
permettent de calibrer ce modele et a simuler une base de données, qui nous sert a
évaluer la performance de ces méthodes d'apprentissage par transfert. Les résultats
de cette analyse démontrent que ces méthodes sont adaptées a certains types de
variabilité ; cependant, aucune de ces méthodes ne s'a ranchit de toutes les sources
de variabilités présentes dans les données EEG.

La troisieme partie de cette thése porte sur I'application de ces méthodes a
des données expérimentales et a la conception de méthodes dérivées de celles-
ci. Nous proposons une méthode de classi cation basée sur le transport optimal
dont nous évaluons la performance. Ensuite, nous introduisons un marqueur de
séparabilité qui nous permet d'évaluer un ensembles de vecteurs de caractéristiques,
particulierement dans le cadre de la géométrie riemanniene. Ce dernier nous permet
de concevoir une méthode qui réunit géométrie riemannienne, transport optimal
et apprentissage ensembliste. Nos résultats témoignent que la combinaison de
plusieurs méthodes d'apprentissage par transfert nous permet d'obtenir un classi eur
qui s'a ranchit des di érentes sources de variabilité du signal EEG de maniére
e cace. En n, nous proposons une méthode de calibration non supervisée pour le
cas particulier d'un BCI spéci que : le clavier virtuel P300 . La thése se conclut
par une discussion générale, ainsi que nos contributions additionnelles.

Mots-clés

Interfaces cerveau machine, Apprentissage automatique, Traitement du signal



ABSTRACT

Non-invasive Brain Computer Interfaces (BCIs) allow a user to control a ma-
chine using only their brain activity. The BCI system acquires electroencephalo-
graphic (EEG) signals using an EEG acquisition device. The signals are subse-
quently processed and transformed into commands. However, EEG is characterized
by a low signal-to-noise ratio and an important variability both across sessions and
across users. Typically, the BCI system is calibrated before each use, in a process
during which the user has to perform a prede ned task. This thesis studies of the
sources of this variability, with the aim of exploring, designing, and implement-
ing zero-calibration methods. In particular, we are interested in Event Related
Potential-based BCI (ERP-based BCI), which we introduce in the rst part.

The second part of this thesis deals with the analysis of the sources of variability
encountered in ERP-based BCI. We review the variability of the event related
potentials, focusing mostly on a late component known as the P300. We also
perform an analysis on two databases containing EEG signals that were generated
during ERP-based BCI experiments. This allows us to quantify the sources of EEG
signal variability. Our solution to tackle this variability is to focus on adaptive
machine learning methods, such as transfer learning , which allow classi cation
algorithms to generalize. We focus on three methods in particular and describe
which type of variability they are the most suited for: Riemannian geometry, optimal
transport, and ensemble learning. Then, we propose a model of the EEG signal
generated during the use of an ERP-based BCI that takes variability into account.
The parameters resulting from our analyses allow us to calibrate this model in a set
of simulations, which we use to evaluate the performance of the aforementioned
transfer learning methods. The results of this analysis demonstrate that these
methods generalize under certain types of variability; however, none of these
methods can cope with all the sources of variability that are present in the EEG



Vi

signal.

The third part of this thesis deals with the application of these methods to
experimental data and the design of methods derived from their combination. We
rst propose a classi cation method based on optimal transport which we evaluate
in terms of classi cation performance. Then, we introduce a separability marker
that can be applied to evaluate training sets, especially under the framework of
Riemannian geometry. We use the separability marker to design a method that com-
bines Riemannian geometry, optimal transport and ensemble learning. Our results
demonstrate that the combination of several transfer learning methods produces a
classi er that e ciently handles multiple sources of EEG signal variability. Finally,
we propose an unsupervised calibration method for a speci ¢ BCI: the P300 Speller.
The thesis concludes with a general discussion, as well as our other contributions.

Keywords

Brain Computer Interfaces, Machine Learning, Signal Processing
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GENERAL INTRODUCTION

Mankind has long been on a quest to understand the mind, source
of human thought. This pursuit has led us into one of the most
intricate organs of the human body: the brain. In ancient Greece,
Hippocrates was the rst to proclaim that the brain was the seat of
intelligence, the source of our thoughts and sensations. Fast forward
to the end of the 19th century, when Spanish anatomist Santiago
Ramon y Cajal introduces the neuron to the scienti ¢ world. This
discovery made him one of the pioneers of neuroscience and marked
the beginnings of the neuroscience eld. In 1924, for the rsttime,
Hans Berger produces a human electroencephalographic recording.
Forty nine years years later, Jacques Vidal publishes a study on
direct brain-computer communication [Vidal, 1973].

The Brain Computer Interface eld is born.

Context

Brain Computer Interfaces (BCIs) are conceived with an aim to provide an
alternate means of communication to people with severe motor disabilities [Wolpaw
et al., 2002]. A BCI system reads and deciphers electroencephalographic activity.
Electroencephalography (EEG) measures the scalp electric potentials produced by
electrical activity in neural cell assemblies [Baillet et al., 2001]. The discovery of
signi cant correlations between spatiotemporal variations of the EEG signal and
speci ¢ mental tasks has made it possible to use EEG to decipher a person's inten-
tions [Wolpaw et al., 2002; Cabestaing and Derambure, 2016]. Neurophysiological
markers such as event related synchronization/desynchronization (ERD/ERS) al-
low to identify imagined movements. Sensory evoked potentials (SEP) and event
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related potentials (ERP) elicit distinct responses to stimuli, which we can extract
and convert into commands.

In this thesis, we study a particular type of BCI, namely ERP-based BCI. ERP-
based BCI are non-invasive, EEG-based, reactive BCI. Non-invasive, because the
signal is acquired through sensors that are placed on the scalp. EEG-based, because
these sensors record EEG activity. Reactive, because the user controls the BCI by
choosing to pay attention (or to not pay attention) to a stimulus [Cabestaing and
Derambure, 2016].

The stimuli of an ERP-based can be visual, auditory, or tactile. Therefore,
the communication provided by ERP-based BCI does not depend on a particular
sensory input. This makes them an attractive framework for people who su er from
serious motor disorders that lead to a locked-in syndrome, such as Amyotrophic
Lateral Sclerosis (ALS). This was precisely the motivation of Farwell and Donchin,
who in 1988 introduced the rst ERP-based BCI application [Farwell and Donchin,
1988]. Today, ERP-based BCI are used for spelling [Blankertz et al., 2011; Guy
et al., 2018], moving on-screen objects [lturrate et al., 2015] and even gaming
[Barachant and Congedo, 2014].

Objective

ERP-based BCI systems operate by recording EEG activity, from which features
are extracted and classi ed. Upon classi cation, the user receives feedback. A
feedback example for a visual ERP-speller is the display of the selected letter on
the screen. If the classi cation result is correct, the feedback will correspond to the
user's intention. Therefore, the performance of the classi er is highly important for
a BCI. However, a major drawback of EEG-based applications is the low Signal-
to-Noise Ratio (SNR) of the EEG signal. As a result, advanced signal processing
and machine learning techniques need to be employed to enhance the classi cation
accuracy. Moreover, as the variability of the EEG signal is very high, BCI sessions
usually include a preliminary system calibration. Calibration describes a process
during which the user has to perform a speci ¢ task without feedback. This process
can be lengthy, and is generally dull and tiresome for the user [Clerc et al., 2016].
The goal of this thesis is to propose adaptive machine learning methods which take
explicitly into account the various types of EEG variability and the low SNR of the
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signal.

Contributions

In this thesis, we focus on the performance of various adaptive machine learning
in terms of EEG signal variability. The contributions of our work are detailed below.

A Model of EEG variability We perform a detailed study of EEG signal vari-
ability. Our rst contribution is a review of the existing literature on ERP variability,
coupled with an analysis on two experimental datasets. We propose a model of
the EEG signal which includes the various types of variability that arise from this
study.

Transfer Learning Methods Against Variability Using our EEG signal model,
we generate simulated EEG signals and use them to evaluate three transfer learning
frameworks: Riemannian geometry; optimal transport; and ensemble learning. In
particular, we propose to interpret how each one deals with variability and we
compare them between each other. In the nal chapters, we propose classi cation
methods that combine these three frameworks.

Optimal Transport Applied to ERP-based BCI We introduce a transfer learn-
ing framework based on optimal transport theory. We propose two methods that
make use of this framework in the classi cation pipeline. The rst one acts on the
feature extraction step while the second acts on the classi cation step.

Separability in the Riemannian manifold of Symmetric Positive De nite
Matrices We provide a theoretical analysis of the Riemannian manifold of Sym-
metric Positive De nite matrices based on high dimensional geometry and statistics.
This analysis leads to a marker of separability that can be applied to binary classi -
cation problems. We use this separability marker to assess the classi cation results
in an ensemble classi er.

Unsupervised Classi cation We introduce an unsupervised classi cation method
for a speci c ERP-based application, the P300 speller. Our method takes into ac-
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count the structure of ths particular BCI system and of the vectors in the feature
space. We present preliminary results that provide a proof of concept of our method.

Structure

The thesis is structured in the following way:

Chapter 1 In the rst chapter, we introduce ERP-based BCI. We provide a
brief history and detail the BCI system and its components. Finally, we focus our
attention on calibration and introduce our proposed solution, which is the use of
adaptive machine learning methods.

Chapter 2 The second chapter starts a review of the bibliography on ERP
component variability. Then, we perform an analysis of the EEG variability of
two experimental datasets. The rst dataset includes EEG recordings from healthy
users and the second contains EEG recordings from ALS patients.

Chapter 3 We begin chapter 3 with a short review of transfer learning and its
previous applications to ERP-based BCI. Then, we present three transfer learning
frameworks. The rst one is the Riemannian geometry framework, in which features
are covariance matrices of the segmented EEG signal. The second one is based on
optimal transport theory, whose aim is to compute an optimal transport plan that
moves probability masses while minimizing a cost. The third is ensemble learning,
which trains multiple classi ers and aggregates their decisions to provide a single
classi cation result.

Chapter 4 In the fourth chapter, we introduce our EEG signal model, which
takes into account our experimental analysis of variability (chapter 2). We use this
model to simulate a BCI experiment and generate EEG signals. These simulated
signals are used to study how each transfer learning method in chapter 3 deals with
each type of variability analyzed in chapter 2. We present the results of our study
and discuss them.
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Chapter 5 Chapter 5 provides a detailed description of the optimal transport
framework. We introduce the problem and provide the theoretical background of
discrete regularized optimal transport. We propose two methods that use optimal
transport. The rst one applies it in the feature space as a domain adaptation tool.
The second one applies optimal transport to derive a new classi cation method.
Then, we combine these methods to ensemble learning. We perform experiments
on experimental data to assess the performance of the two methods and of the
ensemble learning framework. We conclude this chapter with a discussion.

Chapter 6 In the sixth chapter, we conduct a geometrical analysis of the Rieman-
nian space of symmetric positive de nite matrices. First, we recall some known
geometrical and statistical properties on high-dimensional spaces and provide the
theoretical framework of our analysis. Then, we introduce the Separabiliy Marker,
a marker of class separability for binary classi cation problems under the Rieman-
nian geometry framework. Then, we propose an ensemble learning method that
make use of the Separability Marker and combines the transfer learning methods
of chapter 3. We discuss our results and conclude this chapter.

Chapter 7 In chapter 7, we propose a proof of concept for a novel unsupervised
method applied to the P300-Speller. We introduce our method and provide prelim-
inary results that prove its feasibility. We discuss those results and conclude the
chapter.

Finally, we conclude this thesis with a general discussion on our results and
future perspectives.
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CHAPTER 1
ERP-BASED BRAIN COMPUTER INTERFACES

This chapter provides a background on ERP-based BCI. We rst
introduce the ERP-based BCI system and provide a short history of
its conception and evolution. We then proceed to detail the system
and provide state-of-the art references for each component. We
detail the issue of BCI calibration and brie y mention some of the
existing solutions. We conclude by presenting our approach towards
zero-calibration BCI, which is the the main objective of this thesis.

1.1 Introduction

An ERP-Based BCl is a system composed of several components. During each
session, these components interact with each other and with the user in a closed loop.
In general, a BCI session refers to the continuous use of a BCI during which the user
does not remove the EEG acquisition device. Each one of these components can
be seen as pipeline which comprises di erent subcomponents. A set of functions
and parameters are linked to each subcomponent. In a state-of-the art system for a
visual P300-Speller, we identify four main components: (i) interface (ii) acquisition
(ii) information extraction (iv) system update. These are outlined in gure 1.1.
Note that this particular taxonomy can be generalized to di erent ERP-based BCI
as well.

This thesis focuses on the sources of EEG variability. In particular, we are
interested to detail how this variability a ects the system performance and what
parameters can be modi ed or adapted to resolve the issues that arise because of
that variability. The design of an adaptive ERP-Based BCI necessitates a solid
understanding of how each system component is designed and how it interacts
with the other components [Mladenovic et al., 2018]. To this end, this chapter is



organized in the following way. First, we provide a brief history of ERP-Based BCI.
We the detail the system components presented in gure 1.1 one by one. Finally,
we expose and discuss the pre-BCl use calibration issue.

1.2 Brief History of ERP-based BCI

The rst BCl to use ERPs was detailed in 1988 by Farwell and Donchin [Farwell
and Donchin, 1988]. Its objective is to allow the user to spell words by means
of an on-screen grid-like keyboard, whereby rows or columns are ashing. The
user has to attend the screen and concentrate on the character they wish to spell,
disregarding the rest of the characters on the keyboard. This task can be viewed as
a covert discrimination task between two types of occurrences: either the row or
column ashing contains the desired character, or not. This BCI paradigm relies
on the elicitation of a well-studied ERP component, known as the P3b, the late
positive complex, or simply, the P300.

Donchin et al. proved the feasibility of this ERP-based speller [Donchin et al.,
2000], which has since been studied and used extensively under thé?38@®e
Speller Recent studies focus on achieving better performances by either optimizing
the signal processing and classi cation framework [Blankertz, 2004; Guger et al.,
2009b; Rivet et al., 2009; Blankertz et al., 2011; Kindermans et al., 2012a], or
by modifying the decision process and the way items are presented on-screen.
[Townsend et al., 2010; Thomas et al., 2014; Mattout et al., 2015]. The P300
component has also been used in a BCI gaming application, presented by Congedo
etal. [Congedo et al., 2011], in which the user is playing a P300-based BCI version
of the arcade game alien invaders .

Other ERP components have been used in BCI besides the P300. The N400,
a negative component which is related to recognition of meaningful stimuli, has
been used in a P300-Speller-like BCI by Kaufmann et al. in [Kaufmann et al.,
2011]. The authors propose to replace ashing keys with familiar faces, which
elicit the N400 component and facilitate trial classi cation. The Error Potential,

a component elicited not by a conventional stimulus but by the recognition of a
mistake, has also been used in a number of BCI paradigms. Mattout et al. use the
Error Potential as a spelling correction tool in a P300-Speller [Mattout et al., 2015].
In [lturrate et al., 2015], lturatte et al. design a BCI that uses the Error Potential to
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control an on-screen item.

In the remainder of this thesis, we are mainly considering the P300-Speller
paradigm. In the following section, we detail the four main components of a
P300-Speller system, depicted in gure 1.1.

1.3 The BCI System

1.3.1 The Interface

The interface is the point where the user and the system immediately interact.
The interface component receives constant updates from the system update com-
ponent. According to that information, it generates stimuli or provides feedback
to the user. The user generates EEG signal which is subsequently recorded by the
acquisition component. Hence, the interface encloses everything that is related to
the task and the user. Task-related parameters include the choice of the paradigm
and the strategy that should be employed by the user to achieve the desired result.
These are often selected by the experimenter. In a P300-Speller, the screen displays
a keyboard on which groups of characters are ashing. The user is asked to count
incrementally every time he sees a ash on the character he wishes to spell. The
interface holds parameters such as the groups of characters that ash and the interval
between two ashes.

In ERP-based BCI, user-speci ¢ mental states and characteristics, such as
arousal levels, mood and mental workload directly a ect the temporal pattern of
the ERP [Polich and Kok, 1995; Polich, 2009; Jeunet et al., 2016; Mladenovic et al.,
2018]. Moreover, they are subject to a high amount of variability across di erent
users [Lotte and Jeunet, 2015; Jeunet et al., 2016]. This has a direct impact on the
rest of the system. In particular, the information extraction component needs to be
adjusted accordingly to deal with the resulting variability in the EEG signal.

1.3.2 EEG Acquisition and Processing

The acquisition component is responsible for recording the EEG signal, pre-
processing it and transmitting it to the information extraction component. Parameter
choices typically concern the equipment used (EEG acquisition device, ampli er),
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the choice of electrodes, and their positioning. During a non-invasive EEG-based
BCI experiment, the EEG signal is acquired on the scalp through electrodes that
record the electrophysiological activity that is generated from cortical neuronal
activity and transmitted through the skull and scalp [Niedermeyer et al., 2005].
EEG recordings have a very low amplitude, which is on the ordeMofTherefore
the EEG measurements need to be processed by an ampli er. Typically, digital
ampli ers are employed for this task which provide one discrete signal per sensor.
Most ampli ers o er a sampling frequency that can range between 100 and 1000Hz.
The EEG signal has the advantage of having a high temporal resolution in
contrast to its poor spatial resolution, which is restricted by the number of electrodes.
The number of electrodes varies with respect to the paradigm: it can range from
a few electrodes up to 128 electrodes. (Note that BCI experimenters avoid using
more than 64 electrodes, since the process of placing them on the scalp is lengthy
and tiresome for the user.) In addition, EEG measurements have a very low Signal-
to-Noise Ratio. Therefore, before extracting features of interest,the EEG signal
goes through a pre-processing pipeline. Since the physiological markers of interest
in ERP-based BCI live in low frequency components, the raw signal is bandpass
Itered so that only those frequencies of interest are kept in the signal. Often, the
signal goes through an additional downsampling step. Note that some ampli ers
provide built-in signal pre-processing methods.

1.3.3 Extracting Information from the EEG signal

The information extraction components is responsible for extracting relevant
information from the pre-processed EEG signal. Itis often represented as a pipeline
of two subcomponents which perform feature extraction and classify the resulting
feature vector. For example, visual P300-Spellers rely on the detection of the P300
component, which should be elicited every time the user's character of interest
ashes. The pre-processed EEG signal is thereby given as input to the feature
extraction subcomponent, along with information concerning the timing of the
ashes. Its aim is to output one feature vector per ash in a way that ensures
high inter-class separability and Signal-to-Noise Ratio (SNR). Each feature vector
is subsequently transmitted to the classi cation subcomponent, which decides
whether the stimulus associated to a feature vector was a target stimulus or a



nontarget stimulus and transmits the resulting vector of probabilities to the system
update component. Target stimuli correspond to groups of characters that contain
the character that the user wishes to spell, as opposed to nontarget.

Due to the high amount of variability in the signal and to the low SNR, advanced
signal processing, feature extraction, and classi cation methods have been employed
and incorporated within BCI systems. In ERP-based BCI, the pre-processed EEG
signalX is segmented into trials of a speci ¢ duration, starting from stimulus o set.
The number of time samples should be chosen so that the relevant information
is contained within the time segment. Each trial can be represented as a matrix
X; 2 R'e 'v wherel . denotes the number of electrodes &pdhe number of
time samples. These trials can be converted directlyspadiotemporal features
x' 2 R'*'v where vectox' contains the rows of matrix ;.

