R. R. Conry, Encyclopedia of Inorganic Chemistry, 2006.

D. Huster and W. Disease, Best Pract. Res., Clin. Gastroenterol, vol.24, pp.531-539, 2010.

M. Tegoni, D. Valensin, L. Toso, and M. Remelli, Copper Chelators: Chemical Properties and Bio-medical Applications, Curr. Med. Chem, vol.21, pp.3785-3818, 2014.

P. Delangle and E. Mintz, Chelation therapy in Wilson's disease: from D-penicillamine to the design of selective bioinspired intracellular Cu(I) chelators, Dalton Trans, vol.41, pp.6359-6370, 2012.

R. G. Pearson, Hard and Soft Acids and Bases, J. Am. Chem. Soc, vol.85, pp.3533-3539, 1963.

K. A. Koch, M. M. Peña, and D. J. Thiele, Copper-binding motifs in catalysis, transport, detoxification and signaling, Chemistry & Biology, vol.4, pp.549-560, 1997.

S. Lutsenko, Copper trafficking to the secretory pathway, Metallomics, vol.8, pp.840-852, 2016.

J. Jiang, I. A. Nadas, M. A. Kim, and K. J. Franz, A Mets Motif Peptide Found in Copper Transport Proteins Selectively Binds Cu(I) with Methionine-Only Coordination, Inorg. Chem, vol.44, pp.9787-9794, 2005.

M. J. Pushie, K. Shaw, K. J. Franz, J. Shearer, and K. L. Haas, Model Peptide Studies Reveal a Mixed Histidine-Methionine Cu(I) Binding Site at the N-Terminus of Human Copper Transporter 1, Inorg. Chem, vol.54, pp.8544-8551, 2015.

K. L. Haas, A. B. Putterman, D. R. White, D. J. Thiele, and K. J. Franz, Model Peptides Provide New Insights into the Role of Histidine Residues as Potential Ligands in Human Cellular Copper Acquisition via Ctr1, J. Am. Chem. Soc, vol.133, pp.4427-4437, 2011.

Z. Xiao, F. Loughlin, G. N. George, G. J. Howlett, and A. G. Wedd, C-Terminal Domain of the Membrane Copper Transporter Ctr1 from Saccharomyces cerevisiae Binds Four Cu(I) Ions as a Cuprous-Thiolate Polynuclear Cluster: Sub-femtomolar Cu(I) Affinity of Three Proteins Involved in Copper Trafficking, J. Am. Chem. Soc, vol.126, pp.3081-3090, 2004.

P. Palumaa, L. Kangur, A. Voronova, and R. Sillard, Metal-binding mechanism of Cox17, a copper chaperone for cytochrome c oxidase, Biochem. J, vol.382, p.307, 2004.

A. Voronova, W. Meyer-klaucke, T. Meyer, A. Rompel, B. Krebs et al., Oxidative switches in functioning of mammalian copper chaperone Cox17, Biochem. J, p.139, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478831

F. Arnesano, L. Banci, I. Bertini, D. L. Huffman, and T. V. O'halloran, Solution Structure of the Cu(I) and Apo Forms of the Yeast Metallochaperone, vol.40, pp.1528-1539, 2001.

R. A. Pufahl, C. P. Singer, K. L. Peariso, S. J. Lin, P. J. Schmidt et al., Metal Ion Chaperone Function of the Soluble Cu(I) Receptor Atx1, Science, vol.278, p.853, 1997.

Z. Xiao and A. G. Wedd, The challenges of determining metal-protein affinities, Natural Product Reports, vol.27, pp.768-789, 2010.

M. ?uczkowski, B. A. Zeider, A. V. Hinz, M. Stachura, S. Chakraborty et al., Probing the Coordination Environment of the Human Copper Chaperone HAH1: Characterization of Hg IIBridged Homodimeric Species in Solution, Chem. Eur. J, vol.19, pp.9042-9049, 2013.

S. Lutsenko, K. Petrukhin, M. J. Cooper, C. T. Gilliam, and J. H. Kaplan, N-terminal Domains of Human Copper-transporting Adenosine Triphosphatases (the Wilson's and Menkes Disease Proteins) Bind Copper Selectively in Vivo and in Vitro with Stoichiometry of One Copper Per Metal-binding Repeat, J. Biol. Chem, vol.272, pp.18939-18944, 1997.

C. Ariöz, Y. Li, and P. Wittung-stafshede, The six metal binding domains in human copper transporter, ATP7B: molecular biophysics and disease-causing mutations, BioMetals, vol.30, pp.823-840, 2017.

Z. Xiao, J. Brose, S. Schimo, S. M. Ackland, S. L. Fontaine et al., Unification of the Copper(I) Binding Affinities of the Metallo-chaperones Atx1, Atox1, and Related Proteins: Detection Probes and Affinity Standards, J. Biol. Chem, vol.286, pp.11047-11055, 2011.

M. T. Morgan, L. A. Nguyen, H. L. Hancock, and C. J. Fahrni, Glutathione limits aquacopper(I) to sub-femtomolar concentrations through cooperative assembly of a tetranuclear cluster, J. Biol. Chem, vol.292, pp.21558-21567, 2017.

M. Margoshes and B. L. Vallee, A Cadmium Protein from Equine Kidney Cortex, J. Am. Chem. Soc, vol.79, pp.4813-4814, 1957.

C. A. Blindauer and O. I. Leszczyszyn, Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more, Nat. Prod. Rep, vol.27, pp.720-741, 2010.

