, Algorithm 1 The hypergraph in Figure 2.6 expressed in the clingo syntax. 1: node(A). 2: node(B). 3: node(C)

, 10: hyperarc(1). in(A,1). in(B,1). out(1,C). green(1). weight(1,2). 11: hyperarc(2). in(C,2). out(D,2). out(E,2). grey(2). weight(2,-1). 12: hyperarc(3). in(F,3). out(G,3). grey(3). weight(3,-1), endnode(D). 5: node(E). 6: node(F), vol.9

, Algorithm 2 The Moomin-problem expressed as a logic programme, 0<=inanswer(H)<=1:-hyperarc(H), vol.1, p.1

, rsel(H)<=1:-inanswer(H). 3: rin(V,H):-out(H,V). 4: rout(H,V):-in(V,H). 5: :-green(H), rsel(H), not reversible(H). 6: :-red(H), sel(H), not reversible(H). 7: :-sel(H), in(V,H), not endnode(V), out(H2,V): sel(H2)=0, in(V,H3): rsel(H3)=0. 8: :-sel(H), out(H,V), not endnode(V), in(V, H2): sel(H2)=0, out(H3,V): rsel(H3)=0. 9: :-rsel(H), in(V,H), not endnode(V), in(V, H2): sel(H2)=0, out(H3,V): rsel(H3)=0. 10: :-rsel(H), out(H,V), not endnode(V), out(H2,V): sel(H2)=0, in(V,H3): rsel(H3)=0, vol.11

V. Acuña, E. Birmelé, L. Cottret, P. Crescenzi, F. Jourdan et al., Telling stories: Enumerating maximal directed acyclic graphs with a constrained set of sources and targets, Theoretical Computer Science, vol.457, pp.1-9, 2012.

V. Acuna, F. Chierichetti, V. Lacroix, A. Marchetti-spaccamela, M. Sagot et al., Modes and cuts in metabolic networks: Complexity and algorithms, Biosystems, vol.95, issue.1, pp.51-60, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00428239

J. Adkins, S. Pugh, R. Mckenna, and D. R. Nielsen, Engineering microbial chemical factories to produce renewable, biomonomers". Front Microbiol, vol.3, p.313, 2012.
DOI : 10.3389/fmicb.2012.00313

URL : https://www.frontiersin.org/articles/10.3389/fmicb.2012.00313/pdf

S. Rasmus-agren, A. Bordel, and . Mardinoglu, Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using init, PLoS computational biology, vol.8, issue.5, p.1002518, 2012.

M. Åkesson, J. Förster, and J. Nielsen, Integration of gene expression data into genome-scale metabolic models, Metabolic engineering, vol.6, issue.4, pp.285-293, 2004.

N. Alcaraz, T. Friedrich, T. Kötzing, A. Krohmer, J. Müller et al., Efficient key pathway mining: combining networks and omics data, Integrative Biology, vol.4, issue.7, pp.756-764, 2012.
DOI : 10.1039/c2ib00133k

N. Alcaraz, H. Kücük, J. Weile, A. Wipat, and J. Baumbach, Keypathwayminer: detecting case-specific biological pathways using expression data, Internet Mathematics, vol.7, issue.4, pp.299-313, 2011.
DOI : 10.1080/15427951.2011.604548

URL : http://www.internetmathematicsjournal.com/article/1509.pdf

J. Carlos-aledo, J. A. Pérez-claros, and A. Valle, Switching between cooperation and competition in the use of extracellular glucose, Journal of molecular evolution, vol.65, issue.3, pp.328-339, 2007.

B. Allen, J. Gore, and M. A. Nowak, Spatial dilemmas of diffusible public goods. Elife, vol.2, p.1169, 2013.
DOI : 10.7554/elife.01169

URL : https://doi.org/10.7554/elife.01169

R. P. Almeida and A. H. Purcell, Transmission of xylella fastidiosa to grapevines by homalodisca coagulata (hemiptera: Cicadellidae), Journal of economic entomology, vol.96, issue.2, pp.264-271, 2003.

J. M. Alston, K. B. Fuller, J. D. Kaplan, and K. P. Tumber, Economic consequences of pierce's disease and related policy in the california winegrape industry, Journal of Agricultural and Resource Economics, 2013.

. Maciek-r-antoniewicz, Methods and advances in metabolic flux analysis: a mini-review, Journal of industrial microbiology & biotechnology, vol.42, issue.3, pp.317-325, 2015.

V. Alexey, . Antonov, W. Hans, S. Mewes, and . Dietmann, Kegg spider: interpretation of genomics data in the context of the global gene metabolic network, Genome biology, vol.9, issue.12, p.179, 2008.

M. Archetti, Evolutionary game theory of growth factor production: implications for tumour heterogeneity and resistance to therapies, British journal of cancer, vol.109, issue.4, pp.1056-1062, 2013.

M. Archetti, Evolutionary dynamics of the warburg effect: glycolysis as a collective action problem among cancer cells, Journal of theoretical biology, vol.341, pp.1-8, 2014.

