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Résumé

Résumé
Cette thèse comprend deux parties. La première partie porte sur la structure quasi-

Poisson sur l’espace des connexions plates. D’abord nous généralisons la formule de Gold-
man concernant le crochet de Poisson pour l’espace des modules de connexions plates dans
le cadre quasi-Poisson. Puis nous appliquons la théorie quasi-Poisson aux espaces de confi-
gurations de drapeaux au sens large, en montrant que l’espace des modules de connexions
plates avec ossatures provient d’une réduction quasi-Poisson. Ceci implique en particulier
que la structure de Poisson de Fock-Goncharov coïncide avec celle d’Atiyah-Bott. Enfin,
nous discutons de quantifications par déformation de variétés quasi-Poisson.

La deuxième partie traite un problème indépendant concernant la métrique de Hilbert
sur les variétés projectives réelles convexes. En répondant à une question de M. Crampon,
nous montrons que l’entropie volumique d’une famille à un paramètre explicite d’orbifolds
projectifs convexes tend vers zero.

Quasi-Poisson structures on moduli space of flat
connections, entropy of simplicial Tits sets

Abstract
This thesis consists of two parts. The first part is concerned with the quasi-Poisson

structure on the space of flat connections. First we generalize Goldman’s Poisson bracket
for moduli space of flat connections to the quasi-Poisson setting. Then we apply the quasi-
Poisson theory to configuration spaces of flags in a broad sense, showing that Fock and
Goncharov’s moduli space of framed flat connections arises from quasi-Poisson reduction.
This in particular implies that Fock-Goncharov’s Poisson structure coincides with Atiyha-
Bott’s. Finally, we discuss deformation quantizations of quasi-Poisson manifolds.

The second part deals with an independent problem about Hilbert metrics on convex
real projective manifolds. Answering a question of M. Crampon, we show that the volume
entropy of an explicit one-parameter family of convex projective orbifolds tends to zero.
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Introduction

Pour une surface compacte orientée Σ et un groupe de Lie G, on cherche à étudier
l’espace

XG(Σ) = Hom(π1(Σ, v), G)/G

des classes d’équivalence de représentations du groupe fondamental (pour un choix indif-
férent du point base v). Pour la simplicité de l’exposé, dans cette introduction on traite
XG(Σ) comme une variété lisse, malgré qu’il n’est prèsque jamais le cas.

L’espace XG(Σ) se situe à l’intersection de diverses branches des mathématiques. Ci-
tons quelques-uns d’entre eux :

– XU(n)(Σ) apparaît dans la géométrie algébrique parce que si l’on fixe une structure
complexe sur Σ, il s’identifie à l’espace des classes d’équivalence de fibrés vectoriels
holomorphes sur Σ [47, 18].

– Certaine sous-ensemble de XPSL2R(Σ) et XPSL2C(Σ) sont des objets d’étude princi-
paux dans la géométrie hyperbolique car ils paramétrisent les structures hyperbo-
liques sur Σ et certaines variétés hyperboliques de dimension 3 [53, 28] ; De même
manière, un sous-ensemble de XPSL3R(Σ) paramétrise les structure projectives réelles
convexes sur Σ [29].

– XG(Σ) s’identifie à l’espace des modules de connexions plates sur les G-fibrés prin-
cipaux à base Σ. Ainsi, il joue le rôle d’un espace des phases dans la théorie de
Yang-Mills en dimension 2 [7].

– Lorsque G est un groupe de Lie réel semi-simple déployé, pour une composante
connexe XH

G(Σ) de XG(Σ) découverte par Hitchin [32, 33], des structrues très riches
ont été révélé dans la dernière décennie par plusieurs auteurs [15, 38, 39, 25], avec
des méthodes totalements différentes. Fock-Goncharov [25] et Labourie-McShane [41]
proposent le nom espace de Teichmüller généralisé (higher Teichmüller space) pour
XG(Σ) dans ce cas.

La première partie de ce texte porte sur l’étude de la structure de Poisson sur XG(Σ).
Les travaux présentés ici trouvent leur origine dans une collaboration avec Yuichi Kabaya
sur l’espace de Teichmüller généralisé en printemps 2012, au cours duquel nous avons besoin
de savoir si cette structure de Poisson coïncide avec une autre structure introduite par Fock
et Goncharov. Nous abordons ce problème en utilisant les structures quasi-Poisson. Nous
renvoyons aux §0.1 et §0.2 pour une présentation plus détaillée.

La deuxième partie présente un travail effectué dans la première année de cette thèse
et mis en œuvre dans [48]. Il s’agit d’une probématique très différente. Nous renvoyons à
§0.3 pour une présentation de cette partie.

0.1 Motivation : structure de Poisson d’Atiyah-Bott
Au début des année 1980, Atiyah et Bott [7] ont donné une impulsion à la théorie

de Yang-Mills en construisant une structure symplectique sur XG(Σ) lorsque ∂Σ = ∅ et
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qu’un produit scalaire invariant (· | ·) est prescrit sur l’algèbre de Lie g. Puis il est bien
connu que si le bord de Σ est non-vide, cette structure symplectique se généralise en une
structure de Poisson.

Malgré son importance théorique, la structure symplectique d’Atiyah-Bott est difficile
à manipuler car il s’agit d’une réduction symplectique depuis la variété de dimension
infinie de toutes les connexions plates. Goldman [26, 27] a jeté un nouvel éclairage à cette
structure en l’interprétant par la forme d’intersection dans la cohomologie tordue de π1(Σ),
qui est un objet de dimension finie. Ce point de vue lui permettait de montrer notamment
une formule de crochet de Poisson pour certaines fonctions sur XG(Σ).

0.1.1 Formule de Goldman

Désignons par s ∈ (S2g)g le dual du produit scalaire invariant (· | ·). Pour une fonction
f ∈ C∞(G) invariante par conjugaison et un lacet α sur Σ, nous définissons la fonction de
Goldman fα ∈ C∞(XG(Σ)) par

fα([m]) = f(m([α])), ∀m ∈ Hom(π1(Σ, v), G),

où [α] désigne la classe de conjugaison dans π1(Σ) portée par α. La formule de Goldman
[27] donne le crochet de Poisson pour deux telles fonctions fα et hβ, sous l’hypothèse que
α et β soient transverses :

{fα, hβ}(m) =
∑

q∈α∩β
εq(α, β)

〈
dLf(m(αq))⊗ dLh(m(βq)), s

〉
.

Les notations sont expliquées ci-dessous :
– 〈·, ·〉 désigne le couplage entre g∗ ⊗ g∗ et g⊗ g ;
– εq(α, β) = ±1 est l’indice d’intersection algébrique de α et β au point q ;
– nous definissons l’application dLf : G→ g∗ en ramenant chaque covecteur dgf ∈ T∗gG
à T∗eG = g∗ par translation à gauche. De même, on définit dRf en utilisant la
translation à droite. Remarquons que l’invariance de f implique que dLf = dRf est
G-équivariante (par rapport à l’action par conjugaison et l’action coadjointe). Plus
bas nous allons néanmoins reprendre ces notations pour f quelconque.

– αq désigne l’élément dans π1(Σ, q) porté par α. Nous définissons m(αq) en identifiant
π1(Σ, q) avec π1(Σ, v) par un chemin reliant q et v. Remarquons que m(αq) dépend
du choix de ce chemin mais dLf(m(αq))⊗ dLh(m(βq)) ∈ g∗ ⊗ g∗ n’en dépend pas.

En particulier, si G = GLnR et g = glnR est muni du produit scalaire standard
(x | y) = Tr(xy), pour la fonction de trace f = h = Tr on obtient

{Trα,Trβ} =
∑

q∈α∩β
εq(α, β) Trα#β .

Le lacet α#β := αqβq est dessiné ci-dessous.
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Cette dernière formule suggère de définir un crochet de Lie [α, β] :=
∑
q∈α∩β α#qβ

sur l’espace vectoriel L(Σ) engendré par toutes les classes d’homotopie libre de lacets.
L’algèbre de Lie ainsi obtenue est appelée l’algèbre de Goldman.

Une généralisation de la formule de Goldman à une classe plus large de fonctions, dite
spin network, a également été étudiée [9, 52].

0.1.2 Structures quasi-Poisson sur l’espace des modules de connexions
plates

Deux nouvelles interprétations de la structure de Poisson d’Atiyah-Bott qui n’utilisent
que des constructions de dimension finie sont apparues au début des années 1990. La
première, due à V. Fock et A. Rosly [24], repose sur la théorie de jauge sur réseau et
utilise les r-matrices classiques sur g. La deuxième, due à A. Alekseev, E. Meinrenken et
A. Malkin [6], est inspirée par la théorie d’application moment pour le groupe de lacet LG
[46]. Cette deuxième a été élaboré par Alekseev, Meinrenken et Y. Kosmann-Schwarzbach
et donne lieu à une théorie de variété quasi-Poisson.

David Li-Bland et Pavol Ševera ont récemment donné dans [42] une nouvelle formula-
tion de la théorie quasi-Poisson, qui est plus générale que les versions antérieures, dont il
découle notamment que la première et la deuxième approche ci-dessus sont essentiellement
équivalentes. Notre exposé dans cette thèse est basé sur leur formulation.

Voici un résumé de la théorie quasi-Poisson. Supposons que Σ est à bord non-vide.
Soit V ⊂ ∂Σ un ensemble fini de points marqués. Rappelons que le groupoïde funda-
mental π1(Σ, V ) consiste en toutes les classes d’homotopie de chemins orientés sur Σ
reliant les points dans V . Le groupe GV agit naturellement sur l’espace des représen-
tations MG(Σ, V ) = Hom(π1(Σ, V ), G), et le quotient s’identifie à XG(Σ, V ). Pour tout
α ∈ π1(Σ, V ), nous désignons par holα : MG(Σ, V )→ G l’application d’holonomie le long
de α, qui envoie m ∈MG(Σ, V ) sur m(α) ∈ G.

Etant donné s ∈ (S2g)g, on peut construire de façon canonique une structure quasi-
Poisson sur MG(Σ, V ), qui induit par réduction la structure de Poisson d’Atiyah-Bott sur
XG(Σ). Autrement dit, on a une application bilinéaire anti-symmetrique

{·, ·} : C∞(MG(Σ, V ))× C∞(MG(Σ, V ))→ C∞(MG(Σ, V )),

qui satisfait la loi de Leibniz et une identité quasi-Jacobi

{{f1, f2}, f3}+ {{f3, f1}, f2}+ {{f2, f3}, f1} = −1
2ρφ(df1, df2, df3),

où φ ∈
∧3(gV ) est donné par s de façon canonique et ρφ désigne le champs de trivecteur

sur MG(Σ, V ) induit par φ et l’action de GV . De plus, la restriction de {·, ·} aux fonctions
invariantes C∞(MG(Σ, V ))GV = C∞(XG(Σ)) coïncide avec le crochet de Poisson d’Atiyah-
Bott.

0.1.3 Structure de Poisson de Fock-Goncharov

En généralisant la notion d’espace de Teichmüller décoré de R. Penner, V. Fock et A.
Goncharov [25] ont introduit dans l’étude de XG(Σ) de nouvelles idées provenant de la
théorie des algèbres amassées, sous l’hypothèse que Σ soit à bord non-vide et G soit une
groupe de Lie réel semi-simple déployé. Dans le case G = PSLnR, ils ont décrit notamment
un système de coordonnéss et une structure de Poisson sur un certain revêtement fini de
XG(Σ).
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Plus précisement, soit B ⊂ G un sous-groupe de Borel et F = G/B la variété de
drapeaux. Prenons un ensemble fini W ⊂ ∂Σ et posons Σ̂ = Σ \W . Une connexion plate
avec ossature (framed flat connection) est une paire (∇, f), où ∇ est une connexion plate
sur un G-fibré principal P → Σ̂ et f est une B-réduction plate sur ∂Σ \W , c’est-à-dire
un choix d’une B-orbite f(q) dans P |q pour tout q ∈ ∂Σ \W , telle que ∇ translate f(q1)
à f(q2) dès que q1 et q2 se trouvent dans la même composante de ∂Σ \W .

Désignons par X
G,Σ̂ l’espace des modules de connexions plates avec ossature. En par-

ticulier, pour le disque D et un sous-ensemble W ⊂ ∂D de cardinal N , X
G,D̂ s’identifie à

l’espace des configurations de N drapeaux

ConfN (F) =
(
F × · · · × F︸ ︷︷ ︸

N

)
/G.

D’autre part, si W est vide (alors Σ̂ = Σ), un ouvert X reg
G,Σ ⊂ XG,Σ s’identifie à un

revêtement fini d’un ouvert dans XG(Σ).
Fock et Goncharov associent, à chaque graphe trivalent Γ aux sommets W tel que Σ

rétracte sur Γ par déformation, un système de coordonnés (Xi)i∈I de XPSLnR,Σ̂
. Ici chaque

Xi : XPSLnR,Σ̂
→ R est une fonction rationelle 1 et I provient de Γ de façon combinatoire.

Ils définissent ensuite une structure de Poisson {·, ·}FG sur XPSLnR,Σ̂
en déclarant

{Xi, Xj}FG = εijXiXj (1)

pour tout i, j ∈ I, où εij = 0,±1 est une constante combinatoire .
Pour des raisons techniques, nous considérons, à la place de XPSLnR,Σ̂

, son revêtement
fini XSLnR,Σ̂

, et travaillons avec les relevés de Xi et {·, ·}FG à XSLnR,Σ̂
. Ceci ne change

pas grand-chose. On se demande alors

Question 1. Lorsque W = ∅, la structure de Poisson {·, ·}FG coïncide-elles avec la struc-
ture de Poisson d’Atiyah-Bott relevée à X reg

SLnR,Σ ? Plus généralement, pour W arbitraire,
peut-on obtenir {·, ·}FG par réduction de Poisson ?

0.1.4 Algèbre d’échange

Comme mentioné plus haut, XSLnR,D̂
est l’espace des configurations de N drapeaux

dans l’espace projective réel Pn−1. En général, XSLnR,Σ̂
peut être vu comme un “espace

des configurations tordues”.
A travers des travaux de F. Labourie [38, 39, 40], les espaces de configurations de

drapeaux interviennent également dans l’étude de XSLnR(Σ) quand Σ est fermé : soit
∂∞π1(Σ) le bord du groupe fondamental, c’est-à-dire le cercle ∂D muni de l’action de
π1(Σ) donnée par une hyperbolisation de Σ. Il est montré dans [38] que pour chaque re-
présentation m : π1(Σ) → SLnR dans la composante de Hitchin XH

SLnR(Σ), il existe une
application Hölder équivariante ∂∞π1(Σ)→ Pn−1 qui admet une courbe des drapeaux os-
cillants fm : ∂∞π1(Σ)→ F . On peut donc considérer un point dans XH

SLnR(Σ) comme une
configuration d’un nombre infini de drapeaux. On définit ensuite, pour chaque quadruple
x, y, z, w ∈ ∂∞π1(Σ), une fonction [x, y, z, w] sur XH

SLnR(Σ) dont le valeur au point [m] est
le birapport 2 [fm(x), fm(y), fm(z), fm(w)]. Les crochets de Poisson entre telles fonctions

1. Donc plus précisement (Xi)i∈I est un système de coordonnés d’un ouvert à complément négligeable
dans XPSLnR,Σ̂.

2. Il s’agit ici le birapport de quatre drapeaux, qui généralise le birapport classique de quatre points
dans P1, c.f. §3.1.3.
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sont étudiés dans [40], et donnent lieu à une algèbre de Poisson Z(∂∞π1(Σ)) similaire à
celle de Goldman, dite l’algèbre d’échange (swapping algebra).

Evidemment, la fonction [x, y, z, w] peut être définie non seulement sur XH
SLnR(Σ), mais

plus généralement sur n’importe lequel espace de configurations de drapeaux ConfV (F) =
Map(V,F)/G, où V est un ensemble quelconque et x, y, z, w ∈ V . On peut aussi définir
l’algèbre d’échange Z(V ) pour n’importe lequel sous-ensemble du cercle V ⊂ ∂D.

0.1.5 Quantification par déformation

Soit A une algèbre commutative associative sur R et A[[~]] l’espace des séries entières
formelles à coefficient dans A et à indéterminée ~. Rappelons qu’un star-produit sur A est
une application linéaire ? : A⊗A→ A[[~]] telle que

– ? s’écrit sous la forme

a ? b = ab+ ~θ1(a, b) + ~2θ2(a, b) + · · · ,

où ab est le produit commutative de a et b dans A, tandis que chaque θi est une
application linéaire A⊗A→ A.

– le morphisme de R[[~]]-modules A[[~]]⊗R[[~]]A[[~]]→ A[[~]] qui étend ? est un produit
associatif sur A[[~]].

Cette dernière condition implique que {a, b} = θ1(a, b) − θ1(b, a) définit un crochet de
Poisson sur A. Le star-produit ? est appelé une quantification de {·, ·}.

Considérons l’algèbre tensorielle symétrique de l’algèbre de Goldman A = SL(Σ). Le
crochet de Lie sur L(Σ) s’étend en un crochet de Poisson sur A de façon unique. Turaev
[54] a interprété une quantification de ce crochet dans le cadre de la théorie des nœuds :
il identifie A[[~]] au module d’écheveau de Σ× [0, 1], c’est-à-dire le R[[~]]-module engendré
par les entrelacs dans Σ× [0, 1] modulo certaines relations, de sorte que le star-produit de
deux entrelacs est obtenu par superposition du premier au-dessus du deuxième. Ph. Roche
et A. Szenes [52] ont généralisé cette quantification aux spin networks.

D’autre part, la notion de star-produit a été généralisée dans le cadre des variétés
quasi-Poisson par B. Enriquez et P. Etingof [22]. Tandis que l’associativité d’un star-
produit usuel implique l’identité de Jacobi pour sa limite classique, une quantification
d’un crochet quasi-Poisson doit être un star-produit quasi-associatif par rapport à un
associateur Φ ∈ U(g)⊗3[[~]] au sense de Drinfeld [20]. Cette quasi-associativité implique
l’identité quasi-Jacobi.

Pour une classe particulière de variété quasi-Poisson, à savoir, celles qui proviennent de
l’equation de Yang-Baxeter dynamique, les quantifications ont été bien étudiées [22, 23, 4].
D’autre part, en adaptant la méthode célèbre de M. Kontsevich [37], G. Halbout [31] a
construit une quantification pour toute variété quasi-Poisson où l’action du groupe de Lie
est libre.

0.2 Les principaux résultats de la Partie I

Voici une observation fondamentale qui relie la structure de Poisson de Fock-Goncharov
et la théorie de jauge quasi-Poisson :

Proposition 0.1 (Sommaire de §3.2). Soit V ⊂ ∂Σ un ensemble de points marqués qui
a exactement un point dans chaque composante de ∂Σ \ W . Alors X

G,Σ̂ s’identifie au
quotient d’une certaine sous-variété L de MG(Σ, V ) par un certain sous-groupe G′ ⊂ GV .
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En particulier, si W intersecte chacune des composantes de ∂Σ, alors L = MG(Σ, V ) et
G′ = BV .

De plus, si G = SLnR, prenons un graphe trivalent Γ comme ci-dessus, alors il y a
une famille des fonctions ∆j ∈ C∞(L) telle que chaque Xi (relevé à L) s’écrit comme une
fraction des ∆j.

Ainsi, la question 1 ci-dessus se ramène au problème de calculer les crochets quasi-
Poisson de toute paire ∆i,∆j. Ceci nous a amené à la découverte d’une formule de Goldman
quasi-Poisson.

Rappelons que Fock et Goncharov [25] ont considéré un autre espace noté par A
G,Σ̂

et certaines fonctions qui portent la même notation ∆j qu’ici. En fait, les rôles joué par
MG(Σ, V ) et par A

G,Σ̂ sont similaires, bien qu’il s’agisse de deux espace différents.

0.2.1 Formule de Goldman quasi-Poisson

Etant donnée une fonction f ∈ C∞(G) et un chemin orienté α reliant les points dans
V , nous posons fα := f(holα) ∈ C∞(MG(Σ)). Nous avons mis en œuvre dans l’article [49]
une généralisation de la formule de Goldman, qui calcule les crochets quasi-Poisson entre
toutes les fonctions du type fα. Citons la formule obtenue :

Théorème A (Un cas particulier du Theorem 2.6). Fixons s ∈ (S2g)g et considérons
le crochet quasi-Poisson {·, ·} sur C∞(MG(Σ, V )) par rapport à s. Supposons que α soit
transverse à β, alors

{fα, hβ} =
∑

q∈α∩β\∂Σ
εq(α, β)

〈
dLf(holα)⊗ dRh(holβ),

(
1⊗Adholβ∗qα

)
s
〉

+ 1
2
∑
i,j

ε(αi, βj)
〈
dif(holα)⊗ djh(holβ), s

〉
.

Expliquons les notations :
– les applications dLf, dRf : G→ g∗ sont définies comme précédemment ;
– dans la dernière somme, i et j parcourtent les deux symboles L et R ;
– αL (resp. αR) désigne la première (resp. la seconde) moitié de α, où on sépare α en

deux à n’importe lequel point au milieu ;
– si αi et βj ont une extrémité commune v ∈ V , alors ε(αi, βj) = ±1 est par définition
l’indice d’intersection algébrique de αi et βj au point v ; sinon, on met ε(αi, βj) = 0.

– β ∗q α désigne le chemin qui part de l’origine de α, parcourt α jusqu’au point q, puis
transfère à β et termine au point final de β.

Au cours de la rédaction de l’article mentionné ci-dessus, Anton Alekseev et Pavol Še-
vera nous ont communiqué deux travaux simultanés indépendants qui traitaient la même
problématique : G. Massuyeau et V. Turaev [44] ont établi, avec une méthode très diffé-
rente, la même formule au cas particulier où G = GLnR et #V = 1, tandis que D. Li-Bland
et P. Ševera [42] ont montré une formule plus générale que la nôtre en considérant une
classe plus large de fonctions, à savoir, les spin networks généralisés. Cependant, comme
mentionné plus haut, la théorie quasi-Poisson pour les connexions plates est essentielle-
ment équivalente à la théorie de Fock et Rosly [24], tous ces résultats sont donc plus ou
moins équivalents à une formule de Fock et Rosly 3.

Dans ce texte nous choisissons de présenter la formule de Li-Bland et Ševera (Theorem
2.6) et leur démonstration dans [42], puisqu’ils suivent la même idée que la nôtre [49] avec
des arguments plus simples sur certains points clefs.

3. Cette dernière, implicite dans l’article de Fock et Rosly [24], a été explicitée par M. Audin [8].
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0.2.2 Struture de Poisson de Fock-Goncharov via réduction quasi-Poisson

Alekseev, Meinrenken et Kosmann-Schwarzbach [3] ont généralisé le Cross-section
Theorem de Guillemin et Sternberg concernant les actions hamiltoniennes dans le contexte
des variétés quasi-Poisson. Cette généralisation nous permet de conclure que la sous-variété
L ⊂ MG(Σ) mentionnée dans la Proposition 0.1 admet une structure quasi-Poisson. De
plus, Théorème A s’adapte à L pour calculer le crochet des restrictions de fα et f ′β à L.
Nous en déduisons aussi les expressions expicites de crochets quasi-Poisson des ∆i puis
des Xi, et donnons enfin une réponse positive à la question 1.

Théorème B (Theorem 3.23). La structure de Poisson {·, ·}FG sur XSLnR,Σ̂
coïncide

avec celle donnée par la réduction quasi-Poisson depuis L. En particulier, quand W = ∅,
{·, ·}FG coïncide avec la structure de Poisson d’Atiyah-Bott relevée à X reg

SLnR,Σ.

0.2.3 Algèbre d’échange via réduction quasi-Poisson

Comme un sous-produit de la méthode ci-dessus, nous obtenons

Proposition 0.2 (§2.2, §3.1). Soit V ⊂ ∂D un ensemble fini, alors l’algèbre d’échange
Z(V ) est une sous-algèbre de l’algèbre quasi-Poisson C∞(MG(D, V )) de façon canonique.

En particulier, considérons les fonctions [x, y, z, w] (x, y, z, w ∈ V ) sur ConfV (F) =
MG(D, V )/BV mentionnées plus haut, alors les crochets de Poisson entre eux donnés
l’algèbre d’échange coïncide avec ceux donné par la réduction quasi-Poisson.

Nous n’allons pas donner une preuve explicite de cette proposition car il se découle
aisément de §2.2 et de §3.1 plus bas.

La réduction quasi-Poisson fournit une structure de Poisson non seulement sur l’espaces
des configurations de drapeaux, mais sur une classe plus large d’espaces de configurations,
c.f. §3.1. Pour certains d’entre eux, une structure de Poisson a été construite de manière
différente. Il est naturel de comparer ces structrures. Nous en discuterons dans §3.4.

0.2.4 Quantifications de MG(Σ, V )

Nous exhibons une quantification de la variété quasi-Poisson MG(Σ, V ).

Théorème C (Version grossière de Proposition 4.23). Si un associateur Φ ∈ U(g)⊗3[[~]]
satisfait S⊗3(Φ) = Φ (où S désigne l’application antipode de U(g)), alors la variété quasi-
Poisson MG(Σ, V ) admet une Φ-star-produit explicite qui dépend de certaines données
initiales.

Ce théorème est motivé par la quantification de Turaev évoqué ci-dessus. Nous espérons
établir un lien analogue entre la quantification ici et la théorie des nœuds. Théorème C
n’est qu’un premier pas vers cette perspective. Nous souhaitons revenir à ce problème à
l’avenir.

0.3 Présentation de la Partie II

Comme mentionné au début, un sous-ensemble de XPSL3R(Σ) paramétrise certaines
structures projectives réelles sur Σ. On a en fait la même propriété pour les variétés
fermées de dimension quelconque. La deuxième partie de ce texte est consacrée à l’étude
géométrique de ces structures projectives.
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0.3.1 Structures projectives convexe et ensemble de Tits

Soit Pn l’espace projectif réel de dimension n. Une structure projective (réelle) sur une
variété M (ou plus généralement un orbifold) est un atlas dont chaque carte identifie un
ouvert dansM avec un ouvert dans Pn et les changements de cartes sont des transformation
projectives.

Une classe de structures projectives largement étudiée est donné par la construction
suivante. Un ouvert Ω ⊂ Pn est dit proprement convexe si Ω est un convexe borné dans
une carte affine Rn ⊂ Pn. Soit X = X̃/Π un orbifold, où Π désigne un groupe agissant
discrètement sur la variété X̃. Une structure projective convexe sur X consiste en une
repŕesentation fidèle ρ : Π → PGLn+1R et un ouvert proprement convex Ω ⊂ Pn tels
qu’on a un difféomorphisme ρ-equivariante X̃ → Ω. L’ouvert Ω est aussi dit un convexe
divisible.

Il est bien connu que Ω est déterminé par ρ à dualité près. Donc nous définissons
l’espace des modules de structures projectives convexes sur X comme le sous-ensemble
dans l’espace des classes d’équivalence de représentations

P(X) ⊂ Hom(Π,PGLn+1R)/PGLn+1R

formé par tout ρ ∈ Hom(Π,PGLn+1R) qui vient d’une structure projective convexe. Y.
Benoist [12] a montré que P(X) est ouvert et fermé dans Hom(Π,PGLn+1R)/PGLn+1R.
W. Goldman [29] a montré que pour une surface fermé Σ de genre g ≥ 2, P(X) est
homeomorphe à R16g−16.

Dans cette thèse nous étudions le cas où X est un orbifold de Coxeter hyperbolique
simplicial , c’est-à-dire X = Hn/Γ, où Hn est l’espace hyperbolique de dimension n et
Γ ⊂ Isom(Hn) est engendré par les réflexions par rapport aux faces d’un simplexe P ⊂ Hn

de sorte que P est un domaine fondamental de l’action de Γ sur Hn. Un tel group Γ est
déterminé (à conjugaison près) par un diagramme de Coxeter hyperbolique J . Désignons
X par XJ si Γ vient de J .

En identifiant Hn avec une boule dans Pn et Isom(Hn) avec le groupe des transfor-
mations projectives préservant cette boule (i.e., le modèle de Beltrami-Klein de Hn), on
obtient une structure projective convexe tautologique sur XJ . J. Tits ont donné un critère
assez général pour déterminer si un groupe engendré par des réflexions projectives donne
lieu à un convexe divisible, donc on appelle un tel convexe un ensemble de Tits. Nous
déduisons du critère de Tits que

P(XJ) ∼=
{

R>0 si J contient une boucle,
un point sinon.

Puis nous étudions la comportement asymptotique de cette famille de structure projective.

Proposition (Proposition 5.5). Soit P un simplexe dans Pn. Prenons un diagramme de
Coxeter hyperbolique J comme ci-dessus tel que P(XJ) ∼= R>0. Alors il existe une famille
à une paramètre de representations {ρt}t∈R>0 de Γ dans PGLn+1R telle que

(1) ρt(Γ) est engendré par des réflexions projectives par rapport aux faces de P .
(2) L’application R>0 → P(XJ), t 7→ [ρt] is bijective.
(3) Soit Ωt l’ensemble de Tits associé à ρt, alors Ωt tend vers P pour la topologie de

Hausdorff, lorsque t tend vers 0 ou +∞. c.f. Figure 5.2.
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0.3.2 Métrique de Hilbert et entropie

Tout ouvert proprement convexe Ω ⊂ Pn porte une métrique Finslerienne canonique
dΩ, dite la métrique de Hilbert. Nous renvoyons à §5.2.1 pour la définition. Si Ω est un
ellipsoïde alors (Ω, dΩ) est isométrique à l’espace hyperbolique Hn.

Soit dt la métrique de Hilbert sur l’ensemble de Tits Ωt donné par la proposition pré-
cédente, au cas où J contient une boucle. Considérons la quantité suivante, dite l’entropie
de Ωt :

δt = lim
R→+∞

1
R

log #Γx0 ∩Bdt(x0, R),

où Bdt(x0, R) désigne la boule à rayon R centré à x0 ∈ Ωt par rapport à la métrique dt. Il
est connu que cette dernière limite existe et ne dépend pas de x0. De plus, une adaption
d’un résultat de A. Manning [43] implique que δt égale à l’entropie topologique du flot
géodésique de Ωt/ρt(Γ) (un flot de billard dans le fibré tangent unitaire de P ).

M. Crampon [17] a montré que l’entropie du flot géodésique d’une variété projective
convexe de dimension n est majorée par n− 1, où le maximun est atteint si et seulement
si Ω est un ellipsoïde. Puis il a demandé si l’entropie admet une borne inférieure.

Le résultat principal de la deuxième partie de cette thèse donne une réponse négative :

Théorème D. δt tend vers 0 lorsque t tend vers 0 ou +∞.

Rappelons que pour un espace métrique (X, d), la systole est l’infimum des longeures de
courbes homotopiquement non-nulles. Soit X̃ le revêtement universel de X. La constante
d’hyperbolicité de Gromov est par définition le supremum des tailles de triangles géodé-
siques dans X̃, où la taille T (∆) d’une triangle ∆ aux arêtes I1, I2, I3 est définie par

T (∆) = min
xi∈Ii

diamètre({x1, x2, x3})

La démonstration de Théorème D implique

Corollaire. Pour toute surface fermé de genre g ≥ 2, il existe une famille à un paramètre
de structures projectives convexes dont l’entropie du flot géodésique tend vers 0, la systole
et la constante d’hyperbolicité de Gromov tendent vers +∞ lorsque le paramètre tend vers
infini.
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Chapter 1

Quasi-Poisson lattice gauge theory

In this chapter we give a self-contained presentation of Li-Bland and Ševera’s version
[42] of the quasi-Poisson lattice gauge theory [6, 3, 24], as well as some necessary prelim-
inaries. §1.1 is a quick review of basic definitions and constructions about quasi-Poisson
structure. After giving in §1.2 some backgrounds about flat G-connections over surfaces,
we construct in §1.3 the main objet of study in the quasi-Poisson lattice gauge theory
a quasi-Poisson structure on MG(Σ, V ), and discuss its relationship with the Fock-Rosly
construction. Finally we discuss in §1.4 an important aspect of quasi-Poisson theory which
is omitted in §1.1, namely, moment maps and cross-section.

1.1 Quasi-Poisson manifolds

1.1.1 Schouten brackets

Let M be a smooth manifold and C∞(
∧• TM) =

⊕dimM
k=0 C∞(

∧k TM) be the exterior
algebra of multi-vector fields on M .