Alternatively, the trials are projected onto a lower dimensional subspace through
some spatial projection matrix 2 R'* 'c, wherel; denotes the number of com-
ponents, i.e. the new spatial dimensionality of the signal. These spatial projection
matrices are often referred to as spatial lters, since they modify the spatial di-
mension of the signal. The new subspace often has a property that enhances some
relevant characteristic, such as class separability [Lotte and Guan, 2011] or SNR
[Rivet et al., 2009]. These projected trials are also converted into spatiotemporal
featuresx<' 2 R'f v,

The resulting feature vectors are given to the classi er component. The classi-
cation output usually takes the form of a vector= (py;ps;  ;p|,), wherep
denotes the probability that th8 feature vector belongs to clasandl, denotes
the number of classes. State-of-the-art classi ers for ERP-based BCI include lin-
ear classi ers such as Linear Discriminant Analysis (LDA) [Panicker et al., 2010;
Blankertz et al., 2011; Gayraud et al., 2017] and Support Vector Machines (SVM)
[Rakotomamonjy and Guigue, 2008]. For an extensive review of BCI classi cation
methods, we refer the reader to [Lotte et al., 2007, 2018]

1.3.4 System Update

The system update component holds the parameters related to the decision
process. In particular, given the previous state of the system and a new probability
vector, it decides on the new state of the system and transmits the decision to the
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interface. In a P300-Speller, the system states include whether the system should
continue ashing groups of characters, or if a character has been found and can be
displayed on the screen. For example, the P300-Speller system designed by Thomas
etal. [Thomas et al., 2014] accumulates evidence for each character in the keyboard
and uses an early stopping criterion to decide when the evidence accumulation has
converged and a character can be selected. The same criterion is applied in the
work of Mattout et al., who also incorporate an error detection strategy in which the
information process module has the additional task of detecting an Error Potential
at the end of each sequence of ashes [Mattout et al., 2015]. If an error has been
detected, the system update corrects the character by choosing the second most
probable character.

1.4 System Calibration

In a process that precedes BCI use, the system goes through a calibration which
aims to tune its parameters. These parameters typically concern the spatial Iter
coe cients and classi cation weights within the information extraction component,
as described in section 1.3.3. Each BCI paradigm has its own calibration strategy.
For example, during the calibration of a P300-Speller, the system tries to extract
a template of the ERP that should be generated by the user when the character
he desires to spell is ashing. Therefore, the user is asked to focus on speci c
characters. This allows the BCI to gather labeled data and train the system pipeline.
The process may last between 5 and 10 minutes, depending for example on the
quality of the acquired signals or the classi er scores [Lotte and Congedo, 2016b].

While the reported performances of BCl applications have been satisfactory,
state-of-the art feature extraction and classi cation methods have been unable
to generalize across di erent sessions and di erent subjects [Clerc et al., 2016].
This means that the system must be calibrated before each session. Regarding the
classi cation process in particular, the high amount of variability in the EEG signal
combined to the low SNR lead to changes in the feature domain. The broad use of
BCls greatly depends on discarding the need for calibration sessions. BCI users
should not have to undergo the tedious calibration process each time they want to
use a BCI.

A solution to this problem is the application of transfer learning. This machine
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learning approach is increasing in popularity in the BCI domain [Barachant et al.,
2010; Kindermans et al., 2014; Barachant and Congedo, 2014; Gayraud et al., 2017].
Transfer learning approaches allow for the combination of acquired knowledge,
which can take the form of multiple training set or multiple classi ers. Hence, it can
enable us to e ciently use information from previously acquired data to calibrate
the BCI, without having to ask the user to perform an additional calibration session.
Ideally, a global solution would take the form of a transfer learning method that
deals with the all of the sources and types of variability in BCI simultaneously. To
do that, it is imperative that we understand the variability in the EEG signal and
how various transfer learning methods deal with its sources.

1.5 Conclusion

BCI are intricate systems, so the choices made for each component are directly
a ected by other parts of the system, and in turn a ect other component choices
as well. It is therefore imperative to understand how these interactions take place.
For example, choosing to detect a neurophysiological marker such as the P300
component implies that the user has to perform a task that necessitates attention;
that the system will present some kind of stimulus to elicit the P300; and that it will
have to search for the temporal pattern that characterizes this particular component.

Calibrating the system is not a trivial task, on account of both the system
complexity and the variability of EEG signals and ERP components. In spite of this
variability, we aim for BCI that do not need calibration before usage. Throughout
the rest of this thesis, we focus on how the variability that stems from the interfaces
a ects system performance and in which way the information extraction component
can adapt to it. In order to render our results interpretable, we will be assuming
that the acquisition and system update parameters are xed. These parameters
will be detailed when necessary. In particular, we analyze the sources of EEG
variability and investigate selected adaptive machine learning methods that adjust
to this variability in terms of classi cation performance. Finally, we assess whether
this approach su ces to design zero-calibration ERP-based BCI.
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CHAPTER 2
SOURCES OF VARIABILITY IN ERP-BASED BCIS

In the previous chapter, we described the ERP-based BCI system
and discussed the interactions between system components. In par-
ticular, we are interested in how the EEG signal variability a ects
system performance. Our goal is to quantify variability. In par-
ticular, we are interested in retrieving parameters that allow us to
determine which adaptive machine learning methods are robust to
that variability. In this chapter we analyze the sources of variability
in ERP-based BCI. First, we review the existing bibliography on
the variability of ERP components and propose categorizations of
ERP variability. Then we perform an analysis on two experimen-
tal datasets. This analysis provides us with a way to parameterize
EEG variability and gives us insight on the relationship between
the sources of variability and their e ect on the EEG signal.

2.1 Introduction

ERPs are comprised of a group of components presumed to be involved in
human information processing, re ecting factors such as stimulus registration,
attention and evaluation [Michalewski et al., 1986]. The sources of ERP variability
have been the center of extensive research [Michalewski et al., 1986; Polich and Kok,
1995; Polich, 2009]. Regarding the EEG signal generated during an ERP-based
BCI session, we distinguish between three primary sources.

The rstis the inherent variability of the ERP components. ERP variability is
typically measured in terms of peak amplitude, peak latency, and scalp topography,
I.e., the amplitude change over EEG electrodes [Polich, 2009]. While the variability
of sensory-related components present in an ERP has been found to be fairly low,
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the same cannot be said of the P300 [Michalewski et al., 1986; Jung et al., 2001;
Dalebout and Robey, 1997].

The second source of variability is noise. This noise contains physiological arti-
facts, such as blinks and muscle movement, technical artifacts, but also background
brain activity that is unrelated to the task [Clerc et al., 2016]. EEG signals have a
very low SNR ratio, which makes ERP extraction a di cult task

The third source of variability is scalp topography, which we have already
mentioned as a source of ERP variability. We put it here in a larger context which
includes all factors that contribute to scalp topography variability. EEG recordings
are prone to spatial variability related to the location of the sources of activity in the
brain, the (dipole) orientation of the sources of activity, the location of the electrode
on the scalp, and the conductivities of the intermediate layers [Bledowski, 2004;
Papageorgakis, 2017]. ERPs that arise from stimulus discrimination tasks comprise
other components that are related to sensory processing, namely, the sensory evoked
N1, P1, N2 and P2 components. Similar to the P300, they are named after their
peak latency, that is, the peak negative or positive polarity observed at a speci ¢
time after stimulus onset. The contribution of these sensory components depends
on the paradigm, whether for instance the presented stimuli are auditory, or visual
[Michalewski et al., 1986; Saavedra and Bougrain, 2012].

The aforementioned sources of variability can occur either across di erent
sessions, or within the same session. For the most part, variability analyses across
sessions extract ERPs by averaging multiple trials. Therefore, they study the
variability of the average ERP. On the other hand, single trial analyses, otherwise
known as trial-to-trial analyses, reveal the variability within the same session, which
is often referred to as across-trial variability. The cross-session approach provides
more information on the correlation of the sources of variability (e.g. task relevance,
attention) to their quantitative e ects on the signal (e.g. average peak amplitude
variability). Trial-to-trial analyses provide a more detailed view on these e ects
and allow us to have a better insight on the noise that is present in the signal, since
no averaging is performed.

In the following sections, we review the di erent variability sources for various
ERP components, such as the P300, the Novelty P3 and the N1, P1, N2 and
P2 components. Then, we perform a trial-to-trial and a cross-session variability
analysis on two experimental datasets.
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2.2 Variability of ERP Components

2.2.1 The P300 Component

The P300 component, otherwise known as P3b or late positive component, was
rst reported in 1965 by Sutton et al. [Sutton et al., 1965]. It has been observed to
arise during auditory and visual stimulus discrimination tasks. It is characterized
by a recorded positive amplitude peak around 300 milliseconds after stimulus onset,
which is most prominent on the middle parietal, central and frontal electrodes (Pz,
Cz, Fz). Further research showed that it is elicited most strongly under the oddball
paradigm, in which a frequently presented stimulus is interweaved by a less frequent
one. Usually, the user is asked to take notice of the latter [McCarthy and Donchin,
1976; Donchin et al., 1978; Pritchard, 1981]. The P300 component is associated
with attention and memory operations [Polich, 2009].

P300 variability is a ected by a number of physiological and environmental
sources. Table 2.1 summarizes the sources of variability and the a ected component
characteristics, namely peak amplitude, peak latency and scalp topography. Isreal
et al. [Isreal et al., 1980] demonstrate the e ect of introducing a second task at
the same time as target-nontarget stimulus discrimination. The subjects are asked
to discriminate between auditory stimuli while at the same time performing a
tracking task. In this task, they were asked to correct the position of a moving
cursor using a joystick with their right hand. The correct position was in the center
of a screen. They show that, while the introduction of the second task decreases
the peak amplitude of the P300, increasing the tracking task di culty does not
a ect the waveform. A review of the sources of P300 variability was provided by
Polich et al. in 1995 [Polich and Kok, 1995]. In this research, the sources of P300
variability are grouped into natural factors, which include circadian and ultradian
rhythms, seasonal variations, and menstrual cycle; and environmentally induced
factors, such as exercise, fatigue levels, sleep deprivation, and drug intake.

In particular, Katayama et al. [Katayama and Polich, 1999] assess the variability
of the P300 (termed P3b) between auditory and visual paradigms in a 3-stimulus
paradigm. Their ndings demonstrate a clear di erence between peak amplitude
and peak latency for the two modalities. Visual stimuli generate higher peak
amplitude and latency values that those generated by auditory stimuli. Nevertheless,
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the scalp topography appears una ected. These ndings are in accordance with
the results of Yagi et al. [Yagi et al., 1999], who also show that physical exercise
a ects both P300 peak amplitude and latency.

Age is another source of variability, which is demonstrated to a ect both peak
amplitude and latency [Walhovd and Fjell, 2002; Dinteren et al., 2014]. According
to the ndings of Dinteren et al., [Dinteren et al., 2014], who performed a meta
analysis on 75 studies, peak amplitude increases until late adolescence and gradually
decreases after that, while peak latency until early adulthood and increases thereafter.
Finally, in an review on ERP components, Polich et al [Polich, 2009] note the e ect
of Target-to-Target interval on peak amplitude and peak latency (in accordance
with Gonsalves et al. [Gonsalvez et al., 2007]) as well as the importance of arousal
and attention. They also note that ERP components are genetically transmitted:
P300 components are similar among members of the same family.

The above researches largely focus on the variability of the average ERP across
di erent experiments. However, as noted by Makeig et al. [Makeig et al., 2004], the
ERP average can di er signi cantly from the single trials it is derived from. Further
research has investigated trial-to-trial variability within the same experiment to
assess the degree of change in the peak amplitude and latency of single trials. In
their work, Michalewski et al. study ERP components in an auditory paradigm,
in order to determine the e ects of latency variation on the ERP grand average
[Michalewski et al., 1986]. They reported peak latency varies between 177 and 363
ms at the Pz electrode, while the peak amplitude varies between approximately 10
and 25 V, which shows the magnitude of trial-to-trial variability. Jung et al., in
results obtained in a visual 2-stimulus experiment, reveals an important amount
of peak latency variability across trials in the same session, which appears to be
correlated to Response Time [Jung et al., 2001]. These results are corroborated by
Gramfort et al. [Gramfort et al., 2010].

Physiological and environmental sources of ERP variability contribute to dif-
ferent types of EEG variability. EEG variability can be investigated according to
two di erent taxonomies. First, whether it is the same individual using the BCI
or not, in which case we de ne intra-individual variability and inter-individual
variability [Clerc et al., 2016]. Then, variability can also be studied across di erent
BCI sessions, or within the same session, in which case we talk about inter-session
and intra-session variability. While inter-individual variability by de nition refers
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to di erent sessions, intra-individual variability can occur either across di erent
sessions, or within the same session. On table 2.2, we propose an classi cation of
the sources of P300 variability presented in table 2.1 according to both taxonomies.
Note that, unsurprisingly, inter-individual variability gathers the largest amount of
sources. Regarding intra-session variability, we assume that changes in the amount
of tasks, in the task di culty or the stimulus probability can occur within the same
session.

Table 2.2:A categorization of the various sources of ERP variability according to two
di erent taxonomies: (i) whether they occur across di erent sessions or within the same
session; and (ii) whether they occur across di erent subjects or for the same subject.

Inter Session Intra Session
Inter Subject Intra Subject

Biological Factors
Cognitive Skills
Food Intake, Age, Exercise
Sleep Deprivation, Drug Intake
Circadian Rhythm
Arousal Levels, Fatigue, Sensor Position, Stress, Ultradian Rhythm
Second Task, Stimulus Probability, Task Di culty

2.2.2 The P3a Component

The P3a Component or no-go component [Polich, 2009] is elicited by dis-
tractor targets, in contrast to the P300 which is related to information processing
operations. Regarding P3a variability, Polich et al [Polich and Kok, 1995] note that
the P3a is more sensitive to inter-individual variability than the P300, but also point
out the fact that latency variability, otherwise known as latency jitter, can a ect
the observations related to peak amplitude. The sources of the P3a component are
found to be more central/frontal than those of the P300, suggesting that the two
components have a distinct topography [Polich, 2009]. Bledowski et al locate P3a
generators in the precentral sulcus and anterior insula [Bledowski, 2004].

Note that the P3a should not be confused with the novelty P3 component. This
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particular ERP component, which is more prominent in the frontal lobe, is elicited
by novelty targets. Its peak latency is similar to the P3a, but its peak amplitude
decreases over time due to habituation [Polich, 2009].

2.2.3 Sensory Evoked Potentials

Sensory evoked potentials are low-amplitude positive and negative peaks that
are generated within 200 ms after stimulus onset. These components however do
not vary to the same degree as the P300 component. Michalewski et al. study the
variability of the auditory N1, P1 and P2 components, which is indeed found to be
less important than the P300 component [Michalewski et al., 1986]. These results
are also corroborated by the ndings of [Jung et al., 2001] and [Makeig et al., 2004].
In the same study, Michalewski et al. investigate the intertemporal relationships
between the aforementioned components. The temporal correlation between them
is mostly found to be low, indicating that the processes that generated them are
independent.

2.3 Analysis on Experimental Datasets

2.3.1 Dataset description

We study the EEG signal and ERP variability in two experimental datasets that
contain EEG signal recorded during P300-Speller calibration sessions. In these
sessions, the screen displayed a keyboard on which groups of letters were ashing.
More speci cally, for each letter, the user was asked to focus on a particular letter,
while counting incrementally the number of times it ashed. The ashing strategy
consists of groups of letters ashing in speci ¢ patterns, as described in the work
of Thomas et al. [Thomas et al., 2014]. The ash ratio of target letters (that the
subject was asked to focused on), versus nontarget letters was set equal to 1/5. The
interval between consecutive ashes was set to 300ms. The interval between two
consecutive letters was set to 2s. No feedback was presented during calibration, i.e.
the user did not receive any information from the system on their performance. In
both experimental datasets, a Refa-8 ampli er (ANT) was used for the recording.
We analyze the EEG signals of 12 electrodes (Fz, C3, Cz, C4, P7, P3, Pz, P4, P8,
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01, 0z, 02), downsampled at 64Hz and Itered with a 4th order Butterworth lIter
between 1 and 20Hz.

Dataset A includes EEG signals from four healthy subjects, which were recorded
during P300-Speller sessions conducted in the premises of Inria Sophia-Antipolis
Méditerranée. Each subject participated in three free-spelling sessions, each pre-
ceded by a calibration session. Here, we only include the calibration sessions.
During the calibration sessions, the subjects were asked to spell the word CALI-
BRATION . The number of repetitions ( ashes) per target letter was set to 6.

The second dataset used in our experiments, dataset B, consists of calibration
sessions that were conducted by 20 adult patients su ering from Amyotrophic
Lateral Sclerosis. Each subject participated in three free-spelling sessions, each
one preceded by a calibration session. The experiment took place in the premises of
the Nice University hospital, and had been approved by the local ethics committee
CPP Sud Méditerranée [Guy et al., 2018]. During the calibration sessions, the
subjects were asked to spell 10 random letters. The number of repetitions ( ashes)
per target letter was set to 20.

2.3.2 Analysis

ERP component extraction and visualization We conduct a trial-to-trial anal-
ysis on the recordings of dataset A and B. The EEG signal of each session is
segmented into trials lasting 0.6 seconds, starting from stimulus onset. In the trial-
to-trial analyses mentioned in section 2.2, the authors used the recordings of single
electrodes, typically Pz, Cz and Fz. This allowed them to perform trial-to-trial
analysis within a single session and measure the peak amplitude and latency vari-
ability across trials. However, a trial-to-trial variability analysis across sessions that
uses single electrode measurements does not take into account scalp topography
variability.

In order to study the variability of peak amplitude, peak latency and scalp
topography simultaneously, we chose to extract the ERP component using the
Xdawn algorithm. Xdawn is a state-of-the art feature extraction method for ERP-
based BCI, described by Rivet et al. [Rivet et al., 2011].Xe2 R'c 't denote
the EEG signal acquired ovég electrodes, wherg, denotes the total amount
of time samples. The algorithm's objective is to produce a projection matrix
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Figure 2.1: Trial-to-trial analysis for datasets A and B. (a) Grand average of all
target trials in the dataset. (b) ERP image of the target trials (extracted using the
rst Xdawn lter), sorted by peak latency. (c) Coe cients of the rst Xdawn lter.

(d) Scalp topography resulting from the inverse of the rst Xdawn lter.

Vv 2 R'" ' that projects the signal onto a subspace of dimensibn where the

ERP component variance is maximized while the signal variance is minimized. Let
A, 2 R'e 'v pe the archetype of the scalp topography of a P300 component over
time, wherd ,, is the number of samples in a speci ¢ time window that immediately
follows stimulus onset. This response can be calculated as the average over all
target trials (trials whose onset stimulus is a target stimulus and are thus assumed to
contain the P300 component) or using the least squares method proposed in [Rivet
et al., 2009, 2011]. The projection matikis composed of concatenated vectors

v; that are the rsti; maximizers of the the following Rayleigh quotient,

vl AV
VARNAY,

where 5 = *AAl and x = ExX ! are the covariance matrices of the
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archetype respongg and the signaK respectively. Thereford/ is the matrix
whosel; rows are the; eigenvectors associated to thelargest eigenvalues of
the generalized eigenvalue problemg v =" xV.

Using the Xdawn algorithm has the advantage of allowing us to extract a single
component; = 1. Since the subspace maximizes the varianca;pfve can
safely assume that this component contains the ERP. At the same time, matrix
V 1 provides us with a topography that indicates the sites where the P300 is most
prominent. We compute one projection matrix for each dataset, by concatenating
all signals and computing an archetype respdisesing the least squares method
described in [Rivet et al., 2011]. Then, we project each signal onto the subspace
generated by the rst component and segment it into one-dimensionalxyiadls
R'wthat start from stimulus onset and last approximately 0.6 seconds, resulting into
I, = 38 time samples.

In [Jung et al., 2001; Makeig et al., 2004; Gramfort et al., 2010; Delorme et al.,
2015], the authors use a a visualization tool called an ERP Image for trial-to-trial
analysis. An ERP Image represents stacked trials of the same length. Typically, the
trials are ordered according to some meaningful measure such as response time or
peak amplitude.

We create one ERP image per dataset by ordering the trials according to peak
latency. For each trial, we compute the peak amplitude by searching for the highest
value starting from 220 ms (14th time sample) until the end. The time sample
which holds that value denotes the peak latency. On gure 2.1 we can see the
ERP images of each dataset, the average target response, lter coe cients induced
by the the rst eigenvector 0¥ and the scalp topography computed usihg'.

