.. For-i-=-1, N , calculate the module of the difference between the paired values, |x 2,i ? x 1,i |, and sign(x 2,i ? x 1,i ). The sign function returns 1 if the difference is positive

, In addition to these, other, lower level parameters, could possibly be used, but they have a lower impact in the behavior of the locomotion, and a list of twenty parameters is already one that needs to be decreased for this kind of optimization to work effectively. ? ?: Time constant of the dynamical equations for the motion primitives

?. , Period of oscillation of the generators oscillators of both legs

. ?-a-balancing, hip : Amplitude for the hip roll function of the balancing motion

. ?-a-balancing, ankle : Amplitude for the ankle roll function of the balancing motion

. ?-a-flexion, hip : Amplitude for the hip pitch function of the flexion motion

. ?-a-flexion, knee : Amplitude for the knee pitch function of the flexion motion

. ?-a-flexion, ankle,h : Amplitude for the ankle pitch function of the flexion motion, hip function contribution

. ?-a-flexion, ankle,k : Amplitude for the ankle pitch function of the flexion motion, knee function contribution

. ?-a-compass, hip : Amplitude for the hip pitch function of the compass motion

. ?-a-compass, ankle : Amplitude for the ankle pitch function of the compass motion

. ?-a-yield, knee : Amplitude for the knee pitch function of the knee yielding motion

. ?-a-yield, ankle : Amplitude for the ankle pitch function of the knee yielding motion

. ?-?-flexion, hip : Amplitude of the bell curve for the flexion motion for the hip

. ?-?-flexion, knee : Amplitude of the bell curve for the flexion motion for the knee

. ?-o-hip, pitch : Offset for the hip pitch trajectory, left and right equal

. ?-o-knee, pitch : Offset for the knee pitch trajectory, left and right equal

, pitch : Offset for the ankle pitch trajectory, left and right equal

. ?-o-hip, roll : Offset for the hip roll trajectory, left and right symmetrical

, roll : Offset for the ankle roll trajectory, left and right symmetrical

. ?-o-hip, yaw : Offset for the hip yaw trajectory, left and right symmetrical

O. Adekanmbi and P. Green, Conceptual comparison of population based metaheuristics for engineering problems, In: The Scientific World Journal, p.32, 2015.

P. Afshar, L. Nassiri, and . Ren, Dynamic Stability of Passive Bipedal Walking on Rough Terrain: A Preliminary Simulation Study, Journal of Bionic Engineering, vol.9, issue.2, pp.423-433, 2012.

R. Alexander and . Mcn, The Gaits of Bipedal and Quadrupedal Animals, The International Journal of Robotics Research, vol.3, issue.2, pp.49-59, 1984.

R. Alexander and . Mcneill, Optima for animals, p.169, 1996.

S. Amaran, Simulation optimization: a review of algorithms and applications, Annals of Operations, p.32, 2016.

S. Aoi and K. Tsuchiya, Locomotion Control of a Biped Robot Using Nonlinear Oscillators, Autonomous Robots 19.3, pp.219-232, 2005.

, Generation of bipedal walking through interactions among the robot dynamics, the oscillator dynamics, and the environment: Stability characteristics of a five-link planar biped robot, Autonomous Robots, vol.30, pp.123-141, 2011.

U. Asif and J. Iqbal, An Approach to Stable Walking over Uneven Terrain Using a Reflex-Based Adaptive Gait, Journal of Control Science and Engineering, p.47, 2011.

B. and A. Massah, An Open Loop Walking on Different Slopes for NAO Humanoid Robot, Procedia Engineering, vol.41, p.47, 2012.

R. Beardmore, Coefficients Of Friction, p.69

F. P. Beer and (. Pierre, Vector mechanics for engineers. Statics. McGraw-Hill (cit, vol.157, p.67, 2013.

H. Beyer and K. Deb, On self-adaptive features in real-parameter evolutionary algorithms, IEEE Transactions on Evolutionary Computation, vol.5, p.37, 2001.

