L. '´-electronique and . Revêtements, les matériaux composites, l'aéronautique, les capteurs, les semi-conducteurs, l'´ energie

, Pour la réalisation d'un supercondensateuràsupercondensateur`supercondensateurà base de graphène

P. Marteau and J. F. Labbé, Fiches détaillées : Graphite, 2014.

A. Raskin, Structure cristalline du diamant et du graphite, 2009.

N. L. Rosi, M. Eddaoudi, J. Kim, and M. O'keeffe, Advances in the chemistry of metal-organic frameworks, CrystEngComm, vol.4, pp.401-404, 2002.

N. F. Atta, A. Galal, and E. H. El-ads, Graphene -A Platform for Sensor and Biosensor Applications, pp.38-84, 2015.

P. Debye and P. Scherrer, Interference on inordinate orientated particles in roentgen light, Physikalische Zeitschrift, vol.17, pp.277-283, 1916.

J. D. Bernal, The structure of graphite, Proceedings of the Royal Society of London A, vol.106, pp.749-773, 1924.

R. Peierls, Quelques propriétés typiques des corps solides, Annales de l'Institut Henri Poincaré, vol.5, pp.177-222, 1935.

L. Landau, On the theory of phase transitions, Journal of Experimental and Theoretical Physics, vol.53, pp.19-32, 1937.

P. R. Wallace, The band theory of graphite, Physical Review, vol.71, pp.622-634, 1947.

G. Ruess and F. Vogt, Hochstlamellarer kohlenstoff aus graphitoxyhydroxyd, Monatshefte fur Chemie, vol.78, pp.222-242, 1948.

H. P. Boehm, A. Clauss, G. Fischer, and U. Hofmann, Surface properties of extremely thin graphite lamellae, American Carbon Society, vol.12, pp.1-8, 1958.

S. Mouras, A. Hamwi, D. Djurado, and J. C. Cousseins, Synthesis of first stage graphite intercalation compounds with fluorides, ChemInform, vol.19, 1988.

C. Oshima and A. Nagashima, Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces, Journal of Physics : Condensed Matter, vol.9, pp.1-20, 1997.

K. S. Novoselov, A. K. Geim, S. V. Morozov, and D. Jiang, Electric field effect in atomically thin carbon films, Science, vol.306, pp.666-675, 2004.

J. Hass, W. A. De-heer, and E. Conrad, The growth and morphology of epitaxial multilayer graphene, Journal of Physics : Condensed Matter, vol.20, p.323202, 2008.

M. D. Stoller, S. Park, Y. Zhu, and J. An, Graphene-based ultracapacitors, Nano Letters, vol.8, pp.3498-3502, 2008.

E. J. Yoo, J. Kim, E. Hosono, and H. S. Zhou, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Letters, vol.8, pp.2277-2282, 2008.

X. Wang, L. Zhi, N. Tsao, and ?. Z. Tomovi´ctomovi´c, Transparent carbon films as electrodes in organic solar cells, Angewandte Chemie -International Edition, vol.47, pp.2990-2992, 2008.

P. K. Ang, W. Chen, A. T. Wee, and P. L. Kian, Solution-gated epitaxial graphene as pH sensor, Journal of the American Chemical Society, vol.130, pp.14392-14393, 2008.

C. H. Lu, H. H. Yang, C. L. Zhu, and X. Chen, A graphene platform for sensing biomolecules, Angewandte Chemie International Edition, vol.48, pp.4785-4787, 2009.

A. C. Ferrari, F. Bonaccorso, V. Falko, and K. S. Novoselov, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale, vol.7, pp.4598-4810, 2014.

N. Papageorgiou, Le graphène révèle le pouvoir de lalumì ere, 2015.

A. Peigney, C. Laurent, E. Flahaut, and R. R. Bacsa, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, vol.39, pp.507-514, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01003709

H. C. Schniepp, J. L. Li, M. J. Mcallister, and H. Sai, Functionalized single graphene sheets derived from splitting graphite oxide, The Journal of Physical Chemistry B, vol.110, pp.8535-8539, 2006.

D. Krishnan, F. Kim, J. Luo, and R. Cruz-silva, Energetic graphene oxide : Challenges and opportunities, Nano Today, vol.7, pp.137-152, 2012.

K. E. Whitener and P. E. Sheehan, Graphene synthesis, Diamond and Related Materials, vol.46, pp.25-34, 2014.

Y. Zhu, S. Murali, W. Cai, and X. Li, Graphene and graphene oxide : Synthesis, properties, and applications, Advanced Materials, vol.22, pp.3906-3930, 2010.

X. Wang, L. Zhi, and K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Letters, vol.8, pp.323-327, 2008.

X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Approaching ballistic transport in suspended graphene, Nature Nanotechnology, vol.3, pp.491-496, 2008.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, vol.321, pp.385-393, 2008.

