
HAL Id: tel-02091471
https://theses.hal.science/tel-02091471

Submitted on 5 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Verification of Cyber-Physical Systems in the
Industrial Model-Based Design Process

Nikolaos Kekatos

To cite this version:
Nikolaos Kekatos. Formal Verification of Cyber-Physical Systems in the Industrial Model-Based
Design Process. Modeling and Simulation. Université Grenoble Alpes, 2018. English. �NNT :
2018GREAM081�. �tel-02091471�

https://theses.hal.science/tel-02091471
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministérial : 25 mai 2016

Présentée par

Nikolaos KEKATOS

Thèse dirigée par GORAN FREHSE,
et codirigée par THAO DANG

préparée au sein du Laboratoire VERIMAG
dans l’Ecole Doctorale Mathématiques, Sciences et
Technologies de l’Information, Informatique

Vérification Formelle des Systèmes Cyber-
Physiques dans le Processus Industriel de la
Conception Basée sur Modèle

Formal Verification of Cyber-Physical Sys-
tems in the Industrial Model-Based Design
Process

Thèse soutenue publiquement le 17 Decémbre 2018,
devant le jury composé de :

Monsieur GORAN FREHSE
MAÎTRE DE CONFÉRENCES, ENSTA ParisTech - PALAISEAU, Directeur de
thèse

Monsieur BENOÎT CAILLAUD
DIRECTEUR DE RECHERCHE, INRIA CENTRE RENNES-BRETAGNE ATLAN-
TIQUE, Rapporteur
Monsieur LAURENT FRIBOURG
DIRECTEUR DE RECHERCHE, CNRS ILE-DE FRANCE GIF-SUR YVETTE,
Président
Madame THAO DANG
DIRECTRICE DE RECHERCHE, CNRS DELEGATION ALPES, Co-directrice de
thèse
Monsieur ALEXANDRE CHAPOUTOT
MAÎTRE DE CONFÉRENCES, ENSTA ParisTech - PALAISEAU, Examinateur

Abstract

Cyber-Physical Systems form a class of complex, large-scale systems of fre-
quently safety-critical nature. Formal verification approaches can provide
performance and safety guarantees for these systems. They require two
elements, a formal model and a set of formal specifications. However, in-
dustrial models are typically non-formal, they are analyzed in non-formal
simulation environments, and their specifications are described in non-formal
natural language. In this thesis, we aim to facilitate the integration of formal
verification into industrial model-based design.

Our first key contribution is a model transformation methodology. Start-
ing with a standard simulation model, we transform it into an equivalent
verification model, a network of hybrid automata. The transformation pro-
cess addresses differences in syntax, semantics, and other aspects of modeling.
For this class of formal models, so-called reachability algorithms can be
applied to verify safety properties. An obstacle is that scalable algorithms
exist for piecewise affine (PWA) models, but not for nonlinear ones. To
obtain PWA over-approximations of nonlinear dynamics, we propose a com-
positional syntactic hybridization technique. The result is a highly compact
model that retains the modular structure of the original simulation model
and largely avoids an explosion in the number of partitions.

The second key contribution is an approach to encode rich formal specifi-
cations so that they can be interpreted by tools for reachability. Herein, we
consider specifications expressed by pattern templates since they are close
to natural language and can be easily understood by non-expert users. We
provide (i) formal definitions for select patterns that respect the semantics
of hybrid automata, and (ii) monitors which encode the properties as the
reachability of an error state. By composing these monitors with the for-
mal model under study, the properties can be checked by off-the-shelf fully
automated verification tools.

Furthermore, we provide a semi-automated toolchain and present results
from case studies conducted in collaboration with industrial partners.

i

ii

Résumé

Les systèmes cyber-physiques sont une classe de systèmes complexes, de
grande échelle, souvent critiques enlever de sûreté, qui apparaissent dans
des applications industrielles variées. Des approches de vérification formelle
sont capable de fournir des garanties pour la performance et la sûreté de ces
systèmes. Elles nécessitent trois éléments: un modèle formel, une méthode
de vérification, ainsi qu’un ensemble de spécifications formelles. En revanche,
les modèles industriels sont typiquement informels, ambigus par nature.
Ils sont analysés dans des environnements de simulation informels et leurs
spécifications sont décrites dans un langage naturel informel. Dans cette
thèse, nous visons à faciliter l’intégration de la vérification formelle dans le
processus industriel de la conception basée sur des modèles.

Notre première contribution clé est une méthodologie de transformation de
modèle. À partir d’un modèle de simulation standard, nous le transformons
en un modèle de vérification équivalent, plus précisément en un réseau
d’automates hybrides. Pour cette classe de modèle formel, des algorithmes de
l’atteignabilité peuvent être appliqués pour vérifier des propriétés de sûreté.
Le processus de transformation prend en compte les différences de syntaxe,
de sémantique et d’autres aspects de la modélisation. L’un des obstacles
rencontré est que des algorithmes d’atteignabilité passent à l’échelle pour
des modèles affines par morceaux, mais pas pour des modèles non linéaires.
Pour obtenir des surapproximations affines par morceaux des dynamiques
non linéaires, nous proposons une technique compositionnelle d’hybridisation
syntaxique. Le résultat est un modèle très compact qui retient la structure
modulaire du modèle d’origine de simulation, tout en évitant une explosion
du nombre de partitions.

La seconde contribution clé est une approche pour encoder des spécificatio-
ns formelles riches de façon à ce qu’elles puissent être interprétées par des out-
ils d’atteignabilité. Nous prenons en compte des spécifications exprimées sous
forme d’un gabarit de motif (pattern template), puisqu’elles sont proches du
langage naturel et peuvent être comprises facilement par des utilisateurs non

iii

experts. Nous fournissons (i) des définitions formelles pour des motifs choisis,
qui respectent la sémantique des automates hybrides, et (ii) des observateurs
qui encodent les propriétés en tant qu’atteignabilité d’un état d’erreur. En
composant ces observateurs avec le modèle formel, les propriétés peuvent
être vérifiées par des outils standards de vérification qui sont automatisés.

Finalement, nous présentons une châıne d’outils semi-automatisée ainsi
que des études de cas menées en collaboration avec des partenaires industriels.

iv

Contents

Abstract i

Résumé iii

1 Introduction 1
1.1 Context . 3
1.2 Contributions . 9
1.3 Outline . 11

2 Formal Verification using Reachability Analysis 13
2.1 Hybrid Automata . 14
2.2 Networks of Hybrid automata 18
2.3 Set-Based Reachability Analysis 19
2.4 Formal Verification Tools & SpaceEx 20
2.5 Semi-Formal Verification Tools & Breach 22
2.6 Temporal Logic . 23
2.7 Cyber-Physical Systems . 24

3 Bringing Formal Verification to Industrial Model-Based De-
sign 29
3.1 Industrial Model-Based Design & Tools 31

3.1.1 Simulink . 32
3.1.2 SCADE . 33

3.2 Tool Integration . 34

4 From Informal Requirements to Formal Specifications via
Pattern Templates 41
4.1 Pattern Templates . 43

4.1.1 Patterns occurring in Control Systems 48
4.1.2 Patterns found in Industrial Use Cases 49

4.2 Formalizing Pattern Templates for Hybrid Automata 51

v

4.2.1 Preliminaries . 51
4.2.2 Formal Definitions . 52

4.3 Verifying Pattern Templates using Monitor Automata 56
4.4 Correctness of Monitor Automata 61

4.4.1 Preliminaries . 61
4.4.2 Sufficient Conditions 62
4.4.3 Necessary Conditions 65
4.4.4 Buggy Monitors . 67

4.5 Application Example . 71
4.6 Related Work . 73

5 From Simulation Models to Formal Models 75
5.1 Compositional Syntactic Hybridization 77

5.1.1 Syntactic PWA Approximation 78
5.1.2 Compositional Scheme 80
5.1.3 Algorithm for Compositional Syntactic Hybridization 81

5.2 From Simulink to Hybrid Automata 87
5.2.1 Model Adaptation . 88
5.2.2 Estimation of the signal range 89
5.2.3 Translation to SX format 90
5.2.4 Hybridization . 91
5.2.5 Example . 91

5.3 From Stateflow Diagrams to Hybrid Automata 94
5.3.1 Stateflow Semantics 94
5.3.2 Translation Scheme 96
5.3.3 Examples . 98

5.4 Urgent Semantics . 104
5.4.1 Reach Tubes under Invariant Constraints 104
5.4.2 Examples . 107

5.5 Related Work . 112

6 Case Studies 115
6.1 Cruise Controller . 115
6.2 Wind Turbine . 120

6.2.1 Benchmark Model . 120
6.2.2 Model Transformation 122
6.2.3 Reachability Results 127

6.3 Lane Change Manoeuvre for Autonomous Vehicles 129
6.3.1 System Description . 130
6.3.2 Simulation Results . 139

vi

7 Conclusion 143
7.1 Summary . 143
7.2 Future work . 145

Bibliography 147

vii

viii

1
C

h
a

p
t

e
r

Introduction

Model-Based Design (MBD), also known as Model-Based Development,
is a paradigm that enables the cost-effective and quick development of
complex systems, such as control and energy systems. MBD has facilitated
the detection and correction of errors in the early design stages and has
established a common framework for communication throughout the whole
design process [237]. The design process begins with the construction of
a high-level model of the system to be developed. Emphasis is placed on
abstract, mathematical models which guide further development, simulation
and testing. Afterwards, model transformation techniques are applied to
transform abstract models into more concrete models accounting for low-level
modeling details [185,273,276].

However, traditional test-based and simulation-based methods, such as
simulation of corner cases or stochastic simulation, have inherent limitations
and sometimes fail to detect bad behaviors [35]. Simulation is typically
based on unverified numerical computation, links to numerical errors, and
has limited precision. Also, simulation cannot deal with the intrinsic non-
determinism present in complex systems and with partial or incomplete
designs [64]. These matters render simulation prone to incomplete coverage
of system behaviors as well as unsound analysis results. As such, existing
errors in the design might not be discovered through simulation. If such
incorrectly designed and insufficiently verified systems are deployed, there is
a high risk of serious system failure [297].

This issue is particularly important within safety-critical fields as well as
with the new generation of systems, embedded and cyber-physical. These

1

2 1. INTRODUCTION

systems are complex with various interacting components and frequently have
a safety-critical nature [259]. They are difficult to analyze, even numerically
simulate, as neighboring states, no matter how close, may exhibit qualita-
tively different behaviors [127]. In addition, the presence of uncertainties,
disturbances, noise may have adverse effects on the performance [111].

Formal verification techniques help to remedy the problems of simulation
by formally establishing whether a system satisfies given specifications [297].
There exist various formal verification techniques in the literature [8, 91],
and their goal is to decide whether specifications are satisfied or violated
via a rigorous mathematical analysis. One of these techniques is reacha-
bility analysis and it constitutes an exhaustive verification procedure that
replaces an infinite number of simulations. In particular, set-based reach-
ability analysis computes the set of all behaviors of the system (exact or
approximative), starting from all possible initial conditions, under all possible
disturbances and variations in parameter values [31, 218]. In other words,
set-based reachability analysis exhaustively computes a cover of all behaviors
and, if precise enough, can show safety of the system as well as provide
quantitative measurements of key variables [127].

Over the past years, there have been a lot of efforts to bridge the gap
between formal methods and industrial applications. Applying verification
tools to industrially relevant models requires three main elements: a formal
verification method, a formal model, and a set of formal specifications.
Every verification method is normally supported by a formal verification
engine. The task of the end user is to input the formal model and the formal
specification in the tool. Then, the tool employs the verification engine to
find out whether the specifications are satisfied or not. In practice, however,
this task is not simple since industries mainly operate on non-formal models
and non-formal requirements/specifications. On the one hand, industrial
requirements are written and described in natural language. On the other
hand, industrial models are expressed and analyzed in non-formal simulation
environments.

The goal of this thesis is to assist bridging this gap and facilitate the inte-
gration of formal verification into the industrial model-based design process.
We employ hybrid automata as the formal model and reachability analysis
as the formal method. Our first key contribution is a model transformation
methodology. Starting with a standard simulation model, we transform it
into an equivalent formal verification model addressing differences in syntax,
semantics, and other aspects of modeling. The second key contribution is an
approach to encode rich formal specifications so that they can be interpreted
by tools for reachability. Starting with natural language requirements ex-

1.1. CONTEXT 3

pressed by pattern templates, we construct formally correct monitors which
can be directly composed with the formal model. Finally, we provide a
semi-automated toolchain and present results from case studies.

1.1 Context

Over the past years, there have been a lot of efforts to bridge the gap between
formal methods and industrial applications. Formal methods have evolved
from an elegant theory to a vital practice. However, any pathway from
theory to practice faces a lot of challenges. New technologies must compete
against well established practice and demonstrate the need to replace the
old with the new while overcoming the frequent concerns and doubts of
engineers [152,199].

The main focus has been on addressing the issues with the format mis-
match and scale of industrially sized models. These challenges are of par-
ticular significance with the new generation of systems, embedded and
cyber-physical, as they are complex with various interacting components
and frequently have a safety-critical nature [259]. Cyber-physical systems
(CPS) attempt to bridge the cyber-world of computing and communications
with the physical world. In CPS, embedded computers along with networks
monitor and control the physical processes, usually with feedback loops
where physical processes affect computations and vice versa [207]. CPS
have applications in various domains such as health care, transportation,
automation, aerospace, autonomous vehicles, and robotics [258].

System Modeling. An appropriate modeling formalism for the design
of such systems is hybrid systems [18]. Hybrid systems demonstrate joint
discrete and continuous behaviors by combining the traditional models for
discrete systems with classical differential and algebraic equation-based
models for dynamical systems [19]. There is a wide range of formal models
for hybrid systems, e.g. hybrid automata [20], petri nets [7, 136], hybrid
programs [249], and process algebra [52]. These modeling languages have
different advantages and serve different purposes. General purpose models
should be abstractable, composable, and descriptive [214].

A popular modeling formalism is hybrid automata. Hybrid automata can
exhibit nondeterministic behaviors. That means that any given state may
lead to different futures. This is a useful feature as incomplete knowledge
about initial conditions, parameters or other types of uncertainty can be
easily captured within the hybrid automata formalism. In particular, rates
of change or variable updates can be specified through bounds and not

4 1. INTRODUCTION

necessarily fixed constant numbers. In addition, complex models can be
easily constructed through the parallel composition of hybrid automata.The
automata can interact with each other by sharing variables and synchronizing
events. Hybrid automata are suitable for formal analysis and they form an
analysis-friendly modeling formalism [111,128].

In industrial practice, however, user-friendly modeling formalisms are
preferred. The system modeling and control design tasks are typically based
on a model, within a simulation environment like MATLAB/Simulink [227],
Simplorer [116,283], Ptolemy [75], or SCADE [2]. The standard technique
for conducting system analysis and design validation is numerical simulation.
Numerical simulation is a highly scalable technique but relies on a discrete-
time approximation of the evolution of the system variables. As such, it is
prone to incomplete coverage of open systems and possibly unsound results
due to numerical error. It is especially difficult to simulate all representative
behaviors of a system. In the case of hybrid systems, this issue can be
critical as neighboring states can have significantly different and even chaotic
behaviors. In this respect, it is hard to exhaustively test models and critical
behaviors may go undetected [35,298].

Formal Verification. The necessity to provide guarantees of correctness
and performance has motivated the development of formal verification tech-
niques and the design of robust verification tools. Their goal is to guarantee
that specifications are satisfied through a rigorous mathematical analysis
of the system. Various techniques for hybrid system verification have been
developed. According to the model checking handbook [111], they could
be broadly divided into 3 categories: approaches based on symbolic repre-
sentations (e.g. reachability analysis), abstraction (e.g. bisimulations), or
logic (e.g. theorem proving). Survey papers can be found in the literature,
e.g. [18, 23,111,250,282].

Recently, there has been an increased interest in fully automated verifica-
tion tools for hybrid systems, such as set-based reachability analysis [207].
This is the case as they have demonstrated substantial success in finding
bugs in real-world applications and there has been much progress towards
efficient and scalable reachability algorithms [18].

Set-based reachability analysis aims at accurately and quickly computing
a cover of the system states which can be reached from a given set of initial
states. Constructing a cover of all system behaviors is done through the
computation of one-step successor states. The computation is exhaustive and
terminates if a fixed-point is found. In this way, reachability can guarantee
that no critical behaviors are missed. As such, it has been used to formally

1.1. CONTEXT 5

show safety and bounded liveness properties [111,128]. Set-based reachability
analysis can be seen as a generalization of numerical simulation. In numerical
simulation, one picks an initial state and tries to compute a successor state
that lies on one of the solutions of the corresponding flow constraint and
satisfies one of the jump conditions. Then, one of the successor states of the
jump is picked and the process is repeated. Reachability analysis directly
follows the transition semantics of hybrid systems, but considers sets of states
instead of single states. The reachable set consists of all the states that can
be visited by a trajectory of the hybrid system starting in specified initial
states [111].

Scalability poses a major challenge in reachability analysis. In general,
one-step successors can only be computed approximately and computational
costs generally increase sharply with respect to the number of continuous
variables. Special attention should be given to the approximation error as
it can accumulate, leading to a coarse cover, prohibitive state explosion, or
preventing termination. The computational complexity of one-step successors
is dependent on the dynamics of the underlying system. Scalable approxi-
mations have been developed for certain types of dynamics, such as linear,
piecewise constant and piecewise affine dynamics, but this performance comes
at a price in accuracy. The trade-off between runtime and accuracy remains
a central problem in reachability analysis. Surveys of reachability techniques
for hybrid automata can be found in [31,111,218].

Specialized techniques exist for the reachability computation of nonlinear
systems, which rely on linearization [30,288], polynomial approximations [82,
263], or Bernstein expansions [98,261]. A well established abstraction method
is hybridization. In hybridization procedures, the state-space is partitioned
into smaller domains and the nonlinear dynamics are approximated by simpler
ones in each distinct domain. An important consideration is the abstraction
error, which is typically accounted for via the use of nondeterministic inputs.
Note that traditional hybridization schemes, e.g. [33], operate on the flattened
model, which results to the number of partitions being exponential in the
number of state variables.

Industrial Requirements. Despite the progress made on reachability
algorithms of hybrid automata, it is not easy to formalize requirements of
hybrid systems such that they can be verified automatically. The main reason
concerns the semantic mismatch between industrial requirements and formal
requirements. Typically, formal requirements are expressed in temporal
logic [252], whereas industrial requirements are described in natural language
or controlled natural language [198, 240]. A controlled natural language

6 1. INTRODUCTION

(commonly abbreviated as CNL) forms a subset of natural language with a
constrained grammar aiming to reduce or eliminate ambiguity. Requirements
written in a CNL can be better understood across different disciplines (e.g.
technical, legal, marketing).

CNL can be divided into two broad categories: human-oriented and
machine-oriented languages [198]. Human-oriented languages, also called
simplified or technical, provide general guidelines and restrict the writer/de-
signer by rules such as “Keep sentences short”, “Avoid the use of pronouns”,
and “Use only the active voice” [270]. They are used in the industry to
increase the quality of of technical documentation. Among others, Basic
English is used as an international auxiliary language for trade; Airbus
Warning Language is employed for industrial warnings; and ASD Simplified
Technical English for maintenance documentation. IBM has developed its
own IBM’s Easy English language [53] and Caterpillar has developed the
Caterpillar Fundamental English [181]. Human-oriented languages are the
most expressive languages and can be easily understood and used by humans.
However, they do not have a formal basis and they pose significant translation
challenges.

Machine-oriented languages have a formal logical basis, i.e. they have
a formal syntax and semantics, and can be mapped to an existing formal
language, such as first-order logic. These languages can be used as knowledge
representation languages and are typically supported by automatic consis-
tency and redundancy checks [270]. In particular, KANT (Knowledge-based,
Accurate Natural-language Translation) is used for machine translation of
technical documents; ACE (Attempto Controlled English), PENG (Process-
able English), and CNL for knowledge acquisition and representation; Rabbit
and Lite Natural Language for semantic web; and ACE rules for rule and
policy documentation [198,270].

Several recent machine-oriented languages employ template based natural
language specifications (TBNLS) [100], i.e. a grammar that is restricted to
a set of simple templates. Such a grammar has been efficient in avoiding
ambiguity [118]. For example, CPS Lite utilizes 113 sentence templates that
include verb-like, noun-like, and preposition-like relations [270]. However,
one pitfall that these languages share is the difficulty to timed relations and
operations, restricting their applicability to simple properties.

One promising direction that is closely related to TBNLS and aims to
handle this limitation concerns the use of the so-called pattern templates.
Pattern templates (also called specification templates) contain predicates
which should be substituted by logical expressions so as to encode the actual
requirements. Dwyer et al. [114] introduced qualitative specification pattern

1.1. CONTEXT 7

templates and translated them into different logic expressions (e.g. linear
temporal logic). A milestone was the extension of these pattern templates
to capture real-time properties, see [196]. Application of the patterns in
the automotive industry can be found in [182, 254]. A generalization to
probabilistic pattern templates was proposed in [153].

For discrete systems, there are tools that accept as an input CNL expres-
sions (e.g. in the form of pattern templates) and automatically translate
them into formal specifications. Examples of such tools are Stimulus [28], Em-
bedded Specifier [74], AutoFocus3 [173], and SpeAR [57]. Pattern templates
for hybrid systems do not differ from pattern templates already available.
Yet, no existing tool can translate them into a formal representation that is
applicable to hybrid systems and enables the verification of rich properties.

Formal Specifications. Selected pattern templates have been formally
defined using temporal logic: linear temporal logic (LTL), computational
temporal logic (CTL) and timed CTL (TCTL) in [34], metric temporal logic
(MTL) in [44,196], and probabilistic LTL (PLTL) in [153]. These definitions,
however, do not immediately carry over to monitoring with hybrid automata.
Note that the hybrid automata cannot distinguish events with the precision
of a temporal logic because the intersection between the location invariants
and location guards must be non-empty (see Chapter 4).

A formal alternative to temporal logic is the use of monitor automata
(also known as observer automata). A monitor automaton has the same
syntax and respects the same semantics as the system model. In this vein,
it can be composed with the system model and fed into a reachability tool.
Such monitor automaton encodes the requirements as the reachability of
a designated error state (see [156] for one of the earliest works on monitor
automata). In the context of formal verification of hybrid systems, monitor
automata have been used for checking whether simple safety requirements
are satisfied or violated [260]. On the contrary, for program and software
verification purposes, the use of monitor automata has been significant
[56]. There exist several tools that automate the composition process, e.g.
BLAST [272] and ORION [96].

Verifying Simulink Models. MATLAB is a commercial tool for simulation
and model-based design of dynamical and embedded systems. Simulink,
integrated within MATLAB, is a data flow graphical programming language
tool for modeling, simulating and analyzing multi-domain dynamic systems.
Simulink is considered to be an industrial de-facto standard for building
executable models of control systems [298]. Stateflow [280] is a Simulink

8 1. INTRODUCTION

toolbox that is used to describe decision logic, hybrid systems, and scheduling.
A Stateflow diagram can be a block of a bigger Simulink model interconnected
with other blocks through signals.

The widespread use of MATLAB/Simulink has instigated research on
the verification of Simulink models [24,297]. One group of approaches can
be classified as verification by simulation. Various tools have been developed
which employ the original MATLAB/Simulink models and excite the inputs
of the models to provide coverage of the system behaviors. Breach [107] tool
performs approximate reachability analysis relying on sensitivity analysis. It
has been used for monitoring properties and requirements of Simulink models.
S-Taliro [27] tool conducts fast and efficient simulations, relies on gridding,
and focuses on falsification of Simulink models. C2E2 [121] is another
MATLAB/Simulink tool that generalizes simulation trajectories to bundles
of trajectories. This is done by identifying an area around the simulated
trajectory where all trajectories have similar behavior. Nevertheless, the
verification by simulation approaches face a major obstacle, i.e. the initial
states have to be sampled. Given that the number of samples is exponential
in the number of state variables, these approaches are restricted to systems
with low-dimensional initial states. In addition, such techniques can be used
to verify bounded-time properties but not propertied defined over unbounded
time.

Another direction concerns the translation of Simulink models into mod-
eling languages that enable formal verification. A comprehensive survey can
be found in [297]. There are available translators from a fragment of Simulink
to Lustre [290], NuSMV model checker [228], and BIP [274]. However, all
these tools solely apply discrete verification. Filipovikj et al. [122] provided a
transformation scheme from Simulink to the modeling language of UPPAAL
Statistical Model checker. UPPAAL is well-suited for timed automata but
has some limitations in the support of hybrid automata, e.g. restricting
their continuous parts to simple dynamics or applying the Euler integration
method.

Zuiliani et al. [299] proposed a statistical model checking methodology
that is applicable to Simulink/Stateflow (SLSF) models. Stanley Bak et al.
introduced a translation process from SLSF to hybrid automata in [223].
Both papers focus entirely on Stateflow diagrams and necessitate the trans-
formation of the original Simulink model into a single Stateflow model. This
transformation is not easy and sometimes impossible for most large-scale
Simulink models. Alur et al. [24] translate SLSF models into linear hybrid au-
tomata to improve simulation coverage, but they only consider deterministic
models. Other translation schemes have been proposed in [42,248,264].

1.2. CONTRIBUTIONS 9

The translation of a Simulink/Stateflow model into a hybrid automaton
can be undertaken by the tools HyLink [223] and GreAT [3]. These tools,
however, do not allow hierarchical modeling and support a small subset of
Simulink blocks. The translation of Simulink models into hybrid automata is
also supported by SL2SX [231]. This translator supports a larger number of
Simulink blocks and replaces the unsupported Simulink blocks with empty
components. These blocks should be replaced by the user. However, Stateflow
diagrams are not considered.

Note that all the aforementioned methodologies and tools run into a com-
mon pitfall. The modeling language of Simulink/Stateflow tool lacks a formal
and rigorous definition of its semantics. In particular, Stateflow is a highly
complex language and its semantics are described through examples on the
MathWorks website without any formal definition [66]. In this respect, much
research has been conducted on the formal analysis of SLSF diagrams [297].
The objective is to obtain (i) a convincing formal semantics; (ii) a faithful
compilation that preserves the hierarchical structure of the Stateflow model;
and (iii) fully automated analysis engine [66]. As for the interpretation
and development of formal semantics for SL2SF, several semantic types
have been proposed, such as denotational [158], operational [61, 159, 160],
continuation-passing style [66], and communicating push-down automata
based [287].

Another major obstacle encountered is that simulation models are deter-
ministic1 and employ transitions with urgent semantics (which must be taken
as soon as possible, also known as must semantics), whereas verification
models are nondeterministic and respect more general semantics (called
may semantics). Urgent semantics are not covered by standard reachability
algorithms, since the computation of the states reachable by time elapse is
different. An urgent time elapse operator for piecewise constant dynamics is
proposed in [229] and for piecewise affine dynamics in [230]. However, these
techniques cannot handle high dimensional systems in a computationally
efficient manner.

1.2 Contributions

The goal of this thesis is to facilitate the integration of formal verification
techniques into model-based design employing hybrid automata as the formal
model and reachability analysis as the formal method.

1That is the case since the simulator needs to be able to compute what happens in the
next step.

10 1. INTRODUCTION

Bringing formal verification to industrial practice. In this thesis, we
propose a workflow that is based upon current industrial practice, provides
incremental improvements and is able to demonstrate value without ham-
pering existing methodologies. In particular, we propose a semi-automated
toolchain that enables the formal verification of industrial-sized models em-
ploying well-established and recently designed tools. Our starting point is
an industrial model, described in MATLAB/Simulink, and a set of indus-
trial requirements, defined in natural language. The entire analysis process
is semi-automated via a successive use of tools and translators. The end
goal is to formally verify the correctness of the design against pre-specified
requirements.

Patterns templates and monitors for verifying rich formal require-
ments of hybrid systems. We propose a semi–automated, template–based
translation of industrial requirements into a formal representation (monitor
automata) that enables the algorithmic verification of rich specifications. In
particular, we consider specifications expressed in pattern templates which
are predefined properties with placeholders for state predicates. Pattern
templates can be readily understood by non-expert users as they are close
to natural language. We provide (i) formal definitions for select patterns
that respect the hybrid automata semantics and (ii) monitors which encode
the properties as the reachability of an error state. By composing these
monitors with the formal model under study, the property can be checked
by off-the-shelf fully automated verification tools.

