, VI.2.1-Les mémoires optiques réinscriptibles

, VI.2.2-Les mémoires résistives à changement de phase non-volatile PCRAM (Phase Change Random Access Memory)

, .3.1-Commutateur RF intégrant un système de chauffage indirect, p.45

, 2.3.2-Commutateur RF intégrant un système de chauffage direct, p.47

I. .. Références-chapitre,

I. I. Chapitre, Optimisation du commutateur à système de chauffage indirect, p.60

, thermiques à l'aide du logiciel COMSOL Multiphysics

, 4.3-Définition de la géométrie du dispositif et maillage

I. .. Références-chapitre,

I. Chapitre, Dispositifs intégrant une couche mince de PCM

, Le procédé de fabrication des commutateurs RF à base de GeTe

S. P. Natarajan, S. J. Cunningham, A. S. Morris, and D. R. Dereus, Silicon Monolithic Integrated Circuits in RF Systems (SiRF), pp.173-176, 2011.

I. C. Reines and G. M. Rebeiz, « A robust high power-handling ( #x003E; 10 W) RF MEMS switched capacitor, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), pp.764-767, 2011.

S. Leidich, S. Kurth, and T. Gessner, Continuously tunable RF-MEMS varactor for high power applications », in Microwave Symposium Digest, pp.1267-1270, 2008.

C. L. Goldsmith, Z. J. Yao, S. Eshelman, and E. D. Denniston, «Performance of low-loss RF MEMS capacitive switches», IEEE Microw. Guid.Wave Lett, vol.8, pp.269-271, 1998.

.. M. Gabriel, R. F. Rebeiz, and . Mems, Theory, design and technology, 2003.

V. K. Varadan, K. J. Vinoy, K. A. Jose, R. F. Mems, and T. Applications, , 2003.

D. Peroulis, S. P. Pacheco, K. Sarabandi, and L. P. Katehi, «Alleviating the Adverse Effects of Residual Stress in RF MEMS Switches», Microwave Conference European, pp.1-4, 2001.

E. Gatard, R. Sommet, P. Bouysse, R. Quere, M. Stanislawiak et al., Bureau, «High power S band limiter simulation with a physics-based accurate nonlinear PIN diode model», Microwave Integrated Circuit Conference, pp.72-75, 2007.

A. V. Bezruk, A. Y. Yushchenko, G. I. Ayzenshtat, V. G. Bozhkov, and V. I. Perfiliev, «The microwave power limiter based on pin-diodes for the frequency range of 100-110 GHz in form of waveguide MIC», Microwave and Telecommunication Technology (CriMiCo), 23rd International Crimean Conference, pp.74-75, 2013.

J. Zhang, S. W. Cheung, and T. I. Yuk, «A compact 6-bit phase shifter with high-power capacity based on composite right/left-handed transmission line», European Microwave Conference (EuMC), pp.437-440, 2010.

M. U. Nazir, M. Kashif, N. Ahsan, and Z. Y. Malik, «PIN diode modelling for simulation and development of high power limiter, digitally controlled phase shifter and high isolation SPDT switch», 10th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp.439-445, 2013.

K. Kobayashi, A. K. Oki, D. K. Umemoto, S. Claxton, and D. C. Streit, «GaAs HBT PIN diode attenuators and switches», IEEE-Microwave and Millimeter-Wave Monolithic Circuits Symposium, Digest of Papers, pp.151-154, 1993.

N. Camara, K. Zekentes, L. P. Romanov, A. V. Kirillov, M. S. Boltovets et al., «Microwave p-i-n diodes and switches based on 4H-SiC», IEEE Electron Device Lett, vol.27, issue.2, pp.108-110, 2006.

E. Alekseev, D. Pavlidis, J. Dickmann, and T. Hackbarth, W-band InGaAs/ InP PIN diode monolithic integrated switches, IEEE GaAS IC Symposium, 1996.

H. R. Malone, M. L. Matson, K. , and P. D. , High Power PIN Diode Switch Matrix, Microwave Symposium Digest, pp.173-175, 1974.