M. Capdevila, R. Bofill, Ò. Palacios, and S. Atrian, State-of-the-art of metallothioneins at the beginning of the 21st century, Coord. Chem. Rev, vol.256, pp.46-62, 2012.

M. J. Stillman and C. Metallothioneins, Chem. Rev, vol.144, pp.461-511, 1995.

K. B. Nielson, C. L. Atkin, and D. R. Winge, Distinct metal-binding configurations in metallothionein, J. Biol. Chem, vol.260, pp.5342-5350, 1985.

J. Byrd, R. M. Berger, D. R. Mcmillin, C. F. Wright, D. Hamer et al., Characterization of the copper-thiolate cluster in yeast metallothionein and two truncated mutants, J. Biol. Chem, vol.263, pp.6688-6694, 1988.

D. L. Pountney, I. Schauwecker, J. Zarn, and M. Vasak, Formation of Mammalian Cu8-Metallothionein in vitro: Evidence for the Existence of Two Cu(I)4-Thiolate Clusters, Biochemistry, vol.33, pp.9699-9705, 1994.

P. Faller and M. Va?ák, Distinct Metal?Thiolate Clusters in the N-Terminal Domain of Neuronal Growth Inhibitory Factor, Biochemistry, vol.36, pp.13341-13348, 1997.

Ò. Palacios, A. Pagani, S. Pérez-rafael, M. Egg, M. Höckner et al., Shaping mechanisms of metal specificity in a family of metazoan metallothioneins: evolutionary differentiation of mollusc metallothioneins, BMC Biology, vol.9, p.4, 2011.

U. Weser and H. Hartmann, Differently bound copper(I) in yeast Cu8-thionein, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol, vol.953, pp.1-5, 1988.

A. Presta, A. R. Green, A. Zelazowski, and M. J. Stillman, Copper Binding to Rabbit Liver Metallothionein, Eur. J. Biochem, vol.227, pp.226-240, 1995.

V. Calderone, B. Dolderer, H. Hartmann, H. Echner, C. Luchinat et al., The crystal structure of yeast copper thionein: The solution of a long-lasting enigma, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.51-56, 2005.

Y. J. Li and U. Weser, Circular dichroism, luminescence, and electronic absorption of copper binding sites in metallothionein and its chemically synthesized .alpha. and .beta. domains, Inorg. Chem, vol.31, pp.5526-5533, 1992.

R. B. Martin, Encyclopedia of Inorganic Chemistry, 2006.

B. Halliwell and J. M. Gutteridge, Role of free radicals and catalytic metal ions in human disease: An overview, Methods Enzymol, vol.186, issue.1, pp.1-85, 1990.

M. Valko, H. Morris, and M. T. Cronin, Metals, Toxicity and Oxidative Stress, vol.12, pp.1161-1208, 2005.

A. N. Pham, G. Xing, C. J. Miller, and T. D. Waite, Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production, J. Catal, vol.301, pp.54-64, 2013.

E. Atrián-blasco, P. Gonzalez, A. Santoro, B. Alies, P. Faller et al., Cu and Zn coordination to amyloid peptides: From fascinating chemistry to debated pathological relevance, Coord. Chem. Rev, vol.371, pp.38-55, 2018.

O. Bandmann, K. H. Weiss, and S. G. Kaler, Wilson's disease and other neurological copper disorders, The Lancet Neurology, vol.14, pp.103-113, 2015.

B. Sarkar, Neurodegenerative Diseases and Metal Ions, vol.1, pp.207-225, 2006.

S. G. Kaler, C. S. Holmes, D. S. Goldstein, J. Tang, S. C. Godwin et al., Neonatal Diagnosis and Treatment of Menkes Disease, vol.358, pp.605-614, 2008.

A. Donsante, L. Yi, P. M. Zerfas, L. R. Brinster, P. Sullivan et al., ATP7A Gene Addition to the Choroid Plexus Results in Long-term Rescue of the Lethal Copper Transport Defect in a Menkes Disease Mouse Model, Molecular Therapy, vol.19, pp.2114-2123, 2011.

M. Patil, K. A. Sheth, A. C. Krishnamurthy, and H. Devarbhavi, A Review and Current Perspective on Wilson Disease, J. Clin. Exp. Hepatol, vol.3, pp.321-336, 2013.

T. Müller, H. Feichtinger, H. Berger, and W. Müller, Endemic Tyrolean infantile cirrhosis: an ecogenetic disorder, The Lancet, vol.347, pp.877-880, 1996.

D. L. De-romaña, M. Olivares, R. Uauy, and M. Araya, Risks and benefits of copper in light of new insights of copper homeostasis, J. Trace Elem. Med Biol, vol.25, pp.3-13, 2011.

K. J. Franz, Clawing back: broadening the notion of metal chelators in medicine, Curr. Opin. Chem. Biol, vol.17, pp.143-149, 2013.

J. A. Vilensky and K. Redman, British anti-Lewisite (dimercaprol): An amazing history, Annals of Emergency Medicine, vol.41, pp.378-383, 2003.

A. Cz?onkowska and T. Litwin, Handbook of Clinical Neurology, vol.1, pp.181-191, 2017.

P. V. Ioannou and R. Purchase, Interaction of British Anti-Lewisite (BAL) with Copper(I) and Copper(II) compounds in conjunction with Wilson's disease, Main Group Chem, vol.17, pp.1-16, 2018.