Compositional syntactic hybridization. Hybridization is an established
abstraction method to obtain PWA approximations of nonlinear dynamics.
However, existing hybridization procedures operate on the composed (flat-
tened) system and the number of partitions is exponential in the number
of variables. As such, even for small systems, this technique can quickly
lead to intractably large models. To mitigate this problem, we propose a
compositional syntactic hybridization technique. Our hybridization scheme
decomposes the original dynamics and carries out the state-space partition-
ing and PWA approximation on the components. This results in a highly
compact model that retains the modular structure of the original simulation
model and largely avoids an explosion in the number of partitions.

Simulink translation to hybrid automata. Starting with a standard
Simulink/Stateflow model, we transform it into an equivalent formal verifica-
tion model, a network of hybrid automata. A major obstacle encountered is
that simulation models are typically deterministic and employ transitions

1.3. OUTLINE 11

with urgent semantics (which must be taken as soon as possible), whereas
standard verification models are nondeterministic and respect more general
semantics. Our transformation process tackles these modeling, syntactic,
and semantic differences. The constructed verification model complies with
the SX format, which is a formalism used by several reachability tools.

Handling urgent transitions in hybrid automata. Standard hybrid
automata have nondeterministic transitions that respect may semantics.
However, several physical systems and most simulation models respect urgent
semantics, i.e. a transition must be taken as soon as the guard condition
is satisfied. Urgent semantics are either not covered or cannot be treated
efficiently by standard reachability algorithms, since the time elapse operator
is different. We present a heuristic model transformation approach to bridge
this gap. The urgent transitions are replaced by non-convex invariants,
which are subsequently split into convex subsets. To prevent and mitigate
the pitfalls of related work, i.e. avoiding over-approximation errors and
excessive number of auxiliary locations, we partition the state-space only
when required and employ the so-called Lie planes.

Case studies. We present results from three case studies conducted in
collaboration with our industrial partners. The first case study concerns a
wind turbine system modeled in MATLAB/Simulink. The Simulink model
consists of more than 150 blocks and has several nonlinear functions. We
employ the suggested model transformation and obtain an equivalent PWA
hybrid automaton model. The second case study concerns a lane change
maneuver of 4 autonomous vehicles. We model and analyze the system
in MATLAB/Simulink. The third case study refers to a cruise controller.
Starting from MATLAB/Simulink, we construct a formal model, expressed
as a network of hybrid automata. We transform the design requirements
into monitor automata and conduct reachability analysis with SpaceEx
verification platform. Finally, we analyze the system with SCADE Hybrid.

1.3 Outline

The remainder of the thesis is organized as follows. Section 2 introduces
the formalism of hybrid automata and set-based reachability analysis. In
Section 3, we present the Moded-Based Design process and propose a semi-
automated toolchain that enables the formal verification of industrial-sized
models employing well-established and recently constructed tools. In Sec-
tion 4, we facilitate the verification of hybrid systems against rich formal

12 1. INTRODUCTION

requirements by employing pattern templates and monitor automata. Sec-
tion 5 describes the steps that are required to obtain formal models from
simulation models. We propose a methodology to efficient handle nonlin-
ear dynamics and address semantic differences. Special focus is given to
MATLAB/Simulink models which are very common in industrial practice.
In Section 6, we describe and formally analyze three industrial case studies.
Section 7 provides conclusive remarks and recommendation for future work.

2
C

h
a

p
t

e
r

Formal Verification using
Reachability Analysis

Formal verification is the process of checking whether a design satisfies
specific requirements (properties) [90]. In formal verification, the designer
first builds a model, with precise mathematical semantics, of the system
under design, and then performs extensive analysis with respect to correctness
requirements [18]. Formal verification takes place during the design and
development process; before the system is up and running. It is often
conducted on an abstract model of the system which abstracts away certain
data and implementation detail [219].

In literature, there are various terminologies and taxonomies for formal
verification techniques [8]. According to a recent verification handbook [91],
they can be divided into model checking (e.g. symbolic, enumerative, SAT-
based), program analysis (e.g. abstract interpretation, dataflow analysis), and
deductive techniques (e.g. theorem provering [137]). Algorithmic verification
typically corresponds to automated verification techniques, such as symbolic
model checking [219] or regular model checking [112,139]. Model checking is
the exhaustive exploration of the state space of a system, typically to see if
an error state is reachable. A key feature is that it can generate concrete
counterexamples [90]. Specialized verification techniques and tools have
been designed for software, hardware, real-time, probabilistic, hybrid, and
distributed systems [8].

In this thesis, we focus on the formal verification of hybrid systems.
Hybrid systems demonstrate joint discrete and continuous behaviors by com-

13

14 2. FORMAL VERIFICATION USING REACHABILITY ANALYSIS

bining the traditional models for discrete systems with classical differential
and algebraic equation-based models for dynamical systems [19]. They form
an appropriate modeling formalism for the design of cyber-physical and em-
bedded control systems [18]. Various techniques for hybrid system verification
have been developed. They could be broadly divided into 3 categories [111]:
approaches based on symbolic representations (e.g. reachability analysis),
abstraction (e.g. bisimulations), or logic (e.g. theorem proving). There are
approaches that lie between several categories like interval analysis [62, 232].
The combination of interval analysis and barrier functions is proposed in [104]
and applied in a robotic system in [103]. Several survey papers related to
formal verification can be found in the literature, e.g. [18, 23,111,250,282].

Fully automated tools for hybrid systems have gained industrial interest
as they can be applied to various read-world applications and haven been
able to identify design errors [207]. Automated tools that rely upon set-
based reachability analysis have been used in a wider range of of application
domains, e.g. automotive control [9, 130], robotics [245], and electronic
circuits [134].

2.1 Hybrid Automata

The literature on hybrid systems is very rich and spans different disciplines
(see e.g. [148,209,213,235,250,282,294] and references therein). There is a
wide range of formal models for hybrid systems, e.g. hybrid automata [20],
petri nets [51,136], hybrid programs [249], hybrid action systems [262], hybrid
data-flow languages [46,49,50], linear hybrid automata [138] mixed logical
dynamical systems [45], timed automata [26] and parametric automata [25,86],
linear complementarity systems [165], max-min-plus-scaling systems [164],
and process algebra [52]. These modeling languages have different advantages
and put more emphasis on different aspects, depending on the applications
and problems they are designed to address. General purpose models should
be abstractable, composable, and descriptive [214].

In this part, we concentrate on hybrid automata. A hybrid automation is
a dynamical system that describes the evolution over time of the values of a
set of discrete and continuous variables. More precisely, it is a formal model
that combines finite state automata with continuously evolving variables. A
hybrid automaton displays two types of state evolution: discrete transitions
that occur instantaneously, and continuous flow that occur when time elapses.
A hybrid automaton can also be seen as a finite-state automaton that contains
continuous variables [260].

2.1. HYBRID AUTOMATA 15

Before we formally define the modeling language of hybrid automata, we
introduce some notation for describing real-valued variables.

Preliminaries. Given a set X = {x1, . . . , xn} of variables, a valuation is
a function v : X → R. Let Ẋ = {ẋ1, . . . , ẋn} and X ′ = {x′1, . . . , x′n}. The
projection of v to variables Y ⊆ X is v↓Y = {x → v(x)|x ∈ Y }. Let V (X)
denote the set of valuations over X . The embedding of a set U ⊆ V (X) into
variables X̄ ⊇ X is the largest subset of V (Y) whose projection is in U ,
written as U |X̄ . Let constX(Y) = {(v, v′)|v, v′ ∈ V (X), v↓Y = v′↓Y }.

Definition 2.1 (Hybrid automaton). [19, 126,166] A hybrid automaton

H = (Loc, Lab,Edg, X, Init, Inv,Flow, Jump)

consists of

– a finite set of locations Loc = {`1, . . . , `m}, also called discrete states
or modes,

– a finite set of synchronization labels Lab, which is used to coordinate
changes between different automata,

– a finite set of edges Edg ⊆ Loc× Lab× Loc, also called transitions that
indicates which discrete state changes are possible using which label;

– a finite set of variables X = {x1, . . . , xn}, partitioned into controlled
variables Y and uncontrolled variables U ; a state of H comprises a
location ` and a numerical value for each variable, it is denoted by
s = (`,x);

– a set of states Inv ⊆ Loc × RX named invariant conditions; this set
restricts for each location the values that x is allowed to take, also
known as staying conditions since it dictates how long the system can
stay in this location;

– a set of initial states Init ⊆ Inv; every behavior of H has to start in one
of these initial states;

– a flow relation Flow, where Flow(`) ⊆ RẊ × RX defines for each state
(`,x) the set of possible derivatives ẋ, for example with a differential
equation of the form

ẋ = f(x);

For a location `, a trajectory has duration δ ≥ 0 and is a continu-
ously differentiable function ξ : [0, δ] → RX so that for all t ∈ [0, δ],
(ξ̇(t), ξ(t)) ∈ Flow(`). The trajectory satisfies the invariant if ∀t ∈ [0, δ],
it is true that ξ(t) ∈ Inv(`).

16 2. FORMAL VERIFICATION USING REACHABILITY ANALYSIS

– a jump relation Jump, where Jump(e) ⊆ RX × RX′ defines for every
transition e ∈ Edg the possible successors x′ of x; jump relations are
usually described by a guard set G ⊆ RX and an assignment (also
called reset) x′ = r(x) as follows

Jump(e) = {(x,x′) | x ∈ G ∧ x′ = r(x)}.

A jump can be defined as urgent, which pinpoints that time cannot
pass when the state is inside this guard set.

The behavior of a hybrid automaton is defined with a run. Starting from some
initial states, the state progresses according to the differential equations while
time elapses, and according to the jump relations while taking a transition.
The transition is considered to be instantaneous. Special events, which we
name uncontrolled assignments, model an environment that can arbitrarily
make changes to the uncontrolled variables.

Definition 2.2 (Run semantics). An execution of a hybrid automaton H is
a sequence

(`0,x0) δ0,ξ0−−−→ (`0, ξ0(δ0)) α0−→ (`1,x1) δ1,ξ1−−−→ (`1, ξ1(δ1)) . . .
αN−1−−−→ (`N ,xN),

with αi ∈ Lab ∪ {τ}, satisfying for i = 0, . . . , N − 1:

1. Trajectories: in location `i, the trajectory ξi satisfies the invariant and
has duration δi with ξi(0) = xi. Note that duration δi is 0 indicates
that the trajectory goes through urgent guard sets.

2. Jumps: in case αi ∈ Lab, there is a transition (`i, αi, `i+1) ∈ Edg
with jump relation Jump(e) such that (ξi(δi),xi+1) ∈ Jump(e) and
xi+1 ∈ Inv(`i+1).

3. Uncontrolled assignments: if αi = τ , then `i = `i+1 and ξi(δi) ↓Y =
xi+1 ↓Y . As mentioned before, these assignments correspond to arbi-
trary changes that the environment can carry out on the uncontrolled
variables U = X \ Y .

A run of H is an execution which starts in one of the initial states, i.e.,
(`0,x0) ∈ Init. A state (`,x) is reachable only if there exists a run with
(`i,xi) = (`,x) for some i.

Definition 2.2 prescribes an alternation of trajectories and jumps. How-
ever, a strict alternation is not necessary. Two successive trajectories can be

2.1. HYBRID AUTOMATA 17

expressed by inserting an uncontrolled assignment jump that does not modify
the variables, while two successive jumps can be expressed by inserting a
trajectory with duration zero (which always exists), and Note that we opt
for an event at the end of the run as it will simplify the notation in the
remainder of the Thesis.

May and Must semantics. In Definition 2.2, transitions may be taken
when they are enabled but it is not necessary to do so so. The system
may remain in a location provided that the invariant is satisfied. These
so-called may semantics enable the introduction of nondeterminism in the
system regarding when a transition will be taken. For the case of must
semantics (also called urgent or ASAP semantics), the transition must be
taken as soon as possible [230]. Must semantics are implemented in simulators
such as Simulink [227], Modelica [116], MapleSim [225], since they require
deterministic models.

Deadlock Situations. The concept of deadlock has been studied in the
computer science literature [36]. Deadlock is typically considered as a
pathology and refers to situations where no forward progress can be made.
In the discrete community, the focus is on verifying the presence of deadlock
situations in programs and ensuring its absence upon their composition. In
hybrid systems, deadlock can take one of the following forms [1].

– blocking conditions: states which have no defined “next” state.

– stable equilibria in finite time: equilibria in the continuous dynamics
that are reached by a reset operation.

– chattering Zeno: there is switching between two or more discrete
locations infinite often, while the continuous variable remain unchanged,

– genuine Zeno: the hybrid trajectory performs an infinite number of
transitions in a finite amount of time.

Chattering behaviors are a common issue in hybrid systems and control
often rendering simulation results unreliable or incomplete [4]. An efficient
approach for robust simulation of hybrid systems with chattering behaviors is
proposed in [6] and related work proposed in the literature can be found in [5].
A common issue/error that arises in modeling hybrid systems, commonly
causing unintended deadlocks, relates to the hybrid automata semantics. In
particular, incorrect models are created as several users are unaware that
the intersection between the location invariants and location guards must be
non-empty [1]. Let p be a state predicate and !p its negation. Then, adding

18 2. FORMAL VERIFICATION USING REACHABILITY ANALYSIS

p (e.g. x > 0) in the invariant of the source location and !p (x ≤ 0) in the
invariant of the target location leads to a deadlock because of the empty
intersection. Figure 2.1 illustrates this modeling error.

Figure 2.1: Common modeling error in hybrid systems that leads to deadlock (clipped
from SpaceEx Model Editor).

2.2 Networks of Hybrid automata

In this Section, we provide a formal definition of the composition operation of
two hybrid automata. This operation is later used to couple the system model
with a monitor automaton. The operator is analogous to the composition
operator in [22].

The jump relations of synchronized transitions rise from the conjunction of
the involved transitions. There might be transitions that do not synchronize
and can change variables arbitrarily. As for the variables over which their
jump relation is not defined, they are are set to remain constant [109].

Definition 2.3 (Composition of HA). The parallel composition of hybrid
automata H1 and H2 generates the hybrid automaton H = H1||H2

– Loc = Loc1 × Loc2,

– Lab = Lab1 ∪ Lab2,

– Edg = {((`1, `2), α, (`′1, `′2)) | (α ∈ Lab1 ⇒ (`1, α, `′1)) ∧ (α ∈ Lab2 ⇒
(`2, α, `′2))},

– X = X1 = X2 (by assumption), Y = Y1 ∪ Y2, U = (U1 ∪ U2) \ Y ,

– Jump((`1, `2), a, (`′1, `′2)) with µ = {(v, v′) ∈ µi} iff for i = 1, 2,

– a ∈ Labi and (`i, ai, µi, `′i) ∈ Edgi, or
– a /∈ Labi, `′i = `i, and µi = constXi(Zi), where Z1 = Y1\Y2 and
Z2 = Y2\Y1;

– Flow(`1, `2) = Flow1(`1) ∩ Flow2(`2);

– Inv(`1, `2) = Inv1(`1) ∩ Inv2(`2);

– Init(`1, `2) = Init1(`1) ∩ Init2(`2).

2.3. SET-BASED REACHABILITY ANALYSIS 19

We assume that H1 and H2 have the same variables without any loss of
generality. If H2 has a variable not in H1, e.g., a clock variable that measures
the time in between events, we can add it to H1 without having to restrict it
in the invariants, guards, or flows.

A run rH1||H2 in H1||H2 is given by locations `i = (`H1
i , `H2

i), continuous
states xi, trajectories ξi, durations δi, and labels αi. Let rH1 be the projection
of the run onto H1, obtained by replacing `i with `H1

i , and let rH2 be the
projection of the run onto H2, obtained by replacing `i with `H2

i and αi with
τ . Then by definition, we have that for any run rH1||H2 in Runs(H1||H2),
rH1 ∈ Runs(H1) and rH2 ∈ Runs(H2).

2.3 Set-Based Reachability Analysis

Reachability analysis is concerned with the problem of computing the set of
discrete and continuous states that a system can reach, making it possible to
verify if a state can avoid a set of unsafe states. There are two kinds of events
that can take place in a hybrid automaton: time can pass with the state
evolving according to the flow constraints, or a jump can take the system
instantaneously to a new state. Starting from the initial states, set-based
reachability analysis exhaustively computes the successor states for both
time elapse and jumps in alternation until this no longer produces any new
states. However, this iterative process might not terminate. In [166], it was
shown that the safety verification problem is undecidable for rectangular
hybrid automata (and therefore also for linear and affine hybrid automata).
As such, in practice, an a priori limit on the search depth (typically counted
in the number of discrete transitions) is imposed [111].

Set-based reachability analysis can be seen as a generalization of numerical
simulation. In numerical simulation, one picks an initial state and tries to
compute a successor state that lies on one of the solutions of the corresponding
flow constraint and satisfies one of the jump conditions. Then, one of the
successor states of the jump is picked and the process is repeated. Reachability
analysis directly follows the transition semantics of hybrid automata, but
considers sets of states instead of single states [111].

The reachable set contains all the states that can be visited by a trajectory
of the hybrid system starting in specified initial states. Reachability analysis
is often motivated by safety verification; checking if the intersection of the
computed reachable set with a set of error (forbidden) states is empty. In
case the reachable set of a hybrid system cannot be computed exactly, we
try to compute an over-approximation so that if it does not intersect the set

20 2. FORMAL VERIFICATION USING REACHABILITY ANALYSIS

of error states, the hybrid system is guaranteed to be safe [31]. Figure 2.2
illustrates the reachability computations on a helicopter model.

Computational costs generally increase sharply with respect to the number
of continuous variables. Scalable approximations are available for certain
types of dynamics, such as PWA dynamics, but this performance comes at a
price in accuracy. The trade-off between runtime and accuracy remains a
central problem in reachability analysis. Surveys of reachability techniques
for hybrid automata can be found in [31,111,218].

Specialized techniques exist for the reachability computation of nonlinear
systems, which rely on linearization [30,288], polynomial approximations [82,
263], or Bernstein expansions [98,261]. A well established abstraction method
is hybridization. Hybridization [33] consists in partitioning the state-space
into smaller domains and approximating the nonlinear dynamics by simpler
ones in each domain. Nondeterministic inputs are added to account for the
abstraction error.

Figure 2.2: Safety verification of a 20-dimensional helicopter model [135]. Conducted
reachability analysis with SpaceEx tool over a time horizon of 30 seconds. Blue: reachable
sets, red: unsafe area, magenta: initial set.

2.4 Formal Verification Tools & SpaceEx

A variety of tools for formal verification of hybrid systems exists in the liter-
ature [85, 179]. In the ARCH workshop, friendly competitions are organized
where tools compete against each other on a set of benchmark models [15].
Some prominent tools are Ariadne [93], C2E2 [113], CORA [10], dReal [195],

2.4. FORMAL VERIFICATION TOOLS & SPACEEX 21

Flow* [83], HyCreate [37], HyPro [268], HyReach [217], JuliaReach [59],
KeYmaera [251], SoapBox [155], SpaceEx [135].

In this Section, we are going to focus on SpaceEx [135] which is is a verifi-
cation platform for hybrid systems. The name SpaceEx stands for State Space
Explorer. SpaceEx and the principal functionality of the tool is to verify that
a certain mathematical model of a hybrid system satisfies desired safety prop-
erties. SpaceEx operates on symbolic states consisting of a discrete location
and a continuous region. Its reachability algorithm can be represented as
a fixed point computation: S0 := postc(Init), Si+1 := Si ∪ postc(postd(Si)),
where Init refers to the initial states of the hybrid automaton, postc(S) is the
continuous post operator, and postd(S) is the discrete post operator. Note
that SpaceEx performs full fixed point computations operating on symbolic
states; it should not be confused with the least fixed point often used in
program analysis, see e.g. [140].

SpaceEx offers three options for set-based reachability analysis, i.e. the
PHAVer, the LGG and the STC, and one simulation option. The PHAVer
(Polyhedral Hybrid Automaton Verifyer) scenario is well-suited to linear
hybrid automata, i.e. hybrid systems with piecewise constant bounds on
the derivatives, and produces exact reachability results. The LGG Support
Function scenario implements an adaptation of the Le Guernic-Girard (LGG)
algorithm [203]. The STC (Space-Time approximation with Clustering)
scenario enhances the LGG algorithm by computing fewer convex sets for
a given accuracy. This scenario yields more precise results for discrete
transitions.

These algorithms compute an over-approximation of the reachable sets
and can be applied to high-dimensional hybrid systems with piecewise affine
dynamics and nondeterministic inputs [127, 129, 131]. SpaceEx combines
explicit set representations (polyhedra), implicit set representations (support
functions) and linear programming to achieve scalability while maintain-
ing high accuracy. SpaceEx engine computes an over-approximation of
the reachable states and expresses them as template polyhedra. Template
polyhedra are polyhedra whose facets are oriented according the so-called
template directions; these directions can be provided by the user. A cover
of the continuous evolution is obtained by time-discretization which allows
adaptive time-steps. The algorithm guarantees that the approximation
error in each template direction stays below a given value [11]. Very re-
cently, zonotope-based reachability algorithms for nonlinear systems from
CORA [10] have been implemented inside SpaceEx [14]. SpaceEx is available
at http://spaceex.imag.fr.

http://spaceex.imag.fr

22 2. FORMAL VERIFICATION USING REACHABILITY ANALYSIS

SpaceEx supports hybrid automata models and provides hierarchy, tem-
plates, and instantiations of components. SpaceEx models respect the SX
modeling language [94] and consist of base compoments (single hybrid au-
tomata) and network components (networks of hybrid automata). Note that
the composition of multiple hybrid automata is supported by SpaceEx and
it is automatically conducted by the tool, once the model is specified. The
design of the formal model is facilitated with the use of SpaceEx Model
Editor (MO.E.), a graphical editor for constructing models of complex hybrid
systems out of nested components. The user can determine various options to
tailor the reachability analysis according to his needs. These options involve
analysis algorithms, time horizon, number of iterations, output variables,
forbidden states, etc. An informal introduction to SpaceEx and its modeling
paradigm is available at [125].

2.5 Semi-Formal Verification Tools & Breach

Model-based analysis and design techniques for complex systems with un-
certainty rely mostly on extensive simulation. Efficient techniques and tools
exist for verification of hybrid systems with linear continuous dynamics but
no tool can be readily scalable for hybrid non-linear dynamics. An alternative
to formal verification is to use semi-formal verification techniques.

Semi-formal verification aims to combine formal verification with simula-
tion taking advantage of the benefits of both approaches. On the one hand,
formal verification provides complete and sound results, and on the other
hand, simulation can be efficient, scalable and easy-to-use. In this way, it
is possible leverage formal techniques in a resource-efficient way to identify
critical “deep” bugs. Typically, semi-formal techniques augment or guide
simulation using formal techniques [102].

In hybrid and control systems community, semi-formal verification typi-
cally refers to simulation-based methods, e.g. [97,184]. Their goal is to obtain
the same effect as reachability computation by finitely many simulations,
not necessarily of extremal points. Simulation-based are useful for nonlinear
dynamical systems, black or grey box models as well as programs that do
not come with an explicit mathematical model [218].

Breach [107] is a toolbox for simulation-based verification and parameter
synthesis of hybrid systems. It is a MATLAB/Simulink based tool that
performs approximate reachability analysis and relies on sensitivity analysis.
Its primary feature is to conduct efficient signal monitoring of properties
and requirements via the robust monitoring of metric interval temporal logic
formulas.

2.6. TEMPORAL LOGIC 23

2.6 Temporal Logic

Temporal Logic (TL) is a popular formalism, introduced into systems de-
sign [252] to specify acceptable behaviors of reactive systems. Traditionally,
TL has been used for formal verification, either by deductive methods [224],
or algorithmic methods [90, 256]. In this setting, the behaviors under consid-
eration are discrete, i.e. sequences of states or events [108]. Signal Temporal
Logic (STL) was proposed in [221,222] as a high-level declarative language for
continuous and hybrid systems. In this section, we recall the STL framework
of [221] as summarized in [108].

Preliminaries. The set of Boolean values is defined as B := {⊥,>}, with
⊥ < >, −> = ⊥ and −⊥ = >. Let R := R ∪ B be the totally ordered
set of real numbers with > the greatest element and with ⊥ being the
smallest element. A signal is a function D → E where D is an interval
of R+ and E ⊂ R. Signals with E = R are real-valued signals, whereas
signals with E = B are Boolean signals. A trace w is a set of real-valued
signals {xw1 , · · · , xwk } defined over an interval D of R+. This interval is called
the time domain of w. Note that a trace can be “booleanized” via a set of
threshold predicates of the form xi ≥ 0. STL can be seen an extension of
Metric Temporal Logic where real-valued variables (xi)i∈N are transformed
into Boolean values through these predicates. The syntax of STL is given by:

ϕ := true |xi ≥ 0 |¬ϕ |ϕ ∧ ϕ |ϕUI ϕ

with xi being the variables and I a non-singular interval of R+. This interval
defines both bounded intervals [a, b] and unbounded intervals [a,+∞) for
any 0 ≤ a < b. Let w be a trace over a time domain D. The formula ϕ

is defined over a time interval dom(ϕ,w) and respects the following rules:
dom(true, w) = dom(xi ≥ 0, w) = D,
dom(¬ϕ,w) = dom(ϕ,w),
dom(ϕ ∧ ψ,w) = dom(ϕ,w) ∩ dom(ψ,w),
dom(ϕ UI ψ,w) ={t ∈ R+ |t, t+inf(I) ∈ dom(ϕ,w), and

t+inf(I) ∈ dom(ψ,w)}.

Boolean Semantics. For a given trace w, the validity of an STL formula
ϕ at a given time t ∈ dom(ϕ,w) is determined according to the following
inductive definition [221].

24 2. FORMAL VERIFICATION USING REACHABILITY ANALYSIS

w, t |=true
w, t |= xi ≥ 0 iff xwi (t) ≥ 0
w, t |= ¬ϕ iffw, t 6|= ϕ

w, t |= ϕ ∧ ψ iff w, t |= ϕ and w, t |= ψ

w, t |= ϕUI ψ iff ∃t′ ∈ t+ I s.t w, t′ |= ψ and ∀t′′ ∈ [t, t′], w, t′′ |= ϕ

Some common operations can be redefined in a straightforward way:

false:= ¬ true ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)
♦Iϕ := true UI ϕ �Iϕ := ¬♦I¬ϕ

We use the shorthand notation ♦, �, and U to describe the untimed operators
♦[0,+∞), �[0,+∞) and U [0,+∞). For a formula ϕ and a trace w, we define the
satisfaction signal χ(ϕ,w, .) as follows:

for all t ∈ dom(ϕ,w), χ(ϕ,w, t) =
{
> iff w, t |= ϕ

⊥ otherwise

The monitoring of the satisfaction of ϕ can be accomplished by computing
the entire satisfaction signal χ(ψ,w, .) for each subformula ψ of ϕ. This
procedure is recursive on the structure of the formula, and moves from the
atomic predicates up to the top formula [221].

2.7 Cyber-Physical Systems

Background. The term Cyber-Physical Systems1 (commonly abbreviated
as CPS) emerged around 2006. Over the past few years, this term has rapidly
gained popularity. Its use has been evident both in the academic world and
in non-technical context. If google trends can form any reliable basis to
draw meaningful conclusions, it can be observed2 that more and more people
have been searching for CPS. Figure 2.3 portrays what Google thinks of the
popularity of the Cyber-Physical Systems query over time. Even if these
data can be considered circumstantial, there has been indeed an increasing
interest in CPS.

As for the origin of the term, it was coined in 2006 by Helen Gill at
the National Science Foundation in the United States [146]. Etymologically,
the term combines the words cyber and physical. Physical stems from the
Ancient Greek word φύσις (physis) which means nature. The word cyber is
known to be an abbreviation of the word cybernetics, which is derived from

1Regarding the debate whether a dash is required in the term, google trends show that
people mainly search for cyber physical systems or cyber-physical system.

