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Résumé 
 
Le traitement des images satellitaires est considéré comme l'un des domaines les plus 

intéressants dans les domaines de traitement d'images numériques. Les images satellitaires 

peuvent être dégradées pour plusieurs raisons, notamment les mouvements des satellites, les 

conditions météorologiques, la dispersion et d’autres facteurs. Plusieurs méthodes 

d'amélioration et de restauration des images satellitaires ont été étudiées et développées dans la 

littérature. Les travaux présentés dans cette thèse se concentrent sur la restauration des images 

satellitaires par des techniques de filtrage statistique non linéaire. Dans un premier temps, nous 

avons proposé une nouvelle méthode pour restaurer les images satellitaires en combinant les 

techniques de restauration aveugle et non aveugle. La raison de cette combinaison est d'exploiter 

les avantages de chaque technique utilisée. Dans un deuxième temps, de nouveaux algorithmes 

statistiques de restauration d'images basés sur les filtres non linéaires et l'estimation non 

paramétrique de densité multivariée ont été proposés. L'estimation non paramétrique de la 

densité à postériori est utilisée dans l'étape de ré-échantillonnage du filtre Bayésien bootstrap 

pour résoudre le problème de la perte de diversité dans le système de particules. Enfin, nous 

avons introduit une nouvelle méthode de combinaison hybride pour la restauration des images 

basée sur la transformée en ondelettes discrète (TOD) et les algorithmes proposés à l’étape 

deux, et nous avons prouvé que les performances de la méthode combinée sont meilleures que 

les performances de l’approche TOD pour la réduction du bruit dans les images satellitaires 

dégradées. 

 

Mots-clés : Image satellitaire, Restauration, techniques de restauration aveugle et non aveugle, 

filtre Bayésien bootstrap, estimation non paramétrique de densité multivariée, TOD. 

 

Abstract 
 
Satellite image processing is considered one of the more interesting areas in the fields of digital 

image processing. Satellite images are subject to be degraded due to several reasons, satellite 

movements, weather, scattering, and other factors. Several methods for satellite image 

enhancement and restoration have been studied and developed in the literature. The work 

presented in this thesis, is focused on satellite image restoration by nonlinear statistical filtering 

techniques. At the first step, we proposed a novel method to restore satellite images using a 

combination between blind and non-blind restoration techniques. The reason for this 

combination is to exploit the advantages of each technique used. In the second step, novel 

statistical image restoration algorithms based on nonlinear filters and the nonparametric 

multivariate density estimation have been proposed. The nonparametric multivariate density 

estimation of posterior density is used in the resampling step of the Bayesian bootstrap filter to 

resolve the problem of loss of diversity among the particles. Finally, we have introduced a new 

hybrid combination method for image restoration based on the discrete wavelet transform 

(DWT) and the proposed algorithms in step two, and, we have proved that the performance of 

the combined method is better than the performance of the DWT approach in the reduction of 

noise in degraded satellite images. 

 

Key words: Satellite image, Restoration, blind and non-blind restoration techniques, Bayesian 

bootstrap filter, nonparametric multivariate density estimation, DWT.
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1 

General Introduction 

Satellite imagery, space-borne photography, or remote sensing, are different names for the 

images of Earth or other planets collected by imaging satellites operated by governments and 

businesses around the world in order to obtain information about the regions been 

photographed. Then these companies sell images by licensing them to governments and other 

private organizations such as Apple Maps and Google Maps. 

There are many different satellites scanning the Earth, each with its own unique purpose. 

Satellites use different kinds of sensors to collect electromagnetic radiation reflected from the 

Earth. Passive sensors collect radiation which the Sun emits and the Earth reflects, and do not 

require energy. Active sensors emit radiation themselves, and analyze it after it is reflected back 

from the Earth. Active sensors require a significant amount of energy to emit radiation, but they 

are useful because they can be used during any season and time of day (passive sensors cannot 

be used on a part of Earth that is in shadow) and because they can emit types of radiation that 

the Sun does not provide. 

Satellite images are useful because different surfaces and objects can be identified by the 

way they react to radiation. For instance, smooth surfaces, such as roads, reflect almost all of 

the energy, which comes at them at a single direction. This is called specular reflection. 

Meanwhile, rough surfaces, such as trees, reflect energy in all directions. This is called diffuse 

reflection. Sensing different types of reflection is useful in measuring the density and amount 

of forests, and forest change. Also, objects react differently to different wavelengths of 

radiation. For instance, there is a frequency of infrared light, which can be used to determine 

plant health. Healthy leaves reflect this frequency well while unhealthy ones do not. 

Satellite images are subject to distortion due to the presence of two disturbing factors that 

negatively affect the purity and clarity of the satellite images degraded by noise during image 

acquisition and transmission process. These two factors are blur and noise. There are many 

types of blur that affect satellite images, such as motion blur, out of focus blur and atmospheric 

turbulence blur. On the other hand, there are also several types of noise that affect the satellite 

images such as impulse noise, additive noise and multiplicative noise. The presence of blur 

and/or noise in the satellite images is a very disturbing issue since it has reduced the purity of 

the image and distorts the useful information in the image. These distorted images must be 

restored and the useful information must be recovered. 

Reducing and eliminating noise and/or blur from the satellite images is a big challenge for 

the researchers in the domain digital image processing. The process of reducing the noise and/or 

blur from the satellite images and recovering the useful information in it is called; denoising in 

the presence of noise only, deblurring in the presence of blur only or restoration in the presence 

of both noise and blur which also can be called denoising, and deblurring. Anyhow, deblurring 

and denoising could be named restoration. 

For several decades and until now, reducing noise and/or blur from the satellite images is a 

big hurdle for the researchers in digital image processing. Many methods were proposed and 

developed in the literature for restoring satellite images. 



 

2 

 

During our work in this thesis several contributions have been made. At the first step, we 

examined several blind and non-blind restoration techniques already exist in the literature. Blind 

image restoration techniques have no/or few knowledge about the point spread function that has 

degraded the original image. On the other hand, non-blind restoration techniques have a prior 

information about the point spread function, which has degraded the original image. During this 

step, we studied, tested and compared the behavior of these techniques through implementing 

it on restoration degraded satellite images. Here, the contribution is the fusion combination 

between the blind and non-blind restoration techniques based on the wavelet transform method. 

In the second step, we studied the Monte Carlo filters and the nonparametric multivariate 

density estimation for satellite image restoration. Here our first contribution is to adopt the 

recursive Bayesian Bootstrap filtering for image restoration. Bootstrap filter is a filtering 

method based on Bayesian state estimation and Monte Carlo method, which has the great 

advantage of being able to handle any functional non-linearity and system and/or measurement 

noise of any distribution. Due to the problem of degeneracy found in the (sequential importance 

sampling) particle filter, where after a few sampling steps all the particles except one will have 

a negligible weight, the bootstrap filter with a resampling step was introduced to solve the 

degeneracy problem. Although the resampling step in the Bayesian bootstrap filter has solved 

the degeneracy problem, but it has caused loss of diversity among the particles. This problem 

arises due to the fact that the particles are drawn from a discrete distribution. To solve this 

problem, we need to draw the particles from a continuous distribution. To achieve this solution, 

we propose to use nonparametric multivariate density estimation in the bootstrap resampling 

step. The second contribution is to use the nonparametric multivariate density estimation in the 

resampling step of the Bayesian bootstrap filter. Finally, to ameliorate the satellite image 

restoration using the new nonparametric filters, we have proposed a novel approach which 

combine the proposed filters and discrete wavelet transform (DWT). The DWT, is a robust 

approach and it is easy to be implemented in the image restoration field. 

The thesis is instructed as follows 

In chapter 1, we introduce satellite imagery and then we define the Sentinel family concept. 

After that, we describe the Sentinel 1 and 2 missions with some details about the satellites. Next, 

we describe the reason for the image degradation, and finally, we show the image model and 

the degradation model. 

In chapter 2, we present a basic image restoration technique. We consider the restoration 

process as a two-dimensional convolution of true image and the point spread function. 

Subsequently, a strategy to reconstruct the true image given the blurred image and the point 

spread function is presented. Moreover, we give an overview of blind and non-blind restoration 

techniques, two topics that are regarded in more details in this chapter. To ameliorate the results 

obtained by the two techniques, we propose a new method of restoration which consists of 

fusion combination of the two techniques. 

In chapter 3, we describe the Monte Carlo filters. First we review the analytical method for 

filtering, for example Kalman filter. In the second step, a comparative study of the different 

filters has been realized for the satellite image restoration. Finally, in this chapter, we are 

interested in Monte Carlo methods for nonlinear filtering and in particular the Bayesian 

bootstrap filter. Here, we have adopted the filter to the problem of satellite image restoration. 
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In chapter 4, we have treated the problem of the speckle noise of synthetic aperture radar 

images using Bayesian bootstrap filtering. First, we review the nonparametric multivariate 

density estimation. Secondly, we have noticed that resampling step in the Bayesian bootstrap 

filter which reduces the degeneracy problem introduced loss of diversity among the particles. 

This arises due to the fact that in the resampling step, samples are drawn from a discrete 

distribution. To resolve this problem, we have proposed to draw samples from an approximation 

method using nonparametric multivariate density estimation which allowed us to have new 

filters called nonparametric Bayesian bootstrap filtering. Finally, we proposed another hybrid 

combination method based on the nonparametric Bayesian bootstrap filter and the discrete 

wavelet transform (DWT) to reduce the speckle noise of synthetic aperture radar images. 
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Introduction 

Satellite image processing is one of the leading fields in computer research. Scientists and 

researchers benefit from satellite images variety of fields such as meteorology, oceanography, 

fisheries, agriculture, biodiversity conservation, forestry, landscapes, astronomy, geology and 

more [Lia05][Was14][Zhe13][Yi11]. Images acquired from satellites degraded due to many 

effects, such as climate, weather and some other factors [Rav13]. In satellite image 

processing, images received from satellites contain large amounts of data for further 

processing or analysis. Satellite images are usually captured under a variety of situations. 

Each captured satellite image is, in a sense, a degraded version of the scene [Hua04]. Sources 

of degradation can be blur, noise aliasing and atmospheric turbulence, which have usually 

defective effects in its nature. However, the acquired image always represents a degraded 

version of the original scene due to defects in imaging and acquisition process. Removing 

these defects is important for most subsequent image processing tasks. There are different 

types of damage to take into consideration, such as noise, geometric degradation (pincushion 

deformation), imperfections in lighting and color (under/over exposure, saturation), and 

blurring. Due to defective image formation, blurring is a form of ideal image bandwidth 

reduction. The relative motion between the camera and the original scene, or an out of focus 

optical system may cause this blur. When producing aerial photographs for remote sensing, 

several factors will affect the images, like atmospheric turbulence, aberrations in the optical 

system, and relative motion between the camera and the ground, one/all of those factors will 

introduce blur in the images. An additional defect besides blur is noise, which affects any 

captured image. Noise can occur by the media which is producing the image (random 

absorption or dispersion effects), by recording media (sensor noise), by errors in measurement 

caused by the limited accuracy of the acquiring system and digital storage quantization of the 

data. Sudden changes in atmospheric temperature, external disturbances, and lack of 

acquisition of earth sensors, are another causes to add different types of noise to the acquired 

images [Kum14]. There are several types of earth satellites such as, NOAA, Metop and SAR, 

which are sending images to the satellite receivers. These images contain a fixed resolution 

depending on the application. The density, size, and length of the pixels are useful for 

analyzing information [Par99]. 

We start the first chapter with a state-of-the-art of satellite images, and in particular 

sentinel 1 and sentinel 2 images, in Section 1.1. In Section 1.2, we present a brief review of 
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reasons for image degradation. In Section 1.3, we describe the image and degradation models 

with non-symmetric half-plane (NSHP) regions of support. 

1.1 Satellite images 

Satellite imagery is indeed one of the eminent, robust and essential tools used by 

meteorologists. Actually, we can consider it as an eye in the sky. These images help 

forecasters to know the fluctuations in the climate and the changes expected to be achieved in 

the atmosphere as they provide a clear, precise and correct description of the events and how 

it is unfolding. Without satellites, predicting the weather and conducting research will be a 

hard challenge. Data collected at stations across the country are limited in terms of 

atmospheric performance. Although it is still possible to get a reasonable analysis of the data 

obtained, there will be a great opportunity to lose valuable pieces of information because 

hundreds of kilometers separate the earth stations. Satellite images help to show things that 

cannot be measured or seen. In addition, the satellite image is considered the truth. The data 

provided by the satellite images can be interpreted "firsthand". Satellite images may well 

reflect what is happening around the world, especially in the vast ocean of data. The data 

cannot be collected in some parts of the world, but without these data, the prediction will be 

as difficult as without satellites. There are two types of satellites in orbit around the Earth, 

polar and terrestrial. The geostationary satellite operating environment satellite (GOES) is still 

located at a fixed position on the Earth's surface at about 22,500 kilometers above the equator. 

Because satellites spin with the earth, they always see the same part of the earth. In contrast, 

polar-orbiting satellites have their orbits at lower altitudes (800-900 km). Their path is 2400 

km wide centered on the path of the track. Polar-orbiting satellites are observing a new path in 

each orbit. Polar satellites are not useful for meteorologists because they do not observe the 

same area. Geostationary satellites allow meteorologists to observe the process of developing 

meteorology by observing the same area. As part of its plan to contribute to the Space 

Segment of Global Environmental and Security Monitoring (GMES), European Space 

Agency (ESA) is undertaking a high-resolution Optical Earth Observation mission. In the rest 

of this section, we will present a summary of sentinel images. 

1.1.1 Sentinel family 

ESA has developed a new family of missions called Sentinels specifically for the 

operational needs of the Copernicus program. Each Sentinel mission is based on a 
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constellation of two satellites to fulfil revisit and coverage requirements, providing robust 

datasets for Copernicus Services. These missions carry a range of technologies, such as radar 

and multi-spectral imaging instruments for land, ocean and atmospheric monitoring: 

 

 

Figure 1.1: The Sentinel family. 

 

 Sentinel-1 is a polar-orbiting, all-weather, day-and-night radar imaging mission for 

land and ocean services. Sentinel-1A was launched on 3 April 2014 and Sentinel-1B 

on 25 April 2016. Both were taken into orbit on a Soyuz rocket from Europe's 

Spaceport in French Guiana. 

 Sentinel-2 is a polar-orbiting, multispectral high-resolution imaging mission for land 

monitoring to provide, for example, imagery of vegetation, soil and water cover, 

inland waterways and coastal areas. Sentinel-2 can also deliver information for 

emergency services. Sentinel-2A was launched on 23 June 2015 and Sentinel-2B 

followed on 7 March 2017.  
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 Sentinel-3 is a multi-instrument mission to measure sea-surface topography, sea- and 

land-surface temperature, ocean color and land color with high-end accuracy and 

reliability. The mission will Support Ocean forecasting systems, as well as 

environmental and climate monitoring. Sentinel-3A was launched on 16 February 

2016.  

 Sentinel-4 is a payload devoted to atmospheric monitoring that will be embarked upon 

a Meteosat Third Generation-Sounder (MTG-S) satellite in geostationary orbit.  

 Sentinel-5 Precursor – also known as Sentinel-5P – is the forerunner of Sentinel-5 to 

provide timely data on a multitude of trace gases and aerosols affecting air quality and 

climate. It has been developed to reduce data gaps between the Envisat satellite – in 

particular the Sciamachy instrument – and the launch of Sentinel-5. Sentinel-5P was 

taken into orbit on a Rocket launcher from the Plesetsk Cosmodrome in northern 

Russia on 13 October 2017.  

 Sentinel-5 is a payload that will monitor the atmosphere from polar orbit aboard a 

MetOp Second Generation satellite.  

 Sentinel-6 carries a radar altimeter to measure global sea-surface height, primarily for 

operational oceanography and for climate studies. 

In our work, we were particularly interested in the first two as data for the restoration 

problem. We will first start with the description of sentinel-1 and then sentinel-2. 

1.1.2 Sentinel-1 

The first in the series, Sentinel-1, carries an advanced radar instrument to provide an all-

weather, day-and-night supply of imagery of Earth’s surface. As a constellation of two 

satellites orbiting 180° apart, the mission images the entire Earth every six days. As well as 

transmitting data to a number of ground stations around the world for rapid dissemination, 

Sentinel-1 also carries a laser to transmit data to the geostationary European Data Relay 

System for continual data delivery.  

Sentinel-1A was launched on 3 April 2014 and Sentinel-1B on 25 April 2016. Both were 

taken into orbit on a Soyuz rocket from Europe's Spaceport in French Guiana. The C-band 

Synthetic Aperture Radar (SAR) is built on ESA’s and Canada’s heritage SAR systems on 

ERS-1, ERS-2, Envisat and Radarsat.  
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Figure 1.2: The Sentinel-1 Satellite. 

Sentinel-1 is observatory polar-orbiting European radar providing continuity of SAR data 

for operational applications. These applications include: monitoring sea ice zones and the 

arctic environment surveillance of marine environment monitoring land surface motion risks 

mapping of land surfaces; forest, water and soil, agriculture mapping in support of 

humanitarian aid in crisis situations. The design of Sentinel-1 with its focus on reliability, 

operational stability, global coverage and quick data delivery is expected to enable the 

development of new applications and meet the evolving needs of Copernicus. Sentinel-1 is the 

result of close collaboration between the ESA, the European Commission, industry, service 

providers and data users. Designed and built by a consortium of around 60 companies led by 

Thales Alenia Space and Airbus Defence and Space, it is an outstanding example of Europe’s 

technological excellence. Sentinel-1 is an imaging radar mission providing continuous all 

weather, day-and-night imagery at C-band. The Sentinel-1 constellation provides high 

reliability, improved revisit time, geographical coverage and rapid data dissemination to 

support operational applications in the priority areas of marine monitoring, land monitoring 

and emergency services. Sentinel-1 potentially images all global landmasses, coastal zones 

and shipping routes in European waters in high resolution and covers the global oceans at 

regular intervals. Having a primary operational mode over land and another over Open Ocean 

allows for a pre-programmed conflict-free operation. The main operational mode features a 

wide swath (250 km) with high geometric (typically 20 m Level-1 product resolution) and 
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radiometric resolutions, suitable for most applications. The Sentinel-1 Synthetic Aperture 

Radar (SAR) instrument may acquire data in four exclusive modes: 

 Stripmap (SM) - A standard SAR stripmap-imaging mode where the ground swath is 

illuminated with a continuous sequence of pulses, while the antenna beam is pointing 

to a fixed azimuth and elevation angle. 

 Interferometric Wide swath (IW) - Data is acquired in three swaths using the Terrain 

Observation with Progressive Scanning SAR (TOPSAR) imaging technique. In IW 

mode, bursts are synchronized from pass to pass to ensure the alignment of 

interferometric pairs. IW is Sentinel-1's primary operational mode over land. 

 Extra Wide swath (EW) - Data is acquired in five swaths using the TOPSAR imaging 

technique. EW mode provides very large swath coverage at the expense of spatial 

resolution. 

 Wave (WV) - Data is acquired in small stripmap scenes called "vignettes", situated at 

regular intervals of 100 km along track. The vignettes are acquired by alternating, 

acquiring one vignette at a near range incidence angle while the next vignette is 

acquired at a far range incidence angle. WV is Sentinel-1's operational mode over 

Open Ocean. 

More details about sentinel-1 are given in appendix 1.A. 

1.1.3 Sentinel-2 

Sentinel-2 is a satellite system consisting of two polar-orbiting satellites, will help improve 

continuity and SPOT and Landsat multispectral range of tasks and ensure the high quality 

data and applications for a land monitoring operation, Services emergency and security 

intervention. The Sentinel line of satellites is planned to delivering land remote sensing data 

that are central to the European Commission’s Copernicus program; in late 2015, the Sentinel 

line became operational. The Sentinel-2 mission emerged as a result of close cooperation 

between the ESA, the European Commission, data users, service providers, and industry. The 

mission has been designed and built by a consortium of around 60 companies led by Airbus 

Defense and Space, and supported by the CNES French space agency to optimize image 

quality and by the DLR German Aerospace Centre to improve data recovery using optical 

communications. 

The Sentinel-2 mission consists of two satellites developed to support vegetation, land 

cover, and environmental monitoring. The Sentinel-2A satellite was launched by ESA on June 
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23 2015, and operated in a sun-synchronous orbit with a 10-day repeat cycle. The current 

Sentinel-2A acquisition priorities are focused primarily on Europe. A second identical 

satellite (Sentinel-2B) was launched on March 7, 2017 and is expected to be operational for 

data acquisitions in 3-4 month. Together they will cover all Earth’s land surfaces, large 

islands, and inland and coastal waters every five days. 

 

Figure 1.3: The Sentinel-2 satellite. 

More details about sentinel 2 are given in appendix 1.B. 

1.2 Reasons for image degradation 

There are several modalities used to capture images, and for each modality, there are many 

ways to construct images. Therefore, there are many reasons and sources for image 

degradation. Images acquired through any modern sensors consist of variety of noises (such 

as thermal noise, amplifier noise, photon noise, quantization noise and cross talk), resulting 

from stochastic variations and deterministic distortions or shading. In addition to inherent 

reasons, blurring occurs in many image formation systems due to limited performance of both 

optical and electronic systems. The shutter speed, for example, is the main factor deciding the 

amount of motion blur. As blurring can significantly degrade the visual quality of images.  

In digital image processing, in general, discrete model for a linear degradation caused by 

blurring and additive noise can be given by the following superposition summation, 

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/acquisition-plans
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where f(x, y) represents an original image with size of NM   pixels, g(x, y) is the degraded 

image which is acquired by the imaging system, n(x, y) represents an additive noise 

introduced by the system, and h(x-k, y-l) is the two-dimensional point spread function (PSF) 

of the imaging system, which, in general, can be spatially varying. More detail of PSF is 

given in Appendix 2.A. 

In the following of this section, we will study the reasons for image degradation on French 

synergy image [URL16]. A sentinel-2 image Figure 1.5 (a) shows La Rochelle - the capital of 

the Charente-Maritime department in western France - and surroundings. At the center, we 

can see clearly the 2.9 km long bridge connecting the city with the Île de Ré. The white lines 

represent the sandy beaches of the coastal area. Between the water line and the beach, silt 

layers and darker sand are shown, which are presented in this image captured during low tide. 

The La Rochelle- Île de Ré airport is visible at the north of the city. Also at top-right, it is the 

visible part of the Natural Reserve of the Bay of Aiguillon. It hosts hundreds of thousands of 

migratory water birds every year. It is an area of synergy between sea and land, freshwater 

and saltwater, and between humankind and nature. Since 23 June 2015, the Sentinel-2 has 

been in orbit as a polar-orbiting, high-resolution land monitoring satellite, supplying imagery 

of soil and water cover, vegetation, coastal areas and inland waterways. The size of this image 

is 2953 4016 3. 

1.2.1 Reasons for blurring 

Blurring in an image occurs because of a localized averaging of pixels, and results in the 

smoothing of image content. It can be caused by a number of phenomena including, relative 

motion between the camera and the imaged scene, defocusing or atmospheric turbulence. 

Blurring is usually modeled as a convolution of the image with the point spread function 

(PSF). We will form the blurring process model in the following way: 

                                        g(x, y) = (h*f)(x, y) + n(x, y)                                                    (1.2) 

Let us consider each component in a more detailed way. As for functions f(x, y) and g(x, y), 

everything is quite clear with them. However, as for the blurring function h(x, y) we need to 

say a couple of words. In the process of blurring each pixel of a source image turns into a spot 
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in case of defocusing and into a line segment (or some path) in case of a usual blurring due to 

movement. Alternatively, we can say otherwise, that each pixel of a blurred image is 

"assembled" from pixels of some nearby area of a source image. All those overlap each other, 

which fact results in a blurred image. The principle, according to which one pixel becomes 

spread, is called the blurring function.  

1.2.1.1 Motion blur 

Image blur can result from the subject moving while the shutter is open. Such movement 

results in the subject only being blurred. Most satellite imaging systems do not remain fixed 

over a target because they are in orbit around Earth or the Moon. Regarding the ordinary 

digital photos, the movement of our subject will cause blur in the image which we don't want 

to happen. For satellite photography, it is unavoidable that the satellite in its orbit or the 

Target are in motion (Figure 1.4). Once we have determined the resolution that our satellite 

camera needs to study a Target, we also have to keep track of image and Target motion, 

which can also blur the image. To avoid blurring, we do not want the scene being 

photographed to move by more than one pixel during the exposure time. Motion blurring can 

significantly degrade the visual quality of images. Motion blurring is usually modeled as a 

spatially invariant convolution process. The general form of motion blur function h is given as 

follows [Reg97]: 
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where L and   are the length and angle of the blur, respectively. 
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Figure 1.4: Satellite photography. 

We present in Figure 1.5 a satellite image corrupted by linear motion blur with L=20 pixels 

and  =45°. 
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Figure 1.5: Images and histograms corresponding to motion blurring. 

1.2.1.2 Out-of-focus blur 

To reduce noise in short exposures, the aperture size can be increased to allow more light 

into the camera. Increasing the aperture size reduces the depth of field portion of image that is 

in-focus, however, it increases the portion of the image that will be out-of-focus. For a 

circular aperture, a point source in a scene will be projected onto the sensor as a circular disc. 

(a) Original color image (b) Blurred color image 

(c) Original gray-level image (d) Blurred gray-level image 

(e) Histogram of image (c) (f) Histogram of image (d) 
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This disc is known as the circle of confusion. The diameter of the circle depends on the focal 

length, aperture number and the distance between the lens and the object being imaged 

[Bov05]. If an object is out-of-focus, the lens will behave like a low pass filter, removing high 

frequency image content. If the PSF is large relative to the wavelengths being imaged, it can 

be modeled using the following spatially-invariant blur, 
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where r is the radius of the out-of-focus blur. 

We present in Figure 1.6 a satellite image corrupted by out-of-focus blur with r=45°. 
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(a) Original color image (b) Blurred color image 

(c) Original gray-level image (d) Blurred gray-level image 

(e) Histogram of image (c) (f) Histogram of image (d) 

Figure 1.6: Images and histograms corresponding to out-of-focus blurring. 

1.2.1.3 Atmospheric turbulence blur 

Satellite images through the atmosphere are blurred, distorted, and have reduced contrast 

relative to their source. There are atmospheric phenomena that give rise to attenuation of the 

irradiance of the propagating image, thus reducing the contrast of the final image. Absorption 
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and large angle scattering by aerosols attenuate images propagating through the atmosphere 

[Li07]. They are blurred by small angle scattering caused by aerosols, and by optical 

turbulence. Image blur through the atmosphere [Li08] involves both turbulence and small 

angle forward scatter of light by aerosols, which is also called the adjacency effect, since it 

causes photons to be imaged in pixels adjacent to those in which they ought to have been 

imaged. 

Common in remote sensing and aerial imaging, the blur due to long-term exposure though 

the atmosphere can be modeled by a Gaussian PSF,  

                                                          )
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where K is a normalizing constant ensuring that, the blur is of unit volume, and 
2 is the 

variance that determines the severity of the blur. 

We present in Figure 1.7 a satellite image corrupted by atmospheric turbulence with 
2 =5. 
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(a) Original color image 

 
(b) Blurred color image 

 
(c) Original gray-level image 

 
(d) Blurred gray-level image 

 
(e) Histogram of image (c)  

 
(f) Histogram of image (d)  

Figure 1.7: Images and histograms corresponding to atmospheric turbulence blurring. 

 

1.2.2 Reasons for noise 

Digital images are prone to a variety of types of noise. Noise is the result of errors in the 

image acquisition process that result in pixel values that do not reflect the true intensities of 

the real scene [Gag96][Fed17]. There are several ways that noise can be introduced into an 

image, depending on how the image is created. For example, if the image is scanned from a 

photograph made on film, the film grain is a source of noise. Noise can also be the result of 
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damage to the film, or be introduced by the scanner itself. If the image is acquired directly in 

a digital format, the mechanism for gathering the data (such as a CCD detector) can introduce 

noise. Electronic transmission of image data can introduce noise. Noise is deemed to be each 

or any measurement that is not part of the phenomena of importance. In imagery, we can 

categorize the noise into two categories as image data independent noise and image data 

dependent noise. Noise could be added systematically introduced into images. As types of 

noise, there are three types which are mostly represented to be added to the image; impulse, 

additive and multiplicative noise [Sub11].  

1.2.2.1 Impulse noise 

Impulse noise [Har10][Ric17] corruption is very common in digital images. Impulse noise 

is always independent and uncorrelated to the image pixels and is randomly distributed over 

the image. Hence unlike Gaussian noise, for an impulse noise corrupted image all the image 

pixels are not noisy, a number of image pixels will be noisy and the rest of pixels will be 

noise free. There are different types of impulse noise namely salt and pepper type of noise and 

random valued impulse noise. In salt and pepper type of noise the noisy pixels take either salt 

value (gray level-225) or pepper value (grey level-0) and it appears as black and white spots 

on the images. If p is the total noise density then, salt noise and pepper noise will have a noise 

density of p/2. This can be mathematically represented by: 
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where g(i, j) represents the noisy image pixel, p is the total noise density of impulse noise and 

f(i, j) is the uncorrupted image pixel. 

At times the salt noise and pepper noise may have different noise densities p1 and p2 and 

the total noise density will be p=p1+ p2. In case of random valued impulse noise, noise can 

take any gray level value from 0 to 225. In this case, also, noise is randomly distributed over 

the entire image and probability of occurrence of any gray level value as noise will be same. 

We can mathematically represent random valued impulse noise as: 
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where n(i, j) is the gray level value of the noisy pixel. 
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We present in Figure 1.8 a satellite image noised by salt and pepper noise with p= 0.1. 

(a) Original color image (b) Noised color image 

(c) Original gray-level image (d) Noised gray-level image 

(e) Histogram of image (c) (f) Histogram of image (d) 

Figure 1.8: Images and histograms corresponding to salt and pepper noising. 