By looking at these ERP gures of each dataset, we can already distinguish the
variability of both the peak amplitude and the peak latency of the P300 component.
We can also observe that the sensory components, namely, the N100, P100 and
N200 present very little latency variability. Dataset A presents a lower trial-to-trial
peak latency variability: the average peak latency variability is equal 380ms

60ms. On the other hand, dataset B has a much higher trial-to-trial peak latency
variability, equal to 420ms 130ms. In addition, dataset B also has a higher
average peak amplitude than dataset A, equal ® V against 2 V. Finally,
looking at the spatial lter coe cients, we can observe signi cant scalp topography
di erences between the two datasets. The most prominent electrodes for dataset A
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are electrodes Fz, Pz and P4, while for dataset B these are Fz, P3 and P4.

(a) Average peak amplitudes, dataset A.  (b) Average peak latencies, dataset A.

(c) Average peak amplitudes, dataset B.

(d) Average peak latencies, dataset B.

Figure 2.2: A plot of the average and standard deviation of the peak amplitudes
and peak latencies for each session and each dataset. This allows us to assess the
inter-session and intra-session variability of these two components at the same time.
Axx and Bxx denote the subjects of datasets A and B respectively, while Sx denotes

the session index of a particular subject.
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Variability of the Peak Amplitude and Latency The ERP images give us a
very useful global view of the trial-to-trial amplitude and latency variability through-
out the entire dataset. We can at the same time verify that sensory components do
not vary in amplitude and latency compared to P300. However, they do not provide
any information on the across session and across subject average peak amplitude
and latency variability. Therefore, we group the trials by session and perform a
cross-subject and cross-session variability analysis. In particular, we compute the
average and standard deviation of the single-trial peak amplitudes and latencies,
for each subject and each session, in both datasets.

On gures 2.2a and 2.2c, we display the results for peak amplitude variability.
We can see that for dataset B in particular, the average peak amplitude varies
signi cantly, taking values between 1,5 and V. The standard deviations about
average peak amplitudes for each session indicate that trial-to-trial peak amplitude
variability is di erent across sessions and across subjects as well. For example,
subject B18 has a low average peak amplitude and peak amplitude variability in
the rst and third session, but in the second session, both these values are high.

Figures 2.2b, 2.2d show the same analysis for peak latency. The average peak
latency for both datasets takes values between 360 and 400 millisecond. The
standard deviations re ect the inter-session peak latency variability, taking values
thatrange from 100msto 250ms. Note that these values, for both peak amplitude
and peak latency, are in accordance with the literature (Table 2.1).

Noise In an EEG recording, the signal that contains the ERPs also encloses
on-going activity that is not time-locked with the stimulus, as well as artifacts and
additive noise. Background EEG activity has been known to contribute to the peak
amplitude and latency variability of the ERP [Polich, 1997]. EEG activity has been
observed to possesdaf frequency spectrum. Such processes, also known as pink
noise, have been often observed to arise in biological systems. In [Ward, 2002], the
authors study the frequency spectrum of ERPs generated in an auditory paradigm.
Their ndings show that the frequency spectra of both the ERPs and the background
EEG signal isl=f.

We perform a spectral analysis on the ndis®f each session in each dataset
to explore the cross dataset variability and nd out whetNepossesses B=f
spectrum. For each session, we use the least squares method described in [Rivet
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(a) DatasetA. Fz: =1,Pz: =0:8,P4: =0:7

(b) DatasetB. Fz: =0:8,P3: =0:5P4. =05

Figure 2.3: Average power spectra of the noise in the signal of the most prominent
electrodes of each dataset, across sessions. A simdkatedorocess is also displayed for
comparison. Parametervaries across electrodes and across datasets.

et al., 2011] to estimate the target and nontarget respéqnsasdA,, respectively.
Then, we use the following model to compNe:

X = AD! + A,D| + N (2.1)

D, andD, are Toeplitz matrices that allows us to model the ERP distribution in
time. Their rst columnd is constructed so that the only nonzero elements are
d; =1,wherej are the time samples that correspond to the onsdt5 tfrget
stimuli, 2f1;::1 g

We analyze the power spectral density (PSD) of the signals recorded on three
sensors, Pz, Cz and Fz for each dataset. On gure 2.3, we display the average PSD
(blue) and the average PSD of a set that contains realizatialsf ofprocesses
(red). For each dataset, the number of pink noise simulations is set to be equal
to the number of sessions in the dataset. Initially we observe that the noise on all
electrodes in both datasets matcheslthie process pattern. We then empirically
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adapt the slope of the noise using parametty match the average PSD of each
electrode. These values are displayed on 2.3. Note that they vary both across
electrodes and across datasets.

2.4 Conclusion

EEG signal variability can be the product of variability in the neural sources of
activity, such as peak amplitude and latency variability of the ERP components,
variability in the location of sources of ERP and background activity in the brain
or intensity of the background activity. Variability can also occur at a sensor
level, which might be induced by artifacts such as electrode malfunctions, or
sensor placement. These sources of EEG signal variability are observed across
di erent subjects, across di erent sessions or across di erent trials within the same
session. Their impact on ERP-based BCI is, among others, the degradation of
the generalization capacities of existing classi cation methods [Lotte et al., 2007;
Clerc et al., 2016]. EEG signal variability can be quanti ed through average peak
amplitude and peak amplitude variability, average peak latency and peak latency
variability, noise energy and signal-to-noise ratio. In the next chapter, we discuss a
selected number of adaptive machine learning methods in search for a solution that
is tailored to the ndings of our variability analysis.



CHAPTER 3
TRANSFER LEARNING METHODS

In chapter 2, we analyzed, classi ed and quanti ed the sources of
EEG variability during the use of an ERP-based BCI. The present
chapter presents three transfer learning approaches that have theo-
retically or experimentally proved e cient against variability. We
start by giving a basic an introduction to transfer leaning methods
and review some of the existing literature in ERP-based BCI. We
then describe each method and provide examples that re ect their
e ciency against di erent types of EEG variability.

3.1 Introduction

EEG variability is among the major factors that cause ERP-Based BCI to
necessitate calibration before each use. Calibration allows us to acquire the needed
training data and rebuild the feature extraction and classi cation models. As we
saw in chapter 1, section 1.4, it is a process that can be tiresome for the user. Our
objective is to reduce the need and e ort to collect this training data. One possible
solution to this issue is transferring the knowledge of existing datasets. This can be
achieved through transfer learning.

Transfer learning is a relatively recent branch of machine learning that focuses
on the case when the training and the testing sets in a classi cation problem present
di erences that hinder the classi cation task. Transfer learning methods have been
the center of recent BCI research [Lotte et al., 2018]. Most of these approaches
have shown promising results. Nevertheless, their generalization capacities, while
broader than conventional machine learning methods, still encounter some limita-
tions. Having analyzed the sources of variability in chapter 2, we aim to understand
these limitations in the light of our ndings.
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In this chapter, we formally introduce transfer learning and present a short
review of existing transfer leaning methods in ERP-based BCI. We proceed to select
three frameworks that have theoretically or experimentally proved e cient against
speci ¢ types of variability. In particular,

1. The Riemannian Geometry framework, which is invariant to a ne transfor-
mation and could prove e ective against scalp topography variability.

2. Optimal transport, which has proven e ective against drifts in the feature
space and therefore could be robust to peak latency and amplitude variability.

3. Ensemble learning methods, who perform well when the training dataset is
noisy.

3.2 Background

3.2.1 De nition and Notations

Formally, a domain is de ned &3 = fX ;P(X)g, whereX = fxigi'g1 X
denotes a sample of, feature vectorsX is the feature space am{X) is the
marginal probability distribution oK. A classi cation task can be de ned as a
pairT = fY ;f()gorT = fY ;P(Y jX)g, whereY = fygi'g1 Y isthe set of
labels that correspond to the samifleY denotes the label spade;: X 7! Y
the labeling function which is learned from the pBX;Y g; andP(Y jX) is the
conditional probability distribution of the labels.

We typically de ne two pairs of domain-tasKD¢; T,) and(D;; T;) , where
s andt denote thesourceandtarget respectively. To avoid confusion with the
terms source and target that respectively denote neural sources (or sources of
variability) and target stimuli, we will use an emphasized font when we refer to
the transfer learning-related termmgurceandtarget Usually, thesourcelabels
are known while thearget labels are unknown. Traditional Machine learning
approaches assume thiag = D, andT; = T,. Transfer learning addresses the
following issues:

1. D 6 D,. This means that either the feature spaces are di erent, or that the
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probability distributions of theourceandtargetsamples are di erent. The
latter is also known asovariate shift [Shimodaira, 2000].

2. T, 6 T,. This describes the case when there is a mismatch between the labels
due for example to unbalanced class labeling betweesadheeandtarget
or when the conditional probability distributions of the labels have changed.

Since transfer learning deals with a family of issues, it o ers a family of solutions.
Weiss et al. [Weiss et al., 2016] de ne four general categories with respect to the
type of information transferred, each one related to one or more of the issues listed
above:

1. Transfer learning through features.
2. Transfer learning through instances.
3. Transfer learning through shared parameters.

4. Transfer learning based on de ned relationships betwaeyetandsource

In the following section, we present some of the transfer learning methods that have
been applied to BCI.

3.2.2 Transfer Learning in ERP-based BCI

In ERP-based BCI, all of the scenarios addressed by transfer learning can occur
betweersourceandtarget datasets. For example, if the number of electrodes is
di erent between two sessions, we haXg 6 X,. Mistakes from the side of the
user lead to di erences in the labels between tidnget and the source domain.
The non-stationarity of the signal, the e ects of ERP variability and the changes in
the background brain activity or additive noise all result in covariate shift [Clerc
et al., 2016]. Moreover, thearget dataset is not available immediately. On the
contrary, if we consider that the online use of a BCI generatetatiget dataset, it
becomes available trial by trial. This results in a large amount of imbalance between
sourceandtargetdatasets. Out of the solutions proposed by transfer learning in the
taxonomy of Weiss et al. [Weiss et al., 2016], the following three have been applied
to ERP-based BCI: (i) transfer learning through features, (ii) transfer learning
through instances and (iii) transfer learning through shared parameters.
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Transfer learning trough features can be divided into two approaches. In
the rst one, one seeks to nd a feature subspace wherestiueceandtarget
domains match. A promising approach that falls into that particular category is the
Riemannian Geometry framework. Riemannian Geometry based algorithms were
introduced in 2010 by Barachant et al. to classify features in Motor Imagery based
BCI [Barachant et al., 2010]. This approach proposes to use covariance matrices
as features, which are invariant to a ne transformations when manipulated on the
Riemannian manifold of symmetric positive de nite matrices. This framework
has been applied to ERP-based BCI by Congedo et al. and by Barachant et al. in
[Congedo et al., 2013; Barachant and Congedo, 2014], where a special form of
the covariance matrix is used as a feature. The second family of transfer learning
through features focuses on reweighting the features cfdbhecedomain so that it
matches théargetdomain, or vice versa. An example would be the application of
a noise reduction spatial lter, trained on teeurcedataset, ovetargetdata. This
approach was employed by Gayraud et al. in [Gayraud et al., 2017], where noise
reduction lters are learned over one P300-Speller session and applied on another.

Transfer learning through instances mostly apply to the covariance shift prob-
lem. Such solutions work by either reweighting #oircedataset so that it matches
thetarget dataset, or by reweighting tharget dataset so that it matches theurce
In comparison to transfer learning through features, the weights are particular to
each feature vector, instead of each feature. Such solutions have been proposed in
the works of [Gayraud et al., 2017; Zanini et al., 2018]. In these works, the authors
compute transportation matrices to relocatarget dataset so that it matches a
sourcedataset.

Combined use of learned parametersinvolves parameters such as classi er
weights or distribution priors. Kindermans et al. propose a method in which they
combine classi cation priors over multipourcedo train a classi er on thearget
dataset in [Kindermans et al., 2012a] and [Kindermans et al., 2014]. This category
also includes ensemble learning methods which have been used in ERP-based BCI
to boost classi cation performance [Rakotomamonjy and Guigue, 2008].

In the following section, we focus on three transfer learning frameworks that
have been applied to ERP-based BCI: (i) Riemannian geometry (ii) Optimal trans-
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port and (iii) Ensemble Learning. Each comes from a di erent family of transfer
learning solutions and addresses a di erent domain adaptation issue. In chapter 2,
we identi ed four main sources of ERP-based BCI variability: 1. peak amplitude
variability, 2. peak latency variability, 3. scalp topography variability and 4. back-
ground noise variability. We describe each transfer learning method and discuss
their strengths and limitations in dealing with EEG variability.

3.3 Tackling ERP-based BCI Variability

3.3.1 Invariant Features using Riemannian Geometry

In BCI, Riemannian Geometry was introduced by Barachant et al. [Barachant
etal., 2010] as a transfer learning framework for motor imagery (Ml) based BCI. Let
X, 2 R'e 'v peatrial, wheré. denotes the number of electrodes &pthe number
of time samples. In Ml-based BCI classi cation problems, the discriminative
information lies in the signal variance and scalp topography. Features such as the
log-variance of each electrode in trié| can be used to identify a speci c activity
and turn it into a command [Lotte and Guan, 2011]. These features are however
not invariant to a ne transformations of the signal. Barachant et al. proposed
a feature which is invariant to a ne transformation, while containing the same
discriminative information as the electrode log-variance [Barachant et al., 2010].
This feature is the spatial covariance matrix= ﬁxixi' of trial X;.

Covariance matrices that have non-zero eigenvalues live on a Riemannian
manifold which contains the set of n Symmetric Positive De nite (SPD)
matricesP,,(R). Forstner et al. [Forstner and Moonen, 2003] proposed to endow
the SPD manifold with the following metric:

k k= Kklog() k& = X log? ; , (3.1)
i=1
where ; are the eigenvalues of. This metric is also known as the A ne Invariant
metric. Under the A ne Invariant metric, the structure of the SPD manifold
becomes highly regular, bearing much resemblance to a curved vector space. The
manifold transforms from a high dimensional cone into a regular and complete
manifold of non-positive curvature [Pennec et al., 2006; Pennec, 2009].
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Figure 3.1:An illustrative example of the invariance property of the Riemannian distance
for the special case when their covariance matrices commute,j.eg = g a. TWO
2-dimensional signals are plotted, along with their covariances and eigenvalues. When both
signals undergo an a ne transformation, the ratio of the eigenvalues of their covariance
matrices does not change, so the Riemannian distance of the two covariance matrices is the
same.

Hence, when covariance matrices are used as features instead of the electrode
log-variance,the feature space becomes the SPD manifold, equipped with the fol-
lowing a ne invariant distance. Given any matr/ 2 GL ¢ in the General Linear

group,

x
dg (W AWl;W BW|): dr( s B)= |092 i (3.2)

i=1

o<

where ; are the eigenvalues of,> 5. On gure 3.1, we can see an simple
illustrative example with two simulated signag 2 R'e 't andS; 2 R'c 't
wherel . = 2 andl, = 200. This example illustrates the special case when their
respective covariance matriceg and gz commute, hence, = = 2. Eachtime
samples(t) 2 R'c is a random variabls,(t) N (0; ) andsg(t) N (0; 4).
The left panel plots the time samples3)f andS; for the two simulated electrodes,
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as well as the covariance matriceg and g. On the right panel, we have applied
a transformation on both signals, such that the new signaSiafe= WS, W/,

S = WS W!. Since this transformation does not a ect the valugs 2 |

= 2 the distance betweem®” and §*" will remain unchanged as well. This
invariance property extends to non-commutative sample covariance matrices as

well [Forstner and Moonen, 2003].

The spatial covariance matrix has been emerging as a feature for the classi -
cation of mental tasks [Congedo et al., 2013]. Riemannian geometry has become
an attractive framework for feature extraction and classi cation in BCI [Barachant
et al., 2013; Gayraud et al., 2016]. In [Barachant and Congedo, 2014], the au-
thors consider that the a ne invariant property is what allows for the obtained
classi cation results, under the assumption that cross-session and cross-subject
variability can be described in terms of linear transformations. In [Congedo et al.,
2015], Congedo et al. demonstrate the signi cance of a ne invariance for BCI
classi cation problems.

Riemannian Geometry has produced two families of classi cation methods.
One where the classi cation is only based on Riemannian distances, including
algorithms such as the Minimum Distance to Riemannian Mean; and a second one
which is based on projecting the covariance matrices onto the tangent space of the
Manifold. Both of these methods rely on estimating an average covariance matrix,
which can be complgted on the manifold with the help of Fréchet de nition of the
mean = arg min 2, dr( 5 i), wherel,, denotes the number of covariance
matrices. Since the SPD manifold has a non-positive curvature, this mean is unique
and can be estimated using Newton's gradient descent algorithm [Pennec et al.,
2006].

In ERP-based BClI, the di erence between the target and nontarget responses
lies mainly in their temporal pattern, not in the spatial distribution of the variance.
State-of-the art classi cation methods typically use temporal or spatiotemporal
features [Blankertz et al., 2011]. Like the electrode log-variance, these features are
not invariant to a ne transformations either. To combine the invariance property of
the Riemannian framework and the discriminative information lying in the temporal
patterns of ERPs, Congedo et % introduce a spelglal form of covariance matrix
[Congedo et al., 2013]. Lek, = _; X; andA, i1 X; be the estimated
average of all trials in the target and nontarget class respectl\TetyndI N denote
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the number of trials in each class. Ta&eendedrial and theextendedovariance
matrix are then de ned as:

n At # 1
~ | ~
Xi = An ; P = SI—X'iX'i ; i 2 R3IW Slw (33)
X; v

Using this feature allows to take advantage of the invariance property in the Rieman-
nian framework, while considering spatial and temporal discriminative information
at the same time. If the extended covariance matrix is separated into blocks, the
spatial information remains enclosed in the lower right block, which is in fact the
covariance matrix ;. The middle right and top right blocks enclose the temporal
correlation of trials to each averaged response.

Within the context of transfer learning, this method allows us to use precom-
puted average responses in the creation of the extended covariance matrix, while
the invariance property of the Riemannian distance renders it immune to linear
transformations. These averages can hence be computed freoutitedomain(s).
Nevertheless, this feature is sensitive to jitter, i.e. peak latency variability. In
their results, Barachant et al. show that the mean performance in terms of Area
Under the ROC Curve(AUC) of a Riemannian classi er trained on a session and
tested with a di erent session is equal to 82%. Upon performing experiments with
simulated jitter, this performance degrades signi cantly when the jitter exceeds
50ms [Barachant and Congedo, 2014].

3.3.2 Solving Covariate Shift with Optimal Transport

Transport theory studies a problem known as the Monge-Kantorovic transporta-
tion problem [Santambrogio, 2015]. This problem can be intuitively understood
as the search for the optimal way to transport mass between two probability distri-
butions. The optimization criterion is the minimization of a transportation cost;
typically, the cost function represents some metric between the random variables
of each distribution. This problem is also known as the optimal transport problem.

Optimal transport has been rising in machine learning as a transport learning
approach to solve covariate shift [Courty et al., 2017]. In these approaches, the
authors use the discrete optimal transport solution to transform the features of a
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labeledsourcedomain so that they match those ofaaget domain. Thereby, a
classi er can be trained over the labelgourcefeatures, and used to classify the
unlabeledargetfeatures. A similar approach is used in Gayraud et al. [Gayraud
et al., 2017] in a P300 Speller classi cation problem. The author transport the
spatiotemporal features of new, unlabeled data, onto the labeled features of an
existing dataset, where a classi er has already been trained. This classi er is then
used to label the transported data.

We proceed to describe the discrete optimal transport framework in the particular
case of a ERP based-BCI binary classi cation problem. $et f(xi;yi)gi'gl
be the set of data acquired during a BCI session. We assume that the data has
already undergone preprocessing and we have extrdetddvant features. We
thus have a set df, extracted feature vecto¥s = fx;g>;  R" coupled with
the corresponding label¥ = fyg", . Furthermore, let §X) 2 P (X) denote the
probability distribution from which the samples¥are drawn, wherX  R%is
a measurable space of dimenstandP (X) the set of all probability measures
overX.

Assume that we havesourcesession and &rgetsession, whose respective
datasets we denote I8/ andS'. We also suppose that we know the labels of
the sourcedataset and seek to recover theget dataset labels, which are com-
pletely unknown. In addition, we assume that #mirceandtarget domains
D, = fX ¢ P(X®%)g andD, = fX; P(X")g have been subject to covariate shift, i.e.
P(X®) 8 P(X"). In [Gayraud et al., 2017], the authors use Optimal Transportation
(OT) theory to recover a transport plan between the two probability distributions.
Using this transport plan, we can map thegetdomain onto thesourcedomain.
Then a classi er trained on theurcedataset can be used to recover the labels of
thetargetdataset.

