J. Yick, B. Mukherjee, and D. Ghosal, Wireless sensor network survey, Computer networks, vol.52, issue.12, pp.2292-2330, 2008.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor networks: a survey, Computer networks, vol.38, issue.4, pp.393-422, 2002.

I. F. Akyildiz, X. Wang, and W. Wang, Wireless mesh networks: a survey, Computer networks, vol.47, issue.4, pp.445-487, 2005.

D. Benyamina, A. Hafid, and M. Gendreau, Wireless mesh networks design-a survey, IEEE Communications surveys & tutorials, vol.14, issue.2, pp.299-310, 2012.

J. Zhang and V. Varadharajan, Wireless sensor network key management survey and taxonomy, Journal of Network and Computer Applications, vol.33, issue.2, pp.63-75, 2010.

H. Alemdar and C. Ersoy, Wireless sensor networks for healthcare: A survey, Computer Networks, vol.54, issue.15, pp.2688-2710, 2010.

L. M. Oliveira and J. J. Rodrigues, Wireless sensor networks: A survey on environmental monitoring, JCM, vol.6, issue.2, pp.143-151, 2011.

J. Y. Yu and P. H. Chong, A survey of clustering schemes for mobile ad hoc networks, IEEE Communications Surveys & Tutorials, vol.7, issue.1, pp.32-48, 2005.

S. Taneja and A. Kush, A survey of routing protocols in mobile ad hoc networks, International Journal of innovation, vol.1, issue.3, p.279, 2010.

, Sensor Applications for a Smarter World

J. Zheng and A. Jamalipour, Wireless sensor networks: a networking perspective, 2009.

G. P. Joshi, S. Y. Nam, and S. W. Kim, Cognitive radio wireless sensor networks: applications, challenges and research trends, Sensors, vol.13, issue.9, pp.11196-11228, 2013.

S. Misra, M. Reisslein, and G. Xue, A survey of multimedia streaming in wireless sensor networks, IEEE communications surveys & tutorials, vol.10, issue.4, 2008.

I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, Wireless multimedia sensor networks: Applications and testbeds, Proceedings of the IEEE, vol.96, issue.10, pp.1588-1605, 2008.

Y. Wu and M. Cardei, Multi-channel and cognitive radio approaches for wireless sensor networks, Computer Communications, vol.94, pp.30-45, 2016.

S. H. Bukhari, M. H. Rehmani, and S. Siraj, A survey of channel bonding for wireless networks and guidelines of channel bonding for futuristic cognitive radio sensor networks, IEEE Communications Surveys & Tutorials, vol.18, issue.2, pp.924-948, 2016.

G. Zhou, C. Huang, T. Yan, T. He, J. A. Stankovic et al., Mmsn: Multi-frequency media access control for wireless sensor networks, Infocom, vol.6, pp.1-13, 2006.

Y. Wu, J. A. Stankovic, T. He, and S. Lin, Realistic and efficient multichannel communications in wireless sensor networks, INFOCOM 2008. The 27th Conference on Computer Communications. IEEE, pp.1193-1201, 2008.

R. Diab, G. Chalhoub, and M. Misson, Enhanced multi-channel mac protocol for multi-hop wireless sensor networks, Wireless Days (WD), pp.1-6, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01876235

S. Roy, N. Darak, and A. Nasipuri, A game theoretic approach for channel selection in multi-channel wireless sensor networks, High-capacity Optical Networks and Emerging/Enabling Technologies (HONET), pp.145-149, 2014.

O. D. Incel, S. Dulman, and P. Jansen, Multi-channel support for dense wireless sensor networking, European Conference on Smart Sensing and Context, pp.1-14, 2006.

L. F. Van-hoesel and P. J. Havinga, A lightweight medium access protocol (lmac) for wireless sensor networks: Reducing preamble transmissions and transceiver state switches, 2004.

X. Li, D. Wang, J. Mcnair, and J. Chen, Residual energy aware channel assignment in cognitive radio sensor networks, Wireless Communications and Networking Conference (WCNC), pp.398-403, 2011.

L. Stabellini, Energy-aware channel selection for cognitive wireless sensor networks, Wireless Communication Systems (ISWCS), pp.892-896, 2010.