1.2.2.2 Additive noise 

In the additive noise, we can decompose the corrupted image g as: 

                            g(i, j)=f(i, j)+n(i, j), where 1≤i≤M, 1≤j≤N                                           (1.8) 
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where, f is the original image and n is the noise component. We assumed n to be white, i.e. 

every realization is independent from the others, in other words, corresponds to say that it is 

spatially uncorrelated which mean that the noise for each pixel is independent. Some 

examples of additive noise are Gaussian noise, uniform noise, Laplacian noise and Cauchy 

noise [Sci17]. Identification of Gaussian noises are very easy identified using skewness and 

kurtosis, the distribution of pixel is equally spread over the entire pixel, it’s shown very less 

symmetry compared with others, the kurtosis is also very minimum, because of it is uniformly 

distributed entire the region. Gaussian noise is evenly distributed over signal. This means that 

each pixel in the noisy image is the sum of the true pixel value and a random Gaussian 

distributed noise value. The noise is independent of intensity of pixel value at each point. A 

special case is white Gaussian noise, in which the values at any pair of times are identically 

distributed and statistically independent. White noise draws its name from white light. 

Principal sources of Gaussian noise in digital images arise during acquisition, for example 

sensor noise caused by poor illumination or high temperature or transmission. Gaussian noise 

is statistical noise having a probability density function equal to that of the normal 

distribution, which is also known as the Gaussian distribution. In other words, the values that 

the noise can take on are Gaussian-distributed.  

 

Figure 1.9: Probability density function of Gaussian noise. 

 

The probability density function p of a Gaussian random variable z is given by: 

                                                              
22 2/)(

2

1
)( 



 zezp                                     (1.9) 

where z represents the grey level, μ the mean value and σ the standard deviation. 
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We present in Figure 1.10 a satellite image noised by a Gaussian noise with zero mean and 

variance of 0.1. 

 

(a) Original color image 

 

(b) Noised color image 

 

(c) Original gray-level image 

 

(d) Noised gray-level image 

 
(e) Histogram of image (c) 

 
(f) Histogram of image (d) 

Figure 1.10: Images and Histograms corresponding to Gaussian noise. 

1.2.2.3 Multiplicative noise 

The multiplicative noise that is also, known as Speckle noise. Speckle noise is commonly 

observed in radar sensing system, although it may appear in any type of remotely sensed 
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image utilizing coherent radiation. Like the light from a laser, the waves emitted by active 

sensors travel in phase and interact minimally on their way to the target area. Speckle noise in 

image is serious issue, causing difficulties for image representation [Pal13]. Coherent 

processing of backscattered signals from multiple distributed targets causes it. Speckle noise 

is a multiplicative noise, which occurs in the coherent imaging, while other noises are additive 

noise. Speckle is caused by interference between coherent waves that, back scattered by 

natural surfaces, arrive out of phase at the sensor [Gag97]. Speckle can be described as 

random multiplicative noise. The source of this noise is a form of multiplicative noise in 

which the intensity values of the pixels in the image are multiplied by random values. Speckle 

noise is multiplicative noise unlike the Gaussian and salt pepper noise. The probability 

distribution function for speckle noise is given by gamma distribution  

                                                        aze
a

z
zp /

1

)!1(
)( 











                                           (1.10) 

where z, α and a represent respectively the gray level, the shape parameter and the scale 

parameter. 

The probability density function of speckle noise is graphically represented in Figure 1.11. 

 
Figure 1.11: Probability density function of speckle noise. 

We present in Figure 1.12 a satellite image noised by a zero mean speckle noise with 

variance is equal to 0.3. 
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(a) Original color image 

 

(b) Noised color image 

 

(c) Original gray-level image 

 

(d) Noised gray-level image 

 
(e) Histogram of image (c) 

 
(f) Histogram of image (d) 

Figure 1.12: Images and histograms corresponding to speckle noise. 

1.2.2.4 Poisson noise 

Poisson noise, also known as Photon noise, is a basic form of uncertainty associated with the 

measurement of light, inherent to the quantized nature of light and the independence of 

photon detections. In computer vision, a widespread approximation is to model image noise as 

signal independent, often using a zero-mean additive Gaussian. Though this simple model 

suffices for some applications, it is physically unrealistic. In real imaging systems, photon 
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noise and other sensor-based sources of noise contribute in varying proportions at different 

signal levels, leading to noise that is dependent on scene brightness. Understanding photon 

noise and modeling it explicitly is especially important for low-level computer vision tasks 

treating noisy images [Foi08], and for the analysis of imaging systems that consider different 

exposure levels or sensor gains [Has10].  

Let I  denote an image that does not include noise and the number of the photons ( )i  for 

pixel value ( )I i  at pixel i, which is expressed as [Ima16] 

( ) ( )i rI i                  (1.11)  

where r is a coefficient indicating the photons for a tone level of 1. Then, the noise in the 

pixel is Poisson distributed with probability function  

          
( )( )

( )
!

k ii e
P k

k

 

                  (1.12) 

where, k is the gray level. 

A characteristic of the Poisson distribution is that the variance is equal to the mean, so that for 

each pixel the noise depends on the number of photons.  

We present in Figure 1.13 a satellite image noised by a Poisson noise. The satellite image is 

coded on 8 bits. For example, if a pixel has the value of 10, then the corresponding output 

pixel will be generated from a Poisson distribution with mean 10. 
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(a) Original color image 

 

(b) Noised color image 

 

(c) Original gray-level image 

 

(d) Noised gray-level image 

 
(e) Histogram of image (c) 

 
(f) Histogram of image (d) 

Figure 1.13: Images and histograms corresponding to Poisson noise. 

1.3 Image and degradation models 

Two-dimensional (2-D) autoregressive (AR) models have many applications in image 

processing and analysis. For instance, they have been applied to image restoration [Kau91], to 

texture analysis [Sar94], to fine arts painting analysis [Hei87], and to 2-D spectrum estimation 

[Sha86]. 
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1.3.1 Image model 

In establishing the fundamentals for mathematical image modeling, we will assume that 

any interesting image can be defined on mapping of pixel coordinates into density values over 

a discrete 2D square region consisting of a NN  regularly spaced lattice, i.e., with N2 

different picture elements or pixels. A conventional raster type scan from left to right and 

from top to bottom will be followed. Space-invariant image models assume that the image is a 

realization of a homogeneous random field. A causality is introduced in the representation of 

images by the scanning process. We assume previous information that the real image structure 

can be described by a 2D independent auto regressive (AR) model with zero-mean 

homogeneous Gaussian noise w(m, n) with covariance ),(2 nmw  [Arb04]. The model 

equation is 

                                       ),(),(),(
),(

, nmwlnkmscnms
lk

lk  


                                (1.11) 

where lkc , are the image model coefficients (assumed stationary), s(m, n) is the present pixel 

estimated in the original image from past pixels in the range  , and the range  is the pixels 

belonging to the non-symmetric half plane (NSHP), which were defined as past.  

When the range is limited to an M by M pixel size, then 
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               (1.12) 

where M is empirically defined according to the image correlation. 

By lexicographically ordering of the image data [And77] we can use the more compact 

matrix-vector notation: 

                                                                              s=Cs+w                                             (1.13) 

A general state-space difference equation representation is of the form: 

                                               ),(),(),1(),( nmDwnmEunmCxnmx                   (1.14) 
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where x(m, n) is the state at (m, n); u denotes a deterministic input, w denotes additive noise 

independent of x, and C, D, and E are system matrices. The deterministic input term, u, has 

not been used previously for image restoration.  

The representation of (1.14) is a one-dimensional state-space difference equation where "one-

dimensional" implies one direction of state propagation, either horizontally or vertically. In 

order to represent (1.11) in the form of (1.14), the one-dimensional (horizontal) state-space 

representation requires the state to be defined as follows: 
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This state was determined assuming an image of N pixels wide and scanned from left to 

right, top to bottom. The pixels contained in the state vector are shown pictorially in Figure 

1.14. It is obvious that the size of the state vector will remain constant in a given column.  

 
Figure 1.14: The state vector x(m, n). 

1.3.2 Degradation models 

The deterministic component of the degradations, called blur, is modeled by a mapping 

)),(;,( posnmf of the scene s(o, p) to the image plane coordinates (m, n). In its most general 

form, this mapping is non-linear and space-variant [And77]. Images are also subject to 

statistical degradations, commonly called noise, which for practical purposes can be modeled 

as an additive white, Gaussian random field, v(m, n), with zero-mean and variance 
2
v  

[Woo77][Ros82][ Zha89]. Hence, the observation model becomes: 

                                           y(m, n)=f(m, n; s(o, p))+v(m, n)                                           (1.16) 
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We will now investigate some simplified blur models. 

1.3.2.1 Linear space-invariant blur models 

The mapping f(m, n; s(o, p)) becomes the point spread function (PSF) if s(o, p) is 

substituted by the unit impulse  (m, n) indicating a point source for the scene. Assuming a 

linear degradation system, in the limit of representing the scene with a spatial distribution of 

an infinite number of point sources, the resulting image plane intensity distribution, b(m, n), is 

given by the following superposition rule: 

                                                      



),(

),(),;,(),(
po

posponmhnmb                              (1.17) 

where h(m, n; o, p) is the PSF and   denotes the PSF support. 

Further simplification of (1.17) is possible due to the nature of some blurs. If the blur is 

considered as space-invariant, then (1.17) becomes a discrete convolution summation as 

follows: 

                                            



),(

),(),(),(
lk

lnkmslkhnmb                                      (1.18) 

where h(k, l)= h(m-o, n-p). 

Unlike the image model support, the support of the PSF does not to be causal, and in 

general, almost all realistic blurs are modeled with non-causal PSFs. The blurring PSF which 

is modeled by this way is an thMM )(  order finite impulse response (FIR) filter. The 

conservation of energy assumption implies that a point source of light should result in no loss 

of energy, i.e., 

                                                             1),(
),(


lk

lkh .                                                   (1.19) 

1.3.2.2 Space-variant blur models 

In some cases, a space-invariant blur model is not appropriate as explained in the 

introduction. The most general case of space-variant blurs is modeled by equation (1.16). 

However, under some assumptions, it is possible to approximate the space-variant blur model 

with a piecewise space-invariant PSF. In other words, we can assume that the space-variant 

blur can be represented by a collection of L distinct point spread functions, where L is a pre-
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determined number, such that at each pixel one of the L point spread functions will be more-

or-less matched to the observed data. Then (1.17) simplifies to: 

                                  



),(

),()),()(,(),(
lk

lnkmsnmlkhnmb                                    (1.20) 

where ),( nm is a random variable that indicates the blur model acting at (m, n).  

The space-variant blur identification problem then reduces to a detection problem, at each 

pixel, over a finite-population set of possible point spread functions. Real life examples of 

image-blurs that can approximately be modeled by (1.20) are given below. 

1.3.3 Estimation of image model coefficients 

The problem of two-dimensional (2D) autoregressive modeling is very important in many 

signal-processing applications. This problem has applications in image processing, radar, 

sonar, and communications. In image processing, it has been applied to image modeling 

[Zha08], texture analysis [Oe93], and hyperspectral imagery [He13]. In radar and sonar, it can 

be included in direction finding, model based detection, and spectral estimation [Han90]. 

Modeling of 2D AR processes with various regions of support is considered in [Cho07]. We 

will briefly review the procedure for estimating the image model coefficients. 

1.3.3.1 Least squares method 

The method of least squares is a standard approach in regression analysis to the 

approximate solution of overdetermined systems, i.e., sets of equations in which there are 

more equations than unknowns. "Least squares" means that the overall solution minimizes the 

sum of the squares of the residuals made in the results of every single equation. 

Alternatively, (1.11) can be written as follows: 

                                           s(m, n)=CTs1(m-1, n)+w(m, n)                                             (1.21) 

where s1(m-1, n) is as in [Kau83], a vector consisting of those pixels in  , and C is a vector 

containing the corresponding coupling coefficients. 

The most straightforward procedure for estimating the coefficient vector C is to perform a 

least-squares fit of (1.21) over a representative block  of data using the observations y(m, n) 

in place of the true densities s(m, n).  That is, Ĉ would be determined so as to minimize: 
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where, ),1(),1(),1( 111 nmvnmsnmy  . 

Setting to zero the gradient of J with respect to C results in: 
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It should be noted, however, that since y1, the term that multiplies C in (1.22), contains 

noise, the estimate will be significantly biased in the sense that CCE )ˆ( . 

An approximate method for reducing this bias can be realized by first recognizing that the 

true unbiased estimate would be: 
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If the sums in (1.23) is regarded as expectation approximation, then (1.24) can be rewritten 

as: 
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1.3.3.2 Yule-Walker equations 

The image model coefficients and the related modeling variance 
2

w  can be obtained 

immediately by the 2D Yule-Walker equations [Yul27][Wal31], because the autocorrelation 

coefficients can be computed directly from the original image s. The term w(m, n) can also be 

regarded as the modeling error between the image and its predicted value. Specifically, we 

obtain the AR coefficients c(k, l) by solving the Yule-Walker equations: 
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where 
2

w  is variance of the state noise and nmr , is the (m, n)th auto-correlation coefficient 
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of the original (or its prototype) image computed as: 
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1.3.4 Measures of image restoration quality 

In applications of image restoration, image quality usually refers to the image’s fidelity to 

its original. To measure the image restoration quality thus means to measure the amount of 

improvement in image quality due to restoration. There are two classes of objective quality 

assessment of images. The first are the mathematically defined measures such as the mean 

square error (MSE), peak signal to noise ratio (PSNR), root mean square error (RMSE), and 

improvement signal to noise ratio (ISNR). The second class of measurement methods depend 

on the characteristics of the human visual system (HVS) in an attempt to incorporate 

perceptual quality measures. Of the two methods, the mathematically defined measures are 

most widely used. This is because of simplicity of implementation. Most error sensitivity 

methods are based on the mean square error (MSE). In most circumstances, they are 

"equivalent metrics". The MSE is parameter-free, easy to compute and the samples in an 

image are considered to be independent. The MSE allows a clear physical meaning. 

1.3.4.1 Improvement Signal-to-noise ratio (ISNR) improvement 

In image restoration, the improvement in quality of the restored image over the recorded 

blurred one is measured by the improvement signal-to-noise ratio (ISNR) improvement which 

is defined as follows in decibels (dB). For an image of size NM  pixels, ISNR is given by: 
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where x, y and x̂  are the original image, the degraded image and the restored image, 

respectively. This objective measure is usually applied to evaluate restoration performance, 

and is widely adopted in the comparative study of restoration algorithms [Kat91][Lag91]. 

The improvement in ISNR is a measure that expresses the reduction of disagreement with 

the ideal image when comparing the distorted and restored images. Note that all of the above 

signal-to-noise measures can only be computed in case the ideal image is available, i.e., in an 

experimental setup or in a design phase of the restoration algorithm. 
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1.3.4.2 Mean Square Error (MSE) 

Mean Square Error (MSE) is a quality measure, which quantitatively recognize the strength 

of error signal. MSE is commonly used because it has a simple mathematical structure and 

easy to implement. If x is an input image and its desired or restored image is x̂ then, Mean 

Square Error may be defined as: 
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1.3.4.3 Root Mean Square Error (RMSE) 

The Root Mean Square Error (RMSE) is the root square of MSE: 

                                              RMSE MSE                                                                (1.30) 

1.3.4.4 Peak signal-to-noise ratio (PSNR) 

The term peak signal-to-noise ratio (PSNR) is an expression for the ratio between the 

maximum possible value (power) of a signal and the power of distorting noise that affects the 

quality of its representation. Because many signals have a very wide dynamic range, (ratio 

between the largest and smallest possible values of a changeable quantity) the PSNR is 

usually expressed in terms of the logarithmic decibel scale. Image enhancement or improving 

the visual quality of a digital image can be subjective. Saying that one method provides a 

better quality image could vary from person to person. For this reason, it is necessary to 

establish quantitative/empirical measures to compare the effects of image enhancement 

algorithms on image quality. Using the same set of tests images, different image enhancement 

algorithms can be compared systematically to identify whether a particular algorithm 

produces better results.  The metric under investigation is the peak-signal-to-noise ratio.  If we 

can show that an algorithm or set of algorithms can enhance a degraded known image to more 

closely resemble the original, then we can more accurately conclude that it is a better 

algorithm. The mathematical representation of the PSNR for gray scale image is as follows: 
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Conclusion 

In this chapter, we have recalled the main characteristics of sentinel family satellite 

images, as well as their different phases of treatment, also, we recalled their contributions in 

the various fields of human activity. We have also presented the reasons for image 

degradation, which consists of two distinct phenomenon’s blur and noise. The blur occurs due 

to a number of reasons such as motion, defocusing and atmospheric turbulence. The noise 

may originate in the following process, the image formation process and the transmission 

process or the combination of these two. We described the mathematical models for the image 

and degradation that we will adopt for the restoration of satellite images. It is assumed that the 

original image can be represented by the output of a 2-D autoregressive process and the noisy 

blurred image can be modeled by the 2-D convolution summation. 
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Introduction 

Satellite image processing is one of the thrust areas in the field of computer science research. 

In the satellite image processing, the image received from the satellite contains enormous 

amount of data for the further processing or analysis. The received satellite image always 

corrupted by blur and noise. 

There are many types of blur that affect images, such as linear motion blur, out of focus blur 

and atmospheric turbulence blur. However, the atmospheric turbulence blur is the main source 

for blurring in the remote sensing imagery [Tom08]. In the satellite image, noise is introduced 

in many stages: transmission channel, quantization process, and measurement process. 

Moreover, lenses, digitizer, and cameras also contribute to the image degradation. The analysis 

of such degraded images will hamper the investigation part and may lead to wrong solutions. 

Such images have to be restored back to its original form to get the correct results. 

The restoration of the image is an area that also deals with improving the appearance of an 

image [Kau12][Das15]. However, unlike image enhancement, which is subjective, the image 

restoration is objective in the sense that restoration techniques tend to be based on mathematical 

or probabilistic models of image degradation. Many restoration algorithms have been 

developed but all of them having its own advantages and disadvantages [Gan13]. The selection 

of the appropriate algorithm depends on the targeted application. For example, the restoration 

algorithm developed for a medical image is not suitable for the satellite or any other images 

[Ras17]. 

Image restoration is the process of any form of image degradation reduction. Image 

restoration algorithms can be broadly divided into blind [Can76] and non-blind techniques. If 

the degradation function or point spread function (PSF) is known, then the algorithm is said to 

be non-blind whereas if the PSF is unknown then the algorithm is a blind image restoration 

technique. Image restoration techniques are the methods that attempt the inversion of some 

degrading process. Image restoration technique can be broadly classified into two types 

depending upon the knowledge of degradation. If the prior knowledge about degradation is 

known, then the deterministic method of image restoration can be applied. If it is not known, 

then the stochastic method of image restoration has to be employed. 

The aim of this chapter is to compare and understand some of the popular image restoration 

algorithms for different images that are obtained from various different imaging fields and to 

develop a more powerful restoration technique, which can fulfill the desire to have satellite 

image as clear as possible. We organize this chapter as following. We start by introducing a 
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basic model of image restoration in Section 2.1. We described the non-blind and the blind 

restoration techniques respectively in Section 2.2 and Section 2.3. Finally, we introduce the 

proposed method in Section 2.4. 

2.1 Basic model of image restoration 

The main objective of image restoration is to recover the original image from a degraded 

image, which is affected by blur and/or noise. At first, the original image is degraded using 

degradation function, the noise is added to this generated output after that. At the next stage, 

the received degraded image is given to the restoration filter, which suppress the blur and/or 

noise, and produce the output image, which is compared to the original image. 

2.1.1 Image degradation model 

In the degradation model, the image is blurred using the degradation function h, and then the 

noise is added to the image. The image degradation model is given by: 

                                               g(x, y)=(h f )(x, y)+ n(x, y)                                                        (2.1) 

where, h(x, y), g(x, y), f(x, y), and n(x, y) represent respectively the degradation function, the 

observed or degraded image, the original image or input image and the additive noise 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Image degradation model. 
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2.1.2 Image restoration model 

In the image restoration model, the restored image ),(ˆ yxf  is built back by the restoration 

filter from the degraded image g(x, y). The restoration process is implemented by inversing the 

degradation process by removing the blur factor and the additive noise form the degraded 

image. We obtain an estimation of the original image after the restoration. The closer of the 

restored image ),(ˆ yxf to the original image ),( yxf  the more efficient is the filter. 

 

 

 

 

 

 

 

The domain of image restoration (which is sometimes referred to as image deconvolution or 

image de-blurring) is concerned in the reconstruction or estimation of the uncorrupted image 

from a blurred and/or noisy image. Basically, restoration techniques are classified into blind 

restoration techniques and non-blind restoration techniques [Tha16]. Blind and non-blind 

restoration techniques are further more divided into linear restoration methods and non-linear 

restoration methods [Sum09]. Figure 2.3 shows classification of restoration techniques. 

We will discuss the non-blind restoration techniques at first in this chapter. A non-blind 

technique depends on the estimation of Point Spread Function (PSF), which should be priory 

known. Based on the PSF estimation, the input image will be restored. As we mentioned before, 

there are two types of non-blind techniques. First, the linear restoration methods, such as 

Weiner filter, Inverse filter, regularized filter and constrained least square filter. The second 

type is the non-linear type such as Lucy-Richardson algorithm restoration method. 

 

 

Figure 2.2: Image restoration model. 
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The general system design describing the image restoration process is represented in a block 

diagram given below in Figure 2.4. 

 

 

 

 

 

 

 

Figure 2.4: General block diagram for image restoration process. 

2.2 Non-blind restoration techniques 

In this section, we will describe briefly a number of non-blind restoration techniques for the 

case of blurred images when we have a prior knowledge about the PSF. In addition, we will 

illustrate a practical example for the performance of each technique.  

Figure 2.3: Classification of restoration techniques. 
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2.2.1 Deconvolution using Lucy Richardson Algorithm 

The first technique that we will describe and examine is the Lucy-Richardson algorithm. 

W.H. Richardson (1972) and L.B. Lucy (1974) have introduced together this procedure. 

Initially Leon Lucy and William Richardson derived it on the basis of the Bayesian theorem in 

the early 1970’s [WHI94]. The Richardson-Lucy Algorithm (LRA), which is also known as 

Lucy-Richardson deconvolution, is an iterative technique for restoring a degraded image that 

has been distorted by a known point spread function. 

The LRA can be used successfully if the PSF (blur kernel) is known, but limited or no 

information is given for the noise. The iterative and accelerated LRA repairs the blurred and 

noisy images. The additional optical system such as camera features can be used as input 

parameters to recover the quality of the image restoration. 

The algorithm requires an appropriate estimation of the process by which the image was 

corrupted in order to assure an accurate restoration as much as possible. The degradation in the 

image can be in many ways and of many sources, such as subject movement, out-of-focus 

lenses, or atmospheric turbulence, and is been determined by the system PSF. We can represent 

the observed image pixels in terms of the degraded image and the PSF as follows: 

                                                          
j

jiji upd                                                            (2.2) 

where ijp  is the PSF function (which is the light fraction that comes from a true location j, 

which is observed at a position i), ju  represent the pixel value at a location j in the degraded 

image, and id  represent the observed value at location i. 

The statistics are done under the consideration that ju  are Poisson distributed, which is 

relevant for photon noise distribution in the data. The main objective is to calculate the 

maximum likelihood estimation (MLE) for ju with the presence of the observed id and the 

already known PSF ijp  as following: 
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LRA is easy to implement, and it preserves edges due to its non-linearity, as it is a nonlinear 

method. Precisely, a big problem we face here is the noise amplification. When implementing 

a high number of L-R iterations on an image that may contain an extended object such as a 

galaxy, the extended emission usually develops a “Speckled” appearance [Bov09]. We present 

in Figure 2.5 the original image of Eiffel tower in gray level with dimensions of 256×256 

pixels, the blurred image with atmospheric turbulence blurring with standard deviation of 5 and 

the deblurred resultant image obtained by Lucy-Richrdson method. 

Figure 2.5: Deblurring using Lucy-Richardson method. 

2.2.2 Deconvolution using inverse filter 

The inverse filtering (IF) deconvolution is a restoration technique, i.e., if an image is blurred 

with a known low pass filter, the image can be restored using inverse filtering or generalized 

inverse filtering [Gon08]. In this technique, a Fourier transform estimate of the image ),(ˆ vuS  

is estimated by dividing the Fourier transform of the degraded image by the Fourier transform 

of the degradation function: 

                                                              
),(

),(
),(ˆ

vuH

vuG
vuF                                                      (2.5) 

This technique will give a great result if the image was affected by blur effects only but not 

noise effects. However, if a noise was added to the blurred image then the result of the direct 

inverse filtering is very bad. Otherwise, the formula (2.5) will be,    

                                                              
),(

),(
),(),(ˆ

vuH

vuN
vuFvuF                                    (2.6) 
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where N(u, v) is usually unknown.  

Sometimes, because of the fraction, we have to face the problem that the degradation 

function has zero or very small values. One way to solve the problem is to limit the filter 

frequencies to values near the origin, which is usually non-zero. Therefore, the probability of 

finding zero values will be diminished. In this experiment, we will center the Fourier transform 

of the original image, as well as the degradation function. The centered function is: 

                                                      
6

5

22 ))()((),( vNuMkevuH                                                   (2.7) 

where M and N are the size of the image. 

Unfortunately, as the IF is a sort of high pass filter, inverse filtering reacts very badly in case 

of noise present in the image because the noise tends to be high frequency. Here we present in 

Figure 2.6 the original image of champs_élysées street in gray level with dimensions of 

256×256 pixels, the blurred image with atmospheric turbulence blurring with standard 

deviation of 5 and the deblurred resultant image obtained by IF. 

Figure 2.6: Deblurring by Inverse Filter. 

2.2.3 Deconvolution using Wiener filter 

In the 40’s of the last century, Norbert Wiener has introduced the wiener deconvolution 

technique that was published in 1949. The Wiener technique is a non-blind deconvolution that 

rebuilds the degraded image with a previous knowledge of the PSF. The Wiener filter (WF) 

inverts the blur effect and at the same time removes the additive noise. It performs the deblur 

using invert technique as high pass filter and in the same time it eliminates noise with a 

compression operation as a low pass filter. The WF operates in the frequency domain; the goal 

is to minimize the influence of the noise at a poor signal to noise ratio frequencies. This 
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technique is based on recognizing images and noise as random operations. The goal is to find 

an appropriate estimate of f̂  for the original not degraded image f  so that the mean square 

error between them is reduced. The WF is widely used in image deconvolution applications 

since the frequency spectrum can easily be estimated for the most of visual images. WF is one 

of the good methods to linear image restoration. It seeks an estimate f̂  that reduces the 

statistical error function: 

                                                               22 )ˆ( ffEe                                                      (2.8) 

where E is the expected value operator.  

The solution to above expression in the frequency domain is: 
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where H(u, v) the degradation function, ),( vuSn the power spectrum of noise, ),( vuS f is the 

power spectrum of the original image and ),( vuG  is the degraded image. 

We present in Figure 2.7 the original image of famous lena in gray level with dimensions of 

256×256 pixels, the blurred image with atmospheric turbulence blurring with standard 

deviation of 5 and the deblurred resultant image obtained by WF. One of the major flaws of a 

WF is the mandatory for previous knowledge of power spectra for the original image and noise. 

In the case of random noise, it is difficult to estimate the typical restoration of the image. 
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Figure 2.7: Deblurring by Wiener filter. 

2.2.4 Deconvolution using Regularized Filtering 

Regularized filter (RF) is one of the non-blind convolution family, i.e. it de-blur an image 

with a prior knowledge of the blur function that blurred the image [Kau15]. This filter is 

considered an approximation for the WF, and it results with a close result to that of the Weiner 

filter. Anyway, the RF needs less information about the blurred function in order to restore the 

image. Regularized filtering is used in an effective way when few information is known about 

the additive noise. The RF uses constrained least square algorithm to restore the noisy and 

blurred image. It is usually classified as a discrete Laplacian filter. The RF is easy to implement 

and needs less information about the blurred function. However, it has to have a prior 

information about the blur function. 

We present in Figure 2.8 the original image of famous barbara in gray level with dimensions 

of 256×256 pixels, the blurred image with atmospheric turbulence blurring with standard 

deviation of 5 and the deblurred resultant image obtained by RF.  
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Figure 2.8: Deblurring by Regularized Filter. 

The RF is used in a better way when constraints like smoothness are applied on the recovered 

image and very less information is known about the additive noise. A constrained least-squares 

restoration algorithm that uses a RF regains the blurred and noisy image. 

2.2.5 Deconvolution using Constrained Least-Squares Filtering 

Constrained Least-Squares (CLS), is another non-blind method for image restoration, which 

was first introduced by Hunt [Hun73]. CLS is a linear image deconvolution method that 

maximizes the restored image smoothness subject to a constraint on the fidelity of the restored 

image. Constrained least squares estimation is a method that to solve the integral equations of 

the first kind. The problem of image restoration requires the solution of an integral equation of 

the first kind. However, applying the constrained least squares estimation to image restoration 

requires the solution of extremely large linear systems of equations. In the Wiener method, we 

use the power spectrum of the actual image and noise. In the CLS algorithm, we constrain the 

variation occurred in the image due to noise without actual knowledge of both power spectrums. 

The CLS method uses the Laplacian operator as a prior knowledge with decreasing the 

computational requirement by introducing the fast Fourier transform (FFT). The CLS 

restoration can be given by: 
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where, 


 1  and   is a Lagrange multiplier [Hun73], ),( vuP  represent the Fourier 

transform of the Laplacian filter: 
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The Fourier transform ),( vuP  has a great amplitude at high frequencies, where the noise 

tends to be dominant. Here the denominator will be modified in order to diminish the noise 

effects at high frequencies. Let ),( vuH  is the two-dimensional discrete Fourier transform of 

the degradation function h(x, y) of the space-invariant degradation model, the corresponding 

constrained least-squares retoration filter RCLS(u,v) will be given as: 
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where C(u, v) is a high-pass filter and the parameter of regularization  to managing the 

smoothness in the restored image [Gon08]. 

We present in Figure 2.9 the original image of peppers in gray level with dimensions of 

256×256 pixels, the blurred image with atmospheric turbulence blurring with standard 

deviation of 5 and the deblurred resultant image obtained by CLS. 