Since we only have a xed number of samples from each set, the discrete adap-

tation of our problem boils down to matching empirical measutgs, of P(X)
and Pl(_)Xt) In partlcular wetuse the two corresponding empirical distributions

s= i P wand ;= - pJ X wherep; andpJ are the probability masses
assomated theourceandtargetsamples respectively, denotes the Dirac distri-
bution at locatiorx andl ° andl ' denote the cardinality of theourceandtarget
distributions respectively. Let® andp' be the probability vectors of tteource
andtargetdatasets and Id; denote ar -dimensional vector of ones. We compute



36

the transport plan, such that, iB = 2 (R*)" ' j 1,0=p% 15 =p"
the transport plan, 2 B is the output of the following minimization problem.

X X X
o = argmax h; C i + (i) log (i:])+ k (Ii)k (34)
1) J c
Matrix C;; represents the cost of moving probability mass from Iocaxgtom
locationx;. In the case of ERP-based BCI, we saw on chapter 1, section 1.3.3
that each feature vector consist of the concatenated rows of the corresponding trial.
Using the squared Euclidean distahog xjt k3 is therefore an adequate solution.

The rst regularization term allows us to solve this optimization problem using
the time-e cient Sinkhorn-Knopp algorithm [Cuturi, 2013]. Since we are perform-
ing supervised classi cation, the second regularization term induces a group-sparse
penalty on the columns of, ensuring that new samples will give mass only to
existing samples of the same class [Courty et al., 2017]. Theltgencloses the
indices of the rows that correspond to the existing samples of class

Finally, we compute the new location of tteggetdata with barycentric mapping
X' = diag §1y,) * 5 X° whereR"' andX® are matrices whose rows are the
feature vectors of the transportediget dataset and of th&ourcerespectively. Each
targetfeature vector will therefore be transported to the barycenter of tmsee
feature vectors it was matched with ip. A more detailed description of optimal
transport is found in chapter 5.

Optimal transport o ers a new solution to covariate shift, which often occurs in
ERP-based BCI data. We present a simple example of using OT on two simulated
datasets. These datasets have been generated in a way that mimics a case where
two ERP responses have di erent peak latencies. For each dataset, we simulate
two unbalanced classes. Class 1 has 40 feature vectors and class 2 has 210 feature
vectors. These feature vectors consist of ve time samples, each one generated
according to a normal distribution with a di erent mean. Class 1 represents the
target class and class 2 the nontarget class. Fadhecedataset, i.e. set A, the
peak latency is at the second sample, while forttligetset B it is at the third. We
can see the average feature vector of each set and each class on Figure 3.2a.

We compute the probability vectors of each dataset and transport pianich
can be seen in Figure 3.2b. The probability vectors are ordered according to the
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class in which each feature vector belongs to, starting from class 1. Note that, the
transport plan g is in fact a joint probability matrix. We can see that the feature

Figure 3.2:Example of an optimal transport on a simulated dataset. (a) we generate two
sets of data, each one containing two classes. Class 1 simulates an ERP. The two sets of
data have a di erent peak latency. After transporting the temporal feature vectors of set B
onto those of set A, the average peak latency of the two sets is the same. (b) The computed
transport plan , along with the marginal probability distributions of the feature vectors of
each set, estimated using the Kernel Density Estimation method. (c) A plot of the subspace
generated by the second, third and fourth time samples. This subspace corresponds to the
feature subspace. After the transport, the feature vectors of set B match the feature vectors
of set A, and a classi er trained on set A can now be e ciently used to label them.
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vectors of class 1 in theourcedataset (vertical) are most often associated with
the class 1 feature vectors in ttegget dataset (horizontal). On Figure 3.2a we
show the average of tharget dataset, set B, after it has been transported with
barycentric mapping onto dataset A. Since the most discriminative features are the
time samples 1,2 and 3, we also show a 3d plot where we have plotted on gure 3.2c
these particular features for each of the three sets: set A; set B; and the transported
set B. We can clearly see the e ects of latency variability on the feature space,
which causes a shift on the target class (class 1). The mapping computed via OT
e ciently maps back the drifted features onto the original location.

Optimal transport is an appealing solution to the covariate shift problem. Never-
theless, there are some limitations to this approach. Assume thatgjeédataset
has shifted in such a way that opposite classes are closer to each other. In that case,
OT will map the target class of tharget dataset onto the nontarget class of the
sourcedataset, and vice versa. In addition, choosing the regularization parameters
is important, especially concerning the entropic regularization term of equation
3.4. High values of result in denser solutions fog. Therefore, the barycentric
mapping tends to transport features onto the average of the entire dataset.

3.3.3 Ensemble Learning: Bagging Classi cation

If we consider that each session’s particular brain activity is noise, classi ers
trained over data that comes from a single sessions can be seen as over tted. More-
over, the same can be said about any feature extraction method that relies on a
calibration dataset. Ensemble learning classi ers have been employed several times
in BCI to alleviate the e ects of over tting.

One of the ensemble learning methods that e ectively avoids over tting is
bootstrap aggregating, or bagging. Bagging uses the technique of bootstrapping to
draw samples from a training set with replacement, train one classi er per sample,
and use the voting method to predict the outcome. A typical bagging scheme is
represented on gure 3.3. For a large number of bootstrap samples, each sample
should havel % 63:2% of the unique samples in the original set, where
the base of the natural logarithm, the rest being duplicates [Aslam et al., 2007].

In his introduction of the bagging method, Breiman shows that bagging improves
the accuracy of classi ers that do not generalize well [Breiman, 1996]. Itis therefore
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Figure 3.3: A common bagging scheme, representing the training and testing parts
of the classi cation process. During training, k bootstrap samples are created and a
respective number of classi ers is trained over each sampel. These classi ers each
produce one label for a feature vector of the testing set. The nal label is decided
after a majority vote.

unsurprising that this method performs well as a meta-classi cation algorithm in
BCI [Sun et al., 2007; Blankertz et al., 2005]. This can be seen for example in the
works of Rakotomamonjy et al., where the authors use bagging and train 17 SVM
classi ers [Rakotomamonjy and Guigue, 2008]. This method resulted in the best
performance of the BCI Competition IIl. This particular technique has been used
in the kaggle BCI Challenge @ NER 2015 by the best performing team [Barachant,
2015; Perrin et al., 2012].

Few researches in BCI have used bagging to train classi ers using a multi-
subject or multi-session training set. In [Gayraud et al., 2017], we use bagging
on P300-Speller datasets to train LDA classi ers paired with optimal transport.
We demonstrate that bagging improves the classi cation performance. Fazli et al.
use a di erent ensemble learning method, that is, the Adaboost ensemble learning
method, in a Motor Imagery-based BCI [Fazli et al., 2009]. Their o ine results
show that this approach can lead to cross-subject classi ers that perform well.
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3.4 Conclusion

In the previous chapter, we performed a variability analysis and retrieved pa-
rameters and associated values. In this chapter, we have presented three transfer
learning methods that we believe can each deal with a variability factor. In the fol-
lowing chapter, will put these methods to the test against each variability parameter,
and evaluate their performance and generalization capacities. Our hypothesis is
that Riemannian Geometry is e ective against scalp topography variability, which
will be described as an a ne transformation over the source activity of the brain.
Optimal transport is a compelling solution to covariate shift, which can be caused by
peak amplitude and peak latency variability. Finally, bootstrap aggregating should
boost the generalization capacity of a state-of-the-art classi er in the presence of
noise.



CHAPTER 4
EVALUATION ON SIMULATED EXPERIMENTS

In this chapter, we present a model which allows us to study the
sources of variability that were presented in chapter 2 using speci ¢
parameters. Then, we simulats@urcedataset and a number of
target datasets whereby we modulate the values of these parame-
ters one by one in order to evaluate the transfer leaning methods
presented in the previous chapters. At the end of the chapter, we
present our results and discuss them.

4.1 Introduction

Transfer learning methods have gained popularity within the BCI community
since they have been performing well in cross-session and cross-subject classi -
cation tasks. However, each family of method has limitations. Transfer learning
through features assumes the existence of a common invariant subspace, or a trans-
formation that is common acrotarget or sourcedomains, which might not be the
case. Transfer learning through instances necessitates partafgeedataset to be
available. In addition, its performances are better when the conditional probability
distributions of thesourceandtarget datasets are similar. Transfer leaning through
shared parameters depends on the quality of the training data and parameters, and
on their degree of similarity to thiarget dataset.

In the previous section, we described three di erent transfer learning methods,
on account of their capacity to generalize, namely, Riemannian geometry, Optimal
Transport and Bootstrap Aggregating. Our objective is to quantify the limitations
of each method with respect to speci c parameters of EEG variability. Having an
accurate and realistic model of the EEG signal during the use of an ERP-based
BCI is paramount to understanding the e ects of variability. Such a model should
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allow us to e ciently evaluate how each transfer learning method manages each
variability source by allowing us to separately modulate their parameters.

We propose a model that, taking into account both the neural source activity
and the recorded signal at the EEG sensors, which are connected through the EEG
forward problem [Balillet et al., 2001], incorporates parameters that modulate vari-
ability. This model enables simple but realistic simulations of ERP-based BCI
experiments. Then, we use this model to produce a number of simulated datasets.
We simulate asourcedataset with xed parameters and produasget datasets by
modulating EEG variability parameters. In each set, we only modulate a single
EEG parameter and perform classi cation experiments to evaluate the generaliza-
tion capacity of the selected transfer learning methods, in terms of classi cation
performance.

4.2 Modeling EEG recordings

4.2.1 Source Analysis in EEG

To create an EEG model that accounts for the source activity of the brain, we
need to understand the relationship between the source space and the sensor space.
This matter is studied by the eld of EEG source analysis. EEG source analysis
boils down to two closely related problems: the inverse problem and the forward
problem. The inverse problem in EEG source analysis aims to recover the sources
of brain activity given a conductive model of the head and an EEG signal [Baillet
et al., 2001]. This approach uses a linear model to describe the contribution of the
sources of brain activity to the measured scalp potential. Given a scalp electric
potentialx;(t) measured at the i-th EEG sensor at timée contribution of ¢
sources can be modeled as:

xi(t) = g's(t); gi;s(t) 2 R's; (4.1)

whereg; is a vector representing the contribution of each source in the vg¢jor
at timet. Forl . EEG sensors anld time samples, the matricial form of the model
becomes

X=GS; X2R'"'";G2R''s;82R" " (4.2)
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G is known as the gain matrix or the forward model [Baillet et al., 2001]. The
EEG forward problem is therefore concerned with the computati@s, efhich
necessitates a conductivity model of the human head. Typically, we model the head
as several tissues with di erent conductivities; for example, brain, skull, scalp. The
forward problem can be formulated as a quasistatic approximation of Maxwell's
equations [Hamalainen et al., 1993]. In general, this equation does not have an
analytic solution for realistic head models. Numerical methods are needed to solve
it, such as the Finite Elements Method (FEM) or the Boundary Elements Method
(BEM). The FEM is based on volumic discretization, while BEM only needs surface
meshes between di erent tissue [Wolters et al., 2004; Sarvas, 1987; Kybic et al.,
2005].

4.2.2 Existing EEG Signal Models and Beyond

Several models have been proposed for the recorded EEG activity during the
use of an ERP-based BCI [Blankertz et al., 2011; Rivet et al., 2009, 2011]. The
most common model is based on the forward EEG model of equation (4.2) plus a
termN that encloses any on-going activity that is not time-locked to the evoked
activity, as well as artifacts and additive noise [Blankertz et al., 2011].

X =GS+N; G2R'*'5;82R" '";N2R"'; (4.3)

In their works, Rivet et al. [Rivet et al., 2009] propose a linear model for EEG
measurements that arise from the use of a P300-Speller. This model is based on
the knowledge that target stimuli elicit a P300 componentA,e2 R'e 'v be the
archetype of the scalp distribution of a P300 component over time, whassthe
number of samples in a speci c time window that immediately follows stimulus
onset. The resulting EEG signal can be modeled as

X =AD!/+N; D,2R" ;N 2R" 't (4.4)

This model uses what we will from now on refer to adistribution matrixD; to
model the distribution of the archetype target respdisia time. In particular,
this R't ' matrix is a Toeplitz matrix whose rst columd is constructed so
thatd; =1, wherej ; 2f1;::1 T g are the time samples that correspond to
the onsets of ' target stimuli. The authors incorporate a second term in [Rivet
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et al., 2011] that describes the template activity produced by the nontarget stimuli.
Equation (4.4) thus becomes

X =AD!+AD,+N; D;D,2R" ";N2R'*';  (45)

The same concept is used in the generation of mé&ixwhich distributes the
nontarget response in time. Souloumiac et al. propose a similar model whose
second term models the response to every stimulus, instead of only the nontarget
stimuli [Souloumiac and Rivet, 2013]. In the same research, Souloumiac et al.
modify the distribution matribD, to account for the P300 latency variability.

Using distribution matrices permits us to model the di usion of any response
that is time-locked to a stimulus. Hence, if we combine these approaches, we
can model the recorded EEG signal during an ERP-based BCI experiment as the
di usion of the target response, the nontarget response and the sensory response
A; 2 R'e 'v to the stimulus as:

X = AD! + A,D| + A;(D! + D)+ N (4.6)

4.2.3 Modeling Trial-to-Trial Variability

Peak Latency Letd denote the rst column oD,, constructed so that; = 1.
J=j 'tzl,jk 2f1; ;17g, is the set of ime samples that correspond to the
onsets of T target stimuli. Peak latency variability can be modeled by modifying
eachj byavalue 2 Z,foreach targetresponse. Then, given a set ":1
and a distribution matri®,, set becomesy = | 'tzl ,whergf" =) + and
a new matrixD; can be constructed so thi#(j") =1.

Peak Amplitude Peak amplitude variability can also be modeled through the
distribution matrixD,. For simplicity, let us consider that the archetype target
ERP response in the brain can be modeled as a single discretessgyft of
lengthl,,. Lets, denote the signal amplitude at time sampl@ 2f1; ;I,0,
andn, the time sample that corresponds to the peak latencys L2tR'v denote
the ERP response to thé& target stimulus. If we denote the average ERP peak
amplitude as, , then we can write the peak amplitude of tH2 response to the
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Figure 4.1:An example of introducing peak amplitude variability to an archetype ERP.
(a) The archetype ER$tb) The Gaussian functiog(n) (c) The result of increasing the
peak amplitude of by applyings” = s"(1 + g(n)).

target stimulus as a function of a valae 2 R that modulates the average peak
amplitude multiplied bysnp o] thaisnp =as,.

Letd =(d- .1;d- 4100 G4, 14,) denote the vector that contains the
non-zero elements of matrX, that correspond to the" target stimulus. These
coe cients, which are all equal to 1, will be by construction multiplied to the
average ERP responsggivings = (dy .;S1;0r 412820 304y, 14, S1,)- We
add to each coe cient; . the corresponding coe cient the following discrete
Gaussian functiong (n) =(a 1l)e m,wherea denotes the peak amplitude
ofthe " targettrialand the kernel bandwidth. By choosing an adequate value for

, such as, the bandwidth of the average ERP respgrikes technique allows us
to obtain the desired result: The peak amplitude of the response t§'tsémulus
is rendered equal &, = as, while the signak follows the peak amplitude
change in a smooth manner.

An example of this process is presented on gure 4.1. Figure 4.1a displays the
average source ERP resposswith |, = 32 time samples. The peak latency of
sis equal to 0.38 ms, thereforg = 24, and the peak amplitud&® = 8nA m.
Suppose that the™ trial has peak amplitudsnp = 10nA m. In this case,

a, = 0:25, and the corresponding functian(n) is displayed on gure 4.1b.
Multiplying each coe cients" with 1 + g(n) produces the response of gure 4.1c.
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4.2.4 An EEG Model for ERP-Based BCI

We can now formally introduce our model of the EEG sighahat is generated
during an ERP-Based BCI experiment.

X = G(SD} + S,D} + S (D; + D)l + Np)+ N, 4.7)

G 2 R's 't denotes the gain matrig, 2 R's 'v;S, 2 R's 'v are the simulated
target and nontarget archetype responses in the source space respe&ktigely;
R's ' corresponds to the archetype evoked response to the alhesR's 't
is the background activity in the brain; aé, 2 R'c 'v the noise which is
uncorrelated to the activity in the sources. With respect to equatiorid .4,
G(S + S),A, = G(S, + ) andN = GN, + N,. We can see that there is a
clear correspondence between what we measure in the sensor space and what we
can simulate in the source space.

Through matrixD, our model takes into account both inter-session and intra-
session variability. It allows for the simulation of the following di erent sources of
variability:

1. Peak latency and amplitude variability. Peak latency and amplitude vari-
ability can be modeled both across di erent sessions, and within the same
session. Given two signa¥? andX P that correspond to two di erent ses-
sions, we can produce two di erent ERP responSés;mdS[b with di erent
peak latencies and peak amplitudes. Within the same session, we can modify
the di usion matrixD, by producing a set as a set of random variables
whose expected valuell5| ] = 0, which impliesthaE[j"] = . Given

a distribution matrixD; and a set of coe cientsA = a 'tzl, we can
construct a new matri® , that models trial-to-trial amplitude variability as
well.

2. Background activity and additive noise. EEG recordings during ERP-
Based BCI experiments contain background brain activity and additive noise,
which is enclosed in a single noise teNn The noise ternN can be decom-
posed into two di erent terms, namely = GN, + N,, whereN, 2 R's 't
is the background activity in the brain; aht, 2 R's 't. Both termsN, and
Ny, can be modi ed accordingly to generate inter-session noise variability.
the noise which is uncorrelated to the activity in the sources.
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(@) Lateral view of the brain and the (l) Medial view of the brain and
selected regions. the selected regions. (C) Sensor positions on the scalp.

Figure 4.2:Source regions and and electrode positions of the simulated datasets.

3. Scalp topography variability. Scalp topography variability can be modeled
across sessions though matrix G, which by construction can either model
a change in the source space or a change in the sensor space, such as the a
change of sensor placement. Given two forward mo@&landG®, we can
therefore produce two signa¥? andX ° with di erent scalp topography.

4.3 Simulation of a P300 Speller Experiment

4.3.1 Neural Source Simulation and Experiment Parameters

Using the Sample dataset provided by MNE [Gramfort et al., 2014] and the
MNE-python toolbox [Gramfort et al., 2013], we compute a forward ma@al@lith
12 sensors and 34 sources, using the head model of gure 4.2. We select the target
and nontarget sources in the brain according to the ndings of Bledowski et al.
[Bledowski, 2004]. The authors of this work identify the following six bilateral pairs
of source regions of responses to target stimuli: the prefrontal cortex; precentral
sulcus; inferior parietal lobe; posterior parietal cortex; inferior temporal cortex; and
anterior insula. We place an equivalent amount of sources of activity within these
regions at random locations, as seen in gures 4.2a, 4.2b. Since the activity on the
inferior temporal cortex and the inferior parietal lobe was found to have a higher
amplitude, we add two sources on each hemisphere for each one of these regions.
These 16 sources simulate the ERPs of gure 4.3a for the target and nontarget
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Figure 4.3:Simulatedsourcesignals. (a) The archetype target, nontarget and sensory
responses. (b) Average across all target trials (red) and nontarget trials(blue) of the resulting
simulated EEG signal, for all electrodes. (c) Spectrogra®(@, + D,,)Ss + GN,+ N.

The peak that appears about 3 Hz corresponds to the sensory response to the stimulations.
It does not appear in gure 2.3, since the estimated average target and nontarget responses
in that gure enclose the sensory response (see chapter 2, section 2.3.2).

classes.

We also add 2 sources of activity in the right occipital lobe and another 2
sources in the left occipital lobe that produce the source activity of gure 4.3. The
activity in these sources is time locked to every simulated stimulus and represents
the evoked potential in response to the ashes. Then, we add 16 additional sources
of background activity foN, which we simulate as pink noise. Note ti\N is
not time locked to the simulated stimuli. We choose to add these sources near the
parietal lobe (Red region on Figure 4.2), according to the works of [Bledowski,
2004], in which the fMRI activation maps show an increase of the blood oxygenation
level-dependent signal. Finally, we add an additional source of hyjsehich is
uncorrelated to the sources, in the form of white noise.