The Lie bracket of vector fields

[·, ·] : C∞(TM)⊗ C∞(TM)→ C∞(TM)

extends to the Schouten bracket

[·, ·] : C∞(∧•TM)⊗ C∞(∧•TM)→ C∞(∧•TM),

which is characterized by the following properties (see e.g. [21] Theorem 2.1)

[C∞(∧aTM), C∞(∧bTM)] ⊂ C∞(∧a+b−1TM),
[A,B] = (−1)(a−1)(b−1)[B,A],
[[A,B], C] + (−1)(a−1)(b+c−2)[[B,C], A] + (−1)(c−1)(a+b−2)[[C,A], B] = 0,
[A,B ∧ C] = [A,B] ∧ C + (−1)(a−1)bB ∧ [A,C],
[X,B] = LXB if X ∈ C∞(TM).

where A,B,C are multi-vector fields of degree a, b, c, respectively.
In particular, if P ∈ C∞(

∧2 TM), put {f, g} = P (df, dg) (∀f, g ∈ C∞(M)), then

[P, P ](df, dg, dh) = −2 	 {{f, g}, h}. (1.1)

where 	 stands for the summation over cyclic permutations of f, g and h.
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A Poisson tensor on M is a bivector field P ∈ C∞(
∧2 TM) satisfying [P, P ] = 0.

Equivalently, it is a Poisson bracket {·, ·} on C∞(M), i.e., a Lie bracket satisfying the
Leibniz rule.

For any Lie algebra g, the Lie bracket also extends to an algebraic Schouten bracket
[·, ·] :

∧• g⊗∧• g→ ∧• g with similar properties.

1.1.2 Quasi-Poisson manifolds

Let g be a Lie algebra. An action ρ of g on M (i.e. a homomorphism of Lie algebras
g → C∞(TM), x 7→ ρx) extends to a homomorphism

∧• g → C∞(
∧• TM), ξ → ρξ

preserving Schouten brackets.
Recall that g acts on g⊗k in the usual way

x.(y1 ⊗ · · · ⊗ yk) = [x, y1]⊗ y2 ⊗ · · · ⊗ yk + · · ·+ y1 ⊗ · · · ⊗ yk−1 ⊗ [x, yk].

We let (S2g)g denote g-invariant elements in S2g ⊂ g ⊗ g. Here “invariant” means anni-
hilated by any x ∈ g.

Let (xi) be a basis of g and (ckij) be the structure constants of g defined by [xi, xj ] =
ckijxk. Then s ∈ (S2g)g has the expression 1

s = sijxi ⊗ xj

with (sij) satisfying sij = sji and ciklslj + cjkls
lj = 0.

There is a canonical g-invariant trivector φ ∈ (
∧3 g)g ⊂ g ⊗ g ⊗ g associated with s,

defined by
φ(α, β, γ) = 1

2γ([s](α), s](β)]), ∀α, β, γ ∈ g∗,

where s] : g∗ → (g∗)∗ = g is the map α 7→ s(α, ·). In coordinates we have

φ = 1
12c

i
pqs

pjsqkxi ∧ xj ∧ xk.

Definition 1.1. Given a g-manifold M and s ∈ (S2g)g, a quasi-Poisson (g, s)-tensor on
M is a g-invariant bivector field P ∈ C∞(

∧2 TM) satisfying

[P, P ] = ρφ.

If P is a quasi-Poisson (g, s)-tensor, then we called the pair (M,P ) a quasi-Poisson
(g, s)-manifold and the skew-symmetric bilinear map

{·, ·} : C∞(M)× C∞(M)→ C∞(M), {f, g} := P (df, dg)

a quasi-Poisson bracket.

Because of Eq.(1.1), one can alternatively define a quasi-Poisson manifold as a g-
manifold M such that C∞(M) is equipped with a quasi-Poisson bracket, i.e., a skew-
symmetric bilinear map satisfying the Leibniz rule and a quasi-Jacobi identity

− 2 	 {{f, g}, h} = ρφ(df, dg, dh). (1.2)

1. Here and below, we take the sum over repeated indices.
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We will often encounter manifolds equipped with an action of the direct sum gn of n
copies of g. We let

s(n) = s⊕ · · · ⊕ s ∈ S2g⊕ · · · ⊕ S2g ⊂ S2(gn)

be the direct sum of n copies of s. In coordinates we have

s(n) =
n∑
r=1

sijxi(r)⊗ xj(r),

where
xi(r) = (0, · · · , xi︸︷︷︸

r−th
, · · · , 0) ∈ gn.

The canonical invariant element in
∧3 gn associated to s(n) is

φ(n) = 1
12

n∑
r=1

cipqs
pjsqkxi(r) ∧ xj(r) ∧ xk(r),

namely, the direct some of n copies of φ.
An obvious way of constructing new quasi-Poisson manifolds from old ones is to take

the direct product. Say, if (M1, P1) and (M2, P2) are quasi-Poisson (g, s)-manifolds then
(M1×M2, P̃1 +P̃2) is a quasi-Poisson (g2, s(2))-manifold. Here P̃1 (resp. P̃2) is the bivector
field whose restriction to each slice M1 × {m} (resp. {m} ×M2) is P1 (resp. P2).

In the next subsection, we shall explain a less trivial way of constructing new quasi-
Poisson manifolds.

1.1.3 Fusion

Definition 1.2. Let g and h be Lie algebras and ρ be a gn ⊕ h-action on a manifold M .
Then the diagonal embedding

g⊕ h ↪→ gn ⊕ h, (x, y) 7→ (x, · · · , x, y)

induces an action ρ∗ of g⊕ h on M . We call ρ∗ the fusion of ρ at the g-factors. Fusion of
Lie group actions is defined in the same way.

Given s ∈ (S2g)g, we put

ψ = 1
2s

ijxi(2) ∧ xj(1) ∈ ∧2(g⊕ g).

One can check that ψ is independent of the basis (xi). We also consider ψ as an element
in
∧2(g⊕ g⊕ h) via the embedding g⊕ g ↪→ g⊕ g⊕ h.

Definition/Proposition 1.3. Take s ∈ (S2g)g and t ∈ (S2h)h. Let M be a manifold
equipped with an action ρ of g⊕ g⊕ h. Let P ∈ C∞(

∧2 TM) be a quasi-Poisson (g⊕ g⊕
h, s⊕ s⊕ t)-tensor. Put

P ∗ = P + ρψ.

Then P ∗ is a quasi-Poisson (g⊕h, s⊕t)-tensor, called the fusion of P at the two g-factors.
Here the action ρ∗ of g⊕ h on M is the fusion of ρ.
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The fusion operation of quasi-Poisson tensors is not commutative in the sense that in
the definition of ψ the role of the two g-factors are asymmetric. However, it is associative
in the following sense: for a quasi-Poisson (gn⊕h, s(n)⊕t)-tensor P we can apply fusion for
n− 1 times, each time applying to two adjacent g-factors, and finally get a quasi-Poisson
(g ⊕ h, s ⊕ t)-tensor P ′ (where the g ⊕ h action on M is the fusion of the gn ⊕ h-action).
Then P ′ does not depend on where we apply fusion at each times. Indeed, P ′ always has
the expression

P ′ = P + ρψ′ , ψ′ = 1
2
∑
k>l

sijxi(k) ∧ xj(l) ∈ ∧2gn ⊂ ∧2(gn ⊕ h). (1.3)

Proof. We need to show [P ∗, P ∗] = ρ∗φ. On one hand,

[P ∗, P ∗] = [P, P ] + [ρψ, ρψ] + 2[P, ρψ] = ρφ(2) + ρ[ψ,ψ] = ρ(φ(2)+[ψ,ψ])

([P, ρψ] = 0 because P is invariant under ρ). We have

φ(2) + [ψ,ψ] = 1
12c

i
pqs

pjsqk
[
xi(1) ∧ xj(1) ∧ xk(1) + xi(2) ∧ xj(2) ∧ xk(2)

]
+ 1

4c
i
pqs

pjsqk
(
xi(1) ∧ xj(2) ∧ xk(2) + xi(1) ∧ xj(2) ∧ xk(2)

)
.

On the other hand, by definition of ρ∗ we have ρ∗φ = ρι(φ), where ι is induced by the
diagonal embedding g→ g⊕ g. We have

ι(φ) = 1
12c

i
pqs

pjsqk[xi(1) + xi(2)] ∧ [xj(1) + xj(2)] ∧ [xk(1) + xk(2)].

From these equalities we see that φ(2) + [ψ,ψ] = ι(φ). The required equality [P ∗, P ∗] = ρ∗φ
follows.

Remark 1.4. As a particular instance, given quasi-Poisson (g, s)-manifolds (M1, P1) and
(M2, P2), let (M1×M2, P

∗) be the quasi-Poisson (g, s)-manifold obtained by first perform-
ing direct product and then fusion. (M1 ×M2, P

∗) is called the fusion product of the two
quasi-Poisson manifolds.

Example 1.5. Let G×G acts on G by a (g,h)7−→ gah−1. It follows from g-invariance of the
trivector φ that

ρφ = φL − φR = 0,

so the trivial bivector field P = 0 is a (g2, s(2))-quasi-Poisson structure for any s.

One can construct new examples from this one by taking direct product of several
copies and then applying fusions. Actually, these are all the quasi-Poisson manifolds
which concerns us in this thesis. The simplest one of such examples is the fusion (G,P ∗),
where

P ∗ = 1
2s

ijxR
i ∧ xL

j ∈ C∞(∧2TG)

is a quasi-Poisson (g, s)-tensor with respect to the conjugation action of G on itself.
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1.1.4 Reduction

By reduction we mean using a specific structure on a G-manifold M to produce a cor-
responding structure on the quotient X = M/G. When M has a quasi-Poisson structure,
we expect a Poisson structure on X.

However, some caution is needed because X is not necessarily a manifold, even not
necessarily Hausdorff if G is not compact. Rather than singling out a smooth part of X,
we shall formally treat the algebra C∞(M)G of G-invariant functions onM as the “algebra
of functions” of M , and sometimes denote it simply by C∞(X). By a Poisson structure
on X is meant a Poisson bracket on this algebra. If M◦ ⊂M is a G-invariant open subset
such that X◦ = M◦/G is a smooth manifold, then such a Poisson bracket descends to a
genuine Poisson structure on X◦.

The quasi-Jacobi identity (1.2) implies

Definition/Proposition 1.6. For any quasi-Poisson (g, s)-tensor P on a G-manifold
M , the restriction of the quasi-Poisson bracket {·, ·} to C∞(M)G is a Poisson bracket,
which we call the Poisson structure on M/G reduced from P .

This notion will be generalized in §3.1.1.

1.2 Flat connections over surfaces

1.2.1 Flat connections

We introduce in this subsection some backgrounds concerning flat connections on prin-
cipal G-bundles. Details can be found, for example, in [36].

In this thesis, a surface always means a compact oriented surface, possibly with bound-
ary. If the boundary is nonempty, we call it a bordered surface.

Let Σ be a bordered surface, G be a Lie group with Lie algebra g and π : P → Σ a
(left) principal G-bundle.

To simplify notations, we assume that G is connected, so that P must be
isomorphic to the trivial G-bundle 2, and we fix a trivialization P ∼= Σ × G.
By definition G acts on P by right multiplication on the second factor.

A connection on P is a G-invariant horizontal distribution D. Here “distribution”
means giving a linear subspace Dp ⊂ TpP depending smoothly on p ∈ P , and “horizontal”
means that dπp(Dp) = Tπ(p)Σ for any p ∈ P . Furthermore, D is called a flat connection if
it is integrable, i.e., a foliation. The space of connections (resp. flat connections) on P is
denoted by A (resp. Aflat).

Given a connection D, there is a unique g-valued differential form θ ∈ Ω1(Σ, g), call a
connection 1-form such that Dp is the kernel of the linear map

g−1dg + θ : TpP → g,

where g−1dg ∈ Ω1(G, g) is the left invariant Maurer-Cartan 1-form, lifted to P by the
projection P ∼= Σ×G→ G. It can be shown that the connection is flat if and only if the
curvature 2-form

F (θ) = dθ + 1
2[θ, θ] ∈ Ω2(Σ, g)

2. This is because principal G-bundles over Σ are classified by homotopy classes of maps Σ→ BG, but
Σ is homotopic to a graph and the classifying space BG is simply connected if G is connected.
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vanishes. Thus we have identifications

A = Ω1(Σ, g), Aflat = {θ ∈ Ω1(Σ, g) | F (θ) = 0}.

Note that these identifications depend on the choice of the trivialization P ∼= Σ×G.
A gauge transformation of P is a G-bundle automorphism, namely, a diffeomorphism

P → P of the form

Σ×G ∼= P → P ∼= Σ×G, (x, s) 7→ (x, g(x)s),

where g : Σ → G is a smooth map. Thus the group G of all gauge transformations is
identified with the space of smooth maps Map(Σ, G).

A gauge tranformation brings a distribution to another, preserving G-invariance and
horizontality, thus G acts on A. This action clearly preserves Aflat . In terms of connection
1-forms, the action is given by

θ
g7−→ Adg θ − dgg−1

for any θ ∈ Ω1(Σ, g) ∼= A and g ∈ G ∼= Map(Σ, G). Here dgg−1 is the pull-back of the
right invariant Maurer-Cartan form by g : Σ→ G.

1.2.2 Holonomies and fundamental groupoid representations

Fix a connection D ∈ A and an oriented smooth path γ ⊂ Σ going from a to b. Given
any p ∈ P |a, one can lift γ to a path γ̃ ⊂ P which is tangent to D and starts from p.
Let p′ ∈ P |b by the ending point of γ̃. The map p 7→ p′ is a bijection between the fibers
P |a and P |b. Moreover, it follows from G-invariance of D that, under the trivialization
P ∼= Σ×G, this map has the form

G ∼= P |a → P |b ∼= G, s 7→ hs

for some h ∈ G. We call g the holonomy of the connection D along the path γ and denote
it by h = holγ(D). It can be shown that
(1) if D is flat then holγ(D) only depends on the end-points-fixing homotopy class of γ;
(2) if g ∈ G then

holγ(g.D) = g(b)holγ(D)g(a)−1,

Recall that a groupoid is a small category whose morphisms are all invertible. A group
is considered as a groupoid with a single object. Let V ⊂ Σ be a set of base points. The
fundamental groupoid π1(Σ, V ) is the groupoid whose objects are points in V , while a
morphism from u ∈ V to v ∈ V is a homotopy class of oriented paths on Σ going from u
to v. By abuse of notations, π1(Σ, V ) is often understood as the set of morhpisms in this
groupoid. If V is a single point, then π1(Σ, V ) is just the fundamental group.

We shall write compositions in π1(Σ, V ) from right to left. Namely, if α, β ∈ π1(Σ, V )
go from u to v and from v to w, respectively, then their composition, which goes from u
to w, is denoted by βα.

We call a functor between two groupoids a homomorphism, and call a homomorphism
into a Lie group a representation. The main object of study in the present thesis is the
space of representations

MG(Σ, V ) = Hom(π1(Σ, V ), G)



1.2. Flat connections over surfaces 19

for a non-empty finite set of boundary points V ⊂ ∂Σ. We call V marked points and the
pair (Σ, V ) a marked surface The group GV naturally acts on MG(Σ, V ) by

g.m(γ) = gin(γ)m(γ)g−1
out(γ), ∀g ∈ GV ,m ∈MG(Σ, V ), γ ∈ π1(Σ, V ),

where out(γ) and in(γ)are the starting and ending point of γ, respectively. Given v ∈ V ,
we shall denote the action of the vth factor of GV by ρv.

When V is a single point, MG(Σ, V ) is a more familiar object – the representation
variety of the fundamental group of Σ, where G acts on representations by conjugation.

The above two properties of holonomies shows that the holonomy data of a flat con-
nections can be viewed as a fundamental groupoid representation. Indeed, the map

Aflat → Hom(π1(Σ, V ), G), D 7→ (γ 7→ holγ(D)) (1.4)

is surjective and equivariant with respect to the restriction homomorphism

G → GV g 7→ (g(v))v∈V . (1.5)

Moreover, let GV denote the kernel of the homomorphism (1.5), then (1.4) induces a
bijection

Aflat/GV
∼−→MG(Σ, V ).

We denote also by holγ the evaluation map of MG(Σ) at γ ∈ π1(Σ, V ),

MG(Σ, V )→ G, m 7→ m(γ).

Notice that the lift of this map to Aflat coincides with the holonomy holγ : Aflat → G.

1.2.3 The Atiyah-Bott Poisson structure

We recall in this subsection a classical construction of a Poisson structure on the moduli
space of flat connections

XG(Σ) := MG(Σ, V )/GV = Aflat/G.

due to Atiyah and Bott [7] 3.

Remark 1.7. (1) XG(Σ) is also the space of conjugacy classes of representations of
the fundamental group π1(Σ). Indeed, pick v ∈ V , then the groupoid injection
π1(Σ, {v})→ π1(Σ, V ) induces a map

MG(Σ, V ) −→MG(Σ, {v}).

Under the action of GV on MG(Σ, V ), this map is surjective and equivariant with
respect to the vth factor and invariant with respect to other factors. Thus

XG(Σ) = MG(Σ, {v})/G.

(2) In general, XG(Σ) is not a smooth manifold. Following §1.1.4, by a Poisson structure
onXG(Σ) we mean a Poisson bracket on the algebra C∞(XG(Σ)) := C∞(MG(Σ, V ))GV .
Such a bracket descends to a genuine Poisson structure on any smooth part of XG(Σ).

3. Although Atiyah and Bott considered a more restrictive situation where Σ is a closed. The general-
ization which we present here is well known. See e.g. [8].
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We fix an invariant scalar product (· | ·) on the Lie algebra g. The vector space
A ∼= Ω1(Σ, g) carries a natural translation-invariant and G-invariant symplectic form

σ(a, b) =
∫

Σ
(a | b), a, b ∈ TθA ∼= Ω1(Σ, g).

Assume that ∂Σ has b connected components. Recall that the loop group LG is the space
of smooth maps Map(S1, G). Let G∂Σ denote the kernel of the restriction map

G ∼= Map(Σ, G)→ Map(∂Σ, G) ∼= LGb.

It can be shown that the curvature

F : A → Ω2(Σ, g) ⊂ Lie(G)∗ ⊂ Lie(G∂Σ)∗

is a moment map for the action of G∂Σ, where the first inclusion is given by the natural
pairing 〈A, ξ〉 =

∫
Σ(A | ξ) between Lie(G) = Ω0(Σ, g) and Ω2(Σ, g).

Recall that the Marsden-Weinstein reduction (see e.g. [45]) says that the quotient of
the zero level set of a moment map, which in is case is N = Aflat/G∂Σ, carries a symplectic
structure. Hence the space of functions C∞(N ) carries a Poisson bracket.

There is a natural projection

N −→MG(Σ, V )

which is equivariant with respect to the projection of groups LGb = G/G∂Σ → G/GV = GV .
Thus C∞(XG(Σ)) = C∞(MG(Σ, V ))GV is identified with the C∞(N )LGb , which has a
Poisson bracket. This is by definition the Atiyah-Bott Poisson structure on XG(Σ).

Remember our assumption from the beginning of this section that G is connected. If
it is not the case, then we shall let Aflat be the disjoint union

⊔
P Aflat(P ), where P runs

over all isomorphism classes of principal G-bundles over Σ. On each Aflat(P ) there is a
gauge group G(P ) acting. The above discussions carry over to this situation. For example,
we have

MG(Σ, V ) =
⊔
P

Aflat(P )/GV (P ), XG(Σ) =
⊔
P

Aflat(P )/G(P ).

Remark 1.8. (1) To make the above discussions about infinite-dimensional manifold rig-
orous, one usually work with connections in a certain Sobolev class, instead of smooth
ones, so as to make A, G, etc. into Banach manifolds. See e.g. [7] Section 14.

(2) The LGb-action on the symplectic manifold N also admits a moment map. Applying
symplectic reduction to it, one can show that a symplectic leaf of XG(Σ) consists of
representations of the fundamental group sending each boundary loop to a prescribed
conjugacy class in G. Here we pick an arbitrary conjugacy class for each boundary
loop. This fact follows alternatively from quasi-Poisson theory.

Despite of its theoretical importance, the above definition of the Atiyah-Bott Poisson
structure is difficult to handle in concrete applications, since it involves infinite-dimensional
objects. Goldman [26, 27] gave a finite-dimensional construction in terms of twisted coho-
mology and used it to compute Poisson brackets of certain functions on XG(Σ), see §2.1.2
below. Goldman’s original approach only works for closed surfaces. A generalization to
bordered surfaces is given in [30].

In the 90’s two alternative finite-dimensional constructions appeared: one is due to V.
Fock and A. Rosly [24] and the other to A. Alekseev, E. Meinrenken and A. Malkin [6].
These constructions have the advantage of being completely explicit and calculable. The
latter one is the main object of the present thesis. However, we shall explain in §3.2.6 that
these two constructions actually are equivalent.
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1.2.4 Combinatorics of surfaces

We discuss in this subsection some combinatorial facts about bordered surfaces, which
are useful in the study of the representation space MG(Σ, V ).

By a skeleton of a bordered surface Σ we mean an embedded graph Γ ⊂ Σ such that
the set of vertices VΓ is contained in ∂Σ and Σ retracts to Γ by deformation. Skeletons
have the structure of ciliated fat graph, as we explain now.

Given a graph Γ, we shall let VΓ and EΓ denote the set of vertices and edges, respec-
tively. We view each edge as consisting of two half-edges and let ÊΓ the set of all half-edges
of Γ. Recall that a fat graph is a graph Γ such that at each vertex v a cyclic order is given
to the set ÊΓ(v) of half-edges issuing from v. We usually draw a fat graph as immersed
in the plane such that the cyclic order at each vertex is the counter-clockwise order.

A ciliated fat graph is graph such that each ÊΓ(v) is endowed with an order, instead
of a cyclic order. We draw a ciliated fat graph an immersed fat graph in the plane with
a ciliate attached to each vertex from which the ordering begins. Notice that if there is
only one edge issuing from v then no ciliate is needed at v.

Given a ciliated fat graph Γ, one can fatten Γ to get a bordered surface Σ such that
Γ is a skeleton of Σ, as shown in the pictures below. Precisely, we fatten each edge into a
ribbon and each vertex v into a half-disk in such a way that v is on the boundary and the
ciliate points outwards.

Conversely, consider a pair (Σ,Γ) where Σ is a bordered surface and Γ a skeleton. The
orientation of Σ endows Γ with the structure of ciliated graph, and one can shrink Σ into
a fattened Γ. Therefore, a pair (Σ,Γ) is equivalent to a ciliated fat graph.

Skeletons enable us to better understand the space of fundamental groupoid represen-
tations MG(Σ, V ). We call Γ a skeleton of the marked surface (Σ, V ) if VΓ = V . Since
(Σ, V ) retracts to (Γ, V ) by deformation, we have π1(Σ, V ) = π1(Γ, V ). If we give each
edge e ∈ EΓ an orientation, then the fundamental groupoid π1(Γ, V ) is freely generated by
these oriented edges, hence when defining a homomorphism from π1(Γ, V ) to G, one only
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need to assign an arbitrary element of G to each edge. As a result, we have a bijection

(hole)e∈EΓ : MG(Σ, V ) = Hom(π1(Γ, V ), G) ∼−→ GEΓ . (1.6)

Remark 1.9. in the literature, members of Hom(π1(Γ, V ), G) are called lattice gauge
fields and the GV -action called discrete gauge transformation. This explains the title of
this chapter.

The natural GV -action on MG(Σ, V ) ∼= GEΓ can be easily read off from the graph. See
the following picture. Here Γ has three edges, an element of GEΓ being an assignment of
elements a, b, c in G to each edge.

We shall interpret the GV -action as a fusion of a finer action. We break edges of Γ apart
and obtain a graph Γ̃ which is the disjoint union of #EΓ copies of segments. ÊΓ is viewed as
the set of vertices of Γ̃, so GÊΓ naturally acts on Hom(π1(Γ̃, ÊΓ), G) ∼= GEΓ ∼= MG(Σ, V ),
as pictured below. Let ρ̃v denote the action of the subgroup GÊΓ(v) ⊂ GÊΓ on MG(Σ, V ).

Then the action ρv of the vth factor of GV is just the fusion of ρ̃v.
We shall now look closer into the above operation of breaking Γ down into segments.
Let (Σ, V ) be a bordered surface with marked points V ⊂ ∂Σ. We define the fusion

of (Σ, V ) at an ordered pair of marked points (v1, v2) to be a new surface with marked
points (Σ∗, V ∗), obtained by gluing two segments of ∂Σ together, as shown in the picture
below. We require that the first (resp. second) segment issues from v1 (resp. v2 and runs
in negative (resp. position) orientation.

Note that if we exchange the roles of v1 and v2, then, in general, we get a different
(Σ∗, V ∗). Indeed, the fusion operation for surfaces is noncommutative but associative in
a similar sense as for quasi-Poisson structures.
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If Γ is a skeleton of (Σ, V ), then the image Γ∗ of Γ in Σ∗ is a skeleton of (Σ∗, V ∗).
As a result, the gluing map (Σ, V ) → (Σ∗, V ∗) induces a bijection between the space of
fundamental groupoid representations. Indeed, the following diagram commutes

MG(Σ∗, V ∗) MG(Σ, V )

GEΓ∗ GEΓ

//

= //

∼=(hole)e∈EΓ∗

��

∼= (hole)e∈EΓ

��

Moreover, the GV ∗-action on MG(Σ∗, V ∗) ∼= MG(Σ, V ) is obtained from the GV -action by
fusing the vth1 and vth2 factor.

Under the equivalence between ciliated fat graphs and surfaces with skeletons, the
fusion operation

(Σ,Γ) (Σ∗,Γ∗)

is just the operation of merging the vertices v1 and v2 of the two ciliated fat graphs, as
shown in the picture below. This operation is clearly noncommutative but associative.

Therefore, we can think of a skeleton Γ of Σ as being built from the disjoint union Γ̃ of
segments by applying fusion repeatedly, while the ciliates on vertices of Γ serves to record
the order of fusions.

Equivalently, let D denote the disk with two marked points, then Γ gives a way of
building up (Σ, V ) from a disjoint union of D’s by fusion. For example, starting from
three copies of D and performing fusion two times, we can get a disk with four marked
points. Difference skeletons corresponds to different ways to do so, as shown in the picture
below. Here the three colors stand for the three copies of D.

1.3 The Quasi-Poisson structure on MG(Σ, V )

1.3.1 Construction of the quasi-Poisson structure

Fix a Lie group G with Lie algebra g and pick s ∈ (S2g)g. Let Σ be a bordered surface
and V ⊂ ∂Σ be finitely many marked points. Using the constructions in the previous
subsection, we readily get

Proposition 1.10. Given a skeleton Γ of (Σ, V ), there is a canonical quasi-Poisson
(gV , s(V ))-tensor PΓ on MG(Σ, V ).
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Proof. The construction of PΓ goes as follows. Since GÊΓ-manifold Hom(π1(Γ̃, ÊΓ), G) ∼=
MG(Σ, V ) =: M is the direct product of #EΓ copies of the G×G-manifold G, by Example
1.5, M has the trivial bivector field P = 0 as a quasi-Poisson (gÊΓ , s(ÊΓ))-tensor. The GV -
action on M is a fusion of the GÊΓ-action (see §1.2.4), so we get the quasi-Poisson tensor
PL as a fusion of P = 0 in the sense of Definition/Proposition 1.3. Note that fusion of
quasi-Poisson tensors depends on orders, which, in this case, is specified by the ciliates.

Let us exhibit an explicit expression for PΓ. We shall first establish a notation.

Definition 1.11. Let Γ be a graph and Γ̃ be the graph obtained by breaking apart edges
of Γ, so that GÊΓ naturally acts on Hom(π1(Γ̃, ÊΓ), G) ∼= Hom(π1(Γ, V ), G) =: M .

For any x ∈ g and a ∈ ÊΓ, we let x(a) ∈ C∞(TM) denote the fundamental vector field
of x induced by the action of the ath factor of GÊΓ .

Here is an alternative description of x(a). Choose an orientation for each edge e ∈ EΓ
and use (hole)e∈EΓ to identify M with GEΓ . Let e ∈ EΓ be the oriented edge containing
a. If a is the first (resp. second) half of e, then x(a) is just the left invariant vector field
xL (resp. the right invariant vector field −xR) on the eth factor of GEΓ .

Let (xi) be a basis of g and assume s = sijxi ⊗ xj . Using the above notation and
Eq.(1.3), we get

PΓ = 1
2
∑
v∈V

∑
a<b

sijx
(a)
i ∧ x

(b)
j , (1.7)

where the second summation runs over half-edges a,b ∈ ÊΓ(v) such that a < b. Here
ÊΓ(v) has an order “<” because it is a ciliated fat graph.

Theorem 1.12. The bivector field PΓ on MG(Σ, V ) does not depend on the choice of the
skeleton Γ.

Thus we shall call P = PΓ the canonical quasi-Poisson tensor on MG(Σ, V ). Notice
that P depends on a choice of s ∈ (S2g)g.

Theorem 1.12 will be proved in §2.3.1 below as a consequence of Theorem 2.17.
It is instructive to verify the theorem in the following simplest example by straightfor-

ward computations.

Example 1.13. Let (Σ, V ) be the disk with three marked points on the boundary and
put M = MG(Σ, V ). Let Γ, Γ′ be the two skeletons as shown below, where we give each
edge an orientation and let a, b, u, v : M → G be the corresponding holonomies. Let us
show that PΓ = PΓ′ .

Figure 1.1: Two skeletons of the disk with three marked points.

Under the coordinates systems (a, b) : M ∼→ G×G, we have

PΓ(a, b) = sijxL
i (a) ∧ xL

j (b),
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where xL(a) (resp. xL(b)) ∈ T(a,b)G×G denotes the left translation of x to a (resp. b) in
the first (resp. second) factor. Similarly, in the coordinates system (u, v) we have

PΓ′(u, v) = sijxL
i (u) ∧ xL

j (v).

The coordinates change is a = v−1, b = uv−1. Some computation gives that at the point
(a, b) we have

xL
i (u) = (Ad−1

a xi)L(b), xL
j (v) = −xR

j (a)− (Ad−1
a xj)L(b).

Using sij = sji we get

PΓ′(a, b) = sijxR
i (a) ∧ (Ada xj)L(b)

= sij(Ad−1
a xi)L(a) ∧ (Ad−1

a xj)L(b) = PΓ(a, b),

where the last equality follows from invariance of s ∈ g⊗ g.

Remark 1.14. Extending the above computation, one can show that for general (Σ, V ), if
a skeleton Γ′ is obtained from another one Γ by modifying only two edges in a way as above
(let us call such a modification a simple move), then PΓ = PΓ′ . One is then tempted to
prove Theorem 1.12 by showing that any two skeletons of (Σ, V ) are related by a sequence
of simple moves. This approach, although achievable, involves lengthy arguments in order
to show that for any diffeomorphism φ of Σ fixing ∂Σ, the skeletons Γ and φ(Γ) are related
by simple moves – one has to find an explicit set of generators of the mapping class group
and then check for each generator φ. The proof that we present in §2.3.1 uses completely
different ideas.

The quasi-Poisson theory gives a finite-dimensional construction of the Atiyah-Bott
Poisson structure in the following sense.

Theorem 1.15 (Alekseev, Malkin, Meinrenken [6]). Let (· | ·) be an invariant scalar
product on g and s ∈ (S2g)g be its dual. Let P be the canonical quasi-Poisson (gV , s(V ))-
tensor on MG(Σ, V ). Then the Poisson structure on XG(Σ) = MG(Σ, V )/GV reduced
from P coincides with the Atiyah-Bott Poisson structure.

We will not prove the above theorem in this thesis, but only make a few comments
here about the proofs. A quick but indirect proof consist in showing that the Atiyah-
Bott Poisson brackets of certain functions in C∞(XG(Σ)) = C∞(MG(Σ, V ))GV , known
as spin networks, which form a dense subset of C∞(MG(Σ, V ))GV , coincides with their
quasi-Poisson brackets. This is possible because a formula for Atiyah-Bott brackets of spin
networks is available [9, 52], while a quasi-Poisson bracket formula for them is established
in Chapter 2 below. The original proof, which indicates how the quasi-Poisson structure
on MG(Σ, V ) arises, is given in [6] using the language of quasi-Hamiltonian structures –
one shall use results from [3] to translate quasi-Hamiltonian structures to quasi-Poisson
structures. However, the latter proof seems only apply to the case where V has exactly
one point in each component of ∂Σ. According to David Li-Bland, a on-going joint work
of A. Cabrera, M. Gualtieri and E. Meinrenken contains further clarification on this issue.

1.3.2 Equivalence with the Fock-Rosly Poisson structure

Using Poisson Lie group actions, Fock and Rosly gave in [24] a Poisson structure on
MG(Σ, V ) which also reduces to the Atiyah-Bott Poisson structure on the quotient XG(Σ).
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The Fock-Rosly Poisson structure is of course different from the canonical quasi-Poisson
structure, but it turns out to be a twist of the latter in the sense of Alekseev and Kosmann-
Schwarzbach [5]. In this subsection we first recall some backgrounds on Poisson Lie groups
and then explain this twist equivalence.

Definition/Proposition 1.16. – A Poisson Lie group is a Lie group G with Poisson
structure P such that the multiplication G×G→ G is a Poisson map (where G×G
is endowed with the product Poisson structure).

