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Resumé en francais

L’ADN est transcrit en ARN, 'ARN est traduit en protéines, les protéines catalysent des
réactions. Ainsi est souvent reformulé la théorie fondamentale de la biologie moléculaire [45].
C’est aussi la facon comme je répondrai si on me pressait d’expliquer le sujet de ma thése
en une phrase. J’ajouterai peut-étre un détail supplémentaire : les réactions sont liées entre
elles et donnent naturellement naissance & une structure que l’on pourrait décrire comme un
réseau.

Cela est essentiellement ce que 'on appelle un réseau métabolique ou une reconstruction
métabolique : un ensemble de réactions chimiques, rassemblées sur la base du génome d’un
organisme, et disposées de maniére a ce que les réactions correspondantes soient liées entre
elles. C’est une structure curieuse dans la mesure ou cela correspond & la fois & un modéle
et & un objet d’étude. C’est un modéle, car lorsque la cellule est percue — d’une maniére
trés simplifiée — comme un "sac d’enzymes", ’ensemble des réactions chimiques décrit les
molécules que la cellule peut absorber, ce qu’elle peut faire avec ces substrats, et ce qu’elle
finira par excréter en tant que produits finis. Ainsi, le réseau métabolique peut étre utilisé
pour comprendre en grande partie comment un organisme ou une cellule interagit avec son
environnement et de quelle fagon.

Par contre, le réseau métabolique est intéressant en soi. Ce n’est bien stir pas un hasard que
les conversions chimiques codées dans le génome sont liées entre elles, car chacune représente
un élément dans des structures plus grandes, souvent appelées fonctions métaboliques ou voies
métaboliques. Ceci correspondent aux composantes de haut niveau du fonctionnement interne
de la cellule, servant les besoins de base de la vie : production d’énergie et de biomasse,
élimination des toxines, etc. Il est donc intéressant de se demander comment ces processus
sont organisés. Y a-t-il une structure sous-jacente 7 Y a-t-il des redondances ? Certaines
composantes sont-elles plus cruciales que d’autres ?

Un réseau métabolique est généralement représenté par une sorte de graphe. Il peut s’agir
d’un graphe simple, liant entre eux des nceuds correspondant & des métabolites ou a des
réactions, d'un graphe bipartite contenant des nceuds pour les métabolites et les réactions, ou
d’un hypergraphe liant entre eux des ensembles de nceuds, correspondant a des métabolites,
au travers d’hyperarcs correspondant & des réactions. Le graphe peut ne pas étre orienté ou
ses arétes peuvent étre dotées de directions afin de refléter le fait que de nombreuses réactions
métaboliques ont tendance a se dérouler dans une direction.

Une autre représentation couramment utilisée pour le réseau métabolique est la matrice stoe-
chiométrique. Celle-ci contient les coefficients steechiométriques de toutes les réactions, ce
qui permet de penser le réseau en termes de flux de matiére : chaque réaction consomme un
ensemble de molécules et en produit un autre. De cette maniére, le réseau, ou le métabolisme,
peut étre considéré comme un processus, prenant les substrats de l'environnement & une
extrémité et excrétant les produits a 'autre.

La prise en compte du métabolisme en termes de flux réactionnels donne lieu & ce qui est sans
doute I'application la plus connue des reconstructions métaboliques : ’analyse par contrainte.
L’idée sous-jacente est que pour que le métabolisme fonctionne, il doit étre équilibré. Une



réaction ne peut pas procéder si on ne lui fournit pas ses substrats. De méme, les produits
de la réaction doivent pouvoir étre utilisés ou excrétés. Cela signifie que le réseau définit
les capacités métaboliques d’un organisme non seulement en termes de réactions uniques,
mais également en termes d’ensembles de réactions qui doivent toutes fonctionner de maniére
synchrone.

Les contraintes d’équilibre peuvent étre utilisées pour étudier la structure du métabolisme en
explorant les différents modes, définis en termes de réactions qui sont actives, selon lesquels
il peut opérer. Ces contraintes peuvent également étre utilisées afin de prédire le comporte-
ment métabolique. Dans ’analyse de 1’équilibre des flux, le principe du métabolisme équili-
bré est associé a une hypothése d’optimisation afin de rechercher, parmi les comportements
métaboliques possibles, celui qu'un organisme pourrait vraisemblablement adopter.

Avec la disponibilité croissante de données dites ’'omiques — transcriptomique, protéomique et
métabolomique — divers moyens de les intégrer au réseau métabolique ont suscité un intérét
croissant. Lorsque le réseau est représenté par un graphe, les données 'omiques peuvent
guider I'extraction des sous-réseaux d’intérét pour rechercher des voies métaboliques ou des
ensembles de génes liés entre eux. Dans le cadre de la modélisation basée sur les contraintes,
les données 'omiques peuvent étre utilisées pour améliorer la prédiction du comportement
métabolique et pour construire des modéles métaboliques spécifiques au contexte.

Une application intéressante des reconstructions métaboliques en conjonction avec les données
‘omiques consiste a utiliser les deux méthodes pour comprendre les changements métaboliques.
Lorsqu’un organisme rencontre un changement dans les conditions environnementales, il
s’ensuit souvent une réorganisation du métabolisme. Des mesures comparatives de I’expression
des génes et des concentrations de métabolites peuvent étre utilisées pour mieux comprendre
ces changements, mais ces données sont "sans structure", ce qui signifie qu’elles ne fournissent
pas d’informations sur la relation entre les processus métaboliques. Un réseau métabolique,
en revanche, contient cette information et peut donc grandement améliorer une telle analyse.
Ce sujet est exploré dans le chapitre 2 de cette thése, ou je présente une nouvelle méthode
appelée MOOMIN pour "Mathematical explOration of Omics data on a Metabollc Network"
(exploration mathématique de données 'omiques sur un réseau métabolique). MOOMIN com-
bine les résultats d’'une analyse d’expression différentielle comparant les niveaux d’expression
génique dans deux conditions différentes avec un réseau métabolique afin de produire une hy-
pothése de changement métabolique. L’idée est d’utiliser la structure du réseau pour définir
les changements globaux possibles du métabolisme. Ces changements sont ensuite annotés
sur la base des données d’expression des génes dans le but de trouver le changement qui corre-
spond le mieux aux observations. La recherche du meilleur changement de score est formulée
en forme d’un probléme d’optimisation linéaire.

La théorie des jeux est une branche des mathématiques appliquées qui traite des agents ra-
tionnels en interaction ayant des objectifs contradictoires. Lorsque la rationalité est remplacée
par la sélection naturelle, la théorie des jeux évolutionniste peut étre utilisée pour expliquer
les "décisions" prises méme par des organismes microscopiques. Dans le chapitre 3, je présente
I'idée d’un jeu métabolique, qui corrspond & un modéle de jeu théorique permettant de prédire
le comportement métabolique. Contrairement & ’analyse de I’équilibre des flux, qui permet
de prédire I’état métabolique & ’aide d’une optimisation simple, un jeu métabolique prend en
compte le fait que I'optimalité est influencée par les membres environnants d’une communauté
microbienne. En modifiant la disponibilité des nutriments ou en sécrétant des molécules béné-
fiques ou nocives, les microbes créent essentiellement leur propre environnement et adaptent
le comportement optimal au contexte.

Il existe une autre facon d’expliquer ce qui m’a employé ces trois derniéres années, que la
plupart des gens trouvent beaucoup plus "sexy". En effet, techniquement parlant, le sujet de
mon projet de ma thése était le vin. Le projet Microwine, dont je faisais partie, était une



immense entreprise interdisciplinaire visant & faire la lumiére sur les différents roles que jouent
les microbes dans la production du vin. Quinze étudiants de doctorat, allant de géologues et
biologistes (et méme un cenologue) a mathématiciens, ont utilisé le séquengage de nouvelle
génération pour caractériser les communautés microbiennes dans les vignobles, étudier la
dynamique de la fermentation et rechercher des solutions & diverses maladies menacant ’avenir
de la viticulture.

Cependant, comme souvent dans le cas de projets interdisciplinaires, mes recherches ont fini
par ne pas trop impliquer le vin. Au lieu de cela, la majeure partie de cette thése peut étre
considérée comme une recherche fondamentale sur les réseaux métaboliques. Cette recherche
est bien entendu néanmoins pertinente également dans le contexte du vin, qui est aprés tout
un produit direct du métabolisme microbien. Mon travail avec une autre doctorante du
projet, Ifigeneia Kyrkou, avec qui nous avons développé un modéle épidémiologique de I'agent
pathogéne de la vigne Xylella fastidiosa est ainsi plus proche du sujet du vin. Ce travail est
décrit au chapitre 4.

Cette thése est structurée de la maniére suivante. Dans le chapitre 1, je présente quelques
concepts relatifs aux sujets abordés dans les chapitres suivants. Je présente les objets math-
ématiques les plus couramment utilisés pour décrire les réseaux métaboliques et donne une
bréve introduction & la modélisation par contraintes. Dans la derniére partie du chapitre 1,
je présente une introduction a la théorie des jeux évolutionnistes.

Dans le chapitre 2, je discute de 'intégration des données omiques dans les réseaux métaboliques.
Dans la premiére partie du chapitre, je passe en revue la littérature sur le sujet, en décrivant les
différentes maniéres dont les données 'omiques ont été utilisées en combinaison avec les réseaux
métaboliques et la multitude d’outils informatiques ayant mis en ceuvre de telles analyses. La
derniére partie du chapitre 2 est dédiée a ’algorithme MOOMIN, une méthode permettant de
générer des hypothéses de changements métaboliques a ’aide de données d’expression génique
et d’un réseau métabolique. J’introduis le cadre théorique et prouve la complexité du prob-
léme d’optimisation résultant. Je décris ensuite deux implémentations, une utilisant "answer
set programming" et une autre utilisant 'optimisation linéaire. Dans la derniére partie du
chapitre, je présente les résultats obtenus en appliquant la méthode a deux ensembles de
données réelles. Un article décrivant la méthode MOOMIN et les résultats obtenus est en
préparation. Le logiciel MOOMIN est disponible & I'adresse : github.com/htpusa/moomin.
Dans le chapitre 3, je passe en revue la littérature sur les applications de la théorie des jeux a
I’étude des microbes, en mettant ’accent sur le métabolisme et en particulier les jeux dérivés
de réseaux métaboliques et de la modélisation par contraintes. Dans la derniére partie du
chapitre, j'explique plus en détail I'idée d’un jeu métabolique et aborde différents aspects de
la définition de tels jeux : le choix des joueurs, les actions et les gains. Ce chapitre correspond
a un article de synthése soumis & Frontiers in Genetics au moment de la rédaction.

Dans le dernier chapitre, a savoir le chapitre 4, je présente un modéle épidémiologique de
I’agent pathogéne de la vigne Xylella fastidiosa. Je déduis des expressions pour 1’équilibre sans
maladie du modéle et le taux de reproduction de base, et présente des simulations numériques
explorant les équilibres endémiques. Enfin, je présente les résultats d’une analyse de sensibilité
pour le taux de reproduction de base et I’équilibre endémique, et discute des implications pour
le controle de ’agent pathogéne. Le contenu de ce chapitre fait partie d’un article publié dans
Frontiers in Microbiology [103] dont je suis le deuxiéme auteur.






Contents

Introduction 13
1 Preliminaries 17
1.1 Metabolic networks . . . . . . . . ... 17
1.1.1 A metabolic network as a graph . . . . . .. ... ... ... ... ... 18

1.1.2 A metabolic network as a stoichiometric matrix . . . . ... ... ... 18

1.1.3  Constraint-based modelling . . . . . . ... ... ... ... ... ... 20

1.2 Game theory . . . . . . . 21

2 Metabolic shifts 29
2.1 Introduction . . . . . . . . .. 29
2.2 Stateoftheart . . . . . . . . 31
2.3 MOOMIN . . . . . .o e 38
2.3.1 Topological formulation . . . . ... ... ... ... 0L 38

2.3.2  Stoichiometric formulation . . . . . . .. ..o 49

2.3.3 Results . . .. 51

2.4 Conclusion . . . . . . . e 57

3 Metabolic games 59
3.1 Introduction . . . . . . . . . L 59
3.2 Stateoftheart . . . . . . . . . ... 60
3.3 A metabolic game . . .. ... 68
3.4 Conclusion . . . . . . . . 72

4 Xuylella fastidiosa epidemiological model 75
4.1 Introduction . . . . . . . .. 75
4.2  Epidemiological model . . . . . . ... oo 76
4.2.1 Model description . . . . . ..o 76

4.2.2 Baseline parameter values . . . . . . . ..o 79

4.2.3 Disease-free equilibrium . . . . .. ... 80

4.2.4 The basic reproduction number . . . . .. ... L. 80

4.2.5 The endemic equilibria . . . . . . . ... 81

4.2.6 Sensitivity analysis . . . . . . ... 81

4.3 Conclusion. . . . . . . . . e 85
Conclusion and Perspectives 87
Bibliography 89

Supplementary figures 103






Introduction

DNA is transcribed into RNA, RNA is translated into proteins, proteins catalyse reactions.
Thus is often paraphrased the central dogma of molecular biology [45]. It is also how I would
respond if pressed to explain the topic of my thesis in one sentence. Perhaps I would add one
more detail: the reactions are linked, naturally giving rise to a structure that is best described
as a network.

That is essentially what a metabolic network or a metabolic reconstruction is: a collection of
chemical reactions, gathered based on the genome of an organism, and arranged in such a way
that related reactions are connected. It is a curious structure in that it is both a model and an
object of study in itself. It is a model, because when the cell is seen — in a grossly simplified
way — as a "bag of enzymes", the collection of chemical reactions describe what molecules the
cell can take in, what it can do with those substrates, and what it will eventually excrete as
the end products. Thus the metabolic network can be used to understand much of how an
organism or a cell interacts with its environment and how it does it.

On the other hand the metabolic network is interesting in itself. It is of course no accident
that the chemical conversions coded into the genome are linked, for each of them serves as a
piece in larger structures, often referred to as metabolic functions or pathways. They are the
higher level components of the cell’s inner workings, serving the basic needs of biological life:
production of energy and biomass, removal of toxins etc. It is thus of interest to ask how such
processes are organised. Is there an overlying structure? Are there redundancies? Are some
components more crucial than others?

A metabolic network is usually represented by some sort of graph. This can be a simple graph,
joining together nodes corresponding to either metabolites or reactions, a bipartite graph that
contains nodes for both metabolites and reactions, or a hypergraph that joins together sets
of nodes, corresponding to metabolites, using hyperarcs that correspond to reactions. The
graph can be undirected, or its edges can be assigned directions to reflect the fact that many
metabolic reactions tend to proceed in one direction.

Another commonly used representation for the metabolic network is the stoichiometric matrix.
It contains the stoichiometric coefficients of all of the reactions, allowing one to think of
the network in terms of a flux of matter: each reaction consumes one set of molecules and
produces another. In this way, the network, or metabolism, can be seen as one process, taking
in substrates from the environment at one end and excreting out products at the other.
Considering the metabolism in terms of reaction fluxes gives rise to what is arguably the most
celebrated application of metabolic reconstructions: constraint-based analysis. It is built on
the idea that in order for the metabolism to function, it has to be balanced. A reaction cannot
proceed if it is not being supplied its substrates. Similarly, the products of the reaction need to
be further utilised or excreted. This means that the network defines the metabolic capabilities
of an organism not only in terms of single reactions, but in terms of sets of reactions that all
need to operate in synchrony.

The balance constraints can be used to study the structure of the metabolism by exploring
the different modes, defined in terms of the reactions that are active, it can operate in. They
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can also be used to predict metabolic behaviour. In Flux Balance Analysis, the principle
of balanced metabolism is combined with an assumption of optimisation to find among the
possible metabolic behaviours the one that an organism would likely undertake.

With the increasing availability of so-called ’omics data — transcriptomics, proteomics, and
metabolomics — there has been growing interest in various ways of integrating them with
the metabolic network. When the network is represented by a graph, 'omics data can guide
the extraction of subnetworks of interest to find metabolic pathways or sets of related genes.
Within the framework of constraint-based modelling, ’omics data can be used to improve the
prediction of metabolic behaviour and to build context-specific metabolic models.

One interesting application of metabolic reconstructions in conjunction with ’omics data is
to use the two to understand metabolic shifts. When an organism encounters a change
in environmental conditions, often a re-organisation of metabolism follows. Comparative
measurements of gene expression and metabolite concentrations can be used to gain insight
into these changes but these data are "structureless", meaning they lack the information about
how the metabolic components relate to each other. A metabolic network on the other hand
contains this information, and can thus greatly benefit such an analysis.

This topic is explored in Chapter 2 of this thesis, where I present a new method called
MooOMIN for "Mathematical explOration of Omics data on a Metabollc Network". MOOMIN
combines the results of a differential expression analysis comparing the gene expression levels
in two different conditions with a metabolic network to produce a hypothesis of a metabolic
shift. The idea is to use the network structure to define feasible global changes in metabolism.
These changes are then scored based on the gene expression data with the goal of finding the
change that best agrees with the observations. Finding the best-scoring change is formulated
into an optimisation problem that can be solved using Mixed-Integer Linear Programming.
Game theory is a branch of applied mathematics that deals with interacting rational agents
with conflicting goals. When rationality is replaced with natural selection, evolutionary game
theory can be used to explain the "decisions" taken by even microscopic organisms. In Chap-
ter 3, I present the idea of a metabolic game, a game theoretical model for the prediction
of metabolic behaviour. In contrast to Flux Balance Analysis, where the metabolic state is
predicted using simple optimisation, a metabolic game takes into account the fact that op-
timality is influenced by the surrounding members of a microbial community. By changing
the availability of nutrients, or secreting beneficial or harmful molecules, microbes essentially
create their own environment and make optimal behaviour context-specific.

There is another way to explain what has employed me these past three years, one that for
some reason most people find much "sexier". Yes, technically the topic of my PhD project
was wine. The Microwine project, of which I was part, was an immense interdisciplinary
undertaking aimed to shed light on the different roles microbes play in the production of the
beverage. Ranging from geologists and biologists (and even an oenologist) to a mathematician
(yours truly), 15 PhD students in total used next generation sequencing to characterise the
microbial communities in vineyards and wineries, studied the dynamics of fermentations, and
sought solutions to various diseases threatening the future of viticulture.

However, as is often the case with interdisciplinary projects, my research ended up not involv-
ing much wine. Instead, most of this thesis can be considered basic research on the topic of
metabolic networks. It is of course nevertheless relevant also in the context of wine, which is
— after all — a direct product of microbial metabolism. Closest to the topic of wine comes my
work with another PhD student of the project, Ifigeneia Kyrkou, with whom we developed an
epidemiological model of the Xylella fastidiosa grapevine pathogen. This work is described
in Chapter 4.

This thesis is structured in the following way. In Chapter 1, I present some concepts relevant
to the topics discussed in the later chapters. I introduce the mathematical objects most
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commonly used to describe metabolic networks and give a brief introduction to constraint-
based modelling. In the latter part of Chapter 1, I give an introduction to evolutionary game
theory.

In Chapter 2, I discuss the integration of ’omics data into metabolic networks. In the first
part of the chapter I review the literature on the subject, describing the various ways in
which ’omics data have been used in combination with metabolic networks and the multitude
of computational tools that have implemented such analyses. The latter part of Chapter 2
is dedicated to the MOOMIN algorithm, a method to generate hypotheses of metabolic shifts
using gene expression data and a metabolic network. I introduce the theoretical framework
and prove the complexity of the resulting optimisation problem. I then describe two im-
plementations, one using Answer Set Programming, and another using Mixed-Integer Linear
Programming. In the last part of the chapter, I present results obtained by applying the
method on two real data sets. An article describing the MOOMIN method and the results ob-
tained is in preparation. The MOOMIN software is available at: github.com/htpusa/moomin.
In Chapter 3, I review literature that has applied game theory to the study of microbes, with
a focus on metabolism and especially games derived using metabolic networks and constraint-
based modelling. In the latter part of the chapter, I further explain the idea behind a metabolic
game and discuss different aspects of defining such games: the choice of players, actions, and
payoffs. This chapter corresponds to a review article submitted to Frontiers in Genetics at
the time of writing.

In the last chapter, Chapter 4, I present an epidemiological model of the Xylella fastidiosa
grapevine pathogen. I derive expressions for the disease-free equilibrium of the model and
the basic reproduction number, and present numerical simulations exploring the endemic
equilibria. Lastly, I present the results of a sensitivity analysis for the basic reproduction
number and the endemic equilibrium, and discuss the implications for the control of the
pathogen. The material in this chapter forms a part of an article published in Frontiers in
Microbiology [103] of which I am the second author.



16

CONTENTS




Chapter 1
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1.1 Metabolic networks

Formally defined, a metabolic network is a collection of objects and the relations amongst them
[104]. The objects that comprise the network are metabolites (or compounds), biochemical
reactions, enzymes, and genes.

Metabolites are molecules that are imported into, exported out of, or synthesised or degraded
inside a cell. A biochemical reaction converts one set of metabolites, the substrates, into an-
other set, the products. In principle, the sets are interchangeable. In other words, all chemical
reactions can proceed in both directions. In reality, that is, under specific physiological condi-
tions, many reactions are only observed to take place in one direction. We call such reactions
wrreversible as opposed to reversible reactions that can be considered to take place in either
of the two directions.

Most reactions inside a cell are catalysed by an enzyme. An enzyme is a protein or a complex
of proteins that lowers the energy required for the reaction to happen. In other words, the
presence of an enzyme increases the probability that a particular biochemical conversion
takes place. Some reactions are catalysed by a specific enzyme, others have several distinct
isoenzymes that are able to facilitate the same reaction. Since a gene is generally speaking
associated with a protein, this means that the relation between genes and enzymes — and
hence genes and reactions — is a complex one.

Some of the metabolites can be distinguished as cofactors, molecules that facilitate the func-
tioning of enzymes and are necessary for their action.

A pathway can be loosely defined as a collection of reactions associated with some higher level
function. For example, glycolysis refers to the process of converting glucose into pyruvate
through a series of intermediate steps.

The process of reconstructing a metabolic network starts with the sequencing of an organism’s
genome. Once genes have been identified, they are assigned functional annotations. While
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this step has been automised to a large extent, labour intensive manual refinement is still
needed.

1.1.1 A metabolic network as a graph

Metabolites that participate in a reaction are very clearly linked together. Moreover, metabo-
lites can take part in several different reactions, forming further connections. It thus is very
natural to represent a metabolic network using a graph. A graph is defined as a couple (V, E)
corresponding respectively to a set of nodes and a set of edges which correspond to a subset
of V2,

Several different graphs can be defined based on a metabolic network. I present here the most
commonly used ones. In a compound graph nodes represent metabolites, and two metabolites
are connected by an edge if there is a reaction that has one of them as a substrate and another
as a product. At first glance it might seem that in such a graph, an edge denotes the possibility
of converting one compound into the other. This is however slightly misleading, and in fact
one of the drawbacks of the compound graph representation: there might be several other
metabolites participating in the reaction that gives rise to the edge — the compound graph
loses this information, sometimes leading to false conclusions if the graph is traversed naively.
In contrast, in a reaction graph, the nodes are reactions, and edges are drawn if the product of
one is the substrate of the other. Similarly to the compound graph, some information is also
lost in the reaction graph representation: when two reactions are joined by an edge, it might
suggest that the said reactions can proceed in succession, forming a pathway. However, the
product set of one need not equal or encompass the substrate set of the other, and hence other
reactions might be needed to supply the second reaction. Examples can be seen in figures
1.1b and 1.1c.