2The google trends can be found at https://tinyurl.com/y8dvsrvy.

https://tinyurl.com/y8dvsrvy

2.7. CYBER-PHYSICAL SYSTEMS 25

Figure 2.3: Plotting the number Google Search queries of the term “cyber physical system”
over time (courtesy of google trends). Data correspond to the period from January 2014
till now.

the Greek word κυβερνήτης (kybernetes) meaning governor, helmsman or
captain. The word cybernetics was first used by Plato in The First Alcibiades
to signify the governance of people. In the modern era, the French word
“cybernétique” was coined in 1834 by the physicist André-Marie Ampère
(1775–1836) to denote the sciences of government in his classification system
of human knowledge [178].

The English word cybernetics first appeared in Norbert Wiener’s book
“Cybernetics: Or Control and Communication in the Animal and the Machine”
in 1948. A second version of this book was published in 1961 [296]. Gibson
theories and findings had great resemblance to contemporary cybernetics by
interleaving the fields of control systems, electrical network theory, mechanical
engineering, logic modeling, evolutionary biology and neuroscience.

In particular, his work on the automatic aiming and firing of anti-aircraft
guns, eventually led Wiener to formulate cybernetics. He investigated the
conjunction of information theory and automatic control constructing mech-
anisms that included analog circuits, mechanical parts and notions of feed-
back control logic. Albeit he did not employ digital computers, he readily
demonstrated the need for unifying physical processes, computation and
communication [206].

Following the prior historical and etymological discussion, it is plausible
that cyber-physical systems refer to the integration of computation with
physical processes [207]. More precisely, CPS bridge the cyber-world of com-
putations and communications with the physical world. In CPS, embedded
computers along with networks monitor and control the physical processes,
typically with feedback loops where physical processes affect computations
and vice versa. In this respect, the design of such systems requires compre-
hending the joint underlying mechanisms of computers, software, networks,
and physical processes.

In [259], the authors define CPS as “physical and engineered systems
whose operations are monitored, coordinated, controlled and integrated by a
computing and communication core”.

26 2. FORMAL VERIFICATION USING REACHABILITY ANALYSIS

Opportunities & Applications. Examples of CPS include aerospace sys-
tems, transportation vehicles and intelligent highways, agricultural devices,
defense systems, biomedical and healthcare systems, process control, factory
automation, building and environmental control, robotic systems. CPS inter-
act with the physical world, and must operate dependably, safely, securely,
and efficiently and in real-time [258].

The advent of CPS has been facilitated by recent technological achieve-
ments and trends, such as low-cost and high performance sensors, nanotech-
nology breakthroughs, wireless sensor networks, alternative energy sources,
and energy efficient computing devices. The industrial interest in CPS tech-
nologies has also increased, especially by vendors whose goal is to build
large-scale safety-critical CPS correctly, affordably, flexibly and on sched-
ule [259]. Some of the most promising applications for CPS research are as
follows [192,208,259].

– “Near-zero automotive traffic fatalities, minimal injuries, and greatly
reduced traffic congestion and delays.”

The National Highway Traffic Safety Administration reports that “on
an annual basis, there are more than 5 million car accidents and
2 million injuries or fatalities” in USA [78]. The total number of
vehicles worldwide has been increasing over the past decades and the
transportation infrastructure has reached its maximum capacity giving
rise to congestion and delays on roads. These problems have motivated
research on CPS such as automated vehicles, intelligent intersection
systems, wireless communication systems for vehicle-to-vehicle and
vehicle-to-infrastructure [192].

– “Sustainable and blackout-free electricity generation and distribution.”

In the United States, approximately 70% of electricity is generated
from fossil fuels causing more than 40% of greenhouse gas emission
globally [29]. This problem could be detrimental in the future since
demand for electricity is estimated to grow by 75% before 2030. Also,
50% of these power plants are 40 years old making the entire power
grid less reliable [35]. These challenges have stimulated CPS research
in monitoring, distributed sensing and control of power systems [192].

– “Smart, reliable, and flexible medical and healthcare systems.”

One significant challenge is to find ways to provide cost-efficient and
effective medical and health care services to the elderly and the disabled
people [275]. CPS research areas involve smart sensor systems for
real-time patient health condition monitoring, telemedicine systems

2.7. CYBER-PHYSICAL SYSTEMS 27

which enable remote healthcare service provision, semi-autonomous
tele-operated service robots which can assist with patient physical
activities. In addition, CPS research could mitigate the large number of
medical errors that lead to fatalities (98,000 per year only in USA [246]).
Some common medical errors involve surgical errors, diagnostic errors,
medication errors. A significant portion of those errors can be resolved
through CPS technologies [192].

Research Challenges. Cyber-Physical Systems (CPS) are integrations of
computation with physical processes. Embedded computers and networks
monitor and control the physical processes, typically with feedback loops
where physical processes affect computations and vice versa. In the physical
world, a central property of a system is its dynamics, the evolution of its
state over time. In the cyber world, dynamics are reduced to sequences of
state changes without temporal semantics. In this vein, CPS is about the
intersection, not the union, of the physical and the cyber world studying the
joint dynamics of physical processes, software, and networks [205].

A new scientific foundation that addresses the interaction between the
physical and cyber subsystems is vital. It should provide the grounds
for an overall understanding of the design, development, certification, and
deployment of cyber-physical systems. It has to integrate the theories of
computing and communication systems, sensing and control of physical
systems, as well as the interaction between humans and CPS. The science
of CPS composition must discover new architecture patterns, hierarchical
system composition from components and subsystems, protocol composition,
and new modeling languages and tools to specify, analyze, design and simulate
different compositions [259].

A key issue is that the formal models that are used for described physical
dynamics, e.g. difference and differential equations, do not model well the
behavior of software and networks. On the other hand, prevailing cyber
abstractions, e.g. state machines, functions, and objects, generally lack
temporal dynamics. For this reason, the modeling, design, and analysis of
CPS requires effective theory and tools to reason about hybrid systems [20,
220] that combine discrete and continuous dynamics.

Note that the models that include differential equations, imperative pro-
grams, synchronous digital logic are typically deterministic. Cyber-physical
systems, however, combine these models in such a way that determinism
is not preserved. In this respect, nondeterministic modeling formalisms
are required to capture the nature of CPS. Nondeterministic models are

28 2. FORMAL VERIFICATION USING REACHABILITY ANALYSIS

suitable for systematically handling unknown or unknowable events and
behaviors [206].

In the following, we mention several crucial research challenges for CPS.
For detailed descriptions, see [35,204,206,259,273].

– Safety, Security, and Robustness of CPS. The large amount of uncer-
tainties in the system, the environment, security attacks, and errors in
physical devices renders the system robustness, security, and safety a
crucial challenge [259].

– Model-based Development of CPS. Models are used today to generate
and test software implementations of control logic. Communications,
computing and physical dynamics must be abstracted and modeled at
different scales, vicinities, and time granularity [259].

– Verification, Validation, and Certification of CPS. The gap between
formal methods and testing needs to be bridged. Compositional ver-
ification and testing methods that explore the heterogeneous nature
of CPS models are essential. V&V must also be incorporated into
certification regimes [259].

– Computational Abstractions and Composition. Physical properties such
as the laws of physics and chemistry, safety, real-time and power con-
straints, resources, robustness, and security characteristics should be
captured in a composable manner by programming abstractions [259].
Ideally, heterogeneous systems to be composed in plug-and-play fash-
ion [35].

3
C

h
a

p
t

e
r

Bringing Formal Verification to
Industrial Model-Based Design

Technology transfer, also called transfer of technology, is the process by
which scientific research and new discoveries are developed into practical
and commercially relevant applications and products [68]. Typically, the
technology is transferred or disseminated from its original creator to a place
with a wider distribution of people or resources; it occurs among universities,
from universities to businesses, from large businesses to smaller ones, from
governments to businesses, across borders, both formally and informally [151].

In computer science, the transfer may refer to abstract technologies, such
as algorithms and data structures, or concrete such as open source software
packages. The need to provide a tool-oriented link between academic research
and industrial practice has motivated the foundation of specialized societies,
such as the International Journal on Software Tools for Technology Transfer.
This journal provides a forum discussing all aspects of tools that aid in the
development of computer systems [279].

Formal verification is considered to be one of the most prominent appli-
cations of logic to computer science and computer engineering. The formal
verification community has achieved many breakthroughs, bridging the gap
between theoretical computer science and hardware and software engineering.
Formal verification has been utilized in the hardware industry and it has
been successfully applied to various software types. Recently, it is reaching
out to new challenging areas such as system biology and hybrid systems [152].

29

30 3. BRINGING FORMAL VERIFICATION TO INDUSTRIAL MODEL-BASED DESIGN

Formal verification of hybrid systems has evolved from an elegant theory
to a vital practice. However, any pathway from theory to practice faces a lot of
challenges. New technologies must compete against well established practice
and demonstrate the need to replace the old with the new while overcoming
the frequent concerns and skepticism of engineers. A classic example concerns
the breakthrough in linear optimization that offered a polynomial algorithm
in the place of an exponential one. In fact, the new algorithm had a hard
time showing that it was indeed faster in practice. Implementations of
the exponential algorithm had been so refined that often the polynomial
algorithm was not faster on the size of applications that mattered [200].
There are several other interesting examples; the interested reader could also
read about the so-called galactic algorithms1. The bottomline is that the
new, better way has to compete against years of engineering and also show
that it is better in enough important cases to justify the trouble of replacing
the old with the new. Another obstacle arises that there is typically no way
to demonstrate that the new way is actually better without fully replacing
the old way in some context. Kurshan provides a stimulating read on his
personal experience on verification technology transfer in [199].

The lessons learned from the transfer of of formal verification technology
in the hardware industry could benefit the hybrid and cyber-physical systems
community. Technology transfer was achieved through a succession of small,
incremental steps, each of which moved in the direction of industrial adoption
and collectively, over more than a decade, achieved that goal. Through
small, incremental steps, excessive disruption of existing industrial design
development flows was avoided. However, to be worth the effort of adoption,
each small step nonetheless needed to offer some benefit over the current
practice. The key point is cost-effectiveness: the small step needs only to
provide a short-term benefit greater than its adoption cost. At the same
time, longer-term benefits are too hard to predict and thus are generally
ignored. Kurshan in [200] summarizes the specific challenges that need to be
addressed to successfully transfer a disruptive technology:

– interface the new technology to the client environment;

– limit and then integrate methodology changes into client practice;

– demonstrate the cost-effectiveness of the new technology in the client’s
environment;

– enable competitive evaluations.

1Johnson, https://rjlipton.wordpress.com/2010/10/23/galactic-algorithms

https://rjlipton.wordpress.com/2010/10/23/galactic-algorithms

3.1. INDUSTRIAL MODEL-BASED DESIGN & TOOLS 31

3.1 Industrial Model-Based Design & Tools

Nicolescu and Mosterman illustratively describe model-based design (MBD)
as an emerging solution to bridge the gap between computational capabilities
that are available but that we are yet unable to exploit. They pinpoint that
the use of a computational approach in the design itself allows raising the level
of abstraction of the system specification at which novel and differentiating
functionalities are captured. Automation can then assist in refining this
specification to an implementation. For this to be successful, performance
studies of potential implementations at a high level of abstraction are essential,
combined with the necessity of traceability and parameterization throughout
the refinement process [237].

More concretely, MBD is a paradigm for system design in which the
design process starts with the construction of high-level models which are
later used to guide further development, simulation, verification, and testing
of the system. MBD has found industrial use in the field of embedded
systems, particularly in automotive and avionics applications. The MBD
approach seeks to place an emphasis on abstract, mathematical modeling as
a first step before getting into low-level implementation details. The avail-
ability of such models, with associated formal (mathematical) specification
of desired/undesired behaviors, can aid in simulation and verification early
in the design process, thus identifying bugs in the logic of the system at a
point where the cost of finding and fixing them is still relatively low, and
improving overall system dependability [185,273,276].

In MBD, the designer should follow a standard a sequence of steps. Ini-
tially, the designer models the physical plant, relying either on first principles
or on system identification; this model captures the dynamical characteristics
of the physical parts of the system using mathematical equations. Then, the
designer synthesizes a controller that regulates the behavior of the physical
system. Subsequently, he performs extensive simulations to check the model
behavior under different configuration settings. The aim is to analyze and
evaluate the controller design by inspecting the behavior of specific variables
over time. The analysis is typically performed with respect to some require-
ments. In practice, however, these requirements are high-level and often
vague or informal. In case the system behavior is not satisfying with respect
to these requirements, the designer has to manually modify the controller,
e.g. by tuning the parameters or gains, and then repeat the validation step.
Through these validation efforts, the design is deemed to be satisfactory or
not. The evaluation may also remain inconclusive [177].

32 3. BRINGING FORMAL VERIFICATION TO INDUSTRIAL MODEL-BASED DESIGN

Afterwards, model transformation techniques are applied to transform
abstract models into more concrete models, and later into source code. It
should be noted that at any abstraction level, a complex model (system) can
be composed/decomposed from/to several simpler sub-models (subsystems),
which can be built by reusing existing verified components. In this respect,
the development complexity becomes manageable by separation of concerns,
the reliability of the system to be developed can be guaranteed by divide
and conquer, and the productivity of the development can be improved by
reuse [185,297].

MDB has been successfully applied in industry, and has become a ma-
jor approach in the design of computer controlled systems [237, 276, 298].
There is a variety of MBD approaches proposed and used in industry and
academia, based on Simulink/Stateflow [227, 297, 298], Modelica [116, 285,
286], SCADE [2, 54], LabVIEW [58], DSpace [277], as well as earlier at-
tempts, e.g., SysML [141,163], MARTE [271], Metropolis [41], Ptolemy [115],
CHARON [21].

To improve the efficiency and reliability of MBD, it is necessary to
automate the design process as much as possible. This implies that we must
apply design-automation techniques for modeling, simulation, synthesis, and
verification to the system-design process. However, automation is not easy if
a system-abstraction level is not well-defined, if components on any particular
abstraction level are not well known, if system-design languages do not have
clear semantics, or if the design rules and modeling styles are not clear and
simple. This requires that all models at different abstraction levels should
have precise mathematical semantics as well as the transformation between
models at different abstraction levels should preserve semantics (ideally, it
should be done automatically with tool support) [298].

3.1.1 Simulink

Model-based design is supported by MATLAB/Simulink and has been widely
used in the industry. Simulink [227] is s a graphical programming environment
for modeling, simulating and analyzing multi-domain systems, such as control
systems, signal processing systems, communications systems, and other
dynamic systems. It includes a set of block libraries and enables hierarchical,
component-based modeling. It is fully integrated within MATLAB and
facilitates mixed-signal, multirate and multitasking system simulation. It
also offers code generation, e.g. C/C++, VHDL, PLC. A Simulink model
comprises a set of inputs, outputs, and blocks.

3.1. INDUSTRIAL MODEL-BASED DESIGN & TOOLS 33

Stateflow [280] is a toolbox that adds functionalities for modeling and
simulating reactive systems with the use of hierarchical state diagrams,
known as statecharts. In practice, Stateflow extends Simulink with a design
environment for incorporating flow charts, switched actions and logical
decisions. As such, it can be used to design supervisory, event-driven, and
hybrid control. A Stateflow diagram has an hierarchical structure and is
made up of events, variables, discrete states, and transitions. Stateflow states
support exclusive (OR) as well as parallel (AND) decomposition. An OR
diagram contains states which are linked with transitions and only one state
is activated at any time. On the contrary, an AND diagram contains states
that are arranged in parallel and are activated at the same time.

Simulink/Stateflow conducts fast simulation but depends on unverified
numerical simulation. This fact entails two crucial errors: (i) simulations
may provide incomplete coverage of system behaviors (especially, for open
systems) and (ii) numerical errors may cause unsound analysis results. As
such, validating requirements with Simulink’s simulation may not lead to the
discovery of critical design errors or bugs. If such insufficiently tested systems
are deployed in a real setting, there could be critical system failure [298].

Formal verification techniques aim to ameliorate the inherent problems
of simulation. Mathworks has designed a semi-formal tool, named Simulink
Design Verifier, in order to complement simulation. The goal of this tool
is to identify hidden design errors without requiring extensive simulation
runs. Currently, it can low-level errors such as integer overflow, division
by zero, dead logic, and array access violations. However, it cannot check
the correctness of any system-level properties considering the entire system
model or any environmental aspects [298].

3.1.2 SCADE

SCADE has been used in various application domains like avionics, nuclear
plants, transportation, and automotive. SCADE was based on on the
synchronous data-flow language Lustre [157]. Originally, it was used as a
tool that provided a code generator that met several standards for safety
critical applications. It also offered graphical notation for Lustre. In 2008,
the new language ‘SCADE 6’ was developed. This language is a combination
of the Lustre data-flow style with control structures and compilation and
static analyses for ensuring safety properties. This increase in expressiveness
together with the qualified code generator have broadened SCADE scope of
applications [92].

34 3. BRINGING FORMAL VERIFICATION TO INDUSTRIAL MODEL-BASED DESIGN

SCADE originates from an effort to define proper languages to program
high-integrity applications. Such applications have two main characteristics:
a) they control a process using a read inputs/compute/write outputs cycle, b)
a defect can have catastrophic effects involving possible fatalities. SCADE’s
solution was to employ the synchronous languages family relying on the
zero-delay hypothesis. Moreover these languages have a well-defined and
unambiguous semantics [110].

SCADE is a data-flow oriented language, close to the applied control
engineer practices. Its semantics rely on the Kahn Process Network [147],
which is a model of distributed computation.The language is strongly typed
and declarative. Moreover, SCADE supports state-machines as well as data-
flow and control-flow constructs. The SCADE Suite KCG code generator (i)
checks if a SCADE model is correct with respect to the language semantics,
ii) generates C or Ada code from the original model and iii) implements
static analyses to ensure strong safety properties like determinism. SCADE
Suite checks if a model is correct with respect to the language semantics, and
can generate certified C code. The code generation and the static checks are
qualified/certified for various safety standards, such as DO-178C/DO-330
at TQL-1, IEC 61508 at SIL 3, and ISO 26262. The SCADE Suite code
generator is itself developed following the rules of the standards (DO-178,
ISO 26262, EN 50128). Every artefact produced during its development is
accessible to authorities, which can then assess the correctness of the code
generator in more detail [65, 244].

3.2 Tool Integration

In this Section, we provide a workflow that is based upon current industrial
practice and acts as an incremental patch that is able to demonstrate value
without hampering existing methodologies. In particular, we propose a semi-
automated toolchain that enables the formal verification of industrial-sized
models employing well-established and recently designed tools. Our starting
point is an industrial model, described in MATLAB/Simulink, and a set of
industrial requirements, defined in natural language. The entire analysis
process is semi-automated via a successive use of tools and translators.
The end goal is to formally verify the correctness of the design against
the specified requirements. Figure 3.1 indicates the proposed verification
workflow. Figure 3.2 emphasizes on the construction of verified code from
SpaceEx models and Figure 3.3 depicts all the internal steps that are required
within SCADE Suite for the code generation.

3.2. TOOL INTEGRATION 35

System Model
(Industrial Tool)

Formal Model
(Hybrid Automata)

Formal Spec.
(Monitor Automata)

Specification
(Natural Language)

Composition
(SpaceEx MO.E.)

Verification
Outcome

Reachability
Analysis

SpaceExHYST

2.1

4.3

2.2

2.3

SL2SX
SynLin

formalSpec

Figure 3.1: Proposed verification workflow: (i) start with an informal model and specs,
(ii) formalize the model and the specs via pattern templates, (iii) feed the formal model
and the specs into off-the-shelf reachability analysis tools. The contribution (pink) is the
formalization using pattern templates tailored for model checking.

Simulink to SpaceEx Translator (SL2SX). Simulink to SpaceEx Trans-
lator (SL2SX). SL2SX is a semi-automated translator of Simulink models
into equivalent SpaceEx models [231]. The user should select the input of the
translator, i.e. a Simulink model saved as an XML file, and the tool builds a
SpaceEx model, that is a network of hybrid automata. For hybrid automata,
the tool uses the SX format since it is a popular formalism, employed by
SpaceEx as well as other formal verification tools. The output model has
the same structure with the original Simulink model. The variable names,
hierarchical connection and graphical positions are preserved. The tool
supports several continuous-time and arithmetical, logic-based blocks, and
blocks with discontinuous dynamics, e.g. switches. Finally, SL2SX creates
empty components for the unsupported Simulink blocks and the user should
manually define them.

SynLin tool. SynLin is a prototype MATLAB tool that facilitates the semi-
automated formal verification of Simulink models. Starting from a general
Simulink model, it conducts a sequence of steps, i.e. model adaptation,
model translation via SL2SX, guided simulation, and over-approximation of

36 3. BRINGING FORMAL VERIFICATION TO INDUSTRIAL MODEL-BASED DESIGN

Model
(ODE)

Controller
(ODE)

Supervisor
(Switching Logic)

Formal Model
(Hybrid Automata)

System Design

Formal Analysis

Reachability analysis
(SpaceEx)

Certified SW design
(SCADE Hybrid)

sx2sh

Figure 3.2: Proposed workflow and toolchain for the construction of verified controllers
using SpaceEx and SCADE

nonlinear functions and blocks (if need be). Finally, it constructs a formal
model, described as a network of hybrid automata. Note that simulation
is useful to gain some knowledge regarding the operating conditions of the
model states/variables. This information is important when conducting
over-approximation/linearization of the nonlinear dynamics. Currently, the
tool can conduct corner-case simulations via MATLAB or call Breach [107]
to obtain more accurate bounds via falsification. These bounds are enlarged
to avoid any out-of-range cases.

SCADE Hybrid. SCADE Hybrid is an extension of the SCADE language
with constructs to define flows using ordinary differential equations (ODE).
The resulting language is an explicit hybrid systems modeling language, like
Simulink [227] or LabView [58]. It is different from implicit hybrid systems
modeling languages like the ones implemented in Dymola [71] or ANSYS
Simplorer [283], which use differential algebraic equations.

The language relies on [48] and has the following key ideas:

– The solving of ODEs is handled by an external numerical solver. No
hypothesis is made on the method used by this solver.

3.2. TOOL INTEGRATION 37

Formal Model &
Formal Specs

System Analysis
contin. controller

(SpaceEx)

System Refinement
discrete controller

(SCADE Hybrid)

Controller
Refinement

(SCADE)

Code Generation
(SCADE KCG)

Controller
Refinement
(SCADE DV)

Figure 3.3: Applying SCADE Suite on hybrid automata models and their interaction with
a model checker; two inputs: formal model and formal specifications, output: certified code
generation of system requirements with formaSpec; SCADE DV stands for SCADE Design
Verifier and contin. for continuous [244]

– Discrete-time computations are strictly separated from continuous-time
computations. The goal is to ensure that the semantics of a model
do not depend on the numerical solver used or its time step. Discrete
computations must be triggered by a timer or a zero-crossing, which
is detected by the solver when a signal crosses zero. Unlike Simulink
and other tools that check such properties and display warnings in
some cases, SCADE Hybrid only allows program that separate discrete
and continuous computations. As such, the behavior of the hybrid
programs is fully deterministic for the discrete part.

– The existing compilation process and infrastructure can be reused as
much as possible. Discrete nodes are compiled exactly as in regular
SCADE. This compilation process and the simulation algorithm is
described in details in [67].

38 3. BRINGING FORMAL VERIFICATION TO INDUSTRIAL MODEL-BASED DESIGN

For explicit system modelers, an important step in their compilation is to
detect algebraic and causality loops. Such loops are critical as they could
lead to deadlock and impede the generation of statically scheduled code [47].

SpaceEx to SCADE Hybrid (sx2sh) translator. The sx2sh tool im-
plements the translation of hybrid automata, defined as SpaceEx models, into
SCADE Hybrid models. SCADE Hybrid deals with discrete and continuous
modeling and essentially describes hybrid programs. The objective of the
translation is to bridge a gap between high-level description with possible
non determinism necessary for space exploration with deterministic low-level
description necessary for path to implementation. Indeed, SpaceEx allows
for reachability analyses within the environment while SCADE Hybrid allows
for embedded software simulation within its environment and can lead to
certifiable code generation using SCADE. Note that the current version
supports urgent transitions.

formalSpec tool. The formalSpec tool [76] assists with the semi-automatic
translation and instantiation of system requirements from controlled natural
language into hybrid automata. The resulting hybrid automata are expressed
formally as monitors (observer automata). These monitors can be auto-
matically integrated within an existing SpaceEx system model via parallel
composition and network components. The tool comes with a database of
structured English phrases and the associated monitor automata.

In the following, we describe how the formalSpec tool operates:

– First, the user should specify the SpaceEx model as an input and the
specifications that he/she wants to check.

– The tool can identify automatically or manually the top-level component
of the system model and create a hierarchical, tree-based view of the
complete model.

– The variables that appear in the formal specification do not have to
be visible to the top-level component (global variables). They can be
local variables accessible by lower-level network or base components.
These variables are color-coded for clarity.

– The tool provides syntax highlighting to indicate whether the param-
eters used in the specifications are unambiguous within the SpaceEx
system (green), ambiguous (yellow), or non-existing (red).

– After identifying the corresponding variables and the specification (from
a predefined list), the tool instantiates the monitor automaton which
encodes the specification. Then, it creates a new base component with

3.2. TOOL INTEGRATION 39

the monitor. The predicates (p, q, s) and associated parameters, e.g.
T , (see Chapter 4 for more information) of the monitor are replaced by
arithmetic expressions. The tool also offers the option to couple this
new base component with the original SpaceEx model by linking the
appropriate variables (through binds).

– The user can input more than one specifications to the tool. In this
case, multiple monitors will be constructed.

HYST translator. HYST [40], a Hybrid Source Transformer, is a source-
to-source conversion tool tailored to hybrid systems. The main functionality
of HYST is to translate a hybrid automaton model expressed in SX format
into formalisms that are supported by other formal verification tools. The
user should select the input model, in SpaceEx format, and the tool converts
it to the formats of HyCreate [37], Flow* [83], or dReach [195]. A useful
feature of HYST is that it can optimize the input model in order to meet
specific characteristics of the target tool. Specifically, the generation of
pseudo-invariants is supported by HYST which could lead to reachability
improvements.

MATLAB integration. All the aforementioned tools can be called and
used via MATLAB scripts. Starting with a mathematical model expressed
with ODEs (in MATLAB, Simulink, or hybrid automata) and a set of natural
language requirements, we can semi-automatically obtain the formal model
(both in discrete and continuous time) and the formal specifications. Then,
we have interfaced the SpaceEx analysis core to conduct reachability analysis.
Some scripts can be found at [186].

40 3. BRINGING FORMAL VERIFICATION TO INDUSTRIAL MODEL-BASED DESIGN

4
C

h
a

p
t

e
r

From Informal Requirements to
Formal Specifications via

Pattern Templates

Parts of this Chapter have been published in [132, 133].

Requirements play an important role in every design process [239]. Re-
quirements broadly describe any necessary or desired function, attribute,
characteristic, capability or quality that a system should satisfy and possess.
Requirements can have various levels of specificity and may refer to a prod-
uct or a process [253]. In practice, product and process requirements are
closely linked. According to their purpose, they can be divided in functional
and non-functional requirements. Non-functional requirements describe how
the system works and include performance objectives, whereas functional
requirements describe what the system should do. According to [211], require-
ments that indicate what a “system shall be” are non-functional, whereas
requirements that express what “a system must do” are functional. The field
of requirements engineering [278] specializes in defining, documenting and
maintaining requirements in the engineering design process.

Industrial requirements are typically described in natural language or
controlled natural language (CNL) [198]. A CNL is a subset of natural
language with a constrained grammar aiming to reduce or eliminate ambiguity.
There are various CNL languages available which serve different purposes
(see Section 1.1), such as template-based natural languages [100]. Such

41

42 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

languages can be helpful since similar classes of requirements are encountered
in industrial practice.

Generally, requirements written in some form of natural language cannot
be directly interpreted by tools for formal verification. They first need to
be translated into a formal representation, such as temporal logic [252].
However, this task for complicated properties and hybrid systems is prone
to errors and not straightforward; especially for users that are not experts in
formal methods.