M. Archetti, Heterogeneity and proliferation of invasive cancer subclones in game theory models of the warburg effect, Cell proliferation, vol.48, issue.2, pp.259-269, 2015.

M. Archetti, Cooperation among cancer cells as public goods games on voronoi networks, Journal of Theoretical Biology, vol.396, pp.191-203, 2016.
DOI : 10.1016/j.jtbi.2016.02.027

URL : https://ueaeprints.uea.ac.uk/57512/1/Revised_Manuscript_Figs.pdf

M. Archetti, How to analyze models of nonlinear public goods, Games, vol.9, issue.2, p.17, 2018.

M. Archetti and I. Scheuring, Review: Game theory of public goods in one-shot social dilemmas without assortment, Journal of Theoretical Biology, vol.299, pp.9-20, 2012.

M. Archetti and I. Scheuring, Trading public goods stabilizes interspecific mutualism, Journal of theoretical biology, vol.318, pp.58-67, 2013.

L. Arriola and J. M. Hyman, Sensitivity analysis for uncertainty quantification in mathematical models, Mathematical and Statistical Estimation Approaches in Epidemiology, 2009.

D. Avis, D. Gabriel, R. Rosenberg, B. V. Savani, and . Stengel, Enumeration of nash equilibria for two-player games, Economic Theory, vol.42, issue.1, pp.9-37, 2010.

R. Axelrod, Effective choice in the prisoner's dilemma, Journal of conflict resolution, vol.24, issue.1, pp.3-25, 1980.

J. Baumbach, T. Friedrich, T. Kötzing, A. Krohmer, J. Müller et al., Efficient algorithms for extracting biological key pathways with global constraints, Proceedings of the 14th annual conference on Genetic and evolutionary computation, pp.169-176, 2012.

A. Scott, B. O. Becker, and . Palsson, Context-specific metabolic networks are consistent with experiments, PLoS computational biology, vol.4, issue.5, p.1000082, 2008.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the royal statistical society. Series B (Methodological), pp.289-300, 1995.

C. Hans, R. Bernstein, and . Carlson, Microbial consortia engineering for cellular factories: in vitro to in silico systems, Computational and structural biotechnology journal, vol.3, issue.4, p.201210017, 2012.

M. J. Blua and D. J. Morgan, Dispersion of homalodisca coagulata (hemiptera: Cicadellidae), a vector of xylella fastidiosa, into vineyards in southern california, Journal of economic entomology, vol.96, issue.5, pp.1369-1374, 2003.

K. Bohl, S. Hummert, S. Werner, D. Basanta, A. Deutsch et al., Evolutionary game theory: molecules as players, Mol Biosyst, vol.10, issue.12, pp.3066-3074, 2014.

P. Bonatti, F. Calimeri, N. Leone, and F. Ricca, Answer set programming, A 25-year perspective on logic programming, pp.159-182, 2010.

J. Hans, J. Bremermann, and . Pickering, A game-theoretical model of parasite virulence, Journal of Theoretical Biology, vol.100, issue.3, pp.411-426, 1983.

M. Broom and J. Rychtá?, Game-theoretical models in biology, 2013.

K. Campbell, J. Vowinckel, M. A. Keller, and M. Ralser, Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway, Antioxid. Redox Signal, vol.24, issue.10, pp.543-547, 2016.

K. Campbell, J. Vowinckel, M. Mülleder, S. Malmsheimer, N. Lawrence et al., Self-establishing communities enable cooperative metabolite exchange in a eukaryote, Elife, vol.4, p.9943, 2015.

S. Chandrasekaran, D. Nathan, and . Price, Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in escherichia coli and mycobacterium tuberculosis, Proceedings of the National Academy of Sciences, vol.107, issue.41, pp.17845-17850, 2010.

L. Chao and S. F. Elena, Nonlinear trade-offs allow the cooperation game to evolve from Prisoner's Dilemma to Snowdrift, Proc. Biol. Sci, vol.284, 1854.

N. R. Chitnis, Using mathematical models in controlling the spread of malaria, 2005.

L. Bruce and . Clarke, Stability of complex reaction networks, Advances in chemical physics, pp.1-215, 1980.

L. Bruce and . Clarke, Stoichiometric network analysis, Cell biophysics, vol.12, issue.1, pp.237-253, 1988.

C. Colijn, A. Brandes, J. Zucker, S. Desmond, B. Lun et al., Interpreting expression data with metabolic flux models: predicting mycobacterium tuberculosis mycolic acid production, PLoS computational biology, vol.5, issue.8, p.1000489, 2009.

B. Sara, E. Collins, D. Reznik, and . Segrè, Temporal expression-based analysis of metabolism, PLoS computational biology, vol.8, issue.11, p.1002781, 2012.

X. Otto, L. Cordero, . Ventouras, F. Edward, M. F. Delong et al., Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations, Proceedings of the National Academy of Sciences, vol.109, issue.49, pp.20059-20064, 2012.