A. Gopinath, J. Rankin, and . Bruce, GaAs FET RF switches, IEEE Transactions on Electron Devices, vol.32, pp.1272-1278, 1985.

R. H. Caverly, Nonlinear properties of gallium arsenide and silicon FET-based RF and microwave switches, Circuits and Systems, 1998. ISCAS'98.Proceedings of the 1998 IEEE International Symposium on, pp.337-340, 1998.

W. Schockley, A unipolar field effect transistor, Proc.IRC, 1952, vol.40, pp.1365-1376

G. Massobrio and P. Antognetti, Semiconductor Device Modeling With SPICE, Second Edition, pp.131-148, 1993.

P. Brosselard, Conception, Réalisation et Caractérisation d'interrupteurs (thyristors et JFETs) haute tension (5kV) en carbure de silicium, p.181, 2004.

P. Friedrichs, H. Mitlehner, R. Schorner, K. Dohnke, R. D. Elpelt et al., The vertical silicon carbide JFET a fast and low solid state power switching device, Proc. Of

S. T. Sheppard, V. Lauer, W. Wondrak, and E. Niemann, High Temperature Performance of Implanted-Gate n-Channel JFETs in 6HSiC, Materials Science Forum, pp.1077-1080, 1997.

P. A. Ivanov, O. I. Kon'kov, A. O. Konstantinov, V. N. Panteleev, T. P. Samsonova et al., SiC Surface Engineering for High Voltage JFET Applications, Materials Science Forum, pp.1081-1084, 1997.

U. K. Mishra, . Parikh, . Primit, . Wu, and . Yi-feng, AlGaN/GaN HEMTs-an overview of device operation and applications, Proceedings of the IEEE, vol.90, pp.1022-1031, 2002.

T. Palacios, A. Chakraborty, and S. Rajan, High-power AlGaN/GaN HEMTs for Ka-band applications, IEEE Electron Device Letters, vol.26, issue.11, pp.781-783, 2005.

C. Sah, A New Semiconductor Tetrode-The Surface-Potential Controlled Transistor, Proc. IRE, vol.49, pp.1623-1634, 1961.

S. R. Hofstein and F. P. Heiman, The silicon insulated-gate field-effect transistor, Proc. IEEE, vol.51, pp.1190-1202, 1963.

S. Kang and Y. Leblebichi, CMOS Digital Integrated Circuits Analysis and Design, 2002.

K. Bernstein and N. J. Rohrer, SOI Circuit Design Concepts, 2000.

H. M. Manasevit and W. I. Simpson, Single-Crystal Silicon on a Sapphire Substrate, Journal of Applied Physics, vol.35, pp.1349-1351, 1964.

J. Colinge, Silicon-On-Insulator technology: Materials to VLSI, 2004.

M. Laurent and V. , Filière CMOS 0.1um sur substrat SOI : étude du temps de propagation de l'inverseur par simulation particulaire Monte Carlo, 1998.

J. Pelloie, Reliability issues in SOI technologies and circuits, Bipolar/BiCMOS Circuits and Technology Meeting, pp.151-155, 2003.

M. Uzunkol and G. M. Rebeiz, «140-220 GHz SPST and SPDT Switches in 45 nm CMOS SOI, IEEE Microw. Wirel.Compon.Lett, vol.22, pp.412-414, 2012.

S. Ye and C. A. Salama, «A 1 V, 1.9 GHz, low distortion dual-gate CMOS on SOI mixer», SOI Conference, pp.104-105, 2000.

S. Venkataraman, X. Zhu, Y. Zhang, and C. Hutchens, «SOI voltage controlled ring oscillator», IEEE-Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp.223-226, 2004.

B. Francois and P. Reynaert, «Highly Linear Fully Integrated Wideband RF PA for LTEAdvanced in 180-nm SOI», IEEE Trans. Microw. Theory Tech, vol.63, issue.2, pp.649-658, 2015.