E. Pop, D. Mann, Q. Wang, and K. Goodson, Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Letters, vol.6, pp.96-100, 2006.

A. A. Balandin, S. Ghosh, W. Bao, and I. Calizo, Superior thermal conductivity of single-layer graphene, Nano Letters, vol.8, pp.902-909, 2008.

V. Singh, D. Joung, L. Zhai, and S. Das, Graphene based materials : Past, present and future, Progress in Materials Science, vol.56, pp.1178-1271, 2011.

S. J. Chae, F. Güne¸güne¸s, K. K. Kim, and E. S. Kim, Synthesis of large area graphene layers on polynickel substrate by chemical vapor deposition : Wrinkle formation, Advanced Materials, vol.21, pp.2328-2333, 2009.

X. Li, W. Cai, J. An, and S. Kim, Large area synthesis of high-quality and uniform graphene films on copper foils, Science, vol.324, pp.1312-1314, 2009.

, Nabond technologies. CVD coating device with heating metal wire, 2011.

A. Malesevic, R. Vitchev, K. Schouteden, and A. Volodin, Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition, Nanotechnology, vol.19, p.305604, 2008.

Z. Bo, Y. Yang, J. Chen, and K. Yu, Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets, Nanoscale, vol.5, p.5180, 2013.

A. Nilsen, Graphene on silicon carbide, 2015.

, Supercondensateur en graphène stockant autant qu'une batterie plomb-acide bientôt commercialisé, 2013.

Y. Hernandez, V. Nicolosi, M. Lotya, and F. M. Blighe, High-yield production of graphene by liquid-phase exfoliation of graphite, Nature Nanotechnology, vol.3, pp.563-568, 2008.

J. Li, G. Wang, H. Geng, and H. Zhu, CVD growth of graphene on NiTi alloy for enhanced biological activity, ACS Applied Materials & Interfaces, vol.7, pp.19876-81, 2015.

M. Beshkova, L. Hultman, and R. Yakimova, Device applications of epitaxial graphene on silicon carbide, Vacuum, vol.128, pp.186-197, 2016.

W. S. Hummers and R. E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society, vol.80, pp.1339-1339, 1958.

C. K. Chua and M. Pumera, Chemical reduction of graphene oxide : A synthetic chemistry viewpoint, Chemical Society Reviews, vol.43, pp.291-312, 2014.

B. C. Brodie, On the atomic weight of graphite, Philosophical Transactions of the Royal Society of London, vol.149, pp.249-259, 1859.

L. Staudenmaier, Verfahren zur darstellung der graphitsäure, Berichte der deutschen chemischen Gesellschaft, vol.31, pp.1481-1487, 1898.

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, and A. Sinitskii, Improved synthesis of graphene oxide, ACS Nano, vol.4, pp.4806-4814, 2010.

J. Chen, B. Yao, C. Li, and G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon, vol.64, pp.225-229, 2013.

N. E. Sorokina, M. A. Khaskov, V. V. Avdeev, and I. V. , Nikol'skaya. Reaction of graphite with sulfuric acid in the presence of KMnO 4, Russian Journal of General Chemistry, vol.75, pp.162-168, 2005.

V. V. Avdeev, L. A. Monyakina, I. V. Nikol'skaya, and N. E. Sorokina, The choice of oxidizers for graphite hydrogenosulfate chemical synthesis, Carbon, vol.30, pp.819-823, 1992.

A. Abdala, D. H. Adamson, M. J. Mcallister, and D. L. Milius, Thermally exfoliated graphite oxide : An alternative to CNTs, 2006.

A. M. Dimiev and J. M. Tour, Mechanism of graphene oxide formation, ACS Nano, vol.8, pp.3060-3068, 2014.

J. Chen, Y. Li, L. Huang, and C. Li, High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process, Carbon, vol.81, pp.826-834, 2015.

W. Gao, L. B. Alemany, L. Ci, and P. P. Ajayan, New insights into the structure and reduction of graphite oxide, Nature Chemistry, vol.1, pp.403-408, 2009.

C. Petit, M. Seredych, and T. J. Bandosz, Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption, Journal of Materials Chemistry, vol.19, p.9176, 2009.

A. Dimiev, D. V. Kosynkin, L. B. Alemany, and P. Chaguine, Pristine graphite oxide, Journal of the American Chemical Society, vol.134, pp.2815-2822, 2012.

K. C. Schreiber, Infrared spectra of sulfones and related compounds, Analytical Chemistry, vol.21, pp.1168-1172, 1949.

S. Eigler, C. Dotzer, F. Hof, and W. Bauer, Sulfur species in graphene oxide, Chemistry -A European Journal, vol.19, pp.9490-9496, 2013.