W. Markus, B. O. Covert, and . Palsson, Constraints-based models: regulation of gene expression reduces the steady-state solution space, Journal of theoretical biology, vol.221, issue.3, pp.309-325, 2003.

R. Cressman, Evolutionary dynamics and extensive form games, vol.5, 2003.

H. C. Francis and . Crick, On protein synthesis, In Symp Soc Exp Biol, vol.12, p.8, 1958.

D. Croes, F. Couche, J. Shoshana, J. Wodak, and . Van-helden, Metabolic pathfinding: inferring relevant pathways in biochemical networks. Nucleic acids research, vol.33, pp.326-330, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01624323

K. M. Daane, M. W. Johnson, K. A. Center, and G. Yokota, Biology and ecology of the glassy-winged sharpshooter in the san joaquin valley, Proceedings, Pierce's Disease Research Symposium:M. Athar Tariq, 2003.

C. H. Daniels, L. Sosnoskie, T. Miller, D. Walsh, G. Hoheise et al., 2018 pest management guide for grapes in washington, 2017.

B. George, . Dantzig, N. Mukund, and . Thapa, Linear programming 1: introduction, 2006.

M. P. Daugherty, R. Almeida, R. J. Smith, E. D. Weber, and A. H. Purcell, Severe pruning of infected grapevines has limited efficacy for managing pierce's disease, American Journal of Enology and Viticulture, 2018.

A. Luis-f-de-figueiredo, A. Podhorski, C. Rubio, J. E. Kaleta, S. Beasley et al., Computing the shortest elementary flux modes in genome-scale metabolic networks, Bioinformatics, vol.25, issue.23, pp.3158-3165, 2009.

U. Dieckmann and R. Law, The dynamical theory of coevolution: a derivation from stochastic ecological processes, Journal of mathematical biology, vol.34, issue.5-6, pp.579-612, 1996.

O. Diekmann, J. Heesterbeek, and M. Roberts, The construction of next-generation matrices for compartmental epidemic models, Journal of the Royal Society Interface, 2009.

M. Doebeli, A model for the evolutionary dynamics of cross-feeding polymorphisms in microorganisms, Population Ecology, vol.44, issue.2, pp.59-70, 2002.

M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stützle et al., Ant Colony Optimization and Swarm Intelligence, 6th International Conference, 2008.

S. Jeremy, R. U. Edwards, B. O. Ibarra, and . Palsson, In silico predictions of escherichia coli metabolic capabilities are consistent with experimental data, Nature biotechnology, vol.19, issue.2, pp.125-130, 2001.

S. Jeremy, B. O. Edwards, and . Palsson, Metabolic flux balance analysis and the in silico analysis of escherichia coli k-12 gene deletions, BMC bioinformatics, vol.1, issue.1, p.1, 2000.

S. Jeremy, R. Edwards, B. O. Ramakrishna, and . Palsson, Characterizing the metabolic phenotype: a phenotype phase plane analysis, Biotechnology and bioengineering, vol.77, issue.1, pp.27-36, 2002.

J. Peter, Z. B. Enyeart, A. D. Simpson, and . Ellington, A microbial model of economic trading and comparative advantage, Journal of Theoretical Biology, vol.364, pp.326-343, 2015.

Z. Semidán-robaina-estévez and . Nikoloski, Context-specific metabolic model extraction based on regularized least squares optimization, PloS one, vol.10, issue.7, p.131875, 2015.

M. Sandeepa and . Eswarappa, Location of pathogenic bacteria during persistent infections: insights from an analysis using game theory, PLoS One, vol.4, issue.4, p.5383, 2009.

X. Fang, A. Wallqvist, and J. Reifman, Modeling phenotypic metabolic adaptations of mycobacterium tuberculosis h37rv under hypoxia, PLoS computational biology, vol.8, issue.9, p.1002688, 2012.
DOI : 10.1371/journal.pcbi.1002688

URL : https://doi.org/10.1371/journal.pcbi.1002688

J. W. Foster, Escherichia coli acid resistance: tales of an amateur acidophile, Nat. Rev. Microbiol, vol.2, issue.11, pp.898-907, 2004.
DOI : 10.1038/nrmicro1021

T. Frick and S. Schuster, An example of the prisoner's dilemma in biochemistry, Naturwissenschaften, vol.90, issue.7, pp.327-331, 2003.

G. Maren-l-friesen, M. Saxer, M. Travisano, and . Doebeli, Experimental evidence for sympatric ecological diversification due to frequency-dependent competition in escherichia coli, Evolution, vol.58, issue.2, pp.245-260, 2004.

. Lc-galvez, . Korus, . Fernandez, N. Behn, and . Banjara, The threat of pierce's disease to midwest wine and table grapes, Online. APSnet Features. doi, vol.10, 2010.

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub et al., Theory solving made easy with clingo 5, OASIcsOpenAccess Series in Informatics, vol.52, 2016.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, Clingo= asp+ control: Preliminary report, 2014.