A bipartite graph is a graph whose node set V' can be divided into two disjoint subsets V; and
V5 so that in each edge one node is in V; and the other in V5. A metabolic network can be
represented by a bipartite graph by defining one subset of nodes for metabolites and the other
for reactions. The metabolite nodes are then connected to all the nodes whose reactions they
participate in. A hypergraph is a generalisation of the simple graph: it joins together sets of
nodes. It can be denoted again by (V| E), but this time E is a set of hyperedges.

A directed graph is a graph whose edges are directed, meaning they have an orientation, and
are then called arcs. I mentioned earlier that many reactions in a metabolic network can be
considered irreversible, that is, to have a direction. It is thus natural to assign directions to
the relations in the graph representation so that, for example, two metabolites are connected
by an arc that traverses from the substrate to the product of the underlying reactions. A
similar logic holds for the other models. A directed hyperedge is a hyperarc.

When a network comprises both reversible and irreversible reactions, a mixed graph with both
directed and undirected edges can be used. It should be noted however that in a bipartite
graph, undirected edges can lead to ambiguities, obscuring the two sets of metabolites at the
opposite ends of a reaction. In other words, if the reaction and compound nodes are linked
with undirected edges, it is impossible to divide the compounds into substrates and products
just based on the graph structure. One solution is to refrain from using undirected edges, and
instead use edge labels to indicate reversibility in directed bipartite graphs.

1.1.2 A metabolic network as a stoichiometric matrix

While both the directed bipartite and hypergraph representations preserve the information
about the participants of a reaction, they do omit one additional detail: the stoichiometry of
the reactions. Stoichiometry refers to the relative quantities of the metabolites taking part
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in a reaction, in other words, how many molecules of substrate A are needed to produce one
molecule of product B. While this information could be included in the aforementioned graphs
in the form of edge labels, this seems cumbersome. Instead an alternative representation is
often used, the stoichiometric matriz.

The stoichiometric matrix S is an m X n matrix, with m rows corresponding to the number
of metabolites and n columns to the number of reactions in the network. The entry S;; is the
number of molecules of metabolite i participating in the reaction j. If the entry is negative, i
is consumed by the reaction, that is, it is a substrate of j, if it is positive, ¢ is produced. An
example is shown in Figure 1.1f.

A stoichiometric matrix is usually accompanied by a pair of vectors ub and lb containing
respectively the upper and lower bounds for the rates of the reactions. While the exact
entries are often subject to technical details and might not be very informative per se, a zero
entry in Ib can be used to recognise reactions that are considered irreversible.

A concept closely related to the stoichiometric matrix is that of fluz vectors. A flux vector v
expresses the metabolic state of an organism as the rates of all the reactions contained in the
network. It is a static concept in the sense that the rates are taken to represent a persistent
state of equilibrium. Alternatively, the word flux distribution is also used to further underline
the idea of allocation of resources: while the network is a collection of the metabolic reactions
the organism in question has at its disposal, the flux vector expresses which of those reactions
it chooses to utilise.

Two types of reactions can be distinguished: those that consume and produce internal metabo-
lites and those that transport them into or out of the cell, appropriately termed transport
reactions. A transport reaction can be coded into the stoichiometric matrix by omitting the
substrate or the products. In other words, a reaction that imports a compound into the cell
produces it from "nothing", and one that exports it just consumes it, producing nothing.
This type of formulation implies the assumption that in the context of the organism’s internal
metabolism, an external compound is either present or not, and in the former case it is essen-
tially available ad libitum. Similarly, compounds that an organism is able to export, can be
disposed of into the environment without limit. However, constraints can be placed for trans-
port reactions in ub and lb to express relative limits to the extends at which molecules can
be moved through the cell membrane. An alternative formulation for denoting the transport
reactions is to duplicate the associated metabolites, and to label the clones as external.
Because the time scale of reaction kinetics is much faster than that of the growth of the
organism, it is a reasonable assumption to place the metabolism in a steady state, namely, the
consumption and production of internal metabolites should be balanced. This steady state
assumption can be expressed mathematically as

S-v=0 (1.1)

It defines a concept from linear algebra called the null space [107] that contains all the feasible
flux distributions of the system. A set of basis vectors can be used to explicitly define the
null space. They are obtained as the columns of the null space matrix K which satisfies

S-K=0

However, the basis vectors obtained in this way are not unique. Several approaches for
obtaining a unique and biologically relevant basis for the null space using the methods of
convex analysis [148] have been proposed.

If all reversible reactions are decomposed into separate forward and backward reactions, all
steady state flux vectors lie in the non-negative orthant of the flux space. The solution space
now forms a convex polyhedral cone. Because the cone is convex, any vector within it can be
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represented by a linear combination of the generating vectors, corresponding to the edges of
the cone and termed extreme currents [38].

If negative fluxes are allowed for reversible reactions, the flux cone no longer lies in the
non-negative orthant. Its edges are now called elementary flur modes [156, 158] with the
interpretation that they correspond to minimal sets of reactions that are able to operate at a
steady state.

Finally, extreme pathways were defined in [154]. All internal reversible reactions are split
into two, similar to elementary flux modes, but transport reactions are still allowed to have
negative fluxes. The extreme pathways again correspond to the edges of the resulting flux
cone.

1.1.3 Constraint-based modelling

The matrix representation of a metabolic network is tied to a broader framework known
as constraint-based modelling [139, 43]. Constraints, such as the steady state condition 1.1,
restrict the space of possible fluxes. This space can be explored to discover underlying bio-
chemical structures, as we saw in the previous section, or to find specific flux vectors. The
goal can be, for example, to predict if an organism is able to grow in a certain environment
or to predict its metabolic state.

In metabolic flux analysis, further constraints on the space of feasible fluxes come in the form
of additional information, for example, growth rate, substrate uptake, or product formation
[12]. These data can be introduced into the ub and lb vectors to set those entries in v that
are known to their measured values. The goal is to constrain the flux space sufficiently, so
that the remaining unknown fluxes can be calculated. However, a substantial number of fluxes
needs to be measured in order for the system to be solvable.

In contrast, in fluz balance analysis (FBA)[137] information about measured fluxes is not
necessarily needed. Instead, FBA relies on optimisation to find a flux vector that is most
likely to represent the actual state of an organism’s metabolism. First, a pseudo-reaction is
defined that corresponds to the formation of biomass. Its substrates are all those metabolites
the organism needs in order to grow, in their appropriate quantities. Then, an objective
function is formulated. The most common choice is the flux through the biomass reaction
[72]. The rationale is that the metabolic state should be — at least approximately — optimised
for the production of biomass.

Once the objective function has been defined, the question of finding the optimal flux vector
v can be formulated as the following linear programming (LP) problem [49]:

max clv (1.2)
subject to Sv=0 (1.3)
Ib<v<ub (1.4)

Equation 1.2 represents the biomass reaction where ¢ are the component quantities, Equation
1.3 is the steady state condition, and Equation 1.4 imposes lower and upper bounds on each
reaction. While they are not necessarily needed in order to solve the above problem, addi-
tional constraints can be added to integrate knowledge about a specific growth environment
(restricting which external compounds can be imported by placing upper bounds of zero on
appropriate transport reactions) or, for example, to simulate gene knock-outs.

One drawback of FBA is that the optimal flux vector obtained as the solution of the above
LP problem is usually not unique. Two variations of the original formulation aim at providing
a possible amendment. In flux variability analysis (FVA, [117]), the space of possible optimal
flux distributions is explored by establishing the minimum and maximum fluxes for each
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reaction. In other words, given that an optimal value of the objective function Z,,; has been
established as in 1.2-1.4, two additional problems are solved for each reaction:

max Vi (1.5)
subject to Sv=0 (1.6)
Ib<v<ub (1.7)
v = Zop (1.8)
and
min A (1.9)
subject to Sv=0 (1.10)
Ib<v<ub (1.11)
v = Zop (1.12)

The acquired values V;maz and v, can help better understand the metabolic behaviour
and for example the essentiality of individual reactions: if v;,:n > 0, it is clear that reaction
1 is essential for optimal metabolic behaviour.

Parsimonious FBA (pFBA, [110]) relies on the assumption that in an optimal metabolic
state, the total required enzyme mass is minimised. This is translated into the language of
constraint-based modelling by minimising the sum of all fluxes after having first established
the optimal value of the biological objective function:

min > v (1.13)
subject to Sv=0 (1.14)
Ib<v<ub (1.15)

v = Zop (1.16)

1.2 Game theory

Game theory is a branch of applied mathematics originally developed to describe and reason
about situations where two or more rational agents, the "homo economicus", are faced with
choices and have potentially conflicting goals [183]. All participants want to maximise their
own well-being, but are doing so taking into account that everyone else is doing the same.
Thus paradoxical, suboptimal, outcomes are possible and even common. FEvolutionary game
theory was born out of the realisation that rational choice can be replaced by natural selection:
in the course of evolution the strategy (phenotype) that would "win" the game would prevail
by simply proliferating more successfully thanks to its success in the "game" [169, 170].

The main concepts that compose a game are a set of players, a set of actions for each player,
and a payoff function. The players are the participants in the interaction under study. In
the simplest case, they are interchangeable, meaning they all have the same set of available
actions and the same payoff function. A set of actions defines the choice that each player
faces and can correspond for example to the expressed phenotype. The words "action" and
"strategy" are often used more or less interchangeably and confusion can ensue. I will adhere
to a convention whereby the word "action" refers only to the atomic choices available to a
player, that is, the discrete members of the action set, and strategy is the "rule" by which the
player chooses which choice to enact. A pure strategy is a strategy in which one single action
is chosen. In this case, the words are thus somewhat interchangeable. In contrast, a mized
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strategy is one where two or more different actions are each chosen with some probability.
Finally, the payoff function determines the outcome for each player in each scenario, that is,
a combination of actions chosen by the players. If mixed strategies are present, the payoff
function gives the expected payoff given the probability of each configuration of actions.
The simplest game is the 2-player, 2-strategy matrix game. In it, two players each have (the
same) two strategies to choose from. They make their choice simultaneously (or equivalently
without information about the other player’s choice). The game can be summarized in the
following payoff matrix:

A
B

A
a
c

ol

where A and B are the two strategies and a, b, ¢ and d are the payoffs for the row player in
each scenario. In such a symmetric game the row and column players are interchangeable, that
is the payoff matrix of the column player corresponds to the transpose of the payoff matrix
of the row player. If one player chooses action A and the other player B, then the player who
has chosen A (B) receives the payoff b (¢). It does not matter if a player is considered as row
or column player.

Some of such games have become famous and the actions and payoffs can be given generic
interpretations, usually denoted by:

D
S

H = Q

C
D P

where C' stands for "cooperation" and D for "defection", and the payoffs, denoted by their
initials, are known as "Temptation", "Reward", "Punishment" and "Sucker’s payoff". If
T > R > P > S, the game is a Prisoner’s Dilemma (PD), the "E. coli of social psychology"
[23]. Tt corresponds to a situation where the players would both be better off cooperating,
but because they will always have the incentive to defect, they end up choosing this inferior
outcome, hence the "dilemma'.

A common way to analyse games is by using a solution concept. A solution is a state of the
game (in other words, a configuration of actions/strategies) that can be reasonably assumed to
follow from choices made based on some underlying logic. Arguably the two most well-known
examples — as well as the ones most often encountered in the context of evolutionary game
theory — are the Nash equilibrium [128, 127] and the Evolutionarily Stable Strategy (ESS)
[169]. In a Nash equilibrium, all strategies are chosen in such a way that no player has an
incentive to unilaterally change theirs. An ESS is a Nash equilibrium, but adds the constraint
that a small minority playing a different action cannot invade the population, adding the
biological element to the picture. The condition for a strategy A to be an ESS is

VB € S,B# A:P(A,A) > P(B, A) (1.17)
and if P(A,A) = P(B,A), P(A,B)> P(B,B), (1.18)

where S is the set of available strategies and P(A, B) is the payoff for strategy A against B.
A Nash equilibrium can comprise pure or mixed strategies. Similarly, an ESS can be pure
or mixed. In the PD, for both players to choose D is the Nash equilibrium of the game: D
dominates the other action in all scenarios (7" > R and P > S) [183]. In this case, it is also
the ESS.

If the payoffs of the PD are switched so that T > R > S > P, the game is called Hawk-
Dove, Snowdrift (SD), or Chicken. In contrast to the PD, in this situation it is still better to
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cooperate even if one’s partner fails to do so. Here the Nash equilibrium is to choose an action
opposite of one’s opponent. If mixed strategies are allowed, meaning a player can choose its
action probabilistically, we have a mixed Nash equilibrium where both players follow the
same strategy of choosing C with some probability (or a portion of the time). This is also an
ESS, and can be interpreted as a population of individuals that comprises a mix of C- and
D-players.

Another way to analyse matrix games is using the replicator equation [173, 79], which models
the dynamics of the relative frequencies of a set of strategies in a well-mixed population. It

is defined as:
dng

dt

where n, is the frequency of the strategy z, A, is the average payoff of an z-player in the
population, ) ..y n;A(z,i), X being the set of strategies present, and A is the average pay-
off of the population, ), x n;A4;. The underlying assumption in the replicator equation is
that individuals exist in an essentially infinitely large population, meet others in pairwise
encounters in a random fashion, and then increase or decrease in frequency based on how
well they do (that is, what is their expected payoff) compared to the population average.
In other words, successful strategies will increase in abundance and wvice versa. However, the
replicator equation can also be interpreted to describe a situation where an individual’s payoff
depends directly on the composition of the population. For example, in a microbial culture,
the availability of a certain nutrient might depend on the proportion of the population that is
using the said nutrient as their primary resource. If the choice of nutrient is taken to be the
strategy, an individual would be expected to obtain higher payoffs when its strategy is rare
in terms of frequency.

The simple matrix game can be extended by increasing the number of strategies. Arguably
the most well known example is the hand game rock-paper-scissors, captured by the following
matrix:

=ng (A, — A) (1.19)

Rock Paper Scissors

Rock 0 — bl aj
Paper ao 0 —by
Scissors | —b3 as 0

where all the parameters are positive. Because of the circular nature of the game, there is no
pure Nash equilibrium or ESS. The existence of equilibria as well as the replicator dynamics
depend on the relationships between the parameters (see [32]).

Increasing the number of strategies available does not in principle change the analysis, but
can make things more difficult in practice. Namely, when the number of strategies grows,
identifying solutions "by hand" can become infeasible. Computational strategies have been
developed for the automated identification of both the Nash equilibria [22, 196] and the ESSs
[73].

We can also relax the interchangeability of the players. For example, a game with two players
with separate payoff matrices can be represented by (A, B), where

A = (aij)i=1,..n;j=1,..m and B = (bij)i=1,...myj=1,...n-

The entries of A and B are the payoffs for players in roles 1 and 2 respectively and player 1 has
n and player 2 m different actions to choose from. The entry A[i, j] corresponds to the payoff
of player 1 when player 1 chooses action ¢ and player 2 chooses j. The replicator equation
(1.19) extends readily to the bimatrix game, albeit with one caveat: it does not cover the
dynamics between the two different types, only the frequencies of individual strategies within
them.
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Finally, the number of players can also be increased beyond two. In a multiplayer matrix
game, the payoff structure is represented by a tensor, the order of which corresponds to the
number of players. If the players are interchangeable, only one tensor is needed, otherwise
each distinct payoff structure has its own tensor. The analysis of multiplayer matrix games
is in general much more difficult than that of simpler games.

The most prominent multiplayer game is the public goods. In its simplest form, it can be
seen as an extension of the PD to more than two players [74]. Each player again has a choice
between cooperation (C) and defection (D). Cooperation has a cost ¢ (which is paid by the
individual) and yields a benefit r¢ where r > 1. All the benefits are summed together and
distributed evenly amongst the n players. In other words, the payoffs to a C-player and a
D-player respectively are given by

e ire

P(C.i)= == ~c and P(D,i)=-", (1.20)

where i is the number of cooperators in the group. It is easy to see that if r/n < 1, defection
dominates. This equilibrium is Pareto inefficient, meaning that it is possible to increase the
payoff for everyone, and often referred to as the tragedy of the commons [114].
The benefit is not required to be a linear function of the contributions. In the general (non-
linear) public goods game the costs and benefits are given by generic functions in the number
of cooperators:

P(C,i)=0b(i) —c(i) and P(D,7)=0b(i)

and the expected payoff for an individual in a population with a frequency x of cooperators
is

N-1 N-1
E(Cyi,x) =Y pli,x)(b(i+1) —c(i+1)) and E(D,i,z) =Y p(i,z)b(i),
1=0 =0

where p(i,z) is the probability of finding oneself in a group of ¢ (other) cooperators. The
departure from linear costs and benefits allows for more interesting dynamics and the possible
coexistence of cooperators and defectors. For examples of Public Goods games with nonlinear
benefits, see [125, 75, 19].

A more general game with a set of discrete pure actions can be represented in the extensive
form: a graph G = (V, E) called a game tree, where the set of nodes V' corresponds to choices
made by the players (or by Nature) and the edges E connect these choices to subsequent
choices for other players, and ultimately, the payoffs. An example is shown in fig. 1.2.

The very nature of the extensive form representation seems to suggest a sequential nature for
the game, meaning that the players will take turns in choosing their actions. However, this
need not be the case, as we can simply assume that at any given level of the game, the player
making the choice does not know in which node they are. For example, in fig. 1.2 the female
choice could be made without information about the male choice. This is usually represented
visually by joining the corresponding nodes with a dashed line.

The Nash equilibrium of a game in extensive form can be found using backwards induction:
starting from the terminal nodes and working backwards "up the tree", it is possible to
determine the choice of a rational agent in each node. An example of such reasoning is given
in fig. 1.2. This of course becomes more difficult if we assume that some choices were made
without complete information (knowledge about previous choices). Finding the ESSs of a
game in extensive form is in general more complicated (see [44]).

The action set can also be continuous. For example, in a continuous extension of the PD, the
player chooses some contribution level ¢ € [0, cmax| to pay, to yield their opponent a benefit
b(c) that is a function of the contribution. The probability of choosing one of the discrete
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actions can also be seen as a continuous strategy, for example, the probability to play C in
the Hawk-Dove game.

Adaptive dynamics is a framework often used in conjunction with game theory, that combines
the ecological and evolutionary time scales to study how strategies will evolve under natural
selection [120, 52, 69]. Suppose that z is some continuous strategy and the whole population
has adopted x. We assume that x undergoes small mutations so that occasionally a small
number of mutants emerge with a strategy y that is close to x but different. We assume
that the mutations are rare enough so that the time scales of population and evolutionary
dynamics can be separated. If the mutation is beneficial, that is, if it receives a payoff in the
reigning population that is higher than that of the residents, it will increase in frequency, and
may replace x.

Assume that the population dynamics are governed by the replicator equation. Because the
mutations are small and the mutant frequency initially low, we can approximate the growth
rate of the mutant by the invasion fitness:

sz(y) = P(y,z) — Pz, x) (1.21)

The rationale is that the mutants will initially only encounter z individuals. If the invasion
fitness is positive, the mutants will increase in frequency. Evolution will thus proceed in the
direction of the evolutionary gradient

0s2(y)
Jy

(1.22)

y=r

until it reaches the neighbourhood of an evolutionarily singular strategy: an x* such that 1.22
is equal to zero (or possibly the boundary of the strategy space).

The nature of the evolutionarily singular strategies can be determined by the second order
derivative of the invasion fitness. Most notably, if

825:1:(3/)

50 <0 (1.23)

y:$:x*

x* is an ESS. A complete categorisation of singularities can be found in [69].
Adaptive dynamics can often complement a static analysis of a game. For example, it can turn
out that an ESS is unattainable via the sort of gradual mutations considered in the framework.
Moreover, through the phenomenon of evolutionary branching [69], adaptive dynamics can
explain how the evolution of a monomorphic population towards higher fitness can eventually
lead to polymorphisms, thus offering one potential explanation for diversity.
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Figure 1.1 — A set of chemical reactions — metabolism — lends itself to several different graphical
representations. a) An example of a set of reactions behind the different graphs. b) A
compound graph. c¢) A reaction graph. d) A bipartite graph. e) A hypergraph. f) A
stoichiometric matrix.
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Figure 1.2 — From [32]. Extensive form representation of a brood care game where first the
male decides whether or not to care for the offspring, and subsequently the female makes the
same choice knowing already the choice made by the male, making the game a sequential one.
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2.1 Introduction

Cheaper and higher throughput sequencing techniques and other technical advancements have
made a wealth of new ’omics-data available in recent years. Transcriptomics measures the
RNA levels inside a cell, revealing which genes are being expressed. Metabolomics quantifies
the metabolite concentrations, offering further clues into the functioning of the metabolism.
Proteomics is also emerging as a new source of information, measuring directly the levels of
enzymes, and thus possibly circumventing some of the problems involved in using RNA levels
to infer enzyme abundance that are caused by downstream regulation mechanisms.

Often we would like to combine these ’omics data sets with the information offered by a
metabolic reconstruction. Since a metabolic network by itself leaves the metabolic state
largely undetermined, it is of interest to seek clues about its actual workings by incorporating
data gathered from a living cell. A metabolic network can also complement the analysis of
‘omics data. Differential expression studies are routinely performed to understand phenotypic
variation. However, a mere listing of up- or down-regulated enzymes is often not very infor-
mative. A metabolic network on the other hand, represents the relationships between these
enzymes, offering a way to connect the observed changes in a meaningful way.

Approaches that incorporate ’omics data into a metabolic network can be roughly divided into
two classes based on the representation used. When the network is represented by a graph,
the problem usually takes the form of subnetwork extraction [13, 132, 7, 6, 24, 141]. Data
about the objects contained in the network such as reactions and metabolites then serve as
"edges or nodes of interest" that the method in question tries to join or otherwise include in a
subgraph. In approaches that use constraint-based methods, the network is represented by a
stoichiometric matrix. If the aim is phenotype prediction, that is, to infer a flux distribution,
data such as transcriptomics which can serve as a proxy for enzyme activity can be used to
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further constrain the flux space. Here again there are two different approaches, often described
as implementing either "switches" or "valves". In methods that use gene expression data as
switches, reactions whose genes were not measured at all are blocked [43, 5, 25, 35, 41]. In
contrast, in a valve approach expression levels are used as indicators of the activity of reactions
[163, 40, 108, 93, 95, 193, 175].

Gene expression data can also be used to build so-called context-specific models [165, 84, 4,
184, 149, 182, 192, 60, 155|. This refers to the process of pruning a network in order to obtain
a subset of reactions that are active in a given condition or phenotype.

Constraint-based methods have moreover been adopted to help analyse gene expression data
[126, 83, 152, 194, 145]. Methods such as differential expression (DE) analysis are often used to
gain information about phenotypic variation. For example, it might be of interest to know how
an organism reacts to changes in its environment. While such responses often take the form of
a reorganisation of metabolism, direct measurements of internal reaction fluxes remain hard
to achieve. In contrast, measuring the expression of genes is now routinely achieved genome
wide, thanks to RNA-seq technology. In a DE measurement, gene expression is measured in
two or more conditions, and the expression levels are compared. A statistical approach is
used to test against the null hypothesis that the expression level of a gene remained the same
throughout the different data points. What is obtained is a list of differentially expressed
genes, along with associated fold changes which tell how much more or less RNA was found
for a given gene. Differentially expressed metabolic genes, that is, genes that code for reaction-
catalysing enzymes, will then in principle indicate which parts of the metabolism were affected.
However, because of different regulatory mechanisms and the intrinsic noisy nature of gene
expression data, there is no one-to-one correspondence between differentially expressed genes
and changes in reaction activity. Thus DE analysis can greatly benefit from the incorporation
of other sources of information, such as the metabolic network.