V. Blaschke, A. Unikovski, and R. Zwingman, «An ultra-compact SP4T cellular antenna switch in 3.3V CMOS thick-film SOI», Wireless Symposium (IWS), pp.1-4, 2013.

V. Blaschke, R. Zwingman, P. Hurwitz, S. Chaudhry, and M. Racanelli, «A linear-throw SP6T antenna switch in 180nm CMOS thick-film SOI», IEEE-International Conference on Microwaves, Communications, Antennas and Electronics Systems (COMCAS), pp.1-4, 2011.

Z. Zhang, L. Huang, K. Yu, and G. Zhang, «A novel body self-biased technique for enhanced RF performance of a SP8T antenna switch in partially depleted CMOS-SOI technology», 12th IEEE-International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp.1-3, 2014.

J. D. Adam, L. E. Davis, G. F. Dionne, E. F. Schloemann, and S. N. , Stitzer, «Ferrite devices and materials», IEEE Trans. Microw. Theory Tech, vol.50, pp.721-737, 2002.

C. R. Boyd, Selected topics on reciprocal ferrite phase shifter design, IEEE MTT-S International Microwave Symposium Digest, 2000.

A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. , Widmer, «Reproducible switching effect in thin oxide films for memory applications», Appl. Phys. Lett, vol.77, issue.1, pp.139-141, 2000.

S. Choi, «A Comprehensive Study of the Resistive Switching Mechanism in -Structured RRAM», IEEE Trans. Electron Devices, vol.56, pp.3049-3054, 2009.

Z. Liu, J. Chou, S. Wei, J. Gan, and T. Yew, «Improved Resistive Switching of Textured ZnO Thin Films Grown on Ru Electrodes», vol.32, pp.1728-1730, 2011.

T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe et al., «Electronic transport in Ta2O5 resistive switch», Appl. Phys. Lett, vol.91, p.92110, 2007.

B. Chen, B. Gao, Y. H. Fu, R. Liu, L. Ma et al., «Co-existed unipolar and bipolar resistive switching effect of HfOxbased RRAM», IEEE Silicon Nanoelectronics Workshop, pp.1-2, 2012.

R. Waser and M. Aono, «Nanoionics-based resistive switching memories», vol.6, pp.833-840, 2007.

M. Hasan, R. Dong, D. S. Lee, D. J. Seong, H. J. Choi et al., «A materials approach to resistive switching memory oxides», J. Semicond. Technol. Sci, vol.8, issue.1, pp.66-79, 2008.

D. Adler, «Mechanisms for Metal-Nonmental Transitions in Transition-Metal Oxides and Sulfides», Rev. Mod. Phys, vol.40, pp.714-736, 1968.

N. F. Mott, Metal-insulator transition, Reviews of Modern Physics, vol.40, p.677, 1968.
URL : https://hal.archives-ouvertes.fr/jpa-00209009

J. Leroy, . Crunteanu, . Aurelian, and A. Bessaudou, High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes, Applied Physics Letters, vol.100, p.213507, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00720474

C. Hillman, J. B. Stupar, Z. Hacker, M. Griffith, and . Field, An Ultra-low Loss Millimeter-wave Solide State Switch Technology Based on the Metal-Insulator-Transition of Vanadium Dioxide, IEEE-MTT Microwave Symposium (lMS), pp. I,4, 2014.

F. J. Morin, Oxides which show metal-toinsolator transition at the neel temperature, Physical review letters, vol.3, pp.34-36, 1959.

G. Stefanovich, A. Pergament, and D. Stefanovich, Electrical switching and Mott transition in VO 2, J. Phys. Condens.Matter, vol.12, issue.41, p.8837, 2000.

A. Cavalleri, Femtosecond Structural Dynamics in VO2 during an Ultrafast SolidSolid Phase Transition, Phys. Rev. Lett, vol.87, issue.23, p.237401, 2001.

J. Sakai and M. Kurisu, Effect of pressure on the electric-field-induced resistance switching of VO2 planar-type junctions, Phys. Rev. B Condens. Matter Mater. Phys, vol.78, issue.3, 2008.