– We only consider those Poisson Lie groups such that P has the form

P = aR − aL (1.8)

for some a ∈
∧2 g. Here aL and aR are left and right invariant bivector fields on G

which restrict to a at the origin. Notice that there are constraints on a ∈
∧2 g for

(1.8) to be a Poisson tensor.
– r ∈ g ⊗ g is called a quasi-triangular classical r-matrix if its symmetric part s =

1
2(r+r21) is g-invariant and r satisfies the following classical Yang-Baxter equation 4

[[r, r]] := [r12, r13] + [r12, r23] + [r13, r23] = 0. (CYBE)

– A sufficient (but not necessary) condition for (1.8) to define a Poisson Lie group
structure is that there exists s ∈ (S2g)g such that r = a + s is a quasi-triangular
classical r-matrix.

– A Lie bialgebra is a Lie algebra g such that the dual g∗ is equipped with a Lie bracket∧2 g∗ → g∗ whose transpose γ : g→
∧2 g is a 1-cocycle, namely,

x.γ(y)− y.γ(x)− γ([x, y]) = 0.

– Let G be a Poisson Lie group, then its Lie algebra g has a natural Lie bialgebra
structure γ : g →

∧2 g which, roughly speaking, is the differential of the Poisson
tensor at the origin. In particular, if the Poisson Lie structure comes from a quasi-
triangular classical r-matrix, then γ(x) = x.r for any x ∈ g.

– LetM be a Poisson manifold and G be a Poisson Lie group. If an action G×M →M
is a Poisson map, then it is call a Poisson action. An equivalent condition is that
the infinitesimal action ρ of g on M satisfies

LρxPM = ργ(x), (1.9)

where PM is the Poisson tensor on M and γ : g→
∧2 g is the natural Lie biaglebra

structure.

We refer to [16] for details and proves of these statements. Now we can show the
equivalence between quasi-Poisson manifolds and Poisson manifolds with Poisson Lie group
actions.

4. The notations here are defined as follows. Let U(g) be the universal enveloping algebra of g. As-
suming r =

∑
i
ui ⊗ vi ∈ g⊗ g, we define r12, r13, r23 ∈ U(g)⊗3 by

r12 =
∑
i

ui ⊗ vi ⊗ 1, r13 =
∑
i

ui ⊗ 1⊗ vi, r23 =
∑
i

1⊗ ui ⊗ vi.

The commutator of any two of them is contained in g⊗3. For example, [r12, r23] =
∑

i
[ui, uj ]⊗ vi ⊗ vj .
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Theorem 1.17 (Alekseev, Kosmann-Schwarzbach [5]). We take s ∈ (S2g)g and a ∈
∧2 g

such that
r = a+ s

2 ∈ g⊗ g

is a quasi-triangular classical r-matrix and equip G with the Poisson Lie structure (1.8).
Let M be a G-manifold and P ∈ C∞(

∧2 TM) be a bivector field. Then P is a quasi-
Poisson (g, s)-tensor if and only if

P ′ = P + ρa

is a Poisson tensor such that the action of the Poisson Lie group G on M is a Poisson
action.

Proof. The proof of Theorem 1.17 is based on the following lemma:

Lemma 1.18. (1) If s ∈ (S2g)g and φ ∈
∧3 g is the canonical trivector, then we have

φ = −1
2 [s12, s23] = 1

2 [s13, s23] = 1
2 [s12, s13]. It follows that φ = 1

2 [[s, s]].
(2) If a ∈

∧2 g ⊂ g⊗ g then [[a, a]] = 1
2 [a, a].

(3) If r = a+ s ∈ g⊗ g with a ∈
∧2 g and s ∈ (S2g)g, then [[r, r]] = [[a, a]] + [[s, s]].

These follows from straightforward computations and we omit the proof.
The conditions that P ′ = P + ρa is a Poisson tensor and the G action is a Poisson

action amount to the following conditions about Schouten brackets

[ρx, P ′] = ρ[x,r] (∀x ∈ g), [P ′, P ′] = 0.

Using the above lemma, one readily verifies that these conditions are equivalent to

[ρx, P ] = 0 (∀x ∈ g), [P, P ] = ρφ,

that is, P is a quasi-Poisson (g, s)-tensor.

Applying the above theorem to MG(Σ, V ), we get a Poisson tensor P ′ on MG(Σ, V )
with the property that, if we equip G with the Poisson Lie group structure (1.8), then the
action of the product Poisson Lie group GV on MG(Σ, V ) is a Poisson action.

Let us now exhibit an explicit expression of P ′. We take a basis (xi) of g and assume

a = aijxi ⊗ xj = 1
2a

ijxi ∧ xj , s = sijxi ⊗ xj

with aij = −aji, sij = sji. Let Γ be a skeleton of (Σ, V ), then we have ρa =
∑
v∈V ρ

v
a,

where ρva = 1
2
∑

a,b∈ÊΓ(v) a
ijx

(a)
i ∧ x

(b)
j . So

P ′ = P + ρa = 1
2
∑
v∈V

∑
a<b

sijx
(a)
i ∧ x

(b)
j + 1

2
∑
v∈V

∑
a,b

aijx
(a)
i ∧ x

(b)
j

=
∑
v∈V

1
2
∑
a<b

sijx
(a)
i ∧ x

(b)
j +

∑
a<b

aijx
(a)
i ∧ x

(b)
j + 1

2
∑

a
aijx

(a)
i ∧ x

(a)
j


=
∑
v∈V

∑
a<b

rijx
(a)
i ∧ x

(b)
j + 1

2
∑

a
rijx

(a)
i ∧ x

(a)
j

 .
Here in each summation a and b are in ÊΓ(v).

The Poisson structure P ′ is was found by Fock and Rosly [24]. Notice that P ′ also
reduces to the Atiyah-Bott Poisson structure on the quotient XG(Σ), because ρa reduces
to zero.
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1.4 Lie group-valued moment maps and cross-sections

1.4.1 Lie group-valued moment maps

Recall that in the classical settings of symplectic or Poisson geometry, if (M,P ) is
a Poisson manifold acted upon by a Lie group G such that the P is invariant, then an
equivariant map µ : M → g∗ is called a moment map if

P ](d 〈µ, x〉) = ρx, ∀x ∈ g.

Here ρx is the fundamental vector field of x, and the vector bundle morphism P ] : T∗M →
TM is given by P ](α) = P (α, ·) for any 1-form α. Equivalently, µ is a moment map if, for
any m ∈M , the image of Pm ∈

∧2 TmM ⊂ TmM ⊗ TmM by the map

dµ⊗ id : TmM ⊗ TmM −→ Tµ(m)g
∗ ⊗ TmM ∼= g∗ ⊗ TmM

is the element in g∗ ⊗ TmM corresponding to the linear map

g→ TmM, x 7→ ρx(m).

The quasi-Poisson version of moment map takes value in the Lie group G:

Definition 1.19. Let G and H be Lie groups and M be a G × H-manifold. We fix
s ∈ (S2g)g and t ∈ (S2h)h. Given a quasi-Poisson (g ⊕ h, s ⊕ t)-tensor P on M , a G-
equivariant map µ : M → G (where G acts on itself by conjugation) is called a moment
map if for any m ∈M , the image of Pm ∈

∧2 TmM under the linear map

µ∗θL ⊗ id : TmM ⊗ TmM → g⊗ TmM

(recall that θL ∈ Ω1(G, g) denotes the left-invariant Maurer-Cartan form) is given by

µ∗θL ⊗ id(Pm) = −1
2
(
(1 + Ad−1

µ(m))⊗ ρ•(m)
)
s.

Here ρ•(m) : g→ TmM, x 7→ ρx(m) is the action of g at m.

Our definition is slightly more flexible then the original one [3], where one only allows
trivial H.

Remark 1.20. (1) Assume that (xi) is a basis of g and s = sijxi ⊗ xj . Since xR(u) =
(Ad−1

u x)L(u) for any u ∈ G, the last condition is equivalent to the condition that the
map

µ∗ ⊗ id : TmM ⊗ TmM −→ Tµ(m)G⊗ TmM
sends Pm to

−1
2s

ij(xL
i + xR

i )(µ(m))⊗ ρxj (m).

(2) Assume that G = G1×G2, where Gi is a Lie group with Lie algebra gi, and s = s1 +s2
for si ∈ (S2gi)gi , then µ : M → G is a moment map if and only if both factors
µ1 : M → G1 and µ2 : M → G2 are moment maps.

Let Σ be a bordered surface with finitely many marked points V ⊂ ∂Σ. We now
describe a moment map for the quasi-Poisson GV -manifold MG(Σ, V ). Let V0 ⊂ V be the
set of marked points v with the property that the component of ∂Σ containing v does not
contain any other marked point

For each marked point v ∈ V0, let βv be the connected component of ∂Σ containing
v, oriented against the orientation induced from Σ, so that βv represents an element in
π1(Σ, V ).
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Proposition 1.21. For each v ∈ V0, the holonomy holβv : MG(Σ, V ) → G is a moment
map.
Proof. We take an oriented skeleton Γ of (Σ, V ), such that βv is an edge of Γ. So Γ looks
as follows in a neighborhood of βv. Here the half-edges b0 and b1 are, respectively, the
minimal and maximal element in ÊΓ(v)

By definition of the vector field x(a) on MG(Σ, V ) (c.f. §1.3.1), we have µ∗θL(x(a)) = 0
for any x ∈ g and any half-edge a other than b0 and b1, while

µ∗θL(x(b0)(m)) = −Ad−1
µ(m) x, µ∗θL(x(b1)(m)) = x, ∀m ∈MG(Σ, V ).

Using the expression (1.7) of the quasi-Poisson tensor P and the fact that x(b0)(m) =
−(Adµ(m) x)(b1)(m), we obtain

µ∗θL ⊗ id(Pm) =µ∗θL ⊗ id

1
2
∑
a<b

sijx
(a)
i (m) ∧ x(b)

j (m)


= 1

2
∑
a<b

sij
(
µ∗θL(x(a)

i (m))⊗ x(b)
j (m)− µ∗θL(x(b)

j (m))⊗ x(a)
i (m)

)
= 1

2
∑

a
sij
(
µ∗θL(x(b0)

i (m))⊗ x(a)
j (m)− µ∗θL(x(b1)

j (m))⊗ x(a)
i (m)

)
= −1

2s
ij(1 + Ad−1

µ(m))xi ⊗ ρ
v
xj (m)

as required. Here a and b are taken over ÊΓ(v) in each summation, and ρvx denotes the
fundamental vector field of x ∈ g induced by the action of the vth-factor of GV , which has
the expression ρvx =

∑
a x

(a).

Remark 1.22. Li-Bland and Ševera [42] developed a more general notion of moment
maps: for any marked point v ∈ V , not necessarily in V0, they let βv be the path in ∂Σ
which starts from the marked point v and walks against the induced orientation until the
next marked point. They showed that (holβv)v∈V : MG(Σ, V )→ GV is a twisted moment
map. This notion will not be used in this thesis.

1.4.2 Quasi-Poisson cross-section theorem

The goal of this subsection is to prove a version of the quasi-Poisson cross-section
theorem [6, 3], which states that for certain submanifold U ⊂ G and any quasi-Poisson
manifold M with moment map µ : M → G, the pre-image L = µ−1(U) still has a quasi-
Poisson tensor.

We shall first explain which U can occur here. Let us fix in this subsection closed
subgroups A, Ã ⊂ G which have the same Lie algebra a ⊂ g, such that A is a normal
subgroup of Ã.
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Definition 1.23. An open set U ⊂ A is called a cross-section (with respect to the conju-
gation action of G) if

– U is invariant by the conjugation action of Ã.
– G.U = {gug−1 | g ∈ G, u ∈ U} is an open subset of G.
– The natural map

G×
Ã
U → G.U, (g, u) 7→ gug−1

is a diffeomorphism onto the image. Here G×A U denotes the quotient of G×U by
the Ã-action

(g, u) a∈Ã7−→ (ga−1, aua−1).

Example 1.24. (1) Let G be the split real form of a complex reductive group, A = H
be a maximal torus and Ã = NG(H) be the normalizer. Then U = Hreg, the set of
loxodromic elements in H (c.f. §3.2.1 below for the definition), is a cross-section. One can
effectively take G = GLnR or SLnR and let H (resp. Hreg) consist of diagonal matrices
(resp. diagonal matrices without repeated eigenvalues).

One can modify this example a little by taking Ã = H and U = exp(Cint) ⊂ Hreg,
where C ⊂ h is a Weyl chamber and Cint is its interior.

(2) When G is compact, a standard construction of cross-sections goes as follows. Let
T be a maximal torus, t be its Lie algebra and A ⊂ t be a Weyl alcove. We choose a face
σ of A, take x ∈ σ and set Ã = A = StabG(exp(x))), which is known to be independent
of the choice of x. Let Aσ be the union of faces of A whose closure contains σ. Then
U = exp(AdAAσ) is a cross-section. In particular, if σ = Aint then U = exp(σ).

A typical example for general σ is when G = SU(n) and A consists of block-diagonal
matrices u = diag(u1, · · · , ur), where each ui is a unitary matrix with a certain size, while
U ⊂ A consists of those u’s such that the sets of eigenvalues

eigen(u1), eigen(u2), · · · , eigen(ur)

are arranged on the unit circle in a strictly clockwise manner.

Remark 1.25. The original use of cross-sections in moment map theory by Guillemin and
Sternberg and its generalization to group-valued moment maps [6, 3] (i.e., Theorem 1.28
below) are concerned with Example 1.24 (2); whereas for our applications in this thesis
only Example 1.24 (1) will be involved.

We shall now make the additional assumption that there is a subspace b ⊂ g which is
invariant under the adjoint action of A, such that g = a ⊕ b as vector space. Note that
in both of the above examples there is a standard choice of b, which is the orthogonal
complement of a with respect to a standard invariant scalar product on g.

Lemma 1.26. If U ⊂ A is a cross-section then (Adu−1)|b is invertible for any u ∈ U

Proof. Assume by contradiction that (Adu−1)|b is not invertible, then there exists y ∈ b
such that Adu y = y, hence u exp(ty)u−1 = exp(ty) for any t. But exp(ty) /∈ Ã for t small
enough, so this contradicts the fact that StabG(u) ⊂ Ã, which follows from the definition
of cross-section.

Lemma 1.27. Let M be a G-manifold and µ : M → G be an equivariant map (where G
acts on itself by conjugation). If U ⊂ A is a cross-section, then
(1) L = µ−1(U) is a smooth submanifold of M .
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(2) There is an identification of quotient spaces

L/Ã = µ−1(G.U)/G.

(3) We have a splitting of vector bundles

TM |L = TL⊕ (L× b). (1.10)

Here the trivial bundle L× b is considered as a sub-bundle of TM |L via the map

L× b −→ TM |L, (m, y) 7−→ ρy(m). (1.11)

Proof. (1) It is sufficient to show that µ is transversal to U . Let

vx = xL − xR

be the fundamental vector field of x ∈ g induced by the conjugation action. Since G.U is
open, for any u ∈ U we have

TuG = Tu(G.U) = {vx(u) | x ∈ g}+ TuU.

So the required transversality follows from equivariance of µ.
(2) It follows from the definition of cross-sections that, for any u ∈ U , the subset

{g ∈ G | gug−1 ∈ U} ⊂ G

equals Ã. So equivariance of µ implies that every G-orbit in µ−1(G.U) intersects L, and
the intersection is a Ã-orbit in L. This proves the required identification.

(3) Let us first show that the map (1.11) is an injection of vector bundles. Equivariance
of µ implies that the composition of the map (1.11) with µ∗θL : TmM → g sends (m, y) to

µ∗θL(ρy(m)) = (1−Ad−1
µ(m))y (1.12)

The injectivity results from Eq.(1.12) and Lemma 1.26.
Eq.(1.12) also implies that the sub-bundles L× b and TL are disjoint except at zero-

section, because a tangent vector w ∈ TmM (m ∈ L) belongs to TmL if and only if
µ∗θL(w) ∈ a.

It remains to prove that any tangent vector v ∈ TmM at a point m ∈ L can be
decomposed as v = w + ρz(m) for some z ∈ b and w ∈ TmL.

To this end, we can assume that µ∗θL(v) = x+ y for some x ∈ a, y ∈ b. We take

z = (1−Ad−1
µ(m))

−1y

and put w = v − ρz(m). We have

µ∗θL(w) = µ∗θL(v)− µ∗θL(ρz(m)) = x+ y − (1−Ad−1
µ(m))z = x ∈ a,

which implies w ∈ a. So the required decomposition is achieved.

Let us now show how cross-sections interplay with group-valued moment maps.

Theorem 1.28 (Quasi-Poisson Cross-Section Theorem, [3] Section 8). Let U ⊂ A be a
cross-section. Assume that s ∈ (S2g)g has a splitting

s = sa + sb (sa ∈ a⊗ a, sb ∈ b⊗ b).

Let M be a G ×H-manifold and P be a quasi-Poisson (g ⊕ h, s ⊕ t)-tensor on M . If
µ : M → G is a moment map, then the submanifold L = µ−1(U) ⊂M satisfies
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(1) The splitting (1.10) is P |L-orthogonal, i.e., we have a decomposition of P |L ∈ C∞(
∧2 TM |L),

P |L = PL + P⊥L ,

where PL ∈ C∞(
∧2 TL) and P⊥L : L→

∧2 b. Moreover, P⊥L has the expression

P⊥L (m) = −1
2

(
Adµ(m) +1
Adµ(m)−1 ⊗ id

)
sb (1.13)

5for any m ∈ L.
(2) L is preserved by the action of Ã×H. (L,PL) is a quasi-Poisson (a⊕h, sa⊕t)-manifold

and µ|L : L→ A is a moment map.
(3) On the quotient

L/(Ã×H) ∼= µ−1(G.U)/(G×H)

(c.f. Lemma 1.27 (2)), the Poisson structure reduced from PL coincides with the one
reduced from the quasi-Poisson tensor P on µ−1(G.U).

Proof. (1) Let P⊥L be defined by Eq.(1.13) and put PL = P |L−P⊥L . We need to show that
for any m ∈ L, the bivector PL(m) ∈

∧2 TmM is contained in
∧2 TmL.

Eq.(1.12) implies that the image of P⊥L (m) under the map µ∗θL⊗ id : TmM ⊗TmM →
g⊗ TmM is

µ∗θL ⊗ id(P⊥L (m)) = −1
2
(
(1−Ad−1

µ(m))⊗ ρ•(m)
)(Adµ(m) +1

Adµ(m)−1 ⊗ id
)
sb

= −1
2
(
(1 + Ad−1

µ(m))⊗ ρ•(m)
)
sb.

This equality and the definition of moment maps yield

µ∗θL ⊗ id(PL(m)) = µ∗θL ⊗ id(P |L(m))− µ∗θL ⊗ id(P⊥L (m))

= −1
2
(
(1 + Ad−1

µ(m))⊗ ρ•(m)
)
sa. (1.14)

Therefore, PL(m) belongs to
∧2 TmL, as required.

(2) The fact that L is preserved by Ã× L follows from equivariance of µ.
Let {f1, f2}L = PL(df1, df2) (f1, f2 ∈ C∞(L)) be the bracket associated with PL. To

prove that PL is quasi-Poisson, we need to verify that for any m ∈ L and f1, f2, f3 ∈
C∞(L), we have the quasi-Jacobi identity

− 2{{f1, f2}L, f3}L(m) = ρφa(m)(df1, df2, df3). (1.15)

Since TM |L has the splitting (1.10), there is a neighborhood X ⊂ L of m and a
neighborhood Y of 0 ∈ b such that (m, y) 7→ exp(y).m is a is a diffeomorphism from
X × Y to a neighborhood of m in M .

Let f̃i ∈ C∞(X × Y ) be invariant in vertical directions and restricts to fi on X. On
one hand, the splitting of P |L implies that

{{f̃1, f̃2}, f̃3}(m) = {{f1, f2}L, f3}L(m)

5. The fact that the right-hand side of (1.13) belongs to
∧2

b results from
(
Adµ(m)⊗Adµ(m)

)
sb = sb.
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for any m ∈ L; on the other hand, let φa, φb ∈
∧3 g denote the canonical trivectors

associated to sa and b, respectively, then we have

−2{{f̃1, f̃2}, f̃3} = ρφ(df̃1, df̃2, df̃3) = ρφa+φb(df̃1, df̃2, df̃3) = ρφa(df1, df2, df3),

because P is quasi-Poisson. Therefore the required Eq.(1.15) is proved.
The fact that µ|L is a moment map results from Eq.(1.14).
(3) Part (1) implies the for any m ∈ L and f1, f2 ∈ C∞(µ−1(G.U)) we have

{f1, f2}|L(m) = {f1|L, f2|L}L(m)− 1
2ρω(m)(m)(df1, df2),

where the map ω : L→
∧2 b is defined by

ω(m) =
(

Adµ(m) +1
Adµ(m)−1 ⊗ id

)
sb.

Thus if f1, f2 ∈ C∞(µ−1(G.U))G×H then {f1, f2}|L = {f1|L, f2|L}L. This is exactly
what needs to be proved.

Applying Theorem 1.28 to the moment map in Proposition 1.21, we get the following
conclusions. Here βv and V0 are defined in the paragraph preceding Proposition 1.21.

Corollary 1.29. We fix A, Ã ⊂ G, a, b ⊂ g and s = sa + sb ∈ (S2g)g as above and
let U ⊂ A be a cross-section. Let P be the canonical quasi-Poisson (gV , s(V ))-tensor on
MG(Σ, V ) and {·, ·} be the corresponding quasi-Poisson bracket.

Given any subset V1 of V0, the ÃV1 ×GV \V1-manifold

L =
⋂
v∈V1

hol−1
βv

(U) ⊂MG(Σ, V )

carries a canonical quasi-Poisson (aV1 ⊕ gV \V1 , s
(V1)
a ⊕ s(V \V1))-tensor PL, which has the

following properties
(1) The holonomies

holβv |L : L→ A (v ∈ V1), holβv |L : L→ G (v ∈ V \ V1)

are moment maps.
(2) Let {·, ·}L be the quasi-Poisson bracket on C∞(L) associated with PL, then for any

f1, f2 ∈ C∞(MG(Σ, V )) and m ∈ L we have

{f1|L, f2|L}L(m) = {f1, f2}|L(m) + 1
2
∑
v∈V1

ρvωv(m)(m)(df1, df2),

where the map ωv : L→
∧2 b is given by

ωv(m) =
(

Adholβv (m) +1
Adholβv (m)−1 ⊗ id

)
sb.

(3) We have an identification of quotient spaces

L/(ÃV1 ×GV \V1) ∼=
( ⋂
v∈V

hol−1
βv

(G.U)
)
/GV .

Moreover, the Poisson structure on the former quotient reduced from PL coincides
with the one on the latter reduced from P .





Chapter 2

Quasi-Poisson brackets of spin
networks

The goal of this chapter is to present a formula independently found by G. Massuyeau
and V. Turaev [44], the present author [49], and D. Li-Bland and P. Ševera [42], which can
be seen as a generalization of Goldman’s formula to the context of quasi-Poisson lattice
gauge theory. The statement and proof here are due to Li-Bland and Ševera [42]. We first
give in §2.1 the formula and its generalization to cross-sections without proof. Then we
apply the formula to simple instances in §2.2, revealing some algebra structure analogue
to Goldman’s Lie algebra. Finally we give the proof of the formula in §2.3.

2.1 The quasi-Poisson bracket formula

2.1.1 Spin networks

Spin networks [9] were first introduced by Penrose as certain functions on the moduli
space of flat connectionsXG(Σ). In this subsection we introduce an extension toMG(Σ, V )
of this notion.
Definition 2.1. Let Σ be a bordered surface and V ⊂ ∂Σ be finitely many marked points.
A graph diagram on (Σ, V ) is an oriented immersed graph 1 Γ on Σ with edges EΓ and
vertices VΓ, such that a particular subset of vertices V ∂

Γ contained in V is specified. By
homotopy of Γ we mean homotopy fixing V ∂

Γ . We call V int
Γ = VΓ \ V ∂

Γ interior vertices
(since we can move them to the interior of Σ by homotopy), and call V ∂

Γ boundary vertices.
A spin network on (Σ, V ) is a pair [Γ, f ], where Γ is a graph diagram on (Σ, V ) and

f is a function on GEΓ , such that f is invariant by the GV int
Γ . Here GEΓ is identified

with Hom(π1(Γ, VΓ), G), on which GVΓ acts in a natural way. Such functions are called
admissible for Γ.

A spin network [Γ, f ] gives rise to a function on MG(Σ, V ) as follows. The groupoid
homomorphism π1(Γ, VΓ)→ π1(Σ, V ∪ V int

Γ ) gives rise to a GV int
Γ -equivariant map

Hom(π1(Σ, V ∪ V int
Γ ), G)→ Hom(π1(Γ, VΓ), G) = GEΓ .

The GV int
Γ -invariant function f on the target lifts to a GV

int
Γ -invariant function on the

domain, which descends to the quotient

Hom(π1(Σ, V ∪ V int
Γ ), G)/GV int

Γ = Hom(π1(Σ, V ), G) = MG(Σ, V ).
1. That is, a smooth map ψ : Γ→ Σ, where Γ is an oriented graph, such that ψ is injective on the set

of vertices, and images of different edges are transverse. We just call the image ψ(Γ) an oriented immersed
graph if there is no danger of confusion.
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We denote this function on MG(Σ, V ) also by [Γ, f ] if there is no danger of confusion.

Remark 2.2. (1) If Γ has no boundary vertex then the function [Γ, f ] is invariant by GV ,
hence is a function on XG(Σ). This covers the original definition of spin networks on
XG(Σ) 2.

(2) Let Γ be a skeleton, then every function onMG(Σ) can be considered as a spin network
with graph diagram Γ.

Example 2.3. (1) Suppose that Γ has a single interior vertex, no boundary vertex, and
a single edge γ (which must be a loop). Then admissible functions are functions on
G which are invariant under conjugation. A spin network [Γ, f ] ∈ C∞(XG(Σ)) can
be described as follows: let [γ] be the conjugacy class in π1(Σ) carried by the loop γ,
then the value of [Γ, f ] at [ρ] ∈ XG(Σ), where ρ : π1(Σ) → G is a representation, is
the value of f at ρ([γ]) ⊂ G.

(2) If Γ consists of two boundary vertices and a single edge e joining them. Then f can
be any function on G and [Γ, f ] = f(hole).

(3) If Γ is a n-pod, i.e., n boundary vertices joined by edges (ei) to a single interior
vertex, then admissible functions are f ∈ C∞(Gn)G (where G acts diagonally on Gn
by left-multiplication) and

[Γ, f ] = f(1, hole−1
1 e2

, · · · ,hole−1
1 en

).

We call ei a leg of the n-pod, and call each boundary vertex a foot. Spin networks
associated to tripods will be extensively used in the next chapter.

Remark 2.4. When it concerns cross-sections L ⊂MG(Σ, V ) (c.f. §1.4.2), we shall make
a slight generalization of the definition of spin networks. Namely, assuming that L =⋂
v∈V1 hol−1

βv
(U) (the notations here being the same as in Corollary 1.29) and that for some

v ∈ V1 the boundary loop βv is an edge of Γ, then we shall allow the admissible function
f in the spin network [Γ, f ] to be defined only on the subset {(ge)e∈EΓ | gβv ∈ U} ⊂ GEΓ .

2.1.2 Quasi-Poisson brackets of spin networks

Definition 2.5. Two graph diagrams Γ and Γ′ on (Σ, V ) are said to be transverse if any
interior intersection point q ∈ Γ∩Γ′\∂Σ is a transversal intersection point of (the interiors
of) some edges e ∈ EΓ and e′ ∈ EΓ′ , and moreover if e ∈ EΓ and e′ ∈ EΓ′ share a boundary
vertex v ∈ V then their tangent directions at v are distinct.

In this subsection we give the main result of this chapter, a formula (Theorem 2.6
below) which computes the quasi-Poisson bracket of two spin networks [Γ, f ] and [Γ′, f ′]
when the graph diagrams are transverse. The result is a sum of new spin networks, whose
graph diagrams are divided into two types:

– The graph diagram Γ ∪ Γ′. The vertex (resp. edge) set of Γ ∪ Γ′ is the union of the
vertex (resp. edge) sets of Γ and Γ′.

– For each q ∈ Γ∩Γ′ \∂Σ, a graph diagram Γ∪q Γ′ . By definition, Γ∪q Γ′ is obtained
from Γ ∪ Γ′ by adding the point q as an interior vertex.

We shall now define the admissible functions which will occur.
For each q ∈ Γ ∩ Γ′ \ ∂Σ, suppose q ∈ e ∩ e′ for e ∈ EΓ and e′ ∈ EΓ′ . Then we have

e = e2e1 and e′ = e′2e
′
1, where e1, e2 ∈ EΓ∪qΓ′ are respectively the first half of e up to q

2. The original definition is slightly more restrictive: it requires that f comes from linear representations
of G.
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and the second half starting from q. We let Dq(f, f ′) be the following function defined on
G
EΓ∪qΓ′ :

Dq(f, f ′)((ge)e∈EΓ∪qΓ′ ) (2.1)

:= d
dε

d
dδ

∣∣∣
ε=δ=0

sijf
(
(gd)d∈EΓ\{e}, ge2 exp(εxi)ge1

)
f ′
(
(gd)d∈EΓ′\{e′}, ge′2 exp(δxj)ge′1

)
.

Here
(
(gd)d∈EΓ\{e}, ge2 exp(εxi)ge1

)
is the point in GEΓ whose tth component is gt if t 6= e

and eth component is ge′2 exp(εxi)ge1 .

We need to show that Dq(f, f ′) is invariant by the action of GV
int
Γ∪qΓ′ . It follows from

invariance of f and f ′ that Dq(f, f ′) is invariant by any G-factor other than the qth, while
the invariance by the qth factor follows from g-invariance of s ∈ g⊗ g.

For each pair of half-edges a ∈ ÊΓ(v) and a′ ∈ ÊΓ′(v) sharing a boundary vertex
v ∈ V , we define similarly a function Da,a′(f, f ′) admissible to Γ ∪ Γ′. Let e and e′ be
respectively the edges containing a and a′. If both a and a′ run into v, then

Da,a′(f, f ′)((ge)e∈EΓ∪Γ′ ) (2.2)

:= d
dε

d
dδ

∣∣∣
ε=δ=0

sijf
(
(gd)d∈EΓ−{e}, exp(εxi)ge

)
f ′
(
(gd)d∈EΓ′−{e′}, exp(δxj)ge′

)
,

whereas, if a and/or a′ come out of v, we replace exp(εxi)ge by ge exp(−εxi) and/or replace
exp(δxj)ge′ by ge′ exp(−δxj).

A neater expression of Da,a′(f, f ′) is as follows. We define a symmetric 2-tensor field
s(a,a) on GEΓ∪EΓ′ by

s(a,a) = sijx
(a)
i ⊗ x

(a′)
j

(c.f. Definition 1.11 for the notations), then we have

Da,a′(f, f ′) = s(a,a′)(f, f ′).

Here f and f ′ are considered as functions on GEΓ∪EΓ′ by lifting.

Theorem 2.6. Let [Γ, f ] and [Γ′, f ′] be transverse spin networks on (Σ, V ). Then their
quasi-Poisson bracket is

{[Γ, f ], [Γ′, f ′]} =
∑
q

εq(Γ,Γ′)[Γ ∪q Γ, Dq(f, f ′)] + 1
2
∑
v∈V

∑
a,a′

ε(a,a′)[Γ ∪ Γ′, Da,a′(f, f ′)].

Here q runs over intersection points q ∈ Γ ∩ Γ′ \ ∂Σ, while a,a′ run over half-edges
a ∈ ÊΓ(v), a′ ∈ ÊΓ′(v) for each v ∈ V . εq(Γ,Γ′) (resp. ε(a,a′))= ±1 is the oriented
intersection number of Γ and Γ′ at q (resp. a and a′ at v).

A proof will be given in §2.3.

Remark 2.7. The theorem implies that the right-hand side of the above formula is in-
variant when Γ and Γ′ undergo (boundary-vertex-fixing) homotopies. A manifestation of
this invariance is that the algebraic intersection number i(Γ,Γ′) of Γ and Γ′, defined by

i(Γ,Γ′) =
∑

q∈Γ∩Γ′\∂Σ
εq(Γ,Γ′) + 1

2
∑
v∈V

∑
a,a′

ε(a,a′),

is invariant under homotopy, c.f. Lemma 2.14 below.
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Corollary 1.29 enables us to extend Theorem 2.6 immediately to cross-sections:

Corollary 2.8. Let the notations be as in Corollary 1.29. Then we have

{[Γ, f ], [Γ′, f ′]}L =
∑
q

εq(Γ,Γ′)[Γ ∪q Γ, Dq(f, f ′)] + 1
2
∑
v∈V

∑
a,a′

ε(a,a′)[Γ ∪ Γ′, Da,a′(f, f ′)]

+ 1
2
∑
v∈V

∑
a,a′

[Γ ∪ Γ′ ∪ βv, D̃a,a′(f, f ′)].