Figure 2.9: Deblurring by Constrained Least-Squares filter. 

2.3 Blind Deconvolution Methods 

In this section, we will describe the blind restoration methods for the case of blurred images. 

Blind deconvolution is a Blind technique of image restoration, which restore the blurred images 

without a prior knowledge of the PSF. In this deconvolution method, we allow the recovery of 

the degraded image from a single or set of infected images in the presence of a few or no 
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information about PSF. The first step in this method is to obtain an estimation of the blurring 

operator i.e. PSF and then using that estimate we will be able to deblur the image. Furthermore, 

the blind deconvolution method is a technique that could be executed iteratively as well as non-

iteratively. In an iterative process, after each iteration, the estimation of the PSF will be 

improved and by using that estimated PSF, we can enhance the restored image repeatedly by 

bringing it as close as possible to the original image. In a non-iterative procedure, a single 

application of the algorithm on the base of exterior information will extract the PSF then this 

extracted PSF will be used to restore the original image from the degraded one. 

2.3.1 Deconvolution using mean filter 

The mean filter (MF) or the average linear filter [Nat13] is a nonlinear deconvolution 

method. In this technique, the filter calculates the average value of the corrupted image in a 

previously determined area, and then the center pixel intensity value is then replaced by that 

average value. This procedure is then repeated for all pixels in the degraded image. The 

algorithm is similar to the low pass filter algorithm. 

The principal idea of this method is to deal with each pixel of the degraded image as 

following: It takes the pixel and the surrounded neighborhood pixels according to the window 

size that has been specified, then sums all the values and divide by the number of the elements. 

This is the average value; at last, the filter replaces the old pixel with the new average value 

and so on until all the pixels in the noisy image are replaced by the average value. The process 

now is completed; we have the filtered or resultant image. There are many types of mean 

filtering such as arithmetic, geometric, harmonic and contraharmonic mean filters. Information 

about these filters are given in the appendix (section 3.A). In Figure 2.10, we show the results 

for deblurring image of the Louvre using the different mean filters. The original image of 

Louvre is in gray level with dimensions of 256×256 pixels. The blurred image obtained using 

atmospheric turbulence with standard deviation of 5. 
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Figure 2.10: Deblurring by different mean filters. 

In general, mean filtering has a simple algorithm and it is built easy but a single pixel value 

could fully affect the mean value of the average of the neighborhood pixels, which yields to a 

wrong value in the restored image pixel. 

2.3.2 Deconvolution using Median filter 

Median filtering (MeF) is a non-linear deconvolution broadly used to restore or smooth 

degraded images [Mah10][Zhu12]. The MeF is broadly used because it is very efficient at 

eliminating noise while preserving edges of the image. It is especially powerful at eliminating 

‘salt and pepper’ type of noise. The MeF procedure is to move through the image pixel by pixel 

while replacing every value by the median value of neighboring pixels. The pattern of neighbors 

and its dimension is called the "window", which moves, pixel by pixel across the whole image. 

The median value is computed by sorting the values of each pixel within the median window 

into numerical order, after that, this middle (median) pixel value will be given to pixel under 

consideration. 

When applying the MeF to grayscale images, which is a “neighborhood brightness-ranking 

algorithm”, it will arrange the brightness values of the pixels from every neighborhood in 

ascending order. The MeF will then choose the median value of that ordered sequence to be the 
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representative brightness value for that neighborhood. At the same time, every pixel in the 

restored image will be defined as the brightness median value of the related neighborhood in 

the original image [Ver13]. The MeF is the best-known “order-statistics” filter that works by 

replacing the pixel value by the median value of the gray levels in the neighborhood of that 

pixel: 

                                                 ),(),(ˆ
),(

lsgmedianyxf
xvSls 

                                                       (2.13) 

The main difference between the MF and the MeF is that the original value of the pixel will 

be included in the MeF computation. The popularity of the MeF comes from its excellent 

restoration capabilities with less blurring than similar size linear smoothing filters. The MeF is 

effective mostly when both bipolar and unipolar impulse noises are present.  

We present in Figure 2.11 the original image of centre Georges Pompidou in gray level with 

dimensions of 256×256 pixels, the blurred image with atmospheric turbulence blurring with 

standard deviation of 5 and the deblurred resultant image obtained by MeF. 

Figure 2.11: Deblurring by Median filter. 

2.3.3 Wavelet Deconvolution  

The wavelet method is used widely in image processing fields' such as image compression, 

and in image restoration [Gup15]. Wavelet transforms are based on small waves, which are 

called wavelets. Wavelets, which means the little waves, such as Haar, Daubechies, Morlet, etc. 

are functions that are concentrated in the frequency domain and in time domain surrounding a 

fixed point. Wavelet transforms provide an efficient representation of the image by finely tuned 

to its intrinsic properties. By combining such representations with simple processing techniques 

in the transform domain, multiresolution analysis can accomplish remarkable performance and 
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efficiency for many image processing problems. We can summarize the method of restoration 

for an image by wavelet deconvolution technique into three main categories; wavelet transform 

or decomposition, threshold [Hed11], and lastly the noise removing (restoring) [Zho00]. The 

wavelet transform is computationally very fast and easy to perform. On the other hand, it is 

sensitive to every shift in frequency because the input-signal shifts produce unpredictable 

variations in the discrete wavelet transform (DWT) coefficients, further it requires the phase 

information that correctly represents non-stationary signal behavior. 

Considering the estimation based on wavelet, the image f is usually represented in terms of 

an orthogonal wavelet expansion that provides a very sparse representation (some large 

coefficients and several very small ones). Let W express the DWT and let us write the image 

f=W , where   represent the vector of wavelet coefficients. Now, let us represent a maximum 

penalized likelihood estimator/maximum a posteriori (MPLE/MAP) criterion in terms of  , 

the wavelet coefficients for the original image considering the likelihood function to be p(g/

). Taking some penalty )(pen  to emphasize sparsity of the DWT coefficients, the MPLE/MAP 

estimate is given by: 
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When H=I, which is considered for direct restoring problems, wavelet-based deconvolution 

is very effective due to the DWT fast implementations and to the orthogonality of (that is, 

WTW=WWT=I) which allows solving (2.14) using a coefficient-wise restoring rule; furthermore, 

these methods achieve state-of-the-art execution [Mih99][Mou99]. The superior performance 

of wavelet-based in image restoration is due to the adequacy of the underlying priors/models of 

real-world images. In spite of the fact that wavelets have shown effectiveness in image 

restoration problems [Ban96][Bel00], major obstacles arise, unlike H, which is block-circulant, 

HW is not block-circulant, i.e. it is not diagonalized by the discrete Fourier transform (DFT). 

Furthermore, HW is not orthogonal, unlike W, this will exclude the efficient coefficient-wise 

rules [Fig03]. 

We present in Figure 2.12 the original image of Henri Cartier Bresson foundation in gray 

level with dimensions of 256×256 pixels, the blurred image with atmospheric turbulence 

blurring with standard deviation of 5 and the deblurred resultant image obtained by DWT. 
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Figure 2.12: Deblurring by DWT filter. 

2.3.4 Deconvolution using bilateral filter 

The bilateral filter (BF) was firstly presented by Tomasi and Manduchi in 1998 [Tom98]. In 

addition, the BF concept was introduced as the SUSAN filter in [Smi97] and as the 

neighborhood filter in [Yar85]. The BF method is a non-iterative and non-linear image 

restoration algorithm that function in the spatial domain. It uses the spatial data and the intensity 

data between a point and its neighbors to restore the degraded images while well preserving the 

data in the edges. The BF is developed to achieve an important objective: to reduce noise while 

preserving the critical image details [Des15]. The BF algorithm is functioning on a register-

transfer level. The unique feature of the BF design idea consists of changing the clock domain 

in a way, which assures the possibility of the kernel-based processing. That means the 

processing of the whole filter window at a one-pixel clock cycle. This characteristic of the 

kernel-based design is maintained by arranging the input data into groups in such a way that 

the internal clock of the design will be the multiple of the pixel clock specified by the targeted 

system. The BF deconvolution represents the concept of combining between both filtering 

methods domain and range. The domain filter functions as same as a low-pass filter since it 

computes the average of the nearby pixel values. The range filter plays the part of the non-linear 

filtering that has an important role in edge preserving. This combination provides averaging for 

only the similar pixel values, notwithstanding of their location in the filter window. If the pixel 

value in the filter window has diverged from the pixel value that been filtered by a particular 

value, then it will be skipped. Mathematically, given a pixel located at (x, y) which will be 

restored in a degraded image using its neighboring pixels, and the location of one of its 

neighboring pixels is at (s, l) then, the output of a BF is computed as follows: 
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where d and r are smoothing parameters controlling the fall-off of weights in spatial and 

intensity domains, respectively, xvS is a spatial neighborhood,  f(x, y) and f(s, l) are the intensity 

of pixels (x, y) and (s, l) respectively, and C is the normalization constant: 
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When the intensity domain parameter r  increases, the BF approaches gradually Gaussian 

convolution more closely because the Gaussian range widens and flattens, which indicates that 

it becomes almost constant over the intensity interval of the image. As the spatial domain d  

increases, the larger components are smoothened.  

We present in Figure 2.13 the original image of Manufacture des Gobelins in gray level with 

dimensions of 256×256 pixels, the blurred image with atmospheric turbulence blurring with 

standard deviation of 5 and the deblurred resultant image obtained by BF. 

Figure 2.13: Deblurring by bilateral filter. 

The filter has been used for many applications such as texture removal, dynamic range 

compression, and photograph enhancement. The BF is a powerful method in removing high-

density noise from the noisy images. On the other hand, it has a limited effect on the salt and 

pepper noise. 

 

 

Clear image 

 

Blurred image 

 

Deblurred image 



Chapter 2                                Comparative study of restoration techniques in satellite images 

66 

2.3.5 Deconvolution using Adaptive Local Filter 

Adaptive local filter (ALF) [Ran14] is another type of blind filters, which is used to restore 

the degraded images that contain data of the original images affected by noise and/or blur. The 

restoration procedure in this filter rely on two statistical measurements mean and variance, 

using a specific nm window: 
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where, 2

n , lm , 2

l , g(x, y)  and ),(ˆ yxf are respectively the local variance of the local region, 

the local mean, the variance of overall noise, the pixel value at the position (x, y) and the restored 

value. 

The ALF is easy to implement and fast. However, it has weak results due to its slow 

convergence. 

We present in Figure 2.14 the original image of Manufacture des Gobelins in gray level with 

dimensions of 256×256 pixels, the blurred image with atmospheric turbulence blurring with 

standard deviation of 5 and the deblurred resultant image obtained by ALF. 

Figure 2.14: Deblurring by adaptive local filter. 
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2.4 Proposed method to restore the Sentinel images  

Sentinel satellite images are very important in many applications as we mentioned before. 

However, these images are subject to quality reduction due to the effects of noise and blur in 

the stage of acquiring or transferring. Our objective in this section is to propose a new method 

to restore the sentinel satellite images based on combination techniques. The process of 

combining two or more images into a single image while retaining the important features of 

each image is called image fusion. In this section, the filtered images from the two different 

smoothing algorithms, the blind and non-blind, are fused to obtain a high quality restored 

image. Our method [Mar16] is to combine the image restored from the non-blind deconvolution 

method that has the best metrics results among the other non-blind deconvolution methods, with 

the best result of the same image restored by blind deconvolution in order to improve the quality 

of the restored image. We will use a combination method, to combine a two of resultant images 

and obtain an image that is better, this method called image fusion [Ufa12]. Image fusion 

[Cho14][Zho99] has several types such as the high pass filtering, which is the classic method. 

Other modern methods exist such as: fusion based on Laplacian pyramid, uniform rational filter 

bank, and discreet wavelet transform. We will implement the combination using fusion based 

on DWT [Sin13]. The process of the fusion method is illustrated in Figure 2.15. The effective 

work in the wavelet based image fusion is to combine the coefficients, in other words, is to find 

the most convenient way to integrate the coefficients in such a way to have the best quality of 

the fused image. There are many ways to achieve this goal; the simplest way is to calculate the 

average of the coefficients to be integrated [Paj04]. 
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Figure 2.15: Proposed method for image restoration diagram. 

2.4.1 Result Analysis 

In order to show the effectiveness of our proposed method, we chose the satellite images and 

more particularly the sentinel images described in chapter 1 as the field of application. Satellite 

images are usually degraded by noise during image acquisition and transmission process. In the 

last several decades, numerous approaches for satellite image restoration has been proposed 

[Zha12][Gup15]. In this section, we will apply the proposed method [Bas16] to solve the 

problem of degraded sentinel images. The effectiveness of our method is illustrated by 

simulating the actual procedure of remote sensing satellite image restoration. We will use three 

Sentinel satellite images, given in figures 2.16, 2.22 and 2.30.  

The first image in Figure 2.16 is obtained from sentinel-1 satellite. The original image 

“Radar image of the Netherlands” shown in Figure 2.16 is obtained from the site [URL14]. This 

image was acquired on 15 April with the radar operating in ‘strip map mode’, which provides 

coverage at a resolution of about 10 m. This image over the west coast of the Netherlands is 

one of the early radar scans by the Sentinel-1A satellite. In the sake of time conserving, we 

edited the dimensions of the image to be 898512  pixels instead of the original 144528811

pixels. The second image shown in Figure 2.22 is obtained from sentinel-2 satellite. The 

original image of “Toulouse” shown in Figure 2.22 is obtained from the site [URL17]. The 
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Copernicus Sentinel-2A satellite takes us over Toulouse in southern France and the surrounding 

agricultural landscape. Positioned on the banks of the River Garonne, the city is in France and 

it is the fourth largest. It is nicknamed the Ville Rose – pink city – owing to the color of the 

terracotta bricks commonly used in the local architecture. Even from space, the pinkish tint 

from the terracotta roof tiles is evident. In the upper left, we can see the runways of the 

Toulouse-Blagnac airport. The air route to the Paris Orly airport is one of the busiest in Europe. 

Fields blanketing the countryside dominate the image. In fact, France is the EU’s leading 

agricultural power and is home to about a third of all agricultural land within the EU. While 

agriculture brings benefits for economy and food security, it puts the environment under 

pressure. Satellites can help to map and monitor land use, and the information they provide can 

be used to improve agricultural practices. This image was captured on 10 July 2017 by Sentinel-

2’s multispectral camera. Sentinel-2 is designed to provide images that can be used to 

distinguish between different crop types as well as data on numerous plant indices, such as leaf 

area, leaf chlorophyll and leaf water – all essential to monitor plant growth accurately. In the 

sake of time conserving we edited the dimensions of the image to be 512427 pixels instead 

of the original 19201601 pixels. The third image shown in Figure 2.30 is obtained from 

sentinel-2 satellite. The original image “Southeast France”, shown in Figure 2.30, is obtained 

from the site [URL18]. “This Sentinel-1 radar image captures a stretch of southeast France, 

from the city of Lyon on the left to the Alps on the right the northeast part of the Auvergne-

Rhone-Alps region. The image is made up of three satellite acquisitions from 13 July, 12 August 

and 11 September 2017 to highlight any changes on the ground. Grey tones, where there are 

mountains, towns for example depict no change, but red, green, and blue tones indicate where 

vegetation has changed as summer progressed. The highest mountain in the Alps, Mont Blanc, 

which is on the French–Italian border, is featured a little below half way down the right side of 

the image. To the north of the Alps, part of Lake Geneva can be seen with the Swiss city of 

Geneva at southwestern end of the lake. Further south and slightly west of the Alps, Lake 

Annecy and Lake Bourget are visible. To the west of these lakes the land gives way to gentle 

valleys with Lyon featured on the left side of the image”. The dimensions of the image 

“Southeast France” are 910512 pixels. In our work, we used the software Matlab® 2015a. 

The window size for the mean and median filters were 33. The DWT filter was single-level 

2-D wavelet decomposition with respect to the wavelet Daubechies. In the bilateral filter, the 

spatial domain control parameter d  =3 and the intensity domain control parameter r = 0.2. 
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2.4.1.1 Blur reduction in satellite images 

In this section we will test the behavior of the deconvolution techniques in deblurring the 

images in the case of blur only and no noise existing. The blur process is done with three PSF 

functions as mentioned before. Then after the deconvolution of the blurred image with the 

deconvolution techniques, we will choose the best result from the blind deconvolution 

techniques and the best result from the non-blind deconvolution techniques and propose the 

combination method of the two images in order to get a restored image with a better quality.  

2.4.1.1.a Motion blur case 

In this section, we will simulate the “Radar image of the Netherlands” with motion blur. We 

present in the Figures 2.16 (a), (b) and 2.17 (a), (b), the original “Radar image of the 

Netherlands” image and the corrupted image by linear motion blur with L=20 pixels and  =45° 

respectively. After that, we will deblur the blurred image using the blind and non-blind 

deconvolution methods. The final step will be to implement our proposed method by combining 

the best image resulted from the non-blind convolution methods with the best one obtained 

from the blind convolution methods by the fusion technique. 
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Figure 2.16: The resultant deblurred images by the non-blind deconvolution methods and the 

corresponding histogram for each deblurred image, for the motion blur case. 
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Figure 2.17: The resultant deblurred images by the blind deconvolution methods, and the 

corresponding histogram for each deblurred image, for the motion blur case.  
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Table 2.1: The resultant metrics of the deblurred by non-blind deconvolution methods for the 

motion blur case. 

Netherlands ISNR RMSE PSNR 

LRA 1.22 17.84 23.07 

IF 0.41 33.69 17.55 

WF 0.93 20.45 21.88 

RF 0.85 21.40 21.49 

CLS 0.25 39.04 16.27 

 

Table 2.2: The resultant metrics of the deblurred by blind deconvolution methods for the 

motion blur case. 

Netherlands ISNR RMSE PSNR 

AMF 0.82 22.80 20.94 

GMF 0.88 21.04 21.64 

HMF 0.87 21.09 21.62 

CHMF 0.92 20.54 21.85 

MeF 0.95 20.14 22.02 

DWT 0.91 20.63 21.81 

BF 0.94 21.09 21.62 

ALF 0.84 21.26 21.55 

 

Regarding the results shown in Figure 2.16 and in Table 2.1 we can see that the LRA has 

shown the best results in visual and metrics, whereas the CLS has shown the worst results 

obtained among the rest non-blind methods introduced. Regarding the results shown in Figure 

2.17 and in Table 2.2 we can see that the MeF has shown the best results in visual and metrics, 

whereas the AMF has shown the worst results obtained among the rest blind methods. 

2.4.1.1.b Out of focus blur case 

In this section, we will simulate the “Radar image of the Netherlands” with out of focus blur 

with r=45°.We present in Figures 2.18 (a), (b) and 2.19 (a), (b), the original “Radar image of 

the Netherlands” and the corrupted image by the out of focus blur with r=45° respectively. After 

that, we will deblur the blurred image using the blind and non-blind deconvolution methods. 

The final step will be to implement our proposed method by combining the best image resulted 

from the non-blind convolution methods with the best one obtained from the blind convolution 

methods by the fusion technique. 
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Figure 2.18: The resultant deblurred images by the non-blind deconvolution methods, and the 

corresponding histogram for each deblurred image, for the out of focus blur case. 
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(j) ALF ALF histogram 

 

Figure 2.19: The resultant deblurred images by the blind deconvolution methods, and the 

corresponding histogram for each deblurred image, for the out of focus blur case. 

Table 2.3: The resultant metrics of the deblurred by non-blind deconvolution methods, for the 

out of focus blur case. 

Netherlands ISNR RMSE PSNR 

LRA 1.25 24.13 20.45 

IF 0.48 34.32 17.39 

WF 0.95 25.38 19.92 

RF 0.22 25.53 19.96 

CLS 0.07 94.30 8.61 

 

Table 2.4: The resultant metrics of the deblurred by blind deconvolution methods, for the out 

of focus blur case. 

Netherlands ISNR RMSE PSNR 

AMF 0.94 29.41 18.73 

GMF 0.96 25.85 19.85 

HMF 0.95 25.88 19.84 

CHMF 0.98 25.38 20.01 

MeF 0.89 25.26 20.05 

DWT 1.35 23.93 20.52 

BF 0.97 25.44 19.99 

ALF 0.85 25.88 19.84 

Regarding the results shown in the Figure 2.18 and in the Table 2.3 we can see that the LRA 

has shown the best results in visual and metrics, whereas the CLS has shown the worst results 

obtained among the rest non-blind methods introduced. Regarding the results shown in the 

Figure 2.19 and in the Table 2.4 we can see that the DWT has shown the best results in visual 

and metrics, whereas the AMF has shown the worst results obtained among the rest blind 

methods introduced. 
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2.4.1.1.c Atmospheric turbulence blur case 

In this section, we will simulate the “Radar image of the Netherlands” image with 

atmospheric turbulence blur with 2 =5.We present in Figures 2.20 (a), (b) and 2.21 (a), (b), 

the original “Radar image of the Netherlands” image and the corrupted image by the 

atmospheric turbulence blur with 
2 =5 respectively. After that, we will deblur the blurred 

image using the blind and non-blind deconvolution methods. The final step will be to implement 

our proposed method by combining the best image resulted from the non-blind convolution 

methods with the best one obtained from the blind convolution methods by the fusion technique. 
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Figure 2.20: The resultant deblurred images by the non-blind deconvolution methods and the 

corresponding histogram for each deblurred image, for the atmospheric turbulence blur case. 
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Figure 2.21: The resultant deblurred images by the blind deconvolution methods, and the 

corresponding histogram for each deblurred image, for the atmospheric turbulence blur case. 

 

Table 2.5: The resultant metrics of the deblurred by non-blind deconvolution methods, for the 

atmospheric turbulence blur case. 

Netherlands ISNR RMSE PSNR 

LRA 1.45 28.15 19.11 

IF 0.18 49.95 14.13 

WF 0.92 46.18 14.81 

RF 0.28 48.47 14.39 

CLS 0.17 52.66 13.67 
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Table 2.6: The resultant metrics of the deblurred by blind deconvolution methods, for the 

atmospheric turbulence blur case. 

Netherlands ISNR RMSE PSNR 

AMF 0.57 48.53 14.38 

GMF 0.93 45.92 14.86 

HMF 0.94 45.87 14.87 

CHMF 0.98 44.87 15.06 

MeF 0.99 44.77 15.08 

DWT 1.32 34.59 17.32 

BF 0.88 46.18 14.81 

ALF 0.83 47.26 14.61 

Regarding the results shown in the Figure 2.20 and in the Table 2.5 we can see that the LRA 

has shown the best results in visual and metrics, whereas the CLS has shown the worst results 

obtained among the rest non-blind methods introduced. Regarding the results shown in the 

Figure 2.21 and in the Table 2.6 we can see that the DWT has shown the best results in visual 

and metrics, whereas the AMF has shown the worst results obtained among the rest blind 

methods introduced. 

2.4.1.2 Noise reduction in satellite images 

In this section, we will examine the behavior of several deconvolution techniques in the case 

of noise presence only using the sentinel-2 Toulouse image shown in Figure 2.22. We will use 

the most common four types of noise, salt & pepper noise with density 0.06, Gaussian noise 

with mean of zero and variance of 0.06, speckle noise with mean of zero and variance of 0.08 

and Poisson noise with mean of the value of the image pixel on the original image of Toulouse 

respectively. In the first step, the noisy image will be denoised using the blind and non-blind 

deconvolution techniques. In the second step, we will apply the different metrics, mentioned in 

chapter 1, to obtain the best denoised image of each techniques. In the third step, we apply the 

proposed method to ameliorate the result of denoising. 

2.4.1.2.a Salt & Pepper noise  

This type of noise is also referred to as impulsive or spike noise. The main source for the 

salt and pepper is errors occurred during the analog to digital conversion and transmission. The 

image containing the salt and pepper noise has only two possible values as dark pixels in the 

bright regions (low value- zero) and bright pixels in dark regions (high value- one). The 

probability of each is typically less than 0.1. The value of unaffected pixels remains unchanged. 

In this section, we will examine the restoration techniques for restoring the satellite image in 
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presence of salt & pepper noise only with density of 0.06. In the Figures 2.22 and 2.23, we 

show the denoised images using the non-blind and the blind techniques. 
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(c) LRA 

 
(d) IF 

 
(e) WF 

 
(f) RF 

 
(g) CLS 

 

Figure 2.22: The resultant denoised images by the non-blind deconvolution methods, for the 

salt & pepper noise. 
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(a) Original 

 
(b) Noisy 

 
(c) AMF 

 
(d) GMF 

 
(e) HMF 

 
(f) CHMF 

 
(g) MeF 

 
(h) DWT 

 
(i) BF 

 
(j) ALF 

 

 
 

Figure 2.23: The resultant denoised image by the blind deconvolution methods for the salt & 

pepper noise. 

 

Table 2.7: The resultant metrics of the denoised by non-blind deconvolution methods for the 

salt & pepper noise. 

Toulouse ISNR RMSE PSNR 

LRA 0.88 44.87 13.49 

IF 0.83 45.87 12.71 

WF 1.12 44.77 17.17 

RF 0.71 46.18 10.81 

CLS 0.77 45.92 11.73 
 

Table 2.8: The resultant metrics of the denoised by the blind deconvolution methods for the 

salt & pepper noise. 

Toulouse ISNR RMSE PSNR 

AMF 1.10 36.69 16.81 

GMF 0.71 72.69 10.87 

HMF 0.68 76.30 10.45 

CHMF 0.84 57.94 12.84 

MeF 1.15 33.73 17.54 

DWT 1.051 40.36 15.98 

BF 1.08 37.80 16.55 

ALF 1.02 42.41 15.55 
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Regarding the results shown in Figure 2.22 and in Table 2.7 we can see that the WF has 

shown the best results in visual and metrics, whereas the RF has shown the worst results 

obtained among the rest non-blind methods introduced. 

Regarding the results shown in Figure 2.23 and in Table 2.8 we can see that the MeF has 

shown the best results in visual and metrics, whereas the HMF has shown the worst results 

obtained among the rest blind methods introduced. 

2.4.1.2.b Gaussian noise  

One of the most important noise that degrade the image quality is Gaussian noise that is 

evenly distributed over the image. When this additive noise is added to the original image, in 

the output noisy image every pixel is the sum of a random Gaussian distributed noise value and 

image pixel value. In color cameras, most amplification is performed in the blue color channel 

than in the green or red channel. Therefore, there is more noise in the blue channel as compared 

to other two channels. In this section, we will examine the restoration techniques for restoring 

the satellite image in presence of Gaussian noise only with mean of zero and variance of 0.08. 

In the Figures 2.24 and 2.25, we show the denoised images.  
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(a) Original 

 
(b) Noisy 

 
(c) LRA 

 
(d) IF 

 
(e) WF 

 
(f) RF 

 
(h) CLS 

 

Figure 2.24: The resultant denoised images by the non-blind deconvolution methods, for the 

Gaussian noise. 

 

 
(a) Original 

 
(b) Noisy 

 
(c) AMF 

 
(d) GMF 

 
(e) HMF 

 
(f) CHMF 

 
(g) MeF 

 
(h) DWT 

 
(i) BF 

 
(j) ALF 

 

 
 

Figure 2.25: The resultant denoised image by the blind deconvolution methods, for the 

Gaussian noise. 
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Table 2.9: The resultant metrics of the denoised by non-blind deconvolution methods, for the 

Gaussian noise. 

Toulouse ISNR RMSE PSNR 

LRA 0.75 68.31 11.41 

IF 0.72 71.29 11.04 

WF 1.08 37.80 16.55 

RF 0.89 53.09 13.6 

CLS 0.8 62.66 12.16 

 

Table 2.10: The resultant metrics of the denoised by the blind deconvolution methods, for the 

Gaussian noise. 

Toulouse ISNR RMSE PSNR 

AMF 1.01 40.04 16.05 

GMF 0.64 78.34 10.22 

HMF 0.61 83.27 9.69 

CHMF 0.74 64.49 11.91 

MeF 0.97 42.61 15.51 

DWT 0.92 46.94 14.67 

BF 1.17 32.55 17.85 

ALF 0.94 45.13 15.01 

 

Regarding the results shown in Figure 2.24 and in Table 2.9 we can see that the WF has 

shown the best results in visual and metrics, whereas the IF has shown the worst results obtained 

among the rest non-blind methods introduced. 

Regarding the results shown in Figure 2.25 and in Table 2.10 we can see that the BF has 

shown the best results in visual and metrics, whereas the HMF has shown the worst results 

obtained among the rest blind methods introduced. 

2.4.1.2.c Speckle noise  

This multiplicative noise signal, which follows gamma distribution, is multiplied with the 

original image pixels to generate the noisy image. Generally, all coherent systems such as 

Synthetic Aperture Radar (SAR) images, Laser, Ultrasound images suffered by this speckle 

noise. In this section, we will examine the restoration techniques for restoring the satellite image 

in presence of speckle noise only with zero mean and variance of 0.08. In the Figures 2.26 and 

2.27, we show the denoised images. 
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(a) Original 

 
(b) Noisy 

 
(c) LRA 

 
(d) IF 

 
(e) WF 

 
(f) RF 

 
(h) CLS 

 

Figure 2.26: The resultant denoised images by the non-blind deconvolution methods, for the 

speckle noise. 

 

 
(a) Original 

 
(b) Noisy 

 
(c) AMF 

 
(d) GMF 

 
(e) HMF 

 
(f) CHMF 

 
(g) MeF 

 
(h) DWT 

 
(i) BF 

 
(j) ALF 

 

 
 

Figure 2.27: The resultant denoised images by the blind deconvolution methods, for the 

speckle noise. 
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Table 2.11: The resultant metrics of the denoised by non-blind deconvolution methods, for 

the speckle noise. 

Toulouse ISNR RMSE PSNR 

LRA 0.88 50.64 14.01 

IF 0.85 124.31 6.21 

WF 1.20 31.12 18.24 

RF 0.91 121.48 6.41 

CLS 0.73 133.81 5.57 

 

Table 2.12: The resultant metrics of the denoised by the blind deconvolution methods, for the 

speckle noise. 