M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman et al., Photoinduced phase transition in VO2 nanocrystals: control of surfaceplasmon resonance ultrafast, Optics Letters, vol.30, issue.5, pp.558-560, 2005.

A. Perucchi, L. Baldassarre, E. Arcangeletti, D. D. Castro, P. Postorino et al., Infrared study of pressure-induced insulator to metal transitions in vanadium oxide compounds at the SISSI@Elettra beamline

, Infrared Physics & Technology, vol.51, issue.5, pp.440-442, 2008.

F. Dumas-bouchiat, C. Champeaux, A. Catherinot, A. Crunteanu, and P. Blondy, « rfmicrowave switches based on reversible semiconductor-metal transition of VO2 thin films synthesized by pulsed-laser deposition », Appl. Phys. Lett, vol.91, p.223505, 2007.

J. Givernaud and . Etude, conception et fabrication de dispositifs micro-ondes à base de matériaux intelligents type VO2, 2010.

J. Leroy, thèse de doctorat, « Caractéristiques électriques non-linéaires de la transition isolant-métal du dioxyde de vanadium (VO2) ; application à la conception de métamatériaux accordables dans le domaine térahertz, 2013.

A. Mennai, Conception et réalisation de commutateurs RF à base de matériaux à transition de phase (PTM) et à changement de phase (PCM), 2016.

A. Mennai, A. Bessaudou, . Cosset, and . Françoise, High cut-off frequency RF switches integrating a metal-insulator transition material, Microwave Symposium (IMS), pp.1-3, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01226178

V. Théry, A. Boulle, A. Crunteanu, J. C. Orlianges, A. Beaumont et al., Structural and electrical properties of large area epitaxial VO2 films grown by electron beam evaporation, Journal of Applied Physics, vol.121, p.55303, 2017.

S. R. Ovshinsky, «Reversible Electrical Switching Phenomena in Disordered Structures», Phys. Rev. Lett, vol.21, pp.1450-1453, 1968.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen et al., «Phase-change random access memory: A scalable technology», IBM J. Res. Dev, vol.52, issue.5, pp.465-479, 2008.

S. Raoux, . Xiong, . Feng, and M. Wuttig, Phase change materials and phase change memory, MRS bulletin, vol.39, pp.703-710, 2014.

A. T. Waterman, «On the positive ionization from certain hot salts, together with some observations on the electrical properties of molybdenite at high temperatures», Philos. Mag. Ser, vol.6, pp.225-247, 1917.

S. R. Ovshinsky and H. Fritzsche, Amorphous semiconductors for switching, memory, and imaging applications, IEEE Transactions on Electron Devices, vol.20, issue.2, pp.91-105, 1973.

S. R. Ovshinsky, «Reversible Electrical Switching Phenomena in Disordered Structures», Phys. Rev. Lett, vol.21, pp.1450-1453, 1968.

M. Hammadi, Contribution à l'intégration de la modélisation et la simulation multiphysique pour conception des systèmes mécatroniques, 2012.

. Comsol-ab, , 2009.

. Hakim and . Bensaidane, Modélisation de systèmes micro-électromécaniques (mems) en ré-gime dynamique par la méthode des éléments finis, 2006.

P. Cheng and . Wen, Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications, IEEE Transactions on microwave theory and techniques, vol.17, pp.110-115, 1969.

A. K. Sharma and T. Itoh, Special Issue on Modelling and Design of Coplanar Monolithic Microwave and Millimeter-Wave Integrated Circuits, IEEE Trans. Microwave Theory Tech, vol.41, issue.9, 1993.

J. L. Walker, A Survey of European Activity on Coplanar Waveguide, IEEE MTT-S Int. Microwave Symp. Dig, vol.2, pp.693-696, 1993.