To this end, we developed a new algorithm, that we called MOOMIN for "Mathematical
explOration of Omics data on a Metabollc Network". It combines the information from
a RNA-seq DE analysis with a genome-scale metabolic network to infer which parts of an
organism’s metabolism increased or decreased in activity. MOOMIN is based on the concept of
a feasible change: given two different conditions, a change in metabolic activity between them
should be such that it preserves a steady state (zero accumulation for all internal metabolites).
In other words, assuming a steady state in condition 1, a feasible change from condition 1
to condition 2 guarantees that the metabolism is also in steady state in condition 2. The
change in metabolic activity is expressed in qualitative terms as colours. Namely, we colour
parts of the network green (red) to signify an increase (decrease) in metabolic flux. The gene
expression information is leveraged by turning the results of a DE analysis into weights for the
reactions of the network: evidence for a positive or negative change in expression will result in
a positive weight that promotes the inclusion of the said reaction in the solution. Conversely,
when there is little or no evidence of change, a negative weight is given to discourage including
the reaction. The weights are calculated based on the strength of the evidence for a change in
expression. An optimal solution is one that maximises the sum of the weights of the included
reactions. The feasibility of the change is ensured using either topological or stoichiometric
constraints.

This chapter is composed as follows. In Section 2.2, I review the existing literature on combin-
ing 'omics data with a metabolic network. In Section 2.3, I present the MOOMIN algorithm.
The general idea and the main theoretical framework are introduced in Section 2.3.1. In this
section, I also prove the computational complexity of the optimisation problem. Section 2.3.2
presents the extension of the algorithm to include reaction stoichiometry. In Section 2.3.3, I
discuss results obtained by applying MOOMIN to two data sets retrieved from the literature.
The work in this section was done in collaboration with Mariana Ferrarini. The chapter ends
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with a conclusion.

2.2 State of the art

The first methodological distinction in approaches to combining metabolic reconstructions
with ’omics data can be made based on the representation used. In graph-based methods,
the metabolic network is represented by a graph whose nodes and edges correspond to the
targets of measurement in ’omics investigations (for example, genes or metabolites).

In [13], the authors presented a web-based tool called KEGG sPIDER. KEGG SPIDER first
forms a network of metabolic genes by linking together genes whose associated reactions share
a metabolite. The input is a list of genes, for example the differentially expressed genes from a
DE analysis. Network models are then formed iteratively by first joining together input genes
of at most distance one, then distance two etc. The statistical significance of each model is
assessed by comparing the number of input genes included to empirical distributions obtained
using a simulation procedure with random genes as inputs.

Noirel et al. [132]| presented a method that uses quantitative proteomics data to infer up-
and down-regulated metabolic pathways. Their representation is an enzyme network where
nodes correspond to enzymes, and they are joined if the product of one is the substrate of
the other. The connections are weighed based on the connectivity of the metabolite(s) that
gives rise to the edge following [46]: the weight is equal to the number of occurrences of
the metabolite in the network. Based on proteomics data, four kinds of enzymes (nodes)
are recognised: up-regulated, mildly up-regulated, down-regulated, and non-quantified. Up-
regulated pathways are then extracted by performing a depth-first search, starting from each
up-regulated enzyme and selecting paths with the following heuristics: the pathway cannot
contain a down-regulated enzyme, the tail of the pathway cannot contain more than one
non-quantified enzyme, the pathway must contain more than one up-regulated enzyme, the
pathway cannot contain more than two non-quantified enzymes in a row, and the weight of
the pathway (the sum of the edge weights) must not exceed a specified maximum. All paths
fulfilling these criteria are then joined to form a subgraph. To find down-regulated pathways,
the order of measurements can be reversed and the same procedure used.

Alcaraz et al. [7] presented KEYPATHWAYMINER, a tool for the extraction and visualisation
of interesting subpathways based on a series of gene expression data. The starting point is any
biological network that joins together genes based on known physical, regulatory, or genetic
interactions. The nodes are categorised into up-regulated, down-regulated or unchanged.
The goal is then to find maximal connected subnetworks that contain at most k£ nodes that
remained unchanged in more than [ conditions. Because the problem is computationally
hard, ant colony optimisation [55] was used to find solutions stochatistically. An update to
the software was published in [6] where the authors provided a branch and bound method to
find exact solutions.

In [24], KEYPATHWAYMINER was developed further by adding an alternative search problem.
Whereas in [7]| the goal was to find maximal subgraphs with at most k nodes that were not
differentially expressed in more than [ conditions, here at most k nodes are allowed to have
remained unchanged in at most [ conditions in total. In other words, the exceptions are
counted over all nodes and conditions. The authors reported that this was done to avoid bias
towards hub nodes.

Pey et al. [141] proposed a method to explain the accumulation or depletion of a given
metabolite in a disease phenotype. Their approach can be seen as a mix between the graph-
based and contraint-based methods because they use a simple compound graph representation
but include additional constraints so that all paths are required to include carbon exchange
and to be able to sustain a steady state flux. Enzymes whose malfunction might be responsible
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for changes in metabolite concentrations are identified using a connectivity curve approach.
For an implicated metabolite, the connectivity curve is formed by measuring how many other
metabolites can be reached from the focal metabolite by how many steps. The rationale is
that if the connectivity curve changes drastically as the result of removal of some enzyme,
this could indicate that the said enzyme is responsible for the change in the metabolite’s
concentration.

In contrast to graph-based approaches, constraint-based methods mainly make use of the
stoichiometric matrix to represent a metabolic network. Many of these methods are aimed
at improving the flux predictions made by FBA. The standard approach is to consider RNA-
levels as a proxy for enzyme activity, and essentially use transcriptomics to further constrain
the flux space. The idea of using gene expression data to further constrain the space of
feasible fluxes was first presented in [43] by Covert and Palsson. Each reaction in a metabolic
reconstruction is dependent on a set of genes. These dependencies are usually expressed in the
form of Boolean equations. For example, 1 = (g1 AND g2) OR g3 means that 1 needs either
the genes g1 and gy or the gene g3 to be expressed in order to operate. If gene expression
is measured and a given gene is not found at all, it can be concluded that said gene is not
active, corresponding to an OFF or 0 in the Boolean equation. Given the activity states for
all associated genes, if the Boolean value of a reaction is 0, the reaction cannot operate and
its flux can be constrained to zero.

In [5], Akesson et al. applied the methodology presented in [43] to gene expression measure-
ments from chemostat and batch cultures of Saccharomyces cerevisiae. Flux predictions were
obtained by standard FBA using biomass production as the objective. The authors compared
the predicted fluxes to fluxes measured using carbon labeling, concluding that incorporating
gene expression measurements improved flux predictions in batch cultures.

Chandrasekaran et al. presented PROM [35], a method that takes as its input a metabolic net-
work, a regulatory network structure, gene expression data from various different conditions,
and additional enzyme regulation information. It then constructs an integrated metabolic-
regulatory network. Gene states and gene-TF interactions are represented by probabilities.
The probabilities are then used to constrain the fluxes of the associated reactions. Finally,
flux distributions are predicted using FBA.

In [41], Collins et al. introduced TEAM, an FBA variation based partially on GIMME devel-
oped by Becker et al. [25] (see later). TEAM takes as its input a series of gene expression
measurements, information about the starting composition of growth medium and a series of
biomass density measurements. The method then predicts the flux distribution at a series of
time points using the input data. At each time step, the medium composition is updated and
intake fluxes are constrained accordingly. A flux distribution is then found that both min-
imises the discrepancy between fluxes and the gene expression data, and satisfies the measured
biomass production level. The gene expression data is imposed by assigning penalties to re-
actions that carry flux when their genes are lowly expressed. Low expression is determined
using a threshold inferred from the overall expression data. In case the optimal flux vector is
not unique, the sum of fluxes is minimised.

In contrast to the "switch-based" methods presented above, expression levels have also been
used to constrain fluxes continuously, assuming that the abundance of transcripts for a gene
is proportional to the maximal flux that can pass through its associated reaction. Schwarz
et al. [163] presented YANA, a toolbox for the analysis of metabolic networks that includes
means to incorporate transcriptomics and proteomics data. YANA computes the elementary
flux modes (EMs) of the network, with a decomposition step based on metabolite connectivity
preventing a combinatorial explosion in the number of EMs. It then finds a flux distribution
that minimises the mean squared error between fluxes and enzyme activities. The enzyme
activities are inferred based on the expression or proteomics data. This can then be used to
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estimate the activity of the EMs.

In [40], Colijn et al. introduced E-FLUX, an FBA extension that uses gene expression data
to derive upper bounds for flux values. The bounds are equal to the normalised value of the
expression of the associated gene, and in the case of multiple genes, AND is replaced my a
minimum and OR by a sum.

Arguing against the use of biomass yield as the object of optimisation in FBA, Lee et al. [108]
formulated an alternative objective function using absolute levels of gene expression. Namely,
Lee et al. minimise the difference between flux values and expression levels, weighted with
the accuracy of the expression measurement, for those reactions for which data is available.
AND-relationships are again replaced with minimums and ORs with sums.

Kim and Reed [94] presented RELATCH, a method that predicts fluxes in a perturbed state
using gene expression and flux measurements. First, a reference flux distribution and cor-
responding enzyme contributions were estimated. Then, fluxes in a perturbed state were
predicted by minimising the adjustment to the reference state, consistent with the estimated
enzyme contributions.

Another method that predicts fluxes in a perturbed state, GX-FBA, was presented in [131]
by Navid et al.. Similarly to [94], a flux distribution is first found for a reference state, after
which new constraints are added based on gene expression measurements to predict the flux
distribution in a perturbed state.

Kim et al. [93] first identified genes whose expression would correlate sufficiently with the
activity of their associated reactions. This was done using gene expression and flux measure-
ments from a chemostat culture of Escherichia coli with varying dilution rates. After having
identified such genes, their expression levels were used to constrain fluxes in single-gene knock-
out experiments. The authors conclude that this produced on average better flux predictions
than simple FBA.

In [95], Kim et al. offer an update to the previously introduced E-FLUX in the form of two new
methods: E-FLUX2 and SPOT. The goal in both is to improve FBA predictions using gene
expression data. E-FLUX2 uses a biological objective function and constrains fluxes using the
absolute values of gene expression as upper bounds. To find a unique optimum, in a second
step the [2 norm of the flux vector is minimised. If no suitable biological objective is available,
SPOT can be used. It formulates an objective function that maximises the correlation between
flux values and the gene expression levels.

Zhang et al. [193] introduced HPCOF to predict flux distributions without the need for a bio-
logical objective function. In their formulation, agreement between fluxes and gene expression
measurements is ensured using a Huber penalty function. The Huber penalty function is a
convex function composed of a quadratic and a linear part that is meant to increase robust-
ness against outliers. The objective function in HPCOF is a combination of the Huber penalty
which takes as its input the difference between the flux and the gene expression measurement,
and the ['-norm of the flux vector. To obtain an expression level for a reaction with multiple
associated genes, ANDs are replaced with minimums and ORs with maximums.

Tian et al. [175] presented LBEBA They first estimated linear relationships with the expression
levels of genes and the upper and lower bounds of reaction fluxes using a training data set.
These bounds were then used to constrain fluxes along with a slack variable that prevents
infeasibility. The optimisation procedure simultaneously minimises the slack variables and the
['-norm of the flux vector. In gene-reaction relations, ANDs were replaced with minimums
and ORs with sums.

Improvements to phenotype prediction can also be achieved by forming context-specific metabolic
models. Assuming that the metabolic state of an organism varies from one condition to an-
other, or alternatively from tissue to tissue in multicellular organisms, a metabolic network
can be pruned to remove reactions that are considered to be inactive in a given context.
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In [25], Becker et al. introduced GIMME to create context-specific metabolic models. The
method takes as its input a metabolic network, a set of gene expression measurements and
one or more metabolic functions that the cell is required to achieve. An LP-problem is solved
which minimises an inconsistency score formulated as a function of normalised expression
levels: if a gene’s expression is below a set threshold it contributes to the inconsistency score.
The minimisation is done conditional to the required metabolic functions being fulfilled up to
some percentage. Finally, reactions that carry no flux are deemed inactive and removed.
Shlomi et al. first demonstrated their method for creating context-specific models in [165]:
it was later called IMAT and released as software in [197]. Shlomi et al. first categorise
genes into three different classes: highly, lowly, and normally expressed using thresholds and
absolute gene expression levels. This categorisation further induces the same for reactions. A
MILP-problem is then solved that produces a flux vector while simultaneously maximising the
number of highly expressed reactions and minimising the number of lowly expressed reactions
that carry flux. Reactions with zero flux are then removed from the network.

A network pruning method that its authors Jerby et al. [84] called MBA has served as the
inspiration for many subsequent approaches. MBA is a generic formulation that is able to
incorporate data from various sources. In the original publication, Jerby et al. used human-
curated tissue specific pathways and molecular data to identify core reactions that are strongly
believed to be active. The model is then pruned under the condition that all reactions must
be able to carry flux, with the aim of removing as many non-core reactions as possible while
simultaneously preserving the core reactions.

Agren et al. [4] introduced INIT, a method for creating context-specific models similar to
IMAT. In addition to integrating gene expression, INIT also imposes the production of metabo-
lites that have been detected in the tissue in question.

In [184], Wang et al. presented MCADRE. Their method also uses gene expression data to
produce context-specific models. Genes are first categorised into active or inactive across a set
of samples based on if they were detected or not. This gives rise to a score function that takes
into account in how many samples a given gene was detected. These scores are mapped to
reactions using the Boolean functions, replacing AND-relations with minimums and ORs with
maximums. Additionally, reaction scores are influenced by network topology: each reaction
influences the score of its surrounding reactions, and the strength of the influence is inversely
proportional to the connectivity of the reaction. Reactions are also evaluated based on the
biological evidence for their presence. The network is then pruned, starting from the lowest
scoring reaction. Reactions are removed under the condition that a set of core reactions
remain functional and the production of a set of key metabolites is preserved.

Rossell et al. [149] expanded on IMAT with EXxAMO. The authors started with the MILP-
problem presented in [165]. By solving the problem with every reaction forced as active and
inactive in turn, they determined reactions that were active or inactive in all optima of the
original problem. The network is then pruned under the condition that all the active reactions
must carry flux.

FASTCORE, introduced by Vlassis et al. [182], is another "generic" method for creating
context-specific models. It takes as its input a set of key reactions that must be preserved. It
then removes all possible reactions under the condition that the core reactions must be able
to carry flux in at least one feasible flux distribution.

Yizhak et al. [192] presented PRIME. The method first aims to reduce the space of feasible
fluxes by incrementally lowering the upper bounds of fluxes. The bounds are lowered until
biomass production is affected. Next the correlation between fluxes and gene expression is
evaluated. For reactions that correlated well with the expression of their associated genes,
new flux bounds are formulated that are linearly dependent on expression levels.

REGREX, presented by Estévez and Nikoloski in [60], uses the least absolute shrinkage and
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selection operator, or LASSO, to simultaneously enforce agreement with gene expression data
and remove inactive reactions. Namely, the objective function in the mixed integer quadratic
programme formulated by REGREX consists of a part that minimises the difference between
fluxes and expression or protein levels and a part that minimises the ['-norm of the flux vector.
In [155], Schultz and Qutub introduced CORDA to produce context-specific models. CORDA
assesses the dependency of reactions with high experimental evidence on reactions with no
evidence by creating pseudo-metabolites that impose a cost on all reactions. "Undesirable"
reactions have higher costs. The pseudo-metabolite formulation allows for the use of standard
FBA and thus linear programming as opposed to mixed-integer linear programming which is
more computationally demanding. The network is then pruned with the goal of preserving
desirable reactions.

Finally, a metabolic network can be combined with gene expression data to understand
metabolic shifts. Changes in the expression levels of metabolic genes are often used to under-
stand phenotypic changes that occur as the result of a change in conditions, or for example
a gene deletion. Combined with a metabolic network, and especially constraint-based meth-
ods, rather than simply listing differentially expressed genes, one can infer global shifts in
metabolic state.

In [126], Moxley et al. investigated changes in yeast metabolism resulting from the removal of
a global regulator Gendp. The authors sought to predict fluxes in the amino acid biosynthesis
following the knock-out using a metabolic network augmented with condition-specific tran-
scription factor binding interactions, protein-protein binding interactions, enzyme-reaction
interactions, reaction-metabolite interactions, and metabolite-enzyme interactions. Namely,
a flux change was predicted using the equation

AmRNA

Aﬂux — e—P1dmt,eracmonT (21)

where p1 and py are parameters, and d;,teraction 1S the "metabolite interaction density", defined
as "the ratio of the number of metabolite-enzyme interactions to that of the total reaction
enzymes in the pathway". Additionally, the predicted fluxes were required to fulfill the steady
state condition. Inclusion of the metabolite interaction density was done to account for feed-
back inhibition and other enzyme-level regulation. In other words, Moxley et al. hypothesised
that more correlation between mRNA and flux changes should be observed in a less-connected
regulatory network.

Jensen et al. ([83]) described MADE, a method that takes as its input a time-series of gene
expression measurements, and finds a series of binary activity states for all reactions in a
metabolic network. When DE analysis is performed for the time series data, one obtains a
list of transitions at each two consecutive time points. Namely, d;;+1 is equal to 1 (-1) if
a statistically significant increase (decrease) in expression took place, and to 0 if there was
no change. Significance is determined by the associated p-value. MADE then tries to find a
sequence of binary expression states for the genes that best matches the changes d; ;1. Each
proposed expression state is scored — log(p), where p is the p-value associated with the change,
and the sum of these scores forms an objective function in an MILP problem. For example, if
an increase in expression was observed with a p-value 0.01, that is, d;—,;11 = 1 and p = 0.01,
the proposed expression states z; = 0 and x;41 = 1 would contribute 2 to the objective
function. In contrast, in a case where no change was observed, d;—;41 = 0 and p = 0.5,
z; = 0 and x;4+1 = 1 would be penalised with -0.3. An optimal series of expression states
was found by maximising the afore-described objective function across all time points while
simultaneously requiring that the steady condition is satisfied and some fraction of optimal
biomass production achieved at each time point. Reactions’ dependence on the expression
states of genes was implemented by converting the Boolean equations into integer inequalities
following [166].
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In [62], similarly to [126], Fang et al. sought to predict the flux distribution in a perturbed state
using the results of a DE analysis. The authors first used FBA and flux variability analysis
(FVA, [117]) to establish baseline reference values for fluxes. This was done by calculating
the minimum and maximum flux for each reaction under optimal biomass production and
then finding a feasible flux distribution close to the mean of the two bounds. Next, a gene
expression ratio was assigned to each reaction. The value assigned was obtained by replacing
AND relations with the geometric mean and OR relations with the arithmetic mean. If a set
of genes was associated with several reactions, the ratio obtained using this procedure was
assigned to the overall normalised flux of the said reactions. Fluxes in the perturbed state
were predicted using the constraints

2| < (R+ L)|wpef| if R<1 (2.2)
2| > (R — L)|ayes| if R>1 (2.3)

where z is the flux in the perturbed condition, x,.; is the reference flux, R is the expression
ratio, and L is a slack variable. Additionally, alterations in the biomass composition and
upper bounds of uptake rates were allowed by introducing another set of slack variables into
the biomass reactions coefficients and the bounds for uptake reactions. To obtain the predicted
flux distribution, first the sum of the slack variables L was minimised, and after that, the
remaining slack variables. Finally, the minimum and maximum flux through each reaction
was determined given the optimum obtained, and another problem similar to the first step
(establishing the baseline fluxes) was solved to obtain a distribution close to the mean of the
minimum and maximum bounds.

Rezola et al. |145] searched for EFMs characteristic to specific expression measurements. The
authors first used an extension of the algorithm introduced in [51]| to compute the K shortest
EFMs that differ in at least 5 reactions in the human genome-scale metabolic network. Next,
reactions were categorised into highly, moderately, or lowly expressed based on the expres-
sion data following [165]. To associate EFMs with physiological conditions, a multivariate
hypergeometric test was used to gauge if more highly and less lowly expressed reactions were
contained within a given EFM than would be expected by chance.

In [152], Samal et al. presented a method that uses sparse group lasso [167] to find extreme
currents (ECs) associated with particular phenotypes. First, ECs were calculated, which then
gave rise to sets of genes according to the gene-reaction associations. Only unique sets were
considered. Because there is considerable overlap within these sets, complicating the analysis,
the sets were further clustered using agglomerative hierarchical clustering. Next, a feature
matrix was constructed using the expression data, which contains expression measurements
for all the genes in multiple samples. The samples are labelled either discretely (for exam-
ple "healthy" /"sick") or continuously (quantitative response to treatment). Finally, it was
assumed that the phenotype can be predicted from the feature matrix using a linear model,
and the model was fitted using the sparse group lasso method.

Zhu et al. [194] proposed a method for inferring differences in metabolism between two
different conditions using gene expression data. First, an expression level was calculated for
each reaction by averaging the expression measurements of all its associated genes. Next, to
detect reactions that changed their expression levels significantly from one condition to the
other, a t-test was first performed to obtain p-values, and then reactions with a Benjamini
& Hochberg corrected g-value [26] under 0.05 were deemed as significantly changed. The
question of metabolic changes was formulated as an MILP problem where two flux vectors
are searched for, one for each condition. Both vectors have to fulfill the standard steady
state constraints. Agreement with the expression levels is enforced by an objective function
that penalises flux changes that disagree with the observed changes. Namely, if for example
a reaction that was up-regulated according to the data has a lower flux value in the second
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condition, a penalty is issued proportional to the difference in fluxes. This objective function
is then minimised. To account for possible non-unique optima, a modified problem was solved
for each reaction to determine if it was predicted to be up- or down-regulated in all optimal
solutions.

The literature pertaining to combining ’omics data with metabolic reconstructions has been
previously reviewed in several articles. Machado and Herrgard [115] surveyed the various
methods for integrating gene expression data into constraint-based methods, categorising
them based on the input data (absolute or relative), the treatment of the gene expression
levels (discrete or continuous), and the goal of the method (flux prediction, model building or
both). The authors also performed a systematic evaluation of seven different methods, GIMME
[25], IMAT [165], MADE [83],E-FLUX [40], Lee et al. [108], RELATCH [94], and GX-FBA
[131], with pFBA, an FBA variant that does not use any data besides the network, used as
the baseline. All of the seven methods failed to consistently provide better flux distribution
predictions than pFBA. This failure was observed with both transcriptomic and proteomic
data. While the methods that utilise relative expression changes rather than absolute levels of
expression did not perform better than their counterparts, Machado and Herrgard still argued
that relative changes might be better suited for the purposes of improving flux predictions,
due to the difficulty of establishing a proper correspondence between absolute transcript levels
and metabolic fluxes.

In [96], Kim and Lun grouped methods for the integration of transcriptomic data into metabolic
networks according to four criteria: requirement of multiple gene expression measurements,
requirement for a threshold for characterising expression levels ("low expression", "high ex-
pression" etc.), requirement of a biological objective function, and validation of predictions
against measured fluxes. The authors argued that an ideal method would satisfy the following
criteria: a single expression data set as input, utilisation of continuous expression values, no
need for a biological objective function, and predictions having been validated against mea-
sured fluxes. Kim and Lun concluded that at the time of writing, no method satisfied all of
the criteria.

Opdam et al. [135] performed an evaluation of six different methods for constructing context-
specific models, FASTCORE [182], GIMME [25], IMAT [165], INIT [4], MBA [84], and MCADRE
[184]. The authors found that the most important parameter influencing model content was
the expression threshold which determines when a gene is considered active. While more
stringent thresholds lead to more accurate gene-essentiality predictions, they also reduced the
number of included metabolic functions. Additional constraints on uptake and secretion fluxes
had a smaller effect on gene-essentiality, but influenced more the ability to recover metabolic
functions. Opdam et al. recommended gene specific thresholds for expression and defining a
priori known metabolic functions whose inclusion is enforced to improve model construction.
For other reviews on the integration of ’omics data into metabolic networks, see [146, 151, 181].
In the next Section, I present our contribution to this research: the MoOOMIN algorithm.
While considerable research effort has gone into the integration of metabolic networks with
‘omics data, especially transcriptomics, most of it has been dedicated to improving phenotype
prediction through methods such as FBA. Only a few methods have been presented for the
interpretation of DE data.