F. J. Tölle, K. Gamp, and R. Mülhaupt, Scale-up and purification of graphite oxide as intermediate for functionalized graphene, Carbon, vol.75, pp.432-442, 2014.

A. Lerf, A. Buchsteiner, J. Pieper, and S. Schöttl, Hydration behavior and dynamics of water molecules in graphite oxide, Journal of Physics and Chemistry of Solids, vol.67, pp.1106-1110, 2006.

F. Kim, J. Luo, R. Cruz-silva, and L. J. Cote, Self-propagating domino-like reactions in oxidized graphite, Advanced Functional Materials, vol.20, pp.2867-2873, 2010.

G. I. Titelman, V. Gelman, S. Bron, and R. L. Khalfin, Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide, Carbon, vol.43, pp.641-649, 2005.

T. Szabó, E. Tombácz, E. Illés, and I. Dékány, Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides, Carbon, vol.44, pp.537-545, 2006.

Y. Wang, Z. Shi, Y. Huang, and Y. Ma, Supercapacitor devices based on graphene materials, The Journal of Physical Chemistry C, vol.113, pp.13103-13107, 2009.

S. Stankovich, D. A. Dikin, R. D. Piner, and K. A. Kohlhaas, Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, vol.45, pp.1558-1565, 2007.

H. A. Becerril, J. Mao, Z. Liu, and R. M. Stoltenberg, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano, vol.2, pp.463-470, 2008.

C. Vallés, J. D. Núñez, A. M. Benito, and W. K. Maser, Flexible conductive graphene paper obtained by direct and gentle annealing of graphene oxide paper, Carbon, vol.50, pp.835-844, 2012.

D. Yang, A. Velamakanni, G. Bozoklu, and S. Park, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and MicroRaman spectroscopy, Carbon, vol.47, pp.145-152, 2009.

D. Li, M. B. Müller, S. Gilje, and R. B. Kaner, Processable aqueous dispersions of graphene nanosheets, Nature Nanotechnology, vol.3, pp.101-105, 2008.

A. Lerf, H. He, M. Forster, and J. Klinowski, Structure of graphite oxide revisited, The Journal of Physical Chemistry B, vol.102, pp.4477-4482, 1998.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chemical Society Reviews, vol.39, pp.228-240, 2010.

P. Wharton and D. Bohlen, Hydrazine reduction of ?, ?-epoxy ketones to allylic alcohols, The Journal of Organic Chemistry, vol.26, pp.3615-3616, 1961.

Z. Zalan, L. Lazar, and F. Fulop, Chemistry of hydrazinoalcohols and their heterocyclic derivatives. Part 1. Synthesis of hydrazinoalcohols, Current Organic Chemistry, vol.9, pp.357-376, 2005.

L. Wolff, Methode zum ersatz des sauerstoffatoms der ketone und aldehyde durch wasserstoff. Justus Liebig's Annalen der Chemie, vol.394, pp.86-108, 1912.

K. Erickson, R. Erni, Z. Lee, and N. Alem, Determination of the local chemical structure of graphene oxide and reduced graphene oxide, Advanced Materials, vol.22, pp.4467-4472, 2010.

A. Ambrosi, C. K. Chua, A. Bonanni, and M. Pumera, Lithium aluminum hydride as reducing agent for chemically reduced graphene oxides, Chemistry of Materials, vol.24, pp.2292-2298, 2012.

H. J. Shin, K. K. Kim, A. Benayad, and S. M. Yoon, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Advanced Functional Materials, vol.19, 1987.

Y. Q. Cao, Z. Dai, B. H. Chen, and R. Liu, Sodium borohydride reduction of ketones, aldehydes and imines using PEG400 as catalyst without solvent, Journal of Chemical Technology & Biotechnology, vol.80, pp.834-836, 2005.

H. W. Tien, Y. L. Huang, S. Y. Yang, and S. T. Hsiao, Preparation of transparent, conductive films by graphenenanosheet deposition on hydrophilic or hydrophobic surfaces through control of the pH value, Journal of Materials Chemistry, vol.22, pp.2545-2552, 2012.

A. B. Bourlinos, D. Gournis, D. Petridis, and T. Szabó, Graphite oxide : Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids, Langmuir, vol.19, pp.6050-6055, 2003.

J. M. Chem, V. H. Pham, H. D. Pham, and T. T. Dang, Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen, Journal of Materials Chemistry, vol.22, p.10530, 2012.

N. A. Kumar, S. Gambarelli, F. Duclairoir, and G. Bidan, Synthesis of high quality reduced graphene oxide nanosheets free of paramagnetic metallic impurities, Journal of Materials Chemistry A, vol.1, pp.2789-2794, 2013.