Toulouse ISNR RMSE PSNR 

AMF 1.06 35.81 17.02 

GMF 0.89 48.87 14.32 

HMF 0.81 57.48 12.91 

CHMF 0.89 49.49 14.21 

MeF 1.04 37.20 16.69 

DWT 1.26 27.70 19.25 

BF 1.06 35.97 16.98 

ALF 0.99 40.97 15.85 

Regarding the results shown in Figure 2.26 and in Table 2.11 we can see that the WF has 

shown the best results in visual and metrics, whereas the CLS has shown the worst results 

obtained among the rest non-blind methods introduced. 

Regarding the results shown in Figure 2.27 and in Table 2.12 we can see that the DWT has 

shown the best results in visual and metrics, whereas the HMF has shown the worst results 

obtained among the rest blind methods introduced. 

2.4.1.2.d Poisson noise  

Fully developed speckle noise follows a Poisson distribution. This generates the Poisson 

noise from the data instead of adding artificial noise to the data. According to Poisson statistics, 

the uint8 and uint16 intensity of images must correspond to the number of photons. The double-

precision images are used when the number of photons per pixel can be much larger than 65535. 

In this section, we will examine the restoration techniques for restoring the satellite image 

in presence of Poisson noise only. In the Figures 2.28 and 2.29, we show the denoised images. 
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(a) Original 

 
(b) Noisy 

 
(c) LRA 

 
(d) IF 

 
(e) WF 
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(h) CLS 

 

Figure 2.28: The resultant denoised images by the non-blind deconvolution methods, for the 

Poisson noise. 
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Figure 2.29: The resultant denoised image by the blind deconvolution methods, for the 

Poisson noise. 
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Table 2.13: The resultant metrics of the denoised by non-blind deconvolution methods, for 

the Poisson noise. 

Toulouse ISNR RMSE PSNR 

LRA 0.99 41.40 15.76 

IF 0.92 121.48 6.41 

WF 1.27 27.10 19.44 

RF 0.82 138.36 5.28 

CLS 0.92 133.20 5.61 

 

Table 2.14: The resultant metrics of the denoised by the blind deconvolution methods, for the 

Poisson noise. 

Toulouse ISNR RMSE PSNR 

AMF 1.10 33.65 17.56 

GMF 0.91 47.59 14.55 

HMF 0.83 54.83 13.32 

CHMF 0.93 45.66 14.91 

MeF 0.96 43.75 15.28 

DWT 1.12 32.58 17.84 

BF 1.36 23.39 20.72 

ALF 1.03 38.41 16.41 

Regarding the results shown in Figure 2.28 and in Table 2.13 we can see that the WF has 

shown the best results in visual and metrics, whereas the RF has shown the worst results 

obtained among the rest non-blind methods introduced. 

Regarding the results shown in Figure 2.29 and in Table 2.14 we can see that the BF has 

shown the best results in visual and metrics, whereas the HMF has shown the worst results 

obtained among the rest blind methods introduced. 

2.4.1.3 Blur and noise reduction in satellite images 

In this section, we will take into consideration the presence of blur plus noise. Satellite 

images are subject to suffer from the existence of noise, the most types of noise that affect the 

satellite images is the speckle noise [SHA13]. We will study the performance of the non-blind 

and blind deconvolution in the case of the presence of the atmospheric turbulence blur and the 

speckle noise. We will use the satellite image of “Southeast France” in this section. 

In this section, we will examine our deconvolution methods with atmospheric turbulence 

blur with 2 =5, and speckle noise presence. In this section, we will consider that speckle noise 

with mean of zero, and variance of 0.08. After that, we will apply the fusion combination on 

resulted image of the blind convolution methods with the best image resulted from the non-

blind convolution methods. In the Figures 2.30 and 2.31, we show the restored images.  
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(a) Original 

 
(b) Degraded 

 
(c) LRA 

 
(d) IF 

 
(e) WF 

 
(f) RF 

 
(h) CLS 

 

Figure 2.30: The resultant restored images by the non-blind deconvolution methods, for the 

case of atmospheric turbulence blur and speckle noise. 
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Figure 2.31: The resultant restored image by the blind deconvolution methods, for the case of 

linear atmospheric turbulence blur and speckle noise. 
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Table 2.15: The resultant metrics of the restoration with non-blind deconvolution methods, 

for the case of atmospheric turbulence blur and speckle noise. 

Southeast France ISNR RMSE PSNR 

LRA 0.96 46.94 14.67 

IF 0.82 59.50 12.61 

WF 1.07 38.77 16.33 

RF 0.86 55.53 13.21 

CLS 0.79 63.10 12.1 

 

Table 2.16: The resultant metrics of the restoration with blind deconvolution methods, for the 

case of atmospheric turbulence blur and speckle noise. 

Southeast France ISNR RMSE PSNR 

AMF 1.06 39.49 16.17 

GMF 1.05 40.23 16.01 

HMF 1.04 40.69 15.91 

CHMF 1.05 39.90 16.08 

MeF 1.06 39.17 16.24 

DWT 1.23 30.80 18.33 

BF 1.11 36.02 16.97 

ALF 1.03 41.26 15.79 

 

Regarding the results shown in Figure 2.30 and in Table 2.15 we can see that the WF has 

shown the best results in visual and metrics, whereas the CLS has shown the worst results 

obtained among the rest non-blind methods introduced. 

Regarding the results shown in Figure 2.31 and in Table 2.16 we can see that the DWT has 

shown the best results in visual and metrics, whereas the ALF has shown the worst results 

obtained among the rest blind methods introduced. 

2.4.2 Evaluation of results and applying the proposed method 

This study makes a comparison between the different presented image restoration algorithms 

non-blind image deconvolution (NBID), blind image deconvolution (BID) and the proposed 

method deconvolution (PMD) on the basis of performance metrics like PSNR (Peak Signal to 

Noise Ratio), MSE (Mean Square Error), RMSE (Root Mean Square Error) and ISNR 

(Improved Signal to Noise Ratio). In this section, we will apply our proposed method by 

choosing the image that has the best results based on the PSNR values from the two groups, 

non-blind and blind deconvolution methods, and then we will apply the PMD to achieve an 

image with better results. 
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2.4.2.1 Cases for the blurred satellite images 

In this section, we will apply the PMD on the best results obtained from the non-blind and 

blind deconvolution methods in the case of the three blur types, motion, out of focus and 

atmospheric turbulence blur. We will illustrate the results by means of image and PSNR in 

order to clarify and demonstrate the efficiency of the PMD. 

2.4.2.1.a The case for the Motion blur 

In the case for motion blur, our results indicate that the best result obtained from the non-

blind deconvolution methods was the deblurred image of the Lucy-Richardson method with 

PSNR of 23.07. On the other hand, the best result obtained from the blind deconvolution 

methods was the deblurred image of the median method with a PSNR value of 22.02. In this 

part, we will apply our PMD to these two images in order to obtain a better result. Fig 2.32 

shows the original image of Netherlands, the Lucy-Richardson deblurred image, the median 

deblurred image and the PMD resultant image respectively. We can notice the improvement in 

the vision result. The PSNR results shown in Table 2.17 supports the improvement of the 

deblurred image with PSNR of 24.82 for the image obtained from the PMD. 

 
(a) Original 

 
(b) LRA 

 
(c) MeF 

 
(d) PMD 

Figure 2.32: The resultant restored images for the case of motion blur. 

 

Table 2.17: The resultant PSNR of the different methods for the case of motion blur. 

Netherlands ISNR RMSE PSNR 

LRA 1.22 17.84 23.07 

MeF 0.95 20.14 22.02 

PMD 1.63 14.59 24.82 
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2.4.2.1.b The case for the out of focus blur 

In the case for out of focus blur, our results indicate that the best result obtained from the 

non-blind deconvolution methods was the deblurred image of the Lucy-Richardson method 

with PSNR of 20.45. On the other hand, the best result obtained from the blind deconvolution 

methods was the deblurred image of the DWT method with a PSNR value of 20.52. In this part, 

we will apply our PMD to these two images in order to obtain a better result. Figure 2.33 shows 

the original image of Netherlands, the Lucy-Richardson deblurred image, the Wavelet 

deblurred image and the PMD resultant image respectively. We can notice the improvement in 

the vision result. The PSNR results shown in Table 2.18 supports the improvement of the 

deblurred image with PSNR of 23.12 for the image obtained from the PMD. 

 
(a) Original 

 
(b) LRA 

 
(c) DWT 

 
(d) PMD 

Figure 2.33: The resultant restored image for the out of focus blur. 

 

Table 2.18: The resultant PSNR of the different methods for the out of focus blur. 

Netherlands ISNR RMSE PSNR 

LRA 1.25 24.13 20.45 

DWT 1.35 23.93 20.52 

PMD 1.52 17.74 23.12 

2.4.2.1.c The case for the atmospheric turbulence blur 

In the case for atmospheric turbulence blur, our results indicate that the best result obtained 

from the non-blind deconvolution methods was the deblurred image of the Lucy-Richardson 

method with PSNR of 19.11. On the other hand, the best result obtained from the blind 

deconvolution methods was the deblurred image of the Wavelet method with a PSNR value of 

17.32. In this part, we will apply our PMD to these two images in order to obtain a better result. 

Figure 2.34 shows the original image of Netherlands, the Lucy-Richardson deblurred image, 
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the wavelet deblurred image and the PMD resultant image respectively. We can notice the 

improvement in the vision result. The PSNR results shown in Table 2.19 supports the 

improvement of the deblurred image with PSNR of 22.82 for the image obtained from the PMD. 

 
(a) Original 

 
(b) LRA 

 
(c) DWT 

 
(d) PMD 

Figure 2.34: The resultant restored image, for the atmospheric turbulence blur. 

 

Table 2.19: The resultant PSNR of the different methods, for the atmospheric turbulence blur. 

Netherlands ISNR RMSE PSNR 

LRA 1.45 28.15 19.11 

DWT 1.32 34.59 17.32 

PMD 1.50 18.37 22.82 

2.4.2.2 Cases for the noised only satellite images 

In this section, we will apply the PMD on the best results obtained from the non-blind and 

blind deconvolution methods in the case of noise only presence. The four noise types, salt & 

pepper, Gaussian, speckle and Poisson noise are used to affect the satellite image. After 

denoising the noised image using the several non-blind and blind techniques, we will choose 

the best image from each technique and apply our method on the both images. We will illustrate 

the results by means of image and PSNR in order to clarify and demonstrate the efficiency of 

the PMD. 

2.4.2.2.a The case for the Salt & Pepper noise 

In the case for the salt & pepper noise, our results indicate that the best result obtained from 

the non-blind deconvolution methods was the denoised image of the Wiener method with PSNR 

of 17.17. On the other hand, the best result obtained from the blind deconvolution methods was 

the denoised image of the Median method with a PSNR value of 17.54. In this part, we will 
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apply our PMD to these two images in order to obtain a better result. Figure 2.35 shows the 

original satellite image of Toulouse, the wiener denoised image, and the median denoised image 

and the PMD resultant image respectively.  

 
(a) Original 

 
(b) WF 

 
(c) MeF 

 
(d) PMD 

Figure 2.35: The resultant restored image, for the salt & pepper noise. 

 

Table 2.20: The resultant PSNR of the different methods, for the salt & pepper noise. 

Toulouse ISNR RMSE PSNR 

WF 1.12 44.77 17.17 

MeF 1.15 33.73 17.54 

PMD 1.24 28.58 18.98 

 

From the results illustrated in Figure 2.35 and Table 2.20, we can notice the improvement in 

the vision result. The PSNR results shown in Table 2.20 supports the improvement of the 

denoised image with PSNR of 18.98 for the image obtained from the PMD. 

2.4.2.2.b The case for Gaussian noise 

In the case for the Gaussian noise, our results indicate that the best result obtained from the 

non-blind deconvolution methods was the denoised image of the Wiener method with PSNR of 

16.55. On the other hand, the best result obtained from the blind deconvolution methods was 

the denoised image of the bilateral method with a PSNR value of 17.85. In this part, we will 

apply our PMD to these two images in order to obtain a better result. Figure 2.36 shows the 

original satellite image of Toulouse, the Wiener denoised image, and the bilateral denoised 

image and the PMD resultant image respectively.  

From the results illustrated in Figure 2.36 and Table 2.21, we can notice the improvement in 

the vision result. The PSNR results shown in Table 2.21 supports the improvement of the 

denoised image with PSNR of 21.82 for the image obtained from the PMD. 
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(a) Original 

 
(b) WF 

 
(c) BF 

 
(d) PMD 

Figure 2.36: The resultant restored image for the Gaussian noise. 

 

Table 2.21: The resultant PSNR of the different methods for the Gaussian noise. 

Toulouse ISNR RMSE PSNR 

WF 1.08 37.80 16.55 

BF 1.17 32.55 17.85 

PMD 1.43 20.61 21.82 

2.4.2.2.c The case for Speckle noise 

In the case for the speckle noise, our results indicate that the best result obtained from the 

non-blind deconvolution methods was the denoised image of the Wiener method with PSNR of 

18.24. On the other hand, the best result obtained from the blind deconvolution methods was 

the denoised image of the Wavelet method with a PSNR value of 19.25. In this part, we will 

apply our PMD to these two images in order to obtain a better result. Figure 2.37 shows the 

original satellite image of Toulouse, the Wiener denoised image, and the Wavelet denoised 

image and the PMD resultant image respectively.  

 
(a) Original 

 
(b) WF 

 
(c) DWT 

 
(d) PMD 

Figure 2.37: The resultant restored image for the speckle noise. 

 

Table 2.22: The resultant PSNR of the different methods for the speckle noise. 

Toulouse ISNR RMSE PSNR 

WF 1.20 31.12 18.24 

DWT 1.26 27.70 19.25 

PMD 1.38 22.59 21.02 
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From the results illustrated in Figure 2.37 and Table 2.22, we can notice the improvement in 

the vision result. The PSNR results shown in Table 2.22 supports the improvement of the 

denoised image with PSNR of 21.02 for the image obtained from the PMD. 

2.4.2.2.d The case for Poisson noise 

In the case for the Poisson noise, our results indicate that the best result obtained from the 

non-blind deconvolution methods was the denoised image of the wiener method with PSNR of 

19.44. On the other hand, the best result obtained from the blind deconvolution methods was 

the denoised image of the bilateral method with a PSNR value of 20.72. In this part, we will 

apply our PMD to these two images in order to obtain a better result. Figure 2.38 shows the 

original satellite image of Toulouse, the Wiener denoised image, and the bilateral denoised 

image and the PMD resultant image respectively.  

 
(a) Original 

 
(b) WF 

 
(c) BF 

 
(d) PMD 

Figure 2.38: The resultant restored image for the Poisson noise. 

 

Table 2.23: The resultant PSNR of the different methods for the Poisson noise. 

Toulouse ISNR RMSE PSNR 

WF 1.27 27.10 19.44 

BF 1.36 23.39 20.72 

PMD 1.46 19.68 22.22 

From the results illustrated in Figure 2.38 and Table 2.23, we can notice the improvement in 

the vision result. The PSNR results shown in Table 2.23 supports the improvement of the 

denoised image with PSNR of 22.22 for the image obtained from the PMD. 

2.4.2.3 Cases for noised and blurred satellite images 

In this section, we will apply the PMD on the best resultant images obtained from both the 

non-blind and blind deconvolution methods in the case of noise and blur. We will apply our 

PMD on the both images to obtain a new image with better results. We will illustrate the results 

by means of image and PSNR in order to clarify and demonstrate the efficiency of the PMD.  
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2.4.2.3.a The case for Speckle noise with Atmospheric turbulence blur 

In the case for speckle noise with atmospheric turbulence blur, our results indicate that the 

best result obtained from the non-blind deconvolution methods was the denoised image of the 

Wiener method with PSNR of 16.33. On the other hand, the best result obtained from the blind 

deconvolution methods was the denoised image of the Wavelet method with a PSNR value of 

18.33. In this part, we will apply our PMD to these two images in order to obtain a better result. 

Figure 2.39 shows the original satellite image of Toulouse, the Wiener denoised image, the 

Wavelet denoised image and the PMD resultant image respectively.  

 
(a) Original 

 
(b) WF 

 
(c) DWT 

 
(d) PMD 

Figure 2.39: The resultant restored image for the speckle noise with atmospheric turbulence 

blur. 

 

Table 2.24: The resultant PSNR of the different methods for the speckle noise with 

atmospheric turbulence blur. 

Southeast France ISNR RMSE PSNR 

WF 1.07 38.77 16.33 

DWT 1.23 30.80 18.33 

PMD 1.32 25.18 20.08 

From the results illustrated in Figure 2.39 and Table 2.24, we can notice the improvement in 

the vision result. The PSNR results shown in Table 2.24 supports the improvement of the 

denoised image with PSNR of 20.08 for the image obtained from the PMD. 

Conclusion 

In this chapter, we presented the comparative study based on dividing several deconvolution 

methods into two groups; the first is non-blind deconvolution methods and the second is the 

blind deconvolution methods. The simulation results of the tested satellite images indicate that 

our proposed method has improved the results of deblurring, denoising and restoration of the 

blurred, noised and degraded satellite images respectively. In this chapter, we made three kinds 

of comparisons; the first was a comparison of the performance of the non-blind methods and 
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the blind methods in the case of the presence of blur effect only on the satellite image. In the 

first comparison, we studied the behavior of all methods with different kinds of blur, we used 

three types of blur; the first is the motion blur, the second is the out of focus blur and the third 

is the atmospheric turbulence blur. The behavior of the methods varies according to the type of 

the blur. As for the non-blind methods, we notice that the LRA is the superior with the highest 

values of PSNR in the three types of blur among the other non-blind methods and almost among 

the blind methods also. On the other hand, the Wavelet and Median methods has the superiority 

among the other blind methods and the non-blind methods except for the LRA in cases of the 

blur only presence. In the second comparison, we studied the behavior of the several methods 

by applying it to a satellite image affected by noise only. We used four common types of noise; 

salt & pepper, Gaussian, speckle and Poisson noise. In this stage, the wiener method has 

achieved the best results among the other non-blind methods. As for the blind methods in this 

stage, Median has achieved the best results in the presence of the salt & pepper noise. BF was 

the superior in the cases of Gaussian and Poisson noise. DWT has achieved the best results in 

the case of speckle noise presence. The third comparison was to degrade the satellite image 

with a combination of speckle noise and atmospheric turbulence blur. The wiener method has 

still the superior compared to the other non-blind methods. The DWT has achieved the best 

results and it was the superior among the other blind methods. The last stage of our work was 

to choose the superior resultant image from each group, the non-blind and the blind methods, 

in each comparison stage. The two resultant image have been applied into the PMD. The vision 

results and the metric results have indicated that our proposed method has enhanced and 

improved the results by means of both image and metrics values. 
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Introduction 

Image restoration is a major field in the image-processing domain. The problematic in image 

restoration has three phases. The first is the process of eliminating the blur in the image; 

assuming that the image is only blurred, we call that image deblurring. The second is removing 

the noise from the image, assuming that the image is only noised, we call that image denoising. 

The third phase is the case when the image is affected by blur and noise, and then the process 

of removing blur and noise is called restoration. However, denoising and deblurring could also 

be named restoration. 

There are many applications in the image restoration domain, such as forensic applications, 

consumer photography, space imagery and others. A wide variety of approaches for image 

restoration, from classical to recursive, exists in the literature [Ban97]. Researchers working on 

image restoration have long used Kalman method in the image restoration domain 

[Bie83][Woo77]. However, in these implementations, stationary image and degradation models 

have been used exclusively, even though it is well known that images are nonstationary. 

The stationary models have been used previously because of the practical constraints of 

memory and computation time. To avoid memory consumption and time execution problems, 

the reduced order model Kalman filter (ROMKF) was proposed in [Ang89]. The ROMKF is 

simple and easy to implement low image order state space model. A simplified model Kalman 

filter (SMKF) is a different method with more reduction in computational complexity for image 

restoration, it was proposed in [Rao01]. In scalar observation condition, an efficiency 

computational was observed through the benefit of a reduced update procedure [Woo77]. 

However, due to the presence of nonlinear orientation data, a pressing need occurred for a 

modification method of the Kalman filter. 

Extended Kalman filter (EKF) overcome these obstacles and provides modification by 

linearizing all nonlinear models like the process and measurements models so the traditional 

Kalman filter can be applied [Sor85]. Unfortunately, two essential disadvantages were found in 

EKF [Koc92]. First, due to the Jacobian matrices derivation, the linear approximations to the 

nonlinear functions make it hard to implement. Second, the time intervals must be small; 

otherwise, the filter could be unstable due to this linearization [Jul95]. 

To surmount these problems, Julier and Uhlmann [Jul97] produced unscented Kalman filter 

(UKF). An importance sampling-based UKF for image denoising, which is not only 

computationally efficient but also performs very well, is introduced in [Wan13]. 
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The contribution of this chapter is to establish a recursive Bootstrap filtering framework for 

image restoration. The bootstrap algorithm is a filtering process based on both the Bayesian 

state estimation and the Monte Carlo method. The bootstrap application has achieved very good 

results and it is superior in handling any non-linear functionality system and/or measurement 

noise of any distribution. 

The chapter is organized as follows. Section 3.1 presents analytical methods for filtering. In 

the 3.2 section, Monte Carlo methods for nonlinear filtering are described. Experimental results 

are presented to demonstrate the accuracy of the two methods for satellite images restoration in 

section 3.3.  

3.1 Analytical methods for filtering 

In the early 60's, R.E. Kalman [Kal60] introduced his important paper representing a 

recursive solution for the discrete-data linear filtering problem. Following that time and with 

the help of the great progress in computer science, Kalman filtering has drew attention and was 

used in a large number of applications, especially in the field of assisted navigation 

[Pra13][Xin13] and image restoration [Woo81][Bie83][Tek86][Cit92][Arb04][Sub07]. 

The Kalman filter is developed as a group of mathematical equations, which provides an 

effective recursive computational, intends to estimate the state of a process, in such a manner 

that reduces as much as possible the mean of the squared error. The first part of this chapter is 

dedicated to the Kalman filter technique because this method is considered the reference for 

linear dynamical systems. This filter will be useful later to evaluate the performance of our 

different approaches. 

3.1.1 Filtering problem 

In the theory of stochastic processes, we can present the filtering problem as a mathematical 

model for a number of state estimation problems in the signal processing and the related fields. 

Our main objective in Kalman filtering is to obtain the most accurate estimation for the true 

value for a system from an incomplete or probably noised set of observations in the same 

system. Some approaches and special cases are quite understood: for example, in the case of 

Gaussian random variables the linear filters are optimal such as the Wiener filter and the 

Kalman-Bucy filter. 

Filtering can be described as the process involving the extract of information about a quantity 

of interest at time t by utilizing the data have been measured up to and including t. Here, let us 
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take into consideration the following general stochastic filtering problem in a dynamic state-

space form [Jaz70][Sor74]: 

                                                            ),,,( tttt wuxtfx                                                       (3.1) 

                                                            ),,,( tttt vuxtgy                                                         (3.2) 

where (3.1) and (3.2) are called the state and the measurement equations respectively; xt, yt, ut 

represent the state vector, the measurement vector and the system input vector (as driving force) 

in a controlled environment; xx NN
IRIRf :  and yx

NN
IRIRg : are two vector-valued 

functions, which are potentially time varying; wt and vt represent the dynamical and 

measurement noise respectively, with appropriate dimensions. 

The preceding formulation was presented in the continuous-time domain, in practice; 

however, we are more concerned about the discrete-time filtering. In this context, the following 

practical filtering problem is concerned: 

                                                                          ),(1 nnn wxfx                                               (3.3) 

                                                                          ),( nnn vxgy                                                  (3.4) 

where wn and vn represent random sequences white noise with unknown statistics in the discrete-

time domain. 

The state equation (3.3) characterizes the state transition probability p(xn+1|xn), whereas the 

measurement equation (3.4) represents the probability p(yn|xn) that is more related to the 

measurement noise model. In a special case, where a linear Gaussian dynamic system will be 

considered, the equations (3.3) and (3.4) will be reduced to the following: 

                                                                    nnnnn wxFx   ,11                                                (3.5) 

                                                                    nnnn vxGy                                                       (3.6) 

where, Fn+1,n, Gn represent the transition and the measurement matrix respectively. 

Consider the initial density p(x0), transition density p(xn|xn−1), and the likelihood p(yn|xn), the 

goal of the filtering is the estimation of the best current state at a time n given the observations 

up to time n, which is in essence amount to estimate the posterior density p(xn|y1:n) or p(x0:n|y1:n). 
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In spite of the fact that the posterior density gives a full solution of the stochastic filtering issue, 

the problem persists intractable because the density is a function but not a finite-dimensional 

point estimate. 

3.1.2 Bayesian optimal filtering 

Bayesian filtering is aimed to apply the Bayesian statistics and Bayes rule to probabilistic 

inference problems and specifically the stochastic filtering problem. To our knowledge, Ho and 

Lee [Lo64] were among the first authors to discuss iterative Bayesian filtering, in which they 

discussed in principle the sequential state estimation problem and included the Kalman filter 

(KF) as a special case. In the past few decades, numerous authors have investigated the 

Bayesian filtering in a dynamic state space framework [Sor71][Kra85][Kra88][Pol94][Wes97]. 

3.1.2.1 Optimal filtering 

In optimal filtering algorithm, we are primarily concerned with the discrete time estimation 

problem. A discrete-time system model is described by the two equations below: 

                                                                  ),( 1 nnn wxfx                                                               (3.7) 

where mmk IRIRIRf : , wn is the white noise system and an observation vector given by: 

                                                                     ),( nnn vxgy                                                        (3.8) 

where prk IRIRIRg : , and vn is the observation white noise. 

In general, the problem of the optimal filtering is to estimate the state vector at time n, given 

all the measurements up to and including time n, which we will denote by  niyY in ,......,1: 

. In a Bayesian perspective, we look at this problem as how to compute the distribution

)|( nn Yxp , we can do this recursively in two steps. 

Prediction step:  

)|( 1nn Yxp  is calculated by the filtering distribution )|( 11  nn Yxp at time n-1:  

                                            11111 )|()|()|( nnnnnnn dxYxpxxpYxp                                      (3.9) 



Chapter 3              Importance sampling Monte Carlo filters for satellite images restoration 

115 

 

where )|( 11  nn Yxp  is supposed to be known due to recursion and )|( 1nn xxp is given by 

Equation (3.7) and the known statistics of wn-1: 

                                           111111 )|(),|()|( nnnnnnnn dwxwpwxxpxxp                        (3.10) 

Since )|( 11  nn xwp is assumed to be just p(wn-1) then we have: 

                                         11111 )()),(()|( nnnnnnn dwwpwxfxxxp                            (3.11) 

Update step: 

Then, as yn measurement becomes available at time step n, we update the prior according to 

Bayes' rule: 

                                       
)|(

)|()|(
)|(

1

1




nn

nnnn
nn

Yyp

Yxpxyp
Yxp                                                   (3.12) 

where the normalizing denominator is given by: 

                                         nnnnnnn dxYxpxypYyp )|()|()|( 11                                                (3.13) 

The conditional pdf of yn given xn )|( nn xyp , is defined by the measurement model and the 

known statistics of vn: 

                                        nnnnnnn dvvpvxgyxyp )()),(()|(                                           (3.14) 

where  (.) is the Dirac delta function. 

In general, it is not possible that the computations in the prediction and update steps 

(Equations 3.9-3.12) can be taken out analytically; hence, we need to use some approximation 

methods such as Monte Carlo sampling. In some limited cases, however, the computations in 

Equations 3.9-3.12 can be taken out analytically, as will show in the following. 

Criterion that measures the optimality: 

An optimal filter is said to be “optimal” only in some specific sense; in other words, one 

should define a criterion that measures the optimality. For example, some potential criteria for 

measuring the optimality can be: 
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1. Minimum mean-squared error (MMSE): It can be defined in terms of prediction or 

filtering error (or equivalently the trace of state-error covariance): 

                               nnnnnnnn dxYxpxxYxxE )(ˆˆ
22

                                     (3.15) 

which is aimed to find the conditional mean: 

                            nnnnnnn dxYxpxYxEx )(ˆ                                                      (3.16) 

2. Maximum a posteriori (MAP): It is aimed to find the mode of posterior probability 

p(xn|Yn), which is equal to minimize a loss function: 

                                      )(I11
ˆ: nxxx

xE
nnn 




                                                     (3.17) 

where 1I(·) is an indicator function and ζ is a small scalar. 

3. Maximum likelihood (ML): which is reduced to a special case of MAP where the prior 

is neglected. 

Both MMSE and MAP are methods, which require an estimation of the posterior distribution 

(density), but the MAP method does not need to calculate the denominator (integration) and 

therefore it is more inexpensive computationally; whereas the MMSE requires a complete 

knowledge of the prior, likelihood and evidence. However, MAP estimate has a drawback, 

particularly in a high-dimensional space. High probability density does not imply high 

probability mass. A narrow spike with a very small width (support) can have a very high 

density, but the actual probability of estimated state (or parameter) belonging to it is small. 

Hence, the width of the mode is more important than its height in the high-dimensional case. 

The criterion of optimality used for Bayesian filtering is the Bayes risk of MMSE. Bayesian 

filtering is optimal in a sense that it seeks the posterior distribution, which integrates and uses 

all of the available information expressed by probabilities (assuming they are quantitatively 

correct). However, as time proceeds, one needs infinite computing power and unlimited 

memory to calculate the “optimal” solution, except in some special cases (e.g. linear Gaussian 

or conjugate family case). Hence, in general, we can only seek a suboptimal or locally optimal 

solution. 
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3.1.2.2 Kalman filtering 

Kalman filtering method [Kal60] provides an analytical solution for the filtering problem 

[Kal64], in which the sufficient statistics of mean and state-error correlation matrix are 

calculated and propagated. Kalman filter has a very nice Bayesian interpretation. For the sake 

of simplicity, we will consider that the measurement and dynamic noises are both Gaussian 

distributed with zero mean and with constant covariance. 

The derivation of KF in the linear Gaussian scenario is based on the following assumptions: 

• 
  mnwn

t

mn QwwE 
; 

  mnvn

t

mn RvvE 
. 