A. Attar, H. Tang, A. V. Vasilakos, F. R. Yu, and V. C. Leung, A survey of security challenges in cognitive radio networks: Solutions and future research directions, Proceedings of the IEEE, vol.100, issue.12, pp.3172-3186, 2012.

K. S. Nanavati, Channel bonding/loading for TV white spaces in IEEE 802.11 af, 2012.

V. Valenta, R. Mar?álek, G. Baudoin, M. Villegas, M. Suarez et al., Survey on spectrum utilization in europe: Measurements, analyses and observations, Cognitive Radio Oriented Wireless Networks & Communications (CROWNCOM), 2010 Proceedings of the Fifth International Conference on, pp.1-5, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00492021

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine learning: An artificial intelligence approach, 2013.

M. A. Alsheikh, S. Lin, D. Niyato, and H. Tan, Machine learning in wireless sensor networks: Algorithms, strategies, and applications, IEEE Communications Surveys & Tutorials, vol.16, issue.4, pp.1996-2018, 2014.

A. Rooshenas, H. R. Rabiee, A. Movaghar, and M. Y. Naderi, Reducing the data transmission in wireless sensor networks using the principal component analysis, Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp.133-138, 2010.

R. Masiero, G. Quer, M. Rossi, and M. Zorzi, A bayesian analysis of compressive sensing data recovery in wireless sensor networks, Workshops, pp.1-6, 2009.

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, Internet of things (iot): A vision, architectural elements, and future directions, Future Generation Computer Systems, vol.29, issue.7, pp.1645-1660, 2013.

M. Kantardzic, Data mining: concepts, models, methods, and algorithms, 2011.

Y. Mostofi, A. Gonzalez-ruiz, A. Gaffarkhah, and D. Li, Characterization and modeling of wireless channels for networked robotic and control systems-a comprehensive overview, IEEE/RSJ International Conference on, pp.4849-4854, 2009.

P. Domingos, A few useful things to know about machine learning, Communications of the ACM, vol.55, issue.10, pp.78-87, 2012.

S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, Supervised machine learning: A review of classification techniques, 2007.

B. Scholkopf, K. Sung, C. J. Burges, F. Girosi, P. Niyogi et al., Comparing support vector machines with gaussian kernels to radial basis function classifiers, IEEE transactions on Signal Processing, vol.45, issue.11, pp.2758-2765, 1997.

J. H. Min and Y. Lee, Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters, Expert systems with applications, vol.28, issue.4, pp.603-614, 2005.

E. F. Flushing, J. Nagi, and G. A. Di-caro, A mobility-assisted protocol for supervised learning of link quality estimates in wireless networks, Computing, Networking and Communications (ICNC), 2012 International Conference on, pp.137-143, 2012.

M. Sha, R. Dor, G. Hackmann, C. Lu, T. Kim et al., Selfadapting mac layer for wireless sensor networks, Real-Time Systems Symposium (RTSS), 2013 IEEE 34th, pp.192-201, 2013.

W. S. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The bulletin of mathematical biophysics, vol.5, issue.4, pp.115-133, 1943.

Y. Bengio, Learning deep architectures for ai, Foundations and trends® in Machine Learning, vol.2, pp.1-127, 2009.

K. S. Narendra and K. Parthasarathy, Identification and control of dynamical systems using neural networks, IEEE Transactions on neural networks, vol.1, issue.1, pp.4-27, 1990.

F. Lewis, S. Jagannathan, and A. Yesildirak, Neural network control of robot manipulators and non-linear systems, 1998.

Q. Wang, F. Yang, Q. Ge, and Q. Yang, A sensor network modeling and fault detection method for large wind farms by using neural networks, 11th IEEE International Conference on, pp.308-313, 2014.

A. I. Moustapha and R. R. Selmic, Wireless sensor network modeling using modified recurrent neural networks: Application to fault detection, IEEE Transactions on Instrumentation and Measurement, vol.57, issue.5, pp.981-988, 2008.

T. Mikolov, M. Karafiát, L. Burget, J. Cernock`cernock`y, and S. Khudanpur, Recurrent neural network based language model, Interspeech, vol.2, p.3, 2010.

G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, science, vol.313, issue.5786, pp.504-507, 2006.