S. A. Geritz, E. Kisdi, G. Meszena, and J. A. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, EVOL. ECOL, vol.12, pp.35-57, 1998.

P. Matthias, S. Gerstl, G. Müller, J. Regensburger, and . Zanghellini, Flux tope analysis: studying the coordination of reaction directions in metabolic networks, Bioinformatics, 2018.

J. Gore, H. Youk, and A. Van-oudenaarden, Snowdrift game dynamics and facultative cheating in yeast, Nature, vol.459, issue.7244, pp.253-256, 2009.
DOI : 10.1038/nature07921

URL : http://europepmc.org/articles/pmc2888597?pdf=render

W. Gottstein, G. Brett, . Olivier, J. Frank, B. Bruggeman et al., Constraintbased stoichiometric modelling from single organisms to microbial communities, Journal of The Royal Society Interface, vol.13, issue.124, p.20160627, 2016.
DOI : 10.1098/rsif.2016.0627

URL : http://rsif.royalsocietypublishing.org/content/13/124/20160627.full.pdf

J. Haigh, Game theory and evolution, Advances in applied probability, vol.7, issue.1, pp.8-11, 1975.

H. Hamburger, N-person prisoner's dilemma ?, Journal of Mathematical Sociology, vol.3, issue.1, pp.27-48, 1973.
DOI : 10.1080/0022250x.1973.9989822

C. Hauert, M. Holmes, and M. Doebeli, Evolutionary games and population dynamics: maintenance of cooperation in public goods games, Proceedings of the Royal Society of London B: Biological Sciences, vol.273, pp.2565-2571, 1600.
DOI : 10.1098/rspb.2006.3717

URL : http://europepmc.org/articles/pmc1634915?pdf=render

D. Healey, K. Axelrod, and J. Gore, Negative frequency-dependent interactions can underlie phenotypic heterogeneity in a clonal microbial population, Molecular systems biology, vol.12, issue.8, p.877, 2016.
DOI : 10.15252/msb.20167033

URL : http://msb.embopress.org/content/12/8/877.full.pdf

L. Heirendt, S. Arreckx, T. Pfau, N. Sebastian, A. Mendoza et al., Creation and analysis of biochemical constraint-based models: the cobra toolbox, 2017.

F. T. Bradley-hersh, D. N. Farooq, D. L. Barstad, J. L. Blankenhorn, and . Slonczewski, A glutamate-dependent acid resistance gene in escherichia coli, Journal of bacteriology, vol.178, pp.3978-81, 1996.

J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics. Cambridge university press, 1998.

M. Hucka, A. Finney, M. Herbert, H. Sauro, . Bolouri et al., The systems biology markup language (sbml): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, issue.4, pp.524-531, 2003.

S. Hummert, K. Bohl, D. Basanta, A. Deutsch, S. Werner et al., Evolutionary game theory: cells as players, Molecular BioSystems, vol.10, issue.12, pp.3044-3065, 2014.

J. D. Janse and A. Obradovic, Xylella fastidiosa: its biology, diagnosis, control and risks, Journal of Plant Pathology, 2010.

A. Paul, J. A. Jensen, and . Papin, Functional integration of a metabolic network model and expression data without arbitrary thresholding, Bioinformatics, vol.27, issue.4, pp.541-547, 2010.

L. Jerby, T. Shlomi, and E. Ruppin, Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Molecular systems biology, vol.6, p.401, 2010.

A. Julien-laferriere, Models and algorithms applied to metabolism: From revealing the responses to perturbations towards the design of microbial consortia, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01394113

A. Julien-laferrière, L. Bulteau, D. Parrot, A. Marchettispaccamela, L. Stougie et al., A combinatorial algorithm for microbial consortia synthetic design, Scientific Reports, vol.6, p.29182, 2016.

I. Kareva, Prisoner's dilemma in cancer metabolism, PloS one, vol.6, issue.12, p.28576, 2011.

R. M. Karp, Reducibility among Combinatorial Problems, pp.85-103, 1972.

E. D. Kelsic, J. Zhao, K. Vetsigian, and R. Kishony, Counteraction of antibiotic production and degradation stabilizes microbial communities, Nature, vol.521, issue.7553, pp.516-519, 2015.

B. Kerr, M. A. Riley, M. W. Feldman, and B. J. Bohannan, Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors, Nature, vol.418, issue.6894, pp.171-174, 2002.

A. Kianercy, R. Veltri, and K. J. Pienta, Critical transitions in a game theoretic model of tumour metabolism, Interface focus, vol.4, issue.4, p.20140014, 2014.

H. U. Kim, S. Y. Kim, H. Jeong, T. Y. Kim, J. J. Kim et al., Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery, Mol. Syst. Biol, vol.7, p.460, 2011.

H. Kim, W. Kim, and S. Y. Lee, Flux-coupled genes and their use in metabolic flux analysis, Biotechnology journal, vol.8, issue.9, pp.1035-1042, 2013.