Here the spin networks are considered as functions on the cross-section L ⊂ MG(Σ, V ).
The admissible function D̃a,a′(f, f ′) ∈ C∞(GEΓ∪EΓ′ × U) for the graph Γ ∪ Γ′ ∪ βv (see
Remark 2.4) is given by

D̃a,a′(f, f ′)
(
(ge)EΓ , (ge′)Γ′ , u

)
=
((Adu +1

Adu−1 ⊗ id
)
sb

)(a,a′)
(f, f ′).

Remark 2.9. For spin networks in Example 2.3 (1), Theorem 2.6 is Goldman’s formula
[27]. The extension of Goldman’s formula to spin networks without boundary vertices
(c.f. Remark 2.2 (1)) seems well known. Thus we have well understood Poisson brackets
of functions on XG(Σ).

Recently, three independent works emerged, all of them extending the above well known
formulas to those functions on MG(Σ, V ) which do not descent to XG(Σ): Massuyeau and
Turaev [44] essentially proved Theorem 2.6 for spin networks from Example 2.3 (2) when
G = GLnR and f ∈ C∞(G) is a matrix entry function (i.e., Corollary 2.11 below); the
present author proved the theorem in [49] for the same type of spin networks and for any
G and f ; whereas Li-Bland and Ševera [42] prove it in full generality. The proof that we
give in §2.3 follows closely the proof of Li-Bland and Ševera.

However, as pointed out in [42], since the quasi-Poisson structure on MG(Σ, V ) is
twist-equivalent to the Fock-Rosly Poisson structure (see §3.2.6), all these results are in
some sense rediscoveries of a formula of Fock-Rosly [24] which computes Poisson brackets
of spin networks under their Poisson structure. See also [8] for a more detailed exposition
of the Fock-Rosly formula).

2.2 Algebras of Goldman, Massuyeau-Turaev and Labourie

In this section we use Theorem 2.6 to do some concrete computations in simple exam-
ples. The results could be of interest in their own right.

2.2.1 Goldman’s Lie algebra

We assume that G = GLnR, g = glnR. Let s ∈ (S2g)g be the dual of the standard
invariant scalar product (x | y) = Tr(xy) on g. Denote by Ekl the n × n matrix whose
(k, l)-entry is 1 and other entries are 0. We have the expression

s =
∑

1≤k,l≤n
Ekl ⊗ Elk.

Let α be an oriented loop in the interior of Σ. We add a base point p to α so that

Trα := [α,Tr] ∈ C∞(XG(Σ))
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is a spin network as in Example 2.3(1), where Tr ∈ C∞(G)G is the trace function. Take
another loop β with base point p′ such that α and β intersect transversally. Theorem 2.6
says that the Atiyah-Bott Poisson bracket of Trα and Trβ is

{Trα,Trβ} =
∑

q∈α∩β
εq(α, β)[α ∪q β,Dq(Tr,Tr)],

where α ∪q β is the spin network with three vertices p, p′, q and four edges α1, α2, β1, β2,
as shown in the picture below.

Dq(Tr,Tr) is a function on G4 given by

Dq(Tr,Tr)(gα1 , gα2 , gβ1 , gβ2) = d
dε

d
dδ

∣∣∣
ε=δ=0

∑
k,l

Tr
(
gα2 exp(εEkl)gα1

)
Tr
(
gβ2 exp(δElk)gβ1

)
=
∑
k,l

Tr(gα2Eklgα1) Tr(gβ2Elkgβ1)

=
∑
k,l

(gα)lk(gβ)kl = Tr(gαgβ).

It is easy to see that if we let α#qβ be the loop which runs α and β successively (see
the above picture), then [α ∪q β,Dq(Tr,Tr)] = Trα#qβ. Thus we get

Corollary 2.10 (Goldman [27]). The Poisson bracket of Trα,Trβ ∈ C∞(XG(Σ)) is

{Trα,Trβ} =
∑

q∈α∩β
εq(α, β) Trα#qβ .

This formula suggests us to define a Lie bracket [α, β] :=
∑
q∈α∩β εq(α, β)α#qβ on the

vector space G generated by free homotopy classes of loops on Σ, so that the embedding
G → C∞(XG(Σ)), α 7→ Trα preserves brackets. It is proved rigorously in [27] that [·, ·] is
indeed a Lie bracket. (G, [·, ·]) is called the Goldman Lie algebra and is widely used in the
study mapping class groups of surfaces. See e.g. [35].

2.2.2 Massuyeau-Turaev’s quasi-Poisson algebra

We now exhibit the quasi-Poisson counterpart of Goldman’s Lie algebra. Let α be an
orineted path joining two marked points v, v′ ∈ V and let

fij(g) = gij

be the function which assigns to each matrix g ∈ G its (i, j)-entry. Consider the spin
network

αij := [α, fij ] = (holα)ij
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as in Example 2.3(2). The quasi-Poisson bracket {αji, βlk} of two such spin networks can
be computed in a similar way. The result is the following corollary, where the notations
are defined as follows:

– β ∗q α is the path which starts from the source of α, runs α up to q, then switches
to β and ends at the target of β;

– α∧ and α∨ are, respectively, the first and second half of α;
– ε(α∨, β∧) = ±1 is the oriented intersection number of the two half-edges at their

common vertex (defined to be 0 if there they do not share a vertex);
– δij = 0, 1 is the Kronecker delta.

Corollary 2.11 (Massuyeau-Turaev [44], Nie [49] 3). The quasi-Poisson bracket of αij , βkl ∈
C∞(MG(Σ, V )) is given by

{αij , βkl} =
∑

q∈α∩β\∂Σ
εq(α, β)(β ∗q α)kj · (α ∗q β)il

+ 1
2
(
ε(α∧, β∧)αil · βkj + ε(α∨, β∨)αkj · βil + δjkε(α∧, β∨)(αβ)il + δilε(α∨, β∧)(βα)kj

)
.

Two typical examples are shown in the picture below. Here we compute quasi-Poisson
brackets of αij and βkl as pictured on the left, and the resulted is pictured on the right.

Corollary 2.11 can be interpreted in a similar way as Goldman’s algebra. One should
think of the symbol αij as a “labelled path”, i.e., a nontrivial element in π1(Σ, V ) to-
gether with indices j, i attached to its source and target, respectively. Let An(Σ, V ) be
the commutative associative algebra generated by all labelled paths modulo the obvious
relations ∑

j

βij · αjk = (βα)ik if α 6= β,
∑
j

(α−1)ijαjk = δik.

Equip An(Σ, V ) with the obvious (glnR)V -action and the bracket {·, ·} given by the above
corollary, then An(Σ, V ) is a quasi-Poisson ((glnR)V , s(V ))-algebra 4. This fact can be
proved by straightforward but lengthy verifications of quasi-Jacobi identities, in a similar

3. Additional technical assumptions are made in [44] and [49]: in the former paper it is assumed that
V is a single point, while in the latter we assumed that V has one point on each connected component of
∂Σ.

4. A quasi-Poisson (g, s)-algebra is just a commutative algebra equipped with a g-action and a bracket
{·, ·}, satisfying the same conditions as the algebra of functions of a quasi-Poisson g-manifold satisfies. See
Definition 4.14 below for a detailed definition.
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way as Goldman did for his Lie algebra. Probably there is another proof using Van den
Bergh’s theory of double brackets, as Massuyeau and Turaev did in [44] 5.

Remark 2.12. (1) By definition, the natural map An(Σ, V )→ C∞(MG(Σ, V )) is a mor-
phism of quasi-Poisson algebras. We conjecture that this morphism is injective.

(2) When defining An(Σ, V ) and proving it to be quasi-Poisson, we do not need V ⊂ ∂Σ
to be finite – one can even take V = ∂Σ. But in this case more foundational works
are needed in order to define a quasi-Poisson structure on the infinite-dimensional
MG(Σ, V ).

2.2.3 The Swapping algebra

An(Σ, V ) has an interesting Poisson subalgebra:

Proposition 2.13. Let i0, j0 ∈ {1, · · · , n} be distinct, then

{αi0j0 | α ∈ π1(Σ, V ) is nontrivial }

generates a Poisson subalgebra L(Σ, V ) of An(Σ, V ).

Proof. We need to prove that the quasi-Poisson bracket of An(Σ, V ) restricted to L(Σ, V )
is a Poisson bracket, that is, satisfies the Jacobi identity.

The canonical trivector φ ∈ (
∧3 g)g associated to s =

∑
k,lEkl ⊗ Elk ∈ (S2g)g is

φ =
∑
i,j,k

(Eij ⊗ Eki ⊗ Ejk − Eij ⊗ Ejk ⊗ Eki) .

Note that although we write φ as an element of g⊗3, it is indeed skew-symmetric.
Since An(Σ, V ) is a quasi-Poisson algebra, for αi0j0 , βi0j0 , γi0j0 ∈ L(Σ, V ) we have

− 2 	 {{αi0j0 , βi0j0}, γi0j0} = ρφ(V )(αi0j0 , βi0j0 , γi0j0), (2.3)

where ρ denotes the gV -action on An(Σ, V ). Let ρv be the action of the vth factor. Since
φ(V ) is the direct sum of #V copies of φ, in order to prove that (2.3) gives zero, we only
need to show

ρvφ(αi0j0 , βi0j0 , γi0j0) = 0. (2.4)

It is easy to see that the action ρv of x ∈ g on αi0j0 is given by

ρvx(αi0j0) =


∑
t(αi0txtj0 − xi0tαtj0) if α starts and ends at v,∑
t αi0txtj0 if α only starts from v,
−
∑
t xi0tαtj0 if α only ends at v,

0 otherwise.

It follows immediately that the required equality (2.4) holds if at least one of the three
paths α, β and γ neither start nor end at v. Case-by-case computations show that (2.4)
holds as well in other situations. For example, if α, β and γ all start from v and do not

5. Massuyeau and Turaev only treated the case #V = 1, where π1(Σ, V ) is the fundamental group. So
what need to be done here is to generalize their result to fundamental groupoids.
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end at v, then

ρvφ(αi0j0 , βi0j0 , γi0j0)

=
∑
i,j,k

(
ρvEij (αi0j0)ρvEki(βi0j0)ρvEjk(γi0j0)− ρvEij (αi0j0)ρvEjk(βi0j0)ρvEki(γi0j0)

)
=
∑
i,j,k

(αi0iδjj0βi0kδij0γi0jδkj0 − αi0iδjj0βi0jδkj0γi0kδij0)

= αi0j0βi0j0γi0j0 − αi0j0βi0j0γi0j0 = 0.

Since i0 and j0 are fixed, generator of L(Σ, V ) are in one to one correspondence with
nontrivial element of π1(Σ, V ), thus L(Σ, V ) can be considered as the commutative asso-
ciative algebra freely generated by nontrivial elements in π1(Σ, V ). The Poisson bracket
is given on generators by

{α, β} =
∑

q∈α∩β\∂Σ
εq(α, β)(β ∗q α) · (α ∗q β) + 1

2
(
ε(α∨, β∨) + ε(α∧, β∧)

)
α · β, (2.5)

and is extended to other elements by the Leibniz rule.
For the disk Σ = D, the Poisson algebra L(D, V ) was studied by Labourie [40], who

call it the swapping algebra. To explain the name, let us note that a nontrivial element
in π1(D, V ) is just an oriented chord xy going from y ∈ V to x ∈ V , while the Poisson
bracket (2.5) of two chords is

{xy, zw} = ε(xy, zw)xw · zy. (2.6)

Here ε(xy, zw) = 0,±1,±1
2 is defined in three cases respectively: it is the oriented in-

tersection number of xy and zw if they intersect in the interior of the disk; one-half the
oriented intersection number if intersect on the boundary; and 0 if xy and zw are disjoint.
L(D, V ) is related to configurations of flags in a projective space, as explained in §3.1.3

below.

2.2.4 The SLnR case

For our purpose later on, it is desirable to consider the structure group SLnR instead
of GLnR. It turns our that the above formulas adapts to this case with only a little
modification.

Recall that
s =

∑
kl

Ekl ⊗ Elk ∈ (S2glnR)glnR

is the dual of the invariant scalar product (x | y) = Tr(xy) on glnR. We let s1 ∈
(S2slnR)slnR denote the dual of the restriction of (· | ·) to slnR. Let Pr : glnR→ slnR be
the orthogonal projection, which is given by

Pr(x) = x− 1
n

Tr(x)I.

Then we have

s1 = (Pr⊗Pr)(s) =
∑
kl

(Ekl −
δkl
n
I)⊗ (Elk −

δkl
n
I) = s− 1

n
I ⊗ I. (2.7)
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Let {·, ·}SL denote the canonical quasi-Poisson bracket on C∞(MSLnR(Σ, V )) with re-
spect to s1.

Observe that s0 := I⊗I also belongs to (S2glnR)glnR, hence there is a canonical quasi-
Poisson ((glnR)V , s(V )

0 )-tensor on MG(Σ, V ). Let us consider the quasi-Poisson bracket
{·, ·}0 associated with it.

We call a function f : GLnR→ R homogeneous if f(λa) = λf(a) for any λ ∈ R∗.

Lemma 2.14. Let [Γ, f ] be a spin network on (Σ, V ) such that the admissible function
f ∈ C∞((GLnR)EΓ) is homogeneous with respect to each GLnR-factor. Let [Γ′, f ′] be a
spin network with the same property, which is transverse to [Γ, f ]. Then

{[Γ, f ], [Γ′, f ′]}0 = i(Γ,Γ′)[Γ, f ] · [Γ′, f ′].

Here the algebraic intersection number i(Γ,Γ′) is defined in Remark 2.7.

Proof. If f and f ′ are homogeneous then by definition

[Γ ∪q Γ′, Dq(f, f ′)] = [Γ ∪ Γ′, Da,a′(f, f ′)] = [Γ, f ] · [Γ′, f ′].

So the lemma follows from Theorem 2.6.

Corollary 2.15. The quasi-Poisson brackets of the restrictions of Trα, αij ∈ C∞(MGLnR(Σ, V ))
to MSLnR(Σ, V ) are given by

{Trα,Trβ}SL = − i(α, β)
n

Trα ·Trβ +
∑

q∈α∩β
εq(α, β) Trα#qβ,

{αij , βkl}SL = − i(α, β)
n

αij · βkl +
∑

q∈α∩β\∂Σ
εq(α, β)(β ∗q α)kj · (α ∗q β)il

+ 1
2
(
ε(α∧, β∧)αil · βkj + ε(α∨, β∨)αkj · βil + δjkε(α∧, β∨)(αβ)il + δilε(α∨, β∧)(βα)kj

)
.

Proof. Let {·, ·}, {·, ·}0 and {·, ·}1 denote the quasi-Poisson brackets on C∞(MGLnR(Σ, V ))
with respect to s, s0 and s1, respectively. By the definition of the quasi-Poisson tensor
(1.7), we have

{ϕ|MSLnR(Σ,V ), ψ|MSLnR(Σ,V )}SL = {ϕ,ψ}1|MSLnR(Σ,V )

for any ϕ,ψ ∈ C∞(MGLnR(Σ, V )). On the other hand, since s1 = s − 1
ns0, the same

definition implies that

{·, ·}1 = {·, ·} − 1
n
{·, ·}0.

Noting that the trace function and matrix entry functions are homogenous, the required
equalities follows from Lemma 2.14 and the previously proved Corollary 2.10 and 2.11.

2.3 Proof of Theorem 2.6

The aim of this section is to give a proof of Theorem 2.6. As a by-product, we also
give a proof of Theorem 1.12 . Here we follow Li-Bland and Ševera [42] closely.
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2.3.1 The homotopy intersection form

Given oriented paths α, β and a transversal intersection point q ∈ α ∩ β, we put

λ(q) =
{

1 if q ∈ ∂Σ,
2 otherwise.

Let αq denote the portion of α running from the starting point up to q.
Let Zπ1(Σ, V ) be the groupoid algebra of π1(Σ, V ), namely, the free Z-module gen-

erated by π1(Σ, V ) with a multiplication defined by linearly spanning the composition
law in π1(Σ, V ) (if a, b ∈ π1(Σ, V ) are not composable, we put ab = 0 ∈ Zπ1(Σ, V )). If
a =

∑
i niai ∈ Zπ1(Σ, V ) for ni ∈ Z and ai ∈ π1(Σ, V ), we put a :=

∑
i nia

−1
i .

Definition/Proposition 2.16. We define the homotopy intersection form as a map

(·, ·) : π1(Σ, V )× π1(Σ, V )→ Zπ1(Σ, V )

(a, b) =
∑

q∈α∩β
λ(q)εq(α, β)[α−1

q βq], (2.8)

where α, β are representatives of a, b which are transverse. Then (·, ·) is well-defined and
satisfies

(b, a) = −(a, b), (2.9)
(ab, c) = (b, c) + b−1(a, c). (2.10)

Proof. To show that (·, ·) is well-defined, one need to verify that the right-hand side of
Eq.(2.8) is invariant when α and β undergo homotopy modifications. But such modifica-
tions can be decomposed into a sequence of elementary moves shown in Figure 2.1 (see
e.g. [27]) for a proof of this fact), and it is elementary to verify invariance under these
moves. The proofs of (2.9) and (2.10) are also elementary.

Figure 2.1: Elementary moves



2.3. Proof of Theorem 2.6 45

Let P be a bivector field on a manifold M and ω,$ ∈ Ω1(M, g) = Ω1(M) ⊗ g be
g-valued 1-forms. The map P (ω,$) : M → g⊗ g is defined by applying P to the Ω1(M)-
parts of ω,$ and tensor product to the g-parts. In other words, for any ξ, η ∈ g∗ we
have

〈ξ ⊗ η, P (ω,$)〉 = P (〈η, ω〉 , 〈η,$〉).
Here 〈·, ·〉 denotes the pairing between g∗ ⊗ g∗ and g⊗ g or between g∗ and g.

Theorem 2.17. Let Γ be a skeleton of (Σ, V ) and PΓ be the quasi-Poisson (gV , s(V ))-
tensor defined in §1.3.1 Eq.(1.7). Then for any a, b ∈ π1(Σ, V ) we have

PΓ(hol∗aθL, hol∗bθL) = 1
2(Adhol(a,b) ⊗id)s. (2.11)

As a result, PΓ is independent of the choice of Γ.

Here we extend every m ∈MG(Σ, V ) to a homomorphism of algebras m : Zπ1(Σ, V )→
ZG and define hola : MG(Σ, V )→ ZG (∀a ∈ Zπ1(Σ, V )) as the evaluation map at a. The
adjoint action Ad : G→ GL(g) is also extended to an algebra homomorphism Ad : ZG→
End(g).

Proof. We shall first show that
– if Eq.(2.11) holds for a and b, then it also holds for b and a;
– if Eq.(2.11) holds for a and c as well as for b and c, then it also holds for ab and c.

Let σ : g⊗ g→ g⊗ g be the map switching the two factors. We have

PΓ(hol∗bθL,hol∗aθL) = −σ(PΓ(hol∗aθL,hol∗bθL)) = −1
2(id⊗Adhol(a,b))s

= −1
2(Adhol(a,b) ⊗id)s.

So the first assertion results from Eq.(2.9). To prove the second assertion, notice that for
any smooth maps λ, µ from a manifold M to G, we have

(λ · µ)∗θL = Ad−1
µ λ∗θL + µ∗θL.

Therefore

PΓ(hol∗abθL,hol∗cθL) = PΓ(Ad−1
holb hol∗aθL + hol∗bθL, hol∗cθL)

= 1
2(Ad−1

holb ⊗id)(Adhol(a,c) ⊗id)s+ 1
2(Adhol(b,c) ⊗id)s

So the second assertion results from Eq.(2.10).
As a result, we only need to verify Eq.(2.11) when a and b are represented by edges of

Γ, since π1(Σ, V ) is generated by the homotopy classes of these edges.
To this end, we assume that a is an edge of Γ equipped with an orientation, and let

a1,a2 ∈ ÊΓ denote the first and second half of a, respectively. For any a ∈ ÊΓ, we have

hol∗aθL(x(a)) =


x if a = a1,

−Ad−1
hola x if a = a2,

0 otherwise.
(2.12)

Put b and b1,b2 similarly. For any pair of half-edges a,b ∈ ÊΓ we define

δ(a,b) =


1 if a,b ∈ ÊΓ(v) for some v and a < b,
−1 if a,b ∈ ÊΓ(v) for some v and a > b,
0 otherwise.
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The expression (1.7) of PΓ and Eq.(2.12) yield

PΓ(hol∗aθL,hol∗bθL) = 1
2s

ij
∑

k,l=1,2
δ(ak,bl)hol∗aθL(x(ak)

i )⊗ hol∗bθL(x(bl)
j )

= 1
2s

ij
[
δ(a1,b1)xi ⊗ xj − δ(a1,b2)xi ⊗ (Ad−1

holb xj)

− δ(a2,b1)(Ad−1
hola xi)⊗ xj + δ(a2,b2)(Ad−1

hola xi)⊗ (Ad−1
holb xj)

]
.

On the other hand, by definition of the homotopy intersection form,

1
2
(
Adhol(a,b) ⊗id

)
s = 1

2s
ij
[
ε(a1,b1)xi ⊗ xj + ε(a1,b2)xi ⊗ (Ad−1

holb xj)

+ ε(a2,b1)(Ad−1
hola xi)⊗ xj + ε(a2,b2)(Ad−1

hola xi)⊗ (Ad−1
holb xj)

]
.

Thus one readily verifies Eq.(2.11) for this choice of a and b.
Finally, since (hole)e∈EΓ : MG(Σ, V )→ GEΓ is a diffeomorphism, the cotangent space

at any point of MG(Σ, V ) is generated by cotangent vectors of the form 〈hol∗aθL, x〉, where
a ∈ π1(Σ, V ). Therefore, Eq.(2.11) implies that PΓ is independent of Γ.

Similar reasoning as in the last paragraph of the proof yields

Corollary 2.18. If (Σ′, V ′)→ (Σ, V ) is an embedding then the induced map

f : MG(Σ, V )→MG(Σ′, V ′)

is a quasi-Poisson map, i.e., f∗ : C∞(MG(Σ′, V ′)) → C∞(MG(Σ, V )) preserves quasi-
Poisson brackets.

2.3.2 Proof of Theorem 2.6: the case V int
Γ = V int

Γ′ = ∅
Let us first assume that V int

Γ = V int
Γ′ = ∅, so that each edge e ∈ EΓ and e′ ∈ EΓ′

represents an element in π1(Σ, V ). Any f ∈ C∞(GEΓ) is an admissible function for Γ.
Given x ∈ g and e ∈ EΓ, we let xe denote the element of gEΓ whose eth component is x
and other components are 0. We define a map ∂L

e f : GEΓ → g∗ by〈
∂L
e f, x

〉
= xL

e(f), ∀x ∈ g.

If ge : GEΓ → G is the projection to the eth factor then we have

df =
∑
e∈EΓ

〈
∂L
e f, g

∗
eθ

L
〉
.

Therefore, the differential of the spin network [Γ, f ] = f
(
(hole)e∈EΓ

)
is given by

d[Γ, f ] =
∑
e∈EΓ

〈
∂L
e f((hole)e∈EΓ), hol∗eθL

〉
.

Theorem 2.17 yields

{[Γ, f ], [Γ′, f ′]} =
∑
e,e′

(
∂L
e f ⊗ ∂L

e′f
′
)
P
(
hol∗eθL,hol∗e′θL)

=
∑
e,e′

(
∂L
e f ⊗ ∂L

e′f
′
) (

Adhol(e,e′) ⊗id
)
s, (2.13)
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where the summation runs over edges e ∈ EΓ and e′ ∈ EΓ′ .
For fixed e and e′, each interior intersection point q ∈ e ∩ e′ \ ∂Σ contributes a term

to the homotopy intersection form (e, e′), as well as each pair of half-edges a ⊂ e,a′ ⊂ e′

sharing a vertex. The contribution of an interior intersection q to Eq.(2.13) is(
∂L
e f ⊗ ∂L

e′f
′
) (

Ade−1
q eq
⊗id

)
s

= εq(e, e′)sij
d
dε

∣∣∣
ε=0

f
(
(hold)d∈EΓ\{e}, hole exp(εAdhol

e−1
q e′q

xi)
)

· d
dδ

∣∣∣
δ=0

f ′
(
(hold)d∈EΓ′\{e′}, hole′ exp(εxj)

)
= εq(e, e′)sij

d
dε

∣∣∣
ε=0

f
(
(hold)d∈EΓ\{e}, holehole−1

q
exp(εxi)holeq

)
· d

dδ

∣∣∣
δ=0

f ′
(
(hold)d∈EΓ′\{e′}, hole′hole′−1

q
exp(εxj)hole′q

)
= εq(Γ,Γ′)[Γ ∪q Γ′, Dq(f, f ′)].

In the second step we considered the function in question as lifted to MG(Σ, V ∪{q}) and
used Ad-invariance of s.

Similar computations show that the contribution of a pair of half-edges a,a′ to Eq.(2.13)
is 1

2ε(a,a
′)[Γ ∪ Γ′, Da,a(f, f ′)]. Therefore Theorem 2.6 is proved in this case.

2.3.3 Proof of Theorem 2.6: the general case

Suppose now that Γ and Γ′ are arbitrary graph diagrams transverse to each other. Let
Σc be the surface obtained from Σ by deleting a small open disk Dv ⊂ Σ\Γ∪Γ′ near each
v ∈ V int

Γ ∪ V int
Γ′ , as shown below.

There are embeddings of marked surfaces

(Σ, V )←− (Σc, V ) −→ (Σc, V ∪ V int
Γ ∪ V int

Γ′ ). (2.14)

We view [Γ, f ] and [Γ′, f ′] as spin networks on (Σc, V ) in the obvious way, and also view
them as spin networks on (Σc, V ∪ V int

Γ ∪ V int
Γ′ ) by considering every vertex as a boundary

vertex. These spin networks, as functions on the representation spaces, are lifts of each
other under the maps induced by (2.14)

MG(Σ, V ) −→MG(Σc, V )←−MG(Σc, V ∪ V int
Γ ∪ V int

Γ′ ).

The first and second map are, respectively, injective and surjective, and by Corollary 2.18
they are both quasi-Poisson maps. Applying the previously proved V int

Γ = V int
Γ′ = ∅ case

to MG(Σc, V ∪ V int
Γ ∪ V int

Γ′ ), we conclude that Theorem 2.6 holds in general.





Chapter 3

Configuration spaces and moduli
of framed flat connections

The goal of this chapter is to give a proof of Theorem B in the introduction (i.e.,Theorem
3.23 below). As we will see, Fock-Goncharov’s moduli space of framed flat connections gen-
eralizes both configuration space of flags and moduli spaces of surface fundamental group
representations. So we shall first explain in §3.1 the basic ideas bridging quasi-Poisson
theory and configuration spaces. In particular, we show how the swapping algebra com-
putes Poisson brackets of certain functions on the configuration space of flags. In §3.2
we give a self-contained presentation of some ingredients of the Fock-Goncharov theory
in order to understand the statement of Theorem 3.23 and reduce it to straightforward
computations. These computations are implemented in §3.3. Finally, we discuss in §3.4
some further developments and problems.

3.1 Quasi-Poisson reduction and configuration spaces

3.1.1 Reduction with respect to a reducing subgroup

A main feature of the quasi-Poisson theory is that the reduction of the quasi-Poisson
manifoldMG(Σ, V ) by the action ofGV yields the Atiyah-Bott Poisson structure onXG(Σ)
(Theorem 1.15). Li-Bland and Ševera [42] observed that we can perform reduction with
respect to a smaller group, still obtaining a Poisson quotient.

Definition 3.1. Fix s ∈ (S2g)g. A subalgebra c ⊂ g is called reducing if it satisfies

[s](c⊥), s](c⊥)] ⊂ c,

where c⊥ = {α ∈ g∗ | α(c) = 0}. In particular, c is called coisotropic if s](c⊥) ⊂ c. A
closed subgroup C ⊂ G is called reducing or coisotropic if its Lie algebra is.

Note that if a subalgebra c is reducing, then so is any subalgebra containing c.

Proposition 3.2. Let C ⊂ G be a reducing subgroup. If M is a G-manifold and P is
a quasi-Poisson (g, s)-tensor on M , then the quasi-Poisson bracket {·, ·} restricts to a
Poisson bracket on C∞(M)C .

Following §1.1.4, we call this Poisson bracket “the Poisson structure on M/C reduced
from P”.
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Proof. We need to show that {·, ·} satisfies the Jacobi identity when applied to functions
in C∞(M)C , or equivalently,

[P, P ](df1, df2, df3) = ρφ(df1, df2, df3) = 0, ∀fi ∈ C∞(M)C .

We take any m ∈M and let αi ∈ g∗ be defined by αi(x) = ρx(m)(fi). Then fi ∈ C∞(M)C
means αi ∈ c⊥. We have

ρφ(df1, df2, df3)(m) = φ(α1, α2, α3),

which vanishes because of the definition of φ and reducing subalgebras.

Example 3.3. (1) Let G be a complex semi-simple Lie group (or its split real form). Let
s be proportional to the dual of the Killing form. Then any Borel subgroup B ⊂ G
is isotropic, hence so is any parabolic subgroups. This is easy to verify using the
expression

s =
∑
i,j

sijhi ⊗ hj +
∑
α∈∆+

(α | α)
2 (eα ⊗ e−α + e−α ⊗ eα) ,

where we take Cartan subalgebra h ⊂ g, positive roots ∆+ ⊂ h∗ and Chevalley basis
(hi, e±α)1≤i≤r,α∈∆+ (r is the rank and (sij) is some symmetric r × r matrix) so that
Lie(B) = h⊕ Span{eα | α ∈ ∆+}.

(2) SO(n) ⊂ SLnR and SO(n) ⊂ SO(1, n) are reducing but not isotropic. It is likely that
this generalizes to any symmetric pair.

3.1.2 Configuration spaces

Proposition 3.4. Let D be the disk and V be an arbitrary subset of ∂D. Choose a subgroup
Cv ⊂ G for each v ∈ V . Then we have a canonical identification

MG(D, V )/
∏
v∈V

Cv ∼=
(∏
v∈V

G/Cv

)
/G.

On the right-hand side, we take the quotient of the diagonal G-action on the product of
homogenous spaces G/Cv.

As a result, if V is finite and each Cv is reducing, then
(∏

v∈V G/Cv
)
/G carries a

Poisson structure.

Proof. It is sufficient to define a map p : MG(D, V ) →
∏
v∈V G/Cv such that the compo-

sition

p : MG(D, V ) p−→
∏
v∈V

G/Cv
/G−→

(∏
v∈V

G/Cv

)
/G (3.1)

is surjective and each fiber of p is a
∏
v∈V Cv-orbit in MG(D, V ).

For any x, y ∈ V , let xy denote the oriented chord going from y to x. We pick v0 ∈ V
and define p by

p(m) =
(

[e]v0 ,
([

holv0v(m)
]
v

)
v∈V \{v0}

)
,

where for any v ∈ V and g ∈ G we let [g]v ∈ G/Cv denote the projection of g.
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The composition (3.1) is surjective because, on one hand, any element in
∏
v∈V G/Cv

can be brought into the slice {[e]v0} ×
∏
v∈V \{v0}G/Cv by the diagonal G-action; on the

other hand, the map

(holv0v)v∈V \{v0} : MG(D, V )→ GV \{v0} (3.2)

is bijective.
Identifying MG(D, V ) with GV \{v0} using the map (3.2), it is easy to see that the fiber

of the map (3.1) passing through any (av)v∈V \{v0} ∈ GV \{v0} has the form

{(g0avg
−1
v )v∈V \{v0} | g0 ∈ Cv0 , gv ∈ Cv} ⊂ GV \{v0}.

This is exactly a
∏
v∈V Cv orbit. Thus we get the required identification. Finally, one can

verify that this identification is independent of the choice of v0, hence canonical.

If Cv = C for any v, then(∏
v∈V

G/Cv

)
/G = Map(V,G/C)/C =: ConfV (V,G/C).

is a configuration space of points in the homogenous space G/C.
In this thesis we are mainly concerned with the case where G = SLnR and Cv is

the upper-triangular subgroup B. Let F = G/B be the complete flag variety. Then
Proposition 3.4 gives a canonical identification

ConfV (F) ∼= MSLnR(D, V )/BV .

Our goal is to study the Poisson structure on this space reduced from the quasi-Poisson
structure of MSLnR(D, V ).

3.1.3 Cross ratio functions

Definition 3.5. Let x, y ∈ Pn−1 be two points and X,Y ⊂ Pn−1 be two hyperplanes. If
x /∈ Y and y /∈ X, we define their cross ratio as

[x,X, y, Y ] = 〈x̂, X̂〉〈ŷ, Ŷ 〉
〈x̂, Ŷ 〉〈ŷ, X̂〉

∈ R,

where x̂, ŷ ∈ Rn are lifts of x and y, whereas X̂, Ŷ ∈ R∗n \ {0} are linear forms vanishing
on X and Y , respectively. 〈·, ·〉 is the pairing of Rn and R∗n.