Z. J. Fan, W. Kai, J. Yan, and T. Wei, Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide, ACS Nano, vol.5, pp.191-198, 2011.

X. Mei and J. Ouyang, Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature, Carbon, vol.49, pp.5389-5397, 2011.

Z. Fan, K. Wang, T. Wei, and J. Yan, An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder, Carbon, vol.48, pp.1686-1689, 2010.

C. Botas, P. Alvarez, C. Blanco, and M. D. Gutiérrez, Tailored graphene materials by chemical reduction of graphene oxides of different atomic structure, vol.2, p.9643, 2012.

S. Pei, J. Zhao, J. Du, and W. Ren, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids, Carbon, vol.48, pp.4466-4474, 2010.

O. O. Van-der-biest and L. J. Vandeperre, Electophoretic deposition of materials, Annual Review of Materials Science, vol.29, pp.327-352, 1999.

S. Hong, S. Jung, S. Kang, and Y. Kim, Dielectrophoretic deposition of graphite oxide soot particles, Journal of Nanoscience and Nanotechnology, vol.8, pp.424-431, 2008.

C. Liu, K. Wang, S. Luo, and Y. Tang, Direct electrodeposition of graphene enabling the one-step synthesis of graphene-metal nanocomposite films, Small, vol.7, pp.1203-1206, 2011.

Y. Jiang, Y. Lu, F. Li, and T. Wu, Facile electrochemical codeposition of "clean" graphene-Pd nanocomposite as an anode catalyst for formic acid electrooxidation, Electrochemistry Communications, vol.19, pp.21-24, 2012.

J. Ping, Y. Wang, K. Fan, and J. Wu, Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application, Biosensors and Bioelectronics, vol.28, pp.204-209, 2011.

H. H. Chang, C. K. Chang, Y. C. Tsai, and C. S. Liao, Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor, Carbon, vol.50, pp.2331-2336, 2012.

L. Chen, Y. Tang, K. Wang, and C. Liu, Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application, Electrochemistry Communications, vol.13, pp.133-137, 2011.

S. J. An, Y. Zhu, S. H. Lee, and M. D. Stoller, Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition, The Journal of Physical Chemistry Letters, vol.1, pp.1259-1263, 2010.

A. K. Vijh and B. E. Conway, Electrode kinetic aspects of the Kolbe reaction, Chemical Reviews, vol.67, pp.623-664, 1967.

F. Gao, X. Qi, X. Cai, and Q. Wang, Electrochemically reduced graphene modified carbon ionic liquid electrode for the sensitive sensing of rutin, Thin Solid Films, vol.520, pp.5064-5069, 2012.

M. Hilder, B. Winther-jensen, D. Li, and M. Forsyth, Direct electro-deposition of graphene from aqueous suspensions, Physical Chemistry Chemical Physics, vol.13, p.9187, 2011.

Y. Shao, J. Wang, M. Engelhard, and C. Wang, Facile and controllable electrochemical reduction of graphene oxide and its applications, Journal of Materials Chemistry, vol.20, pp.743-748, 2010.

H. L. Guo, X. F. Wang, Q. Y. Qian, and F. B. Wang, A green approach to the synthesis of graphene nanosheets, ACS Nano, vol.3, pp.2653-2659, 2009.

H. , ¨. O. Do?-gan, D. Ekinci, and . Demir, Atomic scale imaging and spectroscopic characterization of electrochemically reduced graphene oxide, Surface Science, vol.611, pp.54-59, 2013.

X. Zhang, D. Zhang, Y. Chen, and X. Sun, Electrochemical reduction of graphene oxide films : Preparation, characterization and their electrochemical properties, Chinese Science Bulletin, vol.57, pp.3045-3050, 2012.

W. Li, J. Liu, and C. Yan, Reduced graphene oxide with tunable C/O ratio and its activity towards vanadium redox pairs for an all vanadium redox flow battery, Carbon, vol.55, pp.313-320, 2013.

G. K. Ramesha and S. Sampath, Electrochemical reduction of oriented graphene oxide films : An in situ Raman spectroelectrochemical study, The Journal of Physical Chemistry C, vol.113, pp.7985-7989, 2009.

M. Zhou, Y. Wang, Y. Zhai, and J. Zhai, Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films, Chemistry -A European Journal, vol.15, pp.6116-6120, 2009.

Z. Wang, X. Zhou, J. Zhang, and F. Boey, Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase, The Journal of Physical Chemistry C, vol.113, pp.14071-14075, 2009.

. Sigma-aldrich, Nafion ®, 2016.

S. Liu, J. Ou, J. Wang, and X. Liu, A simple two-step electrochemical synthesis of graphene sheets film on the ITO electrode as supercapacitors, Journal of Applied Electrochemistry, vol.41, pp.881-884, 2011.