J. Kim and J. L. Reed, Relatch: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations, Genome biology, vol.13, issue.9, p.78, 2012.

M. K. Kim, A. Lane, J. James, D. Kelley, and . Lun, E-flux2 and spot: validated methods for inferring intracellular metabolic flux distributions from transcriptomic data, PloS one, vol.11, issue.6, p.157101, 2016.

M. K. Kim and D. Lun, Methods for integration of transcriptomic data in genome-scale metabolic models. Computational and structural biotechnology journal, vol.11, pp.59-65, 2014.

Z. A. King, A. Drager, A. Ebrahim, N. Sonnenschein, N. E. Lewis et al., Palsson. Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways, PLoS Comput. Biol, vol.11, issue.8, p.1004321, 2015.

C. Benjamin, M. A. Kirkup, and . Riley, Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo, Nature, vol.428, issue.6981, pp.412-414, 2004.

S. Klamt and J. Stelling, Combinatorial complexity of pathway analysis in metabolic networks, Molecular biology reports, vol.29, issue.1-2, pp.233-236, 2002.

N. Klitgord and D. Segrè, Environments that induce synthetic microbial ecosystems, PLoS computational biology, vol.6, issue.11, p.1001002, 2010.

J. U. Kreft, Biofilms promote altruism. Microbiology (Reading, Engl, pp.2751-2760, 2004.

R. Krugner, R. James, R. L. Hagler, . Groves, S. Mark et al., Plant water stress effects on the net dispersal rate of the insect vector homalodisca vitripennis (hemiptera: Cicadellidae) and movement of its egg parasitoid, gonatocerus ashmeadi (hymenoptera: Mymaridae), Environmental entomology, vol.41, issue.6, pp.1279-1289, 2012.

I. Kyrkou, T. Pusa, L. Ellegaard-jensen, M. Sagot, and L. H. Hansen, Pierce's disease of grapevines: A review of control strategies and an outline of an epidemiological model, Frontiers in microbiology, vol.9, 2018.

V. Lacroix, L. Cottret, P. Thébault, and M. Sagot, An introduction to metabolic networks and their structural analysis, IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), vol.5, issue.4, pp.594-617, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00355497

I. Lauzière and M. Sétamou, Life history studies of homalodisca vitripennis (hemiptera: Cicadellidae), a vector of pierce's disease of grapevine, Annals of the Entomological Society of America, vol.103, issue.1, pp.57-65, 2010.

P. Stephen, A. O. Lavoie, and . Summers, Transcriptional responses of escherichia coli during recovery from inorganic or organic mercury exposure, BMC genomics, vol.19, issue.1, p.52, 2018.

C. David and . Lay, Linear algebra and its applications, 1997.

D. Lee, K. Smallbone, B. Warwick, E. Dunn, C. L. Murabito et al., Improving metabolic flux predictions using absolute gene expression data, BMC systems biology, vol.6, issue.1, p.73, 2012.

N. Leng, J. A. Dawson, J. A. Thomson, V. Ruotti, A. I. Rissman et al., EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments, Bioinformatics, vol.29, issue.8, pp.1035-1043, 2013.

E. Nathan, . Lewis, K. Kim, . Hixson, M. Tom et al., Omic data from evolved e. coli are consistent with computed optimal growth from genome-scale models, Molecular systems biology, vol.6, issue.1, p.390, 2010.

W. B. Li, C. H. Zhou, W. D. Pria, D. C. Teixeira, V. S. Miranda et al., Citrus and coffee strains of xylella fastidiosa induce pierce's disease in grapevine, Plant disease, vol.86, issue.11, pp.1206-1210, 2002.

X. Y. Li, C. Pietschke, S. Fraune, P. M. Altrock, T. C. Bosch et al., Which games are growing bacterial populations playing?, J R Soc Interface, vol.12, issue.108, p.20150121, 2015.

J. H. Lieth, M. M. Meyer, K. H. Yeo, and B. C. Kirkpatrick, Modeling cold curing of pierce's disease in vitis vinifera 'pinot noir' and 'cabernet sauvignon' grapevines in california, Phytopathology, vol.101, issue.12, pp.1492-1500, 2011.

W. Forster and L. , Two Lectures on the Checks to Population: Delivered Before the University of Oxford, Michaelmas Term 1832. JH Parker, p.1833

D. Machado and M. Herrgård, Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism, PLoS computational biology, vol.10, issue.4, p.1003580, 2014.

C. Maclean and I. Gudelj, Resource competition and social conflict in experimental populations of yeast, Nature, vol.441, issue.7092, p.498, 2006.

R. Mahadevan and C. H. Schilling, The effects of alternate optimal solutions in constraintbased genome-scale metabolic models, Metabolic engineering, vol.5, issue.4, pp.264-276, 2003.

S. Martín, F. Santiago, and . Elena, Application of game theory to the interaction between plant viruses during mixed infections, Journal of general virology, vol.90, issue.11, pp.2815-2820, 2009.