It is easy it see that [x,X, y, Y ] does not depend on the choices of x̂, ŷ, X̂, Ŷ , and is
invariant by projective transformations. When n = 2 we get the usual definition of cross
ratio on the projective line

[x,X, y, Y ] = (x−X)(y − Y )
(x− Y )(y −X) .

We write a flag x ∈ F as x = (x(1) ⊂ · · · ⊂ x(n)), where x(k) is a k − 1-dimensional
hyperplane in Pn−1. Given four flags x, y, z, w ∈ F , we define their cross ratio as

[x, y, z, w] := [x(1), y(n−1), z(1), w(n−1)]. (3.3)
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We shall slightly reformulate this definition. Recall that a nonzero k-vector l ∈
∧k Rn

is called decomposable if l = v1 ∧ · · · ∧ vk, where vi ∈ Rn. A decomposable k-vector
determines a subspace l = Span{v1, · · ·vk} independent of the choice of the vi’s. By an
affine flag is meant a sequence of decomposable multi-vectors

λ = (λ(1), · · · , λ(n−1)), λ(k) ∈ ∧kRn,

such that λ(k) ⊂ λ
(k+1). Hence there is a underlying flag λ = (λ(1) ⊂ · · · ⊂ λ

(n−1)), and
we say that λ lifts λ.

Take Ω ∈
∧nR∗n and let X,Y, Z,W be affine flags lifting x, y, z, w, respectively. Then

the cross ratio (3.3) can be rewritten as

[x, y, z, w] = Ω(X(1) ∧ Y (n−1))Ω(Z(1) ∧W (n−1))
Ω(Z(1) ∧ Y (n−1))Ω(X(1) ∧W (n−1))

, (3.4)

which is independent of the choices of Ω and the lifts.
Cross ratio gives rise to functions on ConfV (F). Indeed, given x, y, z, w ∈ V , by abuse

of notation, we define the cross ratio function as 1

[x, y, z, w] : Map(V,F)→ R, [x, y, z, w](f) = [f(x), f(y), f(z), f(w)].

Then [x, y, z, w] is invariant under projective transformations, and is considered as a func-
tion on ConfV (F).

As in §2.2.2, for any 1 ≤ i, j ≤ n we define a function xyij ∈ C∞(MG(D, V )) by

xyij(m) = holxy(m)ij , ∀m ∈MG(D, V ).

(On the right-hand side, we let gij denote the (i, j)-entry of a matrix g ∈ G.)

Proposition 3.6. The lift of the cross ratio function to MG(D, V ) by the quotient map
π : MG(D, V )→MG(D, V )/BV ∼= ConfV (F) is given by

π∗[x, y, z, w] = yxn1 · wzn1
yzn1 · wxn1

.

Proof. Let U ⊂ G be the group consisting of upper-triangular matrices whose diagonals
are 1. Given a basis (ei) of Rn, we have an identification between G/U and the space A
of all affine flags. For any a ∈ G, we let [a] ∈ A denote the affine flag corresponding to
the left coset aU ∈ G/U . Put Ω = e∗1 ∧ · · · ∧ e∗n, where (e∗i ) is the dual basis of R∗n, then
we have

Ω([a](k) ∧ [b](n−k)) = det(a(1), · · · , a(k), b(1), · · · , b(n−k)),

where a(i) denotes the ith column of the matrix a. In particular,

Ω([e](n−1) ∧ [a](1)) = an1. (3.5)

Let ConfV (A) := Map(V,A)/G be the configuration space of affine flags. Then π
factorizes through the natural projection

π0 : ConfV (A)→ ConfV (F).

1. We allow a negligible subset on which the function does not make sense.
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Eq.(3.4) implies that the function π∗0[x, y, z, w] on ConfV (A) is a fraction of four functions,
each of them having the form

ConfV (A)→ R, f 7→ Ω(f(x)(1) ∧ f(y)(n−1)) ∀f ∈ Map(V,A). (3.6)

This expression is invariant by the G-acton on f ∈ Map(V,A), hence indeed gives a
function on the quotient ConfV (A).

Now we only need to show that under the quotient map

MG(D, V )→MG(D, V )/UV ∼= ConfV (A),

the function (3.6) lifts to yxn1 ∈ C∞(MG(D, V )). But we have the following commutative
diagram

MG(D, V )

Map(V,A) ConfV (A) ConfV (F)

Ψy

��

/UV

��

/BV

''/G // π0 //

where Ψy is the map

MG(D, V )→ Map(V,A), m 7→ (x 7→ [holyx(m)]).

Therefore it follows from Eq.(3.5) that the map (3.6) lifts to yxn1, as required.

By the discussions in §2.2.3 (reinforced with §2.2.4, since G = SLnR), the subalgebra
of C∞(MG(D, V )) generated by functions of the form xyn1 is closed under Poisson bracket:

{xyn1, zwn1} = ε(xy, zw)
(
xwn1 · zyn1 −

1
n
xyn1 · zwn1

)
.

This formula and Proposition 3.6 allows us to compute Poisson brackets of any two cross
ratio functions on ConfV (F).

3.1.4 Twisted configuration spaces

In this subsection we generalize Proposition 3.4 to arbitrary bordered surface Σ. We
shall first introduce some notations.

Take a subset V ⊂ ∂Σ and subgroups Cv ⊂ G (v ∈ V ) as before. Let π : D→ Σ ∼= D/Π
be the universal covering map, where Π := π1(Σ) is the fundamental group acting on D
by deck transformations. Put Ṽ = π−1(V ). Given a representation ϕ ∈ Hom(Π, G), an
element (aṽ) in

∏
ṽ∈Ṽ G/Cπ(ṽ) is said to be ϕ-equivariant if

ϕ(γ).aṽ = aγ.ṽ, ∀γ ∈ Π.

The generalization of Proposition 3.4 to this situation is the following

Proposition 3.7. We have a canonical identification

MG(Σ, V )/
∏
v∈V

Cv =
{(

(aṽ), ϕ
)
∈
∏
ṽ∈Ṽ

G/Cπ(ṽ) ×Hom(Π, G)
∣∣∣ (aṽ) is ϕ-equivariant

}
/G.

Here G acts diagonally on the product
∏
ṽ∈Ṽ G/Cπ(ṽ) ×Hom(Π, G).
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We omit the proof since it is a straightforward adaptation of the proof of Proposition
3.4.

In particular, if Cv = C for any v, then Proposition 3.7 identifies MG(Σ, V )/CV with{(
f, ϕ

)
∈ Map(Ṽ , G/C)×Hom(Π, G)

∣∣∣ f is ϕ-equivariant
}
,

which is viewed as a “twisted configuration space” of points in G/C.

Example 3.8. Let Σ be the cylinder. Then for any subset V ⊂ ∂Σ of order N , the pair
(Σ, V ) is homotopy equivalent to the pair (R/NZ,R/Z), soMG(Σ, V ) = MG(R/NZ,R/Z).
The twisted configuration space in this case is

{
(
(ai)i∈Z, h

)
| ai ∈ G/C, h ∈ G, h.ai+N = ai}/G,

where the G-action is given by g.
(
(ai)i∈Z, g

)
=
(
(g.ai)i∈Z, ghg−1).

3.2 Fock-Goncharov Poisson structure from quasi-Poisson
reduction

3.2.1 Framed connections

Let G be the split real form of a complex reductive group. Fix a maximal torus H ⊂ G
and a Borel subgroup B containing H. Let F = G/B denote the flag variety.

Let R ⊂ h∗ be the roots of g relative to h. Each α ∈ R integrates to a character
H → R∗, λ 7→ λα. An element λ in H is called regular (or loxodromic) if λα 6= 1 for any
α ∈ R. An element g in G is called regular if it is conjugate to a regular element in H.
Let Hreg, Greg denote the set of regular elements in H and G, respectively.

Let Σ be compact oriented surface such that ∂Σ 6= ∅. We choose a finite (possibly
empty) subset W ⊂ ∂Σ and put Σ̂ = Σ \ W . In the picture below, points in W are
indicated by little circle.

Figure 3.1: A surface with a choice of W and V .

Definition 3.9. Let P → Σ be a principal G-bundle. A framed flat G-connection on Σ̂
is a pair (∇, f), where ∇ is a flat G-connection on P and f is a ∇-invariant choice of
a reduction of structure group to B on each component of ∂Σ \ W (such f is called a
framing of ∇). The space of all framed G-connections on P is denoted by AFflat(P ). We
let AFflat =

⊔
P AFflat(P ) be the disjoint union, where P runs over isomorphism classes of

principal G-bundles over Σ.
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Precisely, f is a choice of a B-orbit 2 in the fiber P |q for any q ∈ ∂Σ \W , such that if
q1 and q2 lies on the same component of ∂Σ \W then the parallel translation of ∇ carries
the B-orbit in P |q1 to the one in P |q2 . Clearly, to determine f we only need to pick one
point on each component of ∂Σ \W and describe the B-orbits at these points.

Definition 3.10. A circle component (resp. interval component) of ∂Σ\W is a connected
component of ∂Σ \W which is homeomorphic to a circle (resp. an open interval). Let
V ⊂ ∂Σ \W be a set of marked points such that each component of ∂Σ \W contains
exactly one marked point, c.f. Figure 3.1. Let Vcircle, Vinterval ⊂ V consist of marked points
on circle and interval components, respectively. For each v ∈ Vcircle we let βv denote the
boundary loop based at v, oriented against the induced orientation.

Fix a trivialization P |v ∼= G at each v ∈ V . Then a framing of a flat connection ∇ is
the same as a choice of left B-coset in each P |v, such that for any marked point on circle
component v ∈ Vcircle, the chosen coset aB satisfies holβv(∇) ∈ aBa−1. Thus we have an
identification

AFflat(P ) = {
(
∇, (fv)v∈V

)
∈ Aflat(P )×FV | ∀v ∈ Vcircle, holβv(∇) fixes the flag fv} (3.7)

Definition 3.11. The gauge group G(P ) naturally acts on AFflat(P ) and the quotient
is denoted by X

G,Σ̂(P ). The disjoint union X
G,Σ̂ =

⊔
P X

G,Σ̂(P ), where P runs over
isomorphism classes of principal G-bundles over Σ, is called the moduli space of framed
G-connections over Σ̂.

Moreover, we let X reg
G,Σ̂

(P ) denote the G(P )-quotient of

{(∇, (fv)v∈V ) ∈ AFflat(P ) | holβv ∈ Greg,∀v ∈ Vcircle}

and put X reg
G,Σ̂

=
⊔
P X reg

G,Σ̂
(P )

The following proposition provides our working definition of X
G,Σ̂:

Proposition 3.12. The subset
⋂
v∈Vcircle

hol−1
βv

(B) of the GV -manifold MG(Σ, V ) is in-
variant by BV , and we have identifications

X
G,Σ̂
∼=

 ⋂
v∈Vcircle

hol−1
βv

(B)

 /BV , (3.8)

X reg
G,Σ̂
∼=

 ⋂
v∈Vcircle

hol−1
βv

(Hreg)

 /(BVinterval ×HVcircle) (3.9)

In particular, if Vcircle = ∅, i.e., W has at least one point on each component of ∂Σ,
then X

G,Σ̂
∼= MG(Σ, V )/BV is a twisted configuration space (c.f. §3.6).

Remark 3.13. It follows from the cross-section theory (§1.4.2) and Proposition 3.2 that
the quotient (3.9) is a Poisson manifold (see §3.2.6 below for details); on the other hand,
we do not know at present how to use (quasi-)Poisson theory to endow the quotient (3.8)
with a Poisson structure, unless Vcircle = ∅. This is the reason why we have to introduce
the more restrictive identification (3.9) rather than working directly with (3.8).

2. Since P is a principal G-bundle, G acts on each fiber on the right.
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Example 3.14. (1) Let Σ be the disk D. Then ∂D \W consists of finitely many open
intervals and V has one point in each interval. In this case X

G,D̂ is a configuration space
of flags:

X
G,D̂ = MG(D, V )/BV ∼= ConfV (F).

(2) If W = ∅, then Σ̂ = Σ, V has exactly one point on each component of ∂Σ, and

X reg
G,Σ
∼= L/HV ,

where
L =

⋂
v∈V

hol−1
βv

(Hreg).

We denote M reg
G (Σ, V ) =

⋂
v∈V hol−1

βv
(Greg). Then in this case X reg

G,Σ̂
is a finite covering of

the open subset
Xreg
G (Σ, V ) := M reg

G (Σ, V )/GV

of XG(Σ) = MG(Σ, V )/GV .
In fact, it follows from Lemma 1.27 (2) that we can identify Xreg

G (Σ, V ) ∼= L/NG(H)V .
So X reg

G,Σ
∼= L/HV is a degree #V · #NG(H)/H covering of Xreg

G (Σ, V ) (recall that
NG(H)/H is the Weyl group and has finite order).

Proof of Proposition 3.12. For brevity we assume in this proof that G is connected, so any
principal G-bundle over Σ is isomorphic to the trivial one. In the general case, one only
needs to argue for each isomorphism class of principal G-bundles and take the disjoint
union.

Recall that MG(Σ, V ) is identified with the quotient of Aflat by the restricted gauge
group

GV = {g ∈ G | g(v) = id, ∀v ∈ V }.
In view of the the interpretation (3.7) of AFflat , we have

AFflat/GV = {(m, (fv)v∈V ) ∈MG(Σ, V )×FV | ∀v ∈ Vcircle, holβv(m) fixes the flag fv},

and X
G,Σ̂ = AFflat/G is the quotient of the above set by the diagonal action of GV = G/GV .

Let ([B], · · · , [B]) ∈ FV be the element whose entries are all the origin [B] ∈ G/B = F .
Since F is a homogenous G-space, we can bring any element of AFflat/GV into the slice⋂

v∈Vcircle

hol−1
βv

(B)× {([B], · · · , [B])} ⊂ AFflat/GV

by the GV -action. As a result, X
G,Σ̂ is the quotient of the above subset by

StabGV ([B], · · · , [B]) = BV .

This proves the first statement.
To prove the second statement, we put

L =
⋂

v∈Vcircle

hol−1
βv

(Hreg), N =
⋂

v∈Vcircle

hol−1
βv

(B ∩Greg)

By definition and the first statement, we have X reg
G,Σ̂

= N/BV . Since every B-orbit in
B∩Greg (with respect to the conjugation action) intersectsHreg and we have StabB(h) = H
for any h ∈ Hreg, it follows from equivariance of the holβv ’s that every BV -orbit in N
intersects L, and the intersection is a BVinterval×HVcircle -orbit. This establishes the required
identification.
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3.2.2 Triple ratio functions

In the sequel we set G = SLnR and let B ⊂ G be the upper-triangular subgroup.
To simplify notations, we assume Vcircle = ∅ unless otherwise specified, so that X

G,Σ̂ =
MG(Σ, V )/BV .

Fock and Goncharov [25] introduced some rational functions on X
G,Σ̂ which provide

coordinates systems on X
G,Σ̂. These functions consists of two types: triple ratio functions

and edge functions. In this subsection we give our reformulation of the definition of triple
ratio functions. Edges functions will be treated in the next subsection.

Like cross ratio functions (Proposition 3.6), triple ratio functions and edge functions
are fractions of certain spin networks on MG(Σ, V ). The graph diagrams of the spin
networks occurring here are tripods (see Example 2.3 (2)).

Definition 3.15. For each triple of non-negative integers p, q, r satisfying p+ q + r = n,
we define a function Detp,q,r : G×G×G→ R by

Detp,q,r(a, b, c) = det(a(1), · · · , a(p), b(1), · · · , b(q), c(1), · · · , c(r)),

where for any matrix a ∈ G, we denote the ith column of a by a(i). Note that Detp,q,r is
invariant by the diagonal action of G by left-multiplication.

Let ∆ be a tripod on Σ with feet v1, v2, v3 ∈ V , an interior vertex o, and legs e1, e2, e3,
as shown in Figure 3.2 on the left. Consider Detp,q,r as a function on GE∆ , then it is
admissible. We denote the resulting spin network by

∆p,q,r := [∆,Detp,q,r] ∈ C∞(MG(Σ, V )).

In particular, ∆n,0,0 = ∆0,n,0 = ∆0,0,n ≡ 1. By definition, the ∆p,q,r’s are expressed in
terms of holonomies by

∆p,q,r = Detp,q,r(1 ,hole−1
1 e2

, hole−1
1 e3

) = Detp,q,r(hole−1
2 e1

, 1 ,hole−1
2 e3

)

= Detp,q,r(hole−1
3 e2

, hole−1
3 e1

, 1 ).

∆p,q,r is not invariant under BV , but they have nice covariant properties:

Lemma 3.16. Let χk : B → R∗ (1 ≤ k ≤ n) be the character of B whose value at b ∈ B
is the product of the first k diagonal entries of b. Then for any (bv)v∈V ∈ BV we have

(bv)v∈V .∆p,q,r = χp(bv1)χq(bv2)χr(bv3)∆p,q,r.

Proof. Follows from the elementary fact that if a, b, c ∈ G and b1, b2, b3 ∈ B then

Detp,q,r(ab1, bb2, cb3) = χp(b1)χq(b2)χr(b3) Detp,q,r(a, b, c).

To better imagine the totality of all the ∆p,q,r’s for a fixed ∆, we fatten ∆ into a
triangle, and make a equilateral n-subdivision of the triangle, as shown in Figure 3.2 on
the right.

Let I∆ denote the the set of vertices of the subdivision, which are shown as black dots.
As indicated in the picture, points in I∆ are in one-one correspondence with triples of
non-negative integers (p, q, r) with p+ q + r = n. If i ∈ I∆ is labelled (p, q, r), we denote
∆i := ∆p,q,r.
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Figure 3.2: Tripod ∆, fattened ∆ and the associated ∆p,q,r’s

We shall orient each internal edge of the equilateral n-subdivision in the way shown in
Figure 3.2. For each i, j ∈ I∆, we set

εij =


1 if there is an edge from i to j,
−1 if there is an edge from j to i,
0 otherwise.

(3.10)

Definition 3.17. Let I int
∆ ⊂ I∆ denote the set of internal vertices of the equilateral

n-subdivision, i.e., those corresponding to triples of integers (p, q, r) with p, q, r > 0. The
triple ratio function X∆

i at a vertex i ∈ I int
∆ is a rational function on MG(Σ, V ) defined by

X∆
i =

∏
j∈I∆

∆εji
j ,

or more explicitly,

X∆
p,q,r = ∆p+1,q,r−1∆p−1,q+1,r∆p,q−1,r+1

∆p,q+1,r−1∆p−1,q,r+1∆p+1,q−1,r
.

It follows from Lemma 3.16 that Xi is invariant under BV , hence we also consider Xi as
a function on the quotient

X
G,Σ̂ = MG(Σ, V )/BV ,

where we allow a negligible subset on which Xi is not defined.

3.2.3 Edge functions

Two tripods ∆1 and ∆2 on (Σ, V ) are said to be adjacent if they share two feet, and
the two-leg in ∆1 supported at these feet is homotopic to the one in ∆2.

Let ∆1 and ∆2 be adjacent tripods. We fatten them into adjacent triangles, which
share an edge e, and make an equilateral n-subdivision on each triangle as before. See the
picture below. Here e is the vertical edge in the middle.

As before, we orient each internal edge of the subdivision, and define a number εij =
0,±1 for each i, j ∈ I∆1 ∪ I∆2 . We also label vertices in I∆1 and vertices in I∆2 by triples
of non-negative integers (p, q, r) with p+ q + r = n, respectively, in the way shown in the
above picture.
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Figure 3.3: Two adjacent tripods

Definition 3.18. Let i be a vertex of the subdivision contained in the interior of the edge
e (there are 3 such vertices in the above picture). The edge function X∆1,∆2

i at i is a
rational function on MG(Σ, V ) given by

X∆1,∆2
i =

∏
j∈I∆1∪I∆2

∆εji
j .

Here ∆j = (∆1)j (resp. (∆2)j) if j is contained in the fattening of ∆1 (resp. ∆2).
By the same reason as for triple ratio functions, each edge function X∆1,∆2

i is invari-
ant under BV , hence we consider it as functions on X

G,Σ̂ = MG(Σ, V )/BV , allowing a
negligible subset on which X∆1,∆2

i is not defined.

Note that each i in the interior of e is labelled (k, 0, l) in I∆1 and labelled (k, l, 0) in
I∆2 . Here (k, l) is a pair of positive integers satisfying k+l = n. A more explicit expression
for the edge functions is

X∆1,∆2
i = (∆1)k−1,1,l(∆2)k,l−1,1

(∆1)k,1,l−1(∆2)k−1,l,1
.

Like cross ratio functions in §3.1.3, triple ratio functions and edge functions come from
projective invariants of flags. In fact, given p, q, r ∈ N+ such that p+ q+ r = n, using the
same notations as Eq.(3.4), the triple ratio of three flags x, y, z ∈ F is defined as

Tp,q,r(x, y, z) = Ω(X(p+1) ∧ Y (q) ∧ Z(r−1))Ω(X(p−1) ∧ Y (q+1) ∧ Z(r))Ω(X(p) ∧ Y (q−1) ∧ Z(r+1))
Ω(X(p) ∧ Y (q+1) ∧ Z(r−1))Ω(X(p−1) ∧ Y (q) ∧ Z(r+1))Ω(X(p+1) ∧ Y (q−1) ∧ Z(r))

,

which is independent of the choices of Ω ∈
∧nR∗n and the affine flags X,Y, Z lifting x, y, z,

and invariant by projective transformations.

Proposition 3.19. Let Σ = D be the disk and ∆ be a tripod on D with feet v1, v2, v3 ∈
V . Then the function X∆

p,q,r on MG(D, V )/BV ∼= ConfV (F) = Map(V,F)/G can be
alternatively expressed as

X∆
p,q,r(f) = Tp,q,r(f(v1), f(v2), f(v3)), ∀f ∈ Map(V,F).

This statement is similar to Proposition 3.6, and the proof is essentially the same.
Similarly, given k, l ∈ N+ such that k + l = n, we can define a projective invariant of

four flags

Tk,l(x, y, z, w) = Ω(X(k−1) ∧ Y (1) ∧ Z(l))Ω(X(k) ∧ Z(l−1) ∧W (1))
Ω(X(k) ∧ Y (1) ∧ Z(l−1))Ω(X(k−1) ∧ Z(l) ∧W (1))

,



60Chapter 3. Configuration spaces and moduli of framed flat connections

and a similar statement as Proposition 3.19 holds. Note that the Tk,l(x, y, z, w)’s are
related to the cross ratio [x, y, z, w] by∏

k+l=n
Tk,l(x, y, z, w) = −[y, z, w, x].

3.2.4 Ideal triangulation and coordinates system

Fock and Goncharov showed that one can choose some tripods on (Σ, V ) such that the
triple ratio functions and edge functions associated with them form a coordinates system
of X

G,Σ̂. In this subsection we briefly review this construction.
The choice of tripods here is determined by some combinatorial data – a triangulation

T of Σ with vertex set V . It is easy to see that, by duality, giving such a triangulation
is equivalent to giving a trivalent graph ΓT on Σ with vertex set W such that Σ retracts
to ΓT by deformations. See Figure 3.4 for some examples, where each colored region
represents a triangle. Note that here we need the assumption Vcircle = ∅.

Figure 3.4: Triangulations and dual graphs.

Fix such a triangulation T . We consider a triangle of T as a fattened tripod on (Σ, V ).
So each triangle gives rise to (n−1)(n−2)

2 triple ratio functions, and each two adjacent
triangles give rise to n − 1 edges functions. The Fock-Goncharov coordinate system just
consists of all these functions.

More precisely, we make an equilateral n-subdivision of each triangle of T and orient
the edges of the subdivision as before. c.f. the following picture, which corresponds to the
first example in Figure 3.4.

We let IT denote the set of vertices of the subdivision, and define εij = ±1 (i, j ∈ IT )
by (3.10) as before. Put I int

T = IT \∂Σ (points of I int
T are black dots in the above picture).

Then we have a spin network ∆i ∈ C∞(MG(Σ, V )) for each i ∈ IT , and a resulting triple
ratio function or edge function

Xi =
∏

j∈IT

∆εji
j .
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for each i ∈ I int
T .

Theorem 3.20 (Fock-Goncharov [25]). Let X ◦
G,Σ̂
⊂X

G,Σ̂ be an open subset on which Xi

is defined for every i ∈ I int
T . Then the map

(Xi)i∈Iint
T

: X ◦
G,Σ̂ −→ R#Iint

T

is a diffeomorphism to the image.

When Vcircle 6= ∅, the same statement is true if we take a suitable triangulation T .
This will be discussed in the next subsection.

3.2.5 The Vcircle 6= ∅ case

When Vcircle 6= ∅, the moduli space of framed connections X
G,Σ̂ is the quotient of

N =
⋂

v∈Vcircle

hol−1
βv

(B) ⊂MG(Σ, V )

by BV . The triple ratio functions and edges functions as defined in the same way as before
and restricted to N .

However, in this case one should modify the triangulation T in the previous subsection
in order to get a coordinates system.

Namely, rather than triangulating Σ, we shall triangulate the surface Σ obtained by
shrinking each circle component of ∂Σ \W into a point. Let V , V interval and V circle be,
respectively, projections of V , Vinterval and Vcircle on Σ. So V circle is in the interior of Σ.

Any triangulation T of Σ with vertex set V is still equivalent to a trivalent graph ΓT
with vertex set W such that Σ retracts to ΓT by deformations. c.f. the examples pictured
below. Note that W can be empty.

Figure 3.5: Trivalent graphs on Σ correspond to triangulations of Σ.

Fix such a triangulation T . We can do the same thing to T as in the previous subsec-
tion, except that when defining ∆i ∈ C∞(MG(Σ, V )) for i ∈ IT , we must lift the triangle
in which i sits to a triangle (a fattened tripod) on Σ. The following lemma ensures that
∆i does not depend on the choice of the lift.
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Lemma 3.21. Let ∆ be a tripod on (Σ, V ) which has v ∈ Vcircle as a foot. We replace the
leg e of ∆ supported at v by the new leg eβv, and denote the resulting tripod by ∆′. Then
the triple ratio functions associated with ∆ and ∆′ coincides. Namely,

X∆
p,q,r = X∆′

p,q,r, ∀p, q, r ∈ N+ such that p+ q + r = n.

Similarly, if ∆1, ∆2 are adjacent tripods and ∆′1, ∆′2 are obtained from they by the above
modification (see the picture below), then we also have equalities of edges functions

X∆1,∆2
k,l = X

∆′1,∆′2
k,l , ∀k, l ∈ N+ such that k + l = n.

Proof. Let v be labelled by (n, 0, 0) in the n-subdivision of fattened ∆, then for any p, q, r
we have ∆′p,q,r = χp(holβv)∆′p,q,r. One verifies by definition that X∆

p,q,r = X∆′
p,q,r. The

seconded statement is similar.

Once the ∆i’s are in hand, we define the Xi’s as in the previous subsection. Theorem
3.20 still holds in this case.

3.2.6 Fock-Goncharov Poisson structure from quasi-Poisson reduction

Fock and Goncharov defined a Poisson structure on an open subset of X
G,Σ̂ by pre-

scribing Poisson brackets of their coordinates functions:

Definition 3.22. Let the notations be the same as in Theorem 3.20. The Fock-Goncharov
Poisson structure on X ◦

G,Σ̂
is defined by declaring the Poisson brackets of the Xi’s to be

{Xi, Xj} = −εijXiXj, ∀i, j ∈ I int
T . (3.11)

On the other hand, the quasi-Poisson theory also provides us with a Poisson structure
on an open subset of X

G,Σ̂. Indeed, the set Hreg of regular elements in H is a cross-
section, and we have a vector space decomposition slnR = h⊕h⊥ (h⊥ consisting of matrices
with zero diagonals) and a corresponding splitting s = sh + sh⊥ . By Corollary 1.29, the
HVcircle ×GVinterval -manifold

L =
⋂

v∈Vcircle

hol−1
βv

(Hreg)

has a canonical quasi-Poisson (hVcircle ⊕ gVinterval , s
(Vcircle)
h ⊕ s(Vinterval))-tensor PL. So Propo-

sition 3.2 says that X reg
G,Σ̂
∼= L/

(
BVinterval ×HVcircle

)
carries a Poisson structure reduced

from PL.
The main result of this section is
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Theorem 3.23. The above Poisson structure on X reg
G,Σ̂

coincides with the Fock-Goncharov
Poisson structure.

In particular, when W = ∅, the Fock-Goncharov Poisson structure coincides with
Atiyah-Bott’s:

Corollary 3.24. We assume W = ∅ and put L =
⋂
v∈V hol−1

βv
(Hreg), so that there is a

covering map

X reg
G,Σ
∼= L/HV → L/NG(H)V ∼= M reg

G (Σ, V )/GV = Xreg
G (Σ)

(c.f. Example 3.14 (2)). Then the lift of the Atiyah-Bott Poisson structure on Xreg
G (Σ)

coincides with the Fock-Goncharov Poisson structure on X reg
G,Σ.

Proof. By Theorem 1.15 the Atiyah-Bott Poisson structure PAB on Xreg
G (Σ) is reduced

from the canonical quasi-Poisson (gV , s(V ))-tensor on M reg
G (Σ, V ). By Corollary 1.29, PAB

can also be reduced from the quasi-Poisson (hV , s(V )
h )-tensor PL on L, hence the lift P̃AB of

PAB to X reg
G,Σ is reduced from PL as well. So P̃AB is exactly the Poisson structure that we

just defined on X reg
G,Σ, and Theorem 3.23 says that it coincides with Fock-Goncharov’s.

To prove Theorem 3.23, we need to verify Eq.(3.11) under our Poisson structure. But
we have expressed the Xi’s as fractions of the spin networks ∆i, so the proof boils down
to straightforward computations with Theorem 2.6 (or more generally, Corollary 2.8, if
Vcircle 6= ∅). We display the computations in detail in §3.3.

3.3 Proof of Theorem 3.23
In this section we give a computational proof of Theorem 3.23, using the quasi-Poisson

formula for spin networks established in §2.1.2.
Our goal is to to compute the Poisson bracket {Xi, Xj} for each pair i, j ∈ I int

T . Let us
first compute the quasi-Poisson bracket {∆i,∆j}, for i, j ∈ IT .

3.3.1 Poisson brackets of the ∆i’s

Proposition 3.25. Let Σ be a bordered surface and V ⊂ ∂Σ be finitely many marked
points. Let L ⊂MSLnR(Σ, V ) be a cross-section as defined in Corollary 1.29, with respect
to an arbitrary choice of V1, and let {·, ·} be the quasi-Poisson bracket on C∞(L). Let ∆
be a tripod on (Σ, V ). For any p, q, r ∈ N+, p + q + r = n, let ∆p,q,r be the spin network
defined in §3.2.2, considered here as a function on L by restriction. Then we have

{∆p0,q0,r0 ,∆p,q,r} = 1
2nω

(
(p0, q0, r0), (p, q, r)

)
∆p0,q0,r0 ·∆p,q,r,

where

ω
(
(p0, q0, r0), (p, q, r)

)
=


r0q − q0r if p ≥ p0, q ≤ q0, r ≤ r0 or p ≤ p0, q ≥ q0, r ≥ r0,
p0r − r0p if p ≥ p0, q ≤ q0, r ≥ r0 or p ≤ p0, q ≥ q0, r ≤ r0,
q0p− p0q if p ≥ p0, q ≥ q0, r ≤ r0 or p ≤ p0, q ≤ q0, r ≥ r0.

The expression for ω
(
(p0, q0, r0), (p, q, r)

)
is more transparent from Figure 3.6 below,

where we exhibit the values of ω
(
(p0, q0, r0), (p, q, r)

)
respectively when (p, q, r) belongs to

different regions.
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Figure 3.6: Values of ω
(
(p0, q0, r0), (p, q, r)

)
Proof. It is just an application of the quasi-Poisson bracket formula in Corollary 2.8. We
reproduce the formula here for convenience of the reader:

{[Γ, f ], [Γ′, f ′]}L =
∑
q

εq(Γ,Γ′)[Γ ∪q Γ, Dq(f, f ′)] + 1
2
∑
v∈V

∑
a,a′

ε(a,a′)[Γ ∪ Γ′, Da,a′(f, f ′)]

+ 1
2
∑
v∈V

∑
a,a′

[Γ ∪ Γ′ ∪ βv, D̃a,a′(f, f ′)].

Since the required equality is skew-symmetric when the roles of (p0, q0, r0) and (p, q, r)
are switched, we can assume r ≥ r0 without loss of generality.

We move ∆ by homotopy to a tripod ∆′ as shown in Figure 3.7, so that the two
tripods are transverse and have a single interior intersection point A. The formula gives
the quasi-Poisson bracket {∆p0,q0,r0 ,∆′p,q,r} as a sum of three terms, which we evaluate
respectively in Eq.(?1), Eq.(?2) and Eq.(?3) below.