J. M. Walshe, Penicillamine, a new oral therapy for Wilson's disease, Am. J. Med, vol.21, pp.487-495, 1956.

P. Ferenci, Diagnosis and current therapy of Wilson's disease, Alimentary Pharmacology & Therapeutics, vol.19, pp.157-165, 2004.

G. Crisponi, V. M. Nurchi, D. Fanni, C. Gerosa, S. Nemolato et al., Copperrelated diseases: From chemistry to molecular pathology, Coord. Chem. Rev, vol.254, pp.876-889, 2010.

J. Peisach and W. E. Blumberg, A Mechanism for the Action of Penicillamine in the Treatment of Wilson's Disease, Mol. Pharmacol, 0200.

Y. Sugiura and H. Tanaka, Studies on the Sulfur-containing Chelating Agents. XXV. Chelate Formation of Penicillamine and Its Related Compounds with Copper (II), CHEMICAL & PHARMACEUTICAL BULLETIN, vol.18, pp.368-373, 1970.

Y. Sugiura and H. Tanaka, Evidence for a Ternary Complex Containing Albumin, Copper, and Penicillamine, Mol. Pharmacol, vol.8, p.249, 1972.

K. Várnagy, I. Sóvágó, and H. Koz?owski, Transition metal complexes of amino acids and derivatives containing disulphide bridges, Inorg. Chim. Acta, vol.151, pp.117-123, 1988.

J. M. Walshe, Management of Penicillamine Nephropathy In Wilson's Disease: A New Chelating Agent, The Lancet, vol.294, pp.1401-1402, 1969.

S. Boga, D. Jain, and M. L. Schilsky, Trientine induced colitis during therapy for Wilson disease: a case report and review of the literature, BMC Pharmacol. Toxicol, vol.16, p.4, 2015.

I. H. Scheinberg, M. E. Jaffe, and I. Sternlieb, The Use of Trientine in Preventing the Effects of Interrupting Penicillamine Therapy in Wilson's Disease, New England Journal of Medicine, vol.317, pp.209-213, 1987.

V. M. Nurchi, G. Crisponi, M. Crespo-alonso, J. I. Lachowicz, Z. Szewczuk et al., Complex formation equilibria of CuII and ZnII with triethylenetetramine and its mono-and di-acetyl metabolites, Dalton Trans, vol.42, pp.6161-6170, 2013.

S. H. Laurie and B. Sarkar, Potentiometric and spectroscopic study of the equilibria in the aqueous copper(II)-3,6-diazaoctane-1,8-diamine system and an equilibrium-dialysis examination of the ternary system of human serum albumin-copper(II)-3,6-diazaoctane-1,8-diamine, Dalton Trans, pp.1822-1827, 1977.

R. Tremmel, P. Uhl, F. Helm, D. Wupperfeld, M. Sauter et al., Delivery of Copper-chelating Trientine (TETA) to the central nervous system by surface modified liposomes, Int. J. Pharm, vol.512, pp.87-95, 2016.

R. Purchase, The treatment of Wilson's disease, a rare genetic disorder of copper metabolism, Sci. Prog, vol.96, pp.19-32, 2013.

L. Zhang, J. Lichtmannegger, K. H. Summer, S. Webb, I. J. Pickering et al., Tracing Copper?Thiomolybdate Complexes in a Prospective Treatment for Wilson's Disease, vol.48, pp.891-897, 2009.

J. Smirnova, E. Kabin, I. Järving, O. Bragina, V. Tõugu et al., Copper(I)-binding properties of de-coppering drugs for the treatment of Wilson disease. ?-Lipoic acid as a potential anti-copper agent, Scientific Reports, vol.8, p.1463, 2018.

G. C. Sturniolo, C. Mestriner, P. Irato, V. Albergoni, G. Longo et al., Zinc therapy increases duodenal concentrations of metallothionein and iron in Wilson's disease patients, Am. J. Gastroenterol, p.334, 1999.

J. Condomina, T. Zornoza-sabina, L. Granero, and A. Polache, Kinetics of zinc transport in vitro in rat small intestine and colon: interaction with copper, European Journal of Pharmaceutical Sciences, vol.16, pp.289-295, 2002.

T. U. Hoogenraad, J. Van-hattum, and C. J. , Van den Hamer, Management of Wilson's disease with zinc sulphate: Experience in a series of 27 patients, Journal of the Neurological Sciences, vol.77, pp.137-146, 1987.

J. Rautio, H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh et al., Prodrugs: design and clinical applications, Nature Reviews Drug Discovery, vol.7, p.255, 2008.

V. Oliveri and G. Vecchio, Prochelator strategies for site-selective activation of metal chelators, J. Inorg. Biochem, vol.162, pp.31-43, 2016.

C. Gateau and P. Delangle, Design of intrahepatocyte copper(I) chelators as drug candidates for Wilson's disease, Ann. N.Y. Acad. Sci, vol.1315, pp.30-36, 2014.

A. Meister, M. E. Anderson, and G. , Annu. Rev. Biochem, vol.52, pp.711-760, 1983.

P. Rousselot-pailley, O. Sénèque, C. Lebrun, S. Crouzy, D. Boturyn et al., Model Peptides Based on the Binding Loop of the Copper Metallochaperone Atx1: Selectivity of the Consensus Sequence MxCxxC for Metal Ions Hg(II), Cu(I), Cd(II), Pb(II), and Zn(II), vol.45, pp.5510-5520, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00394430

A. M. Pujol, C. Gateau, C. Lebrun, and P. Delangle, A Cysteine-Based Tripodal Chelator with a High Affinity and Selectivity for Copper(I), J. Am. Chem. Soc, vol.131, pp.6928-6929, 2009.