T. Blickle and L. Thiele, A Comparison of Selection Schemes Used in Evolutionary Algorithms, p.37, 1996.

B. Brogliato, Lecture Notes in Control and Information Sciences, vol.220, issue.1, 1996.

J. Brownlee, Clever algorithms : nature-inspired programming recipes, p.40, 2011.

R. Calandra, Bayesian optimization for learning gaits under uncertainty, Annals of Mathematics and Artificial Intelligence, vol.76, issue.1-2, p.22, 2016.

Y. Chang, Z. Bouzarkouna, and D. Devegowda, Multi-objective optimization for rapid and robust optimal oilfield development under geological uncertainty, Computational Geosciences 19, vol.4, p.38, 2015.

W. T. Clower, Early Contributions to the Reflex Chain Hypothesis, Journal of the History of the Neurosciences, p.16, 1998.

M. Crepin?ek, S. Liu, and M. Mernik, Exploration and exploitation in evolutionary algorithms, ACM Computing Surveys, vol.45, p.59, 2013.

A. Cully, Robots that can adapt like animals, pp.503-507, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01158243

C. Dai, Y. Wang, and M. Ye, A new multi-objective particle swarm optimization algorithm based on decomposition, Information Sciences, vol.325, p.51, 2015.

H. Dai and R. Tedrake, Planning robust walking motion on uneven terrain via convex optimization, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). IEEE, p.12, 2016.

Y. Davidor, Genetic algorithms and robotics : a heuristic strategy for optimization, p.79, 1991.

K. Deb, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, vol.6, pp.40-42, 2002.

K. Deb, Multi-objective optimization using evolutionary algorithms, p.497, 2001.

K. Deb, M. Mohan, and S. Mishra, Evaluating theDomination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions, Evolutionary Computation 13, vol.4, p.51, 2005.

H. Diedam, Online walking gait generation with adaptive foot positioning through Linear Model Predictive control, IEEE, pp.1121-1126, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00390566

H. Dong, M. Zhao, and N. Zhang, High-speed and energy-efficient biped locomotion based on Virtual Slope Walking, Autonomous Robots, vol.30, p.47, 2011.

M. Dorigo, V. Maniezzo, and A. Colorni, Ant system: optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man and Cybernetics, vol.26, p.33, 1996.

M. Eaton, Evolutionary Algorithms and the Control of Systems, p.34, 2015.

A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, Natural Computing Series, vol.35, p.34, 2003.

S. Fujiki, Improving adaptive walking of a biped robot on a splitbelt treadmill by controlling the interlimb coordination, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, vol.29, p.23, 2012.

S. Gay, Visual Control of Legged Robots for Locomotion in Complex Environments using Central Pattern Generators, 2014.

G. Endo, Experimental Studies of a Neural Oscillator for Biped Locomotion with QRIO, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp.596-602, 2005.

, Github: webots-cross-compilation, p.153

F. Glover, A. Gary, and . Kochenberger, Handbook of metaheuristics, p.33, 2003.

R. D. Gregg, Y. Dhaher, and K. M. Lynch, Functional asymmetry in a five-link 3D bipedal walker, Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p.49, 2011.

R. D. Gregg, The basic mechanics of bipedal walking lead to asymmetric behavior, International Conference on Rehabilitation Robotics, p.49, 2011.

S. Grillner, Biological Pattern Generation: The Cellular and Computational Logic of Networks in Motion, Neuron 52, vol.5, p.16, 2006.

, Control of Locomotion in Bipeds, Tetrapods, and Fish". In: Comprehensive Physiology, p.16, 2011.

I. Ha, Y. Tamura, and H. Asama, Gait pattern generation and stabilization for humanoid robot based on coupled oscillators, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, p.81, 2011.

I. Ha, Development of open humanoid platform DARwIn-OP". English, Proc. of IEEE SICE 2011. IEEE, pp.2178-2181, 2011.

I. Hand?i´hand?i´c and K. Reed, Perception of gait patterns that deviate from normal and symmetric biped locomotion, In: Frontiers in psychology, vol.6, p.49, 2015.