Figure 3.7: ∆ and ∆′

εA(∆,∆′)[∆ ∪A ∆′, DA(Detp0,q0,r0 ,Detp,q,r)] = r0q

n
∆p0,q0,r0 ·∆p,q,r (?1)

To prove Eq.(?2), first we note that εA(∆,∆′) = −1.
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The graph ∆ ∪A ∆′ has eight edges. We think of an element in G
E∆∪A∆′ as an as-

signment of elements a, b, c1, c2, a
′, b′1, b

′
2, c
′ ∈ G to each edge, as shown in Figure 3.7 (here

and below, we put G = SLnR). Since the dual s ∈ (S2slnR)slnR of the scalar product
(x | y) = Tr(xy) has the following expression (c.f. §2.2.4)

s = − 1
n
I ⊗ I +

∑
1≤k,l≤n

Ekl ⊗ Elk,

by definition, the admissible function ψ = DA(Detp0,q0,r0 ,Detp,q,r) ∈ C∞(GE∆∪A∆′ ) is

ψ(a, b, c1, c2, a
′, b′1, b

′
2, c
′)

= − 1
n

d
dε

d
dδ

∣∣∣
ε=δ=0

Detp0,q0,r0(a, b, eεc2c1) ·Detp,q,r(a′, eδb′2b′1, c′)

+
∑
k,l

d
dε

d
dδ

∣∣∣
ε=δ=0

Detp0,q0,r0(a, b, c2 exp(εEkl)c1) ·Detp,q,r(a′, b′2 exp(δElk)b′1, c′).

Admissibility implies that ψ is invariant by the G-action on G
E∆∪A∆′ associated to the

vertex A, so we have

ψ(a, b, c1, c2, a
′, b′1, b

′
2, c
′) = ψ(a, b, I, c2c1, a

′, c−1
1 b′1, b

′
2c1, c

′) (3.12)

= −r0q

n
Detp0,q0,r0(a, b, c2c1) Detp,q,r(a′, b′2b′1, c′)

+
∑
k,l

d
dε

d
dδ

∣∣∣
ε=δ=0

Detp0,q0,r0(a, b, c2c1 exp(εEkl)) ·Detp,q,r(a′, b′2c1 exp(δElk)c−1
1 b′1, c

′).

By definition, [∆∪A∆′, ψ] is a function onMG(Σ, V ) whose lift toMG(Σ, V ∪{A, o, o′}) is
ψ(a, b, c1, c2, a

′, b′1, b
′
2, c
′), where a, b, c1, · · · : MG(Σ, V ∪{A, o, o′})→ G are now holonomies

of the corresponding paths. Since ∆ is homotopic to ∆′, there are relations, say, b′2c1 = c′,
between those holonomies. We claim that when b′2c1 = c′, the last summation in Eq.(3.12)
yields zero. This implies the required equality (?1).

The claim follows from the following observation:

Lemma 3.26. For any a, b, c ∈ G we have

d
dδ

∣∣∣
δ=0

Detp,q,r(a, c exp(δElk)b, c) = 0 if l ≤ r,

and

d
dε

∣∣∣
ε=0

Detp,q,r(a, b, c exp(εEkl)) =


Detp,q,r(a, b, c) if k = l ≤ p,
Detp,q,r(a, b, σkl(c)) if k > p and l ≤ p,
0 otherwise.

(3.13)

Here σkl(c) is obtained from c by exchanging the kth and lth column.

Proof. To prove the first equality, we compute

d
dδ

∣∣∣
δ=0

Detp,q,r(a, c exp(δElk)b, c)

= det(a(1), · · · , a(p), (cElkb)(1), (cb)(2), · · · , (cb)(q), c(1), · · · , c(r)) + · · ·
+ det(a(1), · · · , a(p), (cb)(1), · · · , (cb)(q−1), (cElkb)(q), c(1), · · · , c(r)),
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but (cElkb)(i) is a linear combination of c(1), · · · c(r) if l ≤ r, so each of the above determi-
nants vanishes.

The second equality also follows from elementary computations and we omit the proof.

1
2

3∑
i=1

ε(ai,a′i)[∆ ∪∆′, Dai,a′i(Detp0,q0,r0 ,Detp,q,r)] (?2)

= 1
2

(
min(p0, p)−min(q0, q)− r0 −

p0p

n
+ q0q

n
+ r0r

n

)
∆p0,q0,r0 ·∆p,q,r

To prove Eq.(?2), note that ε(a1,a′1) = 1 and ε(a2,a′2) = ε(a3,a′3) = −1, whereas the
admissible function ψi = Dai,a′i(Detp0,q0,r0 ,Detp,q,r) for the graph ∆ ∪∆′ is given by

ψ1(a, b, c, a′, b′, c′)

= − 1
n

d
dε

d
dδ

∣∣∣
ε=δ=0

Detp0,q0,r0(eεa, b, c) ·Detp,q,r(eδa′, b′, c′)

+
∑
k,l

d
dε

d
dδ

∣∣∣
ε=δ=0

Detp0,q0,r0(a exp(εEkl), b, c) ·Detp,q,r(a′ exp(δElk), b′, c′)

= −p0p

n
+ min(p0, p)

(the last equality uses Eq.(3.13)), and similarly for ψ2 and ψ3. Hence we get Eq.(?2).

1
2
∑
i

[∆ ∪∆′ ∪ βvi , D̃ai,a′i(Detp0,q0,r0 ,Detp,q,r)] = 0. (?3)

This is a sum over those i’s for which vi ∈ Vcircle. For any h = diag(h1, · · · , hn) ∈ Hreg we
have (Adh +1

Adh−1 ⊗ id
)
sh⊥ =

∑
k 6=l

hk + hl
hk − hl

Ekl ⊗ Elk,

we obtain (?3) by using Eq.(3.13) again. For example, when i = 1, we have

D̃a1,a′1(Detp0,q0,r0 ,Detp,q,r)(a, b, c, a′, b′, c′, h) =
d
dε

d
dδ

∣∣∣
ε=δ=0

∑
k 6=l

hk + hl
hk − hl

Detp0,q0,r0(a exp(εEkl), b, c) ·Detp,q,r(a′ exp(δElk), b′, c′) = 0.

Combining Eq.(?1), Eq.(?2) and Eq.(?3), we get

{∆p0,q0,r0 ,∆p,q,r}

= 1
2n
(
n
(

min(p0, p)−min(q0, q)− r0
)
− p0p+ q0q + r0r + 2r0q)

)
∆p0,q0,r0 ·∆p,q,r.

Noting p0 + q0 + r0 = p + q + r = n, one verifies that the parenthesized terms equal
ω
(
(p0, q0, r0), (p, q, r)

)
by elementary computations.

Proposition 3.27. Under the hypothesis of Proposition 3.25,
– if ∆′ is a tripod adjacent to ∆ as in Figure 3.3, so that the two vertices that they
share are labelled (n, 0, 0) and (0, 0, n) in I∆, respectively, and labelled (n, 0, 0) and
(0, n, 0) in V∆′, then

{∆p0,q0,r0 ,∆′p,q,r} = 1
2n
(
n
(

min(p0, p)−min(r0, q)
)
− p0p

n
+ r0q

n

)
∆p0,q0,r0 ·∆p,q,r.
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– if ∆′ is a tripod sharing with ∆ a single vertex, which is labelled (n, 0, 0) in both I∆
and V∆′, then

{∆p0,q0,r0 ,∆′p,q,r} = 1
2n
(
nmin(p0, p)−

p0p

n

)
∆p0,q0,r0 ·∆p,q,r.

– if ∆′ is a tripod disjoint with ∆, then {∆p0,q0,r0 ,∆′p,q,r} = 0.

The first two statements follows from almost the same computations as in the above
proof of Eq.(?2) and Eq.(?3). The last statement is immediate, since if two spin networks
have disjoint graph diagrams then Corollary 2.8 implies that their quasi-Poisson bracket
vanishes.

3.3.2 Poisson brackets of the Xi’s

Using Proposition 3.25 and 3.27, we can prove Theorem 3.23 by straightforward veri-
fications in the following cases, respectively:
(1) i and j are in the interior of some triangle t ∈ T ,
(2) i is in the interior of t ∈ T , while j is on the boundary of t,
(3) i is in the interior of t ∈ T , while j is in some triangle t′ ∈ T adjacent to t,
(4) i is in the interior of t ∈ T , while j is in some triangle t′ ∈ T which share a single

vertex with t.
(5) i and j are in two disjoint triangles t, t′ ∈ T .

The complexity of verifications are in a decreasing order, the last case being obvious.
Here we only treat Case (1) in some detail.

Let us first show that

{log ∆p,q,r, logXp′,q′,r′} =
{

1 if (p′, q′, r′) = (p, q, r),
0 if (p′, q′, r′) 6= (p, q, r). (3.14)

By the definition of Xp,q,r, we have

logXp,q,r = log ∆p+1,q,r−1 + log ∆p−1,q+1,r + log ∆p,q−1,r+1 (3.15)
− log ∆p,q+1,r−1 − log ∆p−1,q,r+1 − log ∆p+1,q−1,r.

To prove the first case in (3.14), we apply Proposition 3.25 and get

{log ∆p,q,r, logXp,q,r}

= 1
2n
(
ω
(
(p, q, r), (p+ 1, q, r − 1)

)
+ ω

(
(p, q, r), (p− 1, q + 1, r)

)
+ ω

(
(p, q, r), (p, q − 1, r + 1)

)
− ω

(
(p, q, r), (p, q + 1, r − 1)

)
− ω

(
(p, q, r), (p− 1, q, r + 1)

)
− ω

(
(p, q, r), (p+ 1, q − 1, r)

))
= 1

2n(2p+ 2r + 2q) = 1.

The second case in (3.14) results from similar computations. Here one needs to compute
separately for (p′, q′, r′) belonging to each of the three regions in Figure 3.6.

It follows from Eq.(3.14) and Eq.(3.15) that

{logXp,q,r, logXp′,q′,r′} =


1 if (p′, q′, r′)− (p, q, r) = (1, 0,−1), (−1, 1, 0) or (0,−1, 1),
−1 if (p′, q′, r′)− (p, q, r) = (−1, 0, 1), (1,−1, 0) or (0, 1,−1),
0 otherwise.

This is exactly the required equality {logXi, logXj} = εij in Case (1).
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3.4 Further discussions
This last section of the present chapter is not detailed. We suggest some further

developments of the above considerations.

3.4.1 A Poisson algebra of functions on MSLnR(Σ, V )
In Fock-Goncharov theory, we considered spin networks of the form ∆i only for tripods

∆ coming from a triangulation T of Σ. It is natural to consider the totality of such
spin networks for all tripods. The subalgebra of C∞(MSLnR(Σ, V )) generated by them is
not closed under quasi-Poisson bracket, but there is a natural quasi-Poisson subalgebra
Cn(Σ, V ) containing it, as we explain in this subsection.

We define a labelled n-pod γ on (Σ, V ) as a n-pod each of whose legs is labelled by an
integer in {1, · · · , n}. Overlapping feet are allowed. Labelled n-pods are considered up to
homotopy.

A labelled n-pod γ gives rise to a spin network similar to ∆i. Indeed, let e1, · · · , en be
the edges of γ, labelled by p1, · · · , pn, respectively. Define Detp1,··· ,pn ∈ C∞((SLnR)n) by

Detp1,··· ,pn(a1, · · · , an) = det(a(p1)
1 , · · · , a(pn)

n ),

where a(i) denotes to ith column of the matrix a ∈ SLnR. Then Detp1,··· ,pn is an admissible
functions for the n-tripod. We view the labelled n-pod γ as the spin network [γ,Detp1,··· ,pn ].

We define Cn(Σ, V ) as the subalgebra of C∞(MSLnR(Σ, V )) generated by all labelled
n-pods.
Cn(Σ, V ) is far from being free. There are the following relations, the first being

obvious.
(1) If two edges of γ with the same label share a foot, then γ = 0
(2) Assuming m > n, any labelled m-pod Γ (whose edges are still labelled by {1, · · · , n})

gives rise to a number of quadratic relations as follows, which are essentially Plücker
relations from projective embedding of the Grassmannian Gr(n,m). We index the
edges of Γ by 1, · · · ,m and let Γ(i1, · · · , in) denote the labelled n-pod formed by edges
with indices 1 ≤ i1 < · · · < in ≤ m. Furthermore, for general i1, · · · , in ∈ {1, · · · ,m}
we put Γ(i1, · · · , in) = 0 if some of the ik’s coincide, otherwise put Γ(i1, · · · , in) =
sgn(σ)Γ(iσ(1), · · · , iσ(n)), where σ ∈ Sn is the unique permutation such that iσ(1) <
· · · < iσ(n). Then for any 1 ≤ k0 < · · · < kd ≤ m and 1 ≤ i1 < · · · < id−1 ≤ m we
have a relation

d∑
j=0

(−1)jΓ(i1, · · · , id−1, kj)Γ(k0, · · · , k̂j , · · · , kd) = 0.

It is likely that these give all relations in Cn(Σ, V ).
Some computations using Theorem 2.6 yield

Proposition 3.28. Cn(Σ, V ) ⊂ C∞(MSLnR(Σ, V )) is closed under the quasi-Poisson
bracket {·, ·}. Moreover, the restriction of {·, ·} to Cn(Σ, V ) is a Poisson bracket.

Indeed, the bracket of two labelled n-pods γ and γ′ can be described in a way very
similar to the Massuyeau-Turaev algebra and swapping algebra. Namely, let vi, v′i ∈ V
(i = 1, · · · , n) denote the feet of γ and γ′, respectively, then

{γ, γ′} =
∑

q∈γ∩γ′\∂Σ
εq(γ, γ′)[γ, γ′]q + 1

2
∑
i,j

ε(vi, v′j)[γ, γ′]i,j −
1
n
γ · γ′, (3.16)
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where the second summation runs over i, j ∈ {1, · · · , n} such that vi = v′j . Here [γ, γ′]q
denotes the product of the two labelled n-pods obtained by swapping the pair of legs
intersecting at q; similarly, [γ, γ′]i,j is the product of the two labelled n-pods obtained by
swapping labels of γ and γ′ at the common feet vi = v′j .

Remark 3.29. The last term in Eq.(3.16) is dispensable: replacing the coefficient 1
n by

any λ ∈ R, Eq.(3.16) still defines a Poisson bracket on Cn(Σ, V ).

Certain fractions of elements in Cn(Σ, V ) can be viewed as functions on twisted config-
uration spaces of (partial) flags. As an example, let P ⊂ SLnR be the parabolic subgroup
stabilizing the point [1 : 0 : · · · : 0] ∈ Pn−1, so that Pn−1 = SLnR/P , andMSLnR(Σ, V )/P V
is a twisted configuration space of points in the projective space. Let γ1, · · · , γN and
γ′1, · · · , γ′N be n-pods whose edges are all labelled by 1, then the fraction

γ1 · · · γm
γ′1 · · · γ′m

is P V -invariant if the set of feet of γ1, · · · , γm, taking multiplicities into account, coincides
with the set of feet of γ′1, · · · , γ′m.

V. Ovsienko, R. Schwartz and S. Tabachnikov [51] 3 constructed a Poisson structure
on the moduli space of “twisted N -gons”

PN = MSL3R(R/NZ,R/Z)/PN

(c.f. Example 3.8) in order to study a discrete dynamical system on an open part of
PN . In fact, in a way similar to Fock and Goncharov, they defined a coordinates system
(xi, yi)i∈Z/NZ on an open part of PN and defined a Poisson structure by prescribing Poisson
brackets of coordinates functions (which are also log-constant).

Let Σ be the cylinder and V = {vi}v∈Z/NZ be N marked points on ∂Σ. Identifying

MSL3R(R/NZ,RZ) = MSL3R(Σ, V ),

their coordinates admit the following expressions under our framework:

xi = 1− (i− 1, i, i+ 1)(i− 2, i+ 1, i+ 2)
(i− 2, i, i+ 1)(i− 1, i+ 1, i+ 2)

yi = 1− (i+ 1, i− 2, i− 1)(i+ 1, i− 1, i)
(i+ 1, i− 2, i− 1)(i+ 2, i− 1, i)

where (i, j, k) denotes the labelled tripod whose feet is vi, vj , vk and each edge is labelled
by 1. Thus we can compute Poisson brackets of these coordinates functions under the
Poisson structure on PN reduced from MSL3R(Σ, V ). However, computations shows that
this Poisson structure does not coincides with Ovsienko-Schwartz-Tabachnikov’s.

3. We would like to thank Zhe Sun for informing us of this article.





Chapter 4

Deformation quantization of
MG(Σ, V )

The goal of this chapter is to prove Theorem C in the introduction, namely, construct
a star product quantizing the quasi-Poisson manifold MG(Σ, V ). We first briefly recall
in §4.1 some ingredients from the theory of quasi-Hopf algebras, due to Drinfeld [19, 20],
then we discuss in §4.2 quantizations of quasi-Poisson manifolds, in particular MG(Σ, V ).

4.1 Associators
We fix a field k of characteristic zero. All vector spaces and (co)algebras are defined

over k. All (co)algebras are assumed to be (co)associative and have (co-)unit unless
otherwise specified. Given an algebra A and distinct integers r1, · · · , rk ∈ {1, · · · , n}
(where k ≤ n), for any ξ ∈ A⊗k, we let ξr1···rk ∈ A⊗n denote the image of ξ by the map
V ⊗k → V ⊗n sending a1 ⊗ · · · ⊗ ak to b1 ⊗ · · · ⊗ bn, where bri = ai for i = 1, · · · , k and
br = 1 if r 6= r1, · · · , rk. For example, if k = n = 3 then (x⊗ y ⊗ z)231 = z ⊗ x⊗ y.

4.1.1 Quasi-bialgebras and braids

Recall that a bialgebra is an algebra A equipped with a map ∆ : A→ A⊗A (called a
coproduct) satisfying

– ∆ has a co-unit ε : A→ k. Namely, (ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id.
– ∆ is a homomorphism of algebras. Here A⊗A viewed as an algebra in the standard
way. Namely, the multiplication is given by (x ⊗ y)(x′ ⊗ y′) := xx′ ⊗ yy′ and 1 ⊗ 1
is the unit.

A bialgebra A is called coassociative if

(id⊗∆)∆(x) = (∆⊗ id)∆(x), ∀x ∈ A.

Definition 4.1. A quasi-bialgebra is a bialgebra A such that there exists an invertible
element Φ ∈ A⊗A⊗A (called an associator) satisfying

(id⊗∆)∆(x) = Φ · (∆⊗ id)∆(x) · Φ−1, (4.1)
(id⊗ ε⊗ id)Φ = 1⊗ 1, (4.2)

and the pentagon equation

1⊗ Φ · (id⊗∆⊗ id)Φ · Φ⊗ 1 = (id⊗ id⊗∆)Φ · (∆⊗ id⊗ id)Φ. (Pentagon)
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Furthermore, A is called quasi-triangular with universal R-matrix R ∈ A⊗A if

∆(x)21 = R∆(x)R−1 ∀x ∈ A (4.3)

and R satisfies the following hexagon equations

(∆⊗ id)R = Φ312R13Φ−1
132R23Φ, (Hexagon1)

(id⊗∆)R = Φ−1
231R13Φ213R12Φ−1. (Hexagon2)

To understand these definitions we need to introduce some more notions.
By a parenthesizing of an ordered set with n elements (or n aligned points) is meant

the object shown on the left-hand side in the picture below, which is equivalent to the
object on the right – a binary tree with one root and n leaves.

(••)((••)•) ⇐⇒
• • • • •

Given a parenthesizing p of an ordered set with n elements, we can iterate the coproduct
∆ for n − 1 times – with p telling us where to apply ∆ at each time – to get a map
∆p : A→ A⊗(n−1). For example,

∆(••)•(x) = (∆⊗ id) ◦∆(x), ∆•(••)(x) = (∆⊗ id) ◦∆(x),

∆(•(••))•(x) = (id⊗∆⊗ id) ◦ (∆⊗ id) ◦∆(x), etc.
Given n ∈ N, if I, J,K are disjoint subsets of {1, · · · , n}, each endowed with a parenthe-
sizing, we denote

ΦI,J,K =
(
(∆I ⊗∆J ⊗∆K)Φ

)
I∪J∪K

∈ A⊗n,

Similarly we define RI,J ∈ A⊗n. For example, with this notation (Pentagon) can be
written as

Φ2,3,4Φ1,23,4Φ1,2,3 = Φ1,2,34Φ12,3,4. (Pentagon)

Definition 4.2. We define a groupoid Bn as follows. Objets of Bn are parenthesized
permutations of {1, · · · , n}. A morphsim is a braid with n strands such that the two ends
of each strand are indexed by the same number, as explained by the following pictures.

(1 (2 3)) 4

(4 3) (2 1)

Braids are read from top to bottom.
This picture presents a morphism in
B4 from the object (1(23))4 to (43)(21).

K

K

J)(I

(I J)

If I, J,K are disjoint parenthesized subsets
of {1, · · · , n} and their union is {1, · · · , n},
a picture like this presents a morphism where
the upper I, J,K and the lower ones are joint
by trivial braids.

The following two types of morphisms are called elementary

◦

◦

◦

◦

J)

(J

(I

I)
,

◦

◦

◦

◦

J)

(I

((I

(J

K)

K))
.
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Here
◦
◦
represents a (possibly empty) trivial braid whose two ends are the same parenthe-

sized subsets of {1, · · · , n}.

It is easy to see that elementary braids generate Bn in the sense that every morphism
can be decomposed into elementary ones.

Proposition 4.3. We define a homomorphism % from Bn to the group of invertible ele-
ments in A⊗n by requiring images of elementary morphisms to be

%


◦

◦

◦

◦

J)

(J

(I

I)

 = RI,J , %


◦

◦

◦

◦

J)

(I

((I

(J

K)

K))

 = ΦI,J,K .

Then ρ is well-defined, i.e., the image of a morphism does not depend on its decomposi-
tion into elementary ones, if and only if R and Φ satisfies (Pentagon), (Hexagon1) and
(Hexagon2).

Proof of the “only if” part. (Pentagon), (Hexagon1) and (Hexagon2) are respectively given
by the following generating relations

((• •) •) •

(• (• •))•

•((• •) •)

• (• (• •))

=

((• •) •) •

(• •)(• •)

• (• (• •))

,

(••) •

• (••)
=

(• •) •

• (• •)

• (• •)

(• •) •

(• •) •

• (• •)

,

(••)•

•(••)
=

• (• •)

(• •) •

(• •) •

• (• •)

• (• •)

(• •) •

.

A prove of the “if” part can be found, e.g., in [50].

4.1.2 Representations and braided monoidal categories

A representation of a quasi-bialgebra A is by definition a representation of the under-
lying algebra of A. Let us recall the latter notion:

Definition 4.4. Let A be an algebra. A k-vector space M is called a (left) A-module or
a representation of A if it is equipped with a linear map λ : A ⊗M → M such that the
following diagrams commute:

A⊗A⊗M A⊗M

A⊗M M

id⊗λ //

λ //

m⊗id

��

λ

��

,

k⊗M A⊗M

M M

i⊗id //

id //

∼=

��

λ

��

.
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We also denote x.m := λ(x ⊗m) for x ∈ A,m ∈ M (called the action of x on m). The
category of all A-modules is denoted by ModA.

The main point of this subsection is that when A is a quasi-triangular quasi-bialgebra,
ModA has rich structures.

Definition 4.5. If A is a quasi-bialgebra, then
– the trivial A-module is k considered with the action x.k := ε(x)k (∀x ∈ A, k ∈ k).
– the tensor product M⊗N of A-modulesM and N is the vector space tensor product
M ⊗N with the action x.(m⊗ n) := ∆(x).(m⊗ n).

Example 4.6. If G is a finite group and A is the group algebra k[G], then a A-module
is the same as a G-module. If g is a Lie algebra and A is the universal enveloping algebra
Ug, then a A-module is the same as a g-module. In these two cases, the notions of trivial
A-module and tensor product of A-modules coincide with classical ones.

Since A is not necessarily coassociative, the natural vector space isomorphisms

(L⊗M)⊗N ∼−→ L⊗ (M ⊗N)

is not necessarily a A-module morphism. However, we do have a A-module morphism
between them provided by the associator, as stated in the following proposition. Similarly,
the permutation map

σ : M ⊗N ∼−→ N ⊗M, m⊗ n 7→ n⊗m

is not a A-module morphism in general, but if A is quasi-triangular with universal R-
matrix R ∈ A⊗A, then there is a A-module morphism.

Proposition 4.7. If A is a quasi-bialgebra with associator Φ ∈ A⊗3, then

γ : (L⊗M)⊗N ∼−→ L⊗ (M ⊗N)
a⊗ b⊗ c 7−→ Φ.(a⊗ b⊗ c)

is an isomorphism of A-modules. Furthermore, if A is quasi-triangular with universal
R-matrix R ∈ A⊗A, then

β : M ⊗N ∼−→ N ⊗M
a⊗ b 7−→ σ(R.(a⊗ b))

is also an isomorphism of A-modules.

Proof. The actons of x ∈ A on a⊗ b⊗ c ∈ (L⊗M)⊗N and Φ.(a⊗ b⊗ c) ∈ L⊗ (M ⊗N)
give respectively (∆ ⊗ id)∆(x).(a ⊗ b ⊗ c) and ((id ⊗∆)∆(x) · Φ).(a ⊗ b ⊗ c). The latter
is the image of the former by γ because of the condition (4.1). Hence γ is a morphism of
A-modules. γ is bijective because Φ is invertible.

Similarly, the action of x ∈ A on a ⊗ b ∈ M ⊗ N and σ(R.(a ⊗ b)) are respectively
∆(x).(a⊗ b) and

∆(x).σ(R.(a⊗ b)) = σ(∆op(x)R.(a⊗ b)) = σ(R∆(x).(a⊗ b)).

The latter is the image of the former by β.
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A monoidal category is roughly speaking a category C in which one can perform tensor
product of two objects A,B to get an object A⊗B. A braided monoidal category is then
a monoidal category equipped with isomorphisms

γ : (A⊗B)⊗ C → A⊗ (B ⊗ C), β : A⊗B → B ⊗A

for any objects A,B and C such that β and γ are functorial and satisfies some compatibility
conditions which are similar to the pentagon and hexagon equations, see e.g. [16] for
details. In particular, if A is a quasi-triangular quasi-bialgebra then ModA is a braided
monoidal category.

Given n objects in a braided monoidal category C, each parenthesized permutation of
order n corresponds to a way of tensoring these objects together. For example, for n = 4
and objectsM1, · · · ,M4, the parenthesized permutations (12)(34) and (13)(24) correspond
to (M1 ⊗M2)⊗ (M3 ⊗M4) and (M1 ⊗M3)⊗ (M2 ⊗M4), respectively. A braid B joining
two parenthesized permutations gives rise to an isomorphism ι(B) between the two tensor
products. For example,

B =

(1

(1

4)

4)

2)

3)

(3

(2

 (4.4)

induces
ι(B) : (M1 ⊗M2)⊗ (M3 ⊗M4) −→ (M1 ⊗M3)⊗ (M2 ⊗M4).

We omit the precise definition of ι(B) for general braided monoidal category. For the
category ModA, it has the expression

ι(B) = σB ◦ %(B).

% : B4 → A⊗4 is given in the previous subsection. An element of A⊗4 is viewed here as a
map from M1⊗M2⊗M3⊗M4 to itself via the A-action, and σB is the permutation given
by the braid. For B in (4.4), σB is the permutation of 2nd and 3rd factors

σ23 : M1 ⊗M2 ⊗M3 ⊗M4 →M1 ⊗M3 ⊗M2 ⊗M4.

Recall that one can define an algebra in a categorical way as an object A in a monoidal
category together with a morphism m : A ⊗ A → A which serves as multiplication.
Furthermore, in a braided monoidal category one can define an associative algebra as an
algebra such that the following diagram commutes

(A⊗A)⊗A A⊗ (A⊗A)

A

γ //

m◦(m⊗id)
��

m◦(id⊗m)
��

One can verify that if (A1,m1) and (A2,m2) are associative algebras in a braided
monoidal category and we define a multiplication on A1 ⊗A2 as the composition

m : A⊗A = (A1 ⊗A2)⊗ (A1 ⊗A2) ι(B)−→ (A1 ⊗A1)⊗ (A2 ⊗A2) m1⊗m2−→ A1 ⊗A2 = A,

where B is the braid (4.4), then (A,m) is still an associative algebra. We call (A,m) the
tensor product of (A1,m1) and (A2,m2).
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4.1.3 Associators in U(g)⊗3[[~]]
Let g be a Lie algebra and U(g) be the universal enveloping algebra. Fix t ∈ (S2g)g ⊂

g⊗ g ⊂ U(g)⊗U(g). In terms of t12, t13, t23 ∈ U(g)⊗3, the canonical trivector φ ∈ (
∧3 g)g

associated to t can be written as

φ = −1
2[t12, t23] = 1

2[t13, t23] = 1
2[t12, t13].

We will only consider a specific type of quasi-triangular quasi-biaglebras – those of the
form (U(g)[[~]],Φ, R), with R = e

~t
2 ∈ U(g)⊗2[[~]] and

Φ = 1 + ~2φ2 +O(~3) ∈ U(g)3[[~]] (4.5)

for some φ2 ∈ U(g)⊗3.
The associator Φ here can be seen as a quantization of φ in the sense that φ is given

by the first approximation φ2 of Φ. Precisely, we have the following proposition.

Proposition 4.8. If (U(g)[[~]],Φ, e
~t
2 ) is a quasi-triangular quasi-bialgebra and Φ is given

by (4.5), then φ2 satisfies Alt(φ2) = −1
2φ ∈ (

∧3 g)g ⊂ U(g)⊗3. Here

Alt(φ2) :=
∑
σ∈S3

sgn(σ)σ(φ2) ∈ U(g)⊗3.

Proof. It follows from the second-order part of (Hexagon1).

Definition 4.9. Given t ∈ (S2g)g, we call a formal power series Φ ∈ U(g)⊗3[[~]] of the form
(4.5) an associator quantizing t if (U(g)[[~]],Φ, e

~t
2 ) is a quasi-triangular quasi-bialgebra.

Notice that the condition (4.3) in Definition 4.1 is automatically satisfied, while the
condition (4.1) means Φ ∈ (U(g)⊗3[[~]])g. The bialgebra U(g)[[~]] is itself coassociative,
but we still need a nontrivial associator in order to have a nontrivial braided monoidal
category Mod(U(g)[[~]],Φ,e~t/2).

Remark 4.10. In the literature, one usually impose stronger conditions in the definition
of associators, in order to gain richer structures. Namely, it is often assumed that Φ has
the form Φ = Φ(~t12, ~t23), where we let k〈〈X,Y 〉〉 denote the algebra of non-commutative
formal power series in the variables X,Y and require that Φ(X,Y ) ∈ k〈〈X,Y 〉〉 satisfies

– Φ(X,Y ) = exp f(X,Y ), where f(X,Y ) ∈ k〈〈X,Y 〉〉 is contained in the Lie subalge-
bra of k〈〈X,Y 〉〉 generated by X and Y .

– Φ(X,Y )−1 = Φ(Y,X).
An in-depth study of such associators goes back to Drinfeld [20]. In particular, the

first example of an associator was constructed therein, and it is shown that associators
over Q (hence over any field k of characteristic 0) exit.

Let t(n) = t⊕· · ·⊕ t ∈ (S2gn)gn be the direct sum of n copies of t. Given an associator
Φ ∈ U(g)⊗3[[~]] quantizing t, we can define an associator

Φ(n) ∈ U(gn)⊗3[[~]] = (U(g)⊗n)⊗3[[~]]

quantizing t(n) as the image of Φ⊗ · · · ⊗ Φ︸ ︷︷ ︸
n

∈ (U(g)⊗3)⊗n[[~]] under the identification

(U(g)⊗3)⊗n[[~]] ∼−→ (U(g)⊗n)⊗3[[~]]
(a1 ⊗ b1 ⊗ c1)⊗ · · · ⊗ (an ⊗ bm ⊗ cn) 7−→ (a1 ⊗ · · · ⊗ an)⊗ (b1 ⊗ · · · ⊗ bn)⊗ (c1 ⊗ · · · ⊗ cn).
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4.2 Deformation quantization

4.2.1 Deformation quantization of Poisson manifolds

Definition 4.11. Let A be a commutative algebra. A star product ? on A is a k[[~]]-
linear associative product ? : A[[~]] ⊗k[[~]] A[[~]] → A[[~]], whose mod ~ reduction is the
commutative product in A.

Equivalently, there is a sequence of maps θ1, θ2, · · · : A⊗A→ A such that

f ? g = fg + ~θ1(f, g) + ~2θ2(f, g) + · · · , f, g ∈ A, (4.6)

and for general f, g ∈ A[[~]] the star product f?g is given by linear expansion. Associativity
of ? imposes constraints on the θi’s.