A. M. Pujol, C. Gateau, C. Lebrun, and P. Delangle, A Series of Tripodal Cysteine Derivatives as Water-Soluble Chelators that are Highly Selective for Copper(I), Chem. Eur. J, vol.17, pp.4418-4428, 2011.

A. Jullien, C. Gateau, C. Lebrun, I. Kieffer, D. Testemale et al., DPenicillamine Tripodal Derivatives as Efficient Copper(I) Chelators, Inorg. Chem, vol.53, pp.5229-5239, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01334177

A. Jullien, C. Gateau, C. Lebrun, and P. Delangle, Pseudo-peptides Based on Methyl Cysteine or Methionine Inspired from Mets Motifs Found in the Copper Transporter Ctr1, Inorg. Chem, vol.54, pp.2339-2344, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01731482

A. Jullien, C. Gateau, I. Kieffer, D. Testemale, and P. Delangle, X-ray Absorption Spectroscopy Proves the Trigonal-Planar Sulfur-Only Coordination of Copper (I) with High-Affinity Tripodal Pseudopeptides, Inorg. Chem, vol.52, pp.9954-9961, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00912826

P. Faller, Neuronal growth-inhibitory factor (metallothionein-3): reactivity and structure of metal-thiolate clusters, FEBS Journal, vol.277, pp.2921-2930, 2010.

G. Hefter, P. M. May, and P. Sipos, A general method for the determination of copper(I) equilibria in aqueous solution, J. Chem. Soc., Chem. Commun, pp.1704-1706, 1993.

J. T. Rubino, P. Riggs-gelasco, and K. J. Franz, Methionine motifs of copper transport proteins provide general and flexible thioether-only binding sites for Cu(I) and Ag(I), JBIC Journal of Biological Inorganic Chemistry, vol.15, pp.1033-1049, 2010.

J. Wu, M. H. Nantz, and M. A. Zern, Targeting hepatocytes for drug and gene delivery: emerging novel approaches and applications, Journal, vol.7, pp.717-725, 2002.

K. Poelstra, J. Prakash, and L. Beljaars, Drug targeting to the diseased liver, J. Controlled Release, vol.161, pp.188-197, 2012.

A. A. Souza and P. V. Devarajan, Asialoglycoprotein receptor mediated hepatocyte targeting -Strategies and applications, J. Controlled Release, vol.203, pp.126-139, 2015.

M. Spiess, The asialoglycoprotein receptor: a model for endocytic transport receptors, Biochemistry, vol.29, pp.10009-10018, 1990.

G. Ashwell and J. Harford, Carbohydrate-Specific Receptors of the Liver, Annu. Rev. Biochem, vol.51, pp.531-554, 1982.

J. U. Baenziger and Y. Maynard, Human hepatic lectin. Physiochemical properties and specificity, J. Biol. Chem, vol.255, pp.4607-4613, 1980.

M. C. Torrani, L. Fiume, W. B. De, B. Lavezzo, M. Brunetto et al., Adenine arabinoside monophosphate coupled to lactosaminated human albumin administered for 4 weeks in patients with chronic type B hepatitis decreased viremia without producing significant side effects, Hepatology, vol.23, pp.657-661, 1996.

G. D. Stefano, F. P. Colonna, A. Bongini, C. Busi, A. Mattioli et al., Ribavirin conjugated with lactosaminated poly-l-lysine: Selective delivery to the liver and increased antiviral activity in mice with viral hepatitis, Biochem. Pharmacol, vol.54, pp.357-363, 1997.

G. D. Stefano, L. Fiume, M. Baglioni, L. Bolondi, C. Busi et al., A conjugate of doxorubicin with lactosaminated albumin enhances the drug concentrations in all the forms of rat hepatocellular carcinomas independently of their differentiation grade, Liver International, vol.26, pp.726-733, 2006.

L. Fiume, L. Bolondi, C. Busi, P. Chieco, F. Kratz et al., Doxorubicin coupled to lactosaminated albumin inhibits the growth of hepatocellular carcinomas induced in rats by diethylnitrosamine, Journal of Hepatology, vol.43, pp.645-652, 2005.

A. David, P. Kope?ková, T. Minko, A. Rubinstein, and J. Kope?ek, Design of a multivalent galactoside ligand for selective targeting of HPMA copolymerdoxorubicin conjugates to human colon cancer cells, European Journal of Cancer, vol.40, pp.148-157, 2003.

K. G. Rajeev, J. K. Nair, M. Jayaraman, K. Charisse, N. Taneja et al., HepatocyteSpecific Delivery of siRNAs Conjugated to Novel Non-nucleosidic Trivalent NAcetylgalactosamine Elicits Robust Gene Silencing in Vivo, ChemBioChem, vol.16, pp.903-908, 2015.

D. J. Peng, J. Sun, Y. Z. Wang, J. Tian, Y. H. Zhang et al., Inhibition of hepatocarcinoma by systemic delivery of Apoptin gene via the hepatic asialoglycoprotein receptor, Cancer Gene Therapy, p.66, 2006.

H. L. Jiang, J. T. Kwon, Y. K. Kim, E. M. Kim, R. Arote et al., Galactosylated chitosan-graftpolyethylenimine as a gene carrier for hepatocyte targeting, Gene Ther, p.1389, 2007.