T. Sporkmann, The Current State of the Art in Coplanar MMICs, Microwave Journal, vol.41, issue.8, pp.60-74, 1998.

T. Sporkmann, The Evolution of Coplanar MMICs over the past 30 Years, Microwave Journal, vol.41, issue.7, pp.96-111, 1998.

, Microwaves RF, vol.27, p.79, 1988.

J. Browne, Broadband Amp Drops through Noise Floor, Microwaves RF, vol.31, issue.2, pp.141-144, 1992.

J. Browne, Broadband Amps Sport coplanar Waveguide, Microwaves RF, vol.26, issue.2, pp.131-134, 1987.

J. Browne, Coplanar Circuits Arm Limiting Amp with 100-dB Gain, Microwaves RF, vol.29, issue.4, pp.213-220, 1990.

J. Browne, Coplanar MIC Amplifier Bridges 0.5 To 18.0 GHz, Microwaves RF, vol.26, issue.6, pp.194-195, 1987.

J. Browne, Coplanar Waveguide Supports Integrated Multiplier Systems, Microwaves RF, vol.28, issue.3, pp.137-138, 1989.

T. Matsumoto, . Murata, . Yuji, . Watanabe, and . Jun-ichi, Study of silicon-hydrogen bonds at an amorphous silicon/silicon nitride interface using infrared attenuated total reflection spectroscopy, Applied physics letters, vol.60, pp.1942-1944, 1992.

A. K. Sinha, H. J. Levinstein, and T. E. Smith, Reactive Plasma Deposited Si-N Films for MOS-LSI Passivation, Journal of the Electrochemical Society, vol.125, pp.601-608, 1978.

, DirectVacuum.com -Providing quality and affordable tools to facilitate cutting edge nanotechnology

M. Boulesbaa, Etude des propriétés des films minces de SiOxNy obtenus par PECVD, 2013.

E. Rimini, R. D. Bastiani, E. Carria, M. G. Grimaldi, G. Nicotra et al., Spinella, «Crystallization of sputtered-deposited and ion implanted amorphous Ge2Sb2Te5 thin films», J. Appl. Phys, vol.105, p.123502, 2009.

S. W. Ryu, J. H. Oh, B. J. Choi, S. Hwang, S. K. Hong et al., «SiO2 Incorporation Effects in Ge2Sb2Te5 Films Prepared by Magnetron Sputtering for Phase Change Random Access Memory Devices», Electrochem. Solid-State Lett, vol.9, pp.259-261, 2006.

E. Morales-sánchez, E. F. Prokhorov, J. González-hernández, and A. , Mendoza-Galván, «Structural, electric and kinetic parameters of ternary alloys of GeSbTe», Thin Solid Films, vol.471, pp.243-247, 2005.

S. Song, D. Yao, Z. Song, L. Gao, Z. Zhang et al., «Phase-change properties of GeSbTe thin films deposited by plasma-enchanced atomic layer depositon», Nanoscale Res. Lett, vol.10, 2015.

P. N?mec, V. Nazabal, A. Moreac, J. Gutwirth, L. Bene? et al., Frumar, «Amorphous and crystallized Ge-Sb-Te thin films deposited by pulsed laser: Local structure using Raman scattering spectroscopy », Mater. Chem. Phys, vol.136, issue.2-3, pp.935-941, 2012.

H. Lu, E. Thelander, J. W. Gerlach, U. Decker, B. Zhu et al., «Single Pulse Laser-Induced Phase Transitions of PLD-Deposited Ge2Sb2Te5 Films», Adv. Funct. Mater, vol.23, pp.3621-3627, 2013.

P. R. Willmott and J. R. Huber, «Pulsed laser vaporization and deposition», Rev. Mod. Phys, vol.72, issue.1, pp.315-328, 2000.
DOI : 10.1103/revmodphys.72.315

A. Ghalem, C. Guines, D. Passerieux, J. Orlianges, L. Huitema et al., Reversible, Fast Optical Switching of Phase Change Materials for Active Control of High-Frequency Functions, In : Microwave Symposium (IMS), pp.1-4, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01873382

Y. Shim, G. Hummel, and M. Rais-zadeh, «RF switches using phase change materials», IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), pp.237-240, 2013.
DOI : 10.1109/memsys.2013.6474221

M. Wang, Y. Shim, and M. Rais-zadeh, «A Low-Loss Directly Heated Two-Port RF Phase Change Switch», IEEE Electron Device Lett, vol.35, pp.491-493, 2014.