Y. Harima, S. Setodoi, I. Imae, and K. Komaguchi, Electrochemical reduction of graphene oxide in organic solvents, Electrochimica Acta, vol.56, pp.5363-5368, 2011.

J. Yang, S. Deng, J. Lei, and H. Ju, Electrochemical synthesis of reduced graphene sheet-AuPd alloy nanoparticle composites for enzymatic biosensing, Biosensors and Bioelectronics, vol.29, pp.159-166, 2011.

E. L. Chng and M. Pumera, Solid-state electrochemistry of graphene oxides : Absolute quantification of reducible groups using voltammetry, Chemistry -An Asian Journal, vol.6, pp.2899-2901, 2011.

J. Shen, T. Li, W. Huang, and Y. Long, One-pot polyelectrolyte assisted hydrothermal synthesis of RuO 2 -reduced graphene oxide nanocomposite, Electrochimica Acta, vol.95, pp.155-161, 2013.

X. Y. Peng, X. X. Liu, D. Diamond, and K. T. Lau, Synthesis of electrochemicallyreduced graphene oxide film with controllable size and thickness and its use in supercapacitor, Carbon, vol.49, pp.3488-3496, 2011.

K. Q. Deng, J. H. Zhou, and X. F. Li, Direct electrochemical reduction of graphene oxide and its application to determination of l-tryptophan and l-tyrosine, Colloids and Surfaces B : Biointerfaces, vol.101, pp.183-188, 2013.

D. Wang, W. Yan, S. H. Vijapur, and G. G. Botte, Electrochemically reduced graphene oxide-nickel nanocomposites for urea electrolysis, Electrochimica Acta, vol.89, pp.732-736, 2013.

L. G. Cançado, K. Takai, T. Enoki, and M. Endo, General equation for the determination of the crystallite size la of nanographite by Raman spectroscopy, Applied Physics Letters, vol.88, p.163106, 2006.

A. Ambrosi, A. Bonanni, Z. Sofer, and J. S. Cross, Electrochemistry at chemically modified graphenes, Chemistry -A European Journal, vol.17, pp.10763-10770, 2011.

G. Wang, J. Yang, J. Park, and X. Gou, Facile synthesis and characterization of graphene nanosheets, The Journal of Physical Chemistry C, vol.112, pp.8192-8195, 2008.

F. Tuinstra and J. L. Koenig, Raman spectrum of graphite, The Journal of Chemical Physics, vol.53, pp.1126-1130, 1970.

R. P. Vidano, D. B. Fischbach, L. J. Willis, and T. M. Loehr, Observation of Raman band shifting with excitation wavelength for carbons and graphites, Solid State Communications, vol.39, pp.341-344, 1981.

R. J. Nemanich and S. A. Solin, First-and second-order Raman scattering from finitesize crystals of graphite, Physical Review B, vol.20, pp.392-401, 1979.

A. C. Ferrari, Raman spectroscopy of graphene and graphite : Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Communications, vol.143, pp.47-57, 2007.

C. Botas, P. Alvarez, C. Blanco, and R. Santamaría, The effect of the parent graphite on the structure of graphene oxide, Carbon, vol.50, pp.275-282, 2012.

A. Esmaeili and M. H. Entezari, Facile and fast synthesis of graphene oxide nanosheets via bath ultrasonic irradiation, Journal of Colloid and Interface Science, vol.432, pp.19-25, 2014.

L. Huang, Y. Liu, L. C. Ji, and Y. Q. Xie, Pulsed laser assisted reduction of graphene oxide, Carbon, vol.49, pp.2431-2436, 2011.

W. Scholz and H. P. Boehm, Betrachtungen zur struktur des graphitoxids. Zeitschrift für anorganische und allgemeine Chemie, vol.369, pp.327-340, 1969.

D. R. Dreyer, A. D. Todd, and C. W. Bielawski, Harnessing the chemistry of graphene oxide, Chemical Society Reviews, vol.43, p.5288, 2014.

H. P. Boehm, A. Clauss, and U. Hoffmann, Journal de chimie physique et de physico-chimie biologique, vol.58, pp.141-147, 1961.

C. Botas, P. Alvarez, P. Blanco, and M. Granda, Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods, Carbon, vol.65, pp.156-164, 2013.

S. R. Vivekchand, C. S. Rout, K. S. Subrahmanyam, and A. Govindaraj, Graphenebased electrochemical supercapacitors, Journal of Chemical Sciences, vol.120, pp.9-13, 2008.

A. C. Ferrari, J. C. Meyer, V. Scardaci, and C. Casiraghi, Raman spectrum of graphene and graphene layers, Physical Review Letters, vol.97, p.187401, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00130091

A. C. Ferrari and D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature Nanotechnology, vol.8, pp.235-246, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00844853

C. Mattevi, G. Eda, S. Agnoli, and S. Miller, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Advanced Functional Materials, vol.19, pp.2577-2583, 2009.