H. He, Z. Zhu, and E. Makinen, A neural network model to minimize the connected dominating set for self-configuration of wireless sensor networks, IEEE Transactions on Neural Networks, vol.20, issue.6, pp.973-982, 2009.

S. Haykin and N. Network, A comprehensive foundation, Neural Networks, vol.2, p.41, 2004.

Y. Shen and M. Wang, Broadcast scheduling in wireless sensor networks using fuzzy hopfield neural network, Expert systems with applications, vol.34, pp.900-907, 2008.

F. Jolai and A. Ghanbari, Integrating data transformation techniques with hopfield neural networks for solving travelling salesman problem, Expert Systems with Applications, vol.37, issue.7, pp.5331-5335, 2010.

P. C. Prasad and A. Beg, Investigating data preprocessing methods for circuit complexity models, Expert Systems with Applications, vol.36, issue.1, pp.519-526, 2009.

P. Wang and T. Wang, Adaptive routing for sensor networks using reinforcement learning, Computer and Information Technology, 2006. CIT'06. The Sixth IEEE International Conference on, pp.219-219, 2006.

K. Shah and M. Kumar, Distributed independent reinforcement learning (dirl) approach to resource management in wireless sensor networks, MASS 2007. IEEE International Conference on, pp.1-9, 2007.

T. Liu and A. E. Cerpa, Data-driven link quality prediction using link features, ACM Transactions on Sensor Networks (TOSN), vol.10, issue.2, p.37, 2014.

H. Jiang and J. O. Hallstrom, Fast, accurate event classification on resource-lean embedded sensors, European Conference on Wireless Sensor Networks, pp.65-80, 2011.

R. V. Kulkarni, A. Forster, and G. K. Venayagamoorthy, Computational intelligence in wireless sensor networks: A survey, IEEE communications surveys & tutorials, vol.13, issue.1, pp.68-96, 2011.

D. Feldman, M. Schmidt, and C. Sohler, Turning big data into tiny data: Constant-size coresets for k-means, pca and projective clustering, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.1434-1453, 2013.

S. V. Macua, P. Belanovic, and S. Zazo, Consensus-based distributed principal component analysis in wireless sensor networks, Signal Processing Advances in Wireless Communications (SPAWC), pp.1-5, 2010.

A. Bertrand and M. Moonen, Distributed adaptive estimation of covariance matrix eigenvectors in wireless sensor networks with application to distributed pca, Signal Processing, vol.104, pp.120-135, 2014.

A. Panousopoulou, M. Azkune, and P. Tsakalides, Feature selection for performance characterization in multi-hop wireless sensor networks, Ad Hoc Networks, vol.49, pp.70-89, 2016.

A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: a review, ACM computing surveys (CSUR), vol.31, issue.3, pp.264-323, 1999.

P. Sasikumar and S. Khara, K-means clustering in wireless sensor networks, Computational intelligence and communication networks (CICN), 2012 fourth international conference on, pp.140-144, 2012.

D. Hoang, R. Kumar, and S. Panda, Fuzzy c-means clustering protocol for wireless sensor networks, Industrial Electronics (ISIE), 2010 IEEE International Symposium on, pp.3477-3482, 2010.

K. C. Zikidis and A. V. Vasilakos, Asafes2: A novel, neuro-fuzzy architecture for fuzzy computing, based on functional reasoning, Fuzzy Sets and Systems, vol.83, issue.1, pp.63-84, 1996.

W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, Energyefficient communication protocol for wireless microsensor networks, System sciences, 2000. Proceedings of the 33rd annual Hawaii international conference on, p.10, 2000.

G. Ran, H. Zhang, and S. Gong, Improving on leach protocol of wireless sensor networks using fuzzy logic, Journal of Information & Computational Science, vol.7, issue.3, pp.767-775, 2010.

H. Taheri, P. Neamatollahi, O. M. Younis, S. Naghibzadeh, and M. H. Yaghmaee, An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic, Ad Hoc Networks, vol.10, issue.7, pp.1469-1481, 2012.

P. Nayak and A. Devulapalli, A fuzzy logic-based clustering algorithm for wsn to extend the network lifetime, IEEE sensors journal, vol.16, issue.1, pp.137-144, 2016.