• The state and process noise are mutually independent: 

  0t

mnwxE for  mn  ;    0t

mnvxE  for all mn, . 

• The process and measurement noises are mutually independent: 

  mnvwE t

mn , allfor  0 . 

At each iteration, the KF makes a state prediction for xn, denoted 1|
ˆ

nnx . We use the notation 

n|n-1 since we will only use measurements provided until time-step n−1 in order to make the 

prediction at time-step n. The error in the state prediction 1|
~

nnx  is described as the difference 

between the true state and the state prediction, as below: 

                                                                1|1|
ˆ~

  nnnnn xxx                                                (3.18) 

We can define the covariance structure for the expected error on the state prediction as the 

expected outer product of the state prediction error. This covariance structure is called the error 

covariance prediction and we denote it by 1| nnP : 

                                                        t

nnnnnn xxEP )~)(~( 1|1|1|                                                 (3.19) 

The filter will also provide an updated state estimate for xn, given all the measurements 

provided up to and including time step n. We express these estimates as nnx |
ˆ . We similarly 

define the state estimate error nnx |
~ as below: 

                                                        nnnnn xxx ||
ˆ~                                                              (3.20) 
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The expectation of the outer product of the state estimate error represents the covariance 

structure of the expected errors on the state estimate, which is called the updated error 

covariance and is expressed by nnP | : 

                                                              t

nnnnnn xxEP )~)(~( |||                                              (3.21) 

A prediction is made at a time-step n for the underlying state of the system through enabling 

the state to transition forward utilizing our model for the dynamics and remarking that

  .0nwE This serves as our state prediction: 

                                                            
1|11,1|

ˆˆ
  nnnnnn xFx                                                    (3.22) 

By expanding the expectation in Equation (3.19), this will result with the following equation 

for the error covariance prediction. 

                                                      
n

t

nnnnnnnn QFPFP   1,1|11,1|
                                         (3.23) 

We can modify our state prediction into the measurement space. This is a prediction for the 

measurement, now we can expect to observe. 

                                                                1|1|
ˆˆ

  nnnnn xGy                                                      (3.24) 

The variation between the observed and the predicted measurement is the residual 

measurement, which we want to minimize in this algorithm. 

                                                               1|
ˆ

 nnnn yy                                                         (3.25) 

In addition, we can calculate the associated covariance for the residual measurement, which 

is the expectation of the outer product of the measurement residual with itself,  t

nnE   . This is 

called the covariance residual measurement: 

                                                                 
n

t

nnnnn RGPGS  1|
                                                 (3.26) 
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Now we will define the updated state estimate to be the prediction and few perturbations in 

addition, which is provided by multiplying the weighting factor times the measurement residual. 

The weighting factor, which is called the Kalman Gain, will be discussed below: 

                                                                    nnnnnn Kxx  1|/
ˆˆ                                                (3.27) 

Furthermore, the updated error covariance could be also calculated by expanding the outer 

product in Equation (3.21) 

                                                          1|| )(  nnnnnn PGKIP                                                 (3.28) 

where I is the appropriately sized identity matrix. 

Now, we must find the appropriate Kalman filter Gain Kn in order to minimize the mean 

square state estimation error  2

/
~

nnxE . In other words, we must minimize the trace of the above 

updated error covariance matrix. After few calculations, we got the optimal gain, which will 

achieve this: 

                                                            1

1|



 n

t

nnnn SGPK                                                              (3.29) 

The KF covariance matrices give us a measure of uncertainty in the predictions and the 

updated state estimate. This is a highly relevant feature for the different applications of filtering 

as we then know how much to be able to trust our predictions and estimates. Furthermore, 

because the method is recursive, then we need to produce an initial covariance that is large 

enough to contain the initial state in order to ensure a comprehensible performance. The 

underlying assumption of noise density model is a main weakness in the KF method. Anyway, 

the KF guarantees an accurate solution for the linear Gaussian prediction and the filtering 

problem.  
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3.1.2.3 The Extended Kalman Filter 

Kalman Filter method provides a solution for the linear dynamic system represented in 

Equations (3.3) and (3.6). The main issue in the practical applications is that the equations 

defining the physical system are commonly non-linear. Consequently, non-linear extensions of 

KF have been considered and proposed. Example of these extensions is the Extended Kalman 

Filter (EKF) [Jaz70], which we will present in this section. The EKF is considered to be as a 

nonlinear standard Bayesian state-estimation algorithm. In EKF, the non-linear state and 

measurement equations are linearized using the first order Taylor series expansion. The state 

update function is linearized at the posterior mean of the previous time step and the 

measurement function at the prior mean of the current time step. In discrete time, the general 

dynamical system is defined by the discrete nonlinear state space equation: 

                                                             nnnn wuxfx   ),( 11                                             (3.30) 

                                                             nnn vxgy  )(                                                    (3.31) 

where wn and vn are the process and observation noises respectively which are assumed to be 

zero mean multivariate Gaussian noises with covariance Qk and Rk respectively. un-1 is the 

control vector. 

Regarding the equations (3.30) and (3.31), we note that the function f is used to calculate the 

prediction state using the previous estimation. In addition, we use the function g to calculate 

the prediction measurement from the prediction state. Anyway, the two functions f and g will 

not be applied directly to the covariance. Alternatively, the Jacobian matrix (partial derivatives) 

will be calculated, and here where the ability of the EKF to solve the non-linearity problem lies. 

The Jacobian will be computed with the current prediction states, and the produced matrices 

will be used in the KF filter equations. This is the main process to linearize the non-linearity 

process around the current estimation. 

Given the non-linear measurement equation (3.31). The Taylor first order series 

approximation at the prior mean of the measurement function is: 

                                               )ˆ()ˆ()( 1/1|   nnnnnnn xxGxgxg                                           (3.32) 

where the Jacobian of the measurement function is: 
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1/ˆ 




nnxn
x

g
G                                                        (3.33) 

The predicted state estimate is computed by: 

                                                                  ),ˆ(ˆ
11|11|   nnnnn uxfx                                             (3.34) 

In addition, the covariance predicted estimate is given by: 

                                                           
111|111|   n

t

nnnnnn QFPFP                                           (3.35) 

where the state transition matrix is defined to be the Jacobian: 

                                                                
11|1 ,ˆ1 


 nnn uxn

x

f
F                                                  (3.36) 

The measurement residual is calculated by: 

                                                               )ˆ( 1|  nnnn xgy                                                         (3.37) 

And the measurement residual covariance is given by: 

                                                                 
n

t

nnnnn RGPGS  1|
                                                 (3.38) 

We find the optimal gain: 

                                                            1

1|



 n

t

nnnn SGPK                                                              (3.39) 

We can now define the updated state estimate by: 

                                                                    nnnnnn Kxx  1||
ˆˆ                                                 (3.40) 

The estimation of the updated covariance can be get by: 

                                                          1|| )(  nnnnnn PGKIP                                                 (3.41) 

From the previous equations, the EKF can be considered to provide the optimal terms by 

“first-order” approximations. Anyway, these approximations could produce great errors in the 

covariance of the transformed (Gaussian) random variable and the true posterior mean; this will 
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produce a sub-optimal execution and filter divergence. These are the drawbacks that we will 

address and solve in the following section by means of the Unscented Kalman Filter (UKF). 

3.1.2.4 The Unscented Kalman Filter 

The EKF has considered being the standard technique to perform recursive nonlinear 

estimation. As we saw in the previous section, the EKF method yet provides just an 

approximation to the optimal nonlinear estimation. Here, we will present an alternative method 

to the EKF, which will overcome the drawbacks of the EKF that were discussed earlier. This 

filter, called the unscented Kalman filter (UKF), was proposed by Julier et al 

[Jul95][Jul96][Jul97], then it was moreover developed by Wan and Van der Merwe 

[Van00][Van01][Wan00]. 

The UKF has exceeded the needing of the EKF for Jacobians in order to linearize the state 

equations.  Instead, the UKF will approximate the state equations by Gaussian random variables 

(GRV) which will be applied by a set of deterministic very small points (sigma points) which 

are carefully chosen. These sample points will determine the actual mean and covariance of the 

GRV. After generating these sample points through the non-linear system, these sample points 

will capture the actual posterior mean and the actual posterior covariance to the third order of 

the Taylor series for any nonlinearity [Wan00]. 

An augmentation of the covariance and the estimated state will occur with the covariance 

and the mean of the process noise in the prediction step: 

                                                 tt

n

t

nn

a

nn wExx )(ˆ
1|11|1                                                          (3.42) 
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nn
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01|1

1|1
                                                          (3.43) 

Using the augmentation of the state and covariance, sigma points group of (2L+1) will be 

created where L is the dimension of the augmented state: 

                                         a

nnnn x 1|1

0

1|1                                                                              (3.44) 

                                       i

a

nn

a

nn

i

nn PLx ))(( 1|11|11|1    , i=1,….., L                          (3.45) 

                                    Li

a

nn

a

nn

i

nn PLx   ))(( 1|11|11|1  , i=L+1,….., 2L                (3.46) 
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where i

a

nnPL ))(( 1|1    is the ith column of the root square matrix a

nnPL 1|1)(   . 

The transition function f will be used to propagate the sigma points as: 

                                                         )( 1|11|

i

nn

i

nn f    , i=0,……, 2L                                  (3.47) 

The predicted state and covariance are produced through recombination of the weighted 

sigma points: 
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We will get the state and covariance weights using: 
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                                         (3.50) 

Here, α and κ will manage the spread of the sigma points. β is relevant to the x distribution. 

In the updating step, the predicted state and covariance are augmented as in the prediction step, 

but in this step with the mean and covariance of the measurement noise: 

                                                 tt

n

t

nn

a

nn vExx )(ˆ
1|1|                                                             (3.51) 
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01|
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                                                                (3.52) 

As previously, a group of (2L+1) sigma points is obtained from the augmentation state and 

covariance where L is the dimension of the augmentation state. 
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                                   a

nnnn x 1|

0

1|                                                                                        (3.53) 
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nn ,...,1,))(( 1|1|1|    ,                                           (3.54) 
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nn 2,...,1,))(( 1|1|1|                                   (3.55) 

In an alternative case, the augmentation of the sigma points could be implemented along the 

following lines if the UKF prediction has been used: 

                                        a
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t

nnnn RLvE )()(: 1|1|                                               (3.56) 

where 
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The sigma points are calculated by the observation function g: 

                                                            LLig i

nn

i

n 2,...,1),( 1|                                          (3.58) 

In this case, the prediction measurements and covariance are generated by recombination of 

the weighted sigma points as: 
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                                          



L

i

t

n

i

nn

i

n

i

cyy yyWP
nn

2

0

)ˆ)(ˆ(                                                   (3.60) 

The UKF Kalman gain is computed by: 

                                                   1
nnnn yyyxn PPK                                                                                (3.61) 

where the state-measurement cross-covariance matrix is obtained by: 



Chapter 3              Importance sampling Monte Carlo filters for satellite images restoration 

125 

 

                                         
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As with the Kalman filter, the updated state is the predicted state plus the innovation 

weighted by the Kalman gain, 

                                             )ˆ(ˆˆ
1// nnnnnnn yyKxx  

                                                         (3.63) 

Moreover, we can obtain the updated covariance by subtracting the predicted measurement 

covariance, weighted by the Kalman gain, from the predicted covariance as follows: 

                                                    t

nyynnnnn KPKPP
nn

 1||
                                                       (3.64) 

Unlike EKF, the UKF represents a derivative-free algorithm and gives superior execution at 

an equivalent computational complexity. Despite the fact that the UKF has distinct 

improvements over the EKF, several limitations still exist. As same in the EKF, these 

algorithms make a Gaussian assumption on the probability density of the state random variable. 

In spite of the fact that this assumption is true, and various real-world applications have been 

successfully implemented based on this assumption. However, the Gaussian assumption will 

not suffice, and the UKF (or EKF) cannot be applied with confidence. 

In such cases, we have to resort to further powerful, but in fact more computationally 

expensive, filtering criteria such as Monte Carlo and Bayesian algorithms. 

3.2 Monte Carlo methods for nonlinear filtering 

Several new Monte Carlo based algorithms such as hybrid Monte Carlo, quasi-Monte Carlo 

and Bayesian bootstrap have been reinvigorated and improved. We can view the Monte Carlo 

technique as a sort of stochastic sampling approach that intends to tackle the analytically 

stubborn complex systems. 

The power of Monte Carlo methods is that they can solve the difficult numerical integration 

problems. In recent years, sequential Monte Carlo approaches have attracted more and more 

attention to the researchers from different areas, with many successful applications in signal 

and image processing statistics, machine learning, objects tracking, econometrics, automatic 

control, communications, and in other fields [Dou97]. One of the powerful advantages of the 

Monte Carlo sequential approaches comes from the ability to perform an on-line estimation 
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through the combination of the robust Monte Carlo sampling algorithms with Bayesian 

inference considering an acceptable computational cost. 

Particularly, the sequential Monte Carlo (SMC) approach has been used in both state and 

parameter estimation, the state estimation is sometimes called "particle filter statistics". The 

Sequential Monte Carlo Method is capable to deal with the non-Gaussian posterior probability 

of the state in the nonlinear systems; the propagation of the conditional pdf is usually desired 

in such systems. 

The concept of the method is to approximate the state posterior probability by generating a 

high number of weighted particles or samples utilizing Monte Carlo Methods. In fact, the 

particle filters are actually an extension to the point mass filters. However, in the particle filters, 

the particles will accumulate in the high probabilities areas instead of being distributed 

uniformly over the state. 

3.2.1 Monte Carlo methods 

Monte Carlo (MC) methods are computational methods that use random numbers. They are 

basic to many parts of computational science such as phase transitions in statistical physics, 

electronic structure in computational chemistry and materials science, mechanisms for chemical 

reactions, etc. Emerging applications include uncertainty quantification and reliability, 

Bayesian statistics, and nonlinear filtering. 

There is a very strong relationship between theoretical analysis and development of new 

algorithms. Monte Carlo method, which has been proposed first by Metropolis and Ulam in 

1949 [Met49], is a numerical algorithm that utilizes random numbers in solving mathematical 

issues that could not be solved analytically. MC methods are time-consuming methods as it 

uses random numbers simulation, however, with the development of computers MC methods 

is more easy to use than before. MC methods present a way to produce samples from a given 

probability distribution. Furthermore, they provide a solution to the problem of estimating 

expectations of distribution functions hence computing numerical approximations for integrals. 

In further mathematical expressions: Let us consider a random variable X (could be multi-

dimensional) with a probability mass function or probability density function fX(x) that is greater 

than zero on a set of values X. In this case, the supposed value of a function g of X will be: 

                                                             



x
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if X is discrete, and  

                                                            


 dxxfxgXgE X )()()(                                                 (3.66) 

if X is continuous, where Ω is the support of fX. Now, let us assume to have an n-sample of X’s, 

(x1,....., xn), then we calculated the mean of g(x) over the sample, then the Monte Carlo estimate 

will be as follow: 

                                                                      
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of E[g(x)]. We could, alternatively, express the random variable 

                                                                     
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which we name the Monte Carlo estimator of E[g(x)]. 

3.2.2 Particle filters 

The Particle Filter algorithm is a type of Monte Carlo techniques, which provides a solution 

for the state estimation problem. The important or fundamental idea of the particle filter, which 

is also known as the bootstrap filter, condensation algorithm, interacting particle 

approximations and survival of the fittest, is to represent the needed posterior density function 

by a set of random particles or samples. These particles will be associated with weights, now 

we must compute the estimates considering these samples and weights. This Monte Carlo 

characterization will become an equivalent representation of the posterior probability function 

when the number of samples becomes quite high, and the solution approaches the optimal 

Bayesian estimate. 

3.2.2.1 The Sequential Importance Sampling Algorithm 

Basically, the principle of the particle filtering methods lies on the sequential updating of a 

distribution utilizing importance-sampling techniques. In 1994, Kong et al [Kon94] have 

proposed the sequential importance sampling (SIS) algorithm, which is one type of the particle 

filtering methods. SIS requires the use of importance sampling to solve the recursion equation. 

In this section, we present the SIS method for the particle filter. 
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The SIS algorithm that benefits from using an importance density that is a density introduced 

to represent another density, which cannot be correctly, computed, i.e. the sought posterior 

density in the present case. Next, the desired samples will be drawn from the importance density 

rather of the actual density. When one will derive the SIS algorithm, it is beneficial to take into 

considering the full posterior distribution at time )|( 1:11:0  nn yxp , instead of the filtering 

distribution, )|( 1:11  nn yxp , which is just the marginal of the full posterior distribution 

concerning xn-1. 

The main principle idea in SIS is approximating the posterior distribution at n-1, 

)|( 1:11:0  nn yxp , by means of a weighted set of samples  N
i

i

n

i

nx
111:0 ,
  , which also named 

particles, these samples (particles) will be updated recursively in order to get the posterior 

distribution at the next time step: )|( :1:0 nn yxp . SIS is based on importance sampling.  

Importance sampling: The importance sampling techniques are the basis of the sequential 

Monte Carlo methods that are used by particle filters in solving the problem of the recursive 

equation. According to the Bayesian methods, we usually know the probability distribution only 

up to a normalizing constant. We draw samples from the proposal distribution q(x) in order to 

approximate the target distribution p(x). In general, we need to implement the importance 

sampling when it is easier to sample from a proposal distribution rather from directly sampling 

from the target distribution. To overcome the difference between the proposal and targeted 

distributions, we ought to give every sample xi by a weight ωi π(xi)/q(xi) where which the 

function π(x) is proportional to p(x) (i.e. p(x)π(x)) which we know how to evaluate. When 

applying to our posterior distribution at the time n-1, importance sampling gives: 
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where i
nx 1:0 

 is a delta function that is centered at 
i

nx 1:0  . 

Sequential Importance Sampling: In particle filters method, the important distribution is 

the marginal or joint distribution of the latent variables at time n, given all observations up to 

that point. Even so, the complexity of the normalizing constant )|( 1:1 nn yyp  usually prevents 

direct calculation so we have to use the importance sampling (IS). Our purpose is to update 

sequentially the posterior distribution at time n meanwhile not to modify the previously 
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simulated states x0:n−1. In order to implement this, let us suppose there is an importance function,

)|( 1:1:0 nn yxq , that is easy to sample from, and that  0)|( 1:1:0 nn yxp 0)|( 1:1:0 nn yxq . 

Furthermore, assume that the importance function is chosen so that it updates recursively in 

time when the next observation becomes available and is of the form [Ris04]: 

                                          )|(),|()|( 1:11:0:11:0:1:0  nnnnnnn yxqyxxqyxq                               (3.70) 

so that we can simply expand each particle 
i

nx 1:0   at time n-1 with a new state 
i

nx at time n 

sampled from ),|( :11:0 nnn yxxq  . Now to update the weights, 
i

n 1 , we notice that, following the 

importance sampling method, the weights of the particles at time n must be as follows: 
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After that, assuming that a weighted particle approximation  i

n

i

n x 11,   occur for 

)|( 1:11  nn yxp , we can use the IS to find an approximation to )|( 1:1 nn yxp where the un-

normalized weights are:  
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also, the normalized weights are given by 
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According to the SIS algorithm, for every sequential received measurement, recursive 

particles and weights are propagated; this is given by algorithm 1. 
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_________________________________________________________________________ 

Algorithm 1: The Sequential Importance Sampling Algorithm 

_________________________________________________________________________ 

Initialize: At time n=0   

1. For i=1,……, N  

(a) Sample 
ix0

˷
 p(x0)  

(b) Evaluate the importance weights up to a normalizing constant: 

               )|( 010

ii xyp  

2. For i = 1,...,N normalize the importance weights: 
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Iterate: For n in 1 to T 

1. For i = 1,...,N  

(a) Sample ~i

nx ),|( :11 n

i
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n xxx   

(b) Evaluate the importance weights up to a normalizing constant: 
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2. For i = 1,...,N normalise the importance weights: 
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 for n ∈ {0, T}. 

Degeneracy of the SIS Algorithm: Ideally, the posterior distribution would be the 

importance density function but this is not possible. For an importance function of the form 

(Equation 3.70), the variance of the importance weights can only increase over time [kon94]. 

This has a harmful effect on the accuracy and leads to the degeneracy phenomenon. After only 

a few steps, nearly all the particles will have negligible weight. As a result, a large amount of 

computational effort will be devoted to updating a contribution, which has almost zero weight. 

The degeneracy phenomenon is a big problem in particle filtering. One way to reduce it is to 

increase the number of samples, N, which may be impractical. Degeneracy can also be 
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minimized through a good choice of importance function and by including a resampling step in 

the SIS algorithm. 

In practice, iteration of the update equations in 3.70 and 3.72 leads to a degeneracy problem 

where only a few of the particles will have a significant weight, and all the other particles will 

have very small weights. Degeneracy is typically measured by an estimate of the effective 

sample size: 
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                                                       (3.74) 

where a smaller Neff means a larger variance for the weights, which yields to more degeneracy. 

Notice that Neff N and small Neff indicates sharp degeneracy. To decrease the degeneracy, a 

resampling step is introduced. 

3.2.2.2 The Sequential Importance Resampling Algorithm 

The sequential importance resampling (SIR) algorithm, developed separately from the SIS 

algorithm, was first introduced by Gordon et al. [Gor93] and contains a resampling step at each 

iteration of the sequential importance-sampling algorithm. Since then, resampling has been 

shown to have both major practical and theoretical benefits [Dou08]. 

Mostly, all types of the particle filter methods are modifications of the basic SIS method 

viewed above. The SIR algorithm can be viewed as a variant of SIS in such a way that the 

proposal distribution ),|( 1 n

i

nn yxxq  is considered to be the state transition distribution 

)|( 1

i

nn xxp   and the resampling is done at each iteration. Thus, in the SIR algorithm, the update 

equations for the particles are reduced to: 

                                                       )|(~ 1

i

nn

i

n xxpx                                                                           (3.75) 

                                                        )|( i

nn

i

n xyp                                                             (3.76) 

In Algorithm 2, we illustrate the algorithmic steps for the sequential importance resampling 

method. Usually, the simple choice for the proposal distribution is )|( 1

i

nn xxp   which is the 

choice of Gordon et al. [Gor93] who gave the original SIR filter. This gives weights in the 
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resampling algorithm of )|( i

nn

i

n xyp . Although resampling reduces the problem of 

degeneracy, but it introduces other problems, which did not exist with the SIS algorithm. 

_________________________________________________________________________ 

Algorithm 2: The Sequential Importance Resampling Algorithm 

_________________________________________________________________________ 

Initialize: At time n=0   

     1. For i=1,……, N  

           (a) Sample 
ix0

˷
 p(x0)  

           (b) Evaluate the importance weights up to a normalizing constant: 

               )|( 010

ii xyp  

2. For i = 1,...,N normalize the importance weights: 

                      





N

j

j

i
i

1

0

0
0

~




  

Iterate: For n in 1 to T 

       1. For i = 1,...,N  

            (a) Resample 
i

nx 1
~

  by resampling from  N
i

i

nx
11  with probabilities N

i

i

n 11   

            (b) Set  
N

i

i

n

N

i

i

n

i

n
N

xx
1

1111

1
,,












  

(c) Propagate weights  
),|(

)()|(

:11:0 n

i

n

i

n

i

n

i

nni

n
yxx

xpxyp






  

3. For i = 1,...,N normalise the importance weights: 

                                                         





N

j

j

n

i

ni

n

1

~




  

Output:  N
i

i

n

i

nx
1

,


 for n ∈ {0, T}. 

3.2.2.3 Empirical distributions 

The previously explained samples can be also seen as empirical distributions of the required 

state pdfs, i.e. the prior: 
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                                                    
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 
N
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i

nnnn xx
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Yxp
1

1 )(
1

)|(                                             (3.78) 

The resampling step includes producing a new set  Nix i

n ,....,1:
*

  by resampling N times 

from an approximate discrete representation given by: 
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(3.79)  

so that 
j

n

j

n

i

n xx  )Pr(
*

. 

3.2.3 Bayesian bootstrap filter 

In the following, we will explain and discuss the Bayesian bootstrap filter (BBF) and 

illustrate the BBF algorithm. The Bayesian approach is to construct the probability density 

function (pdf) of the state given all the observations up to that point. Knowledge of the pdf of 

the state, conditioned on all available measurements provides the most complete description of 

the state. The principal idea of the bootstrap filter is to express the required pdf as a set of 

random samples, instead of a function over state-space. As the number of samples is increased, 

it will provide an exact and equivalent representation of the required pdf. 

3.2.3.1 Definition of the Bayesian bootstrap filter 

In 90's, Gordon has proposed a new filtering method [Gor93], based on Bayesian state 

estimation and Monte-Carlo algorithm, the proposed method called bootstrap filter. The great 

advantage of the bootstrap filter was its capability to manage any non-linearity function and 

system and/or measurement noise of any distribution. Regarding the non-linear problems, it is 

hard to get the analytical solutions for the Equations (3.12) and (3.14), here comes the role of 

the Monte Carlo methods to outwit these difficulties. 
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The bootstrap filter is a recursive method which works by estimation of the posterior 

)|( nn Yxp  from several numbers of samples associated with weights. Assume that we have 

several independent samples  Niixn ,....,1:)(1   obtained from the pdf )|( 11  nn Yxp . In the 

bootstrap algorithm, these samples will be propagated and updated within the Bayesian 

recursion to get a set of values  Niixn ,....,1:)(  , these values are approximately distributed 

as )|( nn Yxp . Hence, the method is an approximate simulation of the prediction and update 

stage for the recursive Bayesian filter. We can illustrate the filter procedure as the following: 

Prediction step: Each sample from the pdf )|( 11  nn Yxp  is passed through the system model 

to obtain samples from the prior at time step n: 

                                                     ))(),(()( 11

* iwixfix nnn                                                          (3.80) 

where )(1 iwn  is a sample drawn from the pdf of the system noise )( 1nw wp . 

Update step: When the measurement yn is received; the likelihood of each prior sample will 

be evaluated and the normalized weight for each sample will be obtained: 

                                                                





N

j

nn

nn
i

jxyp

ixyp
q

1

*

*

))(|(

))(|(
                                             (3.81) 

Thus define a discrete distribution over  Niixn ,....,1:)(*   , with probability mass qi 

associated with each )(* ixn . Now resample N times from the discrete distribution to generate 

samples Niixn ,....,1:)(  , so that for any j inn qixjx  ))()(Pr( *
, it can be contended that the 

samples )(ixn are approximately distributed as the required pdf )|( nn Yxp . 

The above steps of prediction and update form a single iteration of the recursive algorithm. 

By repeating this procedure, we can get  Niixn ,....,1:)(   at every time step recursively. To 

initiate the algorithm, N samples )(*

1 ix are drawn from the known initial pdf ).()|( 101 xpYxp   

The resampling portion of the update process is implemented by drawing a random sample 

ui from the uniform (0,1] distribution. When 

                                                                           







M

j

j

M

j

ij quq
0

1

0

                                         (3.82) 



Chapter 3              Importance sampling Monte Carlo filters for satellite images restoration 

135 

 

where q0=0, we choose )(ixn =
*

nx (M) for making up the posterior. 

If N is large, this process takes a very long time to complete, and the problem is further 

exacerbated when a large number of samples is simulated over many time instants. However, 

examining the structure of the resampling process, a faster method is proposed in [Bea97], 

which can still generate useful results. The faster method is based on the expected number of 

times each prior sample should appear in the posterior. It is described in the next section. 

3.2.3.2 Fast bootstrap technique 

It is trivial to see that the main limitation of the bootstrap filter is that for large N. It is also 

easy to observe that the resampling step is where the program spends the most time. The 

resampling step takes at most N2 time, which means that doubling the number of samples 

squares the amount of time needed. As a result, the procedure may become intractable for large 

sample sizes in real time applications. Gordon et al. [Gor93] suggest that the use of massively 

parallel computers raises the possibility of real time operation with very large sample sets. A 

slightly different algorithm than Beadle [Bea97] in suggests the Bootstrap order to speed up the 

resampling process. In this algorithm, the author proposes a new procedure for the resampling 

step in which samples are picked into the posterior in groups rather than one at a time as in the 

weighted bootstrap. Beadle's fast bootstrap algorithm works by generating samples into the 

posterior based on the expected number of times each value in the prior should be resampled to 

the posterior. The weighted bootstrap provides a possibly small, but finite, probability of 

resampling any value 
*

nx (i) for i=1,……., N, from the prior into the posterior. The probability 

of resampling a particular 
*

nx (M) is qM. To implement this, the value of 
*

nx (M) is selected each 

time a random variable U uniformly distributed on (0,1] satisfies: 

                                                                       







M

j

j

M

j

j qUq
0

1

0

                                                (3.83) 

Thus, the probability of selecting 
*

jx (M) is the same as U lying in the interval bounded as 

shown above. Equivalently, this probability can be expressed as U lying in the range, 

                                                               
MqU 0                                                               (3.84) 

If M is large, this process takes a very long time to complete, and the problem is further 

exacerbated when a large number of samples are needed. To overcome the problem, Beadle and 
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Djuric [Bea97] had proposed a fast bootstrap algorithm. It is based on the expected number of 

times at which a prior sample appears in the posterior at each time instant, as described below. 

With a sequence of m trials, the weighted bootstrap resampling procedure can be analyzed as a 

sequence of Bernoulli trials. Thus, the probability of ‘success’ on a single trial (i.e. selecting 

some *

jx (M) in to the posterior) is p = Mq  and the probability of  “failure” q =1- Mq . It is 

therefore easy to see that the probability of selecting some value *

jx (M) exactly L times in N 

trials is given by the binomial distribution of order N. Thus, the expected number of times any 

prior sample *

jx (M) should appear in the posterior is Nqj. 

Therefore, the way this fast bootstrap algorithm is implemented is to assign a sampling 

probability of 1/N to the N samples. Then at a fixed time j, we pick one of the prior samples 

from the set { *

jx (i)} , say *

jx (M) and place  MNq  samples of the *

jx (M) value into the 

posterior, (where  .  denotes the largest integer function), rather than just picking one value at 

a time as in the weighted bootstrap method . This method is repeated until a total of N samples 

have been generated. Then the resampling is stopped, and the posterior samples are projected 

ahead using the given system model. The resample and projection scheme is repeated until the 

desired number of observed data has been processed. 