T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach et al., Wuttig, «Disorder-induced localization in crystalline phase-change materials», Nat. Mater, vol.10, pp.202-208, 2011.

A. Hariri, A. Crunteanu, C. Guines, C. Halleppe, D. Passerieux et al., Double-Port Double-Throw (DPDT) Switch Matrix Based on Phase Change Material (PCM) », European Microwave Conference (EuMC), pp.945-947, 2018.

I. A. Blech, «Electromigration in thin aluminum films on titanium nitride», J. Appl. Phys, vol.47, pp.1203-1208, 1976.

J. R. Black, «Electromigration-A brief survey and some recent results», IEEE Trans. Electron Devices, vol.16, pp.338-347, 1969.

V. A. Vashchenko and V. F. Sinkevitch, Physical Limitations of Semiconductor Devices, 2008.

J. Givernaud, Etude, conception et fabrication de dispositifs micro-ondes à base de matériaux intelligents type VO2, 2010.

A. Mennai, Conception et réalisation de commutateurs RF à base de matériaux à transition de phase (PTM) et à changement de phase (PCM), 2016.

J. Leroy, Caractéristiques électriques non-linéaires de la transition isolantmétal du dioxyde de vanadium (VO2): application à la conception de métamatériaux accordables dans le domaine térahertz, 2013.

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, «Comparative study between nanocrystalline powder and thin film of vanadium dioxide VO2: electrical and infrared properties», J. Phys. Chem. Solids, vol.62, pp.1229-1238, 2001.
DOI : 10.1016/s0022-3697(01)00013-0

M. Sambi, G. Sangiovanni, G. Granozzi, and F. Parmigiani, «Growth and the structure of epitaxial VO2 at the TiO2 (110) surface», Phys. Rev. B, vol.55, pp.7850-7858, 1997.

X. Wu, Y. Tao, L. Dong, Z. Wang, and Z. Hu, «Preparation of VO2 nanowires and their electric characterization», Mater. Res. Bull, vol.40, issue.2, pp.315-321, 2005.

J. Liu, Q. Li, T. Wang, D. Yu, and Y. Li, «Metastable vanadium dioxide nanobelts: hydrothermal synthesis, electrical transport, and magnetic properties», Angew. Chem. Int. Ed, vol.43, pp.5048-5052, 2004.

B. Chae, H. Kim, S. Yun, B. Kim, Y. Lee et al., «Highly oriented VO2 thin films prepared by sol-gel deposition», Electrochem. Solid-State Lett, vol.9, issue.1, pp.12-14, 2006.

M. B. Sahana, G. N. Subbanna, and S. A. , Shivashankar, «Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metalorganic chemical vapor deposition», J. Appl. Phys, vol.92, issue.11, pp.6495-6504, 2002.

F. Dumas-bouchiat, C. Champeaux, A. Catherinot, A. Crunteanu, and P. Blondy, «rf-microwave switches based on reversible semiconductor-metal transition of VO2 thin films synthesized by pulsed-laser deposition», Appl. Phys. Lett, vol.91, p.223505, 2007.

D. H. Kim and H. S. Kwok, «Pulsed laser deposition of VO2 thin films», Appl. Phys. Lett, vol.65, pp.3188-3190, 1994.

D. Ruzmetov, K. T. Zawilski, V. Narayanamurti, and S. Ramanathan, «Structural-functional property relationships in rf-sputtered vanadium dioxide thin films», J. Appl. Phys, vol.102, issue.11, p.113715, 2007.

F. C. Case, «Influence of ion beam parameters on the electrical and optical properties of ion-assisted reactively evaporated vanadium dioxide thin films», J. Vac. Sci. Technol. A, vol.5, pp.1762-1766, 1987.