In this respect, the goal of this Chapter is twofold: (i) to bridge the
gap between between industrial requirements and formal specifications, and
(ii) to encode rich formal specifications so that they can be interpreted by
reachability tools and can be verified automatically. In particular, we propose
a semi–automated, template–based translation of industrial requirements
into a formal representation (monitor automata). This translation assists
in mitigating the semantic mismatch and the use of monitor automata that
enables the algorithmic verification of rich specifications.

Herein, we consider specifications expressed by pattern templates which
are predefined properties with placeholders for state predicates. Pattern
templates [142,196] can be readily understood by non-expert users as they
use expressions from natural language. In this Chapter, we provide (i) formal
definitions for select patterns in the formalism of hybrid automata that are
applicable over both bounded and unbounded time and (ii) monitors with
correctness proofs which encode these properties as a reachability problem
of an error state. The composition of these monitors with the formal model
enables the algorithmic verification of the property via off-the-shelf fully
automated tools.

A schematic of the proposed workflow is depicted in Figure 5.9. A (safety)
requirement in CNL is translated into a monitor automaton using pattern
templates [196]. The monitor automaton has the same syntax and respects
the same semantics as the system model. As such, it can be composed with
the system model and fed into a reachability tool. The monitor automaton
encodes the requirements as the reachability of a designated error state
(see [156] for one of the earliest works on monitor automata and [72] for
analog and mixed-signal applications). The formalSpec tool [76] can assist
in automatically instantiating monitor automata from CNL. The tool comes
with a database of structured English phrases and the associated monitor
automata.

The remainder of the Chapter is organized as follows. In Section 4.1, we
introduce the pattern templates, present illustrative examples and describe
selected patterns in an intuitive manner. In subsections 4.1.1 and 4.1.2, we

4.1. PATTERN TEMPLATES 43

System Model
(Industrial Tool)

Formal Model
(Hybrid Automata)

Formal Spec.
(Monitor Automata)

Formal Spec.
(First-Order Logic)

Language Template
(Structured English)

Specification
(Natural Language)

Composition

Verification
Outcome

Reachability
Analysis

2.1

4.3

4.2.2

4.1

2.2

2.3

Figure 4.1: Proposed verification workflow: (i) start with an informal model and specs,
(ii) formalize the model and the specs via pattern templates, (iii) feed the formal model
and the specs into off-the-shelf reachability analysis tools. The contribution (pink) is the
formalization using pattern templates tailored for model checking.

elaborate on the applicability of these pattern tempates in control systems
and industrial use cases. The formalization of the selected pattern templates
in hybrid automata formalism is presented in Section 4.2. The corresponding
monitor automata are described in Section 4.3. The formal proofs of correct-
ness can be found in Section 4.4. We apply the introduced monitors to an
electromechanical brake use case in Section 4.5. In Section 4.6, we give an
overview of the state of the art.

4.1 Pattern Templates

Pattern templates are predefined properties with placeholders for state pred-
icates and were introduced in [142]. Informally, a state predicate refers to
a statement/formula that may be true or false depending on the values of
its variables. It is commonly understood as a Boolean-valued function, i.e.
an operator that returns a value that is either true or false. Background
information on boolean functions and temporal logic can be found in Sec-
tion 2.6. Hereafter, we use p, q, and s to describe state predicates, i.e. a
function RX→ B.

44 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

The list of patterns considered in this work and the examples are based
on [114, 196]. Most pattern intents are borrowed from [34]. Some of the
pattern templates that we employ in this thesis have been formally defined
using temporal logic: LTL, CTL and timed CTL in [34], MTL in [44,196], and
probabilistic LTL in [153]. These definitions, however, do not immediately
carry over to monitoring with hybrid automata, since hybrid automata cannot
distinguish events with the precision of a temporal logic. In the next section,
we formalize the properties such that they can be applied to hybrid automata.

Absence. “After q, it is never the case that p holds.”

q

p

q

p

Figure 4.2: Absence pattern: satisfied (left), violated (right).

Definitions. Informally, the absence pattern specifies a state predicate that
must not hold. Formally, the absence pattern can be encoded as an STL
specification, i.e. 2(q → 2(¬p)).

Pattern intent. This pattern describes a portion of a system’s execution that
is free of certain events or states. An example, borrowed from ABS systems,
is that “the ABS controller should never allow a wheel skidding”.

Absence (timed). “When T time units are measured, after q was first
satisfied, it is never the case that p holds.”

q

p
0 T

q

p
0 T

Figure 4.3: Timed absence pattern: satisfied (left), violated (right).

Definitions. Informally, this pattern specifies a state predicate that must not
hold after a certain amount of time has passed. Formally, this pattern can
be encoded as an STL specification, i.e. 2(q → 2[T,∞)(¬p)).

Pattern intent. This pattern describes a portion of a system’s execution that
is free of certain events or states after a time-bound. An example, borrowed

4.1. PATTERN TEMPLATES 45

from cybersecurity, is that “after a login failure, the system must be free of
login attempts between 10 to 50 milliseconds”.

Universality. “After q, it is always the case that p holds.”

q

p

q

p

Figure 4.4: Universality pattern: satisfied (left), violated (right).

Definitions. Informally, the universality pattern specifies a state predicate
that must always hold. Formally, the universality pattern can be encoded as
the STL specification 2(q → 2p).

Pattern intent. This pattern describes a portion of a system’s execution
which has a desired property. An example, borrowed from ABS systems, is
that “the ABS controller should always guarantee vehicle steerability”.

Remark 1. Note that the universality can be seen as the dual of the absence
pattern.

Minimum duration. “After q, it is always the case that once p becomes
satisfied, it holds for at least T time units (T > 0).”

q

p
0 T

q

p
0 T

Figure 4.5: Minimum duration pattern: satisfied (left), violated (right).

Definitions. Informally, this pattern describes the minimum amount of time
a state predicate has to hold once it becomes true. Formally, this pattern
can be encoded as the STL specification 2(q → 2(p∨ (¬p W 2[0,T]p))). The
temporal operator W stands for weak until, i.e. p1W p2 := (p1U p2) ∨�p2.

Pattern intent. This pattern captures the property that every time the state
formula P switches from false to true, it will remain true for at least t time
unit(s). An example, borrowed from engine starter systems, is that “the
system has a minimum ‘off’ period of 120s before it reenters the cranking
mode”.

46 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

Maximum duration. “After q, it is always the case that once p becomes
satisfied, it holds for less than T time units.”

q

p
0 T

q

p
0 T

Figure 4.6: Maximum duration pattern: satisfied (left), violated (right).

Definitions. Informally, the maximum duration pattern captures that a state
predicate always holds for less than a specified amount of time. Formally, this
pattern can be encoded as the STL specification 2(q → 2(p ∨ (¬p W (p ∧
3[0,T](¬p))))).

Pattern intent. This pattern captures the property that every time the state
formula P switches from false to true, it will remain true for at most t time
unit(s). An example, borrowed from engine starter systems, is that “the
system can only operate in engine cranking mode for no longer than 10s”.

Bounded invariance. “After q, it is always the case that if p holds, then s

holds for at least T time units.”

q

p

s
0 T

q

p

s
0 T

Figure 4.7: Bounded invariance pattern: satisfied (left), violated (right).

Definitions. Informally, the bounded invariance pattern specifies the min-
imum amount of time a state predicate must hold once another predi-
cate is satisfied. Formally, this pattern matches the STL specification
2(q → 2(p→ 2[0,T]s)).

Pattern intent. An example, borrowed from engine starter systems, is that
“if the error 502 is sent to the Drive Information System, the braking system
is inhibited for 10s”.

4.1. PATTERN TEMPLATES 47

Bounded recurrence. “After q, it is always the case that p holds at least
every T time units (T > 0).”

q

p
0 T τ τ + T

q

p
0 T

Figure 4.8: Bounded recurrence pattern: satisfied (left), violated (right).

Definitions. Informally, the bounded recurrence pattern denotes the amount
of time in which a state formula has to hold at least once. Formally, this
pattern can be described by the STL specification 2(q → 2(3[0,T]p)).

Pattern intent. This pattern requires that P must recurrently hold. An
example, borrowed from ABS systems, is that “the ABS controller checks
for skidding every 10ms”.

Bounded response (persisting). “After q, it is always the case that if p
holds, then s persists (holds for nonzero time) after at most T time units. ’

q

p

s
0 T

q

p

s
0 T

Figure 4.9: Bounded response pattern: satisfied (left), violated (right).

Definitions. Informally, the bounded response pattern restricts the maxi-
mum amount of time that passes after a state predicate holds until another
predicate becomes true. Formally, this pattern can be formulated as the STL
specification 2(q → 2(p→ 3[0,T]s)).

Pattern intent. To describe cause-effect relationships between a pair of
events/states. An occurrence of the first, the cause p, must be followed by
an occurrence of the second, the effect s within a time-bound. An example,
borrowed from ABS systems, is that “from direct client input, detection and
response to rapid deceleration must occur within 0.015s”.

48 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

4.1.1 Patterns occurring in Control Systems

Some control specifications have been expressed with Temporal Logic [183],
Simulink monitors [43], or Modelica language [241]. In this Section, we
show how some common control specifications can be expressed with our
formalized pattern templates. We consider the untriggered version of the
requirements (q := true). We assume a constant, positive reference signal
xref as well as that x(0) < xref holds.

Safety. “The state x of the system should always be inside the acceptable
operating range expressed as safe region S.”

This property is matched by the absence pattern with p := {x /∈ S}.
Equivalently, p := {x <= min(S) ∧ x >= max(S)}.

Target Reachability. “The state x of the system should be within distance
ε of the target (xtarget) within T time units.”

This property can be encoded as the bounded response pattern, where
p := true and s := {d(x, xtarget) ≤ ε}, with d(x, y) being a function that
computes the distance between states x and y.

Overshoot. “The state x of the system should not exceed an overshoot of
ov% with respect to the reference xref”.

This property can be formulated as an absence pattern, where p :=
{x > (100 + ov)% · xref}.

Settling Time. “The state x of the system should reach and stay within a
per% of the reference xref within Tset time units.”

This property can be described by the absence (timed) pattern, where
T := Tset, p:= {x ≤ (100− per)% · xref ∨ x ≥ (100 + per)% · xref}.

Rise-Time. “The state x of the system should reach 90% of the reference
xref at time Trise”.

This property can be mapped to the bounded response pattern, where
p :=true, T := Trise, and s := {x ≥ 0.9 · xref}.

Undershoot. “After reaching the reference xref , the state x of the system
should not fall below a threshold of u% with respect to the reference.”

This property can be expressed with the bounded invariance pattern,
where T :=∞, p := x ≥ xref and s := {x ≥ (100− u)% · xref}.

Remark 2. In several cases above, the monitor can be simplified (when
p :=true, T := 0, etc.) or be expressed with multiple pattern templates. A
varying reference signal can be captured with the introduction of predicate q.

4.1. PATTERN TEMPLATES 49

4.1.2 Patterns found in Industrial Use Cases

Formalizing practical requirements is a challenging task, even for experts [105,
172]. This Section shows the applicability of the select pattern templates
to different application domains. Together with out industrial partners, we
have selected requirements from three different application domains, wind
turbines [188,265], automated driving [168,266] and braking systems [130,
281]. Some of the requirements can be difficult to translate into a formal
representation without a given pattern template.

Wind Turbines.
Requirement 1: “The pitch rate of the turbine blades shall not be larger
than the maximal pitch rate”.

This requirement can be mapped to the absence pattern.

Requirement 2: “The generator torque rate shall be between the minimum
and the maximum torque rate”.

This requirement can be mapped to the universality pattern.

Requirement 3: “In partial load, the pitch angle shall be larger than the stall
pitch angle”.

This requirement can be mapped to the universality pattern.

Requirement 4: “The absolute difference between the commanded pitch
angle and the measured pitch angle can only be larger than the maximum
difference for less than c time units.

This requirement can be mapped to the maximum duration pattern.

Requirement 5: “The absolute difference between two individual pitch angles
can only be larger than the maximum difference for less than c time units”.

This requirement can be mapped to the maximum duration pattern.
Requirements 1 - 3 describe time invariant properties, whereas requirements
4 and 5 depend explicitly on time.

Automated Driving.
Requirement 1: “The largest communication sequence flow duration shall be
less than TBD seconds”.

This requirement can be encoded as the maximum duration pattern.

Requirement 2: “The maximal waiting time for an ACK message should be
20 ms”.

50 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

This requirement can be encoded as the maximum duration pattern.

Requirement 3: “When an acknowledgeable message arrives, an ACK message
shall be sent to the sender by the receiver within the maximal waiting time”.

This requirement can be encoded as the maximum duration pattern
(triggered).

Requirement 4: “If an ACK message exceeds the maximal waiting time, the
message being acknowledged shall be considered as lost”.

This requirement can be encoded as the universality pattern.

Requirement 5: “A vehicle shall send MVR FINISHED messages to its session
partner after finishing successfully its planned maneuver”.

This requirement can be encoded as the universality pattern (triggered).

Requirement 6: “After a vehicle i received a propose message with the
information {ID-x, constraints-x, Tfinish-x} and after vehicle i sent an
accept message with ID-x, every planned contingency manoeuvre of vehicle i
must satisfy constraints-x, until the point of time Tfinish-x is reached”.

This requirement can be encoded as the minimum duration pattern (trig-
gered).

Requirement 7: “After starting execution of the manoeuvre primitive k it
is always the case that if the actual disturbances and measurement errors
are below error-bounds-k then the deviation of the state from the reference
trajectory is below state-bounds-k for at least duration-k.

This requirement can be encoded as the bounded response pattern (trig-
gered).

Brake systems.
Requirement 1: “The caliper must reach x0 = 0.05 dm after the braking
request is issued within 20 ms with a precision of 4%”.

This requirement can be expressed by the bounded response pattern.

Requirement 2: “The caliper speed at contact must be below 2 mm/s”.
This requirement can be expressed by the absence pattern.

Note that events, boolean signals and messages can be encoded as state
predicates.

4.2. FORMALIZING PATTERN TEMPLATES FOR HYBRID AUTOMATA 51

4.2 Formalizing Pattern Templates for Hybrid Au-
tomata

In the previous section, we provided a list of pattern templates along with
formal and informal definitions in structured English. These pattern tem-
plates were also formally defined using temporal logic, e.g. MITL in [34,196].
These definitions, however, do not immediately carry over to monitoring with
hybrid automata. The hybrid automata cannot distinguish events with the
precision of a temporal logic as the intersection between the location invari-
ants and location guards must be non-empty. In addition, hybrid automata
traces include left and right closed intervals whereas properties might be
defined over open intervals. In this respect, in this section, we define these
pattern templates in a formalism that is suitable for hybrid automata. Note
that our definitions can differ slightly from the MITL semantics since they
are tailored specifically to hybrid automata monitors. Later, in Section 4.3,
we are going to see how to use these templates with reachability tools.

Note that the properties in this Chapter refer to predicates that describe
states, not events. In addition, the predicates can express timing properties
by adding a clock to the monitor, so that time becomes a state variable.
We consider triggered versions of the properties that only take effect after a
predicate q holds. A run, for which !q always holds, satisfies the property.

4.2.1 Preliminaries

We consider p, q, s to be predicates over the state variables, which means
functions RX→ B. We use the shorthand notation p(x) to indicate that p is
true for x. A hybrid automaton run r ∈ R is given by continuous states xi,
locations `i, durations δi, and trajectories ξi. We write the set of runs of a
hybrid automaton as Runs(H). We also use some notation for the timing
of states on runs, since it simplifies formalization of the properties. The
event-times of a run r are denoted by

ti =
i∑

j=0
δj .

That means that the jump number i occurs at time ti for i = 0, . . . , N − 1.
For further notational convenience, we assume t−1 = 0.

We establish a total order on the time points of a run by considering
pairs (i, t), with i being an index and t denoting the global time. Formally,
the event-time is T = N0 × R≥0. To clarify the difference, we define real

52 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

time with the symbol t and event-time with τ ∈ T. Event-times are ordered
lexicographically, formally

(i, t) < (i′, t′)⇔ (i < i′) ∨ (i = i′ ∧ t < t′).

Note that the event-time enables us to uniquely identify continuous and
discrete states on the run. The event-time domain of a run r is expressed by
the set of pairs:

dom(r) =
{
(i, t)

∣∣ 0 ≤ i ≤ N − 1, ti−1 ≤ t ≤ ti} ∪ {(N, tN−1)
}
,

with the last term pointing out that the last state in the run, (`N ,xN) is
taken at time tN−1 (total duration of the run).

The open truncated event-time domain of a run r which excludes the last
T time units is described by the set of pairs

dom−T (r) =
{
(i, t) ∈ dom(r)

∣∣ t < tN−1 − T
}
.

The truncated domain is used for properties that refer to future events and
are not included in the domain of the run. We opt for an optimistic outlook
of such cases: in case the property holds on the truncated domain, we assume
that it holds on the run.

For a given τ = (i, t) ∈ dom(r), we denote r(τ) ∈ RX as the continuous
state ξi(t− ti) and rLoc(τ) ∈ Loc as the discrete state `i. This denotes the
time passed between two event-times τ = (i, t), τ ′ = (i′, t′) as

d(τ, τ ′) = t′ − t.

In certain cases, we only care about the first time when a predicate holds. If
the predicate, for example q, is true over a left-open interval, the infimum
shall be used. We write the shorthand τq.1 = infτ∈dom(r) q(r(τ)). To formally
describe that a predicate holds at τ for nonzero time, we define for every run
r, a predicate p, and an event-time τ ,

persists (r, p, τ) = ∃δ > 0 | ∀τ ′, (τ ≤ τ ′) ∧ (d(τ, τ ′) ≤ δ)⇒ r(τ ′).

4.2.2 Formal Definitions

We formally define the properties of a hybrid automaton with its runs. A
hybrid automaton H satisfies a property φ if and only if all runs r ∈ Runs(H)
satisfy φ. We use the convention: (i) r |= φ when a run r satisfies the property
φ, (ii) p following q means that there are τq and τp with τp ≥ τq such that

4.2. FORMALIZING PATTERN TEMPLATES FOR HYBRID AUTOMATA 53

p(r(τp)) and q(r(τq)) hold, (iii) τq, τp, τp̄, τ ′p respectively imply that q(r(τq)),
p(r(τp)), ¬p(r(τp̄), p(r(τ ′p)) hold.

Absence. “After q, it is never the case that p holds.”
r |= φ iff for all τq, τ ∈ dom(r) with τ ≥ τq, holds ¬p(r(τ)).

q

p
T

q

p
τq τp ≥ τq

Figure 4.10: Absence pattern: satisfied (left), violated (right).

Remark 3. Note that we use the verb hold to describe a property that has
been always true. On the contrary, becomes satisfied corresponds to an edge,
which implies that the signal was earlier false and afterwards it became true.

Absence (timed). “When T time units are measured, after q was first
satisfied, it is never the case that p holds.”

r |= φ iff for all τq, τ ∈ dom(r) with d(τq, τ) ≥ T , holds ¬p(r(τ)).

q

p
τq τp τq + T

q

p
τq τq + T τp

Figure 4.11: Timed absence pattern: satisfied (left), violated (right).

Universality. “After q, it is always the case that p holds”.
r |= φ iff for all τq, τ ∈ dom(r) with q(r(τq)) and τ ≥ τq, holds p(r(τ)).

q

p
τq τp

q

p
τq τp τp̄

Figure 4.12: Universality pattern: satisfied (left), violated (right).

Minimum duration. “After q, it is always the case that once p becomes
satisfied, it holds for at least T time units.”

r |= φ iff p following q implies that for τq.1 holds:

54 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

1. for all τp, τp̄ ∈ dom(r) with τq.1 ≤ τp < τp̄, d(τq.1, τp̄) > T (p not
becoming false within T after τq.1), and

2. for all τp, τp̄, τ ′p̄ ∈ dom(r) with τq.1 ≤ τp̄ < τp < τ ′p̄, it holds that
d(τp̄, τ ′p̄) > T (violations of p are more than T apart).

q

p
τq τp τp + T

q

p
τq τp τ ′p τp + T

Figure 4.13: Minimum duration pattern: satisfied (left), violated (right).

Maximum duration. “After q, it is always the case that once p becomes
satisfied, it holds for less than T time units.”

r |= φ iff p following q implies that for all τp, τ ′p ∈ dom(r) with τp ≥ τq
one of the following holds:

1. d(τp, τ ′p) < T (τ ′p is early enough, covering the τp = τ ′p case), or

2. there is a τp̄ such that τp < τp̄ < τ ′p (p is false in between).

q

p
τq τp τp + T

q

p
τq τp τp + T τ ′p

Figure 4.14: Maximum duration pattern: satisfied (left), violated (right).

Bounded invariance. “After q, it is always the case that if p holds, then s

holds for at least T time units.”
r |= φ iff p following q implies that for all τp ∈ dom(r) with τp ≥ τq.1 and

for all τ ∈ dom(r) such that τp ≤ τ , d(τp, τ) < T , the predicate s(r(τ)) is
true.

q

p

s
τq τp, τs τ ′p τ ′p + T τ ′s

q

p

s
τq τp, τs τ ′p τ ′p + Tτ ′s

Figure 4.15: Bounded invariance pattern: satisfied (left), violated (right).

4.2. FORMALIZING PATTERN TEMPLATES FOR HYBRID AUTOMATA 55

Remark 4. It is worth mentioning that in case s = p, the predicate p must
hold forever (due to recursion), if it becomes true.

Bounded recurrence. “After q, it is always the case that p holds at least
every T time units.”

For the unbounded case, r |= φ iff for all τq ∈ dom(r) both following
criteria hold:

(i) for all τp ∈ dom(r) with τp ≥ τq there is a τ ′p ∈ dom(r) such that
τp < τ ′p, d(τp, τ ′p) ≤ T (τp’s with distance less than T),

(ii) there is a τp ∈ dom(r) with τp ≥ τq such that d(τq, τp) ≤ T (distance
between τq and first τp is less than T).

For a bounded time horizon, r |= φ iff for all τq ∈ dom−T (r) both
following criteria hold:

(i) for all τp ∈ dom−T (r) with τp ≥ τq there is a τ ′p ∈ dom(r) such that
τp < τ ′p and d(τp, τ ′p) < T ,

(ii) there is a τp ∈ dom(r) with τp ≥ τq and d(τq, τp) ≤ T .

q

p
τq τp τq + T τ ′p τ ′′p τ ′p + T

q

p
τq τq + T τp

Figure 4.16: Bounded recurrence pattern: satisfied (left), violated (right).

Bounded response (persisting). “After q, it is always the case that if p
holds, then s persists (holds for nonzero time) after at most T time units.”

For an unbounded time horizon, r |= φ iff p following q implies that for
all τq ∈ dom(r), it holds that for all τp ∈ dom(r) with τp ≥ τq, there is a
τs ∈ dom(r) such that τp ≤ τs, d(τs, τp) ≤ T , and persists (r, τs, s).

For a bounded time horizon, r |= φ iff p following q implies that for all
τq, τp ∈ dom−T (r) with τp ≥ τq, there is a τs ∈ dom(r) such that τp ≤ τs,
d(τp, τs) ≤ T , and persists (r, τs, s).

q

p

s
τq τp τ ′p τs τp + T

q

p

s
τq τp τ ′p τsτp + T

Figure 4.17: Bounded response pattern: satisfied (left), violated (right).

56 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

Remark 5. We require τ ∈ dom−T (r) in the bounded time horizon (with
the restricted domain being right-open) as we consider an optimistic inter-
pretation of the bounded runs. If there exists a continuation of the run
where the system satisfies the property, then the run satisfies the property.
Note that selecting the restricted domain to be right-closed would yield a
problem. That is the case since a run that with ¬s would violate the property.
However, it could have have a continuation that sets s to true (in zero time),
which should actually satisfy the property.

Remark 6. We formally require that the predicate s holds for nonzero time,
via persists (·). Otherwise, the monitor might generate a false alarm.

4.3 Verifying Pattern Templates using Monitor Au-
tomata

A formal alternative to temporal logic is the use of monitor automata (also
known as observer automata). A monitor automaton has the same syntax
and respects the same semantics as the system model. As such, it can be
composed with the system model and fed into a reachability tool. In this
way, a monitor automaton encodes the requirements as the reachability of
a designated error state (see [156] for one of the earliest works on monitor
automata and Figure 4.18 for an illustration). In the context of formal
verification of hybrid systems, monitor automata have been used for checking
whether simple safety requirements are satisfied or violated [260].

In this Section, we provide monitor automata for the selected pattern
templates which express more general and complicated properties. Recall that
a hybrid automaton that has a predicate p in the invariant of source location
cannot have a target location with an invariant !p because there would be a
deadlock (go back to Section 2.1 for more details).The formalSpec [76] tool,
presented in Section 3.2, automates the instantiation of monitor automata
from controlled natural language English. The tool comes with a database
of structured English phrases and the associated template monitors.

4.3. VERIFYING PATTERN TEMPLATES USING MONITOR AUTOMATA 57

System Model

Reachability Analysis

Satisfied Violated Unknown

yesno

error

Monitor

Figure 4.18: Principle of monitor automaton (also called observer automata [156]) -
Reachability of an error state.

Absence. “After q, it is never the case that p holds.”

idle loc1 error
q p

Figure 4.19: Monitor for absence pattern

Remark 7. Note that the monitor automata proposed in this Section are
nondeterministic. This is a practical choice since deterministic automata
would not be suitable and would yield inefficient monitor constructions. This
is the case since the selected pattern templates encode future temporal logic
properties. That means that a monitor automaton has to “evolve” together
with the system and guess what happens in the future. Later when the
monitor has more information, it has to re-check whether these guesses
are wrong and if the corresponding runs should be abandoned. Processing
all these spurious runs and delaying the output of the verdict until there
is sufficient information can be a serious bottleneck. In practice, opting
for determinism, would result to inefficient monitor automata with a large
number of locations and increased computational costs.

58 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

Absence (timed). “When T time units are measured, after q was first
satisfied, it is never the case that p holds.”

idle loc1

.
t = 1

loc2 error
urgent
q

t := 0 t ≥ T p

Figure 4.20: Monitor for timed absence pattern

Remark 8. In this Section, we do not discuss how urgent transitions can
be treated by standard reachability tools (which do not support urgency);
see Section 5.4 for more details on how to efficiently handle this semantics
mismatch.

Remark 9. Notice that for the time absence monitor, shown in Figure 4.20,
the urgent transition from idle location to loc1 can be replaced by a standard
non-urgent transition (see Figure 4.21). Both monitors describe the property
correctly. On the one hand, for the monitor with the urgent transition,
we only focus on the first time q holds. Once q appears, the clock starts
counting and the property is checked for T time units. On the other hand,
for the monitor with the non-urgent (may) transition, we do not consider
only the first instance of q but all the possible future instances. Also, we
re-initialize the clock every time q appears. However, measuring time from a
later occurrence of q only goes to the error state if anyway it would go to
the error (in a path involving the first q).

idle loc1

.
t = 1

loc2 errorq

t := 0 t ≥ T p

Figure 4.21: Monitor for timed absence pattern

Universality. “After q, it is always the case that p holds.”

idle loc1 error
q !p

Figure 4.22: Monitor for universality pattern

4.3. VERIFYING PATTERN TEMPLATES USING MONITOR AUTOMATA 59

Minimum duration. “After q, it is always the case that once p becomes
satisfied, it holds for at least T time units.”

idle loc1 loc2

.
t = 1

errorurgent
q

t ≤ T

& !p

urgent
p

t := 0

!p

Figure 4.23: Monitor for minimum duration pattern

Maximum duration. “After q, it is always the case that once p becomes
satisfied, it holds for less than T time units.”

idle loc1 loc2

p.
t = 1

error
q t := 0 t ≥ T

Figure 4.24: Monitor for maximum duration pattern

Remark 10. A semantically equivalent monitor for the maximum duration
pattern is presented in Figure 4.25. It can be observed that the only difference
between the two monitors is that they have a different guard for the jump
from loc2 to error location; the former has t ≥ T while the latter has
t ≥ T & p. Both monitors have the same invariant conditions for loc2 and
error locations. Note that the empty invariant corresponds to a condition
that is always true. Thus, the condition for the automata to jump from loc2
and error, defined by the intersection of the guard and the invariants of these
locations, is exactly the same, t ≥ T & p, for both monitors. Following the
same reasoning, the guard p from loc1 to loc2 could be ignored.

idle loc1 loc2

p.
t = 1

error
q

p

t := 0
t ≥ T

& p

Figure 4.25: Equivalent monitor for maximum duration pattern; there is an extra condition,
p, on the guard from loc2 to error location.