_________________________________________________________________________ 

Algorithm 3: Bayesian bootstrap filter Algorithm 

_________________________________________________________________________ 

1. Initializing, at time n=0   

    FOR i=1: N, sample )(0 ix
˷
 p(x0) and set n=1  

2. Importance sampling step 

  (a) FOR i=1: N, sample )(* ixn

˷
p(xn|xn-1(i))  and set ))(),(()( *

1:0

*

:0 ixixix nnn  . 

  (b) FOR i=1: N, evaluate the normalized importance weights qi.                      

3. Selection step  

  (a) Resample with replacement N particles ),......,1),(( :0 Niix n  from the set  

     ),......,1),(( *

:0 Niix n  according to the importance weights. 

  (b) Set 1nn  and go to step 2. 
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3.3 Experimental results 

The performance of the techniques that have been cited in this chapter is investigated with 

various simulations. The comparison of the different filters KF, EKF, UKF and BBF are 

implemented on satellite images. This section deals with images degraded by different noises 

and the results after denoising the images using the mentioned filters. Here, we use the 

mathematical image model given in chapter 1 section 1.3. Here, we adopt a causal image model 

proposed in [Zha05]: 

                               )1,1(),1()1,(),( 321  nmsanmsanmsanms                        (3.85) 

For implementation of different filters KF, EKF, UKF and BBF a state independent output 

equation and a state space difference equation as follows: 

                                  ),(),()1,(),( nmDwnmEunmCxnmx                                           (3.86) 

                                         ),(),(),( nmvnmHxnmy                                                                   (3.87) 

where  Tnmsnmsnmsnmsnmx ),1(),1,1(),1,(),,(),(   and the following system 

matrices is formulated by 
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The input term u(m, n) is introduced as the recent estimate of pixel s(m-1, n+1). The variables 

w(m,n) and v(m,n) denotes the process noise and the measurement noise, respectively. The 

image model coefficients 321  , , aaa  are identified using the Least Squares method. 

In this section, to evaluate the performance of the BBF algorithm with respect to the other 

filters, we choose two satellite images from the European Space Agency (ESA), which has 

authorized us to use in our work. The first image given in Figure 3.1.a is: “French synergy: 

contains modified Copernicus Sentinel data (2016), processed by ESA”, capital of the Charente-

Maritime department in western France, La Rochelle and surroundings are featured in this 

Sentinel-2A image, captured on 26 December 2015. The second image given in Figure 3.2.a is 
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“Seville, Spain: contains modified Copernicus Sentinel data (2015), processed by ESA A”. The 

western area of Spain’s Province of Seville and its capital with the same name (right) is pictured 

in this image from the Sentinel-2A satellite, which was captured by the Copernicus Sentinel-

2A satellite on 26 July 2016. In our implementation we used the two images in gray level with 

size of 512×697 pixels and 512× 680 pixels respectively. The values of coefficients 

321   and  , aaa  related to the two images is given in Table 3.1. 

Table 3.1: The values of the images coefficients. 

 

Image 1a
 2a

 3 a
 

French synergy 0.6382 0.5233 -0.1624 

Seville, Spain 0.5512 0.5449 -0.1072 

 

3.3.1 Visual results 

3.3.1.1 Application of filters on impulse noise 

The simulations are done on a real sentinel satellite remote sensing images. We simulated 

the original Images with impulse noise with 0.06 density. The original and Noisy images are 

shown in Figure 3.1 (a), Figure 3.2 (a) and Figure 3.1 (b), Figure 3.2 (b) respectively. 
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(a) original French synergy image (b) degraded image  

(c) Restored by KF (d) Restored by EKF 

(e) Restored by UKF (f) Restored by BBF 

Figure 3.1: Restoration of the French synergy image degraded by impulse noise. 
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(a) Original image (b) Noisy image 

(c) Restored by KF (d) Restored by EKF 

(e) Restored by UKF (f) Restored by BBF 

Figure 3.2: Restoration of the Seville Spain image degraded by the impulse noise. 

 

In the figures 3.1 and 3.2, we illustrated our results on denoising the noisy French synergy 

and Seville Spain Images respectively. In this part of our work, we have denoised both original 

images with impulse noise of density 0.06. The denoised images indicate that the EKF and UKF 

gave better results than KF. However, according to the resultant denoised images, the BBF has 

the best results among the other filters. 
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3.3.1.2 Application of filters on Gaussian noise 

Here, we simulated the original Images with Gaussian noise of a zero mean and variance of 

0.03. The original and Noisy images are shown in Figure 3.3 (a), Figure 3.4 (a) and Figure 3.3 

(b), Figure 3.4 (b) respectively. 

(a) Original image (b) Degraded image 

(c) Restored by KF (d) Restored by EKF 

(e) Restored by UKF (f) Restored by BBF 

Figure 3.3: Restoration of the French synergy image degraded by the Gaussian noise. 
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(a) Original image (b) Degraded image 

(c) Restored by KF (d) Restored by EKF 

(e) Restored by UKF (f) Restored by BBF 

Figure 3.4: Restoration of the Seville Spain image degraded by the Gaussian noise. 

 

Here, in the figures 3.3 and 3.4, we have shown our results on denoising the noisy French 

synergy and Seville Spain Images respectively. In this part of our work, we have corrupted both 

images with a Gaussian noise of 0 mean and variance of 0.03. The denoised images show that 

the EKF and UKF gave better results than KF. However, according to the resulted denoised 

images, the BBF has the best results among the other filters. 
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3.3.1.3 Application of filters on Speckle noise 

In this part, we simulated the original Images with speckle noise of a zero mean and variance 

of 0.05. The original and Noisy images are shown in Figure 3.5 (a), Figure 3.6 (a) and Figure 

3.5 (b), Figure 3.6 (b) respectively. 

(a) Original image (b) Degraded image 

(c) Restored by KF (d) Restored by EKF 

(e) Restored by UKF (f) Restored by BBF 

Figure 3.5: Restoration of the French synergy image degraded by the speckle noise. 
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(a) Original image (b) Degraded image 

(c) Restored by KF (d) Restored by EKF 

(e) Restored by UKF (f) Restored by BBF 

Figure 3.6: Restoration of the Seville Spain image degraded by the speckle noise. 

In the figures 3.5 and 3.6, we have shown our results on denoising the noisy French synergy 

and Seville Spain Images respectively. Here, we have corrupted both images with a speckle 

noise of 0 mean and variance of 0.05. The denoised images show that the EKF and UKF gave 

better results than KF. However, according to the resulted denoised images, the BBF has the 

best results among the other filters. 
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3.3.2 Metrics results 

In the previous section we corrupted the French synergy and the Seville Spain images with 

the most common types of noise, impulse, Gaussian and speckle then, we have shown the 

resulted denoised images using KF, EKF, UKF and BBF. Now in this section, we will show 

our metric results with means of ISNR (M1), RMSE (M2) PSNR (M3). We will use both, tables 

and line charts in order to illustrate our numerical results that have been obtained of denoising 

the both images by the mentioned filters. 

3.3.2.1 French synergy image 

Here, we will show the metric results that we obtained from the denoised SAR image results 

in Table 3.2 for all types of noise using the KF, EKF, UKF, and BBF restoration methods for 

the French synergy image. 

Table 3.2: The metric results obtained from the denoised French synergy image. 

 
Filters KF EKF UKF BBF 

Metrics M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 

Salt & Pepper 5.26 16.75 23.62 5.57 15.42 24.34 6.33 12.62 26.08 6.84 11.03 27.25 

Gaussian 5.41 16.09 23.97 5.93 14.04 25.15 6.46 12.19 26.38 7.26 9.85 28.23 

Speckle 5.05 17.70 23.14 5.64 15.17 24.48 6.00 13.76 25.33 6.36 12.53 26.14 

 

From the Table 3.2, we can notice that the BBF has achieved the best results among the other 

filters used which support the image results that have been shown in the previous section. 

3.3.2.2 Seville Spain image 

Now, we will show the denoised ISNR, RMSE and PSNR results in Table 3.3 for all types 

of noise using the KF, EKF, UKF, and BBF for the Seville Spain image. 

Table 3.3: The metric results obtained from the denoised Seville Spain image. 

 
Filters KF EKF UKF BBF 

Metrics M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 

Salt & Pepper 4.20 22.21 21.17 5.06 17.68 23.15 5.95 13.95 25.21 6.54 11.93 26.57 

Gaussian 4.91 18.37 22.82 5.15 17.26 23.36 5.46 15.90 24.07 6.00 13.79 25.31 

Speckle 4.33 21.43 21.48 4.54 20.30 21.95 4.92 18.32 22.84 6.18 13.14 25.73 

 

From the Table 3.3, we can notice that the BBF has achieved the best results among the other 

filters used which support the image results that have been shown in the previous section. 
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3.3.2.3 Remark 

We have carried out our practical experiments using MATLAB software running on Dell 

CORE i5 machine with 16 Gb. During our work with BBF, we took the number of samples 

N=500, the process time for the BBF to restore the satellite image was approximately 1526 

seconds. The introduced fast technique applied to the BBF algorithm to restore the satellite 

images has reduced the process time to approximately 87 seconds, meanwhile, the results 

produced was, approximately, same as the results produced from the BBF. 

Conclusion 

The restoration process is a very important and necessary task in the digital image 

processing. Various noise models available can distort the satellite images up to any extent. In 

this chapter, we analyzed that analytical methods for filtering and Monte Carlo methods for 

nonlinear filtering with resample are too computational complex for image restoration. Hence, 

we adopted the Bayesian bootstrap filter to the area of image restoration to mitigate the 

computational problem found in conventional Kalman filter, Extended Kaman filter and 

Unscented Kalman filter. In this chapter we studied the BBF algorithm for satellite image 

restoration. This filter has shown interesting results among the other used filters. A comparison 

with other restoration methods, KF, EKF, and UKF was presented in this chapter. The 

efficiency of the BBF performed based on ISNR, MSE and PSNR. Our visual and metrics 

results indicate the high performance of BBF in restoring degraded satellite images compared 

with the results obtained from the other filters. In this chapter, we also proposed the usage of 

FBBF in the satellite image restoration, where the FBBF has performed the same results as the 

BBF but with a noticeable reduction in consumed time. Using the resampling process, BBF 

algorithm has introduced a solution for the degeneracy phenomenon which is a big problem in 

particle filtering, yet this resampling process noticed to produce another problem as the number 

of sampling is increased. In the resampling step, the samples will be distributed in a discrete 

manner, this problem, if it was not solved properly, will yield to sample collapse or what is 

known as losing diversity among the samples. To solve the problem of losing diversity among 

the particles we will propose in chapter 4 a new method in the resampling stage. 
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Introduction 

Satellite images and medical images, are usually degraded by noise during image acquisition 

and/or transmission process. Noise can be introduced into an image depending on how the 

image is created in several ways. Satellite image containing the noise signals lead to a distorted 

image, which could not be understood and studied properly. Noise can be defined as any 

disturbance that changes the original signal information. Image noise is a random, usually 

unwanted variation in brightness or color information in an image [Sal10]. Noise affects the 

pixels of the original image, resulting in a distorted output image. 

There are several types of noise that may be introduced in the image pixel, the three 

mainly types, as impulsive noise (salt & pepper), additive noise (Gaussian Noise) and 

multiplicative noise (Speckle Noise). Reducing noise from the medical images, satellite 

images etc. is a main challenge for the researchers in digital image processing. Noise reduction 

helps the possibility of better interpretation of the content of the image. Depending on the nature 

of the noise, such as additive or multiplicative noise, there are several approaches for removing 

the noise from an image. Images that degraded due to multiplicative noise effects are usually 

harder to be denoised than ones affected by an additive noise, that is because of the nature of 

the multiplicative noise. 

In general, SAR images are subject to be affected by speckle noise more than other types of 

noise [Zhu13]. There are several speckle reduction filters in the literature as lee [Lee80], kuan 

[Kua85] [Kua87] and frost [Fro82] filters, they are still common used filters [Ahi11]. There are 

also many filters which can be used to reduce speckle noise such as, median filter, wiener filter 

and Kalman filter [Ond16] [Pri16]. 

In our work, we introduced a novel method, which reduces speckle noise in synthetic 

aperture radar (SAR) images retaining the original content of these images. This method is 

based on the nonparametric multivariate density estimation [Bou10][Hwa94][Lof65] and the 

Bayesian bootstrap filter [Mar17][Mar18b]. In order to facilitate the process of density 

estimation, the nonparametric approach must rely in general on the assumption that the 

underlying density is smooth. Many nonparametric density estimators are motivated as 

extensions of the classical histogram [Rub14][Kol13][Jar09][Tar70]. The multivariate 

nonparametric density estimation of posterior density is used in the resampling step of the 

Bayesian bootstrap filter. This estimation technique makes it possible to regularize the bootstrap 

filter, which means drawing the samples continuously rather than discretely. The chapter is 

organized as follows. Section 4.1 presents a nonparametric multivariate density estimation. In 
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the section 4.2, a proposed method to reduce the speckle noise is introduced. Experimental 

results are presented to demonstrate the accuracy of the proposed method for SAR images 

denoising in section 4.3. 

4.1 Nonparametric multivariate density estimation 

In signal-processing applications, most algorithms work properly if the probability densities 

of the multivariate signals (or noises) are known. Unfortunately, in reality, these densities are 

usually not available, and parametric or non-parametric estimation of the densities becomes 

critically needed. Regarding data generating, the non-parametric density estimation methods 

have simplest and less difficult assumptions about distributing the data than the assumptions 

made by the parametric density estimation [Sco92]. An estimator of an unknown probability 

density, regression curve, or other function of interest is shape constrained if it is restricted to 

produce estimates having some desired qualitative features. Qualitative features that might be 

of interest include monotonicity, unimodality, or convexity, for example. Parametric estimators 

may be considered shape constrained to a high degree, as their qualitative characteristics are 

pre-established. Nonparametric function estimators, conversely, have a low degree of shape 

restriction, their qualitative features being determined primarily by the data. A probability 

density function (pdf), f(x), of a p-dimensional data x is a continuous and smooth function which 

satisfies the following positivity and integrate-to-one constraints: 

                                                             ,0)( xf  1)( 
pIR

dxxf                                                  (4.1) 

We generally consider the analysis of a p-variate random sample {xn, n=1,………, N} from 

an unknown density function, f(x), where 
pIRx . It is worth reminding ourselves that 

(theoretically) for the analysis of a random sample, perfect knowledge of the density functions 

f(x) means that anything we may need to know can be computed. In practice, the computation 

may be quite complicated if the dimension of the data is high, but the greatest challenge comes 

from not knowing a parametric form for the density f(x). In [Fis32], Fisher referred to this step 

in data analysis as the problem of specification. Nonparametric methodology provides a 

consistent approach for approximating in a large class of unknown densities, at a cost of less 

efficient estimation when the correct parametric form is known. Of course, if an incorrect 

parametric form is specified, then bias will persist. Kernel density estimation is the most widely 

used practical method for accurate nonparametric density estimation. Numerous articles have 
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been written on its properties, applications, and extensions [Sil86][ Sco92]. In this chapter, we 

are interested to use this method for estimation of posterior density in the resampling step of 

the Bayesian bootstrap filter.  

4.1.1 Kernel density estimation 

To estimate the unknown density function f, one can use parametric or nonparametric 

methods. The parametric ones, e.g., the maximum likelihood method, require assumptions on 

the form of the unknown density. Then, the only problem is to estimate the parameters. But 

sometimes, having no additional information about the distribution, we should use 

nonparametric methods, like the histogram or the kernel estimator. The kernel density estimator 

(KDE), introduced in [Ros56] (in the univariate case), is characterized by two components: the 

bandwidth h(n) and the kernel K. We consider its multivariate version, p≥ 1 (see e.g., [Sil86]). 

Multivariate kernel density estimation is an important technique in multivariate data analysis 

and has a wide range of applications [Sco92]. However, its widespread usefulness has been 

limited by the difficulty in computing an optimal data-driven bandwidth. We remedy this 

deficiency in this section. 

Definition 4.1: Let 
T

pXXXX ),......,,( 21 denote a p-dimensional random vector with 

density f(x) defined on pIR , and let  nxxx ,......,, 21  be an independent random samples drawn 

from f(x). The general form of the kernel estimator of f(x) is [Wan93]: 

                                                              )(
1

)(ˆ

1

i

n

i

HH xxK
n

xf  


                                                (4.2) 

where )()( 2/12/1
xHKHxKH


 , K(·) is a multivariate kernel function with K≥ 0 and 

1)( 
pIR

dttK , and H is asymmetric positive definite p×p matrix known as the bandwidth matrix. 

The choice of the kernel function K is not crucial to the accuracy of kernel density estimators, 

so we use the standard multivariate normal kernel throughout: 
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where H plays the role of the covariance matrix. On the other hand, the choice of the 

bandwidth matrix H is the single most important factor affecting its accuracy since it controls 

the amount and orientation of smoothing induced.  

The bandwidth matrix can be restricted to a class of positive definite diagonal matrices, and 

then the corresponding kernel function is known as a product kernel. However, there is much 

to be gained by choosing a full bandwidth matrix, where the corresponding kernel smoothing 

is equivalent to pre-rotating the data by an optimal amount and then using a diagonal bandwidth 

matrix. It has been widely recognized that the performance of a kernel density estimator is 

primarily determined by the choice of bandwidth, and only in a minor way by the choice of 

kernel function. A large body of literature exists on bandwidth selection for univariate kernel 

density estimation [Mar87][Jon96]. However, the literature on bandwidth selection for 

multivariate data is very limited. In [Sai94], authors discussed the performance of bootstrap and 

cross-validation methods for bandwidth selection in multivariate density estimation and found 

that the complexity of finding an optimal bandwidth grows prohibitively as the dimension of 

data increases. A less variable cross-validation algorithm using the plug-in method, which 

requires auxiliary smoothing parameters, is presented in [Wan94]. The technology for choosing 

these auxiliary smoothing parameters is not well developed. An alternative plug-in algorithm 

for bandwidth selection for bivariate data is presented in [Duo03]. This plug-in method has the 

advantage that it always produces a finite bandwidth matrix and requires computation of fewer 

pilot bandwidths. However, it cannot be directly extended to the general multivariate setting. 

The most commonly used optimality criterion for selecting a bandwidth matrix is the mean 

integrated squared error (MISE) given by: 

                                                 dxxfxfEHMISE H

2))()(ˆ()(                                     (4.4) 

When data are observed from the multivariate normal density and the diagonal bandwidth 

matrix [Sco92][Bow97], denoted by H=diagonal(h1, h2,……., hp) is employed. The optimal 

bandwidth that minimizes MISE can be approximated by: 

                                                              

)4/(1

)2(

4
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ii
np

h                                                (4.5) 

for i=1, 2,..., p, where σi is the standard deviation of the ith variate, and can be replaced by its 

sample estimator in practical implementations. 

https://en.wikipedia.org/wiki/Mean_integrated_squared_error
https://en.wikipedia.org/wiki/Mean_integrated_squared_error
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Example 4.1: We consider estimating the density of the Gaussian mixture f given by: 
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                                          (4.6) 

from 500 randomly generated points. We employ the Matlab routine for 2-dimensional data. 

The routine is an automatic bandwidth selection method specifically designed for a second 

order Gaussian kernel [Bot10]. The Figure 4.1 shows the joint density estimate that results from 

using the automatically selected bandwidth. 

 

Figure 4.1: Kernel density estimate with diagonal bandwidth for synthetic normal mixture 

data. 

4.1.2 Kernel-diffeomorphism estimator  

The kernel density estimation method is not so attractive when the density has its support 

confined to a bounded space U of IRp. A new nonparametric probability density function (pdf) 

estimator called the ‘kernel-diffeomorphism estimator’, which suppress border convergence 

difficulties by using an appropriate regular change of variable have been suggested in [Sao97]. 

4.1.2.1 Case of one dimension 

Given a sequence of independent samples X1, X2,……., XN identically distributed as a 

random variable X with pdf fX, we can form a sequence of estimators of fX such that NXf ,
ˆ  

depends only on the first N observations. Let F be the set of all continuous and bounded pdfs 

of random variables whose support is confined to the real interval I=]a, b[. 
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Definition 4.2: A kernel-diffeomorphism estimator is an estimator NXf ,
ˆ  of the form: 
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with: 

(a) a pdf K, called kernel; 

(b) a sequence of positive real number hN, called bandwidth; and 

(c) a regular C1-diffeomorphism   from ]a, b[ to IR (i.e. its first derivative )(x tends to 

infinity when x tends to the lower or the higher bound). 

We give the two important families of diffeomorphism: 

 )/()(log            
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xbax x
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xtg x

IRbaii ba


  

where )/( ab  and 2/)( ba  . 

Example 4.2: In order to test the estimator, we generate 1000 samples following the beta 

distribution. The analytical expression pdf of beta where p and q>-1 is given by: 
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In order to show that the estimator is better than the classic Kernel method, we choose the 

parameters p=0.5 and q=5. Figure 4.2 shows the pdf estimation in the case where the Gaussian 

Kernel and the logarithmic diffeomorphism are used. The curves Gqpf ,,
ˆ  and ,,

ˆ
qpf  represent 

respectively the Gaussian Kernel and the logarithmic diffeomorphism estimators of beta pdf 

)(, xf qp . We see from Figure 4.2 that the kernel-diffeomorphism method estimates the pdf  

)(, xf qp  better than the kernel method.  
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4.1.2.2 Case of p-dimension 

Given a sequence of independent samples X1, X2,……., XN identically distributed as the 

random variable X with a pdf fX, the observations are in a bounded space U of  IRd ( 2d ). Let 

us recall the generalized definition of the kernel-diffeomorphism estimator. 

Definition 4.3: A d-dimensional kernel-diffeomorphism estimator is an estimator NXf ,
ˆ  of 

the form: 
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                  (4.9) 

with a d-dimensional pdf K, called kernel; a d-dimensional vector of positive real numbers hN 

=(h1,N,……,hd,N), the generalized bandwidth; and a regular C1-diffeomorphism

 )(),.......,()( 1 xxx d   from U to IRd. 

The C1-diffeomorphism is called regular if  )(det x tends to infinity as x tends to the bound 

of the open space U. The K is called regular if it is a square integrated density. 

Example 4.3: Let fX  be a d-dimensional beta distribution (of the first kind) whose 

components are independent with parameters p = q = 1: 

)1(6)(
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d
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d

X xxxf 
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Gqpf ,,
ˆ  

qpf ,
 

,,
ˆ

qpf  

Figure 4.2: Estimation of pdf )(, xf qp . 
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As a kernel, we can choose the product kernel of the form: K(x)= )(1 ii

p

i xK , with (for 

i=1,…..,p): 
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As a diffeomorphism, we take: 
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For further information about this estimator, we can see the paper [Sao97]. 

4.2 A proposed method to reduce the speckle noise 

Speckle noise is one of or the main defects that distorts SAR images [Zhu13]. Restoration 

of SAR images corrupted by the speckle noise has indeed attracted the attention of many 

researchers. Several filters have been introduced in the past for the reduction of speckle noise. 

In this work, we propose a novel approach, utilizing a hybrid combination between the 

Nonparametric BBF (NBBF) [Mar17][Mar18b] and the DWT [Mal98] to suppress speckle 

noise in SAR images. Here, we will first generate the noisy image by degrading the original 

image with the multiplicative speckle noise. Second, the degraded image will be entered to the 

NBBF in order to reduce the speckle noise. Third, we apply the DWT method to the output 

filtered image by the NBBF. Fourth, we apply thresholding process [Guo00] on the output 

coefficients by the DWT. Finally, we apply the IDWT to get our output restored image. In 

Figure 4.3 we show the flow chart diagram of the proposed algorithm. 
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4.2.1 Discerption of SAR images 

Synthetic Aperture Radar (SAR) images can be obtained from satellites such as European 

Remote Sensing Satellite (ERS), Japanese Earth Resource Satellite (JERS) and RADARSAT. 

Since radar interacts with the ground features in ways different from the optical radiation, 

special care has to be taken when interpreting radar images. We present an example of an ERS 

SAR image in Figure 4.4. SAR provides high-resolution, day-and-night and weather-

independent images for a multitude of applications ranging from geoscience and climate change 

research, environmental and Earth system monitoring, 2-D and 3-D mapping, change detection, 

4-D mapping (space and time), security-related applications up to planetary exploration. 

Besides the advantages, it suffers from a major problem caused by random phase fluctuations 

of the return electromagnetic signals. These fluctuations appear as noise in the processed image 

and known as speckle noise. 

Input SAR image 

Noisy image 

Nonparametric BBF 

DWT 

Output Denoised 

SAR Image 

Inverse DWT 

Noise 

Thresholding 

Figure 4.3: The Proposed algorithm. 
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Figure 4.4: ERS SAR image. 

Speckle noise in SAR is generally more serious, causing difficulties for image interpretation 

hence it is required to be restored, but because of multiplicative nature, it requires different 

treatment then additive noise. Speckle noise occurs as granular pattern formed by the 

interference of randomly scattered energy which occurs when object illuminated by coherent 

radiation have rough surface. Speckle noise causes difficulties for image interpretation and 

further processing of the image. The speckle is multiplicative in nature, which makes the 

process of noise removal more complicated. The ideal speckle reduction technique preserves 

the edges and other textural information. We present in Figure 4.5 a noised SAR image. This 

image is extracted from the above SAR image, showing the clearing areas between the river 

and the coastline. The image appears "grainy" due to the presence of speckles. 

Over the last three decades, several different methods have been proposed for the reduction 

of speckle, or despeckling, in SAR images. A number of filtering algorithms dealing with 

multiplicative noise have been proposed. The most notable include the Lee [Lee80], Kuan 

[Kua85], and Frost [Fro82] filters. These filters which aim at minimizing the mean square error 

(MSE), are derived from the speckle model, i.e., assuming speckle is a multiplicative noise 

random variable, with mean of one. Goal of this chapter is to making a novel method to reduce 

the speckle noise for SAR images based on non-parametric Bayesian bootstrap filter and 

discrete wavelet transform. 
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Figure 4.5: Noised SAR image. 

 

4.2.2 SAR image mathematical model 

A SAR image is a mean intensity estimate of the radar reflectivity of the region which is 

being imaged. We will model the discrete original image s(m, n), with size cl NN  , by a 2-D 

auto-regressive (AR) process of low order [Jai81]: 

                                                  ),(),(),(
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,
nmwlnkmscnms

lk
lk
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                      (4.13) 

where m and n represent the row and the column of a pixel respectively, lkc ,  are the coefficients 

of image model,   is the nonsymmetric half plane (NSHP) model support [Ang89], and w(m, 

n) is a zero-mean homogeneous Gaussian distributed process with covariance ),(2 nmw , which 

is independent of s(m, n). 

A state vector x(m, n) at location (m, n) can be defined by: 
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This state was determined assuming an image of N pixels wide and scanned from left to 

right, top to bottom. 
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Speckle noise severely impedes automatic scene segmentation and interpretation, and limits 

the resolution of SAR images as well as their utility. If s represents the original image and v is 

speckle noise, then the degraded observation y is given by the relation: 

                                                   y(m, n)=s(m, n).v(m, n)                                                                 (4.15) 

Noise v is assumed to be independent of s with unit mean and variance 2

v
 . The 

multiplicative nature of speckle complicates the noise reduction process in SAR. A speckle 

suppression filter should effectively filter homogeneous areas, retain image texture and edges 

(both straight and curved), and preserve features (linear as well as point-type). The image 

model, which describes the evolution of the state with space and the statistical characteristics 

of the image at spatial indices m and n, is defined as: 

                                          )),1(),,1((),( nmwnmxfnmx                                                   (4.16) 

where f is the nonlinear function of the state vector x(m, n) and w(m-1,n)  is a process noise 

sequence independent of the system states.  

The pdf of w is assumed to be known as )(wpw . The Bayesian filtering algorithm seeks 

filtered of x(m, n) based on the sequence of all available measurements  minm niyY 1, ),(   up to 

time step m from the posterior conditional pdf p(x(m, n)|Ym,n). The distribution of the initial 

condition x(1, n) is assumed to be given by p(x(1, n)|Y0,n)=p(x(1, n)). The a posterior conditional 

pdf p(x(m, n)|Ym,n) and the filtered conditional pdf p(x(m, n)|Ym-1,n) evolve in the following 

manner: 

            ),1()|),1(()),1(|),(()|),(( ,1,1 nmdxYnmxpnmxnmxpYnmxp nmnm           (4.17) 

and 
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A large number of numerical methods for evaluating the Bayesian filtering have been 

proposed. In this work, we introduce a new method, which will be explained in the next 

subsection. 
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4.2.3 Nonparametric Bayesian bootstrap filtering 

Bayesian bootstrap filtering (BBF) is a powerful technique since it is not restricted by model 

assumptions of linearity and/or Gaussian noise. The bootstrap filter is a recursive algorithm to 

estimate the posterior pdf )|),(( ,nmYnmxp from a set of samples. Assuming that we have a set 

of random samples  
b

i Ninmx ,......,1 :),1(   that are independently drawn from the pdf 

)|),1(( ,1 nmYnmxp  , where Nb is the number of bootstrap samples. Bootstrap filter performs 

approximate Bayesian estimation by predicting and updating a set of samples, representing the 

system probability density functions. The filter procedure is as follows: 

Prediction: Each sample from pdf )|),1(( ,1 nmYnmxp   is passed through (4.15) to obtain a 

new sample  ),(* nmx
i

 at location (m, n). 

Update: On receipt of the measurement y(m, n), evaluate the likelihood of each prior sample 

and obtain the normalized weight qi for each sample:  

                                                           


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nmxnmyp

nmxnmyp
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1

)),(|),((
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                                          (4.19) 

This defines a discrete distribution over 
b

i Ninmx ,...,1:),(*   with probability mass qi 

associated with element ),(* nmxi . Now resample N times from the discrete distribution to 

generate samples  
b

i Ninmx ,......,1 :),1(  , so that for any j,   iij qnmxnmx  ),(),(Pr * . The 

samples are approximately distributed as the required pdf )|),(( ,nmYnmxp . 