MooMIN adheres to many of the suggested "good practices" for combining 'omics data with a
metabolic reconstruction. As the method is aimed at DE data, it naturally uses relative rather
than absolute gene expression levels. There is thus no need to assign thresholds for absolute
expression levels. Technically, two measurements are needed for the input but this is of course
the whole idea behind DE analysis. There is also no need for a biological objective function.
Unfortunately, we have not been able to evaluate the changes predicted by MOOMIN against
observed fluxes. This is due to the lack of a suitable data set. While studies comprising
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both expression and flux measurement data have been published, these data sets are all done
with microarray technology. We opted for designing MOOMIN to use DE results obtained
using Bayesian statistics, which in turn made the use of microarray data infeasible. However,
it seems clear that RNA-Seq will replace the microarray technology completely in the near
future, and such data will become available. Furthermore, the use of Bayesian statistics offers
the benefit of more robustly quantifying the certainty about genes not changing in the level of
expression. In contrast to [83], we do not assign binary on/off states to differentially expressed
genes, something that might be too restrictive for the model as metabolic re-organisation does
not necessarily entail simply activating and de-activating reactions.

The most closely related model to MOOMIN is the one of Zhu et al. [194]. The main difference
is that Zhu et al. largely ignored evidence for no change occurring in expression levels. To my
knowledge, an implementation of the method described in [194] has not been made available.

2.3 MOOMIN

The inspiration for MOOMIN were previous methods developed by my team for the analysis
of differential metabolomic data. GOBBOLINO & TOUCHE |1, 121] used a compound graph,
and TOTORO [85] a hypergraph representation to decipher metabolic changes occurring in a
transitory state between two equilibria. Both approaches aimed at providing an explanation
for changes in metabolite pools in terms of a subgraph. The subgraph consists of reactions that
are considered to have taken part in the changes of metabolite concentrations. The problem
is then formulated in terms of selecting edges/arcs (reactions) and assigning directions to
them: a reaction may have exhibited either an excess or a decreased flux in the transitory
state. What is required is that the edge directions explain the observed changes in metabolite
concentrations. This translates to balance requirements surrounding nodes.

In MOOMIN the methodology is similar, but the question slightly different. MOOMIN was
developed to complement DE analysis by leveraging the structural information contained
in a metabolic network to further interpret the results. Namely, given the results of a DE
analysis pipeline — changes in gene expression — MOOMIN tries to infer a metabolic shift.
The underlying logic is that when conditions change, the cell re-organises its metabolism to
adapt. While it has been recognised that exactly correlating fluxes with gene expression levels
is difficult, we believe that changes in expression can nevertheless serve as clues as to how
the metabolism was impacted. Moreover, when the "clues" offered by the transcriptomics
data are combined with the network, it is possible to filter out the inherent noise. More
specifically, instead of simply projecting the expression changes onto reactions, we require for
the metabolic shift to be consistent. In other words, only changes that seem to be supported
on the network level — that "fit together" with the changes in surrounding reactions — are
accepted, and those that are not are rejected and assumed to be unrelated to the metabolic
re-organisation.

I present here two formulations of the problem, a topological one and a stoichiometric one.
The former can be seen as a special case of the latter.

2.3.1 Topological formulation

The metabolic network is represented by a hypergraph G = (V, R), where V = {v1,...,v,}
is a set of nodes corresponding to metabolites and R = {ry,...,r,} is a set of hyperarcs
corresponding to reactions. A hyperarc r; = (Subs(r;), Prod(r;)) is an ordered pair that
contains respectively the substrates and products of the corresponding reaction. We will
use the words network and hypergraph, metabolite and node, and reaction and hyperarc
interchangeably when appropriate.
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A colouring of a network G is a vector of hyperarc colours ¢ = (c1, ..., ¢y) € {green, red, grey }.
We will call a hyperarc r; coloured if ¢; € {green,red}. The colours "green" and "red" signify
respectively an increase and a decrease in flux while "grey" designates no change. The a priori
colouring ¢y of a hypergraph is a colouring inferred based on a gene expression data set. In
it only reactions for which we have direct evidence of change are coloured. In other words, it
represents the raw mapping of the gene expression data to the network, based only on gene
association relationships of the reactions. It serves as part of the input of the algorithm and
imposes constraints on accepted output colourings.

An input hypergraph G also has associated with it a weight vector w = {w1,...,w;,} that
directs the search algorithm and is also derived from the expression data. The purpose is
to promote choosing reactions that are deemed most likely to have undergone a change by
placing a positive weight on them and to discourage choosing reactions for which we have no
evidence of change by assigning a negative weight. Consequently, a priori coloured hyperarcs
have positive and grey hyperarcs negative weights.

The colours and weights of the hyperarcs are determined by the associated genes and the
expression data (or lack thereof). We first assign colours and weights to genes and then use
gene association information to map them onto the corresponding hyperarcs.

The colour of a gene is dictated by both its probability to be differentially expressed and
the fold change observed. If the gene exceeds the threshold for differential expression (later
referred to as the parameter ¢ in the weight function), the gene is considered coloured and
the direction of the change, that is, the sign of the fold change, determines if the gene is
green or red. If the probability of differential expression is below the threshold or data on the
gene is missing due to it containing outliers, the gene is grey. Genes that were not detected
at all or were detected at extremely low levels are deemed inactive. For these genes, the
viability of the associated reactions is checked through the Boolean functions describing the
gene dependency and any reactions deemed inviable are removed from the network. These
reactions are thought to carry no flux in either condition and thus there is no sense in trying
to infer if they changed or not.

We assign weights to genes according to the function

min{3(—log(l — p) +log(1l —t)), —aflog(l — t)}, (2.4)

where p is the posterior probability for the gene to be differentially expressed and ¢, « and [ are
parameters. The parameter ¢ is the threshold above which we deem a gene to be differentially
expressed. Genes that exceed it receive a positive weight and those below a negative one.
The parameter a controls the relationship between the positive and negative weights: if, for
example, a = 3, the highest possible positive weight is three times the (absolute value) of the
lowest possible weight. The significance of «v is further illustrated in Figure 2.8: in practice,
the higher the value, the more coloured hyperarcs will appear in the solution. Finally (5 is a
shape parameter controlling the derivative of the function. The weight function is plotted in
Figure 2.1 with the parameters t = 0.9, « = 3 and g = 2.

Contrary to determining the viability of a reaction, we do not use the Boolean functions
to map the weights onto the reactions. Rather we simply consider the associated genes as
a set. The reasoning is that while the Boolean function is well suited for determining the
presence or absence of the proteins required for a reaction to take place — an undetected
gene corresponding naturally to the truth value false — the dynamics involved in a change in
activity are much more complex. For example, in an AND-relationship one of the enzymes
might be a bottleneck, meaning that the entire regulation mechanism rests on the expression
level of the said enzyme.

For the aforementioned reason, we also wish to be quite liberal in assigning colours. More
precisely, regardless of the underlying dependence structure and the number of genes, if one
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Figure 2.1 — The weight function plotted for parameter values t = 0.9, « = 3 and 5 = 2. Point
A would be the weight of a reaction whose genes did not change their expression or that does
not have any known associated genes. B is the weight of a reaction that there is uncertainty
about: either a probability of differential expression that does not point in either direction or
conflicting evidence from different genes. Finally C is a reaction that has at least one gene
showing strong evidence for differential expression.

of the genes is coloured, we consider the reaction coloured as well (excluding of course a
situation where two genes indicate opposite colours). The specific rules for assigning colours
and weights to reactions are as follows:

1. If at least one of the genes is green (red), the reaction is green (red), and its weight is the
maximum of the weights of its genes.

2. If there is at least one gene that is green and one that is red, that is, the colours of the
genes contradict each other, the reaction is grey and receives the weight of a gene with 0.5
probability of differential expression.

3. If all the genes are grey, the reaction is grey, and its weight is the maximum of the weights
of the genes.

4. If there is no gene association information for the reaction, it is grey and will receive a
weight of a gene with 0 probability of differential expression.

Our underlying assumption is that the cell is transforming from one steady state (see Section
1.1.2) to another. Consider the following local situation:

T2 .a
r1
—
~.T3

where we have already coloured reaction 71 green to indicate an increase in flux and we are
interested in what this implies for the flux changes in reactions 9 and r3. Let f = (f1,..., fin)
and f be respectively the flux vectors in the control and the changed conditions. The steady
state condition gives us the equations

a1 fr —azf2 +ai3f3 =0 (2.5)
annf'y —aaf'y +arzf'3 =0 (2.6)
for metabolite v1, where a;; is the stoichiometric coefficient of metabolite 4 in reaction j. Let

now Af stand for the difference in fluxes between the two conditions, that is, Af = f —f. The
colour green for reaction rq corresponds to A f; > 0. Combining the equations in 2.5, we have

a11Af1 — Aarafo + Aazf3 =0 (2.7)
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This implies the following

Afa <0 = Af3<0 (2.8)
Afs>0 = Afy>0. (2.9)

The equalities correspond respectively to the scenarios:

T2 . T2
r1 r1
] ]
3 .3

More generally, this dynamic gives rise to the balance constraints:

Definition 1. Given a hypergraph G and a colouring of G ¢, a node v is balanced if at least
one of the following conditions holds:

1) there exists two coloured hyperarcs r; and r; such that v € Prod(r;) and v € Subs(r;), and
C; = Cj

2) thejre exists two coloured hyperarcs r; and rj such that v € Subs(r;) and v € Subs(r;), and
C; 75 Cj

3) there exists two coloured hyperarcs r; and rj such that v € Prod(r;) and v € Prod(r;), and

Ci#Cj.

All solutions must render all nodes balanced, with the exception of sources and sinks of the
network: these are metabolites that can be imported into or exported out of the cell and so
they need not maintain a steady state. In addition to balancing the nodes, we also require
that the solution does not violate the a priori colouring. Namely, an accepted solution can
leave an a priori coloured hyperarc grey, but it cannot change its colour to the opposite one.

Definition 2. Let G be a hypergraph and cq its a priori colouring. A nodev € V is consistent
if at least one of the following conditions holds:

1) there are no hyperarcs r € R such that r is coloured and v € Subs(r) or v € Prod(r)

2) v is a source or a sink of G

3) v is balanced.

A colouring ¢ of G is consistent if every node v € V is consistent under ¢ and for all r; € R
it holds that if c;q = green, ¢; # red, and if c;o = red, ¢; # green.

Producing a hypothesis to explain the expression data is now expressed as the optimisation
problem

find argmax Z w;, (2.10)

c€la g4 c;e{green,red}

where Cg is the set of all consistent colourings of the hypergraph G. We will call this the
colouring problem.

So far we have not discussed the question of reversible reactions: in theory, every enzymatic
reaction can potentially happen in both directions. However, due to thermodynamic con-
straints, many of them do not. In practice, in a curated metabolic network all reactions
are transcribed as directional with one set of compounds as the substrates and another as
products. An additional attribute tells if the reaction is reversible or not. Whether or not
the reaction does in fact operate in both directions, and if the "primary" direction is in some
sense to be favoured, depends on the particular reconstruction.
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The aforementioned poses a practical problem that should be reckoned with before any anal-
ysis on the network is done. For the purposes of the algorithm, we can assume we know for
every reaction whether it is reversible or not. A standard approach then would be to add for
every reversible reaction its reverse, usually along with some constraints for excluding cycles
composed of these pairs. However, this is not desirable in our case.

Consider the situation in Figure 2.3. Above, a reversible reaction ry is still grey, and the
nodes B and C' need to be balanced. Because 7y is reversible, both colouring it green with
the interpretation that it operates in the B — C' direction and colouring it red with the
opposite direction would balance the two nodes. Two solutions differing only in the colour of
this reaction would thus be considered separate. This could potentially cause a combinatorial
explosion in the number of distinct solutions.

We solve the above problem by implementing the actual search in the following fashion.
First, the network is constructed so that each hyperarc appears only once, that is, in only
one direction, all the while conserving the information about potential reversibility. Next,
the reverse of every hyperarc is added to the network, but as explicitly reversed. In other
words, there are two kinds of hyperarcs: the original ones and their reverses. Colouring the
network now corresponds to choosing hyperarcs. Choosing a hyperarc, that is, an original
hyperarc, corresponds to colouring it green. Choosing the reverse corresponds to the colour
red. Finally, simply not choosing a hyperarc, neither its reverse, means to colour it grey.
Obviously, we can only choose a hyperarc or its reverse but not both. Furthermore, the
constraint in Definition 2 3) about not choosing colours that contradict the a priori colouring
translates to the constraint that an a priori green hyperarc cannot be chosen in reverse and
vice versa, except if the reaction is reversible. A reversible reaction that is a priori green and
chosen in reverse in the search is later interpreted to still be green but operating in the other
direction. The same goes for the red hyperarcs.

Unfortunately, this leaves some ambiguity for the reversible, a priori uncoloured hyperarcs, as
their final colour cannot be deduced from the solution hypergraph. However, this is exactly
why we wish to avoid counting the interpretations as separate solutions. Furthermore, we
expect that in subsequent analyses, the "true" colour (and direction) can often be inferred
from the surrounding hyperarcs. For example in Figure 2.3, if ro were a part of a linear
pathway, it would be clear that the interpretation on the left is the correct one. We will refer
to these undetermined reactions as "yellow" when needed. An example of the hypergraph
transformation and the subsequent interpretation of the solutions can be seen in Figure 2.3.1.
I will now give a more formal definition of the transformation.

Let G* be the transformed hypergraph that is formed from G by adding for every hyperarc
r = (Subs(r),Prod(r)) in R its reverse r* = (Prod(r), Subs(r)) (we assume that no hyperarc
in G already has a reverse hyperarc). We call the set of reversed hyperarcs R*, and thus
G* = (V,RUR*). A solution is a subhypergraph of G*, obtained by choosing hyperarcs, their
reverse hyperarcs, or neither. We denote such a selection by d € {+,0,—}", where d; = +,
d; = 0, and d; = — stand respectively for choosing r;, choosing neither r; nor r;, and choosing
r} to be included in a solution. An a priori selection dg is formed based on the a priori
colouring c¢g in the following way:

1) if ¢;o = green and r; is not reversible, d;o = +.

2) If ¢;o = red and r; is not reversible, d;o = —.

3) Otherwise d;q = 0.

The equivalent of Definition 1 for the transformation is:

Definition 3. Given a transformed hypergraph G* and a hyperarc selection d, a node v is
balanced in the subhypergraph defined by G* and d if at least one of the following conditions
holds:
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Figure 2.2 — a) Node C is not balanced (({C},{E}) is green). b) Two possible ways to make
C balanced (above: ({A},{C}) is coloured green; below: ({A},{C?}) is coloured red). The
dotted lines represent grey hyperarcs.

Figure 2.3 — Both B and C can be balanced by colouring 72 either green or red, depending on
the direction the reaction is taken to operate in (r; and r3 are both green).

1) there exists two hyperarcs r; and r; such that v € Prod(r;) and v € Subs(r;j), and d; =

dj = 4+

2) there exists two hyperarcs r; and rj such that v € Subs(r;) and v € Subs(r;), and d; = +
and dj = —

3) there exists two hyperarcs r; and r; such that v € Prod(r;) and v € Prod(r;j), and d; = +
and dj = —

4) there exists two hyperarcs r; and rj such that v € Prod(r;) and v € Subs(rj), and d; =
dj =—.

Similarly, we can update Definition 2:

Definition 4. Let G be a hypergraph, G* its transformation, and dy the a priori selection of
G*. A node v € V is consistent if at least one of the following conditions holds:

1) there are no hyperarcs r; € R such that d; # 0 and v € Subs(r) or v € Prod(r)

2) v is a source or a sink of G

3) v is balanced.

A selection d of G* is consistent if every node v € V' is consistent under d and for all r; € R

it holds that if dig = +, d; # —, and if djy = —, d; # +.
The equivalent of the colouring problem 2.10 for the transformation is
find argmax Wy, 2.11
deDg Z ' ( )

is.t. die{+,—}
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Figure 2.4 — a) The a priori colouring of the hypergraph: the hyperarc ({A}, {B}) is coloured
green, ({B},{C}) and ({B},{D}) are coloured red. Dotted lines indicate a grey colour.
b) The transformation into hyperarc directions. Dashed hyperarcs indicate choices that are
forbidden based on the a priori colouring and reversibility: ({A},{B}) can only be chosen
in the actual direction because it is green and irreversible. ({B},{C}) can only be chosen
in reverse because it is red, whereas ({B},{D}) can still be chosen in both directions since
it is reversible. ¢) A solution given in terms of hyperarc directions. d) The "interpretation”
back into colours: the hyperarc ({A}, {B}) is coloured green, ({B},{C}) and ({B},{D}) are
coloured red. The hyperarc ({D},{E}) is coloured yellow because its direction is not known.

where D¢ is the set of all consistent selections for the hypergraph G. We will call this the
selection problem.

Theorem 1. The selection problem is NP-hard.

Proof. The hardness can be proved by reducing the set cover problem, known to be NP-hard
[88], to the selection problem in polynomial time. In the set cover problem the goal is, given
a universe of elements and a collection of subsets of the universe, to find a minimum number
of subsets in the collection such that their union equals the universe. An illustrative example
is shown in Figure 2.5.

Let U = {1,...,m} be a set of elements, and S = {Si,...,S,} a collection of sets such
that S; C U for all ¢ = 1,...,n and U,S; = U. We construct the following hypergraph
G: first, a node v; is created for every element of U and a node vg, for every set in S. The
nodes corresponding to the sets in .S are sources, and the nodes corresponding to U are not.
Additionally, we create a node T that is a sink. We create a hyperarc rp = ({v1,..., v}, {T})
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|-'1 T = T

Figure 2.5 — An example of the reduction in the proof. The universe U = {1,2,3,4,5}, and
the collection S = {{1,2,3},{2,4},{3,4},{4,5}}. Finding the minimal number of sets in S
to cover U is achieved by finding the highest scoring hypergraph.

with the weight wr = n 4+ 1. We then create a hyperarc rg, for every node vg, by connecting
it to those nodes v; whose corresponding element is contained in the set S;. In other words,
for every vg,, there is a hyperarc rg, = ({vg, },{vj : 7 € Si}). All of these hyperarcs have a
weight wg, = —1.

Let now G* be the transformation of G and the a priori selection dg of G* such that drg = +
and dg,, = 0 for all S; = S. We observe first that if the hyperarc r7 is selected, that is,
dr = +, for every node v; at least one of the incoming hyperarcs needs to be selected in
the default direction to make the node consistent. We further note that r should always be
selected: if all of the hyperarcs are selected, that is, dg, = + for all S; = S, all the nodes
v; are made consistent, and thus the hypergraph is consistent. Furthermore, its score will be
strictly positive (that is, equal to 1), and so it will be preferred over the empty solution.
Finding the optimal selection d thus amounts to finding the minimum number of hyperarcs
rg, to select so that the resulting hypergraph is consistent. If we have such a selection, the
hyperarcs rg, that have been selected correspond to the minimum number of sets S; needed
to cover U. O

Answer set programming implementation

Following [85], the first implementation of the MOOMIN-algorithm was done using Answer Set
Programming (ASP, [30]). ASP is a declarative programming paradigm based on disjunctive
logic programming. Oriented towards NP-hard problems, ASP allows to declare problems
such as the one formulated in the MOOMIN-algorithm in a fairly concise manner.

The initial input of the pipeline is a metabolic network and the results of a DE analysis. The
network is contained in an SBMI-file, a representation format commonly used in computa-
tional biology [80]. The DE results are stored in a tab-delimited file that contains for every
gene the logarithm of the fold change and the associated posterior probability of differential
expression (PPDE). An additional file contains a list of inactive genes, obtained in the DE
pipeline by filtering out genes that were detected in counts below a certain threshold across
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Figure 2.6 — An example hypergraph: the hyperarc ({4, B},{C}) is coloured green,
({G},{I, J}) is coloured red. Dotted lines denote grey hyperarcs.

all samples.

The ASP part of the pipeline was implemented using the syntax and solver of the CLINGO suite
developed by Postasco [68, 67]. CLINGO combines a grounder tool GRINGO that transforms
a user-defined logic programme containing variables into a variable-free format with a solver,
CLASP, that computes answer sets. This allows for the user to define the problem as fairly
human-readable text files that serve as the input for CLINGO. In our case, the answer sets are
consistent colourings of the network.

The data input for clingo is produced using a python script. This comprises transforming the
network into a hypergraph coded using the CLINGO syntax along with the a priori colouring
and weights. An example is given in Algorithm 1, where the hypergraph in Figure 2.6 is
written using the CLINGO syntax. Lines 1-9 define the nodes of the hypergraph, with node
D being specified as an endnode, meaning it is either a source or a sink and does not need
to be balanced. Lines 10-13 define the hyperarcs, and their a priori colours and weights.
An additional attribute tells that the reaction represented by the hyperarc ({G},{J,1}) is
reversible.

The rest of the input consists of the problem formulation which GRINGO uses to form the
grounded programme. The first part is shown in Algorithm 2. Line 1 defines what can be
seen as an auxiliary variable that tells if an hyperarc is selected in a solution in either direction.
Line 2 tells that each hyperarc can be chosen either in the original direction or in reverse, but
not both. Lines 3 and 4 define the reverse hyperarcs. Lines 5 and 6 impose the consistency
with the a priori colouring/selection. Lines 7-10 contain the balance constraints in Definition
3. Line 11 tells the solver that we are looking for solutions in terms of hyperarc directions.
Line 12 adds an additional instruction for the enumeration procedure: it tells the solver to
"project" the answers, given in terms of hyperarc directions, to hyperarc selections. In other
words, when enumerating all optimal solutions, only those that differ in terms of the hyperarcs
included in the solution are counted as distinct. The reason for doing this is the observation
that sometimes two a prior: grey hyperarcs can act interchangeably, meaning one can be
coloured red and the other green or vice versa, with both options producing valid solutions.
This can lead to a combinatorial explosion, producing a massive amount of solutions that in
actuality differ in trivial ways. For this reason, we opted for the projection, sacrificing in our
opinion very little in terms of the information garnered, but gaining considerably in terms of
practicality.

Finally, line 13 tells the solver the object of maximisation, in our case the sum of the weights
of the selected hyperarcs. In practice, it is often given as a separate file to CLINGO to clarify
the input structure.

Based on the fact that ASP as well as the CLINGO solver are specifically targeted at NP-hard
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Algorithm 1 The hypergraph in Figure 2.6 expressed in the CLINGO syntax.
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. in(B,1). out(1,C). green(1). weight(1,2).
,2). out(E,2). grey(2). weight(2,-1).
). weight(3,-1).
4). out(J,4). out(I,4). red(4). weight(4,1). reversible(4).

hyperarc(1). in(
: hyperarc(2). in(
: hyperarc(3). in(

(4). in(

. hyperarc(4

=
W N =

Algorithm 2 The MoOMIN-problem expressed as a logic programme.

O0<=inanswer(H)<=1:- hyperarc(H).

1<=sel(H);rsel(H)<=1:- inanswer(H).

rin(V,H):-out(H,V).

rout(H,V):-in(V,H).

.- green(H), rsel(H), not reversible(H).

- red(H), sel(H), not reversible(H).

- sel(H), in(V,H), not endnode(V), out(H2,V): sel(H2)=0, in(V,H3): rsel(H3)=0.