F. Béguin, E. Frackowiak, and . Supercapacitors, , 2013.

L. L. Zhang and X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews, vol.38, p.2520, 2009.

F. Zhang, F. Xiao, Z. H. Dong, and W. Shi, Synthesis of polypyrrole wrapped graphene hydrogels composites as supercapacitor electrodes, Electrochimica Acta, vol.114, pp.125-132, 2013.

Z. Gao, F. Wang, J. Chang, and D. Wu, Chemically grafted graphene-polyaniline composite for application in supercapacitor, Electrochimica Acta, vol.133, pp.325-334, 2014.

G. A. Ferrero, A. B. Fuertes, and M. Sevilla, N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors, Journal of Materials Chemistry A, vol.3, pp.2914-2923, 2015.

A. G. Pandolfo and A. F. Hollenkamp, Carbon properties and their role in supercapacitors, Journal of Power Sources, vol.157, pp.11-27, 2006.

H. Marsh and F. Rodriguez-reinoso, Activated carbon, 2006.

D. Qu, Studies of the activated carbons used in double-layer supercapacitors, Journal of Power Sources, vol.109, pp.403-411, 2002.

T. Lé, D. Aradilla, G. Bidan, F. Billon, M. Delaunay et al., Unveiling the ionic exchange mechanisms in vertically-oriented graphene nanosheet supercapacitor electrodes with electrochemical quartz crystal microbalance and ac-electrogravimetry, Electrochemistry Communications, vol.93, pp.5-9, 2018.

H. Goubaa, F. Escobar-teran, I. Ressam, W. Gao, A. E. Kadib et al., Dynamic Resolution of Ion Transfer in Electrochemically Reduced Graphene Oxides Revealed by Electrogravimetric Impedance, Journal of Physical Chemistry C, vol.121, pp.9370-9380, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01537871

V. Khomenko, E. Raymundo-piñero, E. Frackowiak, and F. Béguin, High-voltage asymmetric supercapacitors operating in aqueous electrolyte, Applied Physics A, vol.82, pp.567-573, 2006.

F. Béguin, V. Presser, A. Balducci, and E. Frackowiak, Carbons and electrolytes for advanced supercapacitors, Advanced Materials, vol.26, pp.2219-2251, 2014.

O. Barbieri, M. Hahn, A. Herzog, and R. Kötz, Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon, vol.43, pp.1303-1310, 2005.

M. D. Stoller, C. W. Magnuson, Y. Zhu, and S. Murali, Interfacial capacitance of single layer graphene, Energy & Environmental Science, vol.4, p.4685, 2011.

M. Noked, E. Avraham, Y. Bohadana, and A. Soffer, Development of anion stereoselective, activated carbon molecular sieve electrodes prepared by chemical vapor deposition, The Journal of Physical Chemistry C, vol.113, pp.7316-7321, 2009.

J. J. Yoo, K. Balakrishnan, J. Huang, and V. Meunier, Ultrathin planar graphene supercapacitors, Nano Letters, vol.11, pp.1423-1427, 2011.

D. Usachov, O. Vilkov, A. Grüneis, and D. Haberer, Nitrogen-doped graphene : Efficient growth, structure, and electronic properties, Nano Letters, vol.11, pp.5401-5407, 2011.

L. Qu, Y. Liu, J. Baek, and L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano, vol.4, pp.1321-1326, 2010.

H. Wang, T. Maiyalagan, and X. Wang, Review on recent progress in nitrogen-doped graphene : Synthesis, characterization, and its potential applications, ACS Catalysis, vol.2, pp.781-794, 2012.

L. Sun, L. Wang, C. Tian, and T. Tan, Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage, vol.2, p.4498, 2012.

N. A. Kumar and J. B. Baek, Doped graphene supercapacitors, Nanotechnology, vol.26, p.492001, 2015.

J. Han, L. L. Zhang, S. Lee, and J. Oh, Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications, ACS Nano, vol.7, pp.19-26, 2013.

A. Ambrosi, H. L. Poh, L. Wang, and Z. Sofer, Capacitance of p-and ndoped graphenes is dominated by structural defects regardless of the dopant type, ChemSusChem, vol.7, pp.1102-1106, 2014.

J. Liang, Y. Jiao, M. Jaroniec, and S. Z. Qiao, Sulfur and nitrogen dualdoped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance, Angewandte Chemie International Edition, vol.51, pp.11496-11500, 2012.

N. C. , Nanocrystalline ruthenium supercapacitor material, Platinum Metals Review, vol.46, p.105, 2002.

J. P. Zheng, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, Journal of The Electrochemical Society, vol.142, p.2699, 1995.