In the update step of BBF, the resampling from the discrete distribution was suggested as a 

method to reduce the degeneracy problem, which is prevalent in BBF. On the other hand, the 

resampling procedure was noticed to produce other problems, particularly, the problem of losing 

diversity among the particles. To resolve this problem, we suggested regularizing the BBF 

[Mar17][Mar18a]. This regularization is established at the level of the resampling stage, where 

the samples are drawn from a continuous distribution rather than a discrete one.  

By using a nonparametric multivariate density estimation given in section 4.1, samples are 

drawn from a continuous approximation of the posterior density )|),(( ,nmYnmxp . 
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Nonparametric bootstrap update: As before, define a discrete distribution over 

 
b

i Ninmx ,...,1:),(*  , with probability mass qi associated with element ),(* nmxi . However, 

instead of resampling directly from this discrete sample set we now use the set of weighted 

points and the multivariate kernel density or the multivariate kernel-diffeomorphism density to 

generate samples from the approximation: 
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We can now declare the algorithm in details as follow. 

Nonparametric Bayesian bootstrap filter algorithm 

1. Initializing, m=1. 

   FOR i=1: Nb, draw samples ),1( nxi , from the proposal distribution ),( nmxi ~p(x(1,n))    

2. Importance sampling step 

   FOR i=1: Nb, draw samples ),1(* nxi , from the transition PDF ),( nmxi ~    

           )),1(|),(( nmxnmxp i  )  and set )),(),,1:1((),:1( ** nmxnmxnmx iii  . 

   FOR i=1: Nb, compute the normalized importance weights given by (4.19).                      

3. Selection step  

   Resample with replacement Nb particles bi Ninmx ,......,1);,:1(  from the set  

           bi Ninmx ,......,1);,:1(*  according to the importance weights using (4.20) or (4.21). 

Set 1m m   and go to step 2. 

4.2.4 Image Denoising Using Discrete Wavelet Transform (DWT) 

4.2.4.1 DWT Process: 

The DWT is based on sub-band coding which generates a fast computation of Wavelet 

Transform. It is easy to implement, requires less computation time and the resources required 

are considerably decreased. In DWT, digital filtering techniques are used which gives time scale 
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representation of the digital signal. The signal x(n) to be analyzed is passed through filters at 

different cut off frequencies and at different scales. The term “Wavelet” means a small wave. 

This smallness specifies the condition that the window function is of fixed length. A wave is 

defined as an oscillating function of space or time and it is periodic whereas wavelets are 

localized waves. Wavelets are suited to transient signals and their energy concentrated in time. 

To analyze signals, Fourier transform and Short-Time Fourier Transform (STFT) use waves and 

Wavelet transform uses wavelets of finite energy. This Wavelets transform has proved to be a 

useful tool in various application of image and signal processing [Luk14]. 

The pixel or signal x(n) is processed by passing it through a series of filters. First, it is passed 

through a low pass filter with impulse response g(n) giving the approximation coefficient: 

                                                     
n

high nkgnxky ]2[].[][                                              (4.22) 

The signal is decomposed simultaneously using a high pass filter h(n) as a result of which the 

detailed coefficient is obtained: 

                                                     
n

low nkhnxky ]2[].[][                                               (4.23) 

Since an image is a 2-dimensional signal, it is represented as x(M, N). Each row is filtered and 

sampled to obtain two x(N, M/2) images. Then each column is filtered and down sampled to 

obtain four x(N/2, M/2) images. The resultant is one-dimensional scaling function ),( yx and 

two dimensional wavelet functions ),( yxH , ),( yxV and ),( yxD which represent the sub 

bands of the image. Now, we use the concept of Mean Square Difference of Slope (MSDS) to 

remove the artifacts. We have two MSDS namely MSDS1 and MSDS2 of which MSDS1 is 

comprised of vertical and horizontal blocks: 

                                         VH
VH yxyxMSDS   )),(()),((1                        (4.24) 

Similar, the MSDS2 involves the usage of the diagonal components: 

                                       D
D yxMSDS   )),((2                                                           (4.25) 

The intensity slopes of all adjacent blocks are: 

                                    21 MSDSMSDSMSDSt                                                                (4.26) 
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On global minimization of MSDSt, we can reduce the blocking artifacts. On de-quantization and 

application of Inverse Discrete Transform, the original image is restored. 

4.2.4.2 Thresholding Process 

The Small coefficients in the sub-bands are dominated by noise, while coefficients with large 

absolute value carry more original image information than noise. Replacing noisy coefficients 

(small coefficients below certain value) by zero and an inverse wavelet transform may lead to 

reconstruction that has lesser noise. Normally Hard Thresholding and Soft Thresholding 

techniques are used for such denoising process. Hard and Soft thresholding [Don95][Hed11] 

[Vij12] with threshold λ are defined as follows. The threshold 𝜆 is chosen according to the signal 

energy and the noise variance 𝜎2. The hard thresholding operator is defined as: 

                                                            
otherwise 0

|| allfor  ),(
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                                            (4.27) 

The soft thresholding operator on the other hand is defined as: 
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The DWT denoising procedure will go as follows: 

1. Transform the noisy image into orthogonal domain by discrete 2D wavelet transform. 

2. Apply hard or soft thresholding the noisy detail coefficients of the wavelet transform. 

3. Perform inverse discrete wavelet transform to obtain the denoised image.  

Here, the threshold plays an important role in the denoising process. Normally, hard 

thresholding and soft thresholding techniques are used for such denoising process. Hard 

thresholding is a keep or kill rule whereas soft thresholding shrinks the coefficients [Tas00] 

above the threshold in absolute value. It is a shrink or kill rule. 

4.3 Experimental results 

The performance of the proposed method is examined by using two satellite SAR images with 

several speckle noise simulations. Denoising is carried out for SAR image with Speckle noise 

of variance 2

v =0.02, 0.03, 0.04, 0.05, 0.06, 0.07 and 0.08. For objective evaluation, the signal 

to noise ratio of each denoised image has been calculated using ISNR, RMSE and PSNR. The 
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first image shown in Figure 4.6.a is the upper part of the Terra SAR-X image (911 512 pixels) 

of Sydney Australia. It is provided by the German Aerospace Center (DLR) in July 9, 2007, 

which shows Botany Bay, located south of the airport [ESA07]. The second image shown in 

Figure 4.7.a is the city of Paris image (687 512 pixels) acquired by the SAR satellite Sentinel-

1A on Tuesday, May 31, 2016 [Den16]. In order for us to implement the proposed method over 

a given noised satellite images, we have used the state dynamical model given by (4.29), 

                                       ),(),()1,(),( nmDwnmEunmCxnmx                                  (4.29) 
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The input term u(m, n) is introduced as the recent estimate of the pixel s(m-1, n+1). We have 

adopted a causal image model proposed in [Jai81] using a non-symmetric half plane (NSHP) 

region of the support shown below [Jai89]: 

            ),1()1,1()1,()1,1(),( 4321 nmsanmsanmsanmsanms            (4.30) 

where a1, a2, a3 and a4 are the model coefficients given in Table 4.1, which are identified using 

the Least Squares method [cha76]. In our work we will use the BBF with Nb=500. 

          Table 4.1: Model coefficients for the used SAR images. 

 

 

In order to be able to quantify the improvement achieved by our method, we have first 

degraded original “noiseless” images with synthetic speckle in a controlled manner. To evaluate 

the proposed filter’s capability in minimizing speckle effects while preserving image contents 

and details, a number of established filters were applied to both the SAR images, including the 

BBF. 

Image 1a 2a 3a 4a 

Sydney Australia -0.1698 0.0.3651 0.1230 0.6762 

City of Paris -0.0904 0.4006 0.1514 0.5304 
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4.3.1 Results of SAR image Sydney Australia 

In this section we will introduce a simulate noisy image of the image of Sydney Australia with 

a multiplicative noise - speckle noise-, then we will denoise the simulated noisy image with our 

proposed methods and other several basic filters in order to show the superiority of our proposed 

filter. The mean of the speckle noise is taken to be unity with several values of the speckle noise 

variance 2

v =0.02, 0.03, 0.04, 0.05, 0.06, 0.07 and 0.08. In Figure 4.6, we illustrate the visual 

results for restoring the Sydney Australia image that was degraded by speckle noise of variance 

2

v =0.08. We will show the results by means of the numerics: ISNR, RMSE and PSNR in Tables 

4.2, 4.3 and 4.4 respectively. 

 

(a) Original ‘Sydney, Australia’ image Histogram for image (a) 

(b) Degraded image  Histogram for the image (b) 
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(c) Restored image by kuan filter 

 

Histogram for the image (c) 

(d) Restored image by frost filter 

 

Histogram for the image (d) 

(e) Restored image by lee filter 

 

Histogram for the image (e) 

(f) Restored image by wiener filter 

 

Histogram for the image (f) 
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(g) Restored image by BBF filter 

 

Histogram for the image (g) 

(h) Restored image by NBBF filter 

 

Histogram for the image (h) 

(i) Restored image by proposed filter 

 

Histogram for the image (i) 

Figure 4.6: Denoising of ‘Sydney, Australia’ image corrupted by speckle noise of variance of 

0.08. 
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Table 4.2: Comparison of the ISNR resultant values of the proposed, NBBF, BBF and the 

other basic filters for denoising the SAR image of Sydney corrupted by Speckle noise. 

 
2

v  0.02 0.03 0.04 0.05 0.06 0.07 0.08 

Kuan 7.30 6.98 6.49 6.15 5.62 5.22 4.35 

Frost 7.58 7.11 6.62 6.26 5.87 5.44 4.87 

Lee 6.93 6.78 6.22 5.86 5.40 4.65 4.09 

Wiener 7.60 7.26 6.87 6.66 6.17 5.71 5.02 

BBF 7.71 7.44 7.15 6.71 6.35 5.88 5.65 

NBBF 7.98 7.66 7.39 7.09 6.75 6.44 6.14 

Proposed 8.65 8.22 7.93 7.59 7.31 7.07 6.95 

 

Table 4.3: Comparison of the RMSE resultant values of the proposed, NBBF, BBF and the 

other basic filters for denoising the SAR image of Sydney corrupted by Speckle noise. 

 

2

v  0.02 0.03 0.04 0.05 0.06 0.07 0.08 

Kuan 9.75 10.62 12.11 13.23 15.24 16.92 21.31 

Frost 9.07 10.26 11.68 12.87 14.26 15.96 18.58 

Lee 10.78 11.19 12.99 14.29 16.14 19.70 22.83 

Wiener 9.01 9.85 10.93 11.56 13.15 14.86 17.86 

BBF 8.76 9.40 10.16 11.40 12.56 14.22 15.12 

NBBF 8.15 8.88 9.52 10.32 11.28 12.26 13.26 

Proposed 6.83 7.65 8.25 9.04 9.74 10.36 10.70 

 

Table 4.4: Comparison of the PSNR resultant values of the proposed, NBBF, BBF and the  

other basic filters for denoising the SAR image of Sydney corrupted by Speckle noise. 

 

2

v  0.02 0.03 0.04 0.05 0.06 0.07 0.08 

Kuan 28.32 27.58 26.44 25.67 24.44 23.53 21.53 

Frost 28.95 27.88 26.75 25.91 25.02 24.04 22.72 

Lee 27.45 27.12 25.83 25 23.94 22.21 20.93 

Wiener 29.01 28.23 27.33 26.84 25.72 24.66 23.06 

BBF 29.25 28.64 27.96 26.96 26.12 25.04 24.51 

NBBF 29.88 29.13 28.53 27.83 27.05 26.33 25.65 

Proposed 31.41 30.43 29.77 28.98 28.33 27.79 27.51 
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Line Chart 4.1: PSNR results for denoising the SAR image of Sydney by the several filters. 

 

 
 

We can notice from the visual results for the SAR image of Sydney the improvements of our 

proposed method over the other methods introduced, as well as the increasing in the ISNR, 

PSNR and the decreasing of the RMSE values for the proposed method over the other methods. 

4.3.2 Results of SAR image City of Paris  

In this section we will introduce a simulate noisy image of the image of city of Paris with a 

multiplicative noise - speckle noise-, then we will denoise the simulated noisy image with our 

proposed methods and other several basic filters in order to show the superiority of our proposed 

filter. The mean of the speckle noise is taken to be unity with several values of the speckle noise 

variance 2

v =0.02, 0.03, 0.04, 0.05, 0.06, 0.07 and 0.08. In Figure 4.7, we illustrate the visual 

results for restoring the Paris city image that was degraded by speckle noise of variance 2

v

=0.08. We will show the results by means of the numerics: ISNR, RMSE and PSNR in Tables 

4.5, 4.6 and 4.7 respectively. 
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(a) Original ‘city of Paris’ image 

 

Histogram of image (a) 

 

(b) Degraded image 

 

Histogram of image (b) 

 

(c) Restored image by kuan filter 

 

Histogram of image (c) 

 

(d) Restored image by frost filter 

 

Histogram of image (d) 
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(e) Restored image by lee filter 

 

Histogram of image (e) 

 

(f) Restored image by wiener filter 

 

Histogram of image (f) 

 

(g) Restored image by BBF filter 

 

Histogram of image (g) 

 

(h) Restored image by NBBF filter 

 

Histogram of image (h) 
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(i) Restored image by the proposed filter 

 

Histogram of image (i) 

Figure 4.7: Denoising of ‘city of Paris’ image corrupted by speckle noise of variance of 0.08. 

Table 4.5: Comparison of ISNR resultant values of the proposed, NBBF, BBF and other 

basic filters for denoising the SAR image of Paris corrupted by Speckle noise. 

 
2

v 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

Kuan 6.23 5.88 5.57 4.95 4.40 3.94 3.37 

Frost 6.48 6.05 5.77 5.16 4.91 4.13 3.46 

Lee 6.09 5.77 5.42 4.69 4.23 3.82 3.33 

Wiener 6.71 6.19 5.82 5.32 5.42 4.79 4.15 

BBF 6.81 6.33 6.21 5.82 5.51 5.18 4.84 

NBBF 6.92 6.63 6.30 5.91 5.59 5.49 5.08 

Proposed 7.12 6.90 6.53 6.29 5.80 5.70 5.27 

 

Table 4.6: Comparison of RMSE resultant values of the proposed, NBBF, BBF and other 

basic filters for denoising the SAR image of Paris corrupted by Speckle noise. 

 
2

v  0.02 0.03 0.04 0.05 0.06 0.07 0.08 

Kuan 12.96 14.22 15.45 18.18 21.04 23.80 27.67 

Frost 12.13 13.58 14.66 17.22 18.39 22.62 26.98 

Lee 13.44 14.66 16.07 19.48 22.03 24.52 27.96 

Wiener 11.42 13.11 14.44 16.50 16.07 18.97 22.49 

BBF 11.12 12.62 13.02 14.45 15.70 17.12 18.75 

NBBF 10.80 11.64 12.72 14.11 15.35 15.78 17.60 

Proposed 10.24 10.85 11.98 12.76 14.50 14.91 16.73 
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Table 4.7: Comparison of PSNR resultant values of the proposed, NBBF, BBF and other 

basic filters for denoising the SAR image of Paris corrupted by Speckle noise. 

 
2

v  0.02 0.03 0.04 0.05 0.06 0.07 0.08 

Kuan 25.85 25.04 24.32 22.91 21.64 20.57 19.26 

Frost 26.42 25.44 24.78 23.38 22.81 21.01 19.48 

Lee 25.53 24.78 23.98 22.31 21.24 20.31 19.17 

Wiener 26.95 25.75 24.91 23.75 23.98 22.54 21.06 

BBF 27.18 26.08 25.81 24.9 24.18 23.43 22.64 

NBBF 27.43 26.78 26.01 25.11 24.38 24.14 23.19 

Proposed 27.89 27.39 26.53 25.98 24.87 24.63 23.63 

 

Line Chart 4.2: PSNR results for denoising the image of the city of Paris SAR image by the 

several filters. 

 

 
 

Here we can notice from the visual results for the SAR image of Paris the improvements of 

our proposed method over the other methods introduced, as well as the increasing in the ISNR, 

PSNR and the decreasing of the RMSE values for the proposed method over the other methods. 

Conclusion 

In this chapter, a novel approach for speckle noise reduction in SAR image is introduced. 

The proposed method is a combination between the novel NBBF and the DWT which introduce 

a superior method to reduce the effect of the multiplicative - speckle - noise in the SAR images. 

At first we improved the performance of the BBF by regularizing the process in the resampling 

stage using the nonparametric multivariate density estimation which solved the problem of 

losing diversity among the particles, this regularization process has yields into an enhancement 
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in the restoration results. After that we input the result obtained from our NBBF into the DWT 

restoration stage. In addition, this procedure has improved the overall restoration results and we 

have obtained a better image restoration results by the means of visual and metric results. We 

compared our method with several basic speckle reduction methods in SAR images: Frost, Lee, 

Kuan and Wiener. The steps made was to simulate a noisy image from the original SAR image 

with speckle noise with unity mean and several values of the variance 
2

v  0.02, 0.03, 0.04, 0.05, 

0.06, 0.07 and 0.08. As we mentioned before, we have gained an attractive improvement in the 

restoration images visually. Furthermore, the increase in the ISNR, PSNR and the decreasing 

in the RMSE values indicates that there is a marked improvement in the restored image quality 

provided by our proposed methods.  
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General Conclusion and Perspectives 

There are several types of imagery that researchers concern to study the restoration 

techniques among, such as satellite, medical, consumer cameras etc. In our thesis, we chose to 

study and apply the restoration techniques on the satellite images, which is important in many 

fields such as security, planet health, changing lands and water bodies. In order to benefit of 

the satellite images to the maximum extent and to take advantage of the data in it, then use 

these data effectively in studies in different areas, these images should be clear so that 

researchers can analyze the information in satellite images and take data fully and correctly. 

Unfortunately, satellite images are subject to many distortion effects during the acquisition 

process and during the transmission channels, these effects appear in the image in the form of 

blur and/or noise. The result of this noise and/or blur appears as an annoying loss of a large 

part of the valuable information without which researchers cannot take advantage of these 

images. Image restoration techniques can process the degraded satellite images and remove the 

defects due to noise and/or blur and output an image, which is as close as to the original image 

retaining the useful information and details. The image restoration field is one of the most 

important fields in the image-processing domain. A wide variety of approaches for image 

restoration, from classical to recursive, exists in the literature.  

In our work, we have presented linear and nonlinear techniques in satellite images 

restoration. Regarding the obtained results, we found that nonlinear restoration techniques are 

superior to the linear restoration techniques by: edge preserving, sharpness and more powerful 

with the non-Gaussian noise assumptions. In the rest of our work, we have been particularly 

interested in nonlinear filtering techniques in a statistical framework. The main objective of 

our work is to propose a novel nonlinear filtering techniques that guaranties a resultant restored 

image is clearer than the previous proposed methods. Here, we introduced the mathematical 

models for the original and degraded (observed) images that we will adopt for the restoration 

of satellite images. The model of the original image is the output of a linear 2-D autoregressive 

(AR) process, which is very conductive for recursive filtering in 2-D. The observed satellite 

image is modeled as the output of a 2-D spatially varying linear system, which is characterized 

by its point-spread function (PSF). We have chosen as a nonlinear filter, the Bayesian bootstrap 

filter (BBF) for resolving the problem of degradation in the satellite images. The bootstrap 

algorithm is a filtering process based on both the Bayesian state estimation and the Monte Carlo 

(MC) methods. The BBF is a recursive algorithm to estimate the posterior probability density 

function (pdf) from a set of samples for Bayesian image restoration. Although the resampling 
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step in BBF has reduced the degeneracy problem which is prevalent in particle filters, it has 

introduced other problems, and in particular, the problem of loss of diversity among the 

particles. This arises because in the resampling stage, samples are drawn from a discrete 

distribution. Here, we have proposed a modification in the resampling stage of the BBF based 

on nonparametric multivariate density estimation, as a potential solution to the above problem. 

This modification occurred at the resampling stage, which involves changing the sampling 

process from a discrete distribution to a continuous approximation of the posterior density 

using the nonparametric methods. We called the filters obtained by this modification 

nonparametric BBF (NBBF). Comprehensive experiments were carried out in order to confirm 

the effectiveness of the proposed nonlinear filters on the quality of the restored satellite images 

by means of Peak Signal to Noise Ratio (PSNR). Finally, we have reduced the speckle noise 

in satellite SAR images by proposing a method that combines the NBBF and discrete wavelet 

transform (DWT) approach. 

Future Work 

We believe it would be very worthy to study and involve some of the nonparametric density 

estimators that we did not use in our work, such as orthogonal series density estimation and B-

spline density estimator, in the image restoration process to estimate the posterior probability 

density estimation. We also believe it is a very important step to study and analyses the 

convergence and stability of the proposed. Also, it would be a very good idea to extend the 

proposed NBBF scheme to the non-causal image model. Another interesting topic is to involve 

the proposed NBBF in the domain of coupling image restoration with image segmentation. 

Finally, we see that the NBBF would achieve a very interesting results when implementing it 

in video restoration field.  
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Appendix 
1.A Sentinel-1

1.A.1 Spectral Bands and Resolution

Sentinel-1 carries a single C-band synthetic aperture radar instrument operating at a center 

frequency of 5.405 GHz. It includes a right-looking active phased array antenna providing fast 

scanning in elevation and azimuth, data storage capacity of 1 410 Gb and 520 Mbit/s X-band 

downlink capacity. Denoting the transmit and receive polarizations by a pair of symbols, a radar 

system using H and V linear polarizations can thus have the following channels: 

 HH - for horizontal transmit and horizontal receive, (HH)

 VV - for vertical transmit and vertical receive, (VV)

 HV - for horizontal transmit and vertical receive (HV), and

 VH - for vertical transmit and horizontal receive (VH).

The C-SAR instrument supports operation in dual polarization (HH+HV, VV+VH) 

implemented through one transmit chain (switchable to H or V) and two parallel receive chains 

for H and V polarization. Dual polarization data is useful for land cover classification and sea-

ice applications. 

Sentinel-1 operates in four exclusive acquisition modes: 

● Strip map (SM)

● Interferometric Wide swath (IW)

● Extra-Wide swath (EW)

● Wave mode (WV).

Spatial resolutions depend on the acquisition mode and the level of processing. 
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Figure 1.A.1: Sentinel-1 Modes. 

1.A.1.a Level-1 Single Look Complex 

Single Look Complex products (SLC) have spatial resolutions that depend on acquisition 

mode. In Table 1 below for SLC SM/IW/EW products, the spatial resolutions and pixel spacing 

are provided at the lowest and highest incidence angles. For SLC WV products, the spatial 

resolution and pixel spacing are provided for the WV1 and WV2 imagettes. The SM and WV 

SLC products are sampled at the natural pixel spacing, meaning that the pixel spacing is 

determined in azimuth by the pulse repetition frequency (PRF) and in range by the radar range 

sampling frequency. Thus, there will be slight variations around the orbit. Note that spatial 

resolution is a measure of the system's ability to distinguish between adjacent targets while 

pixel spacing is the distance between adjacent pixels in an image, measured in meters. The 

equivalent number of independent looks (ENL) for a given product type is intended to 

correspond to the number of equally weighted, statistically independent looks which would 

produce the same speckle statistics as the processing used to generate the product. IW and EW 

SLC products have all bursts in all sub-swaths are re-sampled to a common pixel spacing grid 

in range and azimuth. 
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Table 1.A.1: Acquisition resolution Level-1 SLC. 

Mode Resolution 

rg az 

Pixel spacing 

rg az 

Number of 

looks 

ENL 

SM 1.7 4.3 m to 3.6
4.9 m 

1.5 3.6 m to 3.1
4.1 m 

1 1 1 

IW 2.7 22 m to 3.5 22 

m 

2.3 14.1 m 1 1 1 

EW 7.9 43 m to 15 43 

m 

5.9 19.9 m 1 1 1 

WV 2.0 4.8 m and 3.1
4.8 m 

1.7 4.1 m and 2.7

 4.1 m 

1 1 1 

 

1.A.1.b Level-1 Ground Range Detected 

Level-1 GRD products are available in one of three spatial resolutions: 

 Full Resolution (FR) for SM mode 

 High Resolution (HR) for SM, IW and EW modes 

 Medium Resolution (MR) for SM, IW, EW and WV modes. 

The spatial resolution of GRD products in the tables below corresponds to the mid-range 

value at mid-orbit altitude, averaged over all swaths (SM/WV) or sub-swaths (IW/EW). The 

range resolution is ground range. The equivalent number of looks (ENL) for IW and EW GRD 

products corresponds to an average over all sub-swaths. 

Table 1.A.2: Full resolution Level-1 GRD. 

Mode Resolution 

rg az 

Pixel spacing 

rg az 

Number of looks ENL 

SM 9 9 m 3.5 3.5 m 2 2 3.7 

 

Table 1.A.3: High resolution Level-1 GRD. 

Mode Resolution 

rg az 

Pixel spacing 

rg az 

Number of looks ENL 

SM 23 23 m 10 10 m 6 6 29.7 

IW 20 22 m 10 10 m 5 1 4.4 

EW 50 50 m 25 25 m 3 1 2.7 
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Table 1.A.4: Medium resolution Level-1 GRD. 

Mode Resolution 

rg az 

Pixel spacing 

rg az 

Number of looks ENL 

SM 84 84 m 40 40 m 22 22 398.4 

IW 88 87 m 40 40 m 22 5 81.8 

EW 93 87 m 40 40 m 6 2 10.7 

WV 52 51 m 25 25 m 13 13 123.7 

 

1.A.1.c Level-2 Ocean 

For Level-2 OCN products, the swell spectra (OSW) are provided at a spatial resolution of 

20 km by 20 km. The wind fields (OWI) and surface radial velocity (RVL) components have a 

spatial resolution of 1 km by 1 km (for SM/IW/EW). For WV, the results are average on the 

20x20km grid, giving only 1 value by vignettes. 

1.A.2 Sentinel-1 data 

The Sentinel-1 mission represents a completely new approach to SAR mission design by 

ESA in direct response to the operational needs for SAR data expressed under the EU-ESA 

GMES (Global Monitoring for Environment and Security) program. The mission ensures 

continuity of C-band SAR data to applications and builds on ESA's heritage and experience 

with the ERS and Envisat SAR instruments, notably in maintaining key instrument 

characteristics such as stability and accurate well-calibrated data products. 

1.A.2.a Sentinel-1 data products 

Sentinel data products are made available systematically and free of charge to all data users 

including the general public, scientific and commercial users. The data will be delivered within 

an hour of reception for Near Real-Time (NRT) emergency response, within three hours for 

NRT priority areas and within 24 hours for systematically archived data. All data products are 

distributed in the Sentinel Standard Archive Format for Europe (SAFE) format. Each mode can 

potentially produce products at SAR Level-0, Level-1 SLC, Level-1 GRD, and Level-2 OCN. 

Data products are available in single polarization (VV or HH) for Wave mode and dual 

polarization (VV+VH or HH+HV) or single polarization (HH or VV) for SM, IW and EW 

modes. 
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Figure 1.A.2: Graphical Representation of Sentinel-1 Core Products. 

Level-0: The SAR Level-0 products consist of compressed and unfocused SAR raw data. 

Level-0 products are the basis from which all other high-level products are produced. Level-0 

data is compressed using Flexible Dynamic Block Adaptive Quantization (FDBAQ), which 

provides a variable bit rate coding that increases the number of bits allocated to bright scatterers. 

For the data to be usable, it will need to be decompressed and processed using focusing 

software. Level-0 data includes noise, internal calibration and echo source packets as well as 

orbit and attitude information. Level-0 products are stored in the long-term archives. They can 

be processed to generate any type of product during the mission lifetime and for 25 years after 

the end of the space segment operations. Level-0 products are available to data users for only 

the SM, IW and EW modes. 

Level-1: Level-1 data are the generally available products intended for most data users. 

Level-1 products are produced as Single Look Complex (SLC) and Ground Range Detected 

(GRD). Level-1 Single Look Complex (SLC) products consist of focused SAR data geo-

referenced using orbit and attitude data from the satellite and provided in zero-Doppler slant-

range geometry. The products include a single look in each dimension using the full transmit 

signal bandwidth and consist of complex samples preserving the phase information. Level-1 

Ground Range Detected (GRD) products consist of focused SAR data that has been detected, 

multi-looked and projected to ground range using an Earth ellipsoid model. Phase information 

is lost. The resulting product has approximately square spatial resolution pixels and square pixel 

spacing with reduced speckle at the cost of worse spatial resolution. 
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Figure 1.A.3: Level-1 Processing Flow. 

Level-2: Level-2 consists of geolocated geophysical products derived from Level-1. Level-

2 OCN products include components for Ocean Swell spectra (OSW) providing continuity with 

ERS and ASAR WV and two new components: Ocean Wind Fields (OWI) and Surface Radial 

Velocities (RVL). The OSW component is a two-dimensional ocean surface swell spectrum 

and includes an estimate of wind speed and direction per swell spectrum. The OSW component 

provides continuity measurement of SAR swell spectra at C-band. The OSW is generated from 

Stripmap and Wave modes only and is not available from the TOPSAR IW and EW modes. For 

Stripmap mode, there are multiple spectra derived from the Level-1 SLC image. For Wave 

mode, there is one spectrum per vignette. The OWI is a ground range gridded estimate of the 

surface wind speed and direction at 10 m above the surface derived from internally generated 

Level-1 GRD images of SM, IW or EW modes. The RVL surface radial velocity component is 

a ground range gridded difference between the measured Level-2 Doppler grid and the Level-

1 calculated geometrical Doppler. The RVL component provides continuity of the ASAR 

Doppler grid. 

 

Figure 1.A.4: Example of Ocean Wave Spectrum presenting two swell partitions   

                                 Copernicus Sentinel data (2016). 
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Figure 1.A.5: Example of SAR wind measurement over Gibraltar  

Copernicus Sentinel data (2017). 

 

Figure 1.A.6: Surface Radial Velocity (RVL): Doppler anomaly over Irma Hurricane  

Copernicus Sentinel data (2017). 