N. Hansen, The CMA evolution strategy: a comparing review, pp.75-102, 2006.

H. Hauser, Biologically inspired kinematic synergies enable linear balance control of a humanoid robot, Biological Cybernetics, vol.104, issue.4-5, pp.235-249, 2011.

T. Hemker, Efficient Walking Speed Optimization of a Humanoid Robot, The International Journal of Robotics Research, vol.28, p.23, 2009.

A. Herdt, P. Perrin, and . Wieber, Walking without thinking about it, IEEE, pp.190-195, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00567668

A. Herdt, Online Walking Motion Generation with Automatic Foot Step Placement, Advanced Robotics, vol.24, pp.719-737, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00391408

M. Hiratsuka, Trajectory learning from human demonstrations via manifold mapping, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp.3935-3940, 2016.

. Hobon, N. Mathieu, G. Lakbakbi-elyaaqoubi, and . Abba, Influence of frictions on gait optimization of a biped robot with an anthropomorphic knee, 2013 9th Asian Control Conference (ASCC). IEEE, p.47, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00996655

A. Hodgkin and A. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, In: The Journal of physiology, vol.117, p.16, 1952.

P. Holmes, The Dynamics of Legged Locomotion: Models, Analyses, and Challenges". In: SIAM Review 48, vol.2, pp.207-304, 2006.

M. A. Hopkins, W. Dennis, A. Hong, and . Leonessa, Humanoid locomotion on uneven terrain using the time-varying divergent component of motion, 2014 IEEE-RAS International Conference on Humanoid Robots. IEEE, pp.266-272, 2014.

Y. Hu, Walking of the iCub humanoid robot in different scenarios: Implementation and performance analysis, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). IEEE, p.63, 2016.

Y. Hurmuzlu, F. Génot, and B. Brogliato, Modeling, Stability and Control of Biped Robots A General Framework. en, p.21, 2001.
URL : https://hal.archives-ouvertes.fr/inria-00072297

, Modeling, stability and control of biped robots-a general framework, Automatica 40, vol.10, p.49, 2004.

S. Hyon and T. Emura, Symmetric Walking Control: Invariance and Global Stability, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, p.49, 2005.

A. Ibanez, P. Bidaud, and V. Padois, Automatic Optimal Biped Walking as a Mixed-Integer Quadratic Program, Advances in Robot Kinematics, p.63, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01030802

C. Igel, N. Hansen, and S. Roth, Covariance Matrix Adaptation for Multi-objective Optimization, Evolutionary Computation 15.1, p.51, 2007.

A. Ijspeert and . Jan, Central Pattern Generators for Locomotion Control in Animals and Robots: A Review, Neural Networks, vol.21, p.17, 2008.

A. Ijspeert and . Jan, Dynamical movement primitives: learning attractor models for motor behaviors, Neural computation 25, vol.2, p.18, 2013.

J. Jahn, Scalarization in Multi Objective Optimization, Mathematics of Multi Objective Optimization, p.35, 1985.

J. Jones, E. M. Gareth, D. G. Tilli)-tansey, and . Stuart, Thomas Graham Brown (1882-1965): Behind the Scenes at the Cardiff Institute of Physiology, Journal of the History of the Neurosciences, vol.20, p.16, 2011.

S. Kajita and K. Tani, Study of dynamic biped locomotion on rugged terraintheory and basic experiment, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments. IEEE, vol.1, pp.741-746, 1991.

S. Kajita, Biped walking pattern generation by using preview control of zero-moment point, 2003 IEEE International Conference on Robotics and Automation Cat No03CH37422 2, pp.1620-1626, 2003.

S. Kajita, Biped walking on a low friction floor, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol.4, p.47, 2004.

S. Kajita, The 3D Linear Inverted Pendulum Mode: A Simple Modeling for a Biped Walking Pattern Generation, IEEE/RSJ International Conference on Intelligent Robots and Systems 1.4, vol.13, pp.239-246, 2001.