D. Mccloskey, A. Bernhard-Ø-palsson, and . Feist, Basic and applied uses of genome-scale metabolic network reconstructions of escherichia coli. Molecular systems biology, vol.9, p.661, 2013.

A. J. Johan, . Metz, A. H. Stefan, G. Geritz, . Meszéna et al., Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. Stochastic and spatial structures of dynamical systems, vol.45, pp.183-231, 1996.

P. Vieira-milreu, C. C. Klein, L. Cottret, V. Acuña, E. Birmelé et al., Telling metabolic stories to explore metabolomics data: a case study on the yeast response to cadmium exposure, Bioinformatics, vol.30, issue.1, pp.61-70, 2014.

I. Rf-mizell, C. Tipping, . Pc-andersen, . Bv-brodbeck, T. Hunter et al., Behavioral model for homalodisca vitripennis (hemiptera: Cicadellidae): optimization of host plant utilization and management implications, Environmental entomology, vol.37, issue.5, pp.1049-1062, 2008.

M. L. Mo, B. O. Palsson, and M. J. Herrgard, Connecting extracellular metabolomic measurements to intracellular flux states in yeast, BMC Syst Biol, vol.3, p.37, 2009.

B. Momeni, A. J. Waite, and W. Shou, Spatial self-organization favors heterotypic cooperation over cheating, p.960, 2013.

U. Motro, Co-operation and defection: playing the field and the ess, Journal of Theoretical Biology, vol.151, issue.2, pp.145-154, 1991.

F. Joel, . Moxley, C. Michael, . Jewett, R. Maciek et al., Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator gcn4p, Proceedings of the National Academy of Sciences, vol.106, issue.16, pp.6477-6482, 2009.

J. Nash, Non-cooperative games, Annals of Mathematics, pp.286-295, 1951.

F. John and . Nash, Equilibrium points in n-person games, Proceedings of the National Academy of Sciences, vol.36, issue.1, pp.48-49, 1950.

. Nass/cdfa, 2016 citrus acreage report, 2017.

. Nass/cdfa, 2016 grape acreage report, 2017.

A. Navid and E. Almaas, Genome-level transcription data of yersinia pestis analyzed with a new metabolic constraint-based approach, BMC systems biology, vol.6, issue.1, p.150, 2012.

J. Noirel, S. Y. Ow, G. Sanguinetti, A. Jaramillo, and P. Wright, Automated extraction of meaningful pathways from quantitative proteomics data, Briefings in Functional Genomics and Proteomics, vol.7, issue.2, pp.136-146, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00767067

I. Nookaew, M. Papini, N. Pornputtapong, G. Scalcinati, L. Fagerberg et al., A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae, Nucleic Acids Res, vol.40, issue.20, pp.10084-10097, 2012.

A. Martin, K. Nowak, and . Sigmund, Phage-lift for game theory, Nature, vol.398, issue.6726, pp.367-368, 1999.

S. Opdam, A. Richelle, B. Kellman, S. Li, C. Daniel et al., A systematic evaluation of methods for tailoring genome-scale metabolic models, Cell systems, vol.4, issue.3, pp.318-329, 2017.

J. D. Orth, T. M. Conrad, J. Na, J. A. Lerman, H. Nam et al., A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011, Mol. Syst. Biol, vol.7, p.535, 2011.

D. Jeffrey, I. Orth, B. Ø. Thiele, and . Palsson, What is flux balance analysis?, Nature biotechnology, vol.28, issue.3, p.245, 2010.

J. Edward, J. M. O&apos;brien, B. O. Monk, and . Palsson, Using genome-scale models to predict biological capabilities, Cell, vol.161, issue.5, pp.971-987, 2015.

B. Palsson, The challenges of in silico biology, Nature biotechnology, vol.18, issue.11, p.1147, 2000.

H. Samay-pande, K. Merker, M. Bohl, S. Reichelt, . Schuster et al., Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria, The ISME journal, vol.8, issue.5, p.953, 2014.

J. Pey, L. Tobalina, J. Prada-j-de-cisneros, and F. J. Planes, A network-based approach for predicting key enzymes explaining metabolite abundance alterations in a disease phenotype, BMC systems biology, vol.7, issue.1, p.62, 2013.

T. Pfeiffer and S. Schuster, Game-theoretical approaches to studying the evolution of biochemical systems, Trends in biochemical sciences, vol.30, issue.1, pp.20-25, 2005.

T. Pfeiffer, S. Schuster, and S. Bonhoeffer, Cooperation and competition in the evolution of atp-producing pathways, Science, vol.292, issue.5516, pp.504-507, 2001.

J. Pollmächer, S. Timme, S. Schuster, A. A. Brakhage, F. Peter et al., Deciphering the counterplay of aspergillus fumigatus infection and host inflammation by evolutionary games on graphs, Scientific reports, vol.6, 2016.