Proposition 4.12. Let {·, ·} : A⊗A→ A be the skew-symmetric bilinear map defined by

{f, g} = f ? g − g ? f
~

mod ~

(In other words, {f, g} = θ1(f, g) − θ1(g, f)). Then {·, ·} is a Poisson bracket on A, and
we say that the star product ? quantizes the Poisson bracket {·, ·}.

A more general statement will be proved later (Proposition 4.16).
Let M be a Poisson manifold, then we define a star product on M as a star product

on C∞(M) such that each θk in Eq.(4.6) is a bidifferential operator.

Example 4.13 (The Moyal product). The following expression gives a star product on
Rd endowed with constant Poisson structure P = P ij∂i∂j (Pij = −Pji), called the Moyal
product:

f ? g = fg +
∑
r≥1

∑
|I|=|J |=r

1
r!

(~
2

)r
P IJ∂If∂Jg,

where for any multi-index I = (i1, · · · , ir) and J = (j1, · · · , jr), we set

P IJ = P i1j1 · · ·P irjr .

4.2.2 Deformation quantization of quasi-Poisson manifolds

We fix from now on a Lie algebra g, an element t in (S2g)g, and an associator Φ ∈
U(g)⊗3 quantizing t. First we state an algebraic definition of quasi-Poisson brackets.

Definition 4.14. Let A be a commutative g-algebra 1. A skew-symmetric bilinear map
{·, ·} :

∧2A→ A is called a quasi-Poisson (g, t)-bracket if it satisfies
– g-invariance: x.{a, b} = {x.a, b}+ {a, x.b};
– Leibniz rule: {ab, c} = {a, c}b+ {b, c}a;
– Quasi-Jacobi identity: 	 {{a, b}, c} = −1

2m(φ.(a⊗ b⊗ c)), where 	 means sum-
mations over cyclic permutations of a, b, c.

Definition 4.15. Let A be a commutative g-algebra. A k[[~]]-linear product

? : A[[~]]⊗k[[~]] A[[~]] −→ A[[~]]

is called a Φ-star product if the mod ~ reduction of ? is the commutative product in A and
(A[[~]], ?) is an associative algebra in the braided monoidal category Mod(U(g)[[~]],Φ,e~t/2)
(see §4.1.2).

1. That is, a commutative algebra on which g acts by derivations
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Thus ? also has the expression (4.6). The latter condition amounts to

x ◦ ? = ? ◦∆(x), ∀x ∈ g, (4.7)
? ◦(?⊗ id) = ? ◦ (id⊗ ?) ◦ Φ. (4.8)

Here an element in U(g)⊗k[[~]] is considered as a map A⊗k[[~]]→ A⊗k[[~]] via the g-action
on A. Notice that (4.7) just means ? is g-invariant.

Proposition 4.16. If ? is a Φ-quasi-star product on A, then

{a, b} := a ? b− b ? a
~

mod ~

is a quasi-Poisson (g, t)-bracket on A, and we say that ? quantizes {·, ·}.

When k = R,C and (M,P ) is a (real or complex) quasi-Poisson G-manifold, a Φ-star
product on M is by definition a Φ-star product on C∞(M) such that each θk in (4.6) is a
bidifferential operator.

Proof. The first-order part of Eq.(4.7) is

x.θ1(a, b) = θ1(x.a, b) + θ1(a, x.b),

which implies g-invariance of {·, ·}.
The first and second order parts of Eq.(4.8) are respectively

θ1(a, b)c+ θ1(ab, c) = aθ1(b, c) + θ1(a, bc), (4.9)
θ2(a, b)c+ θ2(ab, c) + θ1(θ1(a, b), c) (4.10)
= aθ2(b, c) + θ2(a, bc) + θ1(a, θ1(b, c)) +m(φ2.(a⊗ b⊗ c)),

where θ1, θ2 and φ2 are the terms appearing in the expansions Eq.(4.6) and Eq.(4.5) of ?
and Φ.

The Leibniz rule of {·, ·} follows from Eq.(4.9):

{ab, c} = θ1(ab, c)− θ1(c, ab)
= θ1(ab, c)− θ1(a, bc) + θ1(a, cb)− θ1(ac, b) + θ1(ca, b)− θ1(c, ab)
= aθ1(b, c)− θ1(a, b)c− aθ1(c, b) + θ1(a, c)b+ cθ1(a, b)− θ1(c, a)b
= a{b, c}+ b{a, c}.

The quasi-Jacobi identity follows from Eq.(4.10):

	 {{a, b}, c} =	
(
θ1(θ1(a, b), c)− θ1(c, θ1(a, b))− θ1(θ1(b, a), c) + θ1(c, θ1(b, a))

)
=	

(
θ1(θ1(a, b), c)− θ1(a, θ1(b, c))− θ1(θ1(b, a), c) + θ1(b, θ1(a, c))

)
=	

(
aθ2(b, c) + θ2(a, bc)− θ2(a, b)c− θ2(ab, c) +m(φ2.(a⊗ b⊗ c))
− bθ2(a, c)− θ2(b, ac) + θ2(b, c)c+ θ2(ab, c)

)
+m(φ2.(b⊗ a⊗ c))

= m(Alt(φ2).(a⊗ b⊗ c)) = −1
2m(φ.(a⊗ b⊗ c)).
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Remark 4.17. This definition of deformation quantization for quasi-Poisson manifolds
was given by Enriquez and Etingof [22]. For a specific class of quasi-Poisson manifolds
(those arising from the classical dynamical Yang-Baxter equation), quantizations are thor-
oughly studied [22, 23, 4]. Using Kontsevich’s method of quantizing Poisson manifolds,
Halbout [31] showed the existence of quantization for quasi-Poisson G-manifolds when the
G-action is free.

In the rest of this chapter, under some assumptions on Φ, we construct an explicit
Φ(V )-star product on MG(Σ, V ) quantizing the canonical quasi-Poisson t(V )-tensor. The
idea of construction is the same as how the quasi-Poisson tensor itself is constructed –
we start by quantizing the disk with two marked points and then show how fusion of
quasi-Poisson manifolds lifts to fusion of star products.

4.2.3 Quantization of the disk with two marked points

Consider a real Lie group G as a G × G-manifold via the action ρ(a,b) : g 7→ agb−1.
The induced g⊕ g-action is ρ(x,y)(g) = xL(g)− xR(g).

For any ϕ ∈
∧3 g, the zero bivector field on G is a quasi-Poisson (g, 0, ϕ)2-bivector

field because ϕL − ϕR = 0. It admits a simple quantization when ∆ = ∆0, and the
associator Φ ∈ U(g)⊗3[[~]] is g-invariant and satisfies S⊗3(Φ) = Φ−1, in particular, if
Φ = Φ(~t1,2, ~t2,3) is given by an even Lie associator Φ ∈ R〈〈X,Y 〉〉:

The idea of constructing a Φ(V )-star product on MG(Σ, V ) is the same as that of
constructing a

Let D be the disk with two marked points. Recall from §1.1.1 and §1.3.1 thatMG(D) =
G and the G action is ρ(a,b) : g 7→ agb−1. The trivial bivector field P = 0 on MG(D) is a
quasi-Poisson t(2)-tensor for any t ∈ (S2g)g. It is natural to guess that the commutative
product in C∞(M) is a star product quantizing P = 0. It is indeed the case under some
restrictions on Φ, as stated in the following proposition. Here S : U(g) → U(g) is the
antipode map, i.e., an anti-homomorphism which restricts to −id on g ⊂ U(g).

Proposition 4.18. If the associator Φ ∈ U(g)⊗3[[~]] satisfies S⊗3(Φ) = Φ−1, then the
usual product of functions is a Φ(2)-quasi-star product on G.

Remark 4.19. An associator of the form Φ = Φ(~t12, ~t23) as in Remark 4.10 satisfies
S⊗3(Φ) = Φ−1 if and only if Φ(X,Y ) is even in the sense that f(X,Y ) only has terms of
even degree. It is shown by Bar-Natan [10] that such Φ(X,Y ) exists.

A k-multi-differential operator on a manifold M is a linear map D : C∞(M)⊗k →
C∞(M) such that in a local chart it has the form

D(f1 ⊗ · · · ⊗ fk) =
∑

I1,··· ,Ik

λI1,··· ,Ik(∂I1f1) · · · (∂Ikfk).

where I1, · · · , Ik run over multi-indices and each λI1,··· ,Ik is a smooth function.
Let Dk(M) be the space of k-multi-differential operators on M and set D(M) =

D1(M). Dk(M) can be identified with the C∞(M)-module tensor product of k-copies
of D(M). The natural map from the vector space tensor product to C∞(M)-module
tensor product is

D(M)⊗k −→ Dk(M)
D 7−→ D, D(f1 ⊗ · · · ⊗ fk) = m ◦D(f1 ⊗ · · · ⊗ fk)
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where m : C∞(M)⊗k → C∞(M) is the usual product of functions.
A g-action onM induces an algebra homomorphism U(g)⊗k → D(M)⊗k, hence a linear

map U(g)⊗k → Dk(M).
WhenM = G, let L and R be the homomorphism and anti-homomorphism of algebras

from U(g) to D(G) defined by

L(x1 · · ·xn) = xL
1 · · ·xL

n, R(x1 · · ·xn) = xR
n · · ·xR

1 for any xi ∈ g.

The tensor products of k-copies of them L⊗k,R⊗k : U(g)⊗k → D(G)⊗k are also denoted
by L,R for brevity.

Clearly, the map U(g)⊗k → D(G)⊗k induced by the right (resp. left) action of G
on itself is L (resp. R ◦ S⊗k). In particular, L(ξ) and R(S⊗k(η)) commutes for any
ξ, η ∈ U(g)⊗k since the left and right actions commutes. We also have

Lemma 4.20. Let A,B ∈ U(g)⊗k. Then L(A) ◦R(B) = R(AB) (resp. L(BA)) if A
(resp. B) is g-invariant.

Proof. We assume k = 2 to simplify notations. For general k the proof is the same.
By linearity we can assume that A = x1 · · ·xm⊗ y1 · · · yn and B = u1 · · ·up⊗ v1 · · · vq,

where xi, yi, ui, vi ∈ g. For any f, g ∈ C∞(G), we have

L(A) ◦R(B)(f ⊗ g) = xL
1 · · ·xL

mu
R
p · · ·uR

1 (f)⊗ yL
1 · · · yL

nv
R
q · · · vR

1 (g),

hence for any a ∈ G we have

L(A) ◦R(B)(f ⊗ g)(a) = ∂

∂t

∣∣
t=0

∂

∂s

∣∣
s=0

[
f(exp(t1u1) · · · exp(tpup)a exp(t′1x1) · · · exp(t′mxm))

· g(exp(s1v1) · · · exp(spvq)a exp(s′1y1) · · · exp(s′nyn))
]

= ∂

∂t

∣∣
t=0

∂

∂s

∣∣
s=0

[
f(a exp(t1 Ad−1

a u1) · · · exp(tp Ad−1
a up) exp(t′1x1) · · · exp(t′mxm))

· g(a exp(s1 Ad−1
a v1) · · · exp(sp Ad−1

a vq) exp(s′1y1) · · · exp(s′nyn))
]

= L((AdaB)A)(f ⊗ g)(a),

where “ ∂∂t
∣∣
t=0” stands for

∂

∂t1
· · · ∂

∂tp

∂

∂t′1
· · · ∂

∂t′m

∣∣∣
(t1,··· ,tp,t′1,··· ,t′m)=0

,

and similarly for “ ∂
∂s

∣∣
s=0”.

Therefore, L(A) ◦R(B) = L(BA) if B is g-invariant. The other equality is proved by
the same argument.

Proof of Proposition 4.18. The invariance (4.7) is obvious. We now prove (4.8).
It is sufficient to show that under the map U(g⊕ g)⊗3 → D3(G) induced by the g⊕ g-

action on G, the image of Φ(2) ∈ U(g⊕ g)⊗3[[~]] is trivial (i.e., the product C∞(G)⊗3 →
C∞(G)). But this image is L(Φ)R(S⊗3(Φ)), so it follows from the above lemma that it
equals L(S⊗3(Φ)Φ) (noting that Φ ∈ (U(g)[[~]])g), hence is trivial by assumption.
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4.2.4 Fusion at the quantum level

The algebraic version of quasi-Poisson fusion (Defintion/Proposition 1.3) is as follows.

Definition 4.21. Let A be a g⊕g-algebra and {·, ·} be a quasi-Poisson (g⊕g, t(2))-bracket
on A. The fusion of {·, ·} is the quasi-Poisson (g, t)-bracket

{a, b}∗ := {a, b}+ 1
2m((t23 − t41).(a⊗ b)),

where t23, t41 ∈ g⊗4 ⊂ (U(g) ⊗ U(g))⊗2. Here A is considered as a g-algebra via the
diagonal embedding g ↪→ g⊕ g.

In this subsection we shall produce a Φ-star product ?∗ quantizing {·, ·}∗ from a Φ(2)-
star product quantizing {·, ·}.

Let us first consider the simpler case where we have two quasi-Poisson (g, t)-algebras
(A1, {·, ·}1) and (A2, {·, ·}2) and A = A1⊗A2 is a vector space tensor product, with g⊕ g-
action given by letting the first and second g-factor act on A1 and A2, respectively. Then
the “direct product” of {·, ·}1 and {·, ·}2, defined by

{a1 ⊗ a2, b1 ⊗ b2} = {a1, b1}1 ⊗ a2b2 + a1b1 ⊗ {a2, b2},

is a quasi-Poisson (g⊕g, t(2))-star product on A. If ?i is a Φ-star product on Ai quantizing
{·, ·}i, it is easy to see that the composition

? : A⊗A = A1 ⊗A2 ⊗A1 ⊗A2
σ23−→ A1 ⊗A1 ⊗A2 ⊗A2

?1⊗?2−→ A1 ⊗A2 = A

is a Φ(2)-star product on A. Here σ23 permutes the second and third factors.
One can construct a Φ-star product ?∗ on A quantizing {·, ·}∗ by letting (A[[~]], ?∗)

be the tensor product of associative algebras (A1[[~]], ?1) and (A2[[~]], ?2) in the braided
monoidal category Mod(U(g)[[~]],Φ,e~t/2), as discussed in the end of §4.1.2. Precisely, ?∗ is
the composition

?∗ : A⊗A = (A1 ⊗A2)⊗ (A1 ⊗A2) ι(B)−→ (A1 ⊗A1)⊗ (A2 ⊗A2) ?1⊗?2−→ A1 ⊗A2 = A,

where B is the braid (4.4) and ι(B) = σ23 ◦ %(B). Notice that %(B) can be expressed in
terms of Φ via a decomposition of B into elementary braids. For example, the decompo-
sition (1

(1

4)

4)

2)

3)

(3

(2

 =


1((32) 4)

1 (3 (24))

(1 3) (2 4)

 ◦
1((2 3) 4)

1((3 2) 4)

 ◦


(1 2) (3 4)

1 (2 (34))

1((23) 4)


gives

%(B) = (Φ1,3,24)−1Φ3,2,4e~t23/2(Φ2,3,4)−1Φ1,2,34.

Notice that ?∗ is related to ? by

?∗ = ? ◦ %(B). (4.11)

In the general case where A is not necessarily a tensor product, we shall show that (4.11)
defines a Φ-star product quantizing {·, ·}∗ as well:

Proposition 4.22. Under the settings of Definition 4.21, if ? is a Φ(2)-star product on the
g⊕g-algebra A quantizing the quasi-Poisson (g, t)-bracket {·, ·}, then ?∗ given by Eq.(4.11)
is a Φ-star product quantizing {·, ·}∗.
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We shall call ?∗ the fusion of ?.

Proof. Let us first prove Eq.(4.7) for ?∗. To be more clear, we let g1 and g2 denote the
first and second factor of g⊕ g, respectively. The coproduct ∆(2) of U(g1 ⊕ g2) is

U(g1 ⊕ g2) ∼= U(g1)⊗ U(g2) −→ U(g1)⊗ U(g2)⊗ U(g1)⊗ U(g2) ∼= U(g1 ⊕ g2)⊗ U(g1 ⊕ g2)
x⊗ y 7−→ ∆(2)(x⊗ y) = (∆(x)⊗∆(y))1324.

Hence Eq.(4.7) for ? reads

(x⊗ y) ◦ ? = ? ◦ (∆(x)⊗∆(y))1324. (4.12)

The action of x ∈ g on A via the diagonal embedding g ↪→ g ⊕ g is just the action of
∆(x) = x⊗ 1 + 1⊗ x on A. Thus Eq.(4.7) for ?∗ amounts to

∆(x) ◦ ?∗ = ?∗ ◦ (∆⊗∆)∆(x).

To prove this equality, we insert Eq.(4.11) and Eq.(4.12) into it, and find that it is sufficient
to prove

((∆⊗∆)∆(x))1324

(1

(1

4)

4)

2)

3)

(3

(2

 =

(1

(1

4)

4)

2)

3)

(3

(2

 (∆⊗∆)∆(x)

(here an below, for any braid B ∈ BPaC
n , we write %(B) just as (B) for brevity). This

in turn follows from condition (4.1) and (4.3) in the definition of quasi-triangular quasi-
bialgebras.

We proceed to prove Eq.(4.8) for ?∗. The action of Φ ∈ U(g)⊗3[[~]] on A⊗3[[~]] via the
diagonal embedding is the action of Φ12,34,56 = (∆ ⊗∆ ⊗∆)Φ ∈ U(g)⊗6[[~]] on A⊗6[[~]].
Hence what we need to prove is

?∗ ◦(?∗ ⊗ id) = ?∗ ◦ (id⊗ ?∗) ◦ Φ12,34,56. (4.13)

Recall from the end of §4.1.3 that the considered associator in U(g ⊕ g)⊗3[[~]] =
U(g)⊗6[[~]] is

Φ(2) = (Φ⊗ Φ)135246 =

((13)5)((24) 6)

(1(35))(2(4 6))

 .
It is easy to see that

(∆(2) ⊗ id)

(1

(1

4)

4)

2)

3)

(3

(2

 =

((13)(24))(56)

((13)5)((24) 6)

 ,
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Hence the left-hand side of Eq.(4.13) is

?∗ ◦ (?∗ ⊗ id) = ? ◦

(1

(1

4)

4)

2)

3)

(3

(2

 ◦ (?⊗ id) ◦

((12)(34))(56)

((13)(24))(56)


= ? ◦ (?⊗ id) ◦ (∆(2) ⊗ id)

(1

(1

4)

4)

2)

3)

(3

(2

 ◦
((12)(34))(56)

((13)(24))(56)


= ? ◦ (id⊗ ?) ◦

((13)5)((24) 6)

(1(35))(2(4 6))

((13)(24))(56)

((13)5)((24) 6)

((12)(34))(56)

((13)(24))(56)



= ? ◦ (id⊗ ?) ◦


((12)(34))(56)

(1(35))(2(4 6))

 .
Similar computations shows that the right-hand side of Eq.(4.13) is

?∗ ◦ (id⊗ ?∗) ◦ Φ12,34,56 = ? ◦ (id⊗ ?) ◦


(12)((34)(5 6))

(1(35))(2(4 6))

 ◦ Φ12,34,56

this equals the left-hand side because we have

Φ12,34,56 =

((12)(34))(56)

(12)((34)(5 6))

 .

4.2.5 Quantization of MG(Σ, V )
Let Γ be a skeleton of (Σ, V ). We have seen in §1.2.4 that Γ represents a way of building

up Σ from disks of two marked points by fusion. Using results from the two preceding
subsections, one readily gets a Φ-star product ? on MG(Σ, V ) quantization the canonical
quasi-Poisson structure (assuming S⊗3(Φ) = Φ−1). However, unlike the the quasi-Poisson
tensor, ? depends on the choice of a skeleton Γ of (Σ, V ). Even worse, since fusion at the
quantum level is not associative, ? also depends on a parenthesizing of each ÊΓ(v).

To give an explicit expression of ?, we define, for each parenthesizing p of an ordered
set with n-elements, a morphism Bp in the groupoid B2n. The definition of Bp should be
clear from the following examples.

Set nv = #ÊΓ(v) for each v ∈ V . If nv ≥ 2, we choose a parenthesizing p(v) of the
ordered set ÊΓ(v), and get a morphism Bp(v) in B2nv . The homomorphism % : Bn →
U(g)⊗n[[~]] induces by Φ yields an element %(Bp(v)) in U(g)⊗2nv [[~]].

Let ρ̃v be the GÊΓ(v)-action on MG(Σ, V ) introduced in §1.2.4. It gives rise to a
homomorphism of algebras

U(g)⊗2nv [[~]]→ D(MG(Σ, V ))⊗2[[~]].

Let ρ̃v%(Bp(v)) be the image of %(Bp(v)) by this map. If nv = 1, then we put ρ̃v%(Bp(v)) = 1.
Notice that the ρ̃v%(Bp(v))’s commute with each other because the ρ̃v’s commute, hence we
can consider their product

∏
v∈V ρ̃

v
%(Bp(v)) ∈ D(MG(Σ, V ))⊗2[[~]].
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Proposition 4.23. Take t ∈ (S2g)g and an associator Φ ∈ U(g)⊗3[[~]] quantizing t such
that S⊗3(Φ) = Φ. Given a skeleton Γ on (Σ, V ) and parenthesizings p(v) as above, the
formal power series of bidifferential operators

? =
∏
v∈V

ρ̃v%(Bp(v))
∈ D2(MG(Σ, V ))[[~]]

(c.f. §4.2.3 for the notation) is a Φ-star product quantizing the canonical quasi-Poisson
(gV , t(V ))-tensor on MG(Σ, V ).

Proof. Repeatedly using Proposition 4.22, we conclude that if (A, {·, ·}) is a quasi-Poisson
(gn, t(n))-algebra, {·, ·}∗ is the fusion of {·, ·}, which is quasi-Poisson (g, t)-bracket, and ?
is a Φ(n)-star product quantizing {·, ·}, then for any parenthesizing p of {1, · · · , n}, we
have a Φ-star product ?∗ quantizing {·, ·}∗ given by

?∗ = ? · %(Bp).

Now the proposition follows from the definition of the canonical quasi-Poisson structure on
MG(Σ, V ) and the fact established in §4.2.3 that the trivial product quantizesMG(D).
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Chapter 5

On the Hilbert geometry of
simplicial Tits sets

This last chapter is independent of the rest the thesis. The goal here is to study the
Hilbert metrics on certain specific examples of convex projective orbifolds constructed
using reflection groups. We first give in §5.1 some backgrounds on reflections groups and
convex projectively structure, and set up the examples which will be studied. Then we
prove in §5.2 the main results, Theorem D and Corollary in the introduction.

5.1 Reflection groups and Convex projective structures

5.1.1 Convex rojective structures

Let Pn be the real projective space of dimension n. A (real) projective structure on a
manifold (or more generally an orbifold) is an atlas which patches open sets of Pn together
by projective transformations.

An extensively studied class of projective structures (see [13] and the references therein)
comes from the following construction. We call an open subset Ω ⊂ Pn properly convex if
Ω is a bounded convex subset of an affine chart Rn ⊂ Pn. Let X = X̃/Π be an orbifold,
where Π is a group acting discontinuously on the manifold X̃. A convex projective structure
on X consists of a faithful representation ρ : Π→ PGLn+1R and a properly convex open
set Ω ⊂ Pn, such that there is a ρ-equivariant homeomorphism X̃ → Ω.

We shall consider convex projective structures up to projective transformations. It
is well known that Ω is uniquely determined by ρ up to duality. So the moduli space of
convex projective structures on X is defined as a subset in the space of conjugacy classes
of representations

P(X) ⊂ Hom(Π,PGLn+1R)/PGLn+1R

consisting of those ρ ∈ Hom(Π,PGLn+1R) which arises from a convex projective structure
on X. It is known that P(X) is an open and closed subset [12]. When X is a orientable
closed surface of genus g ≥ 2, P(X) is homeomorphic to R16g−16 [29].

5.1.2 Reflection groups

In this section we recall some well known facts about reflection groups and Tits set.
c.f. [14, 2] for details.

Let Pn denote the real projective space of dimension n. A projective transformation
s ∈ PGLn+1R is called a reflection if it is conjugate to ±diag(−1, 1, · · · , 1). The fixed
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point set of a reflection s is the disjoint union of a hyperplan F ⊂ Pn and a point f ∈ Pn.
Reflections are in one-one correspondence with pairs (f, F ) with f /∈ F .

Given a n-dimensional simplex P ⊂ Pn with face set {Fi}i∈J , where J = {0, 1, · · · , n},
we chose a reflection si with respect to each Fi. We are interested in the group Γ ⊂
PGLn+1R generated by {si}i∈J . We call Γ a simplicial reflection group, and P the fun-
damental simplex. We will say the reflection group is marked if we want to keep track of
the order of generators. Note that n-dimensional simplices are conjugate to each other by
projective transformations. Since we do not want to distinct conjugate marked simplicial
reflection groups, we can always assume that P = {[x0 : · · · : xn] ∈ Pn|xi ≥ 0, ∀i}, whose
faces are Pi = {[x0 : · · · : xn] ∈ Pn|xi = 0, xk ≥ 0,∀k 6= i}.

With the above choice of fundamental simplex, a marked reflection group is determined
by a n + 1-tuple of points (f0, · · · , fn) satisfying fi /∈ Pi. Let fi = [αi0 : · · · : αin]. By
a normalization, we can assume αii = 1 for any 0 ≤ i ≤ n. We record these fi’s by the
matrix A = (αij) whose diagonals are 1’s.

Two marked simplicial reflection groups, given by A and A′ as above, are conjugate if
and only if there is a projective transformation which stabilizes P and takes fi to f ′i . This
is equivalent to the existence of λ0, · · · , λn > 0, such that

diag(λ0, · · · , λn)A diag(λ−1
0 , · · · , λ−1

n ) = A′.

this defines an equivalence relation A ∼ A′. Let Mn+1 be the set of (n + 1) × (n + 1)-
matrices whose diagonals are 1, then moduli space of marked simplicial reflection groups
in Pn isMn+1/ ∼. However, a generic point in this space generates a non-discrete group
Γ. We show give conditions under which Γ is discrete.

Recall that a Coxeter diagram J is defined by a finite set vJ = {0, 1, · · · , n} as set of
nodes, together with integers mij ≥ 2 associated to each non-ordered pair i, j ∈ vJ , i 6= j
as weighted edges. We usually draw J as a graph, we shall omit weight-2 edges, only draw
those with weight ≥ 3.

The Coxeter diagram J = ({0, 1, · · · , n}, {mij}) yields an abstract Coxeter group

WJ = 〈τ0, · · · , τn|(τiτj)mij = τ2
i = 1,∀i 6= j〉

The Cartan matrix of J , denoted by CJ , is defined to be the symmetric matrix whose
diagonal entries are 1 and the (i, j)-entry is − cos(π/mij) if i 6= j.

Now we can state conditions under which A ∈Mn+1 will give a discrete group. ( [14],
Theorem 1.5)

Theorem 5.1 (Tits, Vinberg). Let A ∈Mn+1 and fi ∈ Pn be the point whose coordinates
are given by the i-th row of A. Let Γ be the subgroup of PGLn+1R generated by s0, · · · , sn,
where si is the reflection with respect to Pi and fi.

Then the translates γP (γ ∈ Γ) are disjoint except at boundary if and only if there
exists a Coxeter diagram J = ({0, 1, · · · , n}, {mij}), such that A satisfies the following
condition (∗J):

(∗J) :
For any distinct pair
i, j ∈ {0, 1, · · · , n},
we have αij ≤ 0, and


αij = αji = 0 if mij = 2
αijαji = cos2(π/mij) if 3 ≤ mij <∞
αijαji ≥ 1 if mij ≥ ∞

When (∗J) is satisfied, we have the following conclusions,
(1) ρ : τi 7→ si (0 ≤ i ≤ n) is an isomorphism from WJ to Γ.
(2) The set Ω = ∪γ∈ΓγP , called the Tits set, is either the whole Pn or a convex subset

in some affine chart of Pn. Γ acts discontinuously on Ω.
(3) Ω is open if and only if the stabilizer of each vertex of P is a finite group.
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Observe that if A ∼ B, then A verifies (∗J) if and only if B does. LetMJ ⊂ Mn+1

be the set of matrices satisfying (∗J) whose diagonals are 1. ThenMJ/ ∼ is the moduli
space of marked reflection groups isomorphic to WJ .

We also observe that a subgroup of PGLn+1R acts discontinuously on the whole Pn if
and only if it is a finite group. On the other hand, it is well known that WJ is a finite
Coxeter group if and only if the Cartan matrix CJ is positively definite. So the Tits set
Ω is a convex set contained in an affine chart if and only if J satisfies

(i) CJ is not positively definite.
Furthermore, the condition for openness in the theorem is equivalent to

(ii) Every proper principle submatrix of CJ is positively definite.
All the Coxeter diagrams J satisfying (i) and (ii) are completely classified, see [2].

There are two cases:
Euclidean Case: In addition to (i) and (ii), we assume CJ is degenerate. In this

case CJ has corank 1, and there is a faithful representation ρ0 : WJ → Isom(En) which
realize WJ as an Euclidean simplicial reflection group. In this case, the Tits set Ω can
only be either a simplex, or an affine chart.

Hyperbolic Case: In addition to (i) and (ii), we assume CJ is non-degenerate. Such
a Coxeter diagram is called a Lannér diagram, as they are first classified by F. Lannér. In
this case CJ has signature (1, n), and there is a faithful representation ρ0 : WJ → Isom(Hn)
which realize WJ as a hyperbolic simplicial reflection group. We reproduce in Figure 5.1
the table of all Lannér diagrams (see [2], p.205). Note that they exist only for n ≤ 4.
In this case, since WJ is a hyperbolic group in the sense of Gromov, by the Theorem 1.1
of Benoist [11], the Tits set Ω is strictly convex, i.e., ∂Ω does not contain any straight
segment.

5.1.3 Moduli space of convex projective structures

In this section, we take a Lannér diagram J = ({0, 1, · · · , n}, {mij}). Let ρ0 : WJ →
PGLn+1R realizes WJ as a hyperbolic reflection group with fundamental simplex P . We
will not distinguish WJ and its image ρ0(WJ). Our goal is to determine the space of
convex projective structures on the orbifold XJ = Hn/WJ .

Let P0, · · · , Pn be the faces of P and Li be the hyperplane of Pn containing Pi. Consider
a faithful representation ρ : WJ → PGLn+1R which defines a convex projective structure.
There is some convex open set Ωρ and a homeomorphism Φ : Hn → Ωρ which is ρ-
equivariant, i.e., Φ(γ.x) = ρ(γ).Φ(x), for any x ∈ Hn and any γ ∈WJ .

Since ρ(τi) has order 2, its fixed point set in Pn is the disjoint union of a k-dimensional
subspace and a (n−k)-subspace. On the other hand, ρ(τi) fixes pointwisely Φ(Li), a (n−1)-
dimensional submanifold of Ωρ, we conclude that k = 1, Φ(Li) is a (n− 1)-subspace and
ρ(τi) is a reflection. Therefore, ρ(WJ) is a projective reflection group with fundamental
simplex Φ(P ).

Following the discussion in the last section, we may suppose that the fundamental
simplex is P = {[x0 : · · · : xn] ∈ Pn|xi ≥ 0,∀i} and the reflection group ρ(WJ) is given
by some matrix A ∈ MJ , whose i-th row is the homogenous coordinates of a fixed point
fi of ρ(τi). Conversely, every A ∈ MJ yields a representation ρ : WJ → PGLn+1R
preserving a Tits set Ωρ, and thus defines an element [ρ] ∈ P(XJ). Moreover, given two
such representations ρ1 and ρ2 which comes from A1,A2 ∈ MJ respectively, ρ1 and ρ2
are conjugate if and only if A1 ∼ A2. Therefore, we have the identification

P(XJ) =MJ/ ∼
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n=4
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n=2
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2£p, q, r<¥,
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q
+
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r
<1

Figure 5.1: Lannér diagrams. Here single, double and triple edge stand for weight 3, 4
and 5, respectively.

Proposition 5.2.

P(XJ) ∼=
{

R+ if J has a loop,
a point otherwise.

Given a n× n matrix A = (aij) and an ordered set of indices 1 ≤ i1, · · · , ik ≤ n with
k ≥ 1, we call ai1i2ai2i3 · · · aik−1ikaiki1 a cyclic product of length k.

Lemma 5.3. Let A = (aij) be a n× n matrix satisfying the condition:

For any i, aii 6= 0. For any i 6= j, aij = 0 if and only if aji = 0 (5.1)

and the same hypothesis for B. We write A ∼ B if A and B are conjugate via a diagonal
matrix, i.e., there are λ1, · · · , λn 6= 0, such that

diag(λ1, · · · , λn)A diag(λ−1
1 , · · · , λ−1

n ) = B.