M. Nishikawa, S. Takemura, Y. Takakura, and M. Hashida, Targeted Delivery of Plasmid DNA to Hepatocytes In Vivo: Optimization of the Pharmacokinetics of Plasmid DNA/Galactosylated Poly(L-Lysine) Complexes by Controlling their Physicochemical Properties, J. Pharmacol. Exp. Ther, p.408, 1998.

E. Kim, H. Jeong, I. Park, C. Cho, H. Moon et al., Asialoglycoprotein receptor targeted gene delivery using galactosylated polyethylenimine-graft-poly(ethylene glycol): In vitro and in vivo studies, J. Controlled Release, vol.108, pp.557-567, 2005.

D. Boturyn, E. Defrancq, G. T. Dolphin, J. Garcia, P. Labbe et al., RAFT Nano-constructs: surfing to biological applications, J. Pept. Sci, vol.14, pp.224-240, 2008.

A. M. Pujol, M. Cuillel, O. Renaudet, C. Lebrun, P. Charbonnier et al., Hepatocyte Targeting and Intracellular Copper Chelation by a Thiol-Containing Glycocyclopeptide, J. Am. Chem. Soc, vol.133, pp.286-296, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01138626

A. M. Pujol, M. Cuillel, A. Jullien, C. Lebrun, D. Cassio et al., A Sulfur Tripod Glycoconjugate that Releases a High-Affinity Copper Chelator in Hepatocytes, Angew. Chem. Int. Ed, vol.51, pp.7445-7448, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01131306

M. Monestier, P. Charbonnier, C. Gateau, M. Cuillel, F. Robert et al., ASGPR-Mediated Uptake of Multivalent Glycoconjugates for Drug Delivery in Hepatocytes, ChemBioChem, vol.17, pp.590-594, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01298035

M. Vetrik, J. Mattova, H. Mackova, J. Kucka, P. Pouckova et al., Biopolymer strategy for the treatment of Wilson's disease, J. Controlled Release, vol.273, pp.131-138, 2018.

R. B. Merrifield, Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide, J. Am. Chem. Soc, vol.85, pp.2149-2154, 1963.

G. B. Fields and R. L. Noble, Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids, Int. J. Pept. Protein Res, vol.35, pp.161-214, 1990.

E. Kaiser, R. L. Colescott, C. D. Bossinger, and P. I. Cook, Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides, Anal. Biochem, vol.34, pp.595-598, 1970.

A. Jancso, D. Szunyogh, F. H. Larsen, P. W. Thulstrup, N. J. Christensen et al., Towards the role of metal ions in the structural variability of proteins: CdII speciation of a metal ion binding loop motif, Metallomics, vol.3, pp.1331-1339, 2011.

D. Szunyogh, H. Szokolai, P. W. Thulstrup, F. H. Larsen, B. Gyurcsik et al.,

, Metalloregulator CueR for Monovalent Metal Ions: Possible Functional Role of a Coordinated Thiol?, Angew. Chem. Int. Ed, vol.54, pp.15756-15761, 2015.

O. Sénèque, P. Rousselot-pailley, A. Pujol, D. Boturyn, S. Crouzy et al., Mercury Trithiolate Binding (HgS3) to a de Novo Designed Cyclic Decapeptide with Three Preoriented Cysteine Side Chains, Inorg. Chem, vol.57, pp.2705-2713, 2018.

P. Kamau and R. B. Jordan, Complex Formation Constants for the Aqueous Copper(I)?Acetonitrile System by a Simple General Method, Inorg. Chem, vol.40, pp.3879-3883, 2001.

G. L. Ellman, Tissue sulfhydryl groups, Arch. Biochem. Biophys, vol.82, pp.70-77, 1959.

P. W. Riddles, R. L. Blakeley, and B. Zerner, Methods Enzymol, vol.91, pp.49-60, 1983.

A. R. Waldeck, P. W. Kuchel, A. J. Lennon, and B. E. Chapman, NMR diffusion measurements to characterise membrane transport and solute binding, Prog. Nucl. Magn. Reson. Spectrosc, vol.30, pp.39-68, 1997.

A. Jerschow and N. Müller, Suppression of Convection Artifacts in Stimulated-Echo Diffusion Experiments. Double-Stimulated-Echo Experiments, J. Magn. Reson, vol.125, pp.372-375, 1997.

D. Sinnaeve, The Stejskal-Tanner equation generalized for any gradient shape -an overview of most pulse sequences measuring free diffusion, Concepts in Magnetic Resonance Part A, vol.40, pp.39-65, 2012.

H. Gampp, M. Maeder, C. J. Meyer, and A. D. Zuberbühler, Calculation of equilibrium constants from multiwavelength spectroscopic data-I, Talanta, vol.32, pp.95-101, 1985.

H. Gampp, M. Maeder, C. J. Meyer, and A. D. Zuberbu¨hler, Calculation of equilibrium constants from multiwavelength spectroscopic data-II, Talanta, vol.32, pp.257-264, 1985.

H. Gampp, M. Maeder, C. J. Meyer, and A. D. Zuberbühler, Calculation of equilibrium constants from multiwavelength spectroscopic data-III, Talanta, vol.32, pp.1133-1139, 1985.

H. Gampp, M. Maeder, C. J. Meyer, and A. D. Zuberbühler, Calculation of equilibrium constants from multiwavelength spectroscopic data-IV, Talanta, vol.33, pp.943-951, 1986.