Remark 11. The monitors in Figures 4.24 and 4.25 are equivalent. However,
we mention both of them since the former one includes less operators and the

60 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

latter is more intuitive (as indicated through discussions with our industrial
partners).

Bounded invariance. “After q, it is always the case that if p holds, then s

holds for at least T time units.”

idle loc1 loc2

t < T.
t = 1

error
q

p

t := 0 !s

Figure 4.26: Monitor for bounded invariance pattern

Bounded recurrence. “After q, it is always the case that p holds at least
every T time units.”

idle loc1

.
t = 1

loc2 loc3

c == 0
c′ == 1

error

q

t := 0

!p
t := 0

urgent
p

t > T

& !p

Figure 4.27: Monitor for bounded recurrence pattern (a false positive is avoided by adding
the constraint !p on the guard of the ransition from loc1 to error)

Bounded response (persisting). “After q, it is always the case that if p
holds, then s persists (holds for nonzero time) after at most T time units.”

idle loc1 loc2

.
t = 1

loc3
c = 0.
c = 1.
t = 1

error

q
p

t := 0

urgent
s

c := 0

t > T

!s

Figure 4.28: Monitor for bounded response pattern

4.4. CORRECTNESS OF MONITOR AUTOMATA 61

4.4 Correctness of Monitor Automata

In this Section, we formally prove that our monitor automata are correct by
providing sufficient and necessary conditions. The proofs are constructive
guaranteeing the lack of false negatives, false positives and blocking conditions.
We also provide monitors that are buggy despite looking intuitive.

Let assume a hybrid automaton model H and a monitor automaton
M . Our goal is to show that H satisfies a property φ if and only if the
error location is unreachable in the automaton produced by the parallel
composition H||M . We prove correctness of the monitor M by showing that
all the violating runs of H have corresponding runs in H||M that reach the
error location, and vice versa.

4.4.1 Preliminaries

To improve the proofs readability, we use a shorthand notation. We denote a
run by the sequence (`i,xi, δi, ξi, αi)i=0,...,N−1. Given a run r and an event-
time τ∗ = (k∗, t∗) ∈ dom(r), the run can be divided into the prefix up to
τ∗, and the postfix after τ∗. The prefix is enlarged by a silent transition τ ,
which can be injected anywhere (by definition):

prefix (r, (k∗, t∗)) = (`i,xi, δi, ξi, αi)i=0,...,k∗−1; (`k∗ ,xk∗ , t∗ − tk∗−1, ξk∗ , τ),
(4.1)

postfix (r, (k∗, t∗)) =
(
`k∗ , r(k∗, t∗), δk∗ − tk∗−1, ξ

∗, αk∗
)
;

(`i,xi, δi, ξi, αi)i=k∗+1,...,N−1, (4.2)

where r(k∗, t∗) = ξk∗(t∗ − tk∗−1), and ξ∗(t) = ξk∗(t− tk∗−1) is the trajectory
ξk∗(t) shifted backwards in time by tk∗−1. Similarly, the infix between
event-times τa = (ka, ta) ∈ dom(r), τb = (kb, tb) ∈ dom(r), with τa ≤ τb, is

infix (r, (ka, ta), (kb, tb)) = prefix (postfix (r, (ka, ta)) , (kb − ka, tb − ta)) .
(4.3)

It is obvious that the concatenation

prefix (r, τ) ; postfix (r, τ)

is a run of H. Similarly, the concatenation

prefix (r, τa) ; infix (r, τa, τb) ; postfix (r, τb)

62 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

is a run of H. Abusing slightly the notation1, we write r × `∗ to define the
run (`i × `∗,xi, δi, ξi, αi)i=0,...,N−1. This is not necessarily a run of H||M ,
but it can be one under the following condition.

Lemma 4.1. Let r = (`i,xi, δi, ξi, αi) be a run of H. If a location `M in M

does not have any (i) invariant constraints, or (ii) urgent outgoing transitions,
then r × `M is a run of H||M .

Lemma 4.2. Let r = (`i,xi, δi, ξi, αi) be a run of H. If a location `M in
M has (i) no invariant constraints, and (ii) one urgent outgoing transition
with guard condition p which leads to location `′M and at the same time
location `′M does not have (iii) invariant constraints or (iv) urgent outgoing
transitions, then

prefix (r, τp.1)× `M ; postfix (r, τp.1)× `′M

is a run of H||M , where τp.1 = Infi (r, p) is the smallest event time for which
p holds.

A monitor M is non-blocking if for any run rH of H, there is a corre-
sponding run rH||M of H||M so that rH is the projection of rH||M onto H.
In other words, no deadlock can cause an unexpected termination of a run.

4.4.2 Sufficient Conditions

A monitor automaton is correct only if it reaches its error location exactly
when the system H violates the given property. Let assume that h be a run
of H that violates a property φ. First, we show (a) that there exists a run r
of H||M that reaches the error location. Second, we show (b) that for any
run r of H||M which reaches the error location, the projection of the run
onto H violates the property.

Absence. Since r 6|= φ, there exist τp, τq ∈ dom(r) with q(r(τq)), τp ≥ τq,
and p(r(τp)).

Using Lemma 4.1 and the jump definition,

prefix (h, τq)× idle ; infix (h, τq, τp)× loc1 ; postfix (h, τp)× error

is a run of H||M .

1More details on the composition can be found at Section 2.1; note that here the symbol
× does not refer to a cartesian product.

4.4. CORRECTNESS OF MONITOR AUTOMATA 63

Absence (timed). Since r 6|= φ, there exist τq, τp ∈ dom(r) with q(r(τq)),
d(τq, τp) ≥ T , and p(r(τp)).

M can remain in idle location during prefix (h, τq), then transition to loc1
and remain there during infix (h, τq, τp). Due to Lemma 1, M can then
transition to loc2. In loc2, M can transition to error, since p holds.

Universality. The proof is analogous to the proof of the absence pattern
replacing p by !p.

Minimum duration. r 6|= φ, so there is τp ≥ τq with p(r(τ∗p)) and q(r(τq)),
and one of the following conditions is true:

(a) there are τp, τ ′p̄ with τq.1 ≤ τp < τ ′p̄, p(r(τp)), ¬p(r(τ ′p̄)), and d(τq.1, τp̄) ≤
T , or

(b) there are τp, τp̄, τ
′
p̄ ∈ dom(r) with τq,1 ≤ τp̄ < τp < τ ′p̄, p(r(τp)),

¬p(r(τp̄)), ¬p(r(τ ′p̄)), and d(τp̄, τ ′p̄) ≤ T .

In case (a), let τp.1 = first (r, τq.1, p), so τp.1 ≤ τp. M can remain in idle
location during prefix (h, τq.1), then take the transition to loc1 and due
to Lemma 2 remain there during infix (h, τq, τp.1). Then, M can take the
transition to loc2, setting t to zero (Lemma 1). M can remain in this location
during infix

(
h, τp, τ

′
p̄

)
. Since d(τq,1, τ ′p̄) ≤ T , we have t ≤ T . Then, M can

take the transition to error.
In case (b), we initally show that M can be at loc1 at τp̄. After τq, M

can move to loc2 as soon as p is satisfied, and return back to loc1 as soon as
p is violated. Consequently, we can assume that M can be loc1 at τp̄. We
match the remainder of the run in analogy to the previous case (a), replacing
τq.1 by τp̄.

For the remaining proofs, we only show the differences with the previous
proofs, i.e. we ignore what happens before τq and τp.

Maximum duration. r 6|= φ implies that

(i) there is τp ≥ τq with r(τp) satisfying p and r(τq) satisfying q, and

(ii)(a) there is τ ′p with p(r(τ ′p)) and d(τp, τ ′p) ≥ T , and

(ii)(b) there is no τp̄ such that ¬(p(r(τp̄)) and τp < τp̄ < τ ′p.

At τp, M can be in loc1 or loc2. In loc1, M can transition to loc2, as p holds.
Once reached loc2, M can wait there for T time units, since with (ii)(a) and
(ii)(b), p still holds. M can then take the transition to error.

64 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

Bounded invariance. r 6|= φ implies that

(i) there is τp ≥ τq with r(τp) satisfying p and r(τq) satisfying q, and

(ii) there is a τ with τ ≥ τp such that d(τp, τ) < T and s(r(τ)) is false.

At τp, the monitor M can be in loc1 or in loc2. If it is in loc1, M can
immediately transition to loc2 (because p is true). Once it is loc2, M can
wait for t = d(τp, τ) there. Since d(τp, τ) < T , the monitor can remain in
loc2 until τ . Since ¬s at τ (¬s(r(τ) holds), the monitor can transition to
error.

Bounded recurrence. For the unbounded case (i), there is τp ∈ dom(r)
with p(r(τp)) and τp ≥ τq, such that there is no τ ′p > τp, with d(τ ′p, τp) ≤ T
and p(r(τ ′p)) (τp’s having distance less than T).

If the monitor M is in loc1 at τp, it can then transition from loc1 to loc2.
If the monitor is in loc2, there are two subcases:

(a) p doesn’t hold within T time units after τp, in that case M can go to
loc1, wait there for more than T time and then jump to error.

(b) p holds after τp, which signifies that it holds at time τ ′p with d(τp, τ ′p) >
T . Let δ = d(τp, τ ′p) − T . At that point, M can wait for δ/3 time in
loc2, after which the predicate p is false. Afterwards, M can go to
loc1, wait for T + δ/3 time, and because only T + 2δ/3 time units have
passed since τp, it means p is still false. Since t > T , M can go to
error.

Bounded response (persisting). For the unbounded time horizon, r 6|= φ

implies that

(i) there is τp ≥ τq with r(τp) satisfying p and r(τq) satisfying q, and

(ii) there is no τs ≥ τp such that r(τs) satisfies s, d(τp, τs) ≤ T and
persists (r, τs, s).

At τp, the monitor M can be either in loc1, loc2 or loc3. In loc1, the monitor
can transition immediately to loc2 (because p is true). In loc2, two scenarios
are possible. If s is false (@τs : d(τp, τs) ≤ T), M can stay in loc2 for more
than T time units. Then, M can transition to error. In case s is not always
false, there is a τs so that ¬persists (r, τs, s). At τs, M can instantaneously
move to loc3 and then back to loc2 when s doesn’t hold. From loc3, if ¬s,
M can transition to loc2. If s and ¬persists (r, τs, s), M can take the tran-
sition to loc2, since ¬persists (r, τs, s) : ∃τ ′s > τs with d(τs, τ ′s) = 0 and ¬s(τ ′s).

4.4. CORRECTNESS OF MONITOR AUTOMATA 65

For the bounded time horizon, r 6|= φ implies that

(i) there is τp ≥ τq with r(τp) satisfying p and r(τq) satisfying q, and

(ii) τq, τp ∈ dom−T (r) and there is no τs ∈ dom(r) such that τp ≤ τs,
d(τp, τs) ≤ T and persists (r, τs, s).

The proof for the bounded case is similar to the unbounded one.

4.4.3 Necessary Conditions

For the necessary conditions, we need to show that a run r in H||M that
ends in location error implies the existence of a run in H that violates the
property. Let rH be the projection of the run to H (by removing the locations
and clocks of M). It is clear that rH is a run of H. In the following part, we
show that rH 6|= φ. Note that r starts in idle location and any event-times of
r are also event-times of rH .

Absence. To get from idle to error, M first had to take a transition with
guard q and afterwards a transition with guard p. Consequently, there exist
τq and τp with τq ≤ τp, q(rH(τq)) and p(rH(τp)). τp and τq are witnesses that
violate φ.

Absence (timed). To get from idle to error, M first had to take a transition
with guard q, wait for T time units, and afterwards take a transition with
guard p. Consequently, there exist τq and τp with d(τq, τp) ≥ T , q(rH(τq))
and p(rH(τp)). τp and τq are witnesses that violate φ.

Universality. The proof is analogous to the proof of the absence pattern
replacing p by !p.

Minimum duration. In a similar way to the above proofs, we can stipulate
the existence of τq, τp and τ ′p̄ with τq ≤ τp ≤ τ ′p̄, q(rH(τq)), p(rH(τp)) and
¬p(rH(τ ′p̄)). τp and τq are witnesses that violate case (i).

For case (ii), let τq.1 = first (r, 0, q), so that τq.1 ≤ τq. Without loss
of generality, we can presume that τp is the last event-time on r when M

entered loc2, so t = d(τp, τ ′p̄). Due to the transition guard from loc2 to error,
d(τp, τ ′p̄) ≤ t ≤ T . There are two subcases:

(a) If there is no τp̄ with τq.1 ≤ τp̄ ≤ τp and ¬p(rH(τp̄)), we can conclude
that τq.1 = τp.1, where τp.1 = first (r, τq.1, p). In this case, the run
in M goes from idle to loc1 to loc2, so τq.1 = τp.1 = τp. As a rsult,
d(τq.1, τ ′p̄) = d(τp, τ ′p̄) ≤ T , violating case (a).

66 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

(b) Otherwise, we have τq.1 ≤ τp̄ ≤ τp.1 ≤ τ ′p̄. We will manifest that there
is a τ∗ ≤ τp, with d(τ∗, τp) = 0 and where r(τ∗) violates p. Then
d(τ∗, τ ′p̄) ≤ T , violating case (b). Now, we show the existence of τ∗, by
first recognizing some τ ′ ≤ τp so that M is in loc1 for all τ ′ ≤ τ ≤ τp,
and for which r(τ ′) violates p. Consider that we can presume that loc1
was reached either from idle with p being violated (otherwise case (a)
applies), or from loc2, which p also being violated. As the transition
from loc1 to loc2 is urgent, p cannot hold for any τ with τ ′ ≤ τ < τp
where d(τ, τp) > 0 (no time can pass while p is true). So there exists a
τ∗ with τ ′ ≤ τ∗ ≤ τp with d(τ∗, τp) = 0.

Maximum duration. We assume τp to be the last event-time on r when
M entered loc2. Since the loc2 has invariant p and the transition guard from
loc2 to error has the constraint t ≥ T , we get that at least T time units
have passed in loc2. In this vein, there exist τp and τ ′p so that d(τp, τ ′p) ≥ T
without any τp̄ in between them. Consequently, τq, τp and the absence of ¬p
witnesses the violation of φ.

Bounded invariance. We assume that M is in the error location. Because
of the guard conditions of the incoming transitions, we know that at some
point τ on the run, s didn’t hold. In loc2, we know, from its invariance and
the incoming guard conditions, that there is p which held at some point
τp with τp ≤ τ and d(τp, τ) < T . Consequently, τq, τp, and τ witness the
violation of φ.

Bounded recurrence. Given the fact time can only elapse in loc2 while
¬p and t is reset on all incoming transitions, we conclude that ¬p holds for
more than T time units; which in turn violates the property.

Bounded response (persisting). Similarly to the absence pattern proofs,
we can pinpoint the existence of τq and τp. Let assume that τp is the last
event-time on r when M entered loc2. Cycles between loc2 and loc3 last zero
time: due to the urgent transition from loc2 to loc3, s had to be false during
this time, with the only possible exception of switching to true and back to
false in zero time (which doesn’t comply with the definition of ”persists”).
Since the transition guard from loc2 to error contains the constraint t > T , we
can deduce that more than T time units have elapsed in loc2. Consequently,
τq, τp and the absence of s witness the violation of φ.

4.4. CORRECTNESS OF MONITOR AUTOMATA 67

4.4.4 Buggy Monitors

Proving the correctness of the monitors is not easy. In fact, it is an arduous
task and it required a lot effort despite collaborating with our academic and
industrial partners. Several seemingly equivalent monitors are not correct.
Below, we present some examples.

Minimum duration. “After q, it is always the case that once p becomes
satisfied, it holds for at least T time units.”

idle loc1 loc2

.
t = 1

error
q

t ≤ T
& !p

urgent
p

t := 0

!p

a) Incorrect monitor

idle loc1 loc2

.
t = 1

errorurgent
q

t ≤ T
& !p

urgent
p

t := 0

!p

b) Correct monitor

Figure 4.29: Two seemingly equivalent monitors for the minimum duration pattern

To figure out why the monitor of Figure 4.29a is incorrect, consider the trace
portrayed in Figure 4.30. The trace on the right provides a counterexample.
Although this trace does not violate the minimum duration property (p holds
for less than T time units), the buggy monitor goes to the error location.
This happens due to the lack of an urgent guard q from location idle to
location loc1.

q

p
τq.1 τp τp + T

q

p
τ ′q, τ

′
p τ ′p + T

Figure 4.30: Buggy monitor for minimum duration pattern - Traces: satisfied for τq.1 (left),
violated for τ ′q(right).

68 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

Maximum duration. “After q, it is always the case that once p becomes
satisfied, it holds for less than T time units.”

idle loc1 loc2

.
t = 1

error
q

p

t := 0
t ≥ T

& p

a) Incorrect monitor

idle loc1 loc2

p.
t = 1

error
q t := 0 t ≥ T

b) Correct monitor

Figure 4.31: Two seemingly equivalent monitors for the maximum duration pattern

To figure out why the monitor of Figure 4.31a is incorrect, consider the
traces portrayed in Figure 4.32. The trace on the right of the Figure violates
the maximum duration property; both correct and buggy monitors arrive
at the the error location. However, the trace on the left of Figure acts
as a counterexample. Although this trace satisfies the maximum duration
property (indeed, p holds for less than T time units), the buggy monitor
reaches the error location. This happens due to the lack of an invariant in
location loc2.

q

p
τq τp τp + T

q

p
τq τp τp + T τ ′p

Figure 4.32: Maximum duration pattern. Satisfying trace (left): correct monitor does not
go to error location but buggy monitor does; Violating trace (right): both correct and
buggy monitor go to the error location.

Bounded response (persisting). “After q, it is always the case that if p
holds, then s persists (holds for nonzero time) after at most T time units.”

The problem with the persisting case (monitors: version 1 and version 2)
can be observed if there is a trace when p & !s hold at the same time. In
that case the trace is automatically accepted, although s should hold for

4.4. CORRECTNESS OF MONITOR AUTOMATA 69

non-zero time. The problem with the non-persisting case is that traces with
instantaneous (zero-time) s traces are accepted although they should not.

idle loc1 loc2

.
t = 1

error
q

urgent
p

t := 0

urgent
s

t > T

a) Incorrect monitor for bounded response pattern (persisting - version 1)

idle loc1 loc2

.
t = 1

error
q

urgent
p & !s
t := 0

urgent
s

t > T

b) Incorrect monitor for bounded response pattern (persisting - version 2)

idle loc1 loc2 loc3

t < T.
t = 1

error

q
urgent
p & s

urgent
!p & s
t := 0

!s

urgent
p !s

p & !s

!p

c) Incorrect monitor for bounded response pattern (non-persisting)

idle loc1 loc2

.
t = 1

loc3
c = 0.
c = 1.
t = 1

error

q
p

t := 0

urgent
s

c := 0

t > T

!s

d) Correct monitor for bounded response pattern

Figure 4.33: Seemingly equivalent monitors for the bounded response pattern

70 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

Bounded invariance. “After q, it is always the case that if p holds, then s

holds for at least T time units.”

idle loc1 loc2

t ≤ T.
t = 1

error
q

p & !s
t := 0

p & !s

!s

a) Incorrect monitor for bounded invariance pattern (version 1)

idle loc1 loc2 loc3

t ≤ T.
t = 1

error

q
urgent
p & s

urgent
!p & s
t := 0

!s

urgent
p !s

p & !s

t=T & !p

b) Incorrect monitor for bounded response pattern (version 2)

idle loc1 loc2 loc3

t < T.
t = 1

error

q
urgent
p & s

urgent
!p & s
t := 0

!s

urgent
p !s

p & !s

!p

c) Incorrect monitor for bounded invariance pattern (version 3)

idle loc1 loc2

t < T.
t = 1

error
q

p
t := 0 !s

d) Correct monitor for bounded invariance pattern

Figure 4.34: Seemingly equivalent monitors for the bounded invariance pattern

4.5. APPLICATION EXAMPLE 71

4.5 Application Example

In this Section, we illustrate the workflow on an industrial use case on
electro-mechanical brakes (EMB) and highlight how the introduced pattern
templates and associated monitor automata can facilitate the verification
process. The EMB use case is described in [281]. The requirements that
shall be enforced are presented in [130]. The steps of the proposed workflow
are as follows.

Industrial Model. The model is designed with Simulink. It consists of
an experimental electro-mechanical braking system, a feedforward and a
feedback controller.

Formal Model. The Simulink to SpaceEx (SL2SX) translator [231] is used
to construct the formal model. The model is expressed in the SpaceEx
format [125] and it consists of 8 base components (single HA) and 4 network
components (networks of HA). General, nonlinear Simulink systems can
be transformed to SpaceEx models in the form of piecewise affine hybrid
automata, as shown in [187] and [188].

Specifications. Two braking specifications are provided in [130].

1. “The caliper must reach x0 = 0.05 dm after the braking request is
issued within 20 ms with a precision of 4%”.
This property can be mapped to the bounded response pattern,
where T := 20, q := true, p := true (braking request), s := {0.96 · x0 ≤
x} and x represents the caliper position.

2. “The caliper speed at contact must be below 2 mm/s”.
This property can be mapped to the absence pattern, where q := true,
p := {v ≥ 2}, and v represents the caliper speed.

Monitor. For the first specification, we use the corresponding monitor
automaton for the bounded response pattern. The monitor is generated with
formalSpec tool [76]. The formal model and the monitor are expressed as
hybrid automata and comply with SpaceEx format.

Composition. This step corresponds to the parallel composition of the
formal model with the corresponding monitor. In essence, the variables
that appear in the monitor should be connected with the corresponding
variables of the formal model. In our case, only the caliper position x should
be considered. The variables t and c are local and only used inside the

72 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

Figure 4.35: Composition of the formal model (EMB) with the monitor automaton
(bounded response), shown in SpaceEx Model Editor.

Figure 4.36: Reachable sets of the caliper position computed with SpaceEx.

monitor automaton. Figure 4.35 shows the composed system in the Model
Editor [125].

Reachability Analysis. SpaceEx [135] is used for computing the reachable
sets. The safety verification problem is tackled by introducing a set of error
states and checking whether they are reachable or not. In practice, we check if
“loc(Monitor)==error”. SpaceEx finds a fixed point after 434 iterations and
31.702s. The computation time for the same model without the monitor is
29.427s. As such, the induced overhead is around 7.73%. Note that SpaceEx
composes (flattens) the model on-the-fly during reachability analysis.

Verification Outcome. The error state is not reachable and the property
is satisfied. The reachable set for the caliper position x is portrayed in
Figure 4.36.

4.6. RELATED WORK 73

4.6 Related Work

Conducting hybrid system verification against rich formal specifications is
a challenging problem. The authors in [99] studied the topological aspects
of hybrid systems in the context of propositional modal µ-calculus. Mysore,
et al., studied the verification problem of semi-algebraic hybrid systems for
TCTL (Timed Computation Tree Logic) properties and proved undecidabil-
ity [234]. Jeannin and Platzer presented in [176] a differential temporal
dynamic logic to specify temporal properties of hybrid systems. This logic
complemented with a theorem prover could enable verification of nested
temporalities for hybrid systems. The authors in [87] studied the verification
of hybrid systems with K-liveness but restricted the system model to a small
subclass of hybrid automata.

In this work, we employ a template language to express informal require-
ments rather than a declarative language based on temporal logic. Signal
Temporal Logic, introduced in [221,222], can describe properties of hybrid
systems but is mostly used for monitoring hybrid behaviors [236]. Hybrid
extensions of LTL can be found in the liteature, e.g. HyLTL [69, 70] and
HRETL [88,89]. Both, however, utilize untimed operators.

The use of pattern templates for system requirements and their (semi–)
automatic translation to formal specifications have been proposed earlier.
Dwyer et al. [114] were among the first to introduce qualitative specifica-
tion pattern templates and their translation into different logic expressions.
Among others, Konrad and Cheng [196] extended Dwyer’s original patterns
to the real–time domain. Application of the patterns in the automotive
industry can be found in [182,254]. A generalization to probabilistic pattern
templates was proposed in [153]. For discrete systems, there are tools that
accept as an input CNL expressions (e.g. in the form of pattern templates)
and automatically translate them into formal specifications. Examples of
such tools are Stimulus [28], Embedded Specifier [74], AutoFocus3 [173], and
SpeAR [57]. Pattern templates for hybrid systems do not differ from pattern
templates already available. Yet, no existing tool can translate them into a
formal representation that is applicable to hybrid systems and enables the
verification of rich properties.

74 4. FROM INFORMAL REQUIREMENTS TO FORMAL SPECIFICATIONS ...

5
C

h
a

p
t

e
r

From Simulation Models to
Formal Models

Parts of this Chapter have been published in [187].

Model transformation plays an essential role in bridging the gap between
industrially relevant models and verification tools [24]. In model-based design,
the physical plant and its controllers are synthesized based on a model,
usually within a simulation environment, e.g. MATLAB/Simulink [227,237].
The presence of nondeterminism is inherent in every dynamical system and
can take the form of disturbances, parameter uncertainties, user inputs,
measurement noises, or operating conditions. All these nondeterministic
elements may have adverse effects on performance and correctness, which
can be difficult to predict and analyze in the design step. Consequently,
the designer conducts extensive testing by simulating a large number of
trajectories, each with a different choice for these nondeterministic quantities,
and checking if they satisfy the requirements.

However, this process is incomplete as the number of different choices
is prohibitively large or even infinite. As such, it can be hard to say with
high confidence if a requirement is really satisfied under all circumstances.
Formal verification aims to guarantee that the system requirements are truly
satisfied via a rigorous mathematical analysis of the system. A commonly
used verification method is set-based reachability analysis, see Section 2.3
for more information.

75

76 5. FROM SIMULATION MODELS TO FORMAL MODELS

There are two main challenges to applying reachability analysis in model-
based design. Firstly, the simulation model has to be converted to a suitable
formal model, e.g. a hybrid automaton, a hybrid petri net, or any language
with formal semantics. Secondly, the model has be amenable to existing
reachability algorithms, particularly in terms of scale. Highly scalable al-
gorithms exist for piecewise affine (PWA) dynamics but not for complex
nonlinearities [111,218]. Even though a large class of nonlinearities could be
approximated arbitrarily well by a PWA system, there might be scalability
problems owing to the resulting models being very large with numerous
locations.

In this Chapter, we propose an approach to transform a simulation model
into a compact, i.e. relatively small verification model described with PWA
dynamics. To accomplish this, we decompose the nonlinear system and
perform the transformation component-wise. The resulting model can be
fed to the SpaceEx verification [135] or converted into formats for other
verification tools with the HyST tool [40]. Due to the fact that SpaceEx
composes the model on-the-fly during the reachability computations, only
the reachable partitions of the PWA approximations are instantiated.

Figure 5.1 displays the difference between classical hybridization tech-
niques and the proposed one; in case the original nonlinear model is designed
with Simulink. Traditional hybridization schemes that rely on state-space
partitioning [33] create a PWA model with O(1/`n) locations, where n is the
dimension of the state-space and ` the mesh size. During the reachability
analysis, O(T/δ) locations are visited, where T is the global time horizon
and δ the minimum dwell time. On the other hand, syntactic hybridization
generates m PWA components, where m is the number of nonlinearities,
and the total number of locations is O(m/`2). The locations that are not
reachable do not have to be instantiated.

The rest of this Chapter is organized as follows. In Section 5.1, we
introduce the compositional syntactic hybridization, present the underlying
theory, and provide a step-by-step guide. In Section 5.2, we propose a
model transformation methodology to obtain formal models (expressed with
hybrid automata) out of Simulink/MATLAB models. A simple Simulink
model is used as a running example. Section 5.3 is devoted to Stateflow
models and how they can be mapped to hybrid automata. In Section 5.4,
we propose a heurisitic method to address the semantic mismatch between
Simulink/Stateflow models and hybrid automata, i.e. that the former have
urgent transitions while the latter non-urgent transition and apply this
method to several examples. Finally, in Section 5.5, we present the related
literature.