- sel(H), out(H,V), not endnode(V), in(V, H2): sel(H2)=0, out(H3,V): rsel(H3)=0.
- rsel(H), in(V,H), not endnode(V), in(V, H2): sel(H2)=0, out(H3,V): rsel(H3)=0.
- rsel(H), out(H,V), not endnode(V), out(H2,V): sel(H2)=0, in(V,H3): rsel(H3)=0.
. #show sel/1. #show rsel/1.

. #project inanswer /1.

. #maximizeW,H: hyperarc(H), inanswer(H), weight(H,W).

— = e
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problems, and their successful application in [85] and [86], we expected reasonable running
times for the genome-scale metabolic networks of prokaryotes, containing metabolites and
reactions in the lower thousands. However, it turned out that the ASP-formulation was not
being solved in running times that would enable the algorithm to be used in practice. For
example, for a problem instance based on an E. coli reconstruction involving 1668 nodes and
2036 hyperarcs, of which 197 were coloured, CLINGO was not able to reach an optimal solution
in 1 hour. In contrast, the linear programming formulation presented in the next section was
solved in 14 seconds in MATLAB using the CPLEX LP-solver. Both tests were performed on
a personal computer with one 2,9 GHz Intel Core i5 processor with two cores. CLINGO was
instructed to run two parallel threads.

Linear programming implementation

The MILP-based implementation of MOOMIN was done in MATLAB using the COBRA ToOL-
BOX |77] for the manipulation of the SBML-files and the CPLEX software suit as the MILP-
solver. The COBRA TooLBOX offers a comprehensive set of utilities for constraint-based
modelling. It also offers an interface for solving LP- and MILP-problems that allows the user
to choose between several different solvers. This means that our implementation can also be
used without the proprietary CPLEX solver.

The inputs and general formulation remain as described in the previous sections. The main
function of MOOMIN takes in a COBRA TOOLBOX data structure that contains the metabolic
network. Such structure can be created from an SBML-file using functions provided in the
Toolbox. The gene expression data is contained in a standard MATLAB data structure and
can be read using default MATLAB functions from, for example, a tab-delimited text file.
The MILP-problem can be defined as follows. Let zT; and 2~; be binary variables that
correspond to the selections d;. Let y; be a binary variable that represents if node j is
included in the solution or not. In other words, y; tracks if any hyperarc attached to j is
chosen. For brevity, let I; and O; stand respectively for Subs(r;) and Prod(r;). The degree of
anode j, [{i:j € I; UO;}|, is denoted by d;. Finally, T is the set of endnodes.

The MILP is defined as

m
max Z(:c*, + a7 )w; (2.12)
=1
s.t. T2 <L Vie {1,...,m} (2.13)
Yooatita i <dypVief{l,. . np\T (2.14)
1|jel;U0;
+. - g
Soati+ > aizypVie{l, . n\T (2.15)
i|jel; 1|je0;
+. - . \Sq
Soati+ > aizynVie{l, . n\T (2.16)
i|j€0; i|j€l;
x7; < 0,Vi|dy; = + (2.17)
T <0,Vi|ldy; = — (2.18)
-T+i,$_i,yj € {0’ 1},VZ,] (219)

Constraint (2.13) guarantees that no hyperarc is chosen twice. Constraint (2.14) requires
y; = 1 if j is not an endnode and at least one of the hyperarcs connected to it is chosen.
The balance constraints are given in (2.15) and (2.16). Finally, (2.17) and (2.18) enforce the
consistency with the a priori selection.
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Figure 2.7 — An example of a stoichiometrically infeasible solution. Assume that all the
stoichiometric coefficients are equal to one, all reactions are irreversible, and that node A
is an endnode. If the figure presents a solution of the transformed problem, it is consistent
according to the topological Definition 4. However, it is easy to show that no non-zero flux
vector will satisfy the steady state condition.

The above problem can be solved in seconds using the CPLEX solver on a personal computer
for a network with 10004 nodes and 1500+ hyperarcs. The exact reason for the difference
in performance between ASP and MILP is unclear. One possibility is that the kind of highly
continuous weights used in the MooMIN-algorithm are not well-suited for the CLINGO solver.
While in CLINGO, enumeration of optimal solutions is a built-in feature, in the MILP-formulation
this had to be done ad hoc. Fortunately, there is a straightforward way to do this. Namely,
let x; € R™ be the ith solution obtained, where z;; = a:jj Az ., that is, it is an indicator
vector for if a hyperarc is selected in the solution in either direction. We thus follow Section
2.3.1 in only enumerating solutions that differ in terms of the hyperarcs that are selected. To
obtain x;1, we add the following constraint to the problem:

m m
2(xi Xi1) < Y wij+ Y wip1, — 1 (2.20)
i i

and solve it again. Additionally, we obviously need to require that the same value of the
objective function is attained.

This procedure in theory guarantees that all optimal solutions are found. However, it needs
to be continued until the problem is found to be infeasible which can be difficult for the solver.
The switch to MILP allows for a straightforward extension of the algorithm to include reaction
stoichiometry. In other words, we can switch from the hypergraph to the stoichiometric matrix
representation of the network and formulate the balance constraints to fully account for the
conservation of a feasible steady state flux distribution.

2.3.2 Stoichiometric formulation

The balance constraints in Definition 1 guarantee that a solution corresponds to a feasible
change from one steady state to another, but only for linear pathways. Namely, in some
situations, they allow for stoichiometrically unbalanced cycles (an example is shown in Figure
2.7). To avoid this, stoichiometric constraints can be enforced to guarantee that a solution
truly corresponds to a feasible (qualitative) difference in fluxes. To achieve this, we make use
of the fact that a difference between two feasible flux vectors is also a feasible flux vector.
To recapitulate, we are assuming that there are two (unknown) flux vectors f; and fy that
both satisfy the steady state condition:

S-fi=0 and S-f,=0 (2.21)

and that correspond to the flux distributions in the two conditions under study. A trivial
calculation shows that any change Af = f5 — f; will also satisfy the steady state condition,
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that is,
S-Af=0 (2.22)

for any feasible change. A colouring of the hypergraph qualitatively defines a difference vector
Af: a green hyperarc implies that Af; > 0, red implies that Af; = 0, and grey that Af; = 0.
The consistency of a colouring can thus be ensured stoichiometrically by simply requiring that
some vector Af complying to the colouring satisfies the steady state condition 2.22. In Figure
2.7 no flux vector consistent with the selection displayed will satisfy the condition 2.22.
Observe that we do not wish to infer the magnitude of change, and thus only the qualita-
tive nature of the entries in Af is of interest. In other words, we will only require a flux
distribution that satisfies the steady condition and the actual flux values do not matter (see
the implementation details below). In addition, because the flux vector represents a change,
positive and negative flux values do not have their usual significance. More precisely, where
in for example FBA, only reversible reactions can carry a negative flux, meaning that such a
reaction is operating in the reverse direction, a negative flux in our situation simply means
that a decrease in flux was inferred. In fact, reaction specific flux bounds constraining fluxes
to be non-negative or non-positive reflect the a priori colours, rather than simply reversibility.
The stoichiometric formulation is also done in terms of the transformation to selection of
hyperarc directions. The a priori selection dg is enforced by setting the flux bounds so that
lb; = 0,ub; = C whenever d;g = +, lb; = —C,ub; = 0 when d;p = —, and —Ilb; = ub; = C
when d;j = 0. The constant C' is just placed to bound the flux cone, and its precise value has
no significance. We simply require that C' > ¢, where € > 0 is another constant that is used
to determine what is considered a non-zero flux.

Binary variables x7; and —; are as before indicators of whether a hyperarc is in the solution
or not, and in what direction. The difference is that they are now tied to a flux vector f € R™,
where f; > 0 implies an increase in flux, and f; < 0 a decrease (we omit the A to simplify
notation). Thus we will require z7; <= f; > 0 and vice versa.

The MILP is defined as

m

max Z(a:*, +z)w; (2.23)
=1

s.t. i+ <LVie{l,...,m} 2.24

(2.24)

S-f=0 (2.25)

fi+af(b;—e)>1b;,Vie{l,...,m} (2.26)

fi—x;“ubigo,we{l,...,m} ( )

fi+a; (ubj+¢) <ub;,Vie{l,...,m} (2.28)

fi+a; (=lb;) >0,Vie{l,...,m} (2.29)

xt, 27 € {0,1} (2.31)

fe R™ (2.32)

Constraint (2.24) guarantees that no hyperarc is selected twice. Constraint (2.25) is the

steady state condition. Constraints (2.26) and (2.28) guarantee that =7 = 1 = f; > 0 and

vice versa, and constraints (2.27) and (2.29) the opposite, 2 = 0 = f; < 0. The upper

and lower bounds in (2.30) keep the flux cone bounded, and enforce the a priori hyperarc
selections.

The enumeration of optimal solutions can be done as was described in the previous section.

Based on tests done with real data sets, the stoichiometric problem appears to be harder to
solve in practice. Another difference is observed in the number of hyperarcs in a solution:
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Figure 2.8 — The plots show the number of coloured hyperarcs in the solution in relation to
the number of coloured hyperarcs in the input. a) The S. cerevisiae data. b) The E. coli data.
For both networks, at most the ten first solutions were calculated, and the number shown is
the average.

solutions of the topological problem tend to contain more hyperarcs. This might be explained
by the fact that the topological constraints are less restrictive, and thus it is "easier" to include
hyperarcs with positive weights in the solution (see next section for examples).

2.3.3 Results

The best way to understand the functioning of MOOMIN is through examples. We chose two
data sets from the literature for this purpose. The first one, comparing growth of S. cerevisiae
in a chemostat versus a batch culture, is meant as a proof of concept: the resulting shifts in
metabolism should be well reflected in the expression of genes and the underlying biology is
fairly well understood, and so we expect MOOMIN to easily identify the correct changes. The
other set, measuring exposure of F. coli to mercury, is meant as a more ambitious test of the
method. Our goal here was to see how MOOMIN compares to traditional DE analysis done
by the original authors: if it would be able to recover the same results, and to go beyond
them, possibly explaining inconsistent findings or inferring changes that were not detected by
the gene expression measurements alone. In this section, I will present general observations
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Figure 2.10 — A MOOMIN solution for the S. cerevisiae data visualised using ESCHER [97].
The output of the method can be written into a JSON file that can be read and displayed
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up of the TCA cycle and aerobic respiration. Reactions that were inferred to operate in the
reverse direction are shown in darker colours. The colours are coded in the JSON file using
numbers, these are displayed alongside the reaction names (2: green, reverse; 1: green; 0:
grey; -1: red; -2: red, reverse).
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about the solutions obtained using MOOMIN as well as biological results.

The S. cerevisiae data set was originally published by Nookaew et al. [133] and the metabolic
network used was the iIMM904 published by Mo et al. [123]|. The E. coli data set was originally
published by Lavoie and Summers [106] and the network used was 1JO1366, published by Orth
et al. |136]. For both data sets, we performed DE analysis starting from raw counts with
the R package EBSEQ [109]. Both networks were downloaded from BIGG. The S. cerevisiae
network was used as is, two reactions in the E. coli network, R_GLUABUTt7pp and R_GTHOr,
were modified from irreversible to reversible based on literature data.

S. cerevisiae growth in batch versus chemostat

The S. cerevisiae data set contained gene expression measurements obtained using RNA-Seq
from two conditions: growth in a batch culture and growth in a chemostat culture. In a batch
culture, a small number of cells are inoculated into a nutrient-rich medium, and allowed
to grow at maximal rate until the nutrients are exhausted and the growth curve achieves
saturation. In contrast, in a chemostat culture, nutrients are added to the culture at a fixed
flow rate while the biomass and the products of metabolism are removed from the vessel at
the same flow rate to maintain a fixed culture volume. Growth will settle to a steady state
value and cells will continue to divide indefinitely. There were three biological replicates for
both conditions.

The S. cerevisiae network contains 1226 metabolites and 1577 reactions. Gene association
information is given for 1043 reactions and in total there are 905 metabolic genes listed in the
model. DE analysis of the S. cerevisiae data led to a PPDE and a fold change for 6506 genes.
These contained 878 of the metabolic genes in the network. We considered a gene inactive if
it measured less than 10 counts per million across all samples. There were 620 such genes in
the data, 16 of which were metabolic genes in the model. We assessed the feasibility of all
reactions associated with these genes, and consequently removed 5 reactions deemed inactive
in both conditions. The input hypergraph thus comprised 1225 nodes and 1572 hyperarcs.
Using the threshold of PPDE (the parameter ¢) 0.9, 1401 genes were up-regulated and 1505
genes down-regulated. The same numbers for the metabolic genes in the network were 284 and
325. Normally, a stricter threshold for differential expression would be used. However, since
the weight function is continuous, we use a slightly more lenient value. The pre-processing
steps described in Section 2.3.1 resulted in colouring 304 hyperarcs green and 369 hyperarcs
red a priori. The assigned weights can be seen in the histogram in Figure 2.9 a).

The parameter « controls essentially how lenient or conservative the method is in inferring
changes. This is illustrated in Figure 2.8 where the number of coloured arcs appearing in
optimal solutions is plotted for different values of . I used the value a = 1 to investigate the
general nature of the solutions. For biological results, different values (1 — 3) were tried. The
main findings stayed the same.

The topological MILP problem (Equations 2.12 - 2.19) was solved in 18 seconds (including
the pre-processing steps) on a 2,9 GHz Intel Core i5 processor with two cores. Of the 673
a priori coloured hyperarcs, 430 were also coloured in the solution, and 140 a priori grey
hyperarcs became coloured.

Using the enumeration procedure described in Section 2.3.1, I enumerated the first 1000
alternative optima. They appear to be quite similar to each other. In total, 620 hyperarcs
were coloured in at least one solution and 541 in all of them. On average, a solution contained
570 coloured hyperarcs, and the range was 560-582.

The stoichiometric MILP problem (Equations 2.23 - 2.32) was solved in 446 seconds using the
same machine. Remarkably, there was only one optimal solution. It coloured less hyperarcs
than the topological formulation (this appears to be the general trend, see Figure 2.8): 370
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of the a priori coloured reactions were coloured and 164 of the a priori grey ones.

The solutions of the topological and the stoichiometric formulations appear to overlap but
not completely. Comparing the 541 hyperarcs appearing in all of the topological solutions
with the stoichiometric solution, 418 hyperarcs appear in both. This makes sense, since the
topological formulation approximates the stoichiometric constraints.

In yeast growth in an aerobic batch culture, the glucose concentration is so high at first that
ethanol fermentation takes place even though the cells have enough oxygen to perform only
respiration. The ethanol secreted in this first phase is used as a carbon source when glucose is
depleted (the so-called diauxic shift). However, if the glucose concentration is kept constant
and low (by means of a fedbatch or a chemostat culture), glucose flux into fermentation is
extremely low and the yeast growth yield is slightly improved since the respiration is far more
efficient in supplying energy and building blocks for biomass production than fermentation.
As a result, as already reported by several studies, up-regulated pathways in a chemostat
culture (if we consider batch growth as the control) are usually involved with electron trans-
port, aerobic respiration, and the TCA cycle. In this context, among the results reported by
Nookaew et al. [133], the authors described an enrichment in Gene Ontology terms related to
growth, respiration, the TCA cycle, and fatty acid beta-oxidation.

MOOMIN was able to infer changes within the main pathways associated with growth in a
chemostat culture, namely the TCA cycle (11 reactions out of 13), and aerobic respiration
(12 reactions out of 16). Figure 2.10 shows a visualisation of this. Increased activity for
the TCA cycle is clearly visible (see also Figure S1). We also detected a general down-
regulation of nucleotide biosynthesis (Figure S2) and amino-acid metabolism (not shown).
Both observations are in accordance with the lower growth rate in chemostat resulting in less
need for duplication of DNA, transcription of RNA, and production of proteins, as discussed
by Nookaew et al.

E. coli exposure to mercury

The E. coli data set investigated the bacterium’s response to mercury exposure. Gene ex-
pression was measured using RNA-Seq in two conditions: an unexposed control and a culture
exposed to mercuric chloride (HgCly) with three biological replicates for both conditions. Mer-
cury is a toxicant that negatively impacts the health of both microscopic and macroscopic
organisms, and induces a broad cellular response in E. coli.

The E. coli network contains 1805 metabolites and 2583 reactions, with 2123 of the reactions
having gene association information. There are 1367 metabolic genes listed in the model.
PPDE and fold change were obtained for 4326 genes, amongst which 1359 of the metabolic
genes. There were 168 inactive genes, including 7 metabolic genes. Based on this, we removed
5 reactions as inactive. Thus the final input hypergraph contained 1805 nodes and 2578
hyperarcs.

In total, 695 genes were up-regulated and 1237 genes down-regulated (¢ = 0.9). For the
metabolic genes, the same numbers were 173 and 520 respectively. Based on this, 306 hyper-
arcs were coloured green and 1026 red a priori. A histogram of the assigned weights can be
seen in Figure 2.9 b).

The resulting topological MILP problem was solved in 16 seconds. Of the 1332 a priori
coloured hyperarcs, 894 remained coloured in the solution. On the other hand, 309 a priori
grey hyperarcs became coloured.

There were again more than 1000 alternative optima. In the first 1000 solutions, 1139 hyper-
arcs appear in every solution and 1328 in at least one. On average, a solution contained 1163
coloured hyperarcs, ranging from 1151 to 12809.

The stoichiometric MILP problem was solved in 72 seconds. Again, it coloured less hyperarcs
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than the topological formulation, 1189, however investigating the alternative optima this
difference disappeared (see also Figure 2.8 b)). Of the a priori coloured hyperarcs, 469 ended
up grey in the output. In contrast, 326 a priori grey hyperarcs were coloured.

For the E. coli data, there were also a multitude of alternative optima for the stoichiometric
problem. I again enumerated the first 1000. Here, 1120 hyperarcs were coloured in all of these
solutions, and 1240 in at least one. On average, there were 1193 coloured hyperarcs, and the
range was 1179-1209.

Comparing the topological and the stoichiometric solutions, 1044 hyperarcs are present in
all the first 1000 solutions of both formulations. Thus there is again considerable agreement
between the two different formulations. However, it is also clear that they are not equal, and
the addition of stoichiometry does alter the space of accepted solutions.

MOOMIN was able to detect changes in all pathways described by Lavoie and Summers [106]
as up or down-regulated. As expected, reactions from aminoacid and nucleotide biosynthesis,
NADH metabolism, carbohydrate metabolism and glycolysis, whose corresponding genes were
downregulated, appeared with predicted reductions in flux in both topological and stoichio-
metric solutions (not shown). Further in agreement with the expected findings were inferred
increases in reactions related to stress response and redox response (Figure 2.11).

Reduced glutathione (GSH), a tripeptide composed of cysteine, glutamate, and glycine, is
considered to be one of the most important scavengers of reactive oxygen species (ROS),
and is involved in the detoxification of certain xenobiotics and heavy metals. Its ratio with
oxidised glutathione (GSSG) can be used as a marker of oxidative stress: in a resting cell, the
molar GSH:GSSG ratio exceeds 100:1. However, it is altered under certain stress conditions
when GSH is oxidised to GSSG [195]. Following this, Lavoie and Summers expected to find
an increase in cysteine and glutathione biosynthesis. However, most genes for biosynthesis of
these biothiols appeared to be either down-regulated or showed no significant change.
MOOMIN, on the other hand, was able to detect these features, as showed in Figure 2.11. Even
though there was no apparent increase in the production of cysteine (Cys), it is possible that
more cysteine was available due to a decrease in its turnover to pyruvate (Pyr, R_CYSDS) and
its export to the periplasm. We also predicted an increased production of glutamate (Glt)
from arginine (Arg), which is essential for GSH biosynthesis.

Glutaredoxin (GRX) is also a key metabolite for redox homeostasis and stress response.
Similarly to GSH, active GRX (GRX7d) is oxidized by substrates and it is only recycled to
its active form with the concomitant oxidation of GSH (R_GRXR). This is why the increased
flux towards the production of glutaredoxin (GRX7d) is closely linked to the recycling of
GSSG into GSH (R_GTHor). MOOMIN also connected the down-regulation of genes responsible
for the conversion of 2-oxoglutarate («¢KG) to succinate (Suc) from the TCA cycle (red
arrow in Figure 2.11) with the GABA shunt, something not described in [106]. GABA (v-
aminobutyrate) is a metabolite that counteracts a wide range of stresses in several species,
and seems to be essential for the acid tolerance in E. coli |78, 63]. We were also able to detect
a possible increase in the fluxes from cysteine and homoserine (HSer) to another amino acid
that has been linked to ROS scavenging in other organisms, namely methionine (Met) [33].

2.4 Conclusion

In the first part of this chapter, I presented the state of the art on the integration of ’omics data
to metabolic networks. This question has attracted considerable research effort. Most of it
has been aimed towards improving phenotype prediction through FBA and similar constraint-
based methods by using transcriptomics to further constrain the space of metabolic fluxes,
either by using gene expression levels as a proxy for flux magnitude, or by building so-called
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context-specific metabolic models. It appears though that this question remains largely un-
solved, and no method has provided consistently accurate results.

To a lesser extent, ’omics data and metabolic networks have also been combined to better
make use of the former. Comparative analyses of metabolite or transcriptome levels are
often performed to understand phenotypic variation or responses to shocks. In this context, a
metabolic network offers a new way of forming hypotheses from these data by joining together
separate data points using the structure of the network. In the remainder of this chapter, I
presented MOOMIN, an algorithm that does this by searching for metabolic shifts that align
with the results of a DE analysis.

In the algorithm, the metabolic network is represented by a hypergraph, and metabolic
changes, that is, increases and decreases in flux from one condition to another, are coded
by colouring the hyperarcs. Each possible colour for a hyperarc/reaction is given a score
based on the DE data. Global constraints are placed on accepted colourings based on the
assumption that any shift should preserve a steady state of the metabolism. Finding the
global shift that best corresponds to the data can the formulated as an optimisation problem.
In Section 2.3.1, I proved that this problem is NP-hard.

I first presented an implementation of MOOMIN that used ASP to solve the optimisation
problem. ASP has been previously used successfully in [85, 86| for similar problems involving
metabolic networks. However, for MOOMIN the performance in genome-scale networks was
insufficient. For this reason, a MILP implementation was adopted. This allows the algorithm
to run in reasonable times on a personal computer. MILP also admitted the inclusion of
stoichiometric constraints for a more accurate preservation of a steady state.

In Section 2.3.3, MOOMIN was applied to real data. Two data sets were chosen: a comparison
of S. cerevisiae growth in a batch versus a chemostat culture, and a study of the response E.
coli to mercury stress. Overall, the results show that MOOMIN works as intended, upholding
for some reactions the change implied by the DE data and rejecting it for others, while
additionally inferring changes that were not reflected in the gene expression. The parameter o
controls how "conservative" the algorithm is: the lower the value, the fewer coloured reactions
appear in a solution. Enumeration of optimal solutions showed that while sometimes the
optimum can be unique, it is also possible to have a large number of alternative optima. Based
on the results in Section 2.3.3, it appears that these optima do not represent wholly distinct
alternative hypotheses but rather share a common core and differ only in a small subset
of reactions. Comparing the topological and stoichiometric solutions, they seem to overlap
considerably, confirming the assumption that the topological constraints are an approximation
of the full stoichiometric steady state condition. It was also observed that the topological
constraints are more "lenient", meaning that the resulting solutions contain more coloured
hyperarcs.

For the S. cerevisiae data, MOOMIN was able to recover the expected results. For the F.
coli data, not only did we rediscover the findings of the original authors, but MOOMIN also
found changes that were expected in the original publication but not found due to inconsistent
results of the DE analysis.