All our simulated P300 speller experiments use the same parameters as the
experimental dataset (chapter 2, section 2.3.1). The ash interval is equal to 300
ms and the target/nontarget ratio is equal to 1/5, i.e. in a sequence of 6 events, 5 are
nontarget and one is target. The sampling frequency is equal to 64 Hz and the total
duration of the simulated experiment is equal to 5 minutes.
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4.3.2 Simulating Variability

Our objective is to evaluate how each one of the transfer learning methods
described in chapter 3 (section 3.3) performs against di erent sources of variability.
To that end, we use our EEG model described in equation (4.7) and the parameters
described in the previous section to simulate soercedomainD¢ and several
targetdomainsD,. Eachtargetdomain is identical to theourcedomain, except
for one of the following parameters: 1. average peak amplitude and trial-to-trial
peak amplitude variability; 2. average peak latency and trial-to-trial peak latency
variability; 3. the spectral energy density of the background activity signal; and
4. the SNR resulting from the additive noise power.

In chapter 2, section 2.3 we compute the average and standard deviation of both
peak amplitude and peak latency for every session in datasets A and B. We nd
that the average peak amplitude varies between 1.5 anl @hile the average
peak latency varies between 360 and 400 ms. In accordance to those ndings, we
simulate oursourcedataset using the signals';s” ands’ of gure 4.3a. The
average peak amplitude sfis set equal tcs;p = 8nA m, which for the given
forward modelG results in a measured average peak amplitude that is equal to
2V inthe sensor space (Figure 4.3b). The average peak latency is set equal to 380
ms, which for a sampling frequency equal to 64 Hz gings- 24. Trial-to-rial
variability is modeled through the di usion matr@,. We chose the sets and

such that each elemeat 2 A is a random normal variab 2 N (0; amp)
and each element 2 is arandom normal variable 2 N (0; ). For the
sourcedataset, ,m, =0 and |, = 0, which implies that thesourcedataset does
not present trial-to-trial amplitude and latency variability.

The background activity is modeled ag= process in the following way:
First, we model a white noise procasswhere each time sample is drawn from
a Gaussian distributiom(t) N (0; ,). We proceed to apply &=f frequency
lter on the signaln(t) in order to generate a pink noise procadsFor simplicity,
we set = 1. For thesourcedomain, the value of, was chosen empirically
to match the average background activity with the lowest spectral energy density
among the sessions of the experimental datasets (chapter 2, section 2.3). The
resulting signah®, seen on gure4.3c, has a spectral energy density equal to

“The code that generate these signals is available in the MNE-python toolbox
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10 ®for ,=10 °.

The rows of matridxS; that correspond to the selected target source in the brain
are set equal t&', while the remaining rows are equal to zero. MatriSgsS;
andN,, are generated fromsl', s andn® in the same way. Finally, we simulate the
additive noise as a white noise process, i.e. a multivariate siinalhose time
samples are drawn from a multivariate Gaussian distributigt) N (0; aqq!)-

We wanted thesourcedataset to contain data with a relatively high SNR. Therefore,
with respect to the white additive noise, the simulated SNR is equal36dB.

Then, we generate a number tafget datasets in four di erent classes of
experiments, with respect to a speci ¢ source of variability. Each time, we modulate
a single parameter and generate 100 signals.

Peak amplitudéWe model intra-session variability by increasing the average
peak amplitudes™ from 8 to to 12nA m with a 2nA m step. Note that,
the measured peak amplitude in the sensor space resulting frorma 12
peak amplitude at the target sources is equal t8V , which corresponds to
the maximum measured peak amplitude for dataset B. For each step in the peak
amplitude increase, we modulate an increase of the trial-to-trial peak amplitude
variability by setting ., to consecutive values betweenX) m until 2nA m,
with a step of 0.BA m. This results in 25 sets of 100 simulated datasets.

Peak LatencyWe simulate experiments with three values for the average peak
latencyn, to model cross-session variability, according to the measured average
peak latency of the experimental dataset: 360ms; 380ms; and 400ms. For eachvalue,
we increase the trial-to-trial peak latency variability by settipg to consecutive
values between 0 ms and 250 ms with a 50 ms step. This results in 25 sets of 100
simulated datasets.

Background ActivityWe produce 16 values of,in the interval , 2 [10 ;10 ']
in order to generate signat$ with increasing spectral energy density. This results
in 16 sets of 100 simulated datasets with these parameters.

Additive NoiseWe produce 20 values of,4q in the interval 44 2 [10 ;40 °]
in order to generate signals with decreasing SNR. Fostlecedataset, ,qq =
10 ’. This results in 20 sets of 100 simulated datasets with these parameters.

Forward ModelWe perform a second round of the all the experiments listed
above to generate a second setiaofiet datasets in order to model scalp topography
variability. To this end, we place the neural sources described in section 4.3.1 in
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di erent locations within the same regions, and generate a second forward model
G, which is used in the second round of experiments.

4.4 Results

4.4.1 Classi cation Pipelines and Performance Measures

Each simulated signal is Itered with a bandpass 3rd order Butterworth lter
between 0.1 and 20Hz, and decimated by a factor of 4. It is then segmented into
0.6 second trialX; starting from stimulus o set. We present the performances of
three classi cation method, each one corresponding to one of the transfer learning
methods described in chapter 3, section 3.3. Each classi cation method is trained
on thesourcedataset and tested on each one ofttiget datasets.

The rst classi cation method is a Riemannian classi cation algorithm known
as the Minimum Distance to Riemannian Mean (MDRM). Presented by Barachant
et al. in [Barachant et al., 2010] to classify features in Motor Imagery based BCI,
this method uses the sample covariance matrigf a trial X; as a feature, and
estimates the centroid of each class in the training set by calculating the Riemannian
mean of all the class features. For each new feature, its Riemannian distance to all
centroids is calculated, and the smallest among these distances de nes the winning
class. Since we have simulated a P300 experiment, we use the extended covariance
matrix ~; as a feature, presented in chapter 3, section 3.3.1 and call this method
EC-Rie.

The second classi cation method, labeled OT, is based on Optimal Transporta-
tion theory. Initially, we train a Linear Discriminant Analysis (LDA) classi er over
the sourcedataset using spatiotemporal features. Then, for taght dataset, we
compute the transport plan using a squared Euclidean cost betweanggtand
sourcedomains and transport th&rgetfeature vectors onto treurcedomain. The
entropic regularization parameter is equal te 0:001 it is chosen to be as small
as possible, so that the transport plais sparse. Our preliminary experiments (not
displayed here) showed that the results of OT are robust with respect to the value of
the second regularization parameter, which is set equakt®:1. The transported
feature vectors are classi ed with the trained LDA classi er.

The third classi cation method is an bagging LDA classi er trained over spa-
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(a) sourceandtargetsimulations use the same for- (D) Sourceandtarget simulations use a di erent
ward model. forward model.

Figure 4.4:Performances of the three proposed transfer learning classi ers and the LDA
classi er as we increase peak amplitude trial-to-trial variability. Each classi cation method
is denoted by a di erent color. For each method, the di erent lines correspond to di erent
average amplitudes, which is how we model cross-session variability.

tiotemporal features. We create 50 bootstrap samples frosoiineedataset and
train 50 LDA classi ers. For comparison purposes, we also train a single LDA
classi er over the entirsourcedataset.

Since the classes in each dataset are unbalance, we evaluate the outcome of
each method using Cohen's kappa as a performance metric, as proposed by Thomas
etal. in [Thomas et al., 2013]. Cohen's kappa is de nettasl 1 Scchc, where
accis the classi cation accuracy, angy, is the hypothetical probability of chance
agreement. For a binary classi cation problgmy, = I—lz((T P+FN)(TP+FP)+
(TN + FP)(TN + FN)), wherel denotes the total amount of trials in ttaeget
dataset and P; TN; FP;andF P denote the true positives, true negatives, false
positives and false negatives respectively. Cohen's kappa takes values between -1
and 1, with 0 being the chance level.

4.4.2 Amplitude variability

Figure 4.4 displays the results obtained when we modulate amplitude variability.
On gure 4.4a, we can see that, for the same head model, the most robust methods
are OT, Ens and the simple LDA classi er. Since the SNR in these experiments
is high, the Ens and LDA have an almost identical performance. EC-Rie also
performs well when the amplitude standard deviatigg, takes low values; the
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(a) sourceandtargetsimulations use the same for- (D) Sourceandtarget simulations use a di erent
ward model. forward model.

Figure 4.5:Performances of the three proposed transfer learning classi ers and the LDA
classi er as we increase peak latency trial-to-trial variability. Each classi cation method is
denoted by a di erent color. For each method, the di erent lines correspond to di erent
average latencies, which is how we model cross-session variability.

performance decrease for higher amplitude standard deviations can be attributed to
the fact that amplitude variability transforms only one of the two responses, i.e. the
target response. Therefore the invariance property does not hold any longer.

For the second forward model, the performance of all classi ers except for OT
and EC-Rie are greatly changed. The simple LDA classi er only works well for
high mean amplitude values, a behavior which is also re ected in the performance
of the bagging classi er. This is due to the fact that we only change the mean
amplitude of the target class, therefore the LDA features end up producing classes
with a higher separability. When the amplitude is the same for taotiet and
sourcedomains, both methods classify every trial as a nontarget trial, which is why
the classi cation performance is equal to the chance level.

4.4.3 Latency variability

On gure 4.5 we present the results of our experiments when we modulate the
average peak latenay, and the trial-to-trial variability through parametgy; .
Concerning the results of the experiments when the forward model besveere
andtargetis the same, we can see a performance deterioration on gure 4.5a for
all classi cation methods as the trial-to-trial peak latency variability increases. As
expected, the EC-Rie method performs less well than all others, since it mostly de-
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(a) Sourceandtargetsimulations use the same forward model.

(b) Sourceandtargetsimulations use a di erent forward model.

Figure 4.6:Performances of the three proposed transfer learning classi ers and the LDA
classi er as we increase the noise. On the left, we show the e ect of increasing the signal
energy of the pink noise process that simulates background activity. On the right, we
display the classi cation performances as a function of the SNR, which is decreased as we
increase the standard deviation of the white additive noise. Each classi cation method is
denoted by a di erent color.

pends on the correlation of each trial to the archetype target and nontarget responses.
For a di erent forward model, we can see on gure 4.5b that only OT performs well,
and its performance deteriorates as the trial-to-trial latency variability increases.

4.4.4 Background activity and noise variability

On gure 4.6, we can see the results of the experiments in which we modulate
the background activitiN, and those in which we modulate the additive noise
N,. Increases in the energy of the pink noise greatly a ects OT for both the same
forward model and for a di erent forward model. On the other hand, OT seems
not at all a ected by decreases in the SNR that originate from additive white
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noise, which seems to mostly a ect the EC-Rie method. While the LDA and
the Bagging classi ers have a similar performance when the pink noise energy
increases, the bagging classi er is more robust to additive white noise. When the
forward model is di erent betweesourceandtarget the Ens and LDA classi ers

seem to surprisingly perform better as the pink noise energy increases and as the
SNR decreases. This is discussed in the next section.

4.5 Discussion and Conclusion

In this chapter, we have evaluated, through simulated experiments, how three
di erent transfer learning methods respond to EEG signal variability. In particular,
we were interested in the following factors: (i) average peak amplitude; (ii) peak
amplitude standard deviation; (iii) average peak latency (iv) peak latency standard
deviation; (v)1=f noise; (vi) additive white noise; and (vii) forward model.

The correspondence between these factors and the observed variability is jus-
ti ed. Indeed, the rst four are immediately connected to ERP variability, either
across sessions, or within the same session [Polich and Kok, 1995; Polich, 2009].
Background activity in the form of a neural source sigNglcan also be connected
to ERP variability. ERP variability and BCI performance are both modulated by
psychophysiological mental states of the users [Polich and Kok, 1995; Polich, 2009;
Jeunet et al., 2016]. According to the results of [Ward, 2002], it is reasonable to
model this modulation using a simulatédf process. Additionally, signal arti-
facts or physiological signals that do not contribute to the forward model have often
been modeled as additive white noise [Rivet et al., 2009; Blankertz et al., 2011,
Rivet et al., 2011]. Finally, scalp topography variability is evidently connected to
the forward model.

The results of our simulations highlight the generalization capacities of three
transfer learning methods though the implementation of three corresponding classi-
cation algorithms: (i) EC-Rie for the Riemannian geometry framework; (ii) OT
for the optimal transport framework; and (iii) Ens for the ensemble classi cation
framework. For the most part, our ndings align with our original hypothesis over
each method.

Thus, we see that the Riemannian geometry framework is robust to modi cation
of the forward model. However, in the particular case of ERP-Based BCI, the
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classi cation algorithms rely on the correlation of the signals in each trial to the
archetype target and nontarget signals. Modulating a second parameter at the same
time, especially cross session peak latency variability, causes the performance of
the classi er to degrade. On gure 4.5b, only the experiments wheré¢attyet
dataset has the same average latency asaimeeperform well for low values of
trial-to-trial latency variability. However, for the same forward model, the method

is only a ected by trial-to-trial latency variability. EC-Rie is also a ected by white
additive noise. This can be explained using the mathematical formulation of the
Riemannian distance.

Optimal transport is robust to modulations of the peak amplitudes, decreases in
the SNR due to the additive noise and di erences in the forward model. In fact, all
these variability sources cause a drift in the target domain that OT can easily revert,
since they neither a ect the conditional probability distribution, nor induce changes
in the target domain that result into misclassi cations. Nevertheless, peak latency
variability, especially when it is modulated across trials, caused OT to perform
badly. In addition, the background activity noise signal energy increase greatly
degraded the performance of the method.

Unsurprisingly, the bagging classi er performed better than the simple LDA
classi er only when the SNR decreased due to the high variance of the additive
noise, especially when the forward model is the same.

An interesting remark can be made upon observing the classi cation perfor-
mance of the LDA classi er, which is conceived as a baseline. Indeed, for di erent
parameters of variability, some transfer learning methods perform worse, a phe-
nomenon known as negative transfer [Weiss et al., 2016]. For trial-to-trial peak
amplitude and latency variability under the same forward model, this is the case for
the Riemannian geometry classi er. The same result for a di erent forward model
is only observed in the case of trial-to-trial peak amplitude variability. In the case
of background activity, it is OT that induces negative transfer when the forward
model is the same, and EC-Rie as well when the forward model is di erent. When
the additive noise increases, EC-Rie once more induces negative transfer.

In the particular case of modulating the noise parameters for di erent forward
models, an interesting observation can be made on gure 4.6b. As the signal energy
or SNR increase, the performances of the LDA and Ens classi ers increase until
a certain point and decrease again. This is the e ect of two phenomena. First the
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classi cation weights of LDA project the feature vector onto a 1-d space where
the two classes are separable. For di erent head models, this projection causes
the features to fall on the wrong side of the hyperplane (which in this particular
scenario is a scalar). This explains the zero kappa score: everything is classi ed
as nontarget. The two classes in theget dataset are still separable; moreover,
the feature vector variability about the class center is low. Hence, when the noise
signal variability increases, the variability of the two classes increases with it. This
initially causes some of the target feature vectors to fall on the correct side of the
hyperplane. As the class variability keeps increasing, some of the nontarget feature
vectors nd themselves in the target side, which causes the variability to decrease
again.

Overall, these results indicate that, while it is possible for transfer learning
methods to counter the e ects of variability, each method is more specialized to a
speci c case. This implies that using a single transfer learning method might not be
Su cient to create a zero-calibration BCI. Note that, in addition to the parameters
that we have investigated, there are other parameters that can induce variability,
such as target probability, ash interval and mislabeled training sets. Nevertheless,
good performances can be achieved when combinations of these methods are used
in a way that preserve their properties that counter variability. In the next part,
we will present such combinations, which constitute the main contribution of this
thesis.
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CHAPTER 5
OPTIMAL TRANSPORT

In the previous part, we analyzed the sources of EEG signal variabil-
ity, quantify them, and considered three di erent transfer learning
methods that address them. In this chapter, we detail the optimal
transport framework and propose two di erent methodologies. The
rst uses optimal transport in the feature extraction step, while the
second uses optimal transport as a classi er. Then, we propose four
transfer learning classi ers based on combinations of the previously
discussed methods. We present our results on an experimental
dataset and conclude this chapter with a discussion.

5.1 Introduction

Optimal Transport (OT) was initially formulated as a resource allocation prob-
lem. It was formalized by the french mathematician Gaspard Monge in 1781, who
de ned it as the search for a transport map that minimizes a certain cost. The
original formulation was however ill-posed and had no solution in certain cases. In
1971, Kantorovic proposed an adaptation of the optimal transport problem which
was well posed [Kantorovitch, 1958]. The original formulation of the problem was
converted into a search for a probabilistic coupling which minimizes a cost function.
A probabilistic coupling is a construction that allows to study a speci c relation
between two random variables. It is a probability measude ned on the product
space of two probability measures , such that its marginals coincide withand

[Villani, 2008; Santambrogio, 2015].

In our work [Gayraud et al., 2017], we proposed to use a discrete regularized
adaptation of the Kantorovic formulation to handle covariate shift in ERP-based
BCI. Our promising results encouraged us to continue exploring this particular
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framework. In chapter 4, we saw that optimal transport was able to e ectively deal

with certain types of variability, such as peak amplitude and peak latency ERP
variability. In addition, we observed that no transfer learning method was able to
deal with every source of EEG signal variability.

So far, we have seen uses of optimal transport in the feature extraction part of
the BCI system. In the following sections, we detail the optimal transport problem
and propose a second transfer learning technigue based on optimal transport in the
classi cation step. We propose to use these two technique in a classi cation scheme
that combines optimal transport and bagging classi cation (chapter 3, section 3.3.3).
We apply our methods on datasets A and B, described in chapter 2, section 2.3.1
and conclude this chapter by discussing the results.

5.2 Optimal Transport as a Transfer Learning Method

5.2.1 Regqularized Discrete Optimal Transport

LetD = fX ;P(X)g be the domain of a dataset acquired during an ERP-based
BCI session, coupled with the corresponding labéls= fy, gi'gl. We denote
X = fxigi'g1 2 X the set ofl , feature vectors?(X) 2 P (X) the probability dis-
tribution from which the samplX is drawn; andP (X) the space of all probability
measures oveX . Let D® be thesourcedomain for which the label¥ ° are avail-
able, andD' thetarget domain for which they are unknown. We seek to train a
classi er to recover the unknown labe¥s'.

In chapter 3, section 3.2.1 we discuss issues that are addressed by transfer
learning. One of these issues is a phenomenon called covariate shift, in which
the probability distributions of theourceandtarget samples are di erent, i.e.
P(X®) 2 P (X®) 8 P(X") 2 P (X") [Shimodaira, 2000]. This phenomenon often
occurs in BCI data [Clerc et al., 2016; Jayaram et al., 2016]. This problem can
be handled by optimal transport, which allows us to transport probability mass
between two probability distributions through the recovered probabilistic coupling

. Hence, assuming that a transformation causes this drift between ddbfains
andD?®, we propose to recover a transport plan to mapainget features onto the
domain of thesourcefeatures using the discrete formulation of optimal transport
theory.
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(a) optimal transport (b) optimal transport with entropic regularization.

Figure 5.1:Anillustrative 1D example of the computation qf without and with entropic
regularization. We see that the transport plgfietween distributions,, and . is sparse
when = 0. However, for a higher value of, the solution is more dense. Adapted from
[Solomon et al., 2015].

We formally de ne regularized discrete optimal transpolgt iD the following
way: consider the estimated empirical marginal distributions i|:1 P’ < and
N ,';1 P, of the samples iX® andX". I° andl " denote the sizes of the
sourceandtargetsamples respectively,. is the Dirac function %i 2 X andp; is
gletprobability mass associated to tesample element, where :=1 p’ =1 and
::1 p = 1. We aim at a probabilistic coupling, 2 B satisfying the following
minimization problem:

o=argminh; Cig+ Rg() (5.1)
2B

whereh i¢ is the Frobenius dot product, aBds the set of all probabilistic couplings
between . and .. InpracticeB= 2 (R*)" ' j 1e=mg "1s=m,
wherely denotes al-dimensional vector of ones; amdg = (pi; ;p;s) and
m, = (pL; pft) denote the probability vectors of each sample feature vector set
X3, X' respectively.