A. Rezola, J. Pey, A. Luis-f-de-figueiredo, S. Podhorski, A. Schuster et al., Selection of human tissue-specific elementary flux modes using gene expression data, Bioinformatics, vol.29, issue.16, pp.2009-2016, 2013.

A. Rezola, J. Pey, L. Tobalina, Á. Rubio, J. E. Beasley et al., Advances in network-based metabolic pathway analysis and gene expression data integration, Briefings in bioinformatics, vol.16, issue.2, pp.265-279, 2014.

D. Ricardo, On the Principles of Political Economy and Taxation, 1817.

. Tyrrell-rockafellar, Convex analysis. princeton landmarks in mathematics, 1997.

S. Rossell, A. Martijn, R. A. Huynen, and . Notebaart, Inferring metabolic states in uncharacterized environments using gene-expression measurements, PLoS computational biology, vol.9, issue.3, p.1002988, 2013.

E. Ruppin, J. A. Papin, L. F. De-figueiredo, and S. Schuster, Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks, Curr. Opin. Biotechnol, vol.21, issue.4, pp.502-510, 2010.

R. Saha, A. Chowdhury, and C. Maranas, Recent advances in the reconstruction of metabolic models and integration of omics data, Current opinion in biotechnology, vol.29, pp.39-45, 2014.

O. Satya-swarup-samal, A. Radulescu, H. Weber, and . Fröhlich, Linking metabolic network features to phenotypes using sparse group lasso, Bioinformatics, vol.33, issue.21, pp.3445-3453, 2017.

W. Sandanayaka and . Backus, Quantitative comparison of stylet penetration behaviors of glassy-winged sharpshooter on selected hosts, Journal of economic entomology, vol.101, issue.4, pp.1183-1197, 2008.

H. Christophe, J. S. Schilling, D. Edwards, B. Ø. Letscher, and . Palsson, Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems, Biotechnology and bioengineering, vol.71, issue.4, pp.286-306, 2000.

A. Schultz and A. A. Qutub, Reconstruction of tissue-specific metabolic networks using corda, PLoS computational biology, vol.12, issue.3, p.1004808, 2016.

R. Schuster and S. Schuster, Refined algorithm and computer program for calculating all non-negative fluxes admissible in steady states of biochemical reaction systems with or without some flux rates fixed, Bioinformatics, vol.9, issue.1, pp.79-85, 1993.

S. Schuster, A. Luis-f-de-figueiredo, C. Schroeter, and . Kaleta, Combining metabolic pathway analysis with evolutionary game theory. explaining the occurrence of low-yield pathways by an analytic optimization approach, Biosystems, vol.105, issue.2, pp.147-153, 2011.

S. Schuster and C. Hilgetag, On elementary flux modes in biochemical reaction systems at steady state, Journal of Biological Systems, vol.2, issue.02, pp.165-182, 1994.

S. Schuster, J. Kreft, N. Brenner, F. Wessely, G. Theißen et al., Cooperation and cheating in microbial exoenzyme production-theoretical analysis for biotechnological applications, Biotechnology journal, vol.5, issue.7, pp.751-758, 2010.

S. Schuster, J. Kreft, A. Schroeter, and T. Pfeiffer, Use of gametheoretical methods in biochemistry and biophysics, Journal of biological physics, vol.34, issue.1-2, pp.1-17, 2008.

S. Schuster, T. Pfeiffer, and D. A. Fell, Is maximization of molar yield in metabolic networks favoured by evolution, Journal of theoretical biology, vol.252, issue.3, pp.497-504, 2008.

S. Schuster, T. Pfeiffer, F. Moldenhauer, I. Koch, and T. Dandekar, Exploring the pathway structure of metabolism: decomposition into subnetworks and application to mycoplasma pneumoniae, Bioinformatics, vol.18, issue.2, pp.351-361, 2002.

R. Schwarz, P. Musch, A. Von-kamp, B. Engels, H. Schirmer et al., Yana-a software tool for analyzing flux modes, geneexpression and enzyme activities, BMC bioinformatics, vol.6, issue.1, p.135, 2005.

M. Sétamou and W. A. Jones, Biology and biometry of sharpshooter homalodisca coagulata (homoptera: Cicadellidae) reared on cowpea, Annals of the Entomological Society of America, vol.98, issue.3, pp.322-328, 2005.

T. Shlomi, N. Moran, M. J. Cabili, B. Ø. Herrgård, E. Palsson et al., Network-based prediction of human tissue-specific metabolism, Nature biotechnology, vol.26, issue.9, p.1003, 2008.

T. Shlomi and Y. Eisenberg, Roded Sharan, and Eytan Ruppin. A genomescale computational study of the interplay between transcriptional regulation and metabolism. Molecular systems biology, vol.3, p.101, 2007.

N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, A sparse-group lasso, Journal of Computational and Graphical Statistics, vol.22, issue.2, pp.231-245, 2013.

. Mark-s-sisterson, Egg load dynamics of homalodisca vitripennis. Environmental entomology, vol.37, pp.1200-1207, 2008.