5.1. COMPOSITIONAL SYNTACTIC HYBRIDIZATION 77

SL Model

PWA Model

Reach. Analysis

a) Traditional Hybridization

SL Model

m PWA Components

Reach. Analysis (on-the-fly composition)

b) Syntactic Hybridization

Figure 5.1: Constructing verification models from a Simulink (SL) system, with m = 3
nonlinear blocks. The syntactic approach can lead to approximations of smaller size and
less instantiated locations.

5.1 Compositional Syntactic Hybridization

Hybridization is an abstraction method to obtain PWA over-approximations
of nonlinear dynamics [33]. Hybridization schemes involve three main steps:
(i) partitioning the state-space into domains, (ii) in each domain approx-
imating the nonlinear dynamics by simpler dynamics, and (iii) compute
the abstraction error and add nondeterministic inputs to capture it. Clas-
sical hybridization methods operate on the flattened system, causing the
number of partitions to be exponential in the number of state variables.
This approach quickly leads to the construction of intractably large models,
even in the case of small systems. Compositional syntactic hybridization
performs the PWA over-approximation in a compositional manner and takes
advantage of the on-the-fly composition of hybrid systems supported by the

78 5. FROM SIMULATION MODELS TO FORMAL MODELS

SpaceEx platform. Three main steps are required: syntactic decomposition,
substituting the nonlinear ODE by a linear ODE and a set of nonlinear
algebraic equations; hybridization, constructing a PWA approximation for
each nonlinear algebraic equation and providing an over-approximation of
the original system by adding an error term; and eventually composition of
the hybrid automata and elimination of the algebraic equations.

5.1.1 Syntactic PWA Approximation

In this part, we explain the technical details, considering a nonlinear differ-
ential equation of the form

dx

dt
= f(x), x ∈ Rn. (5.1a)

This ODE is considered to be regular (f is a Lipschitz function of constant L >
0 over the state-space X ⊂ Rn). This method can be readily extended to semi-
explicit differential-algebraic equations (DAEs). Under certain assumptions
it could be applied to ODEs with non-uniform (local) Lipschitz continuity.
In principle, the idea is to encapsulate the solution of the ODE in a set of
solutions of differential inclusions.

Syntactic Decomposition

The decomposition process consists in generating a new system where auxil-
iary variables replace the nonlinear terms,

dx

dt
= g(x, y), y ∈ Rm, (5.2a)

y = h(x, y). (5.2b)

Here, y is a vector of auxiliary variables, g(x, y) ∈ Rn is linear both in x

and y and h(x, y) ∈ Rm contains all the nonlinear terms, m, of the original
system, as discussed below. Note that we have replaced the original system
by a linear ODE of a higher-dimensional space, Rn+m, associated with a set
of nonlinear algebraic constraints. This step is exact.

Moreover, let Vi ⊆ {x1, . . . , xn} for i ∈ {1, . . . ,m} be the variables
involved in the i-th nonlinearity and pi = |Vi| define the number of variables
in such expression. Note that with a sufficient number of auxiliary variables,
we can always assume that hi(x, y) satisfies 1 ≤ pi ≤ 2 for all i. Examples 5.1.1
and 5.1.2 could provide further insights for this step.

5.1. COMPOSITIONAL SYNTACTIC HYBRIDIZATION 79

PWA Approximation

We consider a set of domains, Rij , that cover entirely the operating range of
the variables in Vi, with j a label referring to each individual domain. For
each Rij , we carry out a PWA linearization of hi. Hence, (5.2a)-(5.2b) is
replaced by

dx

dt
= g(x, y), y ∈ Rm, (5.3a)

y = ĥ(x, y), (5.3b)

where ĥ forms a vector of PWA functions.
Let assume that op denotes the operating point in the domain Rij . Using

Taylor’s formula with the Lagrange remainder, for each 1 ≤ i ≤ m,

ĥi(x, y) = hi,op + ∂hi
∂x

∣∣∣
op

(x− xop) + ∂hi
∂y

∣∣∣
op

(y − yop), (5.4)

and

hi(x, y)− ĥi(x, y) = 1
2(x− xop)T∂

2hi
∂x2

∣∣∣
ξ
(x− xop)+ (5.5)

1
2(y − yop)T∂

2hi
∂y2

∣∣∣
ξ
(y − yop) + (x− xop)T ∂2hi

∂x∂y

∣∣∣
ξ
(y − yop),

where ξ = (ξx, ξy) ∈ Rn+m is a point inside the interval ξx ∈ {xop + a(x −
xop), a ∈ [0, 1]} and similarly for ξy. The right-hand side of the Equation(5.5)
is the Lagrange remainder; its resulting values in each domain Ri are used
to estimate the error induced by the approximation process [55]. The
linearization errors εh are computed by evaluating the Lagrange remainder
and they satisfy y = h(x, y) ∈ ĥ(x, y) ⊕ Bεh, where B is the unit ball in a
chosen norm || · ||. In this work, we assume that Ri are boxes. In this case,
the point that minimizes the absolute value of the Lagrange remainder is
known to be its center [17]. Several interesting alternatives exist, such as
simplices [33].

Example 5.1.1. Consider the fourth-order polynomial function f = [x1 −
x2x3x4, x1x2 − x4,−x3x4, x2 − x3]. We introduce the auxiliary variables
y1 = x3x4, y2 = x1x2 and y3 = x2y1. As a result, g(x, y) = [x1 − y3, y2 −
x4,−y1, x2 − x3] becomes a linear ODE and h(x, y) = [x3x4, x1x2, x2y1] a
second-order nonlinear algebraic equation with m = 3 elements. Consider
a PWA approximation, f̃ , which performs a rectangular partitioning of the
state-space, with elements of size ` in each dimension. Then, f̃ leads to

80 5. FROM SIMULATION MODELS TO FORMAL MODELS

O(1/`4) elements, whereas the PWA approximation of h only to O(m/`2)
elements.

Example 5.1.2. In this example, we consider a 9-dimensional biological
model modified from the one in [84, 193]. The model is described by f(x) =
[3x3−x1x6, x4−x2x6, x1x6−3x3, x2x6−x4, 3x3 + 5x1−x5, 5x5 + 3x3 +x4−
x6(x1 +x2 + 2x8 + 1), 5x4 +x2− 0.5x7, 5x7− 2x6x8 +x9− 0.2x8, 2x6x8−x9].
We introduce the auxiliary variables y1 = x1x6, y2 = x2x6, y3 = x6x8. As
such, g(x, y) = [3x3−y1, x4−y2, y1−3x3, y2−x4, 3x3 + 5x1−x5, 5x5 + 3x3 +
x4 − y1 − y2 − 2y3 − x6, 5x4 + x2 − 0.5x7, 5x7 − 2y3 + x9 − 0.2x8, 2y3 − x9]
is a linear ODE and h(x, y) = [x1x6, x2x6, x6x8] is a second-order nonlinear
algebraic equation with m = 3 elements. Consider a PWA approximation, f̃ ,
which employs a rectangular partitioning of the state-space, with elements
of size ` in each dimension. Then, f̃ leads to O(1/`9) elements, whereas the
PWA approximation of h only to O(m/`2) elements. Instead of gridding a
9-dimensional state-space, we only have to approximate with PWA functions
three 2-dimensional state-spaces. These examples illustrate the usability
of this syntactic approach especially in cases that repeated nonlinearities
appear.

5.1.2 Compositional Scheme

The syntactic PWA approximation yields a linear ODE with PWA algebraic
constraints. To feed this model into an available reachability tool, we
have describe it as a network of hybrid automata. Each hybrid automaton
represents to the PWA approximation of one nonlinearity. Each piece of the
PWA approximation represents one location in the corresponding automaton.

In the SX/SpaceEx file format [94], see 2.4, a model contains components
that are either hybrid automata or networks of hybrid automata. A compo-
nent can be instantiated inside a network, potentially replacing variables with
constant values or remapping them to other variables or. Notice that an ODE
or an algebraic constraint can be simply embedded in a hybrid automaton
with a single location. The ODE should be placed in the flow-constraint of
the location and the algebraic constraint in its invariant.

Expressing the PWA approximation in this setting, the linear ODE is
modeled by a single (trivial) automaton. Each PWA constraint yi = ĥi(x, y)
represents a hybrid automaton with one location per piece. The locations
of adjacent pieces are linked through transitions. The approximation error
is defined by extra variables with range εh, and the error threshold µ > 0
gives an upper bound on the maximum value it can obtain (in some chosen
norm || · ||).

5.1. COMPOSITIONAL SYNTACTIC HYBRIDIZATION 81

Standard reachability algorithms take as input a single hybrid automaton
with ODE dynamics. To go from the multi-component input model to
this form, the reachability tool needs to carry out two operations. Firstly,
it combines the components through a procedure that is called parallel
composition. Secondly, it eliminates the algebraic constraints to get an ODE.
In principle, parallel composition refers to generating the product automaton,
whose locations contain the cross-product of the locations of the components.
As such, a model with m components of k locations each has a product
automaton with mk locations. Nonetheless, tools like SpaceEx, build the
product automaton on-the-fly and instantiate only the reachable locations. In
a similar fashion, the conversion from linear DAE to ODE is only performed
on the instantiated locations. The conversion can be carried out efficiently by
Gauss-Jordan elimination [109]. The underlying theory is reported in [145].
The outlined procedure allows us to approximate the reachable set of the
original system with arbitrary precision. Let Φ(t, x) determine the trajectory
starting from x at time t. The reachable set from a set of initial points
X0 ⊆ X during the interval [0, t] is described as

Reach(t,X0) = {y = Φ(τ, x) : τ ∈ [0, t], x ∈ X0}. (5.6)

This approximate system converges to the original system, as shown in the
following theorem.

Theorem 5.1. (see [32]) The Hausdorff distance between the reachable set of
(5.2a)-(5.2b) and the reachable set computed via hybridization, (5.3a)-(5.3b),
from time 0 to a final time T > 0 satisfies

dH
(
Reachf (T,X0), Reachf̂ (T,X0)

)
≤ 2µ

L

(
eLT − 1

)
, (5.7)

where L is the Lipschitz constant of the original nonlinear dynamics, µ is
the error threshold, and f̂ is the PWA approximation.

5.1.3 Algorithm for Compositional Syntactic Hybridization

Motivation. In [233], Tiwari et al. present an approach to construct non-
uniform multidimensional partitions. Let n ≥ 1, and consider the vector
function

f : X → Rn, (5.8)

in a domain X ⊆ Rn, with f assumed continuous in its domain. The
objective is to find a pair of functions, which provides sound under and over

82 5. FROM SIMULATION MODELS TO FORMAL MODELS

approximations of f , that is,

f̂lb(x) ≤ f(x) ≤ f̂ub(x) (5.9)

for all x ∈ X.
Inspired by their approach, we would like to replace their inequalities by
inclusions and restrict these functions to be piecewise-linear. This last
restriction is motivated by hybridization methods in reachability analysis.
Our objective can be more explicitly formulated as follows. If f̂ is PWA,
then there is a partition of the domain

⋃
k Pk = X (with the union being

finite, and the Pk’s pairwise disjoint), and a set of coefficients associated to
each Pk, that we write {a(k)

ij } so that for all x ∈ X we can write

f̂i(x) = ai0 +
n∑
j=1

aijxj (5.10)

for all i ∈ 1, . . . , n.
Moreover, it is generally known that non-compositional techniques for

PWA approximations are not computationally efficient for complex systems.
This the case because an acceptable accuracy requires a very large number
of pieces (locations) in the piecewise affine approximation [124]. Recently,
Deshmukh et al. [101] presented an exploratory comparison of a composi-
tional approach, similar to that presented in this Chapter (called nested
approximation there), against a simplex-partitioning PWA hybridization,
showing that the former scales much better than the latter for increasing
demands on precision. The compositional PWA approximation is presented
informally, while the paper neither discusses the implications in terms of the
model size nor preserves this compositionality in the generated model. The
complexity of the approximation can be further decreased by focusing on a
set of reference trajectories, as done in [39].

Step-by-Step. Given our goal to automate the whole process, the steps
that we undertake approach are the following:

1. We start from an autonomous system (not necessarily homogeneous),
of the form

dx

dt
= f(x), x ∈ Rn. (5.11)

Herein, consider nonlinear systems that are continuous and smooth. It
can be straightforwardly extended to models with discrete transitions.

2. We create a dictionary to identify the nonlinear terms. In this way,
we can replace the original system by an equivalent one with auxiliary

5.1. COMPOSITIONAL SYNTACTIC HYBRIDIZATION 83

variables and generate a new system in m dimensions, m ≥ n in general,

dx

dt
= g(x, y), y ∈ Rm, (5.12a)

y = h(x) (5.12b)

such that
f(x) = g(x, h(x)). (5.13)

The main property of g is that each nonlinear term in g contains at
most two variables. For instance, there are only terms like y1 sin y2,
y2

3y4, etc. More formally we have in general for each row 1 ≤ k ≤ n,

gk(x, y) = gk,0 +
n∑
i=1

m∑
j=1

g
(1)
k,ij(xi, yj) +

m∑
i=1

m∑
j=1

g
(2)
k,ij(yi, yj)+

n∑
i=1

n∑
j=1

g
(3)
k,ij(xi, xj) (5.14)

3. Then we select our state space partition for each nonlinear term (aux-
iliary) in the corresponding variables (which may be up to 2). This
involves two steps.

Firstly, we need the maximum and minimum values of these variables.
These could either be introduced by the user (i.e. if they represent
physical variables) or computed/over-approximated numerically. Three
options are currently available (corner case simulations, star simulations
and pseudo random simulations with Breach toolbox). It is also possible
to use the initial conditions to derive estimated future values for a
given time window.

Secondly, we should select the partition type, the quantization parame-
ter (for each variable) and the set representation. The simpler option
is to use uniform fixed gridding, with different quantization parameters
for each variable and set the domains to be boxes/hyper-rectangles.

4. Once, we have selected the linearization domains and we can construct
the linear approximation for each domain. This can be done either either
by first order Taylor series or symbolically. The linearization/operating
points are opted to be the centers of the boxes. In this way, we produce

84 5. FROM SIMULATION MODELS TO FORMAL MODELS

a new system

dx

dt
= ĝ(x, y), y ∈ Rm, (5.15a)

y = ĥ(x) (5.15b)

where both ĥ and ĝ is a piecewise-affine function.

5. Errors. The idea is that we perform a differential inclusion

dx

dt
= g(x, y) ∈ ĝ(x, y)⊕ εg (5.16)

and
y = h(x) ∈ ĥ(x)⊕ εh (5.17)

For each nonlinear term (auxiliary term), the error is computed by
solving a nonlinear optimization problems with linear constraints. For
univariate functions, there is also the option to use directly the Taylor
inequality.

6. Finally, we automatically generate a SpaceEx model file. The idea is
that for each nonlinear term (recall they involve only two variables), we
introduce a new variable and generate a domain (box or polytope) with
two inputs and one output. This corresponds to a (linear) algebraic
relation; no dynamics. It is written in the invariant.

The error is added as an uncontrolled variable with the previously
estimated bounds. There are two options for SpaceEx to parse it
(either to add as a variable in the invariant or as a constant that
belongs to a range). Each nonlinearity is saved as a new XML file and
then they are combined with the original file (replacing nonlinear base
component with PWA one).

Example. This small example considers a Van der Pol oscillator, which is a
two-dimensional system with the following nonlinear dynamics:

ẋ1 = x2

ẋ2 = (1− x2
1) ∗ x2 − x1

By expansion, we get

ẋ1 = x2

ẋ2 = −x1 + x2 − x2
1 ∗ x2

5.1. COMPOSITIONAL SYNTACTIC HYBRIDIZATION 85

That means that the state is x = [x1, x2] and there is one nonlinear term
which should be u = −x2

1 ∗ x2 and can be identified from the dictionary. The
range of of variables x1, x2 is [−4 , 4] and the quantization parameter for
both variables is hx1 = hx2 = 0.5.

The gridding and quantization can selection can be seen in Figure 5.2.
In Figure 5.3, the original function is plotted against the PWA one. A
simulation run is portrayed in Figure 5.4.

Figure 5.2: Fixed gridding- Van der Pol Oscillator

Figure 5.3: 3D- nonlinear vs PWA

86 5. FROM SIMULATION MODELS TO FORMAL MODELS

Figure 5.4: Van der Pol oscillator - simulation; original in blue, syntactic in red

The corresponding SpaceEx file consists of three four components; three
base and one system components. The first base component is the clock
(Figure 5.5), the second is the original dynamics with the auxiliary variable u
(Figure 5.6) and the third is the PWA approximation of the nonlinear term
including the error which is described by the variable w1 (Figure 5.7).

Figure 5.5: SpaceEx model - clock

Figure 5.6: SpaceEx model - ODE

For bounded-time reachability (2 seconds), we can find a fixed point after
754 iterations in 2 minutes. The reachable states with SpaceEx (octagonal
directions, STC, 0.01 tolerance) are shown in Figure 5.8.

5.2. FROM SIMULINK TO HYBRID AUTOMATA 87

Figure 5.7: SpaceEx model- PWA approximation

Figure 5.8: SpaceEx model- Reachable Sets

5.2 From Simulink to Hybrid Automata

In this Section, we present a transformation approach to obtain hybrid
automata models from Simulink systems (portrayed in Fig. 5.9). To illustrate
our methodology, the proposed steps are applied to a rotational pendulum
model.

88 5. FROM SIMULATION MODELS TO FORMAL MODELS

System Model
(Simulink)

Range Estimation
(w/ Breach)

Translation
(w/ SL2SX)

Hybridization

PWA Decomposed Model

Reach. Analysis
(w/ SpaceEx)

3.1.1

5.2.2 5.2.3

2.4

5.2.4

5.2.4

a) Verification Workflow

Nonlinear DAE

Linear ODE with
Nonlinear Algeb. Constr.

Linear ODE with
PWA Constr.

exact

On-the-fly
composition

PWA ODE

over-approxim.

elimination

2.1

b) Compositional Syntactic Hybridiza-
tion Scheme

Figure 5.9: Methodology for constructing verification models is presented on the left and
the steps of our hybridization scheme on the right.

The modeling and control design tasks are typically undertaken with
MATLAB/ Simulink, through the connection of signals, blocks and subsys-
tems. Simulink [227] is a graphical programming environment for modeling,
simulating, and analyzing dynamical systems. More information about
MATLAB and Simulink can be found in Section 3.1.1.

Example 5.2.1. As a running example, we consider a simple rotational
pendulum [284]. The pendulum has a nonlinear term (a sine function) and
its Simulink model is shown in Fig 5.10. The system produces simulation
traces of the pendulum angle over time, when it is released from rest.

5.2.1 Model Adaptation

Model adaptation relates to the fact that a simulation model typically
contains information that should be obscured from the verification model.
A verification model could also be enriched with nondeterminism so as to
check the behavior of the system under uncertain or varying parameters,
disturbances or user inputs.

5.2. FROM SIMULINK TO HYBRID AUTOMATA 89

Figure 5.10: Simulink model for the rotational pendulum

Model Adaptation

Simulation Model
(Simulink)

Range Estimation
(with Simulations)

Translation
(with SL2SX)

5.2.2 Estimation of the signal range

The goal of this step is to obtain bounds on the behavior (minimum and
maximum) of specific variables of the Simulink model. These variables
typically correspond to Simulink signals. In particular, we care about the
variables that appear in the blocks that cannot be directly described by
PWA hybrid automata. Such blocks could include nonlinear function or more
complicated operations. The smaller the operating ranges of these signals are,
the smaller the number of locations required by the PWA abstraction (given a
desired error bound) is going to be. There are various ways to estimate these
ranges, such as simulations, statistical analysis [79], interval analysis [80], or
Monte Carlo methods [298]. In this Chapter, we use corner-case simulations
and the Breach [107] toolbox for a (not necessarily conservative) estimation
of the signal range.

Note that these signal ranges are considered only as a rough indication
for the hybridization procedure (presented in the next Section). The ap-
proximation is equipped with out-of-range scopes. Therefore, if the range is
shown to be insufficient during reachability analysis, it is accordingly revised
(enlarged).

Example 5.2.2. For the rotational pendulum example, we estimate the
range of the signal that is as an input in the nonlinear block. The resulting
range is enlarged by a percentage. Figure 5.11 shows a set of simulation runs

90 5. FROM SIMULATION MODELS TO FORMAL MODELS

computed with Breach and displays the evolution of the angle θ as a variable
of time. Uncertain initial conditions and a quasi random distribution (Sobol)
were selected.

Figure 5.11: Estimating the range of the input signal of the nonlinear block (sin) of the
rotational pendulum θ (rad) vs. time (s); conducted with Breach simulations.

5.2.3 Translation to SX format

The next step of the model transformation process is to translate the Simulink
model into an equivalent hybrid automaton model. By equivalence, we mean
that the new model is the same as the original one with only the syntax
changing. The target hybrid automaton model respects the semantics of SX
grammar; this format is similar to the standard hybrid automata, syntacti-
cally extended with hierarchy and templates. The SX formalism is supported
by SpaceEx [135] and other verification tools. In the following, we are going
to use SpaceEx and SX interchangeably to simplify the terminology. We use
the SL2SX [231] tool to assist with the translation of the Simulink model into
a hybrid automaton model expressed in the SX format. The tool outputs
empty components for the unsupported Simulink blocks, e.g. nonlinear, sinks,
or string manipulation blocks. For more information about SpaceEx, see
Section 2.4, and about SL2SX, see Section 3.2.

Example 5.2.3. After applying the SL2SX tool to the rotational pendulum
model, we get a SpaceEx model with base and network components. The
top-level network component is shown in 5.12. The constructed model can
be readily compared to the original one, thanks to the preservation of the
block structures, names and variables. In red, we highlight the nonlinear
block that cannot be translated by the tool. The way we handle this block
is described in the following subsection.

5.2. FROM SIMULINK TO HYBRID AUTOMATA 91

Figure 5.12: SpaceEx model of the rotational pendulum constructed by SL2SX tool. The
top-level network component is shown; in red, we indicate the block that represents to a
trigonometric function.

5.2.4 Hybridization

The goal of this hybridization step is to construct PWA approximations
for the Simulink blocks that cannot be handled by the translator. These
blocks may be nonlinear or may not have an exact translation. Also, there
blocks for which the translation scheme cannot be applied (e.g. Embedded
MATLAB Functions).

Once we perform the hybridization procedure, we express the constructed
PWA approximations in SX format and integrate them within the entire
model file. In other words, we obtain a SpaceEx model that combines the
blocks that can be translated exactly and the blocks that are obtained from
the hybridization process. Then, the resulting model can employed for formal
analysis.

Example 5.2.4. Getting back to the the rotational pendulum example, the
nonlinear function (sin) is over-approximated by a PWA function. We pick
boxes/hyper-rectangles as linearization domains and we obtain 40 domains
provided a given error bound. Each linearization domain corresponds to
one location of the resulting automaton and is coupled with a distinct over-
approximation error Note that the approximation errors are different for
each domain and are added in the invariants as bounded, nondeterministic
inputs. The resulting SpaceEx base component is highlighted in Figure 5.13.

5.2.5 Example

We use SpaceEx to perform the reachability computations. SpaceEx, com-
posing on-the-fly the individual components, instantiates only the relevant
parts of the model.

Example 5.2.5. For the reachability analysis of the rotational pendulum
model, we select the STC algorithm, uncertain initial conditions (bounded

92 5. FROM SIMULATION MODELS TO FORMAL MODELS

Figure 5.13: PWA of the nonlinear component (sin) of the rotational pendulum. Only
6 locations are shown (out of 40). Here, the nondeterministic input w1 represents the
approximation error.

initial speed), an approximation error of 0.01 and a time horizon of 1s).
Figure 5.14 shows the resulting phase portrait when the pendulum is released
from its most upward position.

Figure 5.14: Reachability results of the rotational pendulum for a global time horizon of
1s. Phase portrait of the angular position (rad) and angular speed (rad/s).

Example 5.2.6. Getting back to Example 5.1.2, we now model this 9-
dimensional biological system in Simulink. Figure 5.15 depicts the resulting
model. The blocks that involve nonlinear operators are highlighted in color.
The ones that correspond to the same nonlinearity have the same color. In
total, there are three nonlinearities and three types of colored blocks.

We follow the aforementioned procedure: (i) translation into hybrid automata,
(ii) range estimation, and (iii) compositional syntactic hybridization. As we
pointed out in Section 5.1.1, we do not have to partition a nine dimensional
space but we can construct two dimensional approximations (three in total).
Each approximation corresponds to a single hybrid automaton, i.e. a SpaceEx
base component. Note that a base component is essentially a template, i.e.

5.2. FROM SIMULINK TO HYBRID AUTOMATA 93

Figure 5.15: Genetic model in Simulink. Colored blocks correspond to nonlinear operators;
cyan: x2 · x6, red: x1 · x6, and yellow: x6 · x8.

building block, and it can be reused several times. Therefore, it would suffice
to have one base component to describe the three red Simulink blocks, one
for the blue blocks, and another one for the yellow blocks.

Finally, we compute the reachable sets of this biological model win
SpaceEx. We select the STC scenario, an error of 0.01, octagonal constraints
and a time horizon of 1sec. The reachabilty results are shown in Figure 5.16.

94 5. FROM SIMULATION MODELS TO FORMAL MODELS

Figure 5.16: Reachable set of the genetic model computed with SpaceEx. The projection
of a 9-dimensional set in 2D is displayed; 2D space corresponding to variables x1 and x2.

5.3 From Stateflow Diagrams to Hybrid Automata

Simulink/Stateflow (SLSF) has become a widely used industrial tool in the
context of model-based design. SLSF relies on numerical simulation and
has been applied to large-scale systems with complex dynamics. However,
simulation is an inherently incomplete technique since the number of possible
configurations is prohibitively large or even infinite. This limitation is
mitigated by the use of formal verification techniques. Given that verification
tools operate on formal models, it is necessary to transform SLSF models
into a formal representation.

In this work, we translate a subset of SLSF models, i.e. continuous-time
Stateflow charts, into hybrid automata. The resultant formal model complies
with the SX format, which is a formalism used by several reachability tools,
such as SpaceEx. We illustrate the verification of the transformed models on
several examples.

In this respect, there is the need to translate Stateflow diagrams into
hybrid automata. A major issue arises from the fact that Stateflow is a highly
complex language with no formal semantics and its blocks and functionalities
are described informally by the tool provider, Mathworks. A Stateflow
diagram has an hierarchical structure and enables parallel and sequential
state execution.

5.3.1 Stateflow Semantics

Simulink is a graphical modeling environment for plants, control design,
and software. Stateflow is a graphical modeling language integrated within

5.3. FROM STATEFLOW DIAGRAMS TO HYBRID AUTOMATA 95

Simulink. An SLSF design is represented as a diagram of interconnected
Simulink blocks. It illustrates the mathematical relationships between the
inputs, outputs, and states of the system. Note that the modeling language of
Simulink/Stateflow lacks a formal definition of its semantics. In this section,
we present an estimate of the semantics provided in [24].

Stateflow diagrams may take the form of a Chart, State Transition Table,
Truth Table or Message Viewer. In this paper, we consider Stateflow charts as
they better describe the hybrid behaviors and we define a restricted subclass
of continuous-time Stateflow diagrams in the spirit of [38]. Only classic state
machines are considered. The other two options (Mealy and Moore state
machines) are specific cases, which we do not address.

Definition 5.2 (Stateflow Chart). A Stateflow chart

SF = (St, Jun,Var,Trans,Action,Box,Def)

consists of

– a finite set of states St which correspond to locations. States are
partitioned into atomic (AND) and exclusive (OR) states. Drawing
one state within the boundaries of another state indicates that the
inner state is a substate (or child) of the outer state (or superstate).

– a finite set of junctions Jun which represent instantaneous states,

– a finite set of variables V ar that is assumed real-valued. The variables
are partitioned into input variables V arI , output variables V arO , and
local variables V arL.