Chapter 3

Metabolic games

Contents
3.1 Introduction . ... ... .. ...ttt 59
3.2 Stateoftheart. ... .. ... ... ... 000 60
3.3 A metabolicgame . . ... ... ...ttt 68
3.4 Conclusion . ... .. ... i e e e e 72

3.1 Introduction

One of the main applications of metabolic network models is phenotype prediction. In other
words, given the information offered by the reconstruction about the metabolic capabilities
of an organism, we wish to know which would be its actual metabolic state in a set of given
environmental conditions. The most basic question of this nature is that of viability: is the
organism able to survive or grow in a medium? The quantitative version asks how well the
organism is able to grow (compared to, for example, some experimentally obtained baseline
or to another organism). In biotechnology applications, it can be of interest to predict the
production rate of a target compound. (see [119]). Metabolic models can also be used to
understand responses to perturbations: what is the cell’s response to environmental stress?
Finally, the question of what behaviour does a certain set of genes give rise to is of course of
general interest by itself in life sciences.

Arguably the most popular tool for predicting phenotypes based on a metabolic reconstrcuc-
tion is flux balance analysis (FBA). It is based on the assumption that metabolism is organ-
ised to optimise some identifiable target function, most often biomass production (see Section
1.1.3). As a model, FBA is simple and elegant, and does not require extensive computational
resources. Despite this, it can provide accurate predictions of metabolic state in a variety of
organisms [180, 57, 56, 137, 138], and has been successfully used in many applications, such
as metabolic engineering [191, 3|, and the identification of drug targets [92].

However, the assumption of growth yield maximisation is not always valid. For example,
S. cerevisiae uses a mixture of fermentation and respiration even in the presence of oxygen,
termed the Crabtree effect. This phenomenon is also observed in several other yeasts: Saccha-
romyces bayanus, Schizosaccharomyces pombe, Kluyveromyces thermotolerans, and Dekkera
bruzelensis [161]. Lactate production in Lactobacillus plantarum could not be predicted by
standard FBA because the acetate production pathway has a higher yield [174]. An E. coli
strain with gene deletions displayed higher biomass yield than the wild type [176].
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Another shortfall of FBA are multispecies communities. Microorganisms rarely, if ever, ap-
pear in isolation in nature. Thus understanding microbial communities composed of several
species is essential for understanding microbial life in general. Furthermore, because these
communities are largely shaped by interactions mediated by the intake and secretion of com-
pounds, metabolic modelling is at the centre of this research. Communities are also becoming
increasingly important in biotechnology applications [27]. Whereas in a single-species culture
viability can be determined solely based on medium composition, for a multispecies com-
munity this is not true since organisms may be able to use the metabolic products of other
members to grow. It is also difficult to formulate a general optimisation target for a commu-
nity of organisms because different species can have different, possibly conflicting needs, and
it cannot be expected that they would coordinate their behaviour according to a "common
goal".

A possible solution is offered by evolutionary game theory. In contrast to "simple" optimisa-
tion, such as in the case of traditional FBA, which only takes into account the abiotic factors,
game theory incorporates the fact that organisms "create" their own environment through
their interactions with it. Thus optimal behaviour cannot be defined simply in terms of an
individual on its own, but one also needs to consider the surrounding members of the com-
munity whose actions may change the environment and influence what is considered to be
optimal. In the context of microbial communities, the availability of nutrients, for example,
can depend on the metabolic states of surrounding organisms. In short, game theory shifts
the focus from optimal to "best response".

The idea that conflict of interest dilemmas leading to suboptimal outcomes might arise in
the choice of pathways in microorganisms was first presented by Pfeiffer et al. in [143].
Pfeiffer and Schuster further advocated the use of game-theory in the study of microbes in
a later review [160], and finally the concept of considering different pathways in a metabolic
network as strategies in a game was mentioned by Schuster et al. in [157]. Meanwhile,
game theory has been applied to study a wide range of phenomena in the microbial context.
Most closely related to metabolism are the question of which pathway to choose for ATP
production [143, 64, 116, 161, 8, 157, 87, 15, 16|, public goods, that is, the production of
costly extracellular products that benefit not only the producer but its neighbours as well
[71, 159, 20, 17, 196], and the choice of primary nutrient [54, 91, 76, 196]. Reviews of the use
of game theory for the study of microbes can be found in [142, 160, 150, 81].

In this chapter, I review this literature and discuss the idea of a metabolic game. While game
theory has been applied to many situations, definitions of the main components vary, and it
remains unclear how exactly a game should be defined based on metabolic reconstructions. I
discuss the different choices for actions, payoffs, and the game model.

This chapter largely corresponds to a review article titled "Metabolic games", submitted
to Frontiers in Genetics at the time of writing. The article version has a slightly different
structure and a few more articles are mentioned in the review part of this chapter. It is
composed as follows. In Section 3.2, I review the relevant literature. This section considers
the three topics mentioned above (yield wversus rate in ATP production, the production of
public goods molecules, and nutrient choice and cross-feeding), as well as some some other
applications. In Section 3.3, I describe and discuss the idea of a metabolic game. The chapter
ends with a conclusion.

3.2 State of the art

One of the questions that has been extensively studied through applying game theory to
metabolism is ATP production. There is a fundamental trade-off between yield and rate of
ATP production in heterotrophic organisms: some of the free energy obtained from substrate
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degradation is needed to drive the reaction. Increasing the portion of free energy that is used
for driving the reaction increases the rate of ATP production but lowers the yield. The choice
of pathway thus presents a social dilemma. Choosing the efficient strategy would maximise
resource usage and benefit the population as a whole. However, if an individual cell chooses
to stray from this cooperative path, its faster growth rate will allow it to increase in numbers
and eventually overcome the cooperators at the cost of the interest of the community.

In [143], Pfeiffer et al. explored this question in the context of respiration versus fermentation.
Most organisms can in principle choose to degrade sugar by both the respiration and the
fermentation pathways. While fermentation provides ATP faster, it has a significantly lower
yield. Thus fermentation can be seen as a wasteful, "selfish" strategy, while respiration is more
efficient in terms of nutrient use. By constructing a simple population model, the authors
showed that while a population of fermenters will be smaller due to a faster depletion of
resources, they can nevertheless take over a population of respirators due to their faster growth
rate. This constitutes the famous "tragedy of the commons" [114]. However, if a spatial
component is added, respirators can have a chance. This is because at lower nutrient levels,
fermenters will deplete their immediate environment of resources and suffer the consequences.
In [64], Frick and Schuster explored this question further. They too constructed a population
model for slow but efficient versus fast but wasteful resource use. The authors then interpreted
the steady state population densities of both strategies in each different scenario as payoffs: in
this way, the situation is a Prisoner’s Dilemma with pure respiration forming the cooperation
strategy. This is important because were the growth rates to be taken as the payoffs, one would
conclude that fermentation is the optimal choice in all instances. However, from the point of
view of sustaining the highest possible population density, cooperation, that is respiration, is
the best choice.

Kreft studied the question in a spatially structured setting [101]. In a simulation of a biofilm,
cells are represented by spheres in a continuous space and grow according to Monod kinetics,
while metabolites diffuse on a lattice. There are two types of cells: cooperators that use a high
yield, low rate growth strategy, and defectors that have the opposite strategy. Simulations
performed by Kreft showed that the outcome of the competition depends on the initial con-
ditions, with different starting patterns of the two strategies leading to qualitatively different
results.

Experimental evidence for the results described above was provided in [116]. Maclean et al.
used yeast as their model organism and grew pure respirators and respiro-fermenters together
in different culture set-ups. They found that while the "cheaters" win in a chemostat, in serial
batch and spatially structured populations, the two strategies can coexist.

In [161], Schuster et al. critically examined the assumption made in FBA of maximisation of
biomass yield. They argued that in general there is a trade-off between yield and rate, and
that it is not a priori clear which of these conflicting goals would be selected for. Based on the
theoretical results previously put forth by Pfeiffer et al. [143] as well as several examples from
nature, the authors concluded that maximisation of yield cannot be considered a universal
principle.

Aledo et al. [8] studied the yield versus rate question but this time in glycolysis itself, which
can operate under two different regimes: one with a high yield but a slower rate, another
with a low yield but a faster rate. Using a simple matrix game model, with payoffs derived
as functions of extracellular free energy and in agreement with the Prisoner’s Dilemma payoff
scheme, the authors showed that in a well-mixed population, cooperation cannot persist. In
contrast, if the game is played on a lattice so that players only interact with their neighbours,
cooperation is a possible outcome.

Schuster et al. returned to the question of yield versus rate again in [157|. They presented
a toy model representing a simplified version of ATP production to show that whether max-
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imising the yield coincides with maximising the rate depends on the particulars of the system.
They also further articulated the idea that alternative pathways can be seen as strategies in
the game theoretical sense, and that "choosing" which pathway to use can happen not only
through changes in genotype, but also through regulatory changes within the life-span of a
cell.

Kareva [87] investigated the yield versus rate question in the context of cancer cells where
the use of the more inefficient glycolysis pathway is observed as one of the hallmarks of
cancerous growth and is known as the Warburg effect [187, 186]. However, in contrast to
the previous models, the author argued that the use of glycolysis is the cooperative strategy:
while recognising the possibility to increase the rate of glucose uptake, she considered the use
of glycolysis to remain detrimental to the individual cell due to its low yield. Meanwhile,
the associated lactic acid production can benefit the cancer cell population as a whole, if
undertaken in sufficient numbers, because it disproportionately harms non-cancerous cells.
Thus glycolysis can be considered as public goods production. The contradiction with previous
studies is clear. However, in the ODE system used to model a population of cells with varying
rates of carbon allocated to glycolysis in [87], it was observed that glycolytic cells do increase
in frequency if they have a faster growth rate.

In two successive papers [15, 16|, Archetti presented a public goods model of the Warburg
effect. He took the same view as [87] and considered glycolysis as the cooperative strategy
amongst cancer cells. The benefit accrued by all participants from glycolysis — increased
acidity — is modelled by a double sigmoid function: increased acidity yields a benefit over
healthy cells if enough cells are producing lactic acid, but too much will start to hamper the
growth of even cancer cells. The dynamics of the frequencies of glycolytic and non-glycolytic
cells were modelled using the replicator equation. Because an exact solution of the dynamics
for a sigmoid shaped benefit is not available, Bernstein polynomials were used to find an
approximate solution. Archetti found that if the cost attached to glycolysis is not too high,
glycolytic cooperators can persist at intermediate frequencies.

Another possible social dilemma within microbial communities occurs with necessary but
costly functions. If a metabolic function is performed at the cell surface or outside the cell, it
means that the benefit incurred can be shared by other cells that are possibly not contributing
to the undertaking of the said function. Such a situation is best described by a public goods
game.

Gore et al. [71] studied the invertase production system of S. cerevisiae: in order to grow
on sucrose, the yeast needs to hydrolyse the sugar molecule. Because invertase is a surface
enzyme, much of the resulting monosaccharides leak out. Because producing invertase is
costly, it constitutes a public good. The model of Gore et al. is a sort of mix between a
public goods game and a matrix game: the authors define payoffs in terms of the fraction of
invertase-producers in the population but then go on to compare these payoff values to the
well-known 2-player games. If the benefits are linear, cooperation cannot persist unless the
benefit derived from sucrose degradation by the invertase-producer exceeds the cost, in which
case producing the enzyme is not a public good. On the other hand, with non-linear benefits,
frequency-dependent selection allows for a fraction of the cooperators to persist. This result
was in line with experimental evidence (presented in the same article) which confirmed both
the coexistence of producers and non-producers, as well as the non-linear benefit function.
A similar model was presented in [159]. In this paper, Schuster et al. studied generic ex-
oenzyme production assuming again that some fraction of the transformed growth product
diffuses directly into the producer cell while the rest is available to the surrounding commu-
nity. This time the benefit from the public good is given by a Monod function modelling the
growth rate attained through the available nutrient. The nutrient acquired in turn depends
on the fraction of cooperators in the population and cell density, which is a parameter of the
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model. The authors conclude that depending on the parameters, the fraction of public good
that diffuses away, the cost of enzyme production, and the cell density, the model can be seen
as a Prisoner’s Dilemma, a Snowdrift or a Harmony game.

Another example of a public good are siderophores, molecules produced by bacteria that
bind poorly soluble iron, allowing its transport into the cell. Siderophores constitute a public
good because any cell that harbours the appropriate transporters can take in the bound iron
without necessarily having to produce the molecule themselves. Cordero et al. [42] studied
siderophore-production in marine bacteria. Using a large set of isolates of Vibrionaceae, the
authors showed that the siderophore-production trait is routinely lost and gained, implying
variable selection pressures that can alternatively promote cheating and cooperation. Further-
more, loss of the production trait occurs through loss of the biosynthesis of the siderophore
molecule, but not the associated outer-membrane receptors, creating a "cheater" phenotype
that no longer contributes to the siderophore-production but enjoys the resulting benefits.
The genetic evidence suggests that public goods-type social dilemmas do indeed contribute
to the genetic diversity observed in nature.

Allen et al. [9] presented a model for public goods production in a population with an explicit
spatial structure, taking the invertase production system of S. cerevisiae as the inspiration.
A 2-dimensional population structure was modelled by placing the cells at the nodes of a
weighted graph. Cells are either cooperators or defectors, with cooperators producing a public
good with a cost ¢ and yielding a benefit b, of which a fraction is diffused to the neighbouring
cells. Frequency of diffusion is proportional to the edge weights. Impressively enough, Allen
et al. were able to obtain analytical results for their model: if the benefits from public goods
production are mostly retained by the producer, cooperation is favoured whenever b > c. If
the benefits are mostly shared, cooperation is only favoured if the public good is absolutely
essential for survival. Between these extremes, the success of cooperation depends on the
structure of the population: cooperation decreases with dimensionality, in other words, a
2-dimensional population is more prone to cooperation than a 3-dimensional one.

In [14], Archetti studied growth factor production in cancer cells as a public goods game.
Growth factor production is costly but the benefits are available to all surrounding cells. The
benefit function was assumed to have a sigmoid shape and population dynamics were modelled
by the replicator equation. As in [15, 16|, Bernstein polynomials were used to circumvent the
problem caused by the sigmoid function. Archetti found that depending on how exactly the
fraction of producers influences the benefit from growth factor, different types of dynamics are
possible: a globally attracting mixed equilibrium where producers and non-producers coexist,
the fixation of one type depending on the initial frequencies, or the fixation of producers
regardless of the initial conditions.

The model presented in [14] was expanded on by Archetti in [17] by introducing a spatial
component. In this model, cells are placed in the nodes of a Voronoi graph. A Voronoi
graph has the average connectivity of 6, with very few nodes beyond degree 4-8. Cells receive
benefits from growth factors produced by producer-cells within a neighbourhood defined by a
diffusion parameter, discounted with the distance to the focal cell. The benefit itself is given
by a normalised logistic function. In other words, benefits are non-linear. Archetti found that
similar to well-mixed populations, cooperation declines as the cost of production increases.
Stochasticity in the update rules used to model proliferation and a steeper benefit function
also decrease cooperation.

Invertase production in S. cerevisiae was also modelled in [196] by Zomorrodi and Segré.
The authors constructed a 2-by-2 payoff matrix based on the metabolic reconstruction of
the organism. First, the sucrose hydrolysis reaction was modified to account for the cost of
invertase production, which was modelled by a reduced ATP yield, and the "leakiness" of the
resulting monosaccharides, which was simulated by a forced export of a portion of the reaction
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products. Payoffs in the four possible pairwise interactions were obtained as the optimised
biomass yields. In the case that a player is facing a producer, intake of the secreted glucose and
fructose is allowed to simulate benefits from the public goods production of one’s opponent.
Three distinct parameter domains were observed: a high cost of enzyme production or high
leakiness of sugars leads to a Prisoner’s Dilemma, low cost of production and low leakiness of
sugars lead to what the authors called a Mutually Beneficial game, where the equilibrium is
to be a producer, and intermediate values of the parameters lead to a Snowdrift game where
the equilibrium is a mixed one.

A public goods dilemma can also be observed within a cell. This occurs when more than one
virus infects a host cell. It was studied in the phage ®6 using game theory in [177] by Turner
and Chao. The viruses generate diffusible intracellular products essential for reproduction.
A "defector" strain is one that has lost the associated protein-coding sequences and can thus
not replicate in the absence of a complete virus. However, if a "cooperator" virus is present,
providing the necessary extracellular products, the defector strain can replicate faster than
the cooperator. Thus the situation can be described as a Prisoner’s Dilemma.

Chao and Elena [36] studied viruses in a similar system. The authors considered a trade-off
in reproduction and the production of public goods. If this trade-off is linear, the resulting
game is a Prisoner’s Dilemma (according to the authors), and defection dominates. However,
with a non-linear trade-off, an adaptive dynamics style simulation revealed a branching of the
population into "ultra-cooperators" and "ultra-defectors".

Perhaps the best examples showcasing the usefulness of game theoretic thinking are situations
where frequency-dependent selection leads to polymorphisms in nutrient use. It is often the
case that in a given environment, there is a preferred choice for the main carbon source.
However, in any realistic scenario, nutrient availability is limited, and it can be beneficial
for the individual to opt for a carbon source that is slightly less optimal, but abundant due
to being the "unpopular" choice. Cross-feeding occurs when two organisms depend on each
other for the production of some essential metabolite.

In [54], Doebeli considered the evolution of cross-feeding. He constructed a model for a bac-
terial culture growing in a chemostat, using glucose as its main nutrient. During growth on
glucose, acetate is secreted which can also be used as a nutrient, albeit with a lower growth
rate. Doebeli assumed that there is a trade-off in using the secondary metabolite: becoming
more proficient in using acetate lowers the ability to use glucose efficiently. Furthermore, this
trade-off is subject to gradual change through mutations. Bacterial growth and nutrient con-
centration was modelled using a Michaelis-Menten type model. Using the theory of adaptive
dynamics, Doebeli showed that the frequency-dependent selection following from the trade-off
can lead to evolutionary branching and the emergence of a stable polymorphism of glucose
and acetate specialists. He also found that if the dynamics are changed to model a serial
batch culture instead of a chemostat, evolution of cross-feeding becomes much less likely. In
a chemostat culture, the concentration of nutrients is kept constant, while in a batch cul-
ture nutrients are allowed to be depleted. These results were further expanded and provided
experimental confirmation in [65].

Wintermute and Silver [189] studied cross-feeding in E. coli auxotroph pairs. The metabolic
networks of two different strains were joined to allow for the exchange of metabolic products,
and flux distributions were determined by minimising the difference to a wild type strain
growing alone. These predictions were then compared to co-culture experiments. It was found
that the in silico experiments tended to overestimate growth, possibly reflecting the fact that
joining the metabolic models may implicitly induce more cooperation between the two strains
than is realistic. However, the co-culture experiments nevertheless showed improved growth
for a subset of the pairs compared to growth in monoculture, providing evidence for metabolic
synergy. The authors also investigated the value of shared metabolites using the concept of



3.2 State of the art 65

shadow prices. The shadow price of a metabolite, in the constraint-based analysis context,
can be understood as a measure of how a change in its availability would affect the value of the
objective function. In other words, it can be used to measure how costly a metabolite is for
its producer or how much benefit it yields if acquired. The analysis showed that metabolites
that tend to be shared are those that are "cheap" for the secreting organism.

Kianercy et al. studied the Warburg effect and the reverse Warburg effect [91]. The reverse
Warburg effect refers to the phenomenon wherein some cells in a tumour use lactate secreted
as a by-product of glycolysis as their energy source. The authors’ model is a 2-player matrix
game with two types of players: hypoxic and oxygenated cells. Both types have the same
available strategies: using either glucose or lactate as their nutrient. Lactate is secreted by
hypoxic cells using glucose. Similarly to [87] and [15, 16], the authors take yields as payoffs.
Thus using glucose gives a lower payoff for hypoxic cells. The authors found that there exist
two stable states and conclude that lactate secretion can induce a transition between high
and low levels of glucose consumption.

In [76], Healey et al. investigated phenotypic bet-hedging by experiments and a game theory
model. Bet-hedging refers to a hypothesis that microbes may increase their survival in fluc-
tuating environments by implementing a stochastic phenotype. In other words, a genetically
homogeneous population might display two (or more) distinct phenotypes. In the language
of game theory, this would constitute a mixed strategy. The model system in [76] was S.
cerevisiae that prefers glucose as its carbon source, but also harbours the GAL network for
metabolising galactose. The game theory model used was a simple foraging game, where a
population of players must choose between two resources. One of the resources is the preferred
one, and so there is an additional cost associated with using the inferior resource. However, if
all members of the population have chosen the preferred resource, it is better for an individ-
ual to choose the other. This leads to a stable mixed equilibrium of users of both resources.
Experiments performed by Healey et al. corroborated this theoretical result.

In the article already mentioned above [196], Zomorrodi and Segré studied amino acid medi-
ated ecological interactions in Escherichia coli. Producer strains leak out amino acids which
are costly to produce, and can be taken up by mutants lacking the ability to synthesise them.
Several different amino acids were investigated, with up to two at a time spanning four pos-
sible strategies (genotypes). Like in the case of invertase production in yeast, both the level
of leakiness and the cost of production influence the type of equilibria observed. With low
enough levels of leakiness, both an equilibrium with a full producer coexisting with a complete
auxotroph, as well as cross-feeding are possible. With increasing leakiness, the full producer
becomes non-viable. However, it was also observed that due to interdepencies in amino acid
production, in some situations cross-feeding is not possible because losing the ability to pro-
duce one amino acid leads to the loss of the ability to produce the other. Zomorrodi and Segreé
also studied the evolutionary dynamics of these interactions by performing in silico invasion
experiments. They found that cross-feeding can emerge through the progressive loss of amino
acid synthesis capabilities, and that this mutually dependent coalition is often stable against
invasion by non-producers, consistent with previous experimental findings [140, 34].

Besides the three topics introduced above, game theory has been applied in a variety of other
contexts as well in the study of microorganisms.

In [31], Bremermann and Pickering constructed a game theoretical model of two or more
microbial parasites competing inside a host. They assumed that host longevity is influenced by
the growth rates of the parasites. Parasites aim to maximise transmission during the lifetime of
the host. By exploring different functional forms for the host longevity - parasite reproductive
rate dependency, and calculating the resulting Nash equilibria, the authors concluded that
parasite reproduction below maximal rates can occur. They also suggest that virulence may
increase with an increasing number of parasites competing within a host.
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Microbial interactions can also display circular, Rock-Paper-Scissors-type dynamics. An ex-
ample is bacteoricin production in E. coli. Three genotypes are possible: one which possesses
the genes for both the production of colicin (a toxin), as well as a protein that provides im-
munity to the toxin. If the ability to produce colicin is lost, the result is a strain that is still
immune to the toxin, but that enjoys a possible growth advantage to the ancestral strain due
to forgoing the cost of producing the toxin. Finally, a susceptible strain produces neither
the toxin nor the protein. Kerr at al. [90] studied this system through both simulations and
co-culture experiments. Both investigations showed that when spatial mixing is high, that
is, interactions are global rather than local, two of the strains go extinct and the strain that
is resistant to the bacteoricin but does not produce it emerges as the winner. However, in
spatially structured populations all three strains co-exist, creating patches that "chase" one
another according to who can outcompete whom.

Kirkup and Riley [98] provided in vivo evidence for a Rock-Paper-Scissors (R-P-S) scenario
occurring in E. coli. The authors inoculated mice with four different types of the bacterium:
two types of colicin producers, a susceptible strain, and a colicin-resistant non-producer.
Colonisation and changes in dominant bacteria were detected by monitoring the bacteria
present in the fecal pellets of the mice. The results showed that the bacterial competition
dynamics indeed conformed to the structure of the R-P-S game.