The rst term of equation 5.1 is the discrete adaptation of the Kantorovic
formulation of the OT problem [Kantorovitch, 195&]. is a cost function matrix,
whose elements correspond to a distance between two pojnts, d(x?;x}),
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X7 2 X8, x} 2 X'. It can be intuitively understood as the e ort required to move
probability mass fronx} to xjt . In this work, unless stated otherwise, the metric we
use is the squared Euclidean distadgéx;; x{)* = kx}  xjk3, as it guarantees
the existence of a unique coupling. When the squared Euclidean distance is used as
the cost function, the rst term leads to a sparse solutigfVillani, 2008].

The second term regularizeg by its entropy, as proposed by Cuturi et al.

[Cuturi, 2013]: X

Rs( )= (55 )log (i;j) (5.2)
i5j

This allows for smoother variants of. In addition, the sparsity of, gradually
decreases asincreases. This renders the transport more robust to noise, provided
that outliers are assigned a small probability value. The regularizationRe(m)
can also be interpreted as a Kullback-Leibler divergence betweerl a uniform
joint probability , = N—th which allows for the use of a computationally e cient
algorithm based on Sinkhorn-Knopp's scaling matrix approach [Knight, 2008]. An
illustrative example of the computation of between two distributions, and

is presented on gure 5.1.

5.2.2 Method 1: Optimal Transport in the Feature Space

One application of OT, which is also described in chapter 3 section 3.3.2, is to
transport the feature vectors of ttegget domain onto thesourcedomain. Given a
classi er trained on theourcefeature vectors, the transportigigetfeature vectors
can be classi ed using the original classi er from teeurcedomain. The pipeline
of this approach is detailed in gure 5.3a. First, we compute the probabilistic
coupling , by adding a second regularization term proposed by Courty et al. in
[Courty et al., 2017] to equation (5.1), which becomes

o=argminh; Cig+ Rg( )+ R() (5.3)
2B

Based on group sparsity, this term makes use of the available classYabelshe

sourcedomain: X

X
Re( )= k (I i)ke (5.4)
j |
wherel . denotes the set of indices belonging to classidk kg denotes the
Frobenius norm. In this way, although we do not know the label$'ofve make



Optimal Transport 65

(a) Entropic regularization (b) Class label and entropic regularization.

Figure 5.2:An example of the di erence between using entropic regularization (equa-
tion 5.1) and using entropic regularization and class label regularization(equation 5.3).
Two toy datasets are simulated. One exisspgrcedataset for which we know the class
labels, and one netarget datasets for which we need to recover these labels using the
classi er trained on thesourcedataset. The lines connecting the feature vectors of the two
datasets are the corresponding coe cients gf On 5.2a, we can see that some feature
vectors of thdargetdataset have been coupled with feature vectors ofdlecedataset

that belongs to di erent classes. This does not occur anymore in 5.2b, where we add class
label regularization to the computation qf.

sure that most vectoris<? ;x5 ; ;%7 g X® with which a vectorx; 2 X!
J
was coupled belong to the same class (wjth,; ;iIj thel, |, non-zero

indices of thg " column of ,). Parameter allows us to control the amount of
regularization induced by this term. High values enforce the same-class criterion,
while low values mean that some of the coupled feature vectors will belong to a
di erent class.

The optimal transport solutiory is a probabilistic coupling between the es-
timated empirical probability distributions of tls®urceandtargetsets, but it is
not a one-to-one mapping between the two sets. Nevertheless, the coe cients of
each column of ; indicate how much of probability mass is transported from the
correspondingarget element to eachourceelement. Therefore, we can use the re-
covered , to mapX ' ontoX ® by computing a transformation based on barycentric
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mapping as in [Courty et al., 2017],
X' = diagl [1y¢) ' LX® (5.5)

Each feature vector; 2 X' is thus be mapped onto the weighted barycenter of
the features oK ° that it was coupled with in,. An example of transporting the
feature vectors of a new set using barycentric mapping is displayed on gure 5.2.

5.2.3 Method 2: Optimal Transport as a Classi cation Method

The solution of the optimization problem described in equation (5.1) can also be
used as a classi er itself. The transport plagmaps elements froi{ ' to elements
from X °. Hence, eacharget feature vector will distribute probability mass to a
number of feature vectors in tlseurceset. Instead of transporting ttergetfeature
vectors onto the space of teeurcevectors, we can directly use the labels of the
sourcevectors eachargetvector is paired with in ; to make a decision.

The pipeline of this approach can be seen in gure 5.3b. Instead of computing
the barycenter of the feature vectors{ri, we compute the barycenter of its labels,

(a) Pipeline with OT in the feature space  (b) Pipeline with OT as a classi er.

Figure 5.3:During the training process, a set of trixf3is given as input along with the
corresponding label¢®. Then, the extracted featur¥s are used to estimate,. When OT

is not used as a classi er, we train an LDA classi er. When a new&és given as input

to the trained pipeline, we compute the probability vectgrthe cost matri>xC; and solve

the OT problem yielding . If OT is used in the feature extraction step, the barycentric
mapping transported VeCtoxs are given as input to the LDA classi er, which estimates
Y'. OtherwiseY' is directly computed by the OT classi er. Note that, when OT is used as
a classi er, there is no need for a training process.
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modifying equation (5.5) as follows:
y'=( olne) oy® (5.6)

Vectory® = (y1;¥;  ;Y,s) represents the aggregated class labelscedomain.
Vectory' = (y:Vs; ,¥,t) can be viewed as the classi er decision function,
where0 y/ 1. Inthis work, we consider that a labglbelongs to the Target
class, for which the assigned labelis 1, if y, > 0:5.

Note that, when in the previous section we transport the feature vectors of the
target domain onto the source domain, we use the class label regularization term of
equation (5.3) to enhance class separability. When using the solution of the OT
problem as a classi cation method, we use equation (5.1), which does not include
this term, as it would induce a strong bias on the classi cation result.

5.3 Application to P300-Speller Data

5.3.1 Experiment Description

We wish to evaluate the performances of these two OT-based transfer learning
methods in 0 ine experiments using datasets A and B (chapter 2, section 2.3.1),
who contain EEG recordings acquired during P300-Speller session. Dataset A
contains the recordings of 4 healthy subjects, while dataset B contains the record-
ings of 20 ALS patients. Each dataset consists of three calibration sessions per
subject. Optimal transport computes the coupling between the probability vectors
of asourceand atarget feature vector set. We compute the probability of each
feature vector using Kernel Density Estimation. Therefore, we need to have an
adequate number of feature vectors per set. Hence, in each experiméangyéheet
is a single session. Theourceset is composed of di erent calibration sessions of
which we use the existing labels to calibrate an OT-based transfer leaning classi er.
However, our preliminary experiments showed that, for the method to be computa-
tionally e cient, the targetand thesourceset need to have a similar cardinality.
This means that we need to select a subset ofdlieceset so that it matches the
size of thetarget set. We are thus seeking for a way to partition sbarcedataset,
so that it matches a smad#irget sample size.
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In [Gayraud et al., 2017], we performed experiments where the training and
test set of a classi er come from two di erent sessions whose size is the same. Our
results were promising, but while in some cases optimal transport outperformed
the state-of-the-art classi ers, in others it did not. These ndings con rm the
conclusion of the previous chapter, that a combination of transfer learning methods
seems necessary to handle di erent types of variability. In chapter 4, section 4.4,
we saw that each method was able to counter only certain types of variability. In
particular, we saw that optimal transport was robust against peak amplitude and
latency variability, and white additive noise. However, it was not robust against
the variability of background activity. The bagging method was on the other hand
more robust to that kind of variability than optimal transport. Hence, we can tackle
thesourcesize and variability problem at the same time by applying the bagging
method to both optimal transport classi cation methods.

Figure 5.4:An example of the composition of tl®urcedataset when thearget dataset
is the third session of subject 2, for cross-session and cross-subject experiments.

We evaluate the performance of each OT-based transfer learning method in a
bagging scheme. We conduct both cross-session and cross-subject experiments.
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The composition of theourcedataset for a speci target dataset is illustrated

on gure 5.4, for both types of experiments. In the cross-session experiments,
the sourceset contains data from all the sessions of tduget subject but the
target session. In the cross-subject experiments, it contains data from all other
subjects but théarget subject. In each experiment, ttarget session contains data
from a single session. The size of taegetset isl ' = 1200. In the cross-session
experiments, theourcesession, which is used to train each classi er, consists of all
the remaining sessions of the subject which generatetatbet session. In these
experiments, the size of tiseurceset isl ° = 2400. In the cross-subject, it consists

of all the sessions of all the other subjects except the subject which generated the
target session. In these experiments, the size ofsiierceset isl ® = 68400.

The labels associated to ttergetset are not taken into consideration during any

of the experiments, and are only used for evaluation purposes. We evaluate the
performance of each classi cation method in terms of Cohen's kappa value.

5.3.2 Classi cation Pipeline

Letx(t) 2 R'* be a measurement extracted from an EEG signal lQuelec-
trodes at timé during a P300-Speller session. After pre-processing the signal in the
manner described in chapter 2, section 2.3.1, we segment it into trials that last 600
ms starting from stimulus onseX;; 2 R'e ' denotes thé" trial whose columns
arel,, = 32 time samples. We extract the feature vectors othaceandtargettri-
als by aggregating the rows of each ti¥al, yielding feature vectors, 2 R'c ',
resulting in a total of ; |,, = 384 features. In both optimal transport applications,
the regularization term is set to a value that is low enough so that the matgiis
still a sparse matrix. This value was empirically set te 0:001

When optimal transport is used in the feature extraction step, the class label
regularization term is set to= 0:1. Note that, our preliminary results showed that
the method was robust to di erent values ofThen, a Linear Discriminant Analysis
(LDA) classi er is trained orX %, and used to predict the labéig'gl-, = Y ! that
correspond téxig.; = X

Each method is integrated in a bagging scheme. We ckeatge0 bootstraps
of lengthl ' = 1200 by sampling the training set uniformly and with replacement,
respecting the class imbalance. We train an classi er instance on each bootstrap.
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During testing, each instance produces a prediction. All of the predictions are
aggregated via a voting scheme, that is, a majority vote, to produce the nal result.
We compare four di erent classi cation methods:

1. LDA, a simple LDA classi er trained on the entisurceset,
2. Ens+LDA, a Bagging LDA classi er,

3. Ens+OT+LDA, a Bagging LDA classi er who uses optimal transport in the
feature space

4. Ens+OT, a Bagging optimal transport classi er

5.4 Results

5.4.1 Feature Transportation Example

We introduce this section by illustrating an example of a transport between the
feature vectors of two randomly chosen pairs of sessions in dataset B. We display
two examples of the estimated optimal transport in gure 5.5. In the rst, the
sourceandtarget feature vector sets abeg,; andX g respectively, while in the
secondX §s andX 5. The subscripts denote the subject indices. Recall that each
subject performed three calibration sessions. We only used the rst session of these
two subjects in this example. Figures 5.5a and 5.5c show the original datasets,
while gures 5.5b and 5.5d illustrate the outcome after compulrlg andX § .

On the right side of each gure, we display a 2D projection of the features using
t-distributed stochastic neighbor embedding (t-SNE) [Maaten and Hinton, 2008].
On the left side of each gure, we can observe the average ERP response and
standard deviation. The ERP response was computed on using the rst Xdawn lter,
estimated orX 3, andX 35 using the algorithm described in Rivet et al. [2009],

for both sessions and both classes.

The examples illustrated on gure 5.5 give us some insight on the process and
how it acts on the components of the EEG signal. By looking at gures 5.5b and 5.5d,
we can see that the transport causes a decrease in the variance of the response, for
both the Target and Nontarget classes. This is the e ect of the entropic regularization
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parameter, which in this particular example was equal t00:01. We selected

this high value for to demonstrate the e ect of this parameter on the transport.
Low values of map eachargetvector to a small number @burcevectors, whose
barycenter does not approximate the class center well. Higher values lead to denser
results for the coupling,. This implies that the barycenter of each transported
feature vector is computed from a larger samplesaifrcevectors. Therefore,

it becomes a better approximation of the class mean anthtget vectors are
transported closer to that mean, which results in a decrease in the variance of each
class.

We see that, after the transport, the average values of the ERP components
match, especially for the nontarget response. However, due to the presence of a
much larger number of Nontarget class elements in the training set, it appears that
samples whose P300 peak amplitude is low are drawn tedteceNontarget class
mean.

5.4.2 Cross Session O ine Experiments

Figures 5.6a and 5.6¢ show a box plot of the performances of the four proposed
classi cation methods, for dataset A and B respectively. For dataset A, the method
with the best performance is Ens+LDA, with an average kappa score of 0.79. All
other methods have an equivalent kappa score, which on average was equal to
0.37. The performances of the four transfer learning methods are equivalent for
all four methods for dataset B. The average kappa scores of LDA and Ens+LDA
are respectively equal to 0.44 and 0.47. Both OT-based methods have an average
performance 00:33.

5.4.3 Cross Subject O ine Experiments

The results of the cross-subject experiments were, unsurprisingly, not as good
as those of the cross-session experiments. For dataset A, we can see on gure 5.6b
that the LDA and Ens+LDA outperform the OT-based classi ers. The average
performances of the rst two are equal to 0.47 and 0.50 respectively. The OT-based
methods both have an average kappa score equal to 0.20. For dataset B, all methods
but Ens+OT+LDA had a similar performance. The low performance of OT in this
case is discussed in the following section. The average kappa score was equal to 0.27
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(a) Dataset A, Cross Session (b) Dataset A, Cross Subject

(c) Dataset B, Cross Session (d) Dataset B, Cross Subject.

Figure 5.6:Performance of Transfer Learning Methods. The rstis an LDA classi er

trained on the entirsourcedataset. The second is a bagging LDA classi er. The third is a

bagging LDA classi er, where optimal transport has been used to transpdsrtiet data

onto each bootstragourcesample. The fouth is the optimal transport classi er presented

in this chapter. The statistical signi cance of the di erences between each method were

computed using Wilcoxon's signed rank test. The signi cance threshold was set equal to
= 0:05, The resulting p-values were corrected with the Benjamini/Hochberg method.

for the LDA classi er, 0.33 for the Ens+LDA method, 0.03 for the Ens+OT+LDA
method and 0.19 for the Ens+OT method.

5.5 Discussion

Our experimental results provide us with an insight on the type of variabil-
ity that is present in the data. We discuss these results in light of the results of
chapter 4. Recall that, in that chapter, we conducted experiments that simulated
di erent types of variability. In these results, we saw that optimal transport is robust
to peak amplitude and latency variability, as well as additive white noise. This
remains unchanged when the forward model is not the same between the simulated
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sourceandtargetdatasets. Nevertheless, the same method proved ine ective in the
presence of background activity.

First of all, in both cross-session and cross-subject experiments the forward
models can be assumed to di er between sloeirceandtarget data. In cross
session experiments, this can be attributed to a di erent placement of the electrodes,
while in cross subject experiments the di erence should be more pronounced as
there are also neurophysiological di erences between users. In this chapter, we
saw that both the LDA method and the Ens+LDA method mostly outperformed
the OT-based methods, especially in the cross-subject experiments. Based on our
ndings, this implies that the background activity is also di erent across sessions,
and even more so across subjects.

In the cross subject experiments of dataset B, the Ens+OT+LDA classi er had
a very poor performance. Upon scrutiny of the data, we observed that both the
sourceandtarget datasets had a substantial amount of outliers. The solution of
equation (5.1) produced a densgmatrix, which resulted in transportation plans
that move all of thearget samples onto the barycenter of the ensioeircedataset.

In such cases, the use of the entropic regularized optimal transport is advised.
Nevertheless, we maintained this result to point out this issue.

The obtained results show that cross-session transfer learning yields better
performances than cross-subject transfer learning. Nevertheless, the performances
of these transfer learning classi cation methods are characterized by variability,
which mirrors EEG signal variability.

5.6 Conclusion

In this chapter, we provided a detailed description of the optimal transport
method. Additionally, we proposed four transfer learning methods, which we
evaluated in cross-session and cross subject experiments. Our results show that
transfer learning improves the generalization capacities of existing classi cation
methods. However, OT-based classi ers performed poorly, suggesting that the EEG
variability both across sessions and across subjects lies mostly in the background
brain activity.



CHAPTER 6
RIEMANNIAN FEATURES: ASSESSING

CLASSIFICATION CONFIDENCE

In the previous chapter, we presented the results of combining opti-
mal transport and ensemble learning. In this chapter, we propose
to apply this methodology to Riemannian geometry-based feature.
First, we study the variability in the feature space, i.e. the Rie-
mannian manifold of Symmetric Positive De nite matrices. We
propose a way to quantify the quality of the training set and use
that information to generate a marker of classi cation con dence,
based on high-dimensional statistics. The rst section provides the
basic principles of high-dimensional statistics and the geometry
of the manifold. In the second section, we formally present the
separability marker. In the third section, we propose a method that,
using the separability marker, combines ensemble learning; optimal
transport; and Riemannian geometry. We present our results on an
experimental dataset in the fourth section and discuss them in the
conclusion of this chapter.

6.1 Introduction

The aim of a transfer learning classi cation method is to acquire knowledge
in an intelligent way, so that it may be used in a classi cation task even when
something has changed between training and using the classi er. These changes
occur between the domain osaurcedataset, which we assume is used to train
the classi er, and the domain oftarget dataset. We formally de ned them in
chapter 3. In ERP-based BCI, EEG signal variability is one of the primary causes
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of drifts between two domains [Clerc et al., 2016]. So far, we have seen how
various methods transfer knowledge in the presence of that variability. Riemannian
geometry, optimal transport and ensemble learning have shown promising results in
simulated data. As we saw in chapter 4, each one of these transfer learning methods
was able to deal with certain types of EEG variability. Our objective isto nd a
combination of the three methods that exploits their properties.

In the previous part we saw that Riemannian geometry is robust to a ne trans-
formations and therefore to changes that a ect the forward model. We will hence
consider the feature space of covariance matrices. In chapter 3, section 3.3.1, we
saw that this space is a Riemannian manifold: the manifold of Symmetric Positive
De nite matrices (SPD). The SPD manifold is a high-dimensional space; its em-
bedded dimension is equaldio= |.(I. + 1) =2. In non-invasive EEG-based BCI
where the classi cation feature is the sample covariance matrogrresponds to
the number of electrodes used for the recording. For instance, the dimension of
the manifold will bed = 78 for | . = 12 electrodes. High dimensionality leads to
various problems often described as curse of dimensionality [Beyer et al., 1999;
Lotte et al., 2007; Sugiyama and Kawanabe, 2012; Lotte et al., 2018]. Neverthe-
less, high-dimensional spaces possess properties that allow us to gain signi cant
insight on the shape of the multidimensional feature space of covariance matri-
ces [Hopcroft and Kannan, 2014]. Under the assumption that this space, embedded
with the Riemannian metric, can be approximated as a set of random variables
drawn from multidimensional Gaussian distributions, we use established properties
of multidimensional Gaussians to develop our separability marker.

In the previous chapter, we evaluated two classi cation methods based on opti-
mal transport and ensemble learning. We saw that bootstrap aggregating (bagging)
enhances the classi cation results of an LDA classi er. Recall that the rst step of
bagging is the generation of training samples by randomly selecting feature vectors
out of thesourceset with replacement. Typically, each bootstrap sample has the
same size as theurceset and is used to train a single classi cation pipeline. In
order for the method to be e cient, bagging necessitates the generation of a large
amount of training samples from tls®urceset [Aslam et al., 2007]. This can
prove ine cient during online BCI use. We tackle this issue by considering each
session in the dataset as a sample and train an equal amount of classi ers. Then, we
propose to use the separability marker as a classi cation con dence weight. These
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weights are used in the voting step of the ensemble learning method.