L. G. Sillen, Electrometric Investigation of Equilibria between Mercury and Halogen Ions. Vlll. Survey and Conclusions, Acta Chem. Scand, vol.3, pp.539-553, 1949.

I. Grenthe, A. V. Plyasunov, and K. Spahiu, Estimations of medium effects on thermodynamic data, Modelling in aquatic chemistry, p.325, 1997.

J. Powell-kipton, L. Brown, H. Paul, T. Robert, G. Gajda et al., Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: The Hg 2+ , Cl -, OH -, CO3 2-, SO4 2-, and PO4 3-aqueous systems, IUPAC Technical Report).Journal, p.739, 2005.

C. F. Shaw, J. E. Laib, M. M. Savas, and D. H. Petering, Biphasic kinetics of aurothionein formation from gold sodium thiomalate: a novel metallochromic technique to probe zinc(2+) and cadmium(2+) displacement from metallothionein, Inorg. Chem, vol.29, pp.403-408, 1990.

F. W. Outten, C. E. Outten, J. Hale, and T. V. O'halloran, Transcriptional Activation of an Escherichia coliCopper Efflux Regulon by the Chromosomal MerR Homologue, CueR, J. Biol. Chem, vol.275, pp.31024-31029, 2000.

C. Petersen and L. B. Møller, Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR, vol.261, pp.289-298, 2000.

J. V. Stoyanov, J. L. Hobman, and N. L. Brown, CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA, Mol. Microbiol, vol.39, pp.502-512, 2001.

N. L. Brown, J. V. Stoyanov, S. P. Kidd, and J. L. Hobman, The MerR family of transcriptional regulators, FEMS Microbiology Reviews, vol.27, pp.145-163, 2003.

J. L. Hobman, MerR family transcription activators: similar designs, different specificities, Mol. Microbiol, vol.63, pp.1275-1278, 2007.

J. L. Hobman, J. Wilkie, and N. L. Brown, A Design for Life: Prokaryotic Metalbinding MerR Family Regulators, Biometals, vol.18, pp.429-436, 2005.

Z. Ma, F. E. Jacobsen, and D. P. Giedroc, Metal Transporters and Metal Sensors: How Coordination Chemistry Controls Bacterial Metal Homeostasis, Chem. Rev, vol.109, pp.4644-4681, 2009.

A. Changela, K. Chen, Y. Xue, J. Holschen, C. E. Outten et al., Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR, vol.301, p.1383, 2003.

K. Chen, S. Yuldasheva, J. E. Penner-hahn, and T. V. O'halloran, An Atypical Linear Cu(I)?S2 Center Constitutes the High-Affinity Metal-Sensing Site in the CueR Metalloregulatory Protein, J. Am. Chem. Soc, vol.125, pp.12088-12089, 2003.

M. Beltramini and K. Lerch, Spectroscopic studies on Neurospora copper metallothionein, vol.22, pp.2043-2048, 1983.

D. Szunyogh, B. Gyurcsik, F. H. Larsen, M. Stachura, P. W. Thulstrup et al., ZnII and HgII binding to a designed peptide that accommodates different coordination geometries, Dalton Transactions, vol.44, pp.12576-12588, 2015.

M. A. Kihlken, A. P. Leech, and N. E. Le-brun, Copper-mediated dimerization of CopZ, a predicted copper chaperone from Bacillus subtilis, Biochem. J, vol.368, p.729, 2002.

A. M. Pujol, C. Lebrun, C. Gateau, A. Manceau, and P. Delangle, MercurySequestering Pseudopeptides with a Tris(cysteine) Environment in Water, Eur. J. Inorg. Chem, pp.3835-3843, 2012.

S. Pires, J. Habjani?, M. Sezer, C. M. Soares, L. Hemmingsen et al., Design of a Peptidic Turn with High Affinity for HgII, Inorg. Chem, vol.51, pp.11339-11348, 2012.

G. R. Dieckmann, D. K. Mcrorie, D. L. Tierney, L. M. Utschig, C. P. Singer et al., De Novo Design of Mercury-Binding Two-and Three-Helical Bundles, J. Am. Chem. Soc, vol.119, pp.6195-6196, 1997.

S. M. Kelly and N. C. Price, The Use of Circular Dichroism in the Investigation of Protein Structure and Function, Curr. Protein Pept. Sci, vol.1, pp.349-384, 2000.

A. Jancsó, B. Gyurcsik, E. Mesterházy, and R. Berkecz, Competition of zinc(II) with cadmium(II) or mercury(II) in binding to a 12-mer peptide, J. Inorg. Biochem, vol.126, pp.96-103, 2013.

L. Zhang, M. Koay, M. J. Maher, Z. Xiao, and A. G. Wedd, Intermolecular Transfer of Copper Ions from the CopC Protein of Pseudomonas syringae. Crystal Structures of Fully Loaded CuICuII Forms, J. Am. Chem. Soc, vol.128, pp.5834-5850, 2006.

M. Sendzik, M. J. Pushie, E. Stefaniak, and K. L. Haas, Structure and Affinity of Cu(I) Bound to Human Serum Albumin, vol.56, pp.15057-15065, 2017.

R. Bogumil, P. Faller, D. L. Pountney, and M. Va?ák, Evidence for Cu(I) Clusters and Zn(II) Clusters in Neuronal Growth-Inhibitory Factor Isolated from Bovine Brain, Eur. J. Biochem, vol.238, pp.698-705, 1996.