C. Sonmez, O. D. Incel, S. Isik, M. Y. Donmez, and C. Ersoy, Fuzzy-based congestion control for wireless multimedia sensor networks, EURASIP Journal on Wireless Communications and Networking, vol.2014, issue.1, pp.1-17, 2014.

H. Jiang, Y. Sun, R. Sun, and H. Xu, Fuzzy-logic-based energy optimized routing for wireless sensor networks, International Journal of Distributed Sensor Networks, vol.2013, 2013.

Z. Liu and I. Elhanany, Rl-mac: a reinforcement learning based mac protocol for wireless sensor networks, International Journal of Sensor Networks, vol.1, issue.3-4, pp.117-124, 2006.

S. Galzarano, A. Liotta, and G. Fortino, Ql-mac: a q-learning based mac for wireless sensor networks, International Conference on Algorithms and Architectures for Parallel Processing, pp.267-275, 2013.

M. Mihaylov, Y. Borgne, K. Tuyls, and A. Nowé, Decentralised reinforcement learning for energy-efficient scheduling in wireless sensor networks, International Journal of Communication Networks and Distributed Systems, vol.9, issue.3-4, pp.207-224, 2012.

A. Arya, A. Malik, and R. Garg, Reinforcement learning based routing protocols in wsns: A survey

R. Arroyo-valles, R. Alaiz-rodriguez, A. Guerrero-curieses, and J. Cidsueiro, Q-probabilistic routing in wireless sensor networks, Intelligent Sensors, Sensor Networks and Information, pp.1-6, 2007.

M. Mihaylov, K. Tuyls, and A. Nowé, Decentralized learning in wireless sensor networks, International Workshop on Adaptive and Learning Agents, pp.60-73, 2009.

L. Tran-thanh, A. Rogers, and N. R. Jennings, Long-term information collection with energy harvesting wireless sensors: a multi-armed bandit based approach, Autonomous Agents and Multi-Agent Systems, vol.25, issue.2, pp.352-394, 2012.

M. I. Khan and B. Rinner, Resource coordination in wireless sensor networks by cooperative reinforcement learning, Pervasive Computing and Communications Workshops (PERCOM Workshops, pp.895-900, 2012.

M. I. Khan and B. Rinner, Energy-aware task scheduling in wireless sensor networks based on cooperative reinforcement learning, 2014 IEEE International Conference on Communications Workshops (ICC), pp.871-877, 2014.

S. Shamshirband, A. Patel, N. B. Anuar, M. L. Kiah, and A. Abraham, Cooperative game theoretic approach using fuzzy q-learning for detecting and preventing intrusions in wireless sensor networks, Engineering Applications of Artificial Intelligence, vol.32, pp.228-241, 2014.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, vol.1, 1998.

M. Mihaylov, Y. Borgne, K. Tuyls, and A. Nowé, Reinforcement learning for self-organizing wake-up scheduling in wireless sensor networks, International Conference on Agents and Artificial Intelligence, pp.382-396, 2011.

S. N. Das and S. Misra, Correlation-aware cross-layer design for network management of wireless sensor networks, IET Wireless Sensor Systems, vol.5, issue.6, pp.263-270, 2015.

Y. Chu, P. D. Mitchell, and D. Grace, Aloha and q-learning based medium access control for wireless sensor networks, 2012 International Symposium on Wireless Communication Systems (ISWCS), pp.511-515, 2012.

S. Kosunalp, Y. Chu, P. D. Mitchell, D. Grace, and T. Clarke, Use of qlearning approaches for practical medium access control in wireless sensor networks, Engineering Applications of Artificial Intelligence, vol.55, pp.146-154, 2016.

J. Chen, Q. Yu, B. Chai, Y. Sun, Y. Fan et al., Dynamic channel assignment for wireless sensor networks: A regret matching based approach, IEEE Transactions on Parallel and Distributed Systems, vol.26, issue.1, pp.95-106, 2015.

J. T. Adams, An introduction to ieee std 802.15. 4, Aerospace Conference, p.8, 2006.

J. Zhao and R. Govindan, Understanding packet delivery performance in dense wireless sensor networks, Proceedings of the 1st international conference on Embedded networked sensor systems, pp.1-13, 2003.

M. Zuniga and B. Krishnamachari, Analyzing the transitional region in low power wireless links, First Annual IEEE Communications Society Conference on, pp.517-526, 2004.