– a finite set of actions Action which can be performed during different
event times and are subdivided into entry, during, and exit actions.
Entry actions are executed only once when entering the state, and exit
actions are executed only once when exiting the state. The during
actions describe the continuous-time evolution of the variables according
to a differential equation (this happens strictly between entering and
exiting),

– a finite set of discrete transition relations Trans defined by a tuple
(`,Guard, Update, TP, `′), where

– the source state or junction is ` ∈ St ∧ Junc,
– the guard is defined by Guard and once satisfied it forces the

discrete transition to be taken,
– the Update defines which variables are modified and to what value,

96 5. FROM SIMULATION MODELS TO FORMAL MODELS

– the priority, given by TP , is a natural number that indicates
the order in which the transitions are taken if more than one is
enabled,

– the target state or junction is `′ ∈ St ∧ Junc,

– a finite set of boxes Box which is typically used for grouping states
together for visual reasons. It also enables the use of external or internal
functions simplifying the model.

– a finite set of default transitions Def tailored for junctions or states.
A default transition in exclusive decomposition specifies which exclu-
sive (OR) state to enter when there is ambiguity among two or more
neighboring exclusive (OR) states. A default transition to the con-
nective junction defines that upon entering the chart, the destination
depends on the condition of each transition segment. Note that a
default transition has a destination but no source object.

A transition between states may occur at each simulation time step, whereas
multiple junction transitions may occur in a single simulation time step. A
continuous-time Stateflow diagram is roughly analogous to a hybrid automa-
ton, but their behaviors differ in several ways [38]. In particular, Stateflow
diagrams (i) are deterministic, (ii) have urgent transitions with priorities, and
(iii) have events such as enabled transitions that are determined at runtime
by zero-crossing detection algorithms.

5.3.2 Translation Scheme

We consider a Simulink model that contains only a single Stateflow chart
SF = (St, Jun,Var,Action,Box,Def,Trans). It can be translated to a hybrid
automaton H = (Loc, Lab,Edg, X, Init, Inv,Flow, Jump) subject to certain
conditions as explained below. Note that we consider the scenario of an
(idealized) numerical simulation of an SLSF diagram. In SLSF, the various
actions (e.g. entry, during, and exit action, and transitions updates)
are evaluated sequentially, while hybrid automaton action are executed
concurrently. In practice, SLSF requires the execution of (however small)
simulation step in each state.

States. St is a finite set of states containing substates and superstates.
The low level substates (at least one) are transformed in locations in base
components (single hybrid automata). The higher level substates are mapped
to a network components which include all the base components and conducts

5.3. FROM STATEFLOW DIAGRAMS TO HYBRID AUTOMATA 97

parallel composition. Each level higher maps the superstates to a network
component.

Junctions. The junctions are transformed into instantaneous states. This
means that a junction is mapped to a location of a base component whose
invariant is valid for time t = 0. If a junction is included in an SLSF without
any hierarchy, then a new location should be added in the base component
that contains the incoming transition to the junction. If a junction maps
superstates, then the base component should be included in a network
component.

Real-valued variables. The variables of the SLSF are mapped to the
variables of the HA. However, an extra variable is needed for HA that defines
the passing of time. Note that the variables that end with dot correspond
to derivatives and are not needed in HA. The local variables of the SLSF
remain local in HA. The variables of the SLSF that appear in during actions
and end with out are not local.

Actions. Each state of the SLSF is replaced by three locations in the HA.
The entry and exit actions are instanaeous and occur only once. The
during action is used to specify an ordinary differential equation and is
mapped to flow of the corresponding location/state. The first location has an
empty invariant (always true) and the reset equals the predicate of the entry
action. The second location concerns the during action and the predicate
is added in the flow. The third location has an empty invariant and the
incoming transition has as a reset that equals the predicate of the exit
action.

Boxes. The boxes are used for visual reasons and are not translated in HA.
In case they contain functions for mathematical operations, these functions
should be embedded inside the HA (in the corresponding element, e.g. flow,
invariant).

Initial states. The initial states Def of SLSF are encoded as initial states
of HA (Init).

Discrete transitions. The source and target states of a Trans are trans-
lated into source and target locations in HA. The guards of SLSF are
transformed into urgent transitions. The updates correspond to resets of the
HA. The mismatch between the sequential implementation of SLSF and the
concurrent implementation of HA can either be ignored or bridged with the

98 5. FROM SIMULATION MODELS TO FORMAL MODELS

introduction of a new location (for every every reset) in the HA that enables
time elapse for a small time duration (equal to the delay, eps, in SLSF). This
would lead to new locations (in total, #Updates-1) with invariants t ≤ eps,
flows t′ = 1, where t is a controlled variable. Note that we not address inner
transitions in this work.

5.3.3 Examples

In this part, we show how the translation scheme works on three benchmarks.

Single Hybrid Automaton. The first example1 is an ARCH bench-
mark [13] that describes a motor-transmission system [81]. The Stateflow
model is shown in Figure 5.17 and the corresponding hybrid automaton
model in Figure 5.18. Note that the transitions of the SpaceEx model are
urgent and they are defined according to the urgent semantics presented
in [230].

Figure 5.17: Stateflow model of the Motor-Transmission System.

To evaluate the performance of our translation, we simulate the Stateflow
model in Simulink and conduct reachability analysis with uncertain initial
conditions in SpaceEx. Then, we check if the simulated behavior is enclosed
in the reachable set. That is the case as illustrated in Figure 5.19. For
the reachable sets, the initial conditions were enlarged by 1%, the flowpipe
tolerance was 0.001, the STC scenario was selected and octagonal constraints
were used. For a global time horizon of 0.5s, a fixed point was found after 7
iterations and the computation lasted 0.191s.

1Note that the latest SLX model has been modified and enhanced with respect to the
original published in 2014.

5.3. FROM STATEFLOW DIAGRAMS TO HYBRID AUTOMATA 99

Figure 5.18: SpaceEx model of the Motor-Transmission System.

Figure 5.19: Analysis of Motor-Transmission System. Simulation results (Stateflow) in red
vs Reachable sets (SpaceEx) in black.

Parallel Composition. The second example describes an SLSF model
of two thermostats and forms another reachability benchmark [223]. The
Stateflow model is shown in Figure 5.20 and the corresponding SpaceEx

100 5. FROM SIMULATION MODELS TO FORMAL MODELS

model in Figures 5.21 and 5.22. Note that for this case, we construct two
base components (one for each thermostat) and we compose them in parallel
inside a network component.

Figure 5.20: Stateflow model of the Thermostats System.

Figure 5.21: SpaceEx model of the Thermostats System - Base Component.

Figure 5.22: SpaceEx model of the Thermostats System - Network Component.

To evaluate the performance of our translation, we follow the same procedure
as before. Indeed, the simulated behavior is enclosed in the reachable set.
That is the case as illustrated in Figure 5.23. For the reachable sets, the
initial conditions were enlarged by 5% and 10% respectively, the flowpipe
tolerance was 0.1, the STC scenario was selected and box constraints were

5.3. FROM STATEFLOW DIAGRAMS TO HYBRID AUTOMATA 101

used. For a global time horizon of 180s, a fixed point was found after 32
iterations and the computation lasted 0.221s.

Figure 5.23: Analysis of Thermostats System. Simulation results (Stateflow) in red vs
Reachable sets (SpaceEx) in black.

Hierarchy. The third example is a Simulink demo model from Math-
works [226]. It models a permanent-magnet DC motor and employs hierarchy.
The SLSF model is shown in Figures 5.24 and 5.25.

Figure 5.24: SLSF model of the DC motor system.

The SpaceEx model is shown in Figures 5.26 and 5.27. Note that the
existence of hierarchy necessitates the use of synchronization labels. The pri-
ority is sustained in the HA model by the transition from location powerOff
to location up. Self-loops are critical to avoid deadlocks due to the synchro-
nization. Also, transitions from locations up and down back to the powerOff
are required since this location corresponds to a superstate.

102 5. FROM SIMULATION MODELS TO FORMAL MODELS

Figure 5.25: SLSF model of the DC motor system.

Figure 5.26: SpaceEx model of the DC motor system.

The simulated behavior is enclosed in the reachable set. That is the case as
illustrated in Figure 5.28. For the reachable sets, the initial conditions were
enlarged, the flowpipe tolerance was 0.01, the STC scenario was selected and
box constraints were used. For a global time horizon of 10s, a fixed point
was found after 30 iterations and the computation lasted 0.225s.

5.3. FROM STATEFLOW DIAGRAMS TO HYBRID AUTOMATA 103

Figure 5.27: SpaceEx model of the DC motor system.

Figure 5.28: Analysis of the DC Motor System. Simulation results (Stateflow) in red vs
Reachable sets (SpaceEx) in black.

104 5. FROM SIMULATION MODELS TO FORMAL MODELS

5.4 Urgent Semantics

Standard reachability algorithms, based on may semantics, cannot handle
urgent semantics. The main reason is that the computation of the states
reachable via time elapse is more complex. A formal description of urgency
can be found in [144,264]. Following the work of [229,230], the time elapse
computation with urgency can be reduced to time elapse with a nonconvex
invariant by taking the complement of the negation of the urgent guard. Then,
the nonconvex invariant should be partitioned in convex and closed subsets.
Finally, the standard time elapse is applied recursively on each of the elements.
These approaches, however, may lead to coarse over-approximations and
error accumulation. In this respect, we propose a heuristic method that can
reduce the over-approximation by splitting the invariant along the so-called
Lie Planes.

5.4.1 Reach Tubes under Invariant Constraints

Let the reach set S(t,X0, I) of ẋ = Ax+ b be the set of states x(t) such that
x(0) ∈ X0 and for all 0 ≤ τ ≤ t, x(τ) ∈ I, where I denotes the invariant.
The reach tube R(t,X0, I) is the union of the reach sets up to t,

R(t,X0, I) =
⋃

0≤τ≤t
S(τ,X0, I).

Both the reach set and the reach tube are difficult to compute in general.
Tools like SpaceEx instead compute an overapproximation by first ignoring
the invariant and then intersecting with it a-posteriori:

R̂(t,X0, I) != R(t,X0,Rn) ∩ I.

In the following, we will examine under which conditions this heuristic is
exact, and propose a solution that is more accurate.

Reach Set under Invariant Constraints

We consider nondeterministic affine dynamics of the form

ẋ = Ax+ u, u ∈ U .

5.4. URGENT SEMANTICS 105

In the following, we will without loss of generality assume that

0 ∈ U .2

If there are no invariant constraints, then the reach set is [295]

S(t,X0,Rn) = eAtX0 ⊕ T (t),

where the input convolution is independent of the initial states,

T (t) =
∫ t

τ=0
eA(t−τ)Udτ = lim

δ→0

t/δ⊕
k=0

eAδkδU ,

A conservative over- and under-approximation of the input convolution can
be obtained by taking a finite time step δ and adding an appropriate bloating
term E(δ) has been proposed in [202]:

T −(t) !=
t/δ⊕
k=0

eAδkδU ⊆ T (t) ⊆
t/δ⊕
k=0

eAδk
(
δU ⊕ E(δ)

) != T +(t). (5.18)

As the time step δ goes to zero, both sides converge to the true input
convolution. In the sequel, we will need the following semi-group property of
the reach set, which allows us to move sets forward in time:

∀t, s ≥ 0 : S(t+ s,X0,Rn) = eAtS(s,X0,Rn)⊕ T (t),

Because 0 ∈ U , the input convolution is monotonic:

∀t′ ≥ t : T (t) ⊆ T (t′). (5.19)

Invariant. In the presence of invariant constraints, the computation of
the reach set is more complicated, as is described in detail in [201]. Let
V(δ) = δU ⊕ E(δ). Let Yk be the sequence given by Y0 = X0,

Yk+1 =
(
eAδYk ⊕ V(δ)

)
∩ I.

Then the reach set is the limit δ → 0:

S(t,X0, I) = lim
δ→0
Yt/δ.

2 If 0 /∈ U , we can construct an equivalent system as follows: Let u0 ∈ U . Add an
auxiliary variable z whose value is identical to 1 at all times, i.e., z(0) = 1 and ż = 0. Then
substitute x← [x; z], A← [A, u0; 0, 0], U ← U ⊕ {−u0}.

106 5. FROM SIMULATION MODELS TO FORMAL MODELS

A Geometric Sufficient Condition

It is known [171] that this approximation is exact, i.e., R̂(t,X0, I) =
R(t,X0, I), if the invariant is convex and the system follows straight-line tra-
jectories, i.e., A2 = 0 and AU = 0. An algorithm for computing R(t,X0, I)
has been proposed by Girard and Le Guernic, but it is computationally much
more expensive.

We extend this result to a more general case. Let I be characterized by a
differentiable function h(x) such that I = {x | h(x) ≤ 0}. The Lie derivative
of h with respect to the vector field f(x) = Ax+ b is

∂fh(x) = lim
t→0

h(x+ tf(x))− h(x)
t

.

Lemma 5.3. If (i) for all x ∈ R̂, h(x) = 0⇒ ∂fh(x) ≤ 0 or (ii) for all x,
h(x) = 0⇒ ∂fh(x) ≥ 0, then R̂(t,X0, I) = R(t,X0, I).

If I is a polyhedron, i.e., a conjunction of linear constraints cTi x ≤ di, we
can specialize this condition as follows. The Lie dervative on the border of a
constraint cTi x ≤ di is

∂fh(x) = cTi Ax+ cTi b.

The condition ∂fh(x) ≤ 0 then defines a halfspace

cTi Ax ≤ −cTi b.

This leads to the following condition:

Lemma 5.4. If either (i) for all i,

R̂ ∩ {cTi x = di} ⊆ {cTi Ax ≤ −cTi b},

or (ii) for all i,
R̂ ∩ {cTi x = di} ⊆ {cTi Ax ≥ −cTi b},

then R̂(t,X0, I) = R(t,X0, I).

It follows from the above that partitioning I along the hyperplanes
cTi Ax = −cTi b leads to convex partitions inside each of which the approximate
reach operator is exact. However, the number of partitions may be large, so
that it may be worthwhile to investigate exactly which of those partitions
are necessary to take into account.

5.4. URGENT SEMANTICS 107

5.4.2 Examples

In this part, we consider hybrid automata models with different urgent
transitions. We indicate how the proposed heuristic of employing the so-
called Lie planes help obtaining tighter over-approximations. As noted, on
the one hand, simulation tools are deterministic and rely on urgent semantics.
On the other hand, reachability tools like SpaceEx use may semantics. Let
us consider the example of a hybrid automaton model which is shown in
Figure 5.29. The model has two state variables and two locations with
different flows (continuous dynamics). There is an urgent transition and
the initial condition for y is y(0) = 0. If we input this model to SpaceEx,
which does not support urgent transitions, it will output the reachable sets
shown in Figure 5.30a. It can be seen that after the guard is reached, just
consider the hyperplane y = 2.9, two flowpipes are generated. The top
flowpipe corresponds to the loc2 where y > 2.9, while the one on the bottom
corresponds to loc1 where y < 2.9. However, the system should not be
able to produce the bottom flowpipe as it can no longer stay in loc1 and
must move to loc2 (due to the urgent transition). The correct reachability
results are portrayed in Figure 5.30b. This example aims to streamline
that utilizing existing reachability tools with may semantics leads to coarse
over-approximative results which can hamper formal verification attempts.

Figure 5.29: Hybrid automaton model with one urgent transition

In the following, we consider other hybrid automata models and we
show that our proposed model transformation approach produces tighter
reachable sets and avoids large over-approximation errors. We present models
of increasing complexity.

108 5. FROM SIMULATION MODELS TO FORMAL MODELS

a) May semantics - overapproximation b) Urgent semantics - correct

Figure 5.30: Hybrid automaton model with one urgent transition - Reachable sets
computed with SpaceEx (may semantics); bottom flowpipe is spurious.

Example with one urgent guard (one constraint and one variable).
In this example, we only have one guard condition and when the dynamics
jump there is no continuous evolution. This is done by adding a false flow.
As such, it would be easier to visualize the correct and anticipated behavior
vis-a-vis the actual one.

Figure 5.31: Hybrid automaton model with one urgent transition (y ≥ 2.7).

Figure 5.32: Hybrid automaton model with one urgent transition (y ≥ 2.7) - Reachability
analysis with may semantics.

5.4. URGENT SEMANTICS 109

Figure 5.33: Hybrid automaton model with one urgent transition (y ≥ 2.7).

Figure 5.34: New hybrid automaton model with one may transition (y ≥ 2.7) - Reachability
analysis with may semantics.

Figure 5.35: New hybrid automaton model - after splitting with the Lie plane x = 0.

110 5. FROM SIMULATION MODELS TO FORMAL MODELS

Figure 5.36: New hybrid automaton model - Partitioning with respect to the Lie plane.

Figure 5.37: New hybrid automaton model with two new locations - Reachability analysis
with may semantics.

Example with one urgent guard (four constraints and two vari-
ables). In this example, we only have one guard condition and when the
dynamics jump there is no continuous evolution. This is done by adding a
false flow. As such, it would be easier to visualize the correct and anticipated
behavior vis-a-vis the actual one.

Figure 5.38: Hybrid automata model with one urgent transition (4 constraints).

5.4. URGENT SEMANTICS 111

Figure 5.39: Hybrid automata model with one urgent transition (4 constraints) - Reacha-
bility analysis with may semantics.

Figure 5.40: Hybrid automata model with one urgent transition (4 constraints).

Figure 5.41: Hybrid automata model with one urgent transition (4 constraints) - Reacha-
bility analysis with must semantics.

112 5. FROM SIMULATION MODELS TO FORMAL MODELS

5.5 Related Work

The formal verification of MATLAB/Simulink models has been studied in
the literature [297]. There are two main research directions. The first direc-
tion is known as simulation-based verification or verification by simulation.
Techniques and tools have been developed that operate on the original MAT-
LAB/Simulink model and analyze it by manipulating the model inputs and
running extensive simulations. The focus is either on providing coverage
of the system behaviors or falsifying given requirements. Typically, the
MATLAB engine is used for numerical compuations, a fact that renders the
analysis prone to unsound results. Representative tools are Breach [107],
S-Taliro [27], and C2E2 [121].

These techniques, however, need the set of initial states to be sampled.
Since the number of required samples can grow exponentially with the number
of state variables, this can restrict the applicability of such an approach to
systems with low-dimensional initial states. Moreover, these techniques can
be employed to verify bounded-time properties but cannot be applied for
unbounded time. The tool HySon [63,64] aims to provide complete analysis
results by performing set-based simulation directly on a Simulink model and
computes a good approximation of the set of all possible executions. However,
this tool is not publicly available and the technical details imply that it might
have drawbacks while analyzing hybrid systems for an unbounded switching
horizon.

The second research direction is to translate the Simulink models into
modeling formalisms which are amenable to existing hybrid system veri-
fication tools [42, 248, 264] One promising formalism concerns the use of
hybrid automata. The translation of Simulink models is supported by the
Hylink [223] and GreAT tools [3]. However, these tools do not allow hier-
archical modeling and can only be applied to a small subset of Simulink
blocks. An original algorithm to translate Simulink models into a hybrid
system formalism was proposed in [247]. Alur et al. [24] translated a class of
Simulink models into linear hybrid automata to improve simulation coverage,
but they only consider deterministic models. Stanley Bak et al. proposed
a translation process from Simulink/Stateflow to hybrid automata in [223].
Both papers focus on Stateflow diagrams and necessitate the transformation
of the Simulink model into a Stateflow one. This transformation, however, is
not straightforward and sometimes it can even be impossible, e.g. in case of
large-scale models.

However, the translation of MATLAB/Simulink models into formal mod-
eling languages runs into two obstacles. The first obstacle encountered is the

5.5. RELATED WORK 113

lack of a formal definition of its underlying semantics [297]. As such, most
tools and techniques consider an idealized version, a relaxed version or an
estimate of the semantics. In the literature, there has been work realted the
interpretation and development of formal semantics for Simulink. Several
types have been proposed, such as denotational [158], operational [61,159,160],
continuation-passing style [66], and communicating push-down automata
based [287].

The second obstacle concerns the presence of urgency in Simulink/S-
tateflow models, which is usually not supported by formal verification tools.
Simulink models are deterministic and utilize urgent transitions, which means
that a transition must be taken as soon as the guard is satisfied. Standard
reachability algorithms and tools are based on may semantics and cannot
handle urgent semantics. The main reason is that the computation of the
states reachable by time elapse is different. One way to overcome this problem
is to substitute the urgent guard condition by a condition on the invariant of
the source location [171]. However, this transformation leads to non-convex
invariants and requires splitting of these invariants into convex partitions.
Each partition would correspond to a new auxiliary location of the resulting
hybrid automaton. Issues with boundary conditions (strict vs. non-strict
inequalities) arise which might lead to unsound or over-approximative re-
sults [60]. An algorithm for computing exactly the time-elapse of linear
hybrid automata with urgency is presented in [229]. It has been extended
to PWA hybrid automata in [230]. These approaches, however, still can
lead to coarse over-approximation of the reachable sets and are not efficient
computationally since they tend to generate many unnecessary auxiliary
locations.

Finally, on a slightly different note, there has been work on the translation
of a formal model into an Simulink/Stateflow model. Bak et al. [38] have
proposed an approach to translate hybrid automata into continuous-time
SL2SF. Pajic et al. [243] have worked on the translation of timed automata
described in UPPAAL into SLSF diagrams. The translation of Hybrid
Communicating Sequential Processes into Simulink diagrams is presented
in [298].

114 5. FROM SIMULATION MODELS TO FORMAL MODELS

6
C

h
a

p
t

e
r

Case Studies

Parts of this Chapter have been published in [188, 189].

6.1 Cruise Controller

The area of autonomous vehicles has instigated research interest both from
industry and academia [119]. Autonomous vehicles are expected to become
the most common means of transportation by 2040 [215]. An autonomous
vehicle can fully take over the driving duties leading to a significant prevention
of accidents caused by human errors. Human-caused accidents account for
90% of the total accidents [216]. In this vein, automated driving is expected
to provide safety and comfort as well as reduce accidents, crashes, and
congestion [291]. Nonetheless, autonomous vehicles drive in a dynamic
environment and their safe operation has to be guaranteed.

The main components of a modern autonomous vehicle are localization,
perception, and control [194]. The literature on vehicle path planning and
control is rich, see the volumes [106, 175, 191, 255] and references therein.
Control design of autonomous vehicles has been treated, e.g. in [120, 210].
Different vehicle models for autonomous driving are presented in [16, 194].
Efficient trajectory planning with obstacle avoidance is a fundamental task
for autonomous vehicles. The approaches can be divided into (i) planning
in discrete space and (ii) planning in continuous space [215, 216]. Very
recently, an open source tool SPOT [197] was proposed to compute the
future occupancy of multiple traffic participants on arbitrary road networks.
A set of benchmarks for motion planning on roads can be found at [16].

115

116 6. CASE STUDIES

One of the most common driving assistance systems of modern vehicles,
autonomous and non-autonomous alike, is cruise control. The purpose of a
cruise control system is to regulate the speed of the vehicle, despite external
disturbances. Its basic operation is to measure the actual vehicle speed,
compare it to the reference or desired speed and automatically accelerate or
decelerate according to a control law [174], [292]. Reachability analysis of
a cooperative adaptive cruise controller has been considered in [190]. The
authors conduct safety analysis of two adjacent vehicles in a platoon, defined
by a linear dynamical model and controller.

In this Section, we apply the verification workflow shown in Figure 3.2
on a cruise control case study, adapted from [190]. In particular, we employ
the toolchain to conduct formal verification on Simulink/Stateflow models
and perform analysis with SCADE.

Simulink Model. The closed-loop system, shown in Figure 6.1, consists
of the physical plant (ODEs) and a PID controller. The speed is measured
by a sensor which is assumed to be noisy. The uncertainty is modeled as a
bandwidth-limited white noise with a noise power of 0.01 and correlation
(sampling) time of 0.1s. The reference signal is time-varying and is modeled
with Stateflow, as shown in Figure 6.2.

Figure 6.1: Simulink model of the Cruise Control system.

Formal Model. Using SL2SX tool [231] and the proposed SLSF translation,
the model is translated into a formal model described by piecewise affine
hybrid automata in SpaceEx format. It consists of 13 base components
(single HA) and 3 network components (networks of HA). Note that general,
nonlinear Simulink systems can be transformed to SpaceEx models in the
form of PWA hybrid automata, as shown in [187,188]. The SpaceEx model
is shown in Figures 6.3 and 6.4. Note that the noise is over-approximated by
a nondeterminsitic variable that lies in the range [−1, 1].

6.1. CRUISE CONTROLLER 117

Figure 6.2: Stateflow chart of the Cruise Control system.

Figure 6.3: SpaceEx model of the Cruise Control system.

Figure 6.4: SpaceEx model of the Stateflow chart.

Requirements. The control objective is to regulate the vehicle speed
while respecting the following design specifications, (i) rise-time < 6s, (ii)
settling-time < 9s, and (iii) overshoot < 10%.

118 6. CASE STUDIES

Formal Specifications. The control objectives can be translated into
formal specifications using pattern templates [133], as shown in Section 4.1.1.
The rise-time is mapped to the bounded response pattern, the settling-time
to the timed absence pattern, and the overshoot to the absence pattern.
Using the formalSpecs tool [76], we construct monitor automata for these
patterns. These monitor automata, once composed with the system under
test, encode the requirements as reachability properties. Considering the
first reference speed (v = 30) and the settling-time pattern, the monitor
automaton is shown in Figure 6.5 and the complete system in Figure 6.6.

Figure 6.5: Monitor automaton describing the settling-time control objective of the Cruise
Control system, shown in SpaceEx Model Editor.

Figure 6.6: Composition of the formal model with the monitor automaton (timed absence),
shown in SpaceEx Model Editor.

Formal verification via reachability analysis. SpaceEx [135] is used for
computing the reachable sets. The safety verification problem is tackled by
introducing a set of forbidden states, i.e. “loc(monitor)==error”. Running
SpaceEx (STC scenario, box directions) for 105 seconds, we get a fixed point
after 4 iterations. The global time horizon is 40s and the initial condition is
uncertain 0 ≤ v ≤ 3. Since the error state is not reachable, the property is
satisfied. Figure 6.7 displays the evolution of the vehicle speed over time.

Analysis with SCADE. The system model includes the plant, the envi-
ronment and the controller. Through the formal verification, the system is
guaranteed to satisfy the specification under the considered uncertainties.
The next step is to analyze the system with the SCADE Suite. Initially, we
apply the sx2sh translator (see Section 3.2) to obtain the equivalent hybrid
program that can be employed by SCADE. Both the flattened version of the
formal model (single hybrid automaton) and the original model (composi-
tional, network of hybrid automata) can be parsed by the translator. The

6.1. CRUISE CONTROLLER 119

resulting SCADE models are equivalent and are deterministic. Then, we use
SCADE Hybrid to run simulations and check whether the controller needs to
be refined or not. Figure 6.8 shows a simulation trace from specified initial
conditions.

Figure 6.7: Reachable analysis of a Cruise Control system conducted with SpaceEx; black:
reachable sets, red: simulation with Simulink (enclosed in the reach set).

Figure 6.8: Simulation of a Cruise Control system conducted with SCADE Hybrid; input:
formal model expressed in SpaceEx format (with or without the monitor automaton);
model transformation with SpaceEx to SCADE translator.

120 6. CASE STUDIES

6.2 Wind Turbine

The wind turbine systems form one of the fastest-growing industries in
renewable energy worldwide. An industrial wind turbine model has been
proposed by General Electrics in [267]. This wind turbine is designed with
MATLAB/Simulink and it is a large-scale nonlinear model equipped with
hybrid controllers.

In this Section, we describe the process of building a PWA hybrid au-
tomaton model of the Simulink model. The resulting model is expressed
in SX format, used by SpaceEx [135] and other tools. The model transfor-
mation process involves four steps: (i) adapt the Simulink model to respect
the verification standards, e.g. adding nondeterminism, (ii) build the for-
mal model with the help of SL2SX tool [231], (iii) perform compositional
syntactic hybridization (see Section 5.1) to obtain PWA approximations of
the nonlinear function/blocks, and eventually (iv) conduct model validation
to determine whether the resulting approximations (base components) are
non-blocking.

6.2.1 Benchmark Model

The wind turbine modeling is done with MATLAB/Simulink [267]. Figure 6.9
displays the top-level view of the Simulink diagram and Figure 6.10 depicts
the plant of the wind turbine. The wind turbine dynamics are nonlinear
functions of the operating point and they are determined by the wind speed,
the rotor speed, and the blade pitch angle.