D. , Les nanomatériaux et leurs applications pour l'´ energié electrique, 2013.

V. Subramanian, S. C. Hall, P. H. Smith, and B. Rambabu, Mesoporous anhydrous RuO 2 as a supercapacitor electrode material, Solid State Ionics, vol.175, pp.511-515, 2004.

V. D. Patake and C. D. Lokhande, Chemical synthesis of nano-porous ruthenium oxide (RuO 2 ) thin films for supercapacitor application, Applied Surface Science, vol.254, pp.2820-2824, 2008.

C. C. Hu, C. W. Wang, K. H. Chang, and M. G. Chen, Anodic composite deposition of RuO 2 /reduced graphene oxide/carbon nanotube for advanced supercapacitors, Nanotechnology, vol.26, p.274004, 2015.

M. Wu, J. Y. Jo, S. J. Kim, and Y. Kang, Hydrous amorphous RuO 2 nanoparticles supported on reduced graphene oxide for non-aqueous Li-O 2 batteries, RSC Advances, vol.6, pp.23467-23470, 2016.

M. Skunik-nuckowska, K. Grzejszczyk, P. J. Kulesza, and L. Yang, Integration of solid-state dye-sensitized solar cell with metal oxide charge storage material into photoelectrochemical capacitor, Journal of Power Sources, vol.234, pp.91-99, 2013.

Y. Zhang, G. Y. Li, Y. Lv, and L. Z. Wang, Electrochemical investigation of MnO 2 electrode material for supercapacitors, International Journal of Hydrogen Energy, vol.36, pp.11760-11766, 2011.

A. Malak, K. Fic, G. Lota, and C. Vix-guterl, Hybrid materials for supercapacitor application, Journal of Solid State Electrochemistry, vol.14, pp.811-816, 2010.

G. Zhao, J. Li, L. Jiang, and H. Dong, Synthesizing MnO 2 nanosheets from graphene oxide templates for high performance pseudosupercapacitors, Chemical Science, vol.3, pp.433-437, 2012.

M. W. Xu, D. D. Zhao, S. J. Bao, and H. L. Li, Mesoporous amorphous MnO 2 as electrode material for supercapacitor, Journal of Solid State Electrochemistry, vol.11, pp.1101-1107, 2007.

Q. Jiangying, G. Feng, Z. Quan, and W. Zhiyu, Highly atom-economic synthesis of graphene/Mn 3 O 4 hybrid composites for electrochemical supercapacitors, Nanoscale, vol.5, p.2999, 2013.

H. Huang and X. Wang, Graphene nanoplate-MnO 2 composites for supercapacitors : a controllable oxidation approach, Nanoscale, vol.3, p.3185, 2011.

Y. Qian, S. Lu, and F. Gao, Preparation of MnO 2 /graphene composite as electrode material for supercapacitors, Journal of Materials Science, vol.46, pp.3517-3522, 2011.

K. H. Ye, Z. Q. Liu, C. W. Xu, and N. Li, MnO 2 /reduced graphene oxide composite as high-performance electrode for flexible supercapacitors, Inorganic Chemistry Communications, vol.30, pp.1-4, 2013.

J. Qu, L. Shi, C. He, and F. Gao, Highly efficient synthesis of graphene/MnO 2 hybrids and their application for ultrafast oxidative decomposition of methylene blue, Carbon, vol.66, pp.485-492, 2014.

P. H. Klose, Electrical properties of manganese dioxide and manganese sesquioxide, Journal of The Electrochemical Society, vol.117, p.854, 1970.

Y. Xiao, Y. Cao, Y. Gong, and A. Zhang, Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn 3 O 4 nanoparticles-graphene nanocomposites, Journal of Power Sources, vol.246, pp.926-933, 2014.

T. Brousse, D. Belanger, and J. W. Long, To be or not to be pseudocapacitive, Journal of the Electrochemical Society, vol.162, pp.5185-5189, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01725986

S. Faraji and F. N. Ani, Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors -A review, Journal of Power Sources, vol.263, pp.338-360, 2014.

H. Liu, J. Zhang, B. Zhang, and L. Shi, Nitrogen-doped reduced graphene oxideNi(OH) 2 -built 3D flower composite with easy hydrothermal process and excellent electrochemical performance, Electrochimica Acta, vol.138, pp.69-78, 2014.

H. Liu, J. Zhang, D. Xu, and B. Zhang, In situ formation of Ni(OH) 2 nanoparticle on nitrogen-doped reduced graphene oxide nanosheet for high-performance supercapacitor electrode material, Applied Surface Science, vol.317, pp.370-377, 2014.