K. Fujisawa, S. Imai, N. Kitajima, and Y. Moro-oka, Preparation, Spectroscopic Characterization, and Molecular Structure of Copper(I) Aliphatic Thiolate Complexes, Inorg. Chem, vol.37, pp.168-169, 1998.

Z. Xiao, L. Gottschlich, R. Van-der-meulen, S. R. Udagedara, and A. G. Wedd, Evaluation of quantitative probes for weaker Cu(I) binding sites completes a set of four capable of detecting Cu(I) affinities from nanomolar to attomolar, Metallomics, issue.5, pp.501-513, 2013.

A. Jancso, , 2015.

S. P. Watton, J. G. Wright, F. M. Macdonnell, J. W. Bryson, M. Sabat et al., Trigonal mercuric complex of an aliphatic thiolate: A spectroscopic and structural model for the receptor site in the mercury (II) biosensor MerR, J. Am. Chem. Soc, vol.112, pp.2824-2826, 1990.

A. K. Wernimont, D. L. Huffman, A. L. Lamb, T. V. O'halloran, and A. C. Rosenzweig, Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins, Nature Structural Biology, vol.7, p.766, 2000.

R. A. Steele and S. J. Opella, Structures of the Reduced and Mercury-Bound Forms of MerP, the Periplasmic Protein from the Bacterial Mercury Detoxification System, Biochemistry, vol.36, pp.6885-6895, 1997.

E. Rossy, O. Sénèque, D. Lascoux, D. Lemaire, S. Crouzy et al., Is the cytoplasmic loop of MerT, the mercuric ion transport protein, involved in mercury transfer to the mercuric reductase?, FEBS Lett, vol.575, pp.86-90, 2004.

R. Ledwidge, B. Patel, A. Dong, D. Fiedler, M. Falkowski et al., NmerA, the Metal Binding Domain of Mercuric Ion Reductase, Removes Hg 2+ from Proteins, Delivers It to the Catalytic Core, and Protects Cells under Glutathione-Depleted Conditions, Biochemistry, vol.44, pp.11402-11416, 2005.

A. C. Rosenzweig, D. L. Huffman, M. Y. Hou, A. K. Wernimont, R. A. Pufahl et al., Structure, vol.7, pp.605-617, 1999.

S. Chakraborty, J. Kravitz, P. W. Thulstrup, L. Hemmingsen, W. F. Degrado et al., Design of a Three-Helix Bundle Capable of Binding Heavy Metals in a Triscysteine Environment, Angew. Chem. Int. Ed, vol.50, pp.2049-2053, 2011.

O. Iranzo, P. W. Thulstrup, S. Ryu, L. Hemmingsen, and V. L. Pecoraro, The Application of 199 Hg NMR and 199m Hg Perturbed Angular Correlation (PAC) Spectroscopy to Define the Biological Chemistry of Hg II : A Case Study with Designed Two-and Three-Stranded Coiled Coils, Chem. Eur. J, vol.13, pp.9178-9190, 2007.

M. ?uczkowski, M. Stachura, V. Schirf, B. Demeler, L. Hemmingsen et al., Design of Thiolate Rich Metal Binding Sites within a Peptidic Framework, Inorg. Chem, vol.47, pp.10875-10888, 2008.

J. S. Casas and M. M. Jones, Mercury(II) complexes with sulfhydryl containing chelating agents: Stability constant inconsistencies and their resolution, Journal of Inorganic and Nuclear Chemistry, vol.42, pp.99-102, 1980.

B. Imperiali and T. M. Kapoor, The reverse turn as a template for metal coordination, Tetrahedron, vol.49, pp.3501-3510, 1993.

J. Venkatraman, S. C. Shankaramma, and P. Balaram, Design of Folded Peptides, Chem. Rev, vol.101, pp.3131-3152, 2001.

G. D. Rose, L. M. Glerasch, and J. A. Smith, Turns in peptides and proteins, Adv. Protein Chem, vol.37, pp.1-109, 1985.

J. A. Smith, L. G. Pease, and K. D. Kopple, Reverse turns in peptides and protein, Critical Reviews in Biochemistry, vol.8, pp.315-399, 1980.

C. Lebrun, M. Starck, V. Gathu, Y. Chenavier, and P. Delangle, Engineering Short Peptide Sequences for Uranyl Binding, Chem. Eur. J, vol.20, pp.16566-16573, 2014.

A. Fragoso, P. Lamosa, R. Delgado, and O. Iranzo, Harnessing the Flexibility of Peptidic Scaffolds to Control their Copper(II)-Coordination Properties: A Potentiometric and Spectroscopic Study, Chem. Eur. J, vol.19, pp.2076-2088, 2013.

A. Fragoso, R. Delgado, and O. Iranzo, Copper(II) coordination properties of decapeptides containing three His residues: the impact of cyclization and Asp residue coordination, Dalton Trans, vol.42, pp.6182-6192, 2013.

A. Borics, R. F. Murphy, and S. Lovas, Molecular Dynamics Simulations of ?-turn Forming Tetra-and Hexapeptides, J. Biomol. Struct. Dyn, vol.21, pp.761-770, 2004.

D. K. Chalmers and G. R. Marshall, Pro-D-NMe-Amino Acid and D-Pro-NMe-Amino Acid: Simple, Efficient Reverse-Turn Constraints, J. Am. Chem. Soc, vol.117, pp.5927-5937, 1995.