Eswarappa [61] constructed a 2-player game modelling the conflict between a pathogenic
bacterium and its host. Each player has two strategies: the pathogen chooses between residing
in intra- or extracellular space inside the host. Correspondingly, the host can choose to activate
either intra- or extracellular defences against the infection. By analysing the possible Nash
equilibria of the game, Eswarappa concluded that a mixed strategy will be used by both the
pathogen and the host.

Martin and Elena [118] studied mixed viral infections in plants. Arabidopsis thaliana was
infected with either of two viruses, the Cauliflower mosaic caulimovirus (CaMV) or the turnip
mosaic potyvirus (TuMV), or with both, and accumulation of viral load was measured to
determine their success. The result can be understood as a 2-by-2 matrix game where the two
viruses are the available actions, and the viral loads are the payoffs. It was discovered that
TuMV dominates, reaching a higher fitness by itself than CaMV, but also benefiting from a
co-infection by CaMV.

Momeni et al. [124] studied spatial self-organisation in bacterial cooperator-cheater dynamics.
Three different strains of S. cerivisiae were cultured together both in vitro and in silico. One
of the strains is an auxotroph for adenine and releases lysine, another is an auxotroph for
lysine and releases adenine, and the "cheater" is an auxotroph for lysine but releases nothing.
The authors found that cells tended to organise into a non-random pattern where cooperators
have more neighbours than cheaters, favouring cooperation.

In game theoretical models of microbial interaction, population size is often implicitly assumes
to stay constant. For example, in the commonly used replicator equation only the relative
frequencies of strategies are considered, and a globally dominating strategy is hence assumed
to completely take over the population. In [112], Li et al. showed that this approach might
not always be valid. The authors cultivated together two commensal bacteria, Curvibacter
sp. (AEP1.3) and Duganella sp. (C1.2)), and found that which species becomes dominant
depends on the initial conditions. However, in either case, both species continue to grow
in absolute density, implying that the dominant one does not necessarily displace the other.
Thus both frequency and density dynamics might need to be taken into account to accurately
describe microbial populations.

Kelsic et al. [89] modified the R-P-S-model of bacteriocin production by making resistance
to the toxin a public good: instead of simply being immune to an antibiotic, the resistant
strain degrades it, rendering its immediate environment safe. Grid-based simulations showed
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that in contrast to the previous models, spatial separation of different strains is not needed
for stable coexistence. The authors also found that more complicated community structures
with several different antibiotics and strains can achieve stability.

Sequential games are rarely applied to the study of microbes. A notable exception can be
found in [144]. Pollmécher et al. sought to model the dynamics of an invasion of Aspergillus
fumigatus, a pathogenic fungus, into the lung alveoli of humans. The authors represented
the course of an A. fumigatus infection in the form of three subsequent matrix games, each
representing a distinct phase of the host immune response, played on a graph that serves as
a model of the spatial structure of the human lung. The players are fungal cells, and the
action space is formed by the different stages of the life-cycle of the pathogen, each with its
own susceptibility to different immune responses. Each game is iterated until an equilibrium
is reached, with mutation and adaptation taking place at each step. By performing stochastic
simulations with different parameter values, Pollmécher et al. were able to determine the
relative importance of different aspects of the immune response. Namely, for low infection-
doses, the phagocytic activity of alveolar macrophages that is present in the first steps of the
immune response is sufficient to control infection, while for higher infection-doses the main
task of the alveolar macrophages is the recruitment of polymorphonuclear neutrophils.

Wu and Ross [190] adopted game theory to study the human intestinal microbiota. The au-
thors constructed a matrix game with three different actions representing three types of bacte-
ria: antibiotic-sensitive (AS), antibiotic-tolerant (AT), and Clostridioides difficile. C. difficile
is a commonly found human pathogen that can cause infections after antibiotic treatment has
disrupted the natural microbiota. Wu and Ross assumed that the interaction between the
main components of the intestinal community, AS and AT, is a Snowdrift game, and that the
remaining payoffs can be defined by two parameters: the payoff for C. difficile against AT,
and the payoff for C. difficile against AS. The authors explicitly adopted an interpretation
of the replicator equation where "the fitness (growth rate) of each phenotype depends on the
frequency of each phenotype". Wu and Ross concluded that depending on the values of the
two parameters, the system can have one or two stable fixed points, and that this determines
how susceptible the host microbial system is to perturbation.

The application of game theory to microbiology has been reviewed in a few articles. Pfeiffer
and Schuster [142] advocated the use of game theoretical principles to supplement purely
optimisation-based approaches to the study of biochemical systems. Taking as examples the
evolution of cross-feeding and choice of pathway in energy production, the authors argued
that traditional optimisation may be insufficient to explain the organisation of biochemical
systems, because it assumes that organisms evolve in a fixed fitness landscape. In contrast,
evolutionary game theory takes into account the fact that the evolving organisms influence
their environment and thus the fitness landscape becomes dynamic.

Schuster et al. provided similar arguments in [160]. The authors also discussed the choice of
payoff: a common choice is per capita reproduction rate. However, for example in biofilms,
reproduction rate per area covered by the biofilm might be a more suitable choice. Schuster
et al. pointed out that payoff should be time invariant, and so reproduction rate should be
integrated over life span. Steady-state population densities have also been proposed as payoffs,
but the authors argued that it is unclear whether this would produce correct predictions in
all situations.

Ruppin et al. [150] reviewed the literature on constructing and studying metabolic networks,
dedicating a part of the article for the use of game theory in this context. The authors posited
that the stoichiometric matrix and the associated flux bounds for the reactions of the network
should suffice to define a "metabolic game".

In two complementary papers, Bohl, Hummert, et al. reviewed the use of game theory in sub-
cellular [29] and cellular [81] biology. In the former article, games describing catalytic RNA,
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gene replication, several viruses infecting the same host, and formation of protein complexes
were discussed. In the latter, the authors focussed on games where cells are considered as
the players. In addition to topics covered in this chapter, they discussed signalling games,
relevant in the study of quorum sensing.

3.3 A metabolic game

Most of the studies reviewed in the previous section have evoked game theory as an explana-
tory device, making use of the established knowledge on famous games such as the Prisoner’s
Dilemma to qualitatively describe specific observed phenomena, or alternatively used micro-
biology as a means to provide real life examples of these games. In contrast, our focus here is
the idea of using game theory to supplement constraint-based analysis. This is not to dismiss
the aforementioned research, which I believe to still be relevant to the topic at hand, as well
as of great general importance, but to make clear the difference.

The idea of a metabolic game originates from the articles by Thomas Pfeiffer and Stefan
Schuster [143, 142, 161, 160, 157|, and was recently given the most concrete realisation to
date by Zomorrodi and Segre [196]. It is meant to answer the need to expand the scope of
FBA to cover situations where its assumptions fail.

In constraint-based analysis (see Section 1.1.3), thermodynamic factors and the assumption of
a (pseudo-)steady state define a space of what can be considered feasible metabolic behaviours,
or more formally, flux distributions. This space is a representation, based on the genome
and these few general principles, of the metabolic capabilities of the cell. The question of
phenotype prediction then corresponds to the question: which metabolic state will the cell
choose. Obviously the cell "choosing" is just rhetoric, for what we are really looking for
are choices such that they will best guarantee survival and proliferation, and it is in fact this
proliferation that will actually make this "choice". In other words, we are looking for metabolic
behaviours that maximise fitness, because it is those behaviours that will by definition persist.
In the language of game theory, the different possible metabolic states can be seen as the
actions in a game. A metabolic strategy would then correspond to either a specific choice
of a metabolic state, or perhaps a mechanism that dictates this choice based on some rule
in a more complicated scenario. The players in a metabolic game are surrounding cells that
are within the reach of influence through metabolic interactions. The payoff would be any
measure of success that can be determined given the metabolic strategies of the players, for
example, growth rate or biomass production.

In FBA, the expressed phenotype is predicted based on optimisation. The underlying as-
sumption is that natural selection has configured a cell’s metabolism in such a way as to be
maximally efficient, further supposing that efficiency would translate to better fitness. In a
metabolic game, the expressed phenotype(s) correspond to the solution or equilibrium of the
game. The main idea thus remains the same: the phenotype(s) is chosen based on some mea-
sure of what is "best" for the organism. However, in contrast to FBA, which can be seen as
optimisation "in isolation", the game theoretical perspective takes into account the possible
interactions with surrounding cells.

A word or two on the different levels of selection is in order. Namely, natural selection is
most often concerned with the propagation of genotypes: successful individuals have more
offspring, carrying the same genes. These genes code for the traits that made the ancestors
successful, thus spreading the traits along with the genotype. This is also usually the implicit
assumption in evolutionary game theory: the strategies are coded in genes, and increase in
frequency or "win" when their payoff, proportional to their fitness, is better than that of the
alternatives. The usual meaning of "rationality is replaced with natural selection" is this.



3.3 A metabolic game 69

7N\
TN /T" T

)
ot R v
2 W\

310
5| 2
VAN
T [
5| 2 E“---

time:

Figure 3.1 — A schematic description of building a metabolic game. 1) One or several metabolic
networks are stratified to define an action space in terms of distinct, feasible metabolic be-
haviours. For example, the different actions can be defined by which pathways are active.
Another option is which metabolites are imported into and exported out of the cell. 2) The
outcome in each specific interaction scenario spanned by the action space(s) is calculated for
the two or more participating cells using FBA. Additional constraints are added to characterise
the metabolic behaviours chosen in each scenario. 3) Equilibria are identified in the payoff
matrix. Alternatively, a simulation of population dynamics can be performed to determine
which metabolic behaviours would triumph in frequency-based competition.

Here our perspective is subtly different, because in a metabolic game the genotype is already
given. Thus the choice is made on the level of expression rather than genes. Often this makes
very little difference. Knock-outs, the removal of genes, for example, are often considered
as genetic mutations. However, blocking a reaction or a pathway in a metabolic network
to simulate a gene deletion is no different from blocking it to simulate alternative metabolic
behaviour. If it turns out that not carrying out a certain function is better for the organism
in a certain situation, the gene does not need be deleted, it will just not be expressed.

The general idea of constructing a metabolic game is illustrated in Figure 3.1. In the remainder
of this section, I will discuss the various aspects of systematically defining such as game,
namely, how to choose the main components of the model: the players, the action space, and
the payoffs.

The first component of a game are the players. They are the participants in the interaction
under study. Many of the articles discussed in Section 3.2 used some form of a 2-player matrix
game to make their arguments. In principle, this type of game represents a situation where
two individuals face each other in a single interaction to obtain a single payoff. With this in
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mind, it seems strange to use this model when talking about microbial populations. However,
as discussed, when the matrix game is embedded in the replicator dynamics or another kind
of frequency dependent selection model, it starts to more closely resemble a microbe culture.
In a way, payoffs are obtained according to who one’s average neighbour is at any given time,
as might be imagined to happen in a well-mixed culture.

Yet the question remains if pairwise encounters are sufficient to capture the interaction dy-
namics of microbes that mainly influence each other through diffusible molecules. The other
type of model often used is the public goods game. At first glance it seems to more accurately
describe an interaction through diffusible molecules because it considers several players to
take part in the game at the same time. For example, in the case of invertase production,
it is intuitive to consider the game to comprise those cells that the released glucose can be
assumed to reach. However, there are some problems with using the public goods game as a
general model. Firstly, the benefit function must be accurately estimated since its form can
greatly influence the type of dynamics it gives rise to (see for example [14], see also [71]). This
might be difficult to do without experimental evidence. Secondly, public goods games with
nonlinear benefit functions can be difficult to analyse [14], although some progress has been
made in this area recently [18].

Explicit consideration of spatial structure could facilitate properly defining interacting agents.
Even if the underlying model is a 2-player game, embedding it into a spatial model so that
individuals interact with those around them, and the changes resulting in the environment
from these actions (depletion of nutrients etc.) happen locally, will be more faithful to nature.
The standard way to represent spatial structure in game theory is to assign players to nodes
in a graph as was done in [17]. This approach might be most applicable to environments
such as biofilms. The other option is to use partial differential equations to include spatial
dimensions in the population dynamics. The main problem with both approaches is that
usually the only analysis possible is through simulations. Furthermore, parameters such as
diffusion coeflficients might be needed to specify the model.

Considering all of the above, it seems that if the goal is to specify a systematic framework
in which a metabolic game can be defined based mainly on the metabolic reconstructions
of the organisms, the simple matrix game should be the model of choice. Indeed, in order
to have a computational framework anywhere close to the simplicity of the original FBA
formalism, it seems that only the high level ideas from game theory, mainly considering the
choice available for one individual in conjunction with the choices available to their opponents,
can be included. This is already captured by the matrix game. In addition, authors have
arrived at similar conclusions modelling the same situation with various more complicated
models |71, 159] and the simpler matrix game [196].

With regard to the choice of action/strategy space, the question is mostly a technical one. In
principle, a game constructed on the basis of metabolic networks would consider as available
actions the range of feasible metabolic behaviours, in other words, the flux cone (|38, 39|,
see Section 1.1.3). However, from a practical standpoint it is evident that some abstraction
is needed. Firstly, in order for a matrix game to be defined, the action space needs to be
discretised. Secondly, with the number of reactions and thus of flux values to be defined
routinely reaching to thousands, the game would surely quickly become intractable.

Several approaches to a decomposition of the flux cone have been proposed. Most notably,
three related concepts, elementary flur modes [156, 158|, extreme currents |38|, and extreme
pathways [154] (see also Section 1.1.3) all formulate a mathematical definition of a pathway
using concepts from linear algebra and convex analysis. Using such concepts, the space of
available metabolic phenotypes can be characterised in terms of which reactions are active,
each set corresponding roughly to separate biochemical pathways that are able to operate at
a steady state. Unfortunately, the number of elements in such a decomposition grows expo-
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nentially with the size of the network [99, 162, 2|. It might thus be impossible in practice
to define the action space simply using these concepts, at least at the level of genome-scale
reconstructions. De Figueiredo et al. have offered a possible amendment by proposing an effi-
cient procedure to compute elementary flux modes in order of increasing number of reactions
[51].

Other concepts worth exploring are the phenotypic phase plane put forth by Edwards et al.
[58] and the flux tope by Gerstl et al. [70]. A phenotypic phase plane is defined by the uptake
rates of two nutrients. The optimal metabolic behaviour is calculated at each point of the
plane using a biomass function. It turns out that such a plane is divided into a finite number
of distinct regions with qualitatively different metabolic behaviour. A flux tope is obtained
by specifying a direction for all reversible reactions. It corresponds to a maximal "pathway"
(as opposed to a minimal one, such as an elementary flux mode). The authors report that
the calculation of all flux topes is possible even at a larger scale.

In [196], available metabolic actions were not defined explicitly in terms of flux distributions
but rather by excreted compounds. One or several metabolites of interest were first forced to
be exported and hence produced (or alternatively to not be produced simulating auxotrophy),
after which the metabolic state can be determined using standard optimisation principles with
the additional constraints. There are compelling arguments for defining actions in metabolic
games using extracellular compounds. In general, microbial interactions are often mediated
by the exchange of molecules. By focusing on these compounds, the elements of the action
space have a clear interpretation in the context of interaction. The set of possible secretions
is also much more tractable than the space of all possible metabolic phenotypes.
Interactions based on extracellular metabolites were characterised from a slightly different
point of view in [100]. Klitgord and Segré asked whether it is possible to predict species
interactions based on culture media. Using genome-scale stoichiometric models they tested
whether growth of two organisms was possible in isolation and in tandem in a given medium.
This approach showed examples of both mutualistic and commensal relationship induced by
growth media.

The application of shadow prices presented in [189] (see Section 3.2) is also interesting in
this regard. To recapitulate, Wintermute and Silver showed how the costs and benefits of
extracellular metabolites can be calculated using constraint-based methods. Such an analysis
could be very useful for metabolic games since it allows one to compute both the cost of
producing a diffusible molecule as well as the benefit derived from it by the organism that is
able to receive it.

In a thesis work [185], Wannagat showed how to compute the minimal sets of compounds two
organisms need to exchange in order to be able to grow. Here the approach was qualitative
and was used to categorise interactions in terms of their type, but such a procedure could be
used also to define the action space in a metabolic game.

Finally, in order to construct a game, one needs to define the payoffs. This is arguably the
most crucial step since the payoff values will largely determine the predictions of the model.
There is a particular importance to not only qualitatively, but also quantitatively establish
accurate payoffs here since the hope is for metabolic game theory to match the predictive
ability of FBA. One example from the literature discussed in this paper highlights both the
importance and the difficulty in defining payoffs.

In several papers [143, 64, 116, 161], fermentation in the presence of oxygen is seen as a
classic "cheater" strategy. From an individual’s point of view, the inefficiency of fermentation
in terms of yield is not "seen": what the cell experiences as the consequence of its choice
is a growth rate exceeding that of its conspecifics. The result of a wasteful use of resources
is only felt at the population level, resulting in a lower sustainable cell density. This is
the (in)famous Prisoner’s Dilemma. However, when essentially the same situation has been
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discussed in the context of cancer |87, 15, 17|, a completely opposite view has been adopted.
Here, fermentation was seen as the cooperation strategy. For example, in [15]|, Archetti
described using fermentation as a contribution to a public good, the cost of the action being
the loss in yield compared to respiration. While it can be argued that the underlying biology is
very different for single-celled microbes and cancerous tissue, the discrepancy is still puzzling.
The problem of properly defining payoffs in the yield vs. rate dilemma is related to that of
normalisation in FBA [161]. In order to "ground" the flux vector, normalisation is needed. A
common choice for a numeraire is the uptake of a primary nutrient. The fact that maximisa-
tion of flux through the biomass reaction in FBA leads to a de facto maximisation of biomass
yield follows from this operation. Consider now the situation in ATP production. If the value
of the objective function in a standard FBA approach is taken as the payoff, respiration is a
better strategy than fermentation. However, as already discussed, a fermenter can outgrow its
respiring neighbour. From the perspective of evolutionary game theory, it is thus clearly the
winner, and its payoff should reflect this fact. However, if we simply switch the payoff from
yield to actual rate of biomass production, two fermenters would also obtain the highest payoff
together. This is because we have assumed in a simplified way that the external resources are
infinite, and hence two fermenters are able to sustain the increased uptake of nutrients they
achieve in the presence of respirators. In order to arrive at the Prisoner’s Dilemma payoff
structure, we need to take into account that if everyone uses fermentation, it can no longer
provide the benefit it has over respiration because of a depletion of nutrients.

The above example showcases the difficulty in appropriately quantifying the outcomes in a
metabolic game. Optimisation of an appropriate objective function can certainly accurately
identify "catastrophic" outcomes where growth is not possible, but when conclusions are
drawn as to which metabolic strategy would win in intra- or interspecific competition, caution
is warranted. One must make sure that the quantity under consideration is apt to decide the
winner(s) in an evolutionary sense.

The definition of the action space can also offer a way to quantify the payoffs. For example,
if different metabolic phenotypes are characterised by imported and exported metabolites,
benefits and costs can be calculated following [189]. This could open the way for a more
systematic definition of public goods games using only the knowledge obtained from metabolic
models.

3.4 Conclusion

In this section, I reviewed the literature on applying evolutionary game theory to the study of
microorganisms, with special attention paid to studies related to metabolic interactions, and
discussed the idea of a metabolic game: a game theoretical model of microbial metabolism
based on (genome-scale) metabolic reconstructions. Three topics can be distinguished as hav-
ing received notable attention: choice of pathway in ATP production known as the "yield ver-
sus rate" question, so-called public goods dilemmas where the production of costly metabolic
products yields benefits for individuals other than the producer, and nutrient choice and
cross-feeding where frequency-dependent selection dictates the choice of metabolic behaviour.
The most often used model is the matrix game, describing either the interaction between two
individuals or the interaction between an individual and its population. Frequently, famous
examples such as the Prisoner’s Dilemma are evoked to either explain observations, or to
present a particular biological system as an example of the famous game. Implicit in these
treatises is that since the equilibria of these games are known, should the payoff structure
follow that of the game, observed behaviour also corresponds to the equilibrium strategies.

Another popular model is the public goods, used to study systems such as the invertase pro-
duction in S. cerevisiae and the production of siderophores in some bacteria. While the simple
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model with linear benefits predicts extinction of producers in the absence of remedying factors
(for example, spatial structure), nonlinear benefits allow for the coexistence of cooperators
and cheaters. The public goods game is an appealing model for the study of microbes because
it very naturally incorporates the idea of a group of individuals interacting simultaneously
through diffusible molecules. However, quantifying benefit functions can be difficult, and the
analysis of public goods games with nonlinear benefits can be difficult.

Game theory has also been proposed as a possible way to improve the applicability of FBA.
This leads to the idea of a metabolic game. By constructing a game where actions are
defined as alternative metabolic behaviours, phenotypes can be predicted as the equilibria
of the game. It appears the matrix game, possible with more than two participants, is the
most promising model for the game. Two approaches have been proposed for defining the
action space: alternative pathways and excreted compounds. While considering pathways as
the actions seems conceptually very promising, current systematic definitions of a pathway
such as the concept of elementary modes can lead to a computationally intractable number
of distinct choices. In contrast, excreted compounds appears to be a more feasible way to
systematically discretising the space of possible metabolic behaviours.

Quantifying payoffs is another remaining challenge. For a straightforward application of the
framework, it would desirable to be able to determine payoffs in a manner independent of
the context. In other words, calculating payoffs should not require specific knowledge about
the particular interactions or, for example, modifications of the metabolic reconstructions.
However, knowledge about the costs and benefits of specific molecules should be considered
as an option, since this information can be derived from stoichiometric models of metabolism
as shown in [189]. The difficulty of accurately defining payoffs is showcased by the yield versus
rate question of ATP production, where different authors have considered respiration to be
alternatively a cooperative or a defective strategy.

It is my belief that suitable model systems are needed for the further development of metabolic
games. While the standard workhorses — E. coli and S. cerevisiae — are useful because they
are well understood and very high quality reconstructions are available, there is a risk of
developing the model to fit what is already known. Moreover, a true test for the metabolic
game model would be a system composed of two or more different species.

While I have focussed here on the application of game theory to specifically predict metabolic
behaviour, research involving microbes and game theory in general remains an interesting
topic. As has been suggested [81], it can be argued that the assumption of strict rationality
often underlying game theoretic analyses applies better to organisms below the level of complex
cognition. Furthermore, whereas in macroscopic animals accurately quantifying payoffs can
be next to impossible, in microorganisms it cappears much more feasible [134]. Microbes thus
present a very appealing source of model organisms for the study of evolutionary game theory.
Finally, besides games, other models from economics have generated interest in the field of
microbiology. The concept of comparative advantage [147] was thus applied to gene circuits in
[59]. The authors showed that when two bacterial species trade signalling molecules necessary
for survival, they both enjoy improved growth, as predicted by the theory of comparative ad-
vantage. In [172]|, Tasoff et al. used general equilibrium theory [179] to understand the
mutualistic exchange of compounds between micro-organisms. The authors argued that com-
parative advantage is a necessary condition for the exchange to take place. This theory can be
further extended to several organisms exchanging multiple compounds. Other concepts that
have been suggested for applications in the microbial context include avoidance of bad trading
partners, establishment of local business ties, diversification or specialisation, monopolisation
of a market, and elimination of competitors [188].
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4.1 Introduction

Xylella fastidiosa is a plant pathogenic bacterium, capable of infecting a wide variety of
commercially important crops such as almond, mulberry, peach, olive, citrus, and plum [171].
In grapevine ( Vitis vinifera), it causes the so-called Pierce’s disease (PD) which threatens the
future of viticulture, especially in highly impacted areas such as Southern California where it
has caused massive decline in vine acreage |66]. X. fastidiosa impedes the water transmission
inside the vine, causing leaves to wither and shoots to die, and significantly decreasing the
longevity of the plant.