G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic, Impact of radio irregularity on wireless sensor networks, Proceedings of the 2nd international conference on Mobile systems, applications, and services, pp.125-138, 2004.

D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan et al., Experimental evaluation of wireless simulation assumptions, Proceedings of the 7th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems, pp.78-82, 2004.

P. Park, P. D. Marco, P. Soldati, C. Fischione, and K. H. Johansson, A generalized markov chain model for effective analysis of slotted ieee 802.15. 4, 2009 IEEE 6th International Conference on Mobile Adhoc and Sensor Systems, pp.130-139, 2009.

D. Striccoli, G. Boggia, and L. A. Grieco, A markov model for characterizing ieee 802.15. 4 mac layer in noisy environments, IEEE Transactions on Industrial Electronics, vol.62, issue.8, pp.5133-5142, 2015.

D. Mahmood, Z. Khan, U. Qasim, M. U. Naru, S. Mukhtar et al., Analyzing and evaluating contention access period of slotted csma/ca for ieee802. 15.4, Procedia Computer Science, vol.34, pp.204-211, 2014.

P. D. Marco, C. Fischione, F. Santucci, and K. H. Johansson, Modeling ieee 802.15. 4 networks over fading channels, IEEE Transactions on Wireless Communications, vol.13, issue.10, pp.5366-5381, 2014.

M. Zayani, V. Gauthier, and D. Zeghlache, A joint model for ieee 802.15. 4 physical and medium access control layers, 2011 7th International Wireless Communications and Mobile Computing Conference, pp.814-819, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00716588

S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, 2012.

D. De-guglielmo, F. Restuccia, G. Anastasi, M. Conti, and S. Das, Accurate and efficient modeling of 802.15. 4 unslotted csma/ca through event chains computation, 2016.

C. T. Kone, A. Hafid, and M. Boushaba, Performance management of ieee 802.15. 4 wireless sensor network for precision agriculture, IEEE Sensors Journal, vol.15, issue.10, pp.5734-5747, 2015.

M. Z. Zamalloa and B. Krishnamachari, An analysis of unreliability and asymmetry in low-power wireless links, ACM Transactions on Sensor Networks (TOSN), vol.3, issue.2, p.7, 2007.

M. Holland, T. Wang, B. Tavli, A. Seyedi, and W. Heinzelman, Optimizing physical-layer parameters for wireless sensor networks, ACM Transactions on Sensor Networks (TOSN), vol.7, issue.4, p.28, 2011.

T. Wang, W. Heinzelman, and A. Seyedi, Link energy minimization for wireless networks, Ad Hoc Networks, vol.10, issue.3, pp.569-585, 2012.

J. G. Proakis and S. Masoud, Digital Communications, 2008.

S. Pollin, M. Ergen, S. C. Ergen, B. Bougard, L. Van-der-perre et al., Performance analysis of slotted carrier sense ieee 802.15. 4 medium access layer, IEEE Transactions on wireless communications, vol.7, issue.9, pp.3359-3371, 2008.

Z. Y. Liu, D. Dragomirescu, G. D. Costa, and T. Monteil, A Stack Crosslayer Analytical Model for CSMA/CA IEEE 802.15.4 Networks, ICC International Conference on Internet of Things, Data and Cloud Computing, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02083163

R. Soua and P. Minet, Multichannel assignment protocols in wireless sensor networks: A comprehensive survey, Pervasive and Mobile Computing, vol.16, pp.2-21, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01094493

T. Instruments, Cc2520 datasheet: 2.4ghz ieee 802.15.4/zigbee rf transceiver, 2007.

M. Cardei and A. Mihnea, Channel assignment in cognitive wireless sensor networks, Computing, Networking and Communications (ICNC), 2014 International Conference on, pp.588-593, 2014.

Y. Wu and M. Cardei, Robust topology using reconfigurable radios in wireless sensor networks, Mobile Ad-hoc and Sensor Networks (MSN), pp.38-45, 2014.

Y. Kim, H. Shin, and H. Cha, Y-mac: An energy-efficient multi-channel mac protocol for dense wireless sensor networks, Proceedings of the 7th international conference on Information processing in sensor networks, pp.53-63, 2008.