In the following sections, we present the contribution of our research. First,
we provide theoretical assumptions on the distribution of the feature vectors in the
feature space, i.e. the Riemannian manifold of SPD matrices. We present relevant
geometric properties on high-dimensional spaces and give an intuition on the shape
of high-dimensional Gaussian distributions. Then, we assess whether these high-
dimensional properties apply to the distribution of the feature vectors on the SPD
manifold. Based on this analysis, we present the separability marker, which provides
a marker of con dence that can be relayed with the result of any classi cation
algorithm that uses the Riemannian distance in its decision function. We use
the separability marker to combine ensemble classi cation, optimal transport,
and Riemannian geometry, in a uni ed transfer learning method. We evaluate
the performance of this method and compare it to a state-of-the art Riemannian
classi cation method. We present our results, discuss them and conclude this
chapter with possible future extensions of our work.

6.2 Geometrical and Statistical Properties

6.2.1 Theoretical Assumptions on the Feature Space

To describe and understand how the distribution of the feature vectors is shaped
on the SPD manifold, we initially need to establish some assumptions on our data.
Our features are sample covariance matrices that follow a Wishart distribution.
Therefore, ford,. . covariance matrix ;, we canwrite ; W ( ;l.), where

is the covariance matrix of the multivariate Gaussian distribution we assume
is generating the trialX; of a single class, anid corresponds to the number of
electrodes used by the BCI during the acquisition of the EEG signal.

The Wishart distribution is a multivariate generalization of the chi squared
distribution. Hence, the feature space of sample covariance matrices of a single
class can be approximated by a spherical Gaussian distribution for large values of
l e

Under that assumption, we describe the shape of that space by using some of the
properties that apply to random variables drawn from high-dimensional spherical
multivariate Gaussian distributions.
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Figure 6.1:Example of the distancd(v; 0) between a vertex of a unit cube contained
within a unit sphere and the origin, in dimensions 2, 4 dnwhend = 2, all of the cube

lies within the sphere. Ad increases, the vertices of the cube move outside the sphere.
However, the rightmost illustration is deceptive: the edges of the cube will still lie inside
the sphere. Adapted from [Hopcroft and Kannan, 2014].

6.2.2 Gaussian Distributions in High Dimensional Spaces

The geometry of high-dimensional spaces presents us with a very counter-
intuitive set of phenomena [Hopcroft and Kannan, 2014]. An intriguing e ect
of high-dimensionality is for example to observe which part of the unit cube is
contained inside the unit spheredmdimensions, displayed on gure 6.1. These
unnatural properties make the geometrical analysis of the high-dimensional spaces
a complicated endeavor. In the speci c case of high-dimensional Gaussian distri-
butions, Hopcroft et al. [Hopcroft and Kannan, 2014] present some interesting
observations that elucidate some of their geometrical characteristics. The following
observations allow us to construct a marker of class separability, when each class
is a set of random variables that follows a Gaussian distribution.

1. Lower-dimensional Gaussian distributions have their mass concentrated near
their expected values. In high dimensions, there is very little mass located
near the expected value of a multivariate Gaussian distribution. Most of
the mass of a spherical Gaussian multivariate distribution is concentrated
within an annulus of constant width. The width of this annulus is equal to
the standard deviation of the distribution.
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2. The expected squared Euclidean distance of a random variable from the
expected value of the Gaussian distribution it is drawn from, is in fact on the
order ofd 2, whered is the dimension and is the standard deviation of the
distribution.

3. Any two randomly drawn points will almost surely be orthogonal with respect
to the expected value of the distribution. This implies that,

for a binary classi cation problems where the features are multidimen-
sional, all features belonging to a class will be almost equidistant.

the average distance between two features that belong to the same
class will be related to the average distance to the distribution center
through the equation2 ¢ = .

4. Given two spherical Gaussians with centers p and q separated by a distance
, the distance between a randomly chosen point x froB1 the rst Gaussian
and a randomly chosen point y from the second is close to? + 2d

6.2.3 Geometric Properties of the Riemannian Manifold

All of the above observations are proven in [Hopcroft and Kannan, 2014] for
Euclidean high-dimensional spaces. Nonetheless, our data lives in a Riemannian
manifold, and we have to know whether these observations hold, in spite of the
curvature of this particular space. Since these properties use trigopnometric proper-
ties, we will use the works of [Berger, 2012] to get an insight on the e ect of the
curvature of the manifold.

LetT be aageodesic triangle, that is, a triangle on the manifold whose edges are
minimizing geodesics. Because geodesics are uniguely de ned on the Riemannian
manifold of symmetric positive de nite matrices under the Riemannian distance
dr, T can be uniquely mapped onto the tangent sggaéd of the manifold, by
xing point p to one of its three vertices. The Topogonov theorem states that the
edges and angles @f2 TpM have upper and lower bounds with respect to the
bounds of the sectional curvature of the manifold [Berger, 2012].

It has been shown that the lower and upper bougsK & of the sectional
curvatureK ¢ of the SPD manifold ar& . = 1=2 K. K¢ =0 [Bridson
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Figure 6.2:Conceptual example of four geodesic triangles on manibldormed by
the covariance matrices;, ,, 3, and their projection onto the tangent space at
Four new triangles are formed by the projecti®sS,, Ss, 0, whereO denotes the origin
on the tangent space (which is the tangent space projectioij dfhese triangles have
approximately the same size as the geodesic triangles, provided ihithie Riemannian
mean of the three covariance matrices. Note dhd0; S;) = dr( ; ;), wheredg , dg
denote the Euclidean and Riemannian distance respectively.

and Hae iger, 1999; Pennec, 2009]. This implies that the Riemannian distance
between two features on the Riemannian manifold can be approximated with little
error by the Euclidean distance between their projection on the tangent space,
provided that we choose an appropriate reference point. Typically, that reference
point is the Riemannian mean of all the features. Figure 6.2 displays an illustrative
example of tangent space projection for three covariance matrices.

Therefore, we can use the above described properties of multidimensional
Gaussian distributions to establish a separability marker for a two-class set of
features.
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6.2.4 The Separability Marker

Our goal in designing the separability marker is to quantify the quality of a
training dataset, which in turn gives us a weight that denotes the con dence we can
put on the results of a classi er that was trained with that set. One way to do that is
to obtain a measure of the amount of overlap between the two classes in that training
set. When the feature vectors are high-dimensional, this boils down to estimating
the overlap in the annular regions where their distributions are concentrated. Using
the properties of high-dimensional spherical Gaussian distributions, we will de ne
a region where the possibility of class overlap is increased, by taking into account
the distance between the two centroids.

We begin by scaling the distances between the features and their respective cen-
tersby d, to obtain distributions that are no longer a ected by the dimensionality
of the space. Then we calculate the separability mehkérin the following way.
For each class, we estimate the probability density function of the distribution of
distances between the class mean and each feature vector from that class. This gives
us two curves which correspond to the estimated probability density functions. We
scale and translate the two curves so that the distance between their expected values
is equal to the distance between the two class means. If there is an overlap region,
the curves will intersect.

We formally introduce the separability mark&M of adomairD = fX ;P (X)g,
whereX = kagL”:1 X denotes a sample ¢f d-dimensional feature vectors
from one of two classes, which we labelfor Target andN for Nontarget.

The feature domain Letx; ;i 2f1, ;ITgandx;j 2f1, ;INgdenote
a feature vector that belongs to cldsandN respectively, where' andl " are the
sample sizes of each class respectively. We denose iy the estimated mean
of each class. Depending on whether the feature space is the Euclidean space or
the SPD manifold, the mean can be the Euclidean mean or the Riemannian mean,
de ned in chapter 3, section 3.3. We denote by d(x";x") the distance between
the two class estimated means. As before, the distance can be either the Euclidean
or the Riemannian distance.
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Distances between feature vectorsLet [ = 1d(x";x), ' = id(x";x/')
be the distance of each feature vector to its class center (Target / Nontarget), scaled
by the dimensiord of the feature vectors. For simplicity, we assume that the
feature vectors are distributed in a spherical Gaussian centered at the class mean.
When the features are covariance matrices, this assumption is supported by the fact
that they are drawn from a Wishart distribution, which can be approximated by a
spherical Gaussian when the degrees of freedom are su ciently high. If we consider
these distances as random variables, whose expected vatud i5 = d 2,
thenE d ¥ = d 3 (observation (2)); 1; n are the standard deviations of the
Gaussian distributions that generate the feature vectors of each class. This implies
thatE " = 2 N = 3

Probability distributions of distances Let "= E [, N = E ' bethe
expected value of the distribution of the above de ned scaled distances. In order to
de ne aregion of overlap between the feature vectors of the two classes, we apply
an a ne transformation to the distances by taking into account observation (4).
We de ne the following random variables: " = =2 and N = 1572 Wwe
denotep; ( ™ andp, ( N) the probability density functions of these distributions.
Note thatE[ '] E[ “]=

The Separability Marker LetU = RIg1ax[pT() ;py ()] d betheareaunder
the union of these two curves ahd  min[p;() ;py()] d the area under
the intersection of the two curves. We de ne the separability mark&Ns=
(U 1=U. Intuitively, this marker gives us a comparative measure of the separability.
A small value corresponds to a big overlap, so that the classes are harder to separate,
whereas a large value corresponds to a small overlap.

6.3 Application to P300-Speller Data

6.3.1 Geometrical Analysis

We calculate the average distancésand ™ and the centroids of each class
using the method described in [Pennec et al., 2006]. We also compute the average
distance between same-class features, avg(dz( {; {)).
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Table 6.1: Average distance to centroid and average distance between features for
Target (T) and Nontarget (N) class

T T N N
C | C |

459 0.78|5.88 0.75| 453 0.73|5.79 0.72

Table 6.1 displays the average over all subjects foand |, as well as the
standard deviation of that average, calculated on the rst session of each subject,
for both classes. In this case study, our sample covariance matricg® arg2
matrices, so the dimensionds= 78,and d 8:83.

The result of that analysis show that, for both classes, the distanoetween
class centroids and class features appears to be on the orddr sfiditionally,
the features are almost equidistant to each other, which can deducted by observing
the standard deviations on Table 6.1.

Finally, if we compare the averages on Table 6.1 for the distances between
features to the distances between each feature to its centroid, we can verify that
2 ¢ = , appears to be holding; we observe only a small deviation that is on
average equal tq 2 ¢ 0:61 itcan be attributed to the e ect of the curvature

on the manifold.

Overall, we see that the Euclidean high-dimensional properties of Gaussian
distributions can be applied to the SPD manifold. We proceed by making a cross-
class comparison and try to calculate a marker of the amount of overlap that
occurs between the two classes. This will give us a signi cant tool to evaluate the
separability of Target and Nontarget classes.

We perform an analysis that is based on the description of the shape of a high-
dimensional Gaussian distribution. A 2-dimensional schematic of this analysis is
presented in gure 6.3b. We plot a histogram of these distances, and approximate
their distribution with a Gaussian kernel.

This analysis allows us to visualize the width of the annulus in which the features
are contained, as shown in gure 6.3a and 6.3c. Note that, for the Nontarget class,
the distances to the centroid are reversed, so that the histograms are coherent with
the representation of gure 6.3b. We estimate the distance distributions of the two
classes from the distance distribution histograms using a Gaussian kernel.
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We display the results of this analysis for a single subject, which we have ran-
domly chosen; subject 7. We perform the analysis twice, one to see the separability
of the two classes within a single session (the rst session), and once more for the
union of all sessions. Observe that the distance distributions suggest a Gaussian
probability density function; this is in accordance with our theoretical assumptions.
We can also see that the features of the Nontarget class are closer to their centroid;
the radius of the annulus is smaller. This can also be seen on Table 6.1 by comparing

Nto ¢.

This overlap region is represented in 2D for a general case in gure 6.3b;

histograms 6.3a and 6.3c can be seen as 1D projections of the general case. On
gure 6.3a we can observe that, for a single session, the histograms that represent
the two classes do not signi cantly overlap. On the other hand, the overlap is more
important in gure 6.3c when the class features come from three di erent sessions.
This is due to the cross-session variability, which is causing an increase in the width
of the annulus.

(a) Session 1 (b) All Sessions

Figure 6.4:Comparison between the separability maigét and the value of Cohen's
kappa after classifying the data with the MDRM algorithm. (a) for the only the rst session,
and (b) for all sessions.

To assess whether I8V is correlated to the performance of a Riemannian
classi er, we perform preliminary experiments on a randomly selected subset of
sessions from dataset B. We perform single-session and cross session experiments
in which we train and test an MDRM classi er, evaluating its performance in terms
of Cohen's kappa. This performance is compared td8Ng computed over the
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training dataset. Recall that the MDRM algorithm uses the covariance matak
atrial X; as a feature, and estimates the centroid of each class in the training set by
calculating the Riemannian mean of all the class features. For each new feature, its
Riemannian distance to all centroids is calculated, and the smallest among these
distances de nes the winning class.

Figure 6.4a displays the analysis and results for each subject for the rst session,
where a 5-fold cross-validation is performed to select a training and testing set.
Figure 6.4b is a cross-session evaluation, where the training set of the classi cation
contains the rst two sessions, and the test set contains the third. We can see that
SM is correlated to the classi cation performance. Hi§M values coincide
with high classi cation scores, in both the single-session and the cross-session
experiments.

6.3.2 SM-Weighted Ensemble Learning

The Separability Marker has been applied in [Gayraud et al., 2017] as a classi -
cation con dence assessment tool. The results of this research show that it provides
meaningful information on the geometrical properties of Riemannian features. We
propose a similar application &M in the context of ensemble learning methods.
We saw in the previous chapters that bagging increases the generalization capacity
of the LDA algorithm. In addition, methods based on optimal transport perform
better when the sample sizes of fmurceandtarget datasets are balanced.

In the previous chapter, we saw that cross-subject experiments have lower results
that cross-session experiment. Hence, in this chapter, we focus on cross-subject
experiments. We perform our experiments on datasets A and B, described in
chapter 2, section 2.3.1. We present three ensemble learning methods that combine
di erent sessions to produce a single classi cation result. The main pipeline of
each method is the following:

Thetargetset is used for testing and consists of a single session.

Thesourceset is used to train an ensemble learning classi er. It consists of
all the sessions that belong to di erent subjects, except for the subject who
produced thearget session.
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Thesourceset is divided into training samples, where each session constitutes
a sample. We computeM for each sample, which is later used as a marker
of classi cation con dence.

The classi cation features are the tangent space projections of Extended
Covariance matrices;, described in chapter 3, section 3.3.1. These features
are constructed from the concatenation of the archetype Target and Nontarget
responses to stimulus,

Xi= A, ; T ==XX T2R¥ ¥

wherel . denotes the number of electrodes apdhe number of time samples
in each trial.

A classi er is trained over each sample in the training set. When we test the
method, each classi er produces a classi cation score. The nal decision of
the classi er is computed as a weighted average of these single scores. The
weights correspond to the comput8i s of each sample, aggregated into a
normalized weight vector.

The three ensemble learning classi cation methods are the following. The rst
one, which we denote &1, integrates a Riemannian classi cation algorithm based
on tangent space projection into this ensemble learning scheme. For each session,
we compute the Riemannian mean of all the extended covariance matrices and use
it to project them onto the tangent space at that point. Then, an LDA classi er is
trained on the projected matrices. When we test the classi er, each new sample
is projected onto the tangent space at the mean of each training sample. The new
sample is assigned a classi cation score by LDA.

The second classi cation method is denote2 It adds an additional step
between in the tangent space, which is the computation of the transportyplan
This transport plan is used to transport theget tangent space feature vectors
onto the domain of the existing ones. We use barycentric mapping to compute the
transportation, as described in chapter 5, section 5.2.2. The third classi cation
methodC3 uses optimal transport as well. However, we do not train an instance of
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Figure 6.5:An example of the composition of tl®urcedataset when thearget dataset
is the third session of subject 2, for pairwise and ensemble experiments. When we perform
pairwise experiments, the solid gray boxes indicate sessions that can never be selected.

the LDA algorithm for each sample. Instead, the classi cation scores are computed
directly from the transport plan as label barycenters, according to the method
described in chapter 5, section 5.2.3.

Our objective is to prove the potential of combining multiple sessions to improve
classi cation performance, as opposed to using a single session. Therefore, to eval-
uate the aforementioned methods, we produce the results of pairwise experiments.
In each one of these experiments, soeirceandtarget datasets are each composed
of the trials of a single session. Naturally, th@urceandtarget sessions cannot be
the same session. An illustrative example of the composition cdabecedataset
for a giventarget dataset is presented in gure 6.5, for pairwise and ensemble
experiments. We perform pairwise experiments for the following transfer learning
methods, which were also presented in chapter 4, section 4.4.1:

1. EC-Rie, which denotes an MDRM classi er trained on Extended Covariances
as features,
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2. OT, which denotes an LDA classi er where the feature vectors are transported
using optimal transport during testing,

3. Ens, which denotes a bagging LDA classi er,

4. LDA, which denotes a simple LDA classi er.

6.4 Results

The results of our experiments are presented in gure 6.6. The classi cation
performance metric is Cohen's kappa. For both datasets, the pairwise experiments
perform signi cantly less well than the ensemble learning classi ers. For database
A, we can see on gure 6.6a that all three ensemble learning methods perform well,
having an average kappa score of0:50. In contrast, the pairwise experiments
produce lower performances. On gure 6.6b, we can observe that the results for
database B are not the same for the OT-based classi cation me@ibaisdC3.

In addition, we notice that the pairwise experiments produce a large number of
positive outliers. This indicates a larger amount of variability in the EEG signals
of dataset B; a result that was also observed in the previous chapter.

6.5 Discussion

In this chapter, we studied the shape of distributions of sample covariance matri-
ces on the Riemannian manifold of symmetric positive de nite matrices. When the
sample covariance matrices are classi cation features of a binary MDRM classi er,
obtained from BCI applications such as the P300 speller, we can approximate their
shape by using theorems that apply to high-dimensional Gaussian distributions.
This allows us to de ne a distance distribution-based separability m&kkr We
used this marker to combine the transfer learning methods that we have been inter-
ested in throughout this thesis: ensemble learning methods, optimal transport, and
Riemannian geometry, coupled with the LDA algorithm; and the LDA algorithm
itself.

We performed two types of experiments: pairwise experiments in which the
sourceandtarget sets consist of a single session, and experiments in which the
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sourceset consists of a union of di erent sessions. While it may seem that these
results are not comparable, our objective is not to compare the performances of
these seven classi cation methods between each other. Instead, we wish to show
that combining di erent sessions in the training dataset yields better results than
using a single session. Our separability marker provides us with a way to combine
these di erent training sessions in an ensemble learning classi cation scheme.

Our results once again demonstrate the high variability of the EEG signal. We
saw that all methods performed poorly in the pairwise experiments. However, in
dataset B, a few of the pairwise performances were much higher that the average.
Moreover, the LDA algorithm performed much better in the pairwise experiments
of dataset B than those of dataset A. Recall that dataset B contains EEG recordings
from ALS patients, who had never used a BCI in the past. In chapter 4, we saw that
LDA outperforms the transfer learning classi ers in the presence of background
brain activity, that is assumed to be unrelated to the task and therefore not time-
locked to the stimulus. This can also explain why the OT-based methods perform
poorly in dataset B, even though their performance still outperform the pairwise
experiments.

6.6 Conclusion

In this chapter, we proposed a separability marker for Riemannian-based clas-
si cation methods. We designed this separability marker using geometrical and
statistical properties of high-dimensional spaces. We used this separability marker
to combine three transfer learning methods. Our results demonstrate that transfer
learning can also enhance performances in cross-subject classi cation. Neverthe-
less, we still observe a lot of variability in the performances of transfer learning
methods. In the next chapter, we propose an unsupervised learning method for a
P300-Speller.
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(a) Dataset A

(b) Dataset B

Figure 6.6:Results of the cross-subject experiments on datasets A and B. The rst four
classi cation methods were evaluated over pairwise experiments. The next three classi ers
are ensemble learning classi ers, trained on a mixture of sessions.
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CHAPTER 7
UNSUPERVISED LEARNING

In the previous chapters we proposed transfer learning methods
that tackle EEG signal variability. Such methods necessitate the
existence of a labeled set to train the classi er. In this chapter,
we introduce an unsupervised classi cation method that takes into
account the structure of a speci c ERP-based BCI paradigm: the
P300 speller. First, we provide a brief overview of such methods.
Then, we introduce the methodology of our approach. We perform
simulations of online experiments using an experimental dataset and
discuss their results. Finally, we conclude with future perspectives.