J. Leroy, A. Bessaudou, F. Cosset, and A. , Crunteanu, «Structural, electrical and optical properties of thermochromic VO2 thin films obtained by reactive electron beam evaporation», Thin Solid Films, vol.520, pp.4823-4825, 2012.

R. E. Marvel, K. Appavoo, B. K. Choi, J. Nag, and R. F. , «Electron-beam deposition of vanadium dioxide thin films», Appl. Phys. A, vol.111, pp.975-981, 2012.

J. Nag and R. F. , «Synthesis of vanadium dioxide thin films and nanoparticles», J. Phys. Condens. Matter, vol.20, p.264016, 2008.

L. L. Fan, Y. F. Wu, C. Si, G. Q. Pan, C. W. Zou et al., «Synchrotron radiation study of VO2 crystal film epitaxial growth on sapphire substrate with intrinsic multi-domains», Appl. Phys. Lett, vol.102, issue.1, p.11604, 2013.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng et al., «Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films», J. Appl. Phys, vol.113, p.43707, 2013.

, Processus de fabrication du commutateur RF

?. La, pour ce processus les étapes de lithographie sont identiques à celles de la gravure humide (Figure 2.a), cependant lors de ce processus nous avons utilisé la gravure par RIE (Reactive Ion Etching). Le principe de fonctionnement de RIE consiste à réaliser les gravures des couches des matériaux sous vide par plasma en utilisant des différents types des gaz (SF6, CHF3, etc.). Elle est équipée d'une source laser qui

, Il faut nettoyer l'enceinte avec un plasma O2 et Ar (débit : 20 sccm) avant l'introduction des échantillons. La gravure des couches de GeTe et Si3N4 se fait par l'introduction du gaz SF6 (débit 20 sccm) avec le plasma dans l'enceinte. La vitesse de la gravure varie avec le type et l

?. Le-processus-de-lift-off,

, Dépôt d'une résine photosensible négative de type AZ5214E qui est ensuite, étalée à l'aide d'une "tournette" à 4000 tr/min pendant 40 secondes

, Insolation/ exposition (sans masque) totale du circuit pendant 20 secondes

, Développement de la résine sensibilisée dans une solution de micro-dé-veloppement, vol.26

, La dernière étape consiste à plonger l'échantillon dans un bain d'acétone permettant d'éliminer la matière déposée sur la couche de résine (sensibilisée) et de garder celle déposée directement sur le substrat

?. Publications, -. A. Communications-relatives-a-ce-travail-conférences-internationales-À-comité-de-lecture, A. Mennai, A. Hariri, P. Crunteanu et al., PTM and MEMS switches for future microwave and millimeter wave applications», 17th International Symposium on RF-MEMS and RF-MICROSYSTEMS (MEMSWAVE 2016), 2016.

A. Ghalem, A. Hariri, C. Guines, D. Passerieux, L. Huitema et al., Arrays of GeTe electrically activated RF switches, Advanced Materials and Processes for RF and THz Applications, p.2017, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01611519

. Ieee-mtt-, S International Microwave Workshop Series on, pp.1-3

-. Hariri, A. Crunteanu, C. Guines, C. Hallepee, D. Passerieux et al., Double-Port Double-Throw (DPDT) Switch Matrix Based on Phase Change Material (PCM), 48th European Microwave Conference (EuMC), pp.479-482, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01873496

A. Hariri, A. Crunteanu, C. Guines, C. Halleppe, D. Passerieux et al., Very Wide-Band and Compact VO 2 Based Switches, 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), pp.1-3, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01873415

-. A. Conférences-nationales-À-comité-de-lecture, A. Ghalem, C. Hariri, D. Guines, L. Passerieux et al., « Réalisation et caractérisations hyperfréquences de commutateurs RF intégrant des matériaux à changement de phase, 20èmes Journées Nationales Micro-Ondes JNM 2017, pp.16-19, 2017.