S. Kajita, Introduction to, Springer Tracts in Advanced Robotics, vol.101, 2014.

P. Katz, Neurons, networks, and motor behavior, Neuron 16, vol.2, p.15, 1996.

J. Kennedy and R. Eberhart, Particle swarm optimization". English, Proc. of IEEE ICNN 1995, vol.4, pp.1942-1948, 1995.

A. Khachaturyan, The thermodynamic approach to the structure analysis of crystals, Acta Crystallographica Section A, vol.37, issue.5, p.33, 1981.

J. Kieboom and . Van-den, Biped locomotion and stability : a practical approach, vol.29, p.22, 2009.

O. Kiehn, Locomotor circuits in the mammalian spinal cord, Annual Review of Neuroscience, vol.29, p.15, 2006.

H. Kimura, Y. Fukuoka, and A. H. Cohen, Adaptive Dynamic Walking of a Quadruped Robot on Natural Ground Based on Biological Concepts, The International Journal of Robotics Research, vol.26, pp.475-490, 2007.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated Annealing, Science, vol.220, p.33, 1983.

J. Kober and J. Peters, Reinforcement Learning in Robotics: A Survey, p.23, 2012.

. Koos, J. Sylvain, S. Mouret, and . Doncieux, The Transferability Approach: Crossing the Reality Gap in Evolutionary Robotics, IEEE Transactions on Evolutionary Computation, vol.17, p.141, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00687617

A. D. Kuo, A. Maxwell-donelan, and . Ruina, Energetic consequences of walking like an inverted pendulum: step-to-step transitions, vol.2, pp.88-97, 2005.

N. Kuppuswamy and C. Alessandro, Impact of Body Parameters on Dynamic Movement Primitives for Robot Control, Procedia Computer Science 7, pp.166-168, 2011.

M. Laumanns, Combining Convergence and Diversity in Evolutionary Multiobjective Optimization, Evolutionary Computation 10.3, p.51, 2002.

K. N. Lee and Y. J. Ryoo, Walking Pattern Tuning System Based on ZMP for Humanoid Robot". en, International Journal of Humanoid Robotics, p.1442001, 2014.

C. Liu, D. Wang, and Q. Chen, Central Pattern Generator Inspired Control for Adaptive Walking of Biped Robots, IEEE SMC 2013 43, vol.5, pp.1206-1215, 2013.

D. J. Manko, A General Model of Legged Locomotion on Natural Terrain, p.47, 1992.

E. Marder and D. Bucher, Central pattern generators and the control of rhythmic movements, Current biology : CB 11, vol.23, p.16, 2001.

E. Marder, Invertebrate Central Pattern Generation Moves along, Current Biology 15, vol.17, p.15, 2005.

, Mass of body segment -calculation, p.148

V. Matos, A Bio-Inspired architecture for adaptive quadruped locomotion over irregular terrain, 2013.

V. Matos and C. Santos, Central Pattern Generators with phase regulation for the control of humanoid locomotion, 2012 12th IEEE-RAS International Conference on Humanoid Robots, vol.160, p.81, 2012.

. Matos, C. P. Vitor, and . Santos, Towards goal-directed biped locomotion: Combining CPGs and motion primitives, Robotics and Autonomous Systems, vol.62, p.79, 2014.

T. Matsubara, S. Hyon, and J. Morimoto, Learning parametric dynamic movement primitives from multiple demonstrations, Neural Networks, vol.24, p.19, 2011.

P. Maurice, Virtual ergonomics for the design of collaborative robots, vol.151, p.149, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02348757

P. Maurice, Human-oriented design of collaborative robots, International Journal of Idustrial Ergonomics, vol.57, p.145, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01428778

B. E. Mccown-mcclintick and G. D. Moskowitz, The Behavior of a Biped Walking Gait on Irregular Terrain, The International Journal of Robotics Research 17.1, pp.43-55, 1998.

Q. Meng and M. Lee, Empathy between Human and Home Service Robots, 2009 IITA International Conference on Control, Automation and Systems Engineering, pp.220-224, 2009.