B. Jang, J. B. Lim, and M. L. Sichitiu, An asynchronous scheduled mac protocol for wireless sensor networks, Computer Networks, vol.57, issue.1, pp.85-98, 2013.

L. Tang, Y. Sun, O. Gurewitz, and D. B. Johnson, Em-mac: a dynamic multichannel energy-efficient mac protocol for wireless sensor networks, Proceedings of the Twelfth ACM International Symposium on Mobile Ad Hoc Networking and Computing, p.23, 2011.

Q. Yu, J. Chen, Y. Sun, Y. Fan, and X. Shen, Regret matching based channel assignment for wireless sensor networks, Communications (ICC), 2010 IEEE International Conference on, pp.1-5, 2010.

L. Choong, Multi-channel ieee 802.15. 4 packet capture using software defined radio, UCLA Networked & Embedded Sensing Lab, vol.3, 2009.

C. Sarr, C. Chaudet, G. Chelius, and I. G. Lassous, Bandwidth estimation for IEEE 802.11-based ad hoc networks, IEEE Transactions on Mobile Computing, vol.7, issue.10, pp.1228-1241, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00384832

T. Wang, W. Heinzelman, and A. Seyedi, Link energy minimization for wireless networks, Ad Hoc Networks, vol.10, issue.3, pp.569-585, 2012.

N. V. Nguyen, I. Guerin-lassous, V. Moraru, and C. Sarr, Retransmission-based available bandwidth estimation in IEEE 802.11-based multihop wireless networks, Proceedings of the 14th ACM international conference on Modeling, analysis and simulation of wireless and mobile systems, pp.377-384, 2011.

C. Sonmez, O. D. Incel, S. Isik, M. Y. Donmez, and C. Ersoy, Fuzzybased Congestion Control for Wireless Multimedia Sensor Networks, EURASIP Journal on Wireless Communications and Networking, vol.63, pp.1-17, 2014.

S. Pollin, M. Ergen, S. Ergen, B. Bougard, F. Catthoor et al., Performance Analysis of Slotted Carrier Sense IEEE 802, vol.15

. Acknowledged-uplink-transmissions, 2008 IEEE Wireless Communications and Networking Conference, vol.7, pp.3359-3371, 2008.

Z. Liu, D. Dragomirescu, G. D. Costa, and T. Monteil, Dynamic multichannel allocation mechanism for wireless multimedia sensor networks, Wireless Days (WD), pp.1-6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01493785

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou et al., Playing atari with deep reinforcement learning, 2013.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman et al., Openai gym, 2016.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen et al., TensorFlow: Large-scale machine learning on heterogeneous systems

R. Al-rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau et al., Theano: A python framework for fast computation of mathematical expressions, 2016.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, 2011.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness et al., Human-level control through deep reinforcement learning, Nature, vol.518, issue.7540, pp.529-533, 2015.

H. Van-hasselt, A. Guez, and D. Silver, Deep reinforcement learning with double q-learning, AAAI, pp.2094-2100, 2016.

F. Chollet, , 2015.

Y. A. Lecun, L. Bottou, G. B. Orr, and K. Müller, Efficient backprop, pp.9-48, 2012.

T. Tieleman and G. Hinton, Lecture 6.5-rmsprop, coursera: Neural networks for machine learning, 2012.

D. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.

M. Plappert, keras-rl, 2016.

R. Sebastian and . Mlxtend, , 2016.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

T. Chen and C. Guestrin, Xgboost: A scalable tree boosting system, Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.785-794, 2016.

D. C. Tucker and G. A. Tagliarini, Prototyping with gnu radio and the usrp-where to begin, pp.50-54, 2009.

B. Bloessl, C. Leitner, F. Dressler, and C. Sommer, A gnu radio-based ieee 802.15. 4 testbed, 12. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze (FGSN 2013), pp.37-40, 2013.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap et al., Asynchronous methods for deep reinforcement learning, International Conference on Machine Learning, 2016.

H. B. Mcmahan, G. Holt, D. Sculley, M. Young, D. Ebner et al., Ad click prediction: a view from the trenches, Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.1222-1230, 2013.

J. Pardo, F. Zamora-martínez, and P. Botella-rocamora, Online learning algorithm for time series forecasting suitable for low cost wireless sensor networks nodes, Sensors, vol.15, issue.4, pp.9277-9304, 2015.