Then, A ∼ B if and only if their cyclic products with the same indices coincide, i.e.,
for any ordered subset {ii, · · · , ik} ⊂ {1, · · · , n}, we have

ai1i2ai2i3 · · · aik−1ikaiki1 = bi1i2bi2i3 · · · bik−1ikbiki1 .

Proof. We say a matrix A is reducible if, after a reordering of basis if necessary, A can
be put into a block-diagonal form. Otherwise A is said to be irreducible. The hypothesis
on A and B implies aii = bii and aij = 0 ⇔ bij = 0 for any i 6= j. Therefore, after a
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reordering of basis if necessary, we can assume that A and B are both block-diagonal with
irreducible blocks, and the r-th block of A has the same size with the r-th block of B.
Clearly, A and B are conjugate via a diagonal matrix if and only if their blocks are. Thus
we can assume A and B are irreducible.

We are looking for λ1, · · · , λn which satisfy λ−1
i aijλj = bij , or equivalently,

λi
λj

= aij
bij
, for all i 6= j such that bij 6= 0 (5.2)

First, we take λ1 = 1. Irreducibility means that, for each i ∈ {1, 2, · · · , n}, there is
sequence of distinct indices 1, i1, i2, · · · , ik, i, such that a1i1 , ai1i2 ,· · · , aik−1ik , aiki are all
non-zero. We should set

λi = λi
λik

λik
λik−1

· · · λi1
λ1

= aiik
biik

aikik−1

bikik−1

· · · ai11
bi11

(5.3)

this definition does not depend on the sequence of indices that we chose, since if we take
another sequence 1, j1, j2, · · · , jm, i, then the definition becomes

λi = aiik
biik

aikik−1

bikik−1

· · · ai11
bi11

= b1j1
a1j1

bj1j2
aj1j2

· · · bjmi
ajmi

(5.4)

where we used the coincidence of cyclic products aijaji = bijbji. Now the hypothesis
implies that the right hand sides of (5.3) and (5.4) are the same. In same way, we can
verify that the hypothesis implies these λi’s satisfy (5.2).

Proof of Proposition 5.2. If there is no loop in the Coxeter diagram of J , then for any A
satisfying (∗J), its cyclic products of length ≥ 3 are all 0, while cyclic products of length
1 are just diagonal entries, which equal 1, and cyclic products length 2 are determined by
(∗J). By Lemma 5.3, for any A,B ∈MJ , we have A ∼ B.

If there is a loop in the Coxeter diagram, from Figure 5.1 we see that the whole graph
is a circuit. Thus any A satisfying (∗J) has the following form (here we set n = 4, for
example):

A =


1 α01 0 0 α04
α10 1 α12 0 0
0 α21 1 α23 0
0 0 α32 1 α34
α40 0 0 α43 1


Again there are no choices for cyclic products of length 1 and 2. The only two

non-zero cyclic products of length ≥ 3 are ϕ(A) = α01α12 · · ·αn−1,nαn1 and ϕ̃(A) =
α10α21 · · ·αn,n−1α1n. But by the condition (∗J) we have

ϕ(A)ϕ̃(A) = cos2( π

m01
) cos2( π

m12
) · · · cos2( π

mn1
)

Therefore by Lemma 5.3, for any A,B ∈MJ , A ∼ B if and only if ϕ(A) = ϕ(B). This
value is always positive if n is odd, and always negative if n is even. Thus the following
map is a homeomorphism:

P(XJ) =MJ/ ∼ → R+
[A] 7→ |ϕ(A)|
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In order to study how the Tits set deforms when [A] goes to 0 or +∞ in P(XJ), we
need the follow lemma, which bounds the Tits set by a simplex.
Lemma 5.4. Let J be a Lannér diagram and take A ∈MJ . Let fi ∈ Pn be a point whose
homogeneous coordinates are given by the i-th row of A. Consider the representation
ρ : WJ → PGLn+1R sending τi to the reflection si fixing Pi and fi. Then there is a
simplices in Pn with vertices f0, · · · , fn which contains the Tits set Ω.
Proof. Let Li be the hyperplane of Pn passing through f0, · · · , fi−1, fi+1, · · · , fn. Assume
by contradiction that Ω is not contained in any simplex with vertices f0, · · · , fn. Then Ω
meets some Li. Without loss of generality, we suppose Ω ∩ L0 6= ∅.

L0 is stabilized by the finite Coxeter group Γ0 = 〈s1, · · · , sn〉, because the reflection
si stabilizes any hyperplane passing through fi, and L0 is spanned by {f1, · · · , fn}. Thus
Γ0 is a finite affine transformation group of the affine chart A0 := Pn\L0 ∼= Rn. It follows
that Γ0 must have a fixed point in A0, namely, the barycenter of an orbit.

On the other hand, let Hi denotes the hyperplane containing Pi. Since the fixed point
set of si is Hi∪{fi}, the only fixed point of Γ0 in Pn is p0 = [1 : 0 : · · · : 0] = H1∩· · ·∩Hn.
Therefore we have proved p0 /∈ L0.

We may consider the affine chart A0 as a linear space with origin p0, and endow it
with a Γ0-invariant Euclidean scalar product. Γ0 is then a finite Euclidean Coxeter group
generated by n Euclidean reflections with respect to the subspaces L1, · · · , Ln. We shall
remark that such a group can not preserve any convex cone except for the whole A0, since
otherwise the barycenter p′ of some non-zero orbit in the cone is a non-zero fixed point of
the group, and it follows that each of L1, · · · , Ln contains the line passing through p0 and
p′, contradicting the independence of the Li’s.

Now take C =
⋃
x∈Ω∩L0 [p0, x], the cone of Ω ∩ L0 over p0. Here [p0, x] denotes the

segment in Ω joining p0 and x. C is a Γ0-invariant subset of Ω. C ∩ A0 is a Γ0-invariant
convex cone of A0, clearly does not equals the whole A0. Thus the above remark concludes
our contradiction argument.

Proposition 5.5. Let P be a simplex in Pn. Let XJ = Hn/Γ be as in Proposition 5.2, such
that P(XJ) ∼= R+. Then there exists a one-parameter family of representations {ρt}t∈R+

of Γ into PGLn+1R, such that
(1) Each ρt(Γ) is generated by projective reflections with respect to faces of P .
(2) R+ → P(XJ), t 7→ [ρt] is bijective.
(3) Let Ωt be the convex open subset of Pn associated with ρt. Then each Ωt is properly

convex, and Ωt converges to P in the Hausdorff topology when t tends to 0 or +∞. (See
Figure 5.2)

Proof. We only consider the case n = 3 to simplify the notation. Let us fix a Lannér
diagram J with 4 nodes which has a loop. Any A ∈MJ has the form

A =


1 α01 0 α03
α10 1 α12 0
0 α21 1 α23
α30 0 α32 1

 , where αij < 0 and αijαji = cos2(π/mij).

We define a one-parameter family of matrices {At}t∈R ⊂MJ as follows,

At =


1 −t cos2( π

m01
) 0 −t−1

−t−1 1 −t cos2( π
m12

) 0
0 −t−1 1 −t cos2( π

m23
)

−t cos2( π
m30

) 0 −t−1 1


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Figure 5.2: Deformation of Ωt when t tends to 0 and to +∞.
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Since |ϕ(At)| = t4, by the proof of Proposition 5.2, every matrix A in MJ is ∼-
equivalent to exactly one At. t 7→ [At] is a homeomorphism from R+ toMJ/ ∼.

For i = 0, 1, 2, 3, let fi(t) be the point in Pn whose homogeneous coordinates are given
by the i-th row of At. Define ρt : WJ → PGLn+1R to be the representation sending τi to
the reflection fixing fi(t) and the face Pi of P . Then t 7→ [ρt] is a homeomorphism from R
to P(XJ). Let Ωt be the Tits set of ρt(WJ).

p0 = [1 : 0 : 0 : 0], · · · , p3 = [0 : 0 : 0 : 1] are the vertices of P . Each fi(t) converges
to pi+1 when t → +∞, and to pi−1 when t → −∞. Here the indices are counted mod 4.
Therefore the simplex containing Ωt given by Lemma 5.4 converges to P in the Hausdorff
topology when t→ 0 or +∞.

5.2 Entropy of the Hilbert metric on simplicial Tits sets

5.2.1 Hilbert metrics

For any properly convex open set Ω ⊂ Pn, we define the Hilbert metric dΩ as follows.
Take any affine chart Rn containing Ω. For x, y ∈ Ω, let x0, y0 be the points on the
boundary ∂Ω such that x0, x, y, y0 lie consecutively on the segment [x0, y0], then we define

dΩ(x, y) = 1
2 log[x0, x, y, y0], where [x0, x, y, y0] = |x0 − y||y0 − x|

|x0 − x||y0 − y|
(5.5)

We refer to [11, 17] for basic properties of the Hilbert metric. In this section, we study
the geometry of the Hilbert metric dt on Ωt (see Proposition 5.5).

Our main result concerns the metric geometry on the above family of convex sets.
Recall that any properly convex open set Ω ⊂ Pn carries a canonical Finsler metric dΩ,
called the Hilbert metric. If Ω is an ellipsoid, then (Ω, dΩ) is isometric to the real hyperbolic
n-space Hn.

The one-parameter family {Ωt} in Proposition 5.5 give rise to a family {dt} of Hilbert
metrics. From Proposition 5.5 we can already deduce some easy geometric properties
of this family. For example, the diameter and volume of XJ with respect to dt tends to
infinity as t→ 0 or∞. The purpose of this paper is to study the following deeper quantity:

Definition 5.6. Let Γ be a group, and (X̃, d) be a metric space. The orbit growth of a
point x0 ∈ X̃ with respect to an isometric discontinuous Γ-action on X̃ is the number

δ(X̃, d) = lim
R→+∞

1
R

log #Γx0 ∩B(x0, R)

where B(x0, R) denotes the ball of radius R centered at x0.

We shall assume that the stabilizer of every point in X̃ is a finite group, so that δ(X̃, d)
does not depend on the choice of x0.

δ(X̃, d) is also called the volume entropy because it equals the exponential growth rate
of the volume of B(x0, R). If (X̃, d) is the universal covering of a compact non-positively
curved Riemaniann manifold, A. Manning [43] proved that the topological entropy of the
geodesic flow of X equals δ(X̃, d). This result easily generalizes to geodesic flows of convex
projective manifolds.
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5.2.2 The main results

M. Crampon [17] proved that for any properly convex open set Ω ⊂ Pn which covers
a manifold with convex projective structure, we have

δ(Ω, dΩ) ≤ n− 1.

The equality is achieved if and only if Ω is an ellipsoid. He then asked whether δ(Ω, dΩ)
has a lower bound.

The main result of the present part of the thesis gives a negatively answer:

Theorem 5.7. Let XJ be a hyperbolic simplicial Coxeter orbifold with P(XJ) ∼= R+. Let
ρt and Ωt be as in Proposition 5.5, and dt be the Hilbert metric on Ωt. Then

δ(Ωt, dt)→ 0 as t→ 0 or +∞.

The main ingredient in the proof of Theorem 5.7 is the following result

Proposition 5.8. There exists a constant C depending only on the Coxeter diagram J ,
such that if A and B are two k-dimensional cells of P and E = A ∩ B is a (k − 1)-
dimensional cell, where 1 ≤ k < n, then for any x ∈ A, y ∈ B and any t ∈ R+, we
have

Cdt(x, y) ≥ dt(x,E) + dt(y,E)

As another consequence of Proposition 5.8, we construct families of convex projective
structures on surfaces which answer Crampon’s problem and have some other curious
properties.

Corollary 5.9. On every oriented closed surface of genus g ≥ 2, there exists an one-
parameter family of convex projective structures such that when the parameter goes to ∞,
the entropy of geodesic flow tends to 0, the systole and constant of Gromov hyperbolicity
tending to +∞.

Recall that for a metrized manifold (X, d), the systole is defined as the infimum of
lengths of homotopically non-trivial closed curves on X. Let X̃ be the universal covering
of X, then the constant of Gromov hyperbolicity is defined to be the supremum of sizes of
geodesic triangles in X̃ (where the size of a geodesic triangle ∆ is the minimal perimeter
of all geodesic triangles inscribed to ∆, see [1], Chapter 2, §3).

5.2.3 Proof of the main results based on Proposition 5.8

In subsection we shall prove Theorem 5.7 and Corollary 5.9 admitting Proposition 5.8.
Ωt has the structure of Coxeter complex, i.e., Ωt is a simplicial complex whose k-cells

are translates of the k-cells of P by the WJ -action. We denote the k-skeleton of Ωt by
Ω(k)
t , and define d(k)

t to be the intrinsic metric on the k-skeleton Ω(k)
t , i.e., d(k)

t (x, y) equals
the minimal length of piecewise segments joining x, y and lying in Ω(k)

t . In particular,
(Ω(1)

t , d
(1)
t ) is a metric graph, and d(n)

t is just dt.

Proposition 5.10. Suppose 2 ≤ k ≤ n. There is a constant C, depending only on J ,
such that for any t ∈ R+ and any x, y ∈ Ω(k−1)

t , we have

d
(k)
t (x, y) ≤ d(k−1)

t (x, y) ≤ Cd(k)
t (x, y)

As a consequence, dt(x, y) ≤ d
(1)
t (x, y) ≤ C ′dt(x, y) for some constant C ′ depending only

on J .
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Proof. The first inequality is evident from the definition.
We prove the second inequality. Let c : [0, 1] → Ω(k)

t be a piecewise segment joining
x, y ∈ Ω(k−1)

t such that the length of c equals d(k)
t (x, y).

Let t0 = 0, t1, t2, · · · , tr = 1 ∈ [0, 1] be such that each c([ti−1, ti]) lies in a single k-
cell, and the c(ti)’s are in Ω(k−1)

t . Since c is length-minimizing, each c[ti−1, ti] must be a
segment, whose length equals the distance between then two end points. Thus if we could
prove

d
(k−1)
t (c(ti−1), c(ti)) ≤ Cd(k)

t (c(ti−1), c(ti))

then we would take the sum over 1 ≤ i ≤ r and use the triangle inequality to obtain

d
(k−1)
t (x, y) ≤ Cd(k)

t (x, y)

Therefore, we can assume that both x and y lie on the boundary of a k-cell. Since each
k-cell is isometric to some subcell of P , it is sufficient to prove that, for any k-dimensional
subcell F of P , we have for all t ∈ R+ and all x, y ∈ F

d
(k−1)
t (x, y) ≤ Cd(k)

t (x, y) = Cdt(x, y).

If x, y both lie on the same (k− 1)-dimensional subcell of F , then we have d(k)
t (x, y) =

d
(k−1)
t (x, y) and there is nothing to prove. Thus, we can assume that x ∈ A and y ∈ B,

where A, B are (k − 1)-dimensional subcells of F , such that E = A ∩ B is a (k − 2)-
dimensional subcell. Let x0, y0 ∈ E be the nearest point to x, y in E, respectively. i.e.,
dt(x,E) = dt(x, x0) and dt(y,E) = dt(y, y0).

The three segments [x, x0], [x0, y0] and [y0, y] lie in Ω(k−1)
t , and form a piecewise seg-

ment joining x, y. Thus we have

d
(k−1)
t (x, y) ≤ dt(x, x0) + dt(x0, y0) + dt(y0, y) (5.6)

by the triangle inequality, we have

dt(x0, y0) ≤ dt(x0, x) + dt(x, y) + dt(y, y0) (5.7)

(5.6)and (5.7) gives

d
(k−1)
t (x, y) ≤ 2dt(x, x0) + 2dt(y, y0) + dt(x, y)

Now we apply Proposition 5.8, and conclude that

d
(k−1)
t (x, y) ≤ (2C + 1)dt(x, y)

this is the required inequality.

Proof of Theorem 5.7. Note that each vertex of the simplex P lies on different orbits of
WJ , so the vertex set Ω(0)

t is the union of n + 1 orbits. Hence, fixing any vertex v0, we
have the follow expression for the orbit growth ht of the WJ -action on Ωt:

ht = lim
R→∞

1
n

log #{v ∈ Ω(0)
t |dt(v, v0) ≤ R}

The entropy h(Ω(1)
t , d

(1)
t ) of the metric graph (Ω(1)

t , d
(1)
t ) is defined to be the exponential

growth of the number of vertices in large balls, i.e.,

h(Ω(1)
t , d

(1)
t ) = lim

R→∞

1
n

log #{v ∈ Ω(0)
t |d

(1)
t (v, v0) ≤ R}
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Therefore, Proposition 5.10 implies there is a constant C ′ depending only on J such that

h(Ω(1)
t , d

(1)
t ) ≤ ht ≤ C ′h(Ω(1)

t , d
(1)
t ).

So it is sufficient to prove

h(Ω(1)
t , d

(1)
t )→ 0,when t→ 0 or +∞

To this end, let l(t) be the minimal length of edges of P under dt. We have seen
in Proposition 5.5 that Ωt approaches the simplex P when t → 0 or +∞. Using the
expression of Hilbert metric (5.5) one can see the length of each edge of P tends to +∞,
thus l(t)→ +∞.

On the other hand, a WJ -invariant geodesic metric on the graph Ω(1)
t is uniquely

determined by lengths of the edges of P , and monotone with respect to each of these
lengths. Therefore, if we let d1 be the metric defined by setting all edge lengths to be 1,
then we have d(1)

t ≥ l(t)d1. By definition of entropy of graphs, this gives

h(Ω(1)
t , d

(1)
t ) ≤ 1

l(t)h(Ω(1)
t , d1)→ 0

The proof is complete.

Proof of Corollary 5.9. Let Σ be a surface with genus ≥ 2. We claim that there are
integers p, q, r ≥ 3 with 1

p + 1
q + 1

r < 1 and a subgroup Π of finite index in the (p, q, r)-
triangle group ∆ = ∆p,q,r such that Π acts freely on the hyperbolic plan H2 with quotient
H2/Π ∼= Σ. Restricting the one-parameter family of representations ρt : ∆ → PGLn+1R
given by Proposition 5.2 and 5.5 to Π, we obtain an one-parameter family of convex
projective structures on Σ. We shall show that this family fulfils the requirements.

The entropy of geodesic flow is the orbit growth δ(Ωt, dt) for the Π action, and is the
same as the orbit growth for the ∆-action since Π ⊂ ∆ has finite index. Thus δ(Ωt, dt)→ 0
by Theorem 5.7.

Proposition 5.8 implies that for any t, every triangle inscribed to the fundamental
triangle P has perimeter greater than 1

C times the perimeter of P . When t → 0 or +∞,
under the metric dt, the length of each edge of P tends to +∞, so the perimeters of
all inscribed triangles tends to +∞ uniformly. It follows that the constant of Gromov
hyperbolicity of Ωt tends to +∞.

To show the systole goes to +∞, we take a homotopically non-trivial closed curve c
which is the shortest under dt. The image of c under the orbifold covering map Σ ∼=
H2/Π → H2/∆ ∼= P is a closed billiard trajectory in the triangle P which hits each of
the three sides. The lengths under dt of such trajectories are bounded from below by the
minimal perimeter of inscribed triangles of P . We have already seen the latter goes to
+∞.

Finally, we prove the claim using a constructions by hand. See the picture below. The
boldfaced 10-gon consists of ten fundamental domains of ∆ = ∆5,5,5. We take the five
elements in ∆ indicated by the arrows, each of them pushing the 10-gon to an adjacent
one. One can check that the group Π generated by them has the 10-gon as a fundamental
domain. The quotient H2/Π is a surface obtained by pairwise gluing edges of the 10-gon.
A calculation of Euler characteristic shows H2/Π have genus 2. Since closed surfaces of
higher genus covers the surface of genus 2, by taking subgroups of Π, we conclude that
all surfaces of genus ≥ 2 is the quotient of H2 by some subgroup of ∆, and the claim is
proved.
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5.2.4 Proof of Proposition 5.8

To begin with, we need the following fact concerning simplicial and projective struc-
tures on Ωt. Looking at Figure 5.2, we may observe that the 1-skeleton of Ωt consists
of straight lines. There is a same phenomenon in higher dimension, i.e., Ω(k)

t is a union
of k-dimensional subspaces. Note that by “subspace" of Ωt, we mean the intersection
of a subspace of Pn with Ωt. An equivalent statement of the above fact is that the k-
dimensional subspace L containing a k-cell F must be an union of k-cells. This can be
proved using the fact that the tangent space of a vertex in Ωt has the structure of a finite
Coxeter complex, and it is well known that the above statement holds for finite Coxeter
complex (See for instance [34]). We omit the details.

First we present a proof of Proposition 5.8 for the 2-dimensional case, since the main
idea is transparent in this case, while in higher dimensions we have to deal with some
extra difficulties.

Proof of Proposition 5.8 for n = 2. We may assume

WJ =< τ1, τ2, τ3|(τ1τ2)p = (τ2τ3)q = (τ3τ1)r = τ2
1 = τ2

2 = τ2
3 = 1 >

Suppose x and y lie on the sides A and B of a triangle P in P2, respectively. Denote
the common vertex of A and B by E. We need to prove there is a constant C depending
only on p, q, r, such that Cdt(x, y) ≥ dt(x,E) + dt(y,E) for any t.

Let us fix a t and denote s1 := ρt(τ1), s2 := ρt(τ2), which are reflections with respect
to A and B, respectively. s1s2 is a rotation of order p.

s1

s2

x

y

s2HxL

s2s1HyL s2s1s2HxL

y'=s2s1s2s1HyLE

Figure 5.3: p = 5

s1

s2

x

y

s2HxL

s2s1HyL

s2s1s2HxLE

Figure 5.4: p = 4
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When p is odd, y′ = s2s1s2 · · · s1︸ ︷︷ ︸
p−1

(y) lies on the opposite half ray of the geodesic ray

~Ex (see Figure 5.3). On the other hand, the successive images of [x, y] by the sequence of
transformations

s2, s2s1, s2s1s2, · · · , s2s1s2 · · · s1︸ ︷︷ ︸
p−1

is a piecewise segment joining x and y′, which consists of p pieces, each piece having the
same length dt(x, y). Thus we have

pdt(x, y) ≥ dt(x, y′) ≥ dt(x,E)

When p is even, we obtain pdt(x, y) ≥ dt(x,E) in the same way (see Figure 5.4).
As for y, we have the same inequality

pdt(x, y) ≥ dt(y,E)

Thus we may conclude that

2pdt(x, y) ≥ dt(x,E) + dt(y,E)

Proposition 5.8 is proved for n = 2.

We introduce the following terminology. Let E be a (k − 1)-cell of Ωt. We say two
k-cells are E-colinear, if they lie on the same k-dimensional subspace and their intersection
is E. As we have explained in the beginning of this section, the k-dimensional subspace
of Ωt containing a k-cell A is an union of k-cells. Thus for any (k− 1)-dimensional subcell
E of A, there is an unique k-cell which is E-colinear to A.

The crucial point of the above proof is the following: let V be the k-cell E-colinear
to A. Then we can connect x ∈ A and some point of V by a curve which is piecewise
isometric to [x, y], and the number of pieces is determined combinatorially. We then have
proved the needed inequality using the fact that the distance from x to any point of V is
greater than the distance from x to E.

In higher dimensions, the situation is more delicate: the cell V which is E-colinear to
A may not be a translate of A or B. In this case, we can not construct a curve piecewise
isometric to [x, y] going from x to V . Instead of this, we take a cell A′ = ρt(γ)A, the
translate of A by the action of some γ ∈ WJ , such that A′ and V are contained in the
same top-dimensional cell. Now we can go from x to A′ along a curve piecewise isometric
to [x, y]. To prove Proposition 5.8, we then need to show that the distance from x to A′ is
greater than the distance from x to E. In order to do this, we shall develop some lemmas
concerning distance comparisons in Hilbert geometry.

Using the definition of Hilbert metric (5.5), it can be shown that if Ω ⊂ Pn is a properly
convex open set which is strictly convex (see the end of Section 2), then the Hilbert metric
dΩ has the following property. Let L be a subspace of arbitrary dimension of Ω and x
be a point of Ω outside L. Then among all points of L, there is an unique point x0 ∈ L
whose distance to x is minimal. We call x0 the projection of x on L, and denote it by
x0 = Pr(x, L).

Let L ⊂ Ω be a hyperplane, i.e., subspace of codimension one. We say that Ω have
reflectional symmetry s with respect to L if s ∈ PGLn+1R is a reflection preserving Ω and
fixing each point of L. In this case, the triangle inequality and the fact that geodesics are
straight lines yields the following simple characterization of projection:

Pr(x, L) = [x, s(x)] ∩ L (5.8)
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Lemma 5.11. Let Ω ⊂ Pn be a properly strictly convex open set with reflectional symmetry
s with respect to a hyperplane L. Then for any x, y ∈ Ω, we have

dΩ(Pr(x, L),Pr(y, L)) ≤ dΩ(x, y)

In particular, if x ∈ L, then for any y ∈ Ω we have

dΩ(x,Pr(y, L)) ≤ dΩ(x, y)

x

y

x0

y0

sHxL

sHyL

p

q1

q2

Figure 5.5: dΩ(x0, y0) ≤ dΩ(x, y)

Proof. Denote x0 = Pr(x, L) and y0 = Pr(y, L). The reflection s has another fix point
p ∈ Pn outside L. The reflection image s(x) of x lies on the line xp, and we have x0 = xp∩L.
The points y and y0 has the same properties. Therefore, all the four points x, y, x0, y0 lie
on the plane pxy. This plane is invariant by s. So we may consider Ω0 = pxy ∩Ω instead
of Ω, and L0 = pxy ∩ L instead of L. Thus we have reduced to the two-dimensional case.
See Figure 5.5

Suppose L0 intersects ∂Ω0 at two points q1, q2. Since Ω0 has reflectional symmetry
with respect to L0, the lines pq1 and pq2 are tangent to Ω. Now the inequality dΩ(x0, y0) ≤
dΩ(x, y) follows from the definition (5.5) of Hilbert metric and the following well known
fact from projective geometry: given four lines li (1 ≤ i ≤ 4) meeting at a point p, then for
any line l intersecting l1, l2, l3, l4 consecutively at p1, p2, p3, p4, the number [p1, p2, p3, p4]
is a constant not depending on the choice of l.

Remark 5.12. Lemma 5.11 is not true without the hypothesis of symmetry.

Lemma 5.13. Let Ω ⊂ Pn be a properly strictly convex open set with reflectional symme-
tries s1, · · · , sm with respect to hyperplanes L1, L2, · · · , Lm, such that s1, · · · , sm generates
a finite group Γ. Assume W = L1 ∩ · · · ∩ Lm has dimension ≥ 1 and W ∩ Ω 6= ∅. Let D
be a Γ-invariant convex subset of Ω.

Then for any point x of W outside D and any x′ ∈ D, there is some point x0 ∈ D∩W
such that

dΩ(x, x0) ≤ dΩ(x, x′)
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Proof. Fix a point x ∈ D. We chose an affine chart A ⊂ Pn, an origin point x0 of A in
order to endow A with a linear space structure, and then an Euclidean scalar product on
A. We could make these choices so as to fulfil the following conditions:

(1) A contains the closure of Ω.
(2) L1, · · · , Lm are linear subspaces of A. In particular, the origin x0 of A lies in W .
(3) Γ preserves the Euclidean scalar product.
(4) x′ ∈W⊥, where W⊥ is the orthogonal complement of W .
Our aim is to show that x0 ∈ D and x0 satisfies the required inequality. We shall

consider intensively the linear space W⊥. Let us denote the origin x0 simply as 0. Each of
L′i = Li ∩W⊥ is a subspace of W⊥ of codimension 1, and the intersection L′1 ∩ · · · ∩L′m =
{0}. Since D ∩W⊥ is Γ-invariant and convex, the barycenter of the Γ-orbit of x lies in
D ∩W⊥ and is fixed by Γ. But L′1 ∩ · · · ∩ L′m = {0} implies the only fixed point of Γ in
W⊥ is 0, thus x0 ∈ Ω.

For 1 ≤ i ≤ m, we define

Ci = {y ∈W⊥|∠(y, L′i) ≥ θ, or y = 0}

where ∠(y, L′i) is the usual Euclidean angle. We may take θ small enough so that C1 ∪
· · · ∪ Cm = W⊥. Any y ∈ Ci verifies

|PrW⊥(y, L′i)| ≤ |y| cos θ

where PrW⊥(y, L′i) is the usual Euclidean projection of y on L′i. Using the characterization
of projection onto reflectional hyperplanes (5.8), we see that PrW⊥(y, L′i) coincides with
the projection Pr(y, Li) in the sense of Hilbert geometry described earlier.

We construct a sequence of points x′ = y0, y1, y2 · · · ∈ D ∩ W⊥ converging to 0 by
recurrence as follows. Since C1 ∪ · · · ∪ Cm = W⊥, there is some Cik containing yk. Then
we set yk+1 = PrW⊥(yk, L′ik). The above inequality yields

|yk| ≤ |yk−1| cos θ ≤ · · · ≤ |y0| cosk θ

Hence yk converges to x0 as k →∞.
As mentioned above, yk+1 = Pr(yk, Lik). Lemma 5.11 implies

dΩ(x, yk) ≤ dΩ(x, yk−1) ≤ · · · ≤ dΩ(x, y0) = dΩ(x, x′)

Therefore, by the continuity of dΩ, we conclude that

dΩ(x, x0) = lim
k→∞

dΩ(x, yk) ≤ dΩ(x, x′)

Let us return to the particular convex set Ωt. For any cell V of Ωt, the union of all
n-cells containing V is called the star-like neighborhood of V , and denoted by St(V ). We
need the following

Lemma 5.14. St(V ) is a convex subset of Ωt.

Proof. Let F be any (n−1)-cell lying on the boundary of St(V ), and let L be the hyperplane
containing F . L does not contain V , so V is contained in exactly one of the two closed
“half spaces" of Ωt bounded by L. Since St(V ) is an union of n-cells containing V , using
the fact that L is an union of (n − 1)-cells, we can conclude the whole St(V ) lie in the
same half space as V .

Thus, St(V ) is an intersection of closed half spaces, therefore convex.
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Proof of Proposition 5.8. Fix a Lannér diagram J . By definition of Lannér diagrams, a
subgroup of WJ =< τ0, · · · , τn|(τiτj)mij = τ2

i = 1, ∀i 6= j > generated by a proper subset
of {τ0, · · · , τn} is a finite Coxeter group. Let C be the maximum of word-length-diameters
of all such subgroups. We will show Cdt(x, y) ≥ dt(x,E). Then by exchanging the roles
of x and y, we have Cdt(x, y) ≥ dt(y,E), and these two inequalities give the required one.

Let V be the k-cell which is E-colinear to A. There is γ ∈ Stabρ(WJ )(E), such that
P ′ = ρt(γ)P is a top-dimensional cell containing V . We denote A′ := ρt(γ)A ⊂ P ′,
x′ := ρt(γ)x ∈ A′.

First we claim that there is a curve joining x and x′ which is piecewise isometric to
[x, y], with number of pieces at most C.

Denote si = ρt(τi), a reflection with respect to the face Pi of P . Let JE ⊂ {0, 1, · · · , n}
be the set of indices of those Pi such that E ⊂ Pi. Then #JE = n−k+1, and Stabρ(WJ )(E)
is generated by {si}i∈JE .

We can write ρt(γ) = si1si2 · · · sim , with i1, · · · , im ∈ JE and m ≤ C. Consider the
sequence of segments

si1([x, y]), si1si2([x, y]), · · · , si1si2 · · · sim([x, y]).

The k-cell A contains the (k − 1)-cell E, so there is only one vertex a of A which lies
outside E. Similarly B has only one vertex b outside E. Each face Pi of P must contain
at least one of the two points a and b. Hence each face containing E also contains A or
B. It follows that if i ∈ JE then si fixes x or y. Therefore, each segment in the above
sequence shares at least one end point with the next one. So the union of these segments
is connected, and we can extract a subset of these segments to form a curve joining x and
x′ = ρt(γ)x which is piecewise isometric to [x, y]. The number of pieces is at most m,
hence bounded by C.

Thus, we conclude
Cdt(x, y) ≥ dt(x, x′)

Next, we need to prove
dt(x, x′) ≥ dt(x,E) (5.9)

We apply Lemma 5.13. Let St(V ) be the convex compact set D in the hypothesis of
Lemma 5.13, which contains x′. Let JA ⊂ {0, 1, · · · , n} be the set of indices of those faces
Pi such that A ⊂ Pi, and let Li be the hyperplane on which Pi lies. Then W = ∩i∈JALi
is the k-dimensional subspace containing A and V . For each i ∈ JA, since Li contains V ,
the reflection si preserves St(V ). Thus the hypothesis of Lemma 5.13 are verified, and we
conclude that there is x0 ∈ V such that

dt(x, x′) ≥ dt(x, x0)

A∪V is the intersection of St(E) and a k-dimensional subspace, thus must be convex. So
[x, x0] intersects E at some point x1. Clearly we have

dt(x, x0) ≥ dt(x, x1) ≥ dt(x,E)

Hence we have obtained (5.9), and the proof is complete.
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