The plant comprises three subsystems: an aeroelastic, a servo-elastic,
and a pitch-actuator. The servo-elastic subsystem contains linear operators
and is linked with the aeroelastic subsystem through signals that represent
the aerodynamic torque and thrust. The aeroelastic subsystem has several
nonlinear blocks, i.e. two fourth-order Polynomials, two Products, two Square
functions, and two Divisions. These polynomials represent the aerodynamic
torque coefficient (cP) and thrust coefficient (cT). They are computed
through a MATLAB regression model. The pitch actuator dynamics can be
expressed by a first-order lag, a second-order lag, or a time-delay. The inputs
of pitch actuator subsystem are the pitch actuator type and the requested
pitch angle. Its output is the actual pitch angle which is connected with to
the aeroelastic subsystem. It includes several linear operators as well as a
Multiport Switch, three Enable blocks, three Compare to constant blocks,
and three Enabled Subsystems.

6.2. WIND TURBINE 121

Figure 6.9: Wind turbine - Simulink model - Top Level [267].

Figure 6.10: Wind turbine - Simulink model - Plant [267].

The wind turbine has two controllers: a collective blade-pitch controller
and a generator-torque controller. On the one hand, the collective blade-
pitch controller is a gain-scheduled PID and its aim is to minimize the error
between the rated and the filtered generator speed. It includes an anti-windup
scheme to prevent integration wind-up whenever the actuator is saturated.
It contains linear, hybrid blocks and two nonlinear ones, a Division and a
Product. On the other hand, the objective of the generator-torque controller
is to maximize the extracted maximum power from the wind via tracking the
optimal tip-speed ratio λopt. In essence, it forms a hybrid controller with 2
inputs and 5 5 discrete states signals. Its inputs correspond to the pitch angle
and the filtered generator speed. It is defined as an Embedded MATLAB
Function and it contains two nonlinearities, a Square and a Division.

122 6. CASE STUDIES

In total, the model contains more than 10 distinct nonlinearities. Exclud-
ing the memory blocks, the clocks, and the rate limiters, the model states
vary from 5 to 7.

6.2.2 Model Transformation

This section describes the model transformation, presenting the model adap-
tation, translation, hybridization, and validation steps.

Model Adaptation

The goal of model adaptation is either to abstract or enrich the verification
model. For example, let us look at the Simulink block that determines the
wind speed profile. The wind profile is an external input to the Simulink
model read from the MATLAB workspace. The input is a discrete time
signal but it has 33 possible profiles; saved in the the aeromaps.mat file. In
principle, such a profile can be translated into a hybrid automaton, but this
would not be very efficient. As such, we add a nondeterministic variable
that covers all possible combinations and is bounded between the minimum
and the maximum allowed wind speeds. Note it is also possible we can set
bounds on the rate of change of the wind speed. We further modify the
Simulink model by replacing or deleting several blocks, e.g. Scopes, Save to
workspace Mux, Demux, Enabled Subsystems, Manual Switches.

Translation

The second step of the proposed model transformation is to translate the
Simulink model into an equivalent SpaceEx model using the SL2SX transla-
tor. The translation is almost instantaneous and generates an SX file with
18 Network and 89 Base Components. The Simulink blocks that can be
automatically translated into corresponding base components are as follows:
Add, Subtract, Divide, Multiply, Constant, Gain, Saturation, Integrator,
Subsystem, Inport, Outport. Nonetheless, there are Simulink blocks that can
be exactly translated, because they can not be expressed as PWA hybrid
automata.

Note that it is feasible to make the SpaceEx model more compact by
reusing base components and replacing the components that are duplicate
or serve exactly the same role. Such configuration makes the total number
of base components to be reduced approximately up to 30 distinct ones.
Figure 6.11 and Figure 6.12, respectively, present the top level block (network

6.2. WIND TURBINE 123

Figure 6.11: Wind turbine - SpaceEx model - Top Level.

Figure 6.12: Wind turbine - SpaceEx model - Plant.

component) and the plant subsystem of the wind turbine model in SX format,
as shown in the Model Editor of SpaceEx.

Hybridization

The third step of the model transformation is to obtain PWA approximations
and express them in SX format of all Simulink blocks that cannot be handled
automatically. This step concerns cases where no exact translation is available,
e.g. nonlinear functions, or the translation procedure cannot be applied, e.g.
Embedded MATLAB or S-Functions.

To obtain PWA approximations of nonlinear dynamics, we use the pro-
posed syntactic hybridization method. A useful intermediate step is to
obtain bounds on the minimum and maximum behaviors of the inputs of the
nonlinear Simulink blocks. Note that the shorter the ranges of the signals,
the smaller the number of locations required by the PWA abstraction. In
this work, we run Simulink simulations for different scenarios and initial

124 6. CASE STUDIES

conditions to obtain a (not necessarily conservative) estimation of the signal
range.

For this wind turbine model, the constructed base components only have
one or two input signals and one output signal, the state space is partitioned
into a set of boxes, the approximations are linearized around the center
of each domain, and the abstraction (linearization) error is computed by
evaluating the Lagrange remainder. The maximum error value is computed
for each location (box). We use a combination of interval arithmetic and
global optimization to bound it [17]. All the computations (linearization
domains, quantization parameters, operating points, PWA approximations,
errors) and the model files integration are conducted with MATLAB.

Notice that the approximations can be conservative or non-conservative.
The error is first computed for each distinct location of the base components
and then it is added as a nondeterministic input in the respective invariants.
It is also possible to ignore the errors for debugging purposes or select a
single error value, e.g. average, in order to generate a deterministic model.
Table 6.1 presents the Simulink blocks that have to be approximated along
with the maximum induced errors and the corresponding number of locations
of each approximation. Note that the error corresponds to the maximum
error that appears in one of the locations of the PWA approximation. The
individual errors in the remaining locations can be significantly smaller.

The resulting model only has 72 locations in all components combined.
To conduct reachability analysis, SpaceEx carries out on-the-fly composition
of the hybrid automata and instantiates only the reachable parts of the
state-space. Notice that the upper bound of the number of locations of the
composed model is 16 millions.

Model Validation

The fourth step concerns the model validation. We present an empirical
approach to check whether the generated base components are correct to
the extent that they yield satisfactory behaviors and do not cause any
deadlocks. In this step, we basically test the implementation. In this respect,
we have generated a signal library with predefined components that define
step, trigonometric, and ramp functions. We have added an extra base
component that assists with visualizing the outputs1. Once we construct a
new approximation, we integrate it within the SX library and obtain a tester
module (containing both base and network components).

1Certain SpaceEx algorithms do not output algebraic variables, so we mapping the
algebraic variable to the solution of an ODE.

6.2. WIND TURBINE 125

No Block Type # Loc Error Bounds Info

1 Product (Anti windup) 4 2.00 x · y
2 Division (Cp/λ) 10 2.76e-2 x/y
3 Division (GS factor) 2 2.01e-2 1

1+x
4 Division (λ) 4 6.98e-1 x/y
5 Product (CT · v2

ref) 4 25.6 x2 · y
6 Product (Cp/λ · v2

ref) 4 3.23 x2 · y
7 Polynomial (aeromaps) 6 3.39 4th-order
8 Polynomial (aeromaps) 6 12.3 4th-order
9 Embedded MATLAB 28 10.5 x2 and 1/x

10 Saturation 3 - exact
11 Read from workspace 1 - aux. variable

12 Mux, Scope - - -
13 Save to workspace - - -
14 Enabled Subsystem - - -
15 Multiport Switch - - -
16 Compare to Constant - - -
17 Manual Switch - - -

18 Rate Limiter – – DAE
19 Memory – – cont. delay

Table 6.1: Wind Turbine Benchmark – breakdown into blocks. Blocks, 1-9, are ap-
proximated syntactically; the 10th block is exactly translated; 11th is replaced by a
nondeterministic input; blocks, 12-17, are not necessary due to semantic differences; and
the rest, 18-19, are ignored to mitigate further state space explosion.

The tester modules check that the approximation is non-blocking and
is indeed an over-approximation. For the first objective, the input signals
are selected in a way that compels the PWA automaton (introduced by the
hybridization process) to necessarily visit all of its locations. As soon as
the input signals exceed the allowed operating range, the automaton goes
out-of-bounds and the analysis terminates. That means that a fixed point
has been reached. For the second objective, we perform reachability analysis
on the tester module (containing the approximation and the input signals)
and then compare the results with random simulations. In this way, we check
whether the simulations are included in the reachable sets.

For illustration purposes, let us consider a Simulink block of the aero-
elastic subsystem of the wind turbine’s plant. Figure 6.13 shows the entire
Simulink aero-elastic subsystem. The block under study is the Divide block
and it is highlighted in red.

126 6. CASE STUDIES

Figure 6.13: Aero-elastic subsystem - Simulink - Nonlinear Divide block shown in red.

This block describes a division operator for two input signals that continu-
ously evolve over time. Physically, this block computes the tip-speed ratio, a
dimensionless variable described by lambda (λ). This block is nonlinear and,
as such, is replaced by a PWA over-approximation that contains 4 locations.
Figure 6.14 shows the resulting SpaceEx base component. The variables In1

Figure 6.14: Divide block - PWA approximation in SpaceEx.

and In2 denote the two inputs, whereas Out1 is the PWA approximation
of the division operator In1/In2. The approximation error w1 is included
as a nondeterministic disturbance. Noticee that all the variables should be
uncontrolled, and the error term should be included in the invariant, denoted
as a local variable; see Section 2.4 for detailed information regarding the
modeling language of SpaceEx.

After integrating the base component of the Divide block with our input
library, we want to check the previously mentioned objectives (no deadlocks
and over-approximation). We select the inputs to be ramp signals with
varying initial conditions. The first input is described by dIn1

dt = 1 with
initial conditions in 69 < In1 < 71 and the second input by dIn2

dt = 1 with
initial conditions in 6.9 < In2 < 7.1. Then, we conduct reachability analysis
and compare the results against random simulations of the original nonlinear
function. In this way, we observe that for the considered scenario SpaceEx

6.2. WIND TURBINE 127

yields an over-approximation. The tester module is depicted in Figure 6.15a,
the reachable sets and the simulation runs are shown in 6.15b.

The same approach, in a hierarchical manner, is employed to guarantee
that compositions of multiple base components, network components or
larger subsystems operate correctly.

a) Tester - Division λ. b) Reachable sets and Simulations.

Figure 6.15: SpaceEx Base Component - Division λ - Model Validation. The reachable
sets of the approximate SpaceEx block are shown in blue and the simulation runs of the
nonlinear function in red. The simulation runs are indeed enclosed in the reachable sets.

6.2.3 Reachability Results

In this part, we provide validation runs for selected Simulink subsystems,
which correspond to SpaceEx network components. We begin with the pitch-
actuator subsystem of the wind turbine plant. The input of this block is the
commanded pitch angle and the output is the actual pitch angle. Opting for
the STC (space-time with clustering) scenario, a global time horizon of 10s,
and a constant input signal, we obtain a fixed point. Figure 6.16 depicts the
reachable sets for different initial conditions. The input signals are depicted
in red and the output signals in blue.

Next, we consider the servo-elastic subsystem of the wind turbine
plant. Considering constant inputs, the STC scenario and a global time
horizon of 20s, SpaceEx again terminates successfully. Figure 6.17 illustrates
the reachable sets for initial conditions that can be in the following sets:
0 ≤ Omega ≤ 0.1 and 0 ≤ xT dot ≤ 0.1.

Afterwards, we analyse the torque controller. The resulting approxi-
mation comprises 28 locations, has two input signals (omega d, theta) and
one output (torque). We select the input signals of Figure 6.19 (a ramp and
a sine function), as they cover, when combined, the entire 2-dimensional
operating range (from minimum to maximum allowed values). Actually,

128 6. CASE STUDIES

with this configuration, SpaceEx visits all the controller locations and is
able to find a fixed point after 16 seconds. The reachable sets are com-
puted with the PHAVer scenario; PHAVER stands for polyhedral hybrid
automaton verifier and it uses unbounded integer arithmetic and guarantees
over-approximations. The reachable sets of the torque controller are shown
in Figure 6.18.

a) Initial Conditions - 0 ≤ θ ≤ 0.15. b) Initial Conditions - 0.18 ≤ θ ≤ 0.22.

Figure 6.16: Reachable sets of pitch actuator (blue: Output, red: Input).

a) Output - Omega b) Output - Displacement (xT dot).

Figure 6.17: Reachable sets servo-elastic subsystem.

6.3. LANE CHANGE MANOEUVRE FOR AUTONOMOUS VEHICLES 129

Figure 6.18: Reachable sets of torque controller.

a) Input 1 - Omega d. b) Input 2 - Theta.

Figure 6.19: Selected Input signals for torque controller.

6.3 Lane Change Manoeuvre for Autonomous Ve-
hicles

Lane changes are considered to be risky manoeuvres both for human drivers
and autonomous vehicles. This the case as they require changes in lateral
and longitudinal velocities in the presence of other moving vehicles [77].
According to the National Highway Traffic Safety Administration, the main
cause of lane change accidents is failure to detect the other vehicle and almost
80% of the accidents occur at speeds smaller than 25km/h [154].

Lane changes manoeuvres can be divided on the basis of the existence
of road infrastructure [170] or of a reference trajectory [238]. Predefined
trajectories are known as motion primitives [123]. Motion primitives are
computed offline and can be used to construct manoeuvre automata. Con-
struction of formally verified manoeuvre automata using reachability analysis

130 6. CASE STUDIES

Figure 6.20: Lane Change manoeuvre - Car in the right lane merging to the left lane.

is investigated in [12, 167]. Examples of control designs tailored to lane
change manoeuvres are tube-based MPC [143] and convex interpolation
control [269]. As for metrics required to validate the suitability of a lane
change manoeuvre, one can employ the time to collision, time headway, time
to line crossing, or the inter-vehicle traffic gap [150,238,289].

In this Section, we present a benchmark modeling a cooperative lane
change manoeuvre that includes four fully autonomous vehicles. Three
vehicles drive in the left lane and one is in the right lane. The vehicle in
the right lane wants to move to the left whereas avoiding a collision (see
Figure 6.20). Each vehicle is equipped with sensors and can communicate
with its neighboring vehicles. The vehicle dynamics are expressed by a
dynamic bicycle model and each vehicle hash a linear low-level controller that
regulates its own lateral and longitudinal behavior. In order to guarantee that
the manoeuvre is safe and the traffic rules are fulfilled, we use a cooperative
driving control scheme (supervisory logic) that determines the actions of
each vehicle.

6.3.1 System Description

In this part, we present the lane change scenario, the system specifications,
the modeling part, and the control design. We consider that there are three
vehicles in the left lane that have already formed a platoon and they move
with the same speed. The desired speed is assumed to be predefined and is an
external (constant) input to our system. We also assume that the manoeuvre
has already been requested, e.g. by a higher layer (road infrastructure) or
due to an emergency (obstacle avoidance). The vehicle in the right lane
has to change its lane and merge to the left one. We consider that the

6.3. LANE CHANGE MANOEUVRE FOR AUTONOMOUS VEHICLES 131

vehicle should move in between two specific vehicles, i.e. tail (no. 1) and
interior (no. 2). This manoeuvre can be seen as an automated merging
manoeuvre [212], i.e. how to insert a vehicle from on-ramp in the middle
between two pre-selected vehicles of a platoon in the main lane.

The lane change manoeuvre consists of two phases. The first phase is the
preparation of the manoeuvre and the second is the manoeuvre itself. Once
the manoeuvre is completed, the platooning formation should be achieved.
In other words, the desired inter-vehicle distances and speeds should be
reached.

We assume that the vehicles are equipped with orientation, position, and
velocity sensors; thus, all the state variables can be measured. Also, the
vehicles can communicate their longitudinal position and speed with their
neighboring vehicles.

Specifications

The specifications that the vehicle platoon should satisfy are taken from
[161,238]. Each vehicle should

1. maintain safety margins with all the surrounding vehicles,

2. respect the traffic rules, and

3. satisfy physical and design limitations.

More precisely, these specifications can be expressed as

1a. the distance of two neighboring vehicles should never be smaller than
a given threshold2,

1b. the vehicles of the platoon should maintain a constant time gap (tgap)
between each other; this gap is analogous to their speed,

2a. the manoeuvre should only be initiated if the time gap (also known as
time-to-collision [293])3 is greater than a given value (tgap m),

2b. eventually (once the manoeuvre is finished) the vehicles should form a
platoon and the velocity of all vehicles should reach ||vdes ± ε||, where
ε is a user-defined metric,

3a. the cars cannot exceed the practical velocity bounds, e.g. vmin ≤ v ≤
vmax, and

2By vehicle distance, we assume the difference between the longitudinal positions of
two vehicles with respect to the center of gravity in their rear axles.

3Time-to-collision (TTC) corresponds to the time required for two vehicles to collide if
they continue at their present speed and on the same path.

132 6. CASE STUDIES

Figure 6.21: Bicycle Model - Physical Interpretation [180]

3b. the control inputs are bounded, i.e. αmin ≤ αx ≤ αmax and δmin ≤
δ ≤ δmax.

Note that these time gaps will be used for the control design part. In addition,
we consider a desired platoon speed vdes and a constant time gap tgap. As a
result, the distance between two vehicles in the platoon should not be smaller
than vdes ·tgap. During the lane change, the time gap that the merging vehicle
should respect is tgap m < tgap. The numerical values of these parameters are
given in Table 6.5. These requirements can be encoded as reachability/safety
problems via the monitors of Section 4.3.

Vehicle Dynamics

For vehicle dynamics, there exists a large variety of models ranging from
simpler to more complicated. Typically, the more complicated the model is,
the more accurately it captures the physical behavior of the vehicle [257].
Among others, one could select from point-mass, kinematic, dynamic, and
multi-body models, see e.g. [16]. In the literature of autonomous vehicles,
dynamic and kinematic bicycle models are commonly used [194]. Unlike
kinematic models, dynamic bicycle models consider the tire slip. Note that
the standard bicycle model is also known as single-track model [257]. As for
tire models, there are various alternatives from linear to nonlinear ones [242].

In this work, we consider a dynamic bicycle model with a linear tire
model (see Figure 6.21). We select a dynamic model in order to incorporate
the tire slip given the fact that it can express important phenomena, such
as understeering and oversteering. At the same time, the model is assumed
linear to avoid computational complexity. Similar to [257, Chapter 2], the
state vector contains:

6.3. LANE CHANGE MANOEUVRE FOR AUTONOMOUS VEHICLES 133

– the longitudinal position of the rear axle xr,

– the lateral position of the rear axle yr,

– the yaw angle ψ,

– the longitudinal velocity vx,

– the lateral velocity at the center of the rear axle vy,

– the yaw rate ω.

The model inputs are the longitudinal acceleration ax and the steering
angle δ. The state vector is completely measured and we model additive
measurement noise in all state dimensions. The disturbances are defined
as three normalized forces, with the error force edfx

acting in longitudinal
direction, edfy,f

acting in lateral direction at the front axle and edfy,r
acting in

lateral direction at the rear axle. In vector form, the state vector is expressed
as

x = [xr, yr, ψ, vx, vy, ω]T state wrt. rear axle (6.1)
u = [ax, δ]T input, measured (6.2)
y = [xr, yr, ψ, vx, vy, ω]T measurement (6.3)
ν = [emxr

, emyr
, emψ , e

m
vx
, emvy

, emω]T meas. err. (6.4)

w = [edfx
, edfy,f

, edfy,r
]T disturbance (6.5)

Starting from first-principles, as shown in [257], the differential equations of
the dynamic bicycle model are defined:

fB(x, u) =

ẋ1 = x4 cos(x3)− x5 sin(x3)
ẋ2 = x4 sin(x3) + x5 cos(x3)
ẋ3 = x6
ẋ4 = u1 + x5x6 + w1
ẋ5 = fy,f (x, u, w) + fy,r(x,w)− x4x6
ẋ6 = amJ (fy,f (x, u, w))− bmJ (fy,r(x,w))

with the normalized front and rear lateral forces fy,f (x, u), fy,r(x) given as

fy,f (x, u) = −cfµg
b

a+ b

(
x5 + (a+ b) · x6

x4
− u2

)
+ w2

fy,r(x) = −crµg
a

a+ b

x5
x4

+ w3.

Note that we assume a global coordinate system and the variables are
described in absolute coordinates. The state of the system is often expressed

134 6. CASE STUDIES

Table 6.2: Parameters for bicycle model

Description Symbol Value

wheelbase (m) L 2.7
gravitational constant (m/s2) g 9.81
friction coefficient µ 0.8
distance from front wheels to center of gravity a

(
1− b

L

)
· L

ratio of mass to rotational inertia (m2/ s2) Iz/m 1.57
relative position of center of gravity b/L 0.57
relative front tire stiffness cf 10.8
relative rear tire stiffness cr 17.8

in different coordinates [167], e.g. using a polar-coordinate representation
of the vehicle velocity, which is defined by the slip-angle β = arctan(vy/vx)
and the absolute velocity vabs =

√
v2
x + v2

y , with the direction of motion
θ = ψ + β.

The model parameters that we opt for are taken from [161] and are
provided in Table 6.2. More details about the parameter estimation and
identification can be found at [95]. The nonlinear model is linearized around
a set of operating points using standard point-wise linearization, e.g. [169].
For linearization purposes, we consider xop = [0, 70/3.6, 0, 0, 0, 0], meaning
that we linearize around the nominal platoon conditions. Finally, we obtain
the state-space representation

ẋ = A · x+B · u+Bd · w
y = C · x+ v

(6.6)

A ≈

0 0 0 1.0000 0 0
0 0 19.4444 0 1.0000 0
0 0 0 0 0 1.0000
0 0 0 0 0 0
0 0 0 0 −5.5739 −17.5748
0 0 0 0 1.1909 −6.7936

B ≈

0 0
0 0
0 0

1.0000 0
0 48.3123
0 35.7265

,

Bd ≈

0 0 0
0 0 0
0 0 0

1.0000 0 0
0 1.0000 1.0000
0 0.7395 −0.9803

and C =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

.

6.3. LANE CHANGE MANOEUVRE FOR AUTONOMOUS VEHICLES 135

ν1 : emxr
[m] ν2 : emyr

[m] ν3 : emψ [◦] ν4 : emvx
[m/s] ν5 : emvy

[m/s] ν6 : emω [◦/s]

0.04 0.04 1 0.05 0.05 2

Table 6.3: Maximum values of measurement errors

w1 : edfx
[m/s2] w2 : edfy,f

[m/s2] w3 : edfy,r
[m/s2]

0.1 0.057 0.043

Table 6.4: Maximum values of disturbances

The maximum disturbances and maximum measurement errors are taken
from [161] and are given in Tables 6.3 and 6.4. Note that the values of the A
and B matrices that we present here are rounded. For the computations, we
use the double-precision values that can be found at the associated MATLAB
files4. We opt for a linear model for computational reasons; such a model is
amenable to efficient reachability algorithms for PWA dynamics.

Low-level Control

The objective of the low controller of each vehicle is to regulate its position
and velocity in accordance with the behavior of the other vehicles. At the
same time, the lane change manoeuvre should be safe. Once the manoeuvre
is completed, the vehicle platoon should maintain the predefined vehicle
speed vdes. The control scheme is shown in Figure 6.22.

As all the vehicles are described by the same physical model, we use the
same low-level controller for all vehicles. In particular, we utilize a linear
controller

u = −K · y = −K · (x+ v)

that renders the closed-loop system asymptotically stable. We opt for an
LQR (Linear Quadratic Regulation) controller since it is a well established
design technique that provides practical feedback gains. LQR is an optimal
multivariable feedback control approach which minimizes the deviation of
the state trajectories of the closed-loop system while requiring minimum
controller effort. The behavior of an LQR controller is determined by two
parameters: state and control weighting matrices. These two matrices are
design parameters and influence the success of the LQR controller synthe-
sis [162].

4The source code of this benchmark model has been published online at https://
cps-vo.org/group/ARCH/benchmarks.

https://cps-vo.org/group/ARCH/benchmarks
https://cps-vo.org/group/ARCH/benchmarks

136 6. CASE STUDIES

Employing the Bryson’s rule we arrive at the following weighting matrices

Q =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1/180 0 0 0
0 0 0 5 0 0
0 0 0 0 5 0
0 0 0 0 0 5/180

, R =

[
1 0
0 180/π

]
, and N = 06,2,

we numerically solve the continuous Algebraic Ricatti Equation with MAT-
LAB and obtain our state-feedback matrix

K =
[
1.0000 0 0 2.6458 0 0

0 0.1321 1.6970 0 0.0457 0.2829

]
.

Checking the eigenvalues of A−BK matrix have Re(eig(A−BK)) < 0, we
validate that the system is indeed stable.

Figure 6.22: Low-level control loop - C(i) is the controller, S(i) is the sensor module and
P (i) is the plant of the ith vehicle.

Supervisory Control

The next step is to define the references (set points) xref for the controller
of each vehicle. We employ a consensus-based cooperation scheme where the
set points of each vehicle are defined by the states of its neighboring vehicles.
As such, the controllers are expressed by

u = −K(y − xref) = −K(x− xref + v) where (6.7)
xref = [xr,ref , yr,ref , ψref , vx,ref , vy,ref , ωref].

Note that the length of a lane is assumed to be 3.5 meters. The control
inputs are bounded. In particular, the acceleration remains in the range

−3 ≤ u1 ≤ 2.

6.3. LANE CHANGE MANOEUVRE FOR AUTONOMOUS VEHICLES 137

For the steering angle, we consider that

−π/4 ≤ u2 ≤ π/4.

However, the reference values are different for each vehicle.

Leader Vehicle. For the leader vehicle in the left lane (no. 3, pink in
figures), we select

v
(3)
x,ref = max

(
vdes, v

(2)
x

)
x

(3)
r,ref = max

(
x(3)
r , x(2)

r + tgap · v(2)
x

)
y

(3)
r,ref = 0, ψ(3)

ref = 0, v(3)
y,ref = 0, and ω

(3)
ref = 0.

(6.8)

In essence, the leader vehicle should maintain the desired platoon velocity or
accelerate when the vehicle behind it starts accelerating. Accordingly, the
reference position is defined.

Rear Vehicle. For the vehicle at the tail of the platoon in the left lane
(no. 1, red in figures), we select

v
(1)
x,ref = min

(
v(2)
x , v(4)

x

)
x

(1)
r,ref = min

(
x(2)
r − tgap · v(2)

x , x(4)
r − tgap · v(4)

x

)
y

(1)
r,ref = 0, ψ(1)

ref = 0, v(1)
y,ref = 0, and ω

(1)
ref = 0.

(6.9)

That means that the rear vehicle should maintain the smaller speed between
the merging vehicle (no. 4) and the vehicle in front of it (no. 2) to avoid any
crashes.

Interior Vehicle. For the vehicle in the middle of the platoon in the left
lane (no. 2, yellow in figures), we select

v
(2)
x,ref = v(3)

x

x
(2)
r,ref = max

(
x

(2)
r − tgap · v(2)

x + max(x(1)
r + tgap · v(1)

x , x
(4)
r + tgap · v(4)

x)
2 ,

x(2)
r − tgap · v(2)

x

)

y
(2)
r,ref = 0, ψ(2)

ref = 0, v(2)
y,ref = 0, and ω

(2)
ref = 0. (6.10)

138 6. CASE STUDIES

That means that this vehicle should accelerate if there is not enough space
for the merging vehicle to do the lane change. At the same time, it should
respect the velocity speed of the leading vehicle.

Merging vehicle. For the vehicle in the right lane (no. 4, green in figures),
which is doing the manoeuvre, we consider two phases. The first one is the
pre-processing/preparation step where the vehicle needs to check if and when
it is feasible to do the manoeuvre. In essence, the vehicle needs to regulate
its velocity with respect to the platoon velocity (while guaranteeing that
there is enough space margin). For that case, we choose

v
(4)
x,ref = v(2)

x

x
(4)
r,ref = max

(
x(2)
r − tgap · v(2)

x ,
x

(2)
r − tgap · v(2)

x + x
(1)
r + tgap · v(1)

x

2

)
y

(4)
r,ref = 0, ψ

(4)
ref = 0, v(4)

y,