1.A.2.b Sentinel-1 data formats 

Sentinel data products are distributed using a Sentinel-specific variation of the Standard 

Archive Format for Europe (SAFE) format specification. The SAFE format has been designed 

to act as a common format for archiving and conveying data within ESA Earth Observation 

archiving facilities. SAFE was recommended for the harmonization of the GMES missions by 

the GMES Product Harmonization Study. The Sentinel-SAFE format wraps a folder containing 

image data in a binary data format and product metadata in XML. This flexibility allows the 



196 

 

format to be scalable enough to represent all levels of Sentinel products. A Sentinel product 

refers to a directory folder that contains a collection of information. It includes: 

 A 'manifest. Safe' file which holds the general product information in XML. 

 Subfolders for measurement datasets containing image data in various binary formats. 

 A preview folder containing 'quick looks' in PNG format, Google Earth overlays in 

KML format and HTML preview files. 

 An annotation folder containing the product metadata in XML as well as calibration 

data. 

 A support folder containing the XML schemes describing the product XML. 

Products from all processing levels (Level-0, Level-1 and Level-2) are delivered in Sentinel-

SAFE format. The data delivered is packaged as a file structure containing a manifest file in 

XML format listing general product metadata and subfolders for measurement data, 

annotations, previews and support files. The manifest file is an XML file containing the 

mandatory product metadata common to all Sentinel-1 products. 

 

Figure 1.A.7: Product Folder File Structure for Level-1 Products. 
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Annotated data sets contain metadata describing the properties and characteristics of the 

measurement data or how they were generated. For each band of data, a product annotation data 

set contains metadata describing the main characteristics corresponding to that band such as the 

state of the platform during acquisition, image properties, polarization, Doppler information, 

swath merging and geographic location. Calibration annotations contain calibration information 

and the beta nought, sigma nought, gamma and digital number look-up tables that can be used 

for absolute product calibration. Noise data annotations contain the estimated thermal noise 

look-up tables. Annotated data sets are provided in XML format. Level-2 products do not 

contain annotation data sets as all product metadata is contained within the netCDF product 

file. In the preview folder, quick look data sets are power detected, averaged and decimated to 

produce a lower resolution version of the image. Single polarization products are represented 

with a greyscale image. Dual polarization products are represented by a single composite color 

image in RGB with the red channel (R) representing the first polarization, the green channel 

(G) represents the second polarization and the blue channel (B) represents an average of the 

absolute values of the two polarizations. Level-2 OCN products do not contain quick looks. 

Representation data sets found in the support folder contain information about the format or 

syntax of the measurement, annotated data sets, and can be used to validate and exploit these 

data. Representation data sets are provided as XML schemas. Measurement data sets contain 

the binary information of the actual acquired or processed data. For Level-0 this is the 

instrument data, for Level-1, it is the processed images and for Level-2, it is the derived data. 

There is one measurement data set per polarization and per swath. TOPSAR SLC products 

contain one complex measurement dataset in Geo TIFF format per swath per polarization. 

Level-1 GRD products contain one detected measurement dataset in Geo TIFF format per 

polarization. Measurement data sets are provided in Geo TIFF format for Level-1 products and 

netCDF format for Level-2 products. The Level-2 OCN products in netCDF format include 

both the annotation and measurement datasets described as netCDF attributes dimensions and 

variables in one self-describing, self-contained file. 

1.A.3 Applications 

Sentinel-1 provides data feeding services for applications in the Copernicus priority areas of 

maritime monitoring, land monitoring and emergency management. We can categorize these 

applications under three categories.  
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1.A.3.a Maritime Monitoring 

(i) Ice Monitoring 

High-resolution ice charting services supply ice classification and iceberg data to national 

coast guards, navies and shipping companies, to assist in assuring safe year-round navigation 

in the ice-covered Arctic and sub-Arctic zones. For sea-ice, information on ice concentration, 

extent, type, thickness and drift velocity can be determined. The location, size and drift of 

icebergs can also be collected. Sentinel-1 dual polarization data can significantly improve ice 

classification and discrimination. Through the detection of changes in the Arctic sea-ice extent, 

Sentinel-1 can be used to assess environmental impacts on coastal areas and transportation. In 

Figure 1.A.8, we presented an Advanced Synthetic Aperture Radar (ASAR) image on March 

12th and March 16th 2011 of the Sulzberger Ice Shelf in Antarctica (newly formed icebergs can 

clearly be seen in the second image). 

 

Figure 1.A.8: ASAR image on March 12th and March 16th 2011 of the Sulzberger Ice Shelf.  

(ii) Ship Monitoring 

Sentinel-1 uses wide area coverage with improved revisit times and is able to potentially detect 

smaller ships than ENVISAT ASAR. The mission's ability to observe in all weather and in day 

or nighttime makes it ideal for precise cueing and location of ship activities at sea, allowing for 

more efficient and cost-effective use of other security assets, such as patrol aircraft and ships. 

Data relevant to ship detection are transmitted by the satellite in real-time for reception by local 

collaborative ground stations supporting European and national services. In Figure 1.A.9, we 
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presented ASAR Image Showing the Ships for the International Fleet Review Assembling in 

the Solent between the Isle of Wight and Portsmouth on June 26th 2005. 

 

 

Figure 1.A.9: ASAR Image Showing the Ships for the International Fleet Review 

Assembling. 

(iii) Oil Pollution Monitoring 

Oil detection applications are used for gathering evidence of illegal discharges, analyzing 

the spread of oil spills and prospecting for oil reserves by highlighting naturally occurring 

seepage. Oil slicks are distinctly visible in SAR imagery as characteristically dark features. 

Most oil slicks are caused by ships emptying bilge before entering port. Detections can be 

correlated with Automatic Identification System (AIS) or Long-Range Identification and 

Tracking (LRIT) information broadcasts from ships to determine sources and prosecute 

offenders. Data relevant to oil spill monitoring are transmitted by the satellite in real-time for 

reception by local collaborative ground stations supporting European and national services. 

Likewise, detection of naturally occurring oil seepage from the ocean floor can provide clues 

for oil prospecting. In Figure 1.A.10, we presented ASAR Image on May 2nd 2010 showing the 

Deepwater Horizon Oil Spill in the Gulf of Mexico near the Delta National Wildlife Refuge. 



200 

 

 

Figure 1.A.10: ASAR Image Showing the Deepwater Horizon Oil Spill. 

1.A.3.b Land Monitoring 

(i) Forestry 

Sentinel-1 can play an important role in sustainable forest management with clear-cut and 

partial-cut detection, forest type classification, biomass estimation and disturbance detection. 

For climate change, mapping of forest fire scars can be an important part of mapping the carbon 

history of a forest and plays a critical role in the estimation of carbon emissions. 

Land cover maps can be used to support forest management and the monitoring of illegal 

timber harvesting worldwide. In Figure 1.A.11, we presented a Sentinel-1 SAR polarimetric 

color composite of an crop area near New Amsterdam city (yellow: forest/dense woody 

vegetation; dark blue: water/humid soil; shades of brown: crop fields; very bright blue: 

settlements). 

 

Figure 1.A.11: SAR polarimetric color composite of an crop area near New Amsterdam 

city. 
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(ii) Agriculture 

Monitoring of crop conditions, soil properties and mapping tillage activities help to assess 

land use, predict harvests, monitor seasonal changes and assist in implementing policy for 

sustainable development. Setinel-1 will also be used for monitoring the changes of agricultural 

production and productivity of pastures caused by drought and monitoring the decline of land 

productivity and soil degradation due to excessive cultivation and pasturage and improper 

irrigation. Agricultural maps enable provision of independent and objective estimates of the 

extent of cultivation in a given country or growing season, which can be used to support efforts 

to ensure food security in vulnerable areas. In Figure 1.A.12, we presented a color composite 

of three SAR images taken over the AGRISAR Test Site within a period of 2½ weeks at the 

beginning of the growing season (the different colors reflect the crop type and change in crop 

condition during this short time period). 

 

Figure 1.A.12: Color Composite of Three SAR Images. 

(iii) Urban Deformation Mapping 

Interferometric SAR can detect surface movements with an accuracy of a few millimeters 

per year and can provide an accurate tool for monitoring of land subsidence, structural damage 

and underground construction to improve safety and reduce economic loss. In Figure 1.A.13, 

we presented a Subsidence Monitoring of Venice; Italy with Sentinel-1 (provides the means for 

continuous monitoring of ground movement with an accuracy of a few millimeters per year). 
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Figure 1.A.13: Subsidence Monitoring of Venice, Italy. 

1.A.3.c Emergency Management 

(i) Flood Monitoring 

Flooding is the world's most costly type of natural disaster. Across the developing world, 

floods can strike with deadly regularity, destroying housing, agriculture and communications. 

Developed nations are hardly immune: the floods that struck Europe in 2002 cost dozens of 

lives and billions of Euros. Some 85% of all European civil protection measures are concerned 

with floods, and the damage done by flooding is set to grow further in future. Extensive building 

along riverbanks and flood plains leaves more property under threat and climatologists project 

an increase in extreme weather events including floods. Well in advance of any flood occurring, 

satellites can help civil protection planners anticipate where a river would be most prone to 

burst its banks, and take action accordingly. Satellite data can provide highly detailed digital 

elevation models of areas at risk that can serve as the basis of computerized flood simulations. 

During a flood event, near-real-time images are a management tool for authorities coping with 

the disaster. One of the biggest problems is obtaining a clear picture of the overall extent of the 

flood. Wide area satellite images can show an entire flood within a single picture, with radar 

instruments especially well-suited for differentiating between waterlogged and dry land. A 

sequence of satellite images can show if the flood is growing or diminishing over time, and 

highlight further areas coming under threat of inundation. Simply comparing before and after 

images of the flooded region makes possible a rapid and authoritative damage assessment 

estimate, factoring in different land cover types to quantify the cost of the flood.  



203 

 

 

Figure 1.A.14: Flood in the north of Italy. 

Furthermore, high-resolution digital elevation models (DEMs) generated through Sentinel-1's 

interferometric modes can be used to conduct run-off and inundation analysis in areas 

previously lacking elevation data. 

(ii) Earthquake Analysis 

In SAR provides the unique ability to produce medium and high-resolution maps of 

earthquake deformations. Through the persistent monitoring of earthquake-prone areas, active 

fault lines can be discovered and potential risks can be studied. The Interferometric Wide swath 

mode will make it easier to monitor very large-scale earthquakes. We presented in Figure 

1.A.15 ASAR coseismic interferogram of the 2011 Tohoku-oki earthquake in Japan processed 

by JPL/Caltech ARIA project using ROI_PAC. One color cycle represents 50 cm of motion in 

the radar line of sight. 
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Figure 1.A.15: ASAR coseismic interferogram of Tohoku-oki. 

(iii) Landslide and Volcano Monitoring 

SAR interferometry can locate areas prone to landslides and monitor surface deformation to 

provide early warning of potential disasters and monitoring of critical infrastructure. Pre-

eruption uplift and post eruption volcanic shrinkage can be monitored with similar 

interferometric techniques and can complement in-situ networks from volcano observatories. 

InSAR monitoring can help detect first signs of increasing levels of volcanic activity, preceding 

earthquakes and other precursors that may signal eruptions. We presented in Figure 1.A.16 

ASAR interferogram image over the Kenyan section of the Great Rift Valley shows small 

surface displacements that are not visible to the naked eye of the Longonot Volcano. 

Interferogram images appear as rainbow-colored interference patterns.  

 

Figure 1.A.16: ASAR interferogram image over the Kenyan section of the Great Rift 

Valley.  
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1.B Sentinel-2 

1.B.1 Spectral Bands and Resolution 

The Sentinel-2 Multi-Spectral Instrument (MSI) acquires 13 spectral bands ranging from 

Visible and Near-Infrared (VNIR) to Shortwave Infrared (SWIR) wavelengths along a 290-km 

orbital swath.  The MSI sensor data are complementary to data acquired by the U.S. Geological 

Survey (USGS) Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+). A collaborative effort between ESA and the USGS provides for the 

public access and redistribution of global acquisitions of ESA’s Sentinel-2 data at no cost 

through secondary U.S.-based portals, in addition to direct user access from ESA. 

 

Figure 1.B.1: The Twin-Satellite sentinel-2 Orbital Configuration. 

The twin satellites of sentinel-2 will provide continuity of Spot and Landsat type image data, 

contribute to ongoing multispectral observations and benefit Copernicus services. 

The MSI measures reflected radiance through the atmosphere within 13 spectral bands. The 

spatial resolution is dependent on the particular spectral band (Figure 1.B.2): 

• 4 bands at 10 meter: blue (490 nm), green (560 nm), red (665 nm), and near infrared (842 

nm). 

• 6 bands at 20 meter: 4 narrow bands for vegetation characterization (705 nm, 740 nm, 783 

nm, and 865 nm) and 2 larger SWIR bands (1,610 nm and 2,190 nm) for applications such 

as snow/ice/cloud detection or vegetation moisture stress assessment. 

• 3 bands at 60 meter: mainly for cloud screening and atmospheric corrections (443 nm for 

aerosols, 945 nm for water vapor, and 1375 nm for cirrus detection). 

 

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload
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Figure 1.B.2: Spectral bans versus spatial resolution. 

 

Table 1.B.1: Sentinel-2 Radiometric and Spatial Resolutions. 

Sentinel-2 Bands 
Central Wavelength 

(nm) 

Bandwidth 

(nm) 

Spatial Resolution 

(m) 

Band 1-Coastal aerosol 443 20 60 

Band 2-Blue 490 65 10 

Band 3-Green 560 35 10 

Band 4-Red 665 30 10 

Band 5-Vegetation Red Edge 705 15 20 

Band 6-Vegetation Red Edge 740 15 20 

Band 7-Vegetation Red Edge 783 20 20 

Band 8-NIR 842 115 10 

Band 8A-Narrow NIR 865 20 20 

Band 9-Water vapour 945 20 60 

Band 10-SWIR-Cirrus 1375 30 60 

Band 11-SWIR 1610 90 20 

Band 12-SWIR 2190 180 20 

Band TCI* RGB Composite 10 

 

*Data acquired after December 5, 2016 include a full resolution True-Colour Image as an RGB 

(red, green, blue) composite image created from bands 4, 3, 2. 

1.B.2 Sentinel-2 data 

Sentinel-2 is a constellation of two Earth observation satellites, developed under the 

direction of the European Space Agency, as part of the European Commission’s ambitious 

Copernicus Earth observation program. The full Copernicus program, which consists of several 

different Sentinel missions, is the most comprehensive systematic Earth Observation program 

ever created, providing land, ocean, and atmosphere observations, with continuity out to 2030. 

The wide-swath, multi-spectral imaging capabilities of the Sentinel-2 satellites provide an 

unprecedented view of our Earth, covering all of the Earth’s landmasses, large islands, and 

waterways. Sentinel-2 data is ideal for agriculture, forestry, and other land management 

applications. For example, it can be used to study leaf area as well as chlorophyll and water 
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content; to map forest cover and soils; and to monitor inland waterways and coastal areas. 

Images of natural disasters such as floods and volcanic eruptions can be used for disaster 

mapping and humanitarian relief efforts. Satellite data is provided in multiple levels typically 

ranging from 0 to 3, where 0 is unprocessed instrument and payload data at full resolution, and 

3 means derived information, like a single percentage number. Level-0 and Level-1A 

processing are performed by the ground segment and are in general not accessible to users. 

Level-1B and Level-1C processing is performed routinely by the S-2 ground segment and the 

results are available to users.  

Level-1B products represent Top-Of-Atmosphere calibrated radiances (TOA) in sensor 

geometry, and include radiometric corrections and the refinement of the physical geometrical 

viewing model (which is not applied at this level). Products are available as JPEG2000 lossless 

compressed images plus associated metadata, all capsuled within a SAFE file container 

(basically a zip-file, more details about SAFE in a later post). Level-1B is composed of granules 

(see also Figure below), one granule represents a sub-image (one for each band) of the satellite 

track, with a size of 25 km across-track and approx. 23 km along-track on ground. Each Level-

1B granule has a data volume of approximately 27 MB. Level-1B products require expert 

knowledge of orthorectification techniques. 

Level-1C products are radiometric and geometric corrected TOA products. The corrections 

include orthorectification and spatial registration on a global reference system (combined UTM 

projection and WGS84 ellipsoid) with sub-pixel accuracy. Level-1C images are delivered in 

tiles of 100×100 km (see also Figure below), each of which is approximately 500 MB. Products 

are available as JPEG2000 lossless compressed images plus associated metadata, all capsuled 

again within a SAFE file container. Currently, this type of data is the main target for almost all 

users. 

Level-2 products are Bottom-Of-Atmosphere (BOA) corrected orthophotos. In addition, 

they contain an Aerosol Optical Thickness (AOT) map, a Water Vapor (WV) map, and a Scene 

Classification Map (SCM) together with Quality Indicators (QI) for cloud and snow 

probabilities at 60 m resolution. They are resampled and generated with an equal spatial 

resolution for all bands, based on the requested resolution (10 m, 20 m, or 60 m). Unfortunately, 

the ground segment currently not routinely generates Level-2 products but have to be generated 

by the users themselves (e.g. by using the Sentinel toolbox, provided by ESA free). However, 
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the provisioning of Level-2 products, as a systematically generated core product of the ground 

segment, is currently assessed. 

1.B.2.a Sentinel-2 Data Structure 

These Sentinel-2 images are processed to Level-1C, which means they are orthorectified, 

map-projected images containing top-of-atmosphere reflectance data. The images are stored in 

the JPEG 2000 file format, with each spectral band stored as a separate image for easy access. 

Images are organized in the Sentinel-2 tiling grid, which is based on the Military grid reference 

system that divides the Earth into square tiles of approximately 100 km on each side. A single 

image tile acquired at a particular point in time is referred to as a “granule.” Cloud Storage 

organizes granules in the following effective directory structure:  

Datatakes and Datastrips: A satellite flies over an area and scans the Earth surface. For the 

Sentinels this is named a “datatake” – the continuous acquisition of an image from one Sentinel-

2 satellite in a given MSI imaging mode. The maximum length of an imaging datatake is 15,000 

km (e.g. the continuous observation from northern Russia to southern Africa). Since it is not 

possible for a single ground receiving station to cover such an area the term “datastrip” is 

introduced: within a given datatake, a portion of image downlinked during a pass to a given 

station is termed a “datastrip”. If a particular orbit is acquired by more than one station, a 

datatake is composed of one or more datastrips. The maximum length of a datastrip downlinked 

to a ground station is approximately 5,000 km.  

Granules and Tiles: Now back to Level-1C products. In the whole concept of providing 

orthorectified, spatially co-registered (to a global reference system) data to users a confusion 

has been introduced. Specifically by allowing the usage of the same expression for different 

things. In order to avoid this confusion we will strictly use the term “granules” for the 25×23 

km sub-images at Level-1B and the term “tiles” for 100×100 km sub-images a Level-1C and 

higher. The figure below (Courtesy of ESA) shall provide an impression of the meaning of these 

two terms. The underlying datastrip (the satellite image) forms the basis. 

https://en.wikipedia.org/wiki/JPEG_2000
https://en.wikipedia.org/wiki/Military_grid_reference_system
https://en.wikipedia.org/wiki/Military_grid_reference_system


209 

 

 

Figure 1.B.3: Sentinel-2 Granules and Tiles. 

1.B.2.b Sentinel-2 Data access 

The USGS Earth Resources Observation and Science (EROS) Center repackages Sentinel-

2 products on a per tile basis while preserving the Sentinel Standard Archive Format for Europe 

(SAFE) format specification, which allows for the distribution of a user-friendly file size that 

is approximately 650 MB. Each Level-1C product is a 100 km 100 km tile with a 

UTM/WGS84 (Universal Transverse Mercator/World Geodetic System 1984) projection and 

datum. The Sentinel-2 tiling grid is referenced to the U.S. Military Grid Reference System 

(MGRS). Tiles can be fully or partially covered by image data. Partially covered tiles 

correspond to those at the edge of the swath. The download package from the USGS includes 

one file for each of the 13 spectral bands plus metadata. Update: Data acquired after December 

5, 2016 are distributed from ESA in a single tile basis with a shorter naming convention and 

include a full-resolution True-Color Image. Previously offered Sentinel-2 data in the EROS 

archive will be replaced as data with the True-Color Image become available from ESA. Users 

may see temporary scene duplication in search results. 

Products are available for download in a zip file, which includes image data, quality 

indicators, auxiliary data, and metadata. Sentinel image data are in Geographic Markup 

Language JPEG2000 (GMLJP2) format. GML provides the encoding necessary for 

georeferencing the image. Sentinel-2 data are intended for scientific use within a Geographic 

Information System (GIS) or other special application software that supports the GMLJP2 

format. ESA offers the Sentinel 2 Toolbox, an open source software product, for the 

visualization, analysis, and processing of GMLJP2 files/Sentinel-2 data and other high-

resolution remote sensing data. 
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Full Resolution Browse (FRB) images in Georeferenced Tagged Image File Format 

(GeoTIFF) are also available from the USGS for Sentinel-2 tiles. This product is a simulated 

natural color composite image created from three selected bands (11, 8A, 4) with a ground 

resolution of 20 meters. All Sentinel-2 data products are provided free of charge to all data 

users, including the general public, and scientific and commercial users under the terms and 

conditions prescribed by the European Commission’s Copernicus Programme. The image data 

can be used easily with any software that recognizes JPEG 2000 image files. The additional 

metadata files can be used with the Sentinel-2 Toolbox, an open source toolbox developed for 

the European Space Agency (ESA). This toolbox includes visualization, analysis, and 

processing tools for Sentinel-2 data. 

1.B.3 Applications 

Sentinel-2 will serve a wide range of applications related to Earth's land surface and coastal 

zones. The mission will mainly provide information for agricultural and forestry practices and 

for helping manage food security. Satellite images will be used to determine various plant 

indices such as leaf area chlorophyll and water content indexes. This is particularly important 

for effective yield prediction and applications related to Earth’s vegetation. As well as 

monitoring plant growth, Sentinel-2 can be used to map changes in land cover and to monitor 

the world's forests. It will also provide information on pollution in lakes and coastal waters. 

Images of floods, volcanic eruptions and landslides contribute to disaster mapping and help 

humanitarian relief efforts. 

Examples for applications include: 

• Monitoring land cover change for environmental monitoring 

• Agricultural applications, such as crop monitoring and management to help food 

security 

• Detailed vegetation and forest monitoring and parameter generation (e.g. leaf area 

index, chlorophyll concentration, carbon mass estimations) 

• Observation of coastal zones (marine environmental monitoring, coastal zone mapping) 

• Inland water monitoring 

• Glacier monitoring, ice extent mapping, snow cover monitoring 

• Flood mapping and management (risk analysis, loss assessment, disaster management 

during floods) 

The Sentinel Monitoring web application offers an easy way to observe and analyses land 

changes based on archived Sentinel-2 data. 
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1.B.4 Sentinel-2 Image Quality 

The Sentinel-2 products will take advantage of the stringent radiometric and geometric 

image quality requirements. These requirements constrain the stability of the platform and the 

instrument, the ground processing and the in-orbit calibration. Table 1.2 shows the spectral 

band characteristics and the required signal-to-noise ratios for the reference radiances (Lref). 

An accurate knowledge of the band equivalent wavelength is very important as an error of 1 

nm can induce errors of several percent on the reflectance, especially in the blue part 

(atmospheric scattering) and the near infrared part of the spectrum (vegetation red edge). The 

equivalent wavelength therefore needs to be known with an uncertainty below 1 nm. Obtaining 

a physical value (radiance or reflectance) from the numerical output provided by the instrument 

requires knowledge of the instrument sensitivity. Any error on the absolute calibration 

measurement will directly affect the accuracy of this physical value. This is why a maximum 

5% absolute calibration knowledge uncertainty was required for the mission, with an objective 

of 3%. In the same way, the cross-band and multitemporal calibration knowledge accuracies 

were set to 3% as an objective and 1%, respectively. Moreover, the nonlinearity of the 

instrument response will be known with an accuracy of better than 1% and will have to be stable 

enough that the detector non-uniformity can be calibrated at two radiance levels in flight. 

Table 1.B.2: Band parameter for each spectral band. 
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The geometric image quality requirements are summarized in Table 1.B.3. The accuracy of 

the image location, 20 m without ground control points (GCPs), is very good with regard to the 

pixel size and should be sufficient for most applications. However, from the Level-1 processing 

description, most of the Sentinel-2 images will benefit from GCPs and will satisfy the 12.5 m 

maximum geolocation accuracy. 

Table 1.B.3: Sentinel-2 geometric image quality requirements. 
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2.A Point Spread Function 

The most of the blurring processes can be approximated by convolution integrals, also 

known as Fred Holm integral equations. A Point-Spread Function (PSF) or impulse response 

characterizes the blurring. The PSF is the output of the imaging system for an input point source. 

All the blurring processes considered in this section are linear and have a spatially invariant 

PSF [Tic06]. In the discrete image processing, we can replace the convolution integral by a 

sum. The blurry image g(m, n) is achieved from the original image f(m, n) using this 

convolution: 
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The function h(m, n) represent the discrete PSF in the imaging system. We are also interested 

is the Discrete Fourier Transform (DFT) representation of the point-spread function, which is 

given by: 
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),( vuH provides a kit of coefficients for plane waves of different frequencies and 

orientations. These plane waves, named spatial frequency components, will rebuild the PSF 

exactly when multiplied by the coefficients H(u, v) and summed. The function H(u, v) is 

referred to as the system frequency response or the transfer function. By analyzing |H(u, v)|, we 

can instantly determine which spatial frequency components are attenuated or passed by the 

imaging system. 

2.A.1 PSF generation  

The PSFs forming the HT groups, which are used in computing the error in the restoration 

models, are achieved by sampling continuous trajectories on a pixel grid. Every trajectory is 

formed of a particle position, which follow a random motion 2-D within a continuous domain. 

At each iteration, the initial velocity vector of the particle is affected with deterministic 

inertial component and a Gaussian distribution, heading toward the current position of the 
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particle. In addition, there is little chance of an impulse disturbance to reverse the velocity of 

the particle, simulating a sudden movement, which occurs when the user presses the camera 

button or tries to compensate for camera shake.  

After each iteration, the velocity is normalized to ensure that each trajectory corresponding 

to equal exposures has equal length. Gaussian, inertial, and impulsive perturbation is ruled by 

its own parameter, and every set of HT contains the PSFs that are sampled from trajectories 

generated by parameters spanning a significant range of values. If all of the perturbation 

parameters are zero, then the generated trajectories will be rectilinear.  

Every PSF hTHT is composed of discrete values which are calculated by means of a 

trajectory sampling on a regular pixel grid using sub-pixel linear interpolation. The 

corresponding groups are obtained at different exposure times by estimating the values of each 

PSF by a fixed factor. 

Recall that restoring the image refers to removing or reducing the known deterioration in an 

image. This includes the removal of the blur for the images degraded due to sensor constraints 

or the environment, noise filtering, and correction of geometric or nonlinear distortions due to 

sensors. It describes the response of the imaging system to an input point. Input point, 

representing a single pixel in the "ideal" image, will be recreated as something other than a 

single pixel in the "real" image. 

“Point Spread Functions” describe the 2D distribution of light at the focal level of the 

telescope for the sources of astronomical points. Optical designers have worked very hard in 

order to reduce the PSF size for large telescopes. A good PSF evaluation is critical, especially 

for telescopes that are intended to have "near-diffraction" limited performance. This clearly 

includes space telescopes. However, it also includes large ground telescopes equipped with 

"active" or "adaptive" optical systems, which can significantly reduce the impact of the aerial 

vision on the PSF. 
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3.A Mean filter  

3.A.1 Arithmetic mean filter  

This type of mean filter is the simplest type of the other mean filters. Assuming that Sxv is 

the group of coordinates in a rectangular window with size nm , centered at a point (x, y). The 

arithmetic mean filtering (AMF) process is to calculate the average value of the degraded image 

pixel g(x, y) in the area defined by Sxy. The value of the restored image pixel at any point  (x, y) 

is simply the arithmetic mean calculated using the pixels in the region defined by S. This will 

be applied as in the equation below: 

                                                            



xySls

lsg
nm

yxf
),(

),(
1

),(ˆ                                               (3.1) 

The normalization factor nm  preserves the range of values of the original image. A 

convolution mask in which all coefficients have a value of 
nm

1
can perform this process. As 

the mean filter simply smoothest local variations in a degraded image, the degradation caused 

by blur and/or noise is reduced. 

3.A.2 Geometric mean filter 

Another type of the mean filtering is the geometric mean filter (GMF). GMF is also an 

average filtering but here the algorithm is performed as shown below: 
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Each pixel will be restored by this method will take a value given by the product of the pixels 

in the sub-image window raised to the power 
nm

1
. The geometric mean filter obtains 

smoothing equivalent to the arithmetic mean filter, but resultant images tend to lose some 

details during the process. 

3.A.3 Harmonic mean filter 

The third type to of mean filtering that we will study is the harmonic mean filtering (HMF). 

The harmonic mean method will replace the value for every single pixel by the harmonic mean 
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pixel values of the surrounding region. The harmonic mean values are obtained by the 

expression: 
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The harmonic mean filter operates in a good manner for salt noise reduction; on the other 

hand, it fails with the pepper noise. It performs well also with other types of noise such as 

Gaussian noise. 

3.A.4 Contraharmonic mean filter 

The last type of mean filters, which we will study here, is the contraharmonic mean filtering 

(CHMF). CHMF is a non-linear filter, which restores the image based on average filtering. The 

CHMF procedure produces a restored image based on the equation: 
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where Q is representing the order of the filter.  

CHMF is capable of eliminating or practically reducing the impact of salt and pepper noise. 

When Q has positive values, CHMF will eliminate the pepper noise. On the other hand, the 

filter will omit the salt noise in the case when Q has negative values. The filter is not capable 

of removing both the salt and pepper noise at the same time. From (3.4) we can notice the filter 

will behave as an arithmetic mean filter when Q=0, whereas when Q=-1 it will behave as a 

harmonic mean filter. 
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