7.1 Introduction

EEG signal variability is one of the reasons why classi cation methods fail to
generalize [Clerc et al., 2016]. One solution to this problem is the use of transfer
learning methods. Given an existisgurcedomain transfer learning allows us to
train a classi cation pipeline to adapt to drifts in a néavgetdomain. In practice,
one can use existing calibration sessions to train such a classi er.

Throughout this thesis, we have thoroughly explored the strength and limitations
of this approach in ERP-based BCI. The main advantages of transfer learning
methods are that they provide priors. These priors make the resulting classi ers
more robust to variability and can be used in a zero-calibration BCI. Their limitation
is that they only handle certain types of variability. When the transferred knowledge
is not pertinent to théarget dataset, transfer learning performs worse than the
baseline, i.e. a classi er trained on the same domain. We saw such an example
in chapter 6 in cross-subject experiments, whose poor results suggest that transfer
learning methods cannot e ciently deal with inter-subject variability.
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A di erent approach than transfer learning is the design of unsupervised clas-
si cation methods. Unsupervised classi cation methods have recently become
the subject of active research in the BCI community. In ERP-Based BCI, the
rst unsupervised classi cation method was introduced in 2012 by Kindermans
et al. [Kindermans et al., 2012b]. The authors propose an approach which uses
the Expectation Maximization algorithm to nd the parameters of a simple linear
classi er. They later prove the e ciency of their approach on an online study of an
auditory P300 speller in [Kindermans et al., 2014]. This work is further extended
by Hibner et al. in [Hubner et al., 2017] where the authors modify the keyboard
interface in a P300-Speller paradigm to induce priors over the label proportions.
The two approaches are combined in the work of Verhoeven et al [Verhoeven et al.,
2017] and veri ed in an online study by Hibner et al. [Huebner et al., 2018].

Unsupervised classi ers learn by adapting to unlabeled data. Typically, an
unsupervised classi er tries to infer class distributions as EEG data are acquired.
This often implies a long warm-up period, during which the BCI feedback might
be wrong or non-existent [Kindermans et al., 2012b, 2014]. Inspired by these
previous works, we present a preliminary approach to an unsupervised classi er
that takes advantage of the structure of the P300-speller paradigm. In the following
sections, we detail our method, evaluate the performance of our approach in a
simulation of an online experiment using experimental data. Our initial results
serve as a proof-of-concept for our unsupervised P300-Speller.

7.2 Unsupervised P300-Spelling: A Proof of Concept

7.2.1 Flashing Strategies in a P300-Speller experiment

During a visual P300-Speller experiment, the user is looking at an on-screen
keyboard. We can de ne two periods with respect to the graphic interface: a ashing
period, during which some characters are ashing, and a rest period during which
a character has been proposed, and the system is preparing for the next character.
Typically, the user is asked to focus on the character they wish to spell. Each time
a character ashes, a P300 response is generated by their brain. The P300 peak
amplitude and latency are modulated by various factors, such as attention levels,
stress, and fatigue [Polich, 2009]. To increase the spelling speed, the characters do
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not ash one by one; instead, they ash in groups. In the rst P300-Speller, these
groups were the rows and columns of the keyboard, so that any two groups only had
one character in common [Farwell and Donchin, 1988]. Other methods group the
characters in a di erent way, such as the ashing methods proposed by [Townsend
et al., 2010; Thomas et al., 2014] as an alternative to row/column ashing.

Hence, for each character the user wants to spell, the system generates a sequence
of groups of characters to be ashed. These sequences can easily be generated
before the BCI starts to ash. Additionally, even if the groups are generated during
the ashing period, each group needs to be generated right before it ashes. In
other words, there is a group of characters associated to each stimulus. This means
that we can obtain the the indices of previous stimuli for each single character on
the screen. We propose a method that extracts one feature per character based on
this prior information.

7.2.2 Feature Extraction

Let 1" be the number of groups of characters that have already ashed, that

is, the number of stimuli. Recall that a trigl 2 R' 'v i 2f1; ;I1"gisa
pre-processed EEG signal segment of leigthwherel . denotes the number of
electrodes. For each charadt&f 1;  ;1,gwe can obtain trialX | = fXig2c,

wherel, denotes the total characters on the keyboards (that can be ashed), and
G, is the set of stimulus indices associated to the groups that cdntaimilarly,

we can obtain a set of triak}, = X g,gel |gor each one of theseg)wo sets, we
can compute the average of each ¥, = B, X andXy = i, X

wherel I, I, denotes the cardinality of; andX  respectively. We calk'} the
proxy Target average of charactaandX}, its proxy Nontarget average.

Note that, ifl is the Target character, i.e. the one attended to by the user, each
row of matrixX} will enclose the P300 response. In addition, having a su cient
number of trials in the proxy Target set will remove some of the variability upon
averaging. Therefore, the peak amplitudes of each row in the real Target average
should have the maximum value among all Target averages. Moreover, the Target
character should maximize the di erence between its Target and Nontarget average,
since there should be no high amplitude component in the Nontarget average.

Hence, we can formally de ne a criterion to select a charaktdfor each
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character and each average, we construct a vRctofkX k; © k)?,ck1 ) 2

R'e whose elements are the maximum-norm of every ¥yw2 R'™ of matrix

R 2 R'e 'w_If X[ is the real Target averag®] will be the vector of the peak
amplitudes of each electrode. The Target character is thus given by the solution of
the following equation:

= argmax kRl Rike (7.1)
|

This criterion can be used to select a character during a single ashing period.

7.2.3 Experiment Description

We perform experiments on a subset of Dataset A, for which the information on
which group of characters associated to each stimulus was available. Each session
is a calibration session where the subject had to spell the word CALIBRATION ,

a total of 11 characters. Hence, there are 11 ashing periods per session, each one
consisting of 36 trials. Therefore, since the Target/Nontarget ratio is 1/5 and each
character ashes 6 timesr = 6 andly = 30.

For each ashing period in each session, we select a chalaateong a set
of 36 characters, according to the criterion of equation (7.1). In comparison, we
simulate a supervised character selection method. We train an LDA classi er using
the Xdawn feature extraction method described in [Rivet et al., 2009]. For each

ashing period, the set of trials that corresponds to that ashing period is kept
apart, and we train the Xdawn spatial Iters and LDA classi er using the remaining
trials of that session. Then, we simulate the online use of that classi er and select
a character using the evidence accumulation method described in [Thomas et al.,
2014].

7.3 Results

We present our preliminary results in gure 7.1. The performance is measured
in terms of correctly guessed characters over the total number of characters. We
can see that our method produces results that are comparable to the results of a
calibrated classi er. Note that both approaches perform poorly for some sessions.
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Figure 7.1:Comparison of our unsupervised method and a calibrated classi er for 9
sessions. The results of our method are comparable to the calibration results.

A possible extension of our method is to consider the highestores and use
a prior to enhance the probability of correctly guessing the character. Such a prior
can take the form of a language model. At the same time, we wish to be able to
guess the correct character as fast as possible. To assess the feasibility of such an
approach, we compute how many times the correct character was found after the
12th, 18th, 24th, 30th and 36th ash, as a function of the number of maximizers of
equation 7.1 (top scoring characters). This analysis is displayed on gure 7.2. Note
that the the correct character is likely to be in the top 5 scoring characters after only
18 ashes.

7.4 Discussion and Conclusion

In this thesis, we have analyzed EEG signal variability and proposed several
transfer learning methods and combinations of these methods to deal with this
variability. Nevertheless, we saw that EEG signal variability is often so important
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Figure 7.2:Number of times the correct character was found after the 12th, 18th, 24th,
30th and 36th ash, as a function of the number of maximizers of equation 7.1 (top scoring
characters), for each session

that the performances of these methods are hindered. At the same time, transfer
learning methods depend on the quality of the training set.

Unsupervised classi cation methods on the other hand only depend on the
current session. Such methods are gaining more attention within the community,
since their only downside is a sometimes high warm up period. In this chapter, we
propose an unsupervised classi cation method that potentially has a low warm up
period. We provide preliminary results that attest to its feasibility. These results,
along with existing research on unsupervised classi cation in BCI, ultimately show
that unsupervised methods an attractive alternative to transfer learning. While
inter-session variability is not an issue for unsupervised learning methods, they also
need to be adapted to deal with intra-session variability. One possible improvement
over our method, in addition to word prediction, is the inclusion of learning methods
that adapt to variability, such as the methods proposed by Hitziger et al. in [Hitziger
et al., 2013] and [Hitziger et al., 2017].



PART IV
CONCLUSION







GENERAL DISCUSSION AND PERSPECTIVES

BCI can o er an alternate means of communication to people with severe motor
disabilities. Nevertheless, a number of obstacles remain which forestall their broad
use [Wolpaw et al., 2002; Guger et al., 2009a; Lotte et al., 2018]. In this thesis, we
focused on the issue of EEG signal variability, which is one of the primary reasons
why BCI systems necessitate advanced machine learning and signal processing
methods to function [Clerc et al., 2016]. The objective of our research was to
study and propose adaptive machine learning methods for ERP-based BCI (taking
di erent variability types into account). Throughout this thesis, we have analyzed
di erent types of EEG variability and investigated their e ect on the performance
of di erent adaptive machine learning methods.

First, we detailed an ERP-based BCI system and exposed our problematic. We
saw how multiple components interact in a speci ¢ paradigm, the P300-Speller.
Each component of the system encloses a set of functions. The parameters and func-
tions that apply need to be chosen carefully. We studied the information extraction
component in particular, where the EEG signal is converted into a classi cation
result. This component is a pipeline which converts the EEG signal into vector of
features, and assigns to this vector a probability of belonging into a class. Feature
extraction and classi cation methods have been extensively researched in the BCI
literature [Lotte et al., 2007; Lotte and Congedo, 2016a; Lotte et al., 2018]. How-
ever, we saw that, due to EEG signal variability, these methods often generalize
poorly across sessions and across subjects. As a result, adaptive approaches are be-
coming a fundamental part of BCI systems [Mattout et al., 2015; Lotte et al., 2018;
Huebner et al., 2018]. In this work, we studied adaptive machine learning methods
applied to the P300-Speller. Our focus was on gaining a broad understanding of
how these methods deal with EEG signal variability. Note that, our ndings can be
generalized to other types of ERP-based BCls.
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To accomplish our target, we begun with a literature review of the di erent types
of EEG signal variability in ERP-based BCls. First, we reviewed ERP component
variability, which we saw is typically measured in terms of peak amplitude, peak
latency and scalp topography variability. We saw that the ERP components which
are the most a ected by this type of variability are the P3a and P300 components.
Various environmental and physiological factors contribute to that variability. These
factors can be grouped according to whether their e ects will appear within a BCI
session; across BCI sessions of the same user; or across di erent BCl users. Hence,
we saw that all these factors contribute to cross-subject variability, while some
of them can appear even in the same session, producing intra-session variability.
In addition, the EEG signal contains brain activity that is not time-locked to the
stimuli that generate the ERPs. This signal has been proven to contribute to ERP
variability as well [Polich, 1997].

We performed an EEG signal variability analysis on two experimental datasets.
Both datasets consist of EEG recordings during the calibration session of a P300-
Speller. The rst dataset was recorded on healthy subjects, while the second dataset
was recorded on ALS patients. We selected these particular datasets because the
BCI system parameters are nearly identical in both datasets: the same ampli ers
were used, the same pre-processing was performed on the EEG signal, and the
P300-Speller interface was the same. We quanti ed the types of variability in the
following manner:

Intra-session peak amplitude and latency variability. For each session,

we computed the average and standard deviation of the peak amplitude and
latency. The values of the standard deviations are a measure of the trial-to-
trial variability within each session.

Power spectral density of the noise After computing and extracting the
stimulus responses from the EEG signal of each session, we compute the
power spectral density of the residue. This gave us an insight on the type of
noise that is present in the EEG signal, and how this noise varies across the
two datasets.

Scalp topography. For each dataset, we computed a set of spatial lters
using the entire dataset using the algorithm in [Rivet et al., 2011]. These
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Iters have been designed to extract the ERP component while minimizing the
SNR of the signal. They provide us with coe cients that can be interpreted
as a scalp topography of the ERP.

Our results in this variability analysis corroborate the literature. The averages and
standard deviations of the peak amplitudes and latencies were in accordance with
the bibliography. We noted a non-negligible amount of cross-session, cross-subject
and intra-session variability. The scalp topography was di erent for the two datasets
and the noise analysis showed that that, while the noise in both datasets and across
all sessions is ai=f process, the value of was also di erent, and so was the
energy of the noise. Since the same acquisition device was employed and the same
pre-processing was performed in both datasets, we can suppose that these factors
did not contribute to cross-database di erences in our ndings. Note that, while the
experimental protocol was the same in the two sets of experiments, the environment
was di erent in the two experiments. Such di erences could interpret the across
dataset variability, in addition to the physiological di erences of the subjects and
the probable e ect of ALS for the patient dataset.

One of the contributions of this thesis is the study of how the aforementioned
types of EEG signal variability a ect classi cation performance, when the classi -
cation pipeline uses transfer learning methods. Advanced transfer learning methods
are speci cally designed to counter variability between two domains, who in that
context are referred to as teeurcedomain and théargetdomain. Here, theource
domain was always composed of labeled data and used to train the classi cation
method, while the labels of thtargetwere strictly only used for evaluation. We
closely examined three transfer learning frameworks, who were not selected so
much on account of their popularity in the eld (although they have all been applied
to BCI, see for example [Congedo et al., 2013; Rakotomamonjy and Guigue, 2008;
Gayraud et al., 2017]), but more on account of their capacity to deal with EEG
signal variability. These frameworks are: 1. Riemannian geometry; 2. optimal
transport; and 3. ensemble learning.

Making use of our analysis on EEG variability, we proposed a parameterized
model of the EEG signal that incorporates all the aforesaid types of variability. This
model allowed us to simulate EEG recordings during P300-Speller experiments,
which we used to evaluate the performances of these transfer learning methods as a
function of speci c variability factors, such as average peak amplitude variability
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and intra-session peak amplitude variability. Then, we proposed various classi -
cation pipelines that combine these three frameworks and evaluated them on our
experimental datasets, interpreting our results though the prism of inter-session
and inter-subject variability.

Thus, we saw that Riemannian geometry provides a framework that is robust
to a ne transformations of the signal. Unsurprisingly, it proved robust to changes
in the forward model. Nevertheless, it proved to not be robust to other variability
types for high parameter values. In the case of peak latency variability, this result
corroborate the ndings of Barachant et al. [Barachant and Congedo, 2014] and are
attributed to the use of the extended covariance matrix (see chapter 3, section 3.3.1).
Regarding high amplitude variability values, both inter-session and intra-session, it
can be attributed to the fact that we only added variability to the target response.
Let X denote the signal during a session. We consider a simpli ed version of our
model described by equation (4.7):

X = X+ X, = GS,+ GN} + GS, + GN
whereS,, S, 2 R's 't. N} andN{ represent background activity that is not
time-locked to the stimulus. For simplicity, assume that the interval between two
stimuli is chosen so that there are no overlaps between responses to target and non-
target stimuli. ThenN;, encloses the background activity during target responses
andN] the background activity between nontarget responses. We compute the
empirical covariance matrices ¥f, andX,,

1
L= =X Xt

It
= %[(GS[ + GNI)(GS, + GNJ)']
= %[GStStl G' + GNIN{' G + GSN/G! + GN,S| G']
= %G[S[St' + NINS + sNE + NiS! 6!
= 1Gl\/ltG'

whereM_S,S! + N{N{' + SN + NiS!. , can be computed in the same
way. Observe that the tern&N,f,' andN .S, describe the correlation between the
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stimulus response and the background noise, which might not be completely uncor-
related. Recall that the Riemannian distance is invariant to a ne transformations,
hence for two signalX *, X ® and their respective forward modess', G® :

d & = diermpet tetmae)
t t
- d(EGBMtBGBI : %GBMEGM)

The above equation will only hold if the di erence betwekt* andM ® is
negligible, for both target and nontarget responses. This is not the case when the
background nois#l,, or the amplitude variability of the target respor&echange
across sessions. However, this method is undeniably useful to cope with EEG
variability, as proven by experimental results [Lotte et al., 2018].

Optimal transport is invariant to many types transformations in the feature
space, due to our choice of the squared euclidean distance as a cost [Villani, 2008;
Courty et al., 2017]. In fact, the most appealing property of optimal transport
under this choice of cost is that it can nd a plan between any two probability
distributions [Villani, 2008]. Hence, we can register any two sets of features vectors
if we assign a probability to each feature vector. The problem arises from the
fact that our data belong to two classes whose inter class separation we wish to
preserve. Additionally, we need to ensure that we do not transport features that
belong to one class onto features that belong to the other class. Unfortunately,
this means that optimal transport will fail for any transformation which causes
signi cant rotations to the feature space. When we work with distributions of
feature vectors that result from trials, another downside of the optimal transport
framework is that we cannot perform single trial classi cation at the very beginning
of the session, since we require to estimate Isotlrceandtarget distributions.

We proposed two classi cation methods that use optimal transport. In both these
methods, we considered the domain to be composed of high dimensional features.
In our experiments, these features were spatiotemporal features in chapter 5 and
tangent space projections of covariance matrices in chapter 6. The downside
of using high dimensional features it that we cannot estimate their probability
distribution. We are hence forced to assume that feature vectors are drawn from
a uniform probability distribution. This makes the method less robust to outliers.
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Nevertheless, considering the robustness of the optimal transport framework to most
EEG variability factors, as we saw in the results of the simulated BCI experiments
of chapter 4, we still believe that it will allow to deal with EEG signal variability,
provided that these issues are dealt with.

Ensemble learning methods like boosting are e ective against noise, but require
a large number of samples to provide robust performance. This can prove compu-
tationally ine cient. Consider the case where we have a dataset consisting of a
substantial amount of calibration sessions. An ensemble method such as bootstrap
aggregating would require to produce a large number of bootstraps, each one's
cardinality being equal to the total number of feature vectors in the entire dataset.
We propose a solution which does not create bootsraps, but instead trains one
classi er per available calibration session. While this method does not have the
same mathematical properties as other ensemble learning methods such as boosting
(chapter 3, section 3.3.3), it allows us to obtain priors on each sample and use
them in the nal result. In chapter 6, we introduce such a prior in the form of a
separability marker. The separability marker allows us to assess the inter-class
separation in a sample. We use the separability marker to weigh the decision of
each classi er in the aggregation step of the ensemble. Other priors could also be
included in the computation of the classi cation result weighting process. One
such prior could be the similarity of tharget dataset to each training session.
Dissimilarity measures such as the Kullback-Leibler divergence or the Wasserstein
distance can be used, provided that we have collected a su cient amotizutgest
feature vectors.

Our study of the transfer learning frameworks con rms that it is not trivial
to perform cross-session and cross-subject classi cation. Even when advanced
methods are employed and combined, the underlying variability still hinders per-
formances. Moreover, measuring variability is not an obvious task. While we
were able to quantify some types of EEG variability, BCI systems are subject to
multiple sources of variability that are not easy to track [Clerc et al., 2016]. In
our research, this conclusion was supported by the fact that, while we were able
to obtain adequate results for cross-subject and cross-session classi cation, cross-
database classi cation was unachievable. This led us to consider an unsupervised
classi cation method, presented in chapter 7. Our preliminary results demonstrate
the feasibility of this approach for the P300-Speller paradigm. While this approach
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does not require any training data, possible extensions do not exclude the combined
use of a transfer learning method for initialization purposes, as in [Kindermans
et al., 2012a].

Our research provided us with considerable information about the e ects of
EEG variability. Exploring di erent methodologies allowed us to obtain a greater
insight on the type of variability parameters which classi cation methods need to
take into account. In conclusion, we can safely a rm that the future of BCIs lies in
their ability to adapt.
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