X. Merlhiot, The XDE mechanical kernel: Efficient and robust simulation of multibody dynamics with intermittent nonsmooth contacts, Proc. of the 2nd Joint International Conference on Multibody System Dynamics, 2012.

A. Micaelli, S. Barthélemy, and J. Salini, Arboris-python, p.63

Z. Michalewicz and D. B. Fogel, How to Solve It: Modern Heuristics, p.24, 2004.

O. Michel, Webots: Professional Mobile Robot Simulation, International Journal of Advanced Robotic Systems, vol.1, issue.1, pp.39-42, 2004.

K. Miettinen, International Series in Operations Research & Management Science, vol.12, p.35, 1998.

, Redundancy in Robot Manipulators and Multi-Robot Systems, Lecture Notes in Electrical Engineering, vol.57, p.1, 2013.

M. Mitchel, An Introduction to Genetic Algorithms, p.21, 1998.

J. Mockus, The Bayesian approach to global optimization, vol.5, p.22, 1989.

A. Morecki, Modelling and Simulation of Human and Walking Robot Locomotion, Human and Machine Locomotion, pp.1-78, 1997.

J. Morimoto, Modulation of Simple Sinusoidal Patterns by a Coupled Oscillator Model for Biped Walking, ICRA 2006, pp.1579-1584, 2006.

J. Morimoto, Improving humanoid locomotive performance with learnt approximated dynamics via Gaussian processes for regression, IEEE, vol.29, p.23, 2007.

M. Morisawa, Biped locomotion control for uneven terrain with narrow support region, 2014 IEEE/SICE International Symposium on System Integration. IEEE, p.47, 2014.

J. Mouret and . Doncieux, SFERESv2: Evolvin' in the Multi-Core World, Proc. of IEEE CEC 2010, pp.4079-4086, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00687633

J. Mouret and J. Clune, Illuminating search spaces by mapping elites, vol.51, p.26, 2015.

O. D. Nwokah, . Yildirim, and . Hurmuzlu, The Mechanical systems design handbook : modeling, measurement, and control, p.10, 2002.

. Ode-wiki, , p.50

M. Oliveira, Multi-objective parameter CPG optimization for gait generation of a biped robot, 2013 IEEE International Conference on Robotics and Automation, p.81, 2013.

, Open Design Lab Tools: Proportionality Constant Calculator, p.148

G. Orlovsky, T. G. Deliagina, and S. Grillner, Neuronal Control of LocomotionFrom Mollusc to Man, p.15, 1999.

M. Panne, E. Van-de, Z. G. Fiume, and . Vranesic, A controller for the dynamic walk of a biped across variable terrain". English, Proc. of IEEE CDC 1992, pp.2668-2673, 1992.

A. Parmiggiani, The Design of the iCub Humanoid Robot, International Journal of Humanoid Robotics, p.1250027, 2012.

C. Paul and J. C. Bongard, The road less travelled: morphology in the optimization of biped robot locomotion, IROS 2001 -IEEE/RSJ, vol.1, pp.226-232, 2001.

K. Pearson, Note on Regression and Inheritance in the Case of Two Parents, Proceeding of the Royal Society of London, p.54, 1895.

J. W. Pratt, Remarks on Zeros and Ties in the Wilcoxon Signed Rank Procedures, Journal of the American Statistical Association, vol.54, p.117, 1959.

O. G. Raghuwanshi and . Kakde, Survey on multiobjective evolutionary and real coded genetic algorithms, p.37, 2004.

L. Rios, N. V. Miguel, and . Sahinidis, Derivative-free optimization: a review of algorithms and comparison of software implementations, Journal of Global Optimization, vol.56, p.32, 2013.

. Robosavvy--robots, , p.152

R. T. Rockafellar, Linear-Quadratic Programming and Optimal Control, SIAM Journal on Control and Optimization, vol.25, p.156, 1987.

L. Rodrigues, Simulation and control of biped locomotion-GA optimization". English, Proc. of IEEE CEC, vol.29, p.22, 1996.