P. Novák, K. Müller, K. S. Santhanam, and O. Haas, Electrochemically active polymers for rechargeable batteries, Chemical Reviews, vol.97, pp.207-282, 1997.

V. Branzoi, F. Branzoi, and L. Pilan, Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline, Surface and Interface Analysis, vol.42, pp.1266-1270, 2010.

A. Rudge, J. Davey, I. Raistrick, and S. Gottesfeld, Conducting polymers as active materials in electrochemical capacitors, Journal of Power Sources, vol.47, pp.89-107, 1994.

G. A. Snook, C. Peng, D. J. Fray, and G. Z. Chen, Achieving high electrode specific capacitance with materials of low mass specific capacitance : Potentiostatically grown thick micro-nanoporous PEDOT films, Electrochemistry Communications, vol.9, pp.83-88, 2007.

K. S. Ryu, Y. G. Lee, Y. S. Hong, and Y. J. Park, Poly(ethylenedioxythiophene) (PEDOT) as polymer electrode in redox supercapacitor, Electrochimica Acta, vol.50, pp.843-847, 2004.

D. K. Bhat, M. , and S. Kumar, N and p doped poly(3,4-ethylenedioxythiophene) electrode materials for symmetric redox supercapacitors, Journal of Materials Science, vol.42, pp.8158-8162, 2007.

L. Eliad, G. Salitra, A. Soffer, and D. Aurbach, Ion sieving effects in the electrical double layer of porous carbon electrodes : Estimating effective ion size in electrolytic solutions, The Journal of Physical Chemistry B, vol.105, pp.6880-6887, 2001.

W. Wang, Q. Hao, W. Lei, and X. Xia, Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposites for high-performance supercapacitors, Journal of Power Sources, vol.269, pp.250-259, 2014.

J. H. Kim, K. H. Lee, L. J. Overzet, and G. S. Lee, Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnO x composites for highperformance energy storage devices, Nano Letters, vol.11, pp.2611-2617, 2011.

J. O. Bockris and A. K. Reddy, Modern Electrochemistry, vol.1, 2002.

M. P. Bichat, E. Raymundo-piñero, and F. Béguin, High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte, Carbon, vol.48, pp.4351-4361, 2010.

Q. Gao, L. Demarconnay, E. Raymundo-piñero, and F. Béguin, Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte, Energy & Environmental Science, vol.5, p.9611, 2012.

M. F. Rose, C. Johnson, T. Owens, and B. Stephens, Limiting factors for carbon-based capacitors chemical double-layer, Journal of Power Sources, vol.47, pp.303-312, 1994.

M. Gali´nskigali´nski, A. Lewandowski, and I. Stepniak,

, Electrochimica Acta, vol.51, pp.5567-5580, 2006.

A. B. Mcewen, Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications, Journal of The Electrochemical Society, vol.146, p.1687, 1999.

A. Bello, F. Barzegar, D. Momodu, and J. Dangbegnon, Asymmetric supercapacitor based on nanostructured graphene foam/polyvinyl alcohol/formaldehyde and activated carbon electrodes, Journal of Power Sources, vol.273, pp.305-311, 2015.

A. Mery, F. Ghamouss, C. Autret, D. Farhat, and F. Tran-van, Aqueous ultracapacitors using amorphous MnO2and reduced graphene oxide, Journal of Power Sources, vol.305, pp.37-45, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02060227

N. Bagheri, A. Aghaei, M. Y. Ghotbi, and E. Marzbanrad, Combination of asymmetric supercapacitor utilizing activated carbon and nickel oxide with cobalt polypyridylbased dye-sensitized solar cell, Electrochimica Acta, vol.143, pp.390-397, 2014.

A. Laheäär, P. Przygocki, Q. Abbas, and F. Béguin, Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors, Electrochemistry Communications, vol.60, pp.21-25, 2015.

L. Benhaddad, J. Gamby, L. Makhloufi, A. Pailleret, F. Pillier et al., Annexe A : M ´ ethodes de caractérisationcaract´caractérisation A.1. Microscopie Parmi toutes les techniques d'analyse qui existent, Journal of Power Sources, vol.307, pp.297-307, 2016.

, A.1.1. Microscopié electronique en transmission (MET)

, La microscopié electronique en transmission (MET ou en anglais TEM pour Transmission

, A.1.2. Microscopié electroniquè a balayage (MEB)

M. Le, interaction desélectronsdesélectrons avec lamatì ere pour obtenir les domaines civils et militaires devrait accentuer le phénomène de dépendancedépendancé energétique et ouvre de nouveaux marchés

. Dans, En effet, le principal avantage des dite sandwich (RGO/ ´ electrolyte /RGO) ou interdigitée. Mots clés : Graphène, supercondensateur, oxyde de graphène, les supercondensateurs sont les candidats idéaux