S. Rao-raghothama, S. Kumar-awasthi, and P. Balaram, ?-Hairpin nucleation by ProGly ?-turns. Comparison of D-Pro-Gly and L-Pro-Gly sequences in an apolar octapeptide, Perkin Trans. 2, pp.137-144, 1998.

S. J. Opella, T. M. Desilva, and G. Veglia, Structural biology of metal-binding sequences, Curr. Opin. Chem. Biol, vol.6, pp.217-223, 2002.

A. C. Rosenzweig, Copper Delivery by Metallochaperone Proteins, Acc. Chem. Res, vol.34, pp.119-128, 2001.

M. S. Shoshan and E. Y. Tshuva, The MXCXXC class of metallochaperone proteins: model studies, Chem. Soc. Rev, vol.40, pp.5282-5292, 2011.

H. Kessler, Conformation and Biological Activity of Cyclic Peptides, Angew. Chem. Int. Ed, vol.21, pp.512-523, 1982.

E. Schievano, A. Bisello, M. Chorev, A. Bisol, S. Mammi et al., Aib-Rich Peptides Containing Lactam-Bridged Side Chains as Models of the 310-Helix, J. Am. Chem. Soc, vol.123, pp.2743-2751, 2001.

H. J. Dyson, M. Rance, R. A. Houghten, R. A. Lerner, and P. E. Wright, Folding of immunogenic peptide fragments of proteins in water solution, J. Mol. Biol, vol.201, pp.161-200, 1988.

N. J. Baxter and M. P. Williamson, Temperature dependence of 1H chemical shifts in proteins, J. Biomol. NMR, vol.9, pp.359-369, 1997.

T. Cierpicki and J. Otlewski, Amide proton temperature coefficients as hydrogen bond indicators in proteins, J. Biomol. NMR, vol.21, pp.249-261, 2001.

C. Srinivasan, M. C. Posewitz, G. N. George, and D. R. Winge, Characterization of the Copper Chaperone Cox17 of Saccharomyces cerevisiae, Biochemistry, vol.37, pp.7572-7577, 1998.

X. Chen, H. Hua, K. Balamurugan, X. Kong, L. Zhang et al., Copper sensing function of Drosophila metalresponsive transcription factor-1 is mediated by a tetranuclear Cu(I) cluster, Nucleic Acids Res, vol.36, pp.3128-3138, 2008.

J. A. Graden, M. C. Posewitz, J. R. Simon, G. N. George, I. J. Pickering et al., Presence of a Copper(I)?Thiolate Regulatory Domain in the Copper-Activated Transcription Factor Amt1, Biochemistry, vol.35, pp.14583-14589, 1996.

M. Vasak, J. H. Kaegi, and H. A. Hill, Zinc(II), cadmium(II), and mercury(II) thiolate transitions in metallothionein, Biochemistry, vol.20, pp.2852-2856, 1981.

J. H. Kägi, M. Vasák, K. Lerch, D. E. Gilg, P. Hunziker et al., Structure of mammalian metallothionein, vol.54, pp.93-103, 1984.

E. Mesterházy, A. Jancsó, C. Lebrun, F. Tömösi, and P. Delangle, A Wilson betegség kezelésére potenciálisan alkalmas Cu(I) kelátorok ?0. Komplexkémiai Kollokvium, 2016.

E. Mesterházy, A. Jancsó, C. Lebrun, F. Tömösi, and P. Delangle, New peptidic Cu(I) chelators as potential candidates for the treatment of Wilson's disease 13 th European Biological Inorganic Chemistry Conference, 2016.

E. Mesterházy, A. Jancsó, C. Lebrun, and P. Delangle, Interaction of copper(I) with 12-mer peptides mimicking the metal binding domain of CueR, a copper-efflux regulator, 2017.

E. Mesterházy, C. Lebrun, A. Jancsó, and P. Delangle, An Efficient Peptidic Copper(I) Chelator with Two Cysteines Linked by a Strong Turn 14th, International Symposium on Applied Bioinorganic Chemistry, 2017.

E. Mesterházy, C. Lebrun, A. Jancsó, and P. Delangle, Cu(I)ionok hatékony megkötésére alkalmas ?-turn motívumot és két ciszteint tartalmazó tetrapeptid ?2, Komplexkémiai Kollokvium, 2018.

E. Mesterházy, C. Lebrun, S. Crouzy, A. Jancsó, and P. Delangle, Metalloproteinek cisztein-gazdag Cu(I)-és Hg(II)-kötthelyeit utánzó modellpeptidek ?2, Komplexkémiai Kollokvium, 2018.

E. Mesterházy, C. Lebrun, S. Crouzy, A. Jancsó, and P. Delangle, Oligopeptide models of cysteine-rich Cu(I)-and Hg(II)-binding metal sites of metalloproteins 14 th European Biological Inorganic Chemistry Conference, 2018.

E. Mesterházy, A. Jancsó, B. Gyurcsik, and R. Berkecz, Zinc(II) interaction of a 12-mer peptide and competition of group 12 ions in binding to the ligand REGIONAL CONFERENCE

R. Timisoara, , 2013.

R. K. Balogh, . E. Mesterházy, B. Gyurcsik, A. Jancsó, H. E. Christensen et al., Réz(I)ionok szelektív kimutatása a CueR fémszabályzó fehérje segítségével XXXVIII, KÉMIAI ELADÓI NAPOK

R. K. Balogh, . E. Mesterházy, K. Kato, . Nagata, A. Jancsó et al., Detection of toxic metal ions by the CueR metalloregulator 14 th European Biological Inorganic Chemistry Conference, 2018.