S. Rossignol, R. Dubuc, and J. Gossard, Dynamic Sensorimotor Interactions in Locomotion, Physiological Reviews, vol.86, pp.89-154, 2006.

S. J. Russell, ). Stuart-jonathan, P. Norvig, and E. Davis, Artificial intelligence : a modern approach, p.33, 2010.

J. Salini, Dynamic control for the task/posture coordination of humanoids: toward synthesis of complex activities, These de doctorat, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00710013

J. Salini, V. Padois, and P. Bidaud, Synthesis of complex humanoid whole-body behavior: A focus on sequencing and tasks transitions, English. In: IProc. of IEEE ICRA 2011. IEEE, vol.26, pp.13-15, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00578073

G. Sandini, G. Metta, and D. Vernon, 50 Years of Artificial Intelligence, Lecture Notes in Computer Science. Berlin, vol.4850, p.4, 2007.

S. Schaal, P. Mohajerian, and A. Ijspeert, Dynamics systems vs. optimal control -a unifying view, Progress in brain research, vol.165, p.19, 2007.

R. Siegwart, R. Illah, D. Nourbakhsh, and . Scaramuzza, Introduction to autonomous mobile robots, vol.8, p.453, 2011.

A. Slatton, Integrating a Hierarchy of Simulation Tools for Legged Robot Locomotion, pp.474-479, 2008.

. Snyman, Applied Optimization, Practical Mathematical Optimization, vol.97, p.32, 2005.

G. Taga, Y. Yamaguchi, and H. Shimizu, Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment, Biological Cybernetics 65, vol.3, p.17, 1991.

G. Taga, A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance, Biological Cybernetics 78.1, pp.9-17, 1998.

. Talbi and . El-ghazali, Metaheuristics : from design to implementation, p.32, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00750681

. Tomoiag?-a and . Bogdan, Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA-II, p.36, 2013.

D. Torricelli, Human-like compliant locomotion: state of the art of robotic implementations, Bioinspiration & Biomimetics, vol.11, issue.5, p.15, 2016.

A. S. Voloshina, Biomechanics and energetics of walking on uneven terrain, In: The Journal of experimental biology, vol.216, issue.2, pp.3963-70, 2013.

M. Vukobratovic and B. Borovac, Zero-moment point -thirty five years of its life, International Journal of Humanoind Robots, vol.1, issue.1, pp.157-173, 2004.

M. Vukobratovic, Biped locomotion: dynamics, stability, control, and application, 1990.

J. M. Wang, Optimizing walking controllers for uncertain inputs and environments, ACM SIGGRAPH 2010 papers on -SIGGRAPH '10, vol.29, p.1, 2010.

J. M. Wang, Optimizing Locomotion Controllers Using BiologicallyBased Actuators and Objectives, In: ACM transactions on graphics, vol.31, p.20, 2012.

E. R. Westervelt, Feedback Control of Dynamic Bipedal Robot Locomotion, p.528, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01702841

P. Wieber, On the stability of walking systems, 2002.
URL : https://hal.archives-ouvertes.fr/inria-00390866

P. Wieber, Trajectory Free Linear Model Predictive Control for Stable Walking in the Presence of Strong Perturbations, 6th IEEE-RAS International Conference on Humanoid Robots. IEEE, vol.26, pp.13-15, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00390462

F. Wilcoxon, Individual Comparisons by Ranking Methods". In: Biometrics Bulletin, vol.1, issue.6, p.116, 1945.

J. Wu and Z. Popovi´cpopovi´c, Terrain-adaptive bipedal locomotion control, ACM SIGGRAPH 2010, vol.29, p.22, 2010.

Y. Zheng and K. Yamane, Optimization and control of cyclic biped locomotion on a rolling ball, Proc. of IEEE-RAS Humanoids, pp.752-759, 2011.

X. Zhou, Stability of biped robotic walking with frictional constraints, p.49, 2013.

E. Zitzler, K. Deb, and L. Thiele, Comparison of Multiobjective Evolutionary Algorithms: Empirical Results, p.51, 2000.