M. Smith and . Price, The logic of animal conflict, Nature, vol.246, pp.15-18, 1973.

J. Smith, Evolution and the Theory of Games, 1982.

G. Stancanelli, R. Almeida, D. Bosco, D. Caffier, E. Czwienczek et al., Assessing the risk posed to plant health by xylella fastidiosa in the european union, CIHEAM International Centre for Advanced Mediterranean Agronomic Studies, Watch Letter, vol.33, pp.1-8, 2015.

J. Tasoff, M. T. Mee, and H. H. Wang, An economic framework of microbial trade, PLoS ONE, vol.10, issue.7, p.2015

D. Peter and L. Taylor, Evolutionary stable strategies and game dynamics, Mathematical biosciences, vol.40, issue.1-2, pp.145-156, 1978.

B. Teusink, A. Wiersma, D. Molenaar, C. Francke, W. M. De-vos et al., Analysis of growth of lactobacillus plantarum wcfs1 on a complex medium using a genome-scale metabolic model, Journal of Biological Chemistry, 2006.

M. Tian and J. L. Reed, Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis, Bioinformatics, 2018.

T. Cong, R. Trinh, A. Carlson, F. Wlaschin, and . Srienc, Design, construction and performance of the most efficient biomass producing e. coli bacterium, Metabolic engineering, vol.8, issue.6, pp.628-638, 2006.

E. Paul, L. Turner, and . Chao, Prisoner's dilemma in an rna virus, Nature, vol.398, issue.6726, pp.441-443, 1999.

L. G. Varela, D. R. Haviland, F. G. Zalom, L. J. Bettiga, R. J. Smith et al., Uc ipm pest management guidelines: Grape, vol.3448, 2015.

H. R. Varian, Intermediate Microeconomics: A Modern Approach

W. W. Norton and . Company, , 2009.

A. Varma and . Bemhard-o-palsson, Metabolic flux balancing: Basic concepts, scientific and practical use, Bio/technology, vol.12, 1994.

-. Rp-vivek, A. Ananth, and . Samal, Advances in the integration of transcriptional regulatory information into genome-scale metabolic models, Biosystems, vol.147, pp.1-10, 2016.

N. Vlassis, M. P. Pacheco, and T. Sauter, Fast reconstruction of compact context-specific metabolic network models, PLoS computational biology, vol.10, issue.1, p.1003424, 2014.

J. Von-neumann and O. Morgenstern, Theory of games and economic behavior, 2007.

Y. Wang, A. James, N. Eddy, and . Price, Reconstruction of genome-scale metabolic models for 126 human tissues using mcadre, BMC systems biology, vol.6, issue.1, p.153, 2012.

M. Wannagat, Study of the evolution of symbiosis at the metabolic level using models from game theory and economics, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01394107

O. Warburg, On the origin of cancer cells, Science, vol.123, issue.3191, pp.309-314, 1956.

O. Warburg, F. Wind, and E. Negelein, Ueber den stoffwechsel von tumoren im körper, Klinische Wochenschrift, vol.5, issue.19, pp.829-832, 1926.

D. A. Gijsbert, J. E. Werner, . Strassmann, B. F. Aniek, . Ivens et al., Evolution of microbial markets, Proceedings of the National Academy of Sciences, vol.111, issue.4, pp.1237-1244, 2014.

H. Edwin, P. A. Wintermute, and . Silver, Emergent cooperation in microbial metabolism, Molecular systems biology, vol.6, issue.1, p.407, 2010.

A. Wu and D. Ross, Evolutionary game between commensal and pathogenic microbes in intestinal microbiota, Games, vol.7, issue.3, p.26, 2016.

H. Yim, R. Haselbeck, W. Niu, C. Pujol-baxley, A. Burgard et al., Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol, Nat. Chem. Biol, vol.7, issue.7, pp.445-452, 2011.

K. Yizhak, E. Gaude, S. L. Dévédec, Y. Yedael, G. Y. Waldman et al., Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer, Elife, vol.3, p.3641, 2014.

. Shao-wu, W. Zhang, Y. Gou, and . Li, Prediction of metabolic fluxes from gene expression data with huber penalty convex optimization function, Molecular BioSystems, vol.13, issue.5, pp.901-909, 2017.

L. Zhu, H. Zheng, X. Hu, and Y. Xu, A computational method using differential gene expression to predict altered metabolism of multicellular organisms, Molecular BioSystems, vol.13, issue.11, pp.2418-2427, 2017.

O. Zitka, S. Skalickova, J. Gumulec, M. Masarik, V. Adam et al., Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients, Oncol Lett, vol.4, issue.6, pp.1247-1253, 2012.

R. Ali, D. Zomorrodi, and . Segrè, Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities, Nature Communications, vol.8, issue.1, p.1563, 2017.

H. Zur, E. Ruppin, and T. Shlomi, imat: an integrative metabolic analysis tool, Bioinformatics, vol.26, issue.24, pp.3140-3142, 2010.