X. fastidiosa is spread by specialised insect vectors [82]. The main vector responsible for its
transmission in grapevine is the glassy-winged sharpshooter (GWSS, Homalodisca vitripen-
nis). Adult GWSSs harbour the pathogen in their foregut and infect vines when feeding on
their xylem-sap.

So far, no cure has been found for a X. fastidiosa infection. However, several approaches have
been proposed for controlling the disease. These include control of the insect vectors, control
of non-vine host plants, alteration of cropping techniques, breeding or engineering resistance
to PD, control through avirulent strains of X. fastidiosa, control via other beneficial microbes,
bacteriophages, antagonistic bacteria, antibacterial substances, and other defence-stimulating
compounds.
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Figure 4.1 — A schematic description of the model.

Given the vast variety of different control strategies, and the threat posed by the PD, it
is of great interest to better understand the dynamics of the disease and the relevance of
different approaches to its control. To this end, we developed an epidemiological model of the
spread of X. fastidiosa in a grapevine population (i.e., a vineyard), and used it to estimate
the potential of different control strategies. The model is defined by a system of ordinary
differential equations (ODEs), and it is based on previously published models of malaria in
humans. We calculated analytically the disease-free equilibrium of the system and the basic
reproduction number and performed simulations with parameters derived from the literature
to study the endemic equilibria and their stability. To gauge the significance of different
parameter values and thus evaluate the potential of different control strategies, we performed
sensitivity analysis for the basic reproduction number and the endemic equilibrium.

This chapter is composed as follows. In Section 4.2, I first describe the model and present
the baseline parameter values chosen. I derive expressions for the disease-free equilibrium
and the basic reproduction number, and investigate the endemic equilibria through numerical
simulations. Lastly, I present the results of a sensitivity analysis performed for the basic
reproduction number and the endemic equilibrium, and discuss some of the implications for
the control of PD. The chapter ends with a conclusion.

The work presented here forms a part of a journal article titled "Pierce’s Disease of Grapevines:
A Review of Control Strategies and an Outline of an Epidemiological Model" with a much
larger scope that was published in Frontiers in Microbiology [103]. The idea for the model
came from Ifigeneia Kyrkou. I developed the model with her and performed all the analyses.
The biological interpretations of the results are due to Kyrkou.

4.2 Epidemiological model

4.2.1 Model description

The model was based on epidemiological models of malaria, most notably one put forth by
Chitnis [37]. It describes a vineyard under high PD pressure, with Southern California used
as the reference. A schematic description of the model is given in Figure 4.1.

The vine population is described by three state variables, Sy, Lp, and Ij, corresponding
respectively to healthy, latent, and symptomatic. Latent vines are ones that harbour the
pathogen and can transmit it to GWSSs, but that can still recover from the disease and do
not show any external symptoms. Symptomatic vines cannot recover, and due to external
symptoms will be removed by vineyard managers.
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Since the vine population is an artificial one, we consider it to have a maximum size Np
that the manager aims to maintain. This is modelled by missing vines, that is, the difference
between Npq and the total number of vines, denoted by N, being replaced at a constant
per capita rate v,. We assume that all new vines added to the population are free of the
pathogen.

Vines contract the disease from infected GWSSs probing on them. The per capita rate of
inoculation is a function of the number of probes per vine the current GWSS population is
performing per unit of time, the proportion of GWSSs that are infected, and the probability
of transmission per probe. It should be noted that this describes a fairly local situation, where
it is assumed that the total number of probes the GWSS population performs is distributed
evenly across all vines. In other words, we do not account for GWSS aggregation and swarm
behaviour, a factor that can significantly influence the disease spread.

A latent vine will recover at a constant rate v and progress to symptomatic at a constant rate
v.

Vines are being removed because of age and other diseases at a constant rate. There is an
additional removal rate for symptomatic vines, reflecting the fact that viticulture guidelines
dictate managers to remove vines that show symptoms of PD. Consequently, in the absence
of PD, vines have some stable population level Ny < Np.

The GWSS population is described by two state variables, Sy, and I,, which correspond
respectively to susceptible and infected. New GWSSs are born through a constant per capita
birth rate. We consider only the adult stage of the GWSS life cycle, since the nymphal stages
have minor or no effect on disease spread. Thus GWSSs are born as adults, and we adjust
the birth rate to account for egg and nymphal survival.

GWSSs contract the pathogen by feeding on infected vines, and harbour it for the rest of their
lives. We assume they probe plants at a constant rate . There is a preference parameter p
that controls which proportion of these probes are on grapevine. We assume the GWSS does
not contract the pathogen from other sources. Thus the per capita rate at which susceptible
GWSSs contract the pathogen is a function of the probing rate, GWSS preference to vine, the
probability of transmission per probe, and the proportion of vines that harbour the pathogen.
GWSSs die at a per capita death rate that consists of a constant, density-independent part
and a density-dependent part. The density-dependent death rate 11,5 is used to control the
equilibrium population size of the GWSS, which we set so that it amounts to approximately 2
insects per vine in the absence of disease for most of the analysis (values given in Table 4.3).
However, we also vary pi,5 to simulate situations with different vector densities to explore how
it affects the disease dynamics (see Figures 4.2 and 4.4). There is no pathogen-induced death
for GWSSs.

The model is given by the following set of differential equations:

s,

dt = ¢UNU - )\v(t)sv - fv(Nv)Sv (4.1)
I
ddt” = A (1)Sy — o (N, (4.2)
dsy,
T Yn(Nno — Np) — A(t)Sh + vLy — punSh (4.3)
dL
CT: = M(t)Sp — vLy — vLyp — pp Ly (4.4)
dl,
7: =vLp — (pn + prz)In (4.5)

Explanations for the state variables are given in Table 4.1 and for the parameters in Table
4.2.
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Total number of vines
Number of healthy vines
Number of latent vines
Number of symptomatic vines
Total number of GWSSs
Number of healthy GWSSs
Number of infected GWSSs

SRESERZ

Table 4.1 — Variables

y:

(O/%

Nhol

Hu1:

Huva:

fo(No) = plog + poo Ny
Hh'

Ha:

Ao(t) = ﬁ}wpUZ(Vth-i-Ih):
An(t) = 2pole.

%hv:
th:

Per capita birth rate of GWSSs, time ™!

Per capita replacement rate of (missing) vines, time™
The maximum number of vines, unit
Density-independent part of GWSS death rate, time™!
Density-dependent part of GWSS death rate, unit - time ™"
Per capita density-dependent death rate of GWSSs, time ™!
PD-independent death and removal rate of vines, time™!
PD-induced removal rate of vines, time ™

1

Per capita inoculation rate for GWSSs, time ™!

Per capita inoculation rate for vines time™!

Probability of transmission from vine to GWSS during a probe,
dimensionless

Probability of transmission from GWSS to vine during a probe,
dimensionless

Number of probes a GWSS performs on vines per unit of time,
dimensionless

Rate of progression from latent to symptomatic vine, time ™!

Rate of recovery for latent vines, time™!

Table 4.2 — Parameters
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Wy 0.32, 2.1 eggs per female per day, 30% of which survive
. 1/365, giving an average replacement time of 365 days
Npo: 10000
ty1: 0.01, giving an average lifetime of 100 days
fwo:  1.55- 1077, which leads to N/Njo = 2
pn: 1.1-107% giving an average lifetime of 25 years
iz 1/180, giving an expected time to be removed once symptomatic of 180 days

Bhv: 0.2
Bon: 0.35
o: 1.5, vector performs 5 probes, 30% of which are on vines

v: 1/120, average time of progressing 120 days
~: 0.0033, giving a 28% chance of recovery once a vine has become latent

Table 4.3 — Parameter values

To facilitate analysis, we set

U_NU7 v — vy h_Nh07 h_NhOa h_NhO
to arrive at an equivalent system in terms of fractional quantities:
% = )\v(t)(l - iv) - wviv (4'6)
dN,
dt = vav - fv(Nv)Nv (47)
dsh .
= V(L= sn = Iy —in) = An(t)sn + vl — pnsn (4.8)
dl
digl = M(t)sn — Yln — vl — pnln (4.9)
di .
=Vl (i + )i (4.10)

4.2.2 Baseline parameter values

Baseline parameter values were either taken directly from or derived based on the literature,
and chosen to reflect the conditions in Southern California. The values are given in Table 4.3.
Because we only consider the adult phase of the life cycle of GWSS, the birth rate was adjusted
to account for survival through the earlier life stages. During active oviposition, a female lays
on average 2.1 eggs per day [164] and 50% of the females lay eggs every day [168]. Of these
eggs, 30% survive [105]. This gives a per capita birth rate ¢, = 0.32 per day for GWSSs.
The density-independent part of the GWSS death rate was set to u,; = 1/100 per day
to reflect the longevity reported in [105]. The equilibrium size of the GWSS population is
controlled through the density-dependent part of the death rate. The baseline value was set
to obtain a stable population that gives a vector density of approximately 2 GWSSs per vine
(in the absence of PD). This was based on the GWSS densities reported in [102, 129, 130].
The pathogen transmission probabilities during a probe were set to Sx, = 0.2 for transmission
from vine to GWSS, and to 3, = 0.35 for transmission from GWSS to vine. Both probabilities
were obtained from [10].

We combined information on the number of probes from [153], GWSS feeding preferences
from [47, 122|, and the impact of environmental conditions from [28] to set the number of
probes a GWSS performs on vines per unit of time to o = 1.5.
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The PD-independent death and removal rate of vines was set to j, = 1.1-10~% per day to
give an expected lifespan of 25 years, reflecting Californian viticulture practices [11]. Growers
are advised to rogue symptomatic vines within a year from the appearance of symptoms [178],
and so we set the PD-induced removal rate to p, = 1/180 per day to give an expected removal
time of 6 months.

The per capita replacement rate of (missing) vines was set to 1y, = 1/365 per day so that on
average it takes one year to replace a missing vine, in accordance with the literature [11, 48].
It takes on average 120 days for a latent vine to become symptomatic [111], and we set the rate
of progression to v = 1/120 per day. The chance of recovery for latent vines was estimated
to be 28% [113, 50], and so the rate of recovery was set to v = 0.0033 per day accordingly.

4.2.3 Disease-free equilibrium

The total number of vectors N, is not influenced by the disease dynamics. It can be calculated

by

dN, —
V0 e Ny=0 or N YuTHur
dt Hv2
Clearly the non-trivial equilibrium N, exists if and only if ¢, > pu,, and is asymptotically
stable.
For the vine, in the absence of the disease the only dynamics are

dSh

o (1 — sp) — pnsh,

that is, the non-PD-related death and removal, and subsequent replacement. This gives the
disease-free equilibrium for vine
x p

P
which equals approximately 0.96 for the parameter values in Table 4.3.
Jointly, N and s; define the disease-free equilibrium of the system

S

zqr = (0, N, s3,0,0).

4.2.4 The basic reproduction number

The basic reproduction number Ry is a metric to determine whether an infection will spread
in a healthy population. There are different definitions and ways to calculate it, but in general
it tries to approximate the number of secondary infections one infected individual will cause
when it enters a fully susceptible population. Thus R < 1 would mean the disease will not
establish itself.

We follow [53], and calculate the basic reproduction number using

Ry =/ Kyn Ky,

where K, and K}, are respectively the number of vines one infected GWSS is expected to
infect and the number of GWSSs one infected vine is expected to transmit the pathogen to,
assuming a completely healthy population. The functions K, and K}, are given by

Uﬁvh
Kyp,=————
! Hoq + poo N
K 0 Bho Ny 1 v 0 Bho Ny 1
hv —

+ ;
SplNho YtV +pn Y+ v+ pn SENro ph Tt pa
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Figure 4.2 — The basic reproduction number Ry indicates whether the disease can establish

itself in a healthy population through an initial infection. Namely, when Ry < 1, the disease-

free equilibrium x4 is stable, and a small number of infected individuals will not cause endemic

disease. The plot shows how the vector density N;/Npo and the vector probing rate affect

Ry: the line is the isocline Ry = 1. The rest of the parameters are as given in Table 4.3.

that is, for the GWSS it is the product of its expected lifetime and the rate at which it
successfully inoculates a vine. For the vine, we first have the expected time spent as latent,
times the number of successful transmissions to a GWSS. The second summand is the same
for the symptomatic period, multiplied by the probability to transition from the latent stage
to the symptomatic.

Figure 4.2 shows how the basic reproduction number depends on the vector density N5/ Npg
and the probing rate o.

4.2.5 The endemic equilibria

An endemic equilibrium is a steady state solution in which the disease will persist in the
system. Unfortunately we cannot solve these equilibria analytically. Both numerical simula-
tions and previous results (see [37]) suggest the existence of a unique, asymptotically stable
endemic equilibrium when Ry > 1. We will not pursue a rigorous proof here.

The results of a numerical simulation of the system in Equations 4.1-4.5, using the baseline
parameter values, are shown in Figure 4.3. We see that starting from a healthy vine population
and a small number of infected GWSSs (S, = 10000, L, = 0,1, = 0,5, = 18000,I, =
2000) the system converges to an endemic equilibrium where a significant proportion of both
populations is infected.

Figure 4.4 shows how the disease prevalence depends on the vector density N;/Npo. We
ran numerical simulations of the fractional system (Equations 4.6-4.10) at different vector
densities, starting each run from a low initial disease prevalence (i, = 0.1, s, = 1) and until
the system had converged to an equilibrium. We can see that PD starts to become endemic
when the vector density exceeds 0.01.

4.2.6 Sensitivity analysis

In order to evaluate the significance of the model parameters, and thus estimate the potential
of different control strategies, we performed a sensitivity analysis following the approach
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Figure 4.3 — A numerical simulation of the model with parameter values given in Table 4.3.
The initial condition was S, = 10000, L, = 0,1, = 0,5, = 18000, 1, = 2000. Note the
difference in time scales.
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Ry
¥, 0.016
Yy -0.019
Npo  -0.50
ey -0.016
Moo -0.50
pn o 0.0088
by -0.29
/Bhv 0.5
/th 0.5
o 1
v -0.057
v -0.14

Table 4.4 — Sensitivity indices of the basic reproduction number Ry to the parameters, eval-
uated using the baseline parameter values in Table 4.3.

Ty N, Sp, Iy i
Uy | -0.77 1.0 -0.27 0.00079 0.0023
U, | 0.70 0.0 0.76 0.55 1.6
Npo | -0.0038 0.0 1.0 -0.0030 -0.0088
tyy | -0.00012  -0.032  0.032  -0.000096 -0.00028
Lo | -0.0038 -1.0 1.0 -0.0030 -0.0088
pn | -0.012 0.0 0.00025  -0.0056 -0.036
b | -0.014 0.0 0.048 0.088 -0.72
Bny | 0.77 0.0 -0.77 0.0023 0.0067
Bon | 0.0038 0.0 -1.0 0.0030 0.0088
o | 0.77 0.0 -1.8 0.0052 0.016
v | -0.27 0.0 -0.18 -0.81 0.56
v | -0.0011 0.0 0.28 -0.00083  -0.0025

Table 4.5 — Sensitivity indices of the endemic equilibrium to the model parameters, evaluated
using the baseline parameter values in Table 4.3.

detailed in [21]. The normalised sensitivity index of an output u to a parameter p is defined

as

Up 7

pou
udp

It measures how the output u changes when small perturbations are made to the value of p.
We calculated the sensitivity index for the basic reproductive number Ry and the endemic
equilibrium. The results are given in Tables 4.4 and 4.5. For Ry, since we have an analytical
expression for it, the sensitivity indices can be calculated directly. For the endemic equilib-
rium, we first solved a linear system for each parameter to find an expression for S, , and
then evaluated it at the numerically solved equilibrium values of the state variables.

The parameters with the most positive correlation with the basic reproduction number are the
number of probes a GWSS performs on a vine per unit of time (¢), and the two transmission
probabilities (B, and f,1,), meaning that a decrease in any of them would also significantly
decrease the value of Ry. Based on this, strategies related to these parameters could be im-
portant for curbing the emergence of the disease. Strategies related to o are those that restrict
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GWSS access to vines (for example, screen barriers protecting vineyards) and strategies that
make grapevine a less desirable food source for the insect (for example, coating the vines with
products that deter the GWSS). Strategies related to the transmission probabilities include
releasing major GWSS predators (this reduces the time an insect will spend feeding on a vine)
and prophylactic strategies that aim at increasing resistance to the X. fastidiosa pathogen.
The most negatively correlated parameters, the vineyard size (/NVp,o) and the density-dependent
part of the GWSS death rate (uy5) are both related to simply reducing the GWSS density in
the vineyard.

With regards to the endemic equilibrium, it should be pointed out that due to the way the
vine population was modelled, some of the results may appear counter-intuitive: because the
fractional quantities sy, I, and i;, are all defined with respect to the maximum number of
vines Ny, they do not sum to one. For this reason, it is possible for the sensitivity index of
a parameter to have the same sign for all three variables. This is the case for the per capita
replacement rate of vines (¢;,) which correlates positively with all the three state variables.
The simple explanation is that increasing the rate at which vines are being replaced increases
the overall occupation level of the vineyard.

Overall, it appears that the parameters with the most relevance for preventing and controlling
PD are o, By, Bon, and p,. This suggests that in areas where PD has not become endemic,
efforts should be concentrated at reducing GWSS preference for vine and the insect access
to vines. Where the disease has already been established, regular inspection and removal of
infected vines may help control the levels of disease.

4.3 Conclusion

In this chapter, I presented an epidemiological model of Pierce’s disease, a grapevine disease
caused by the bacterium X. fastidiosa. The model is to my knowledge the first fully realised
one to be published. Baseline parameter values were extracted from the literature to describe
conditions of high disease pressure in Southern California. I provided an analytical expression
for the disease-free equilibrium and the basic reproduction number Ry. Endemic equilibria
were studied through numerical simulations, leading to the conclusion that when Ry < 1, the
disease-free equilibrium is asymptotically stable, and when Ry > 1, it becomes unstable and
a unique, asymptotically stable endemic equilibrium emerges.

Sensitivity analysis of the basic reproduction number and the endemic equilibrium were per-
formed for the model parameters to evaluate the potential of different disease control strate-
gies. This led to the conclusion that the most promising approaches to disease prevention
and control are those targeted at reducing GWSS preference for and access to vines, and
increasing detection and removal of infected plants.
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Conclusion and Perspectives

In the Introduction, I offered two ways to summarise my PhD project: metabolic networks
and wine. In the end, perhaps the best characterisation would be mathematical modelling.
In this thesis, I have covered three different topics, two more closely related and one that
appears — at least at first glance — more distant. The underlying principle, however, is the
same: capturing nature into equations.

In Chapter 2, I presented the MOOMIN algorithm. It is a computational method that produces
a hypothesis of a metabolic shift using a metabolic network and the results of a differential
expression analysis. MOOMIN was implemented in MATLAB and the code is available at
github.com/htpusa/moomin. The algorithm relies on the assumption of a metabolic steady
state: zero net production of all internal metabolites. I presented two different ways to enforce
this assumption: one based solely on the topology of the hypergraph representation of the
network, and one that takes fully into account the reaction stoichiometry. The former can be
seen as an approximation of the latter. In the centre of the MOOMIN method is an optimisation
problem that aims to find the most likely metabolic shift given the gene expression data. I
proved that this problem is NP-hard and showed how it can be solved using Mixed-Integer
Linear Programming (MILP). The finalised MOOMIN method was applied to two real data sets
and the results were compared to those presented in the original accompanying publications.
We found that not only was MOOMIN able to replicate the previous findings but it also inferred
changes that were expected but not found in the gene expression data alone.

In addition to finding an optimum, MILP can be used to enumerate all optimal solutions.
Based on the examples presented in Chapter 2, it appears that there can be a multitude of
alternative optima (more than 1000 were found in all but one of the four cases). This poses a
potential problem: while a single optimum can be obtained in a reasonable time on a desktop
computer (at worst in a matter of minutes), finding each additional alternative optimum
usually takes at least as long. Thus if there are possibly thousands of different optima, an
exhaustive enumeration can be a lengthy procedure. The examples in Chapter 2 seem to
indicate that the alternative optima do not present qualitatively distinct solutions, but rather
a small subset of included reactions are responsible for their number. Hence in practice it
might not be necessary to attempt full enumeration. Indeed, all of the biological results
in Chapter 2 were obtained by simply looking at the first solution found. Nevertheless, the
possibility of enumerating all solutions is important since the existence of biologically relevant
alternative solutions cannot be discarded. To make this procedure more efficient, it would
be beneficial to develop a way to group alternative optima into equivalence classes to avoid
searching for trivially differing solutions. This might also have implications for other similar
methods.

The inspiration for MOOMIN came from previous methods developed in the team that deal
with metabolomics data. Similarly to comparing the gene expression levels as is done in differ-
ential expression analysis, metabolite concentrations can also be compared to gain knowledge
about changes in metabolism. These two different ’omics data are obviously closely related,
and so an interesting question is if they can be combined in a framework similar to MOOMIN.
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Ideally, we would have used data from the Microwine project to test MOOMIN. Unfortunately
none was available in time for this thesis. We are, however, currently working on two data sets
obtained through the Microwine network: one with Ahmad Zeidan at the industrial partner
Chr. Hansen, another with Witold Kot at the Aarhus University.

In Chapter 3, I explored the application of evolutionary game theory to microbial metabolism.
I reviewed the literature on the topic, with a focus on studies directly related to metabolic
networks. I then presented the idea of a metabolic game: a game theoretical model defined
based on one or several metabolic reconstructions. Such a model can be used similarly to
methods such as Flux Balance Analysis (FBA) to predict metabolic behaviour. Predicted
phenotypes are found among the solutions of the game, rather than by simple optimisation
as in FBA. With regard to how the game is actually defined, several approaches have been
proposed and adopted. In examples put forth by Schuster and Pfeiffer [143, 142, 161, 160, 157],
the different available actions were taken to be alternative pathways. In contrast, in a more
recent realisation of the idea, Zomorrodi and Segré’s [196] actions were defined in terms of
secreted molecules. While both approaches seem to be valid options, the latter might be
more suitable for use in a computational framework. Ideally, payoffs would be obtained using
constraint-based methods. However, when measures such as the flux through the biomass
reaction are used, attention should be paid to distinguishing between growth yield and growth
rate.

It remains to be seen whether the metabolic game can be formulated into a method of phe-
notype prediction that would match the simplicity of FBA. I believe that this development
would greatly benefit from suitable model organisms.

In Chapter 4, I presented an epidemiological model of the Xylella fastidiosa grapevine pathogen.
This was based on previously described models of malaria and defined as a system of ordinary
differential equations. I derived expressions for the disease-free equilibrium and the basic re-
production number, and presented the results of numerical simulations exploring the endemic
equilibria. The main motivation for developing the model was to assess the potential of differ-
ent control strategies. To this end, I performed a sensitivity analysis of the model parameters
for the basic reproduction number and the endemic equilibrium. This led us to conclude that
the most promising approaches to disease control are those related to reducing how much the
insect vector feeds on grapevine and to regular inspection and removal of infected vines.
There are several potential ways to extend the model presented in Chapter 4. The first is the
inclusion of seasonality: for the sake of simplicity, we modelled most processes with constant
rates. However, many factors of the system are affected by the yearly cycle, and this can
potentially influence the disease dynamics. Secondly, we did not consider spatial structure.
In reality, factors such as insect swarming behaviour and the topology of the vineyard can
influence the spread of the infection. Including the spatial component in the model could be
especially helpful in assessing and designing control strategies related to physical blocking,
such as screen barriers. Lastly, we based our model on the conditions in Southern California
and used baseline parameter values obtained from there. It would thus be interesting to see
how accurate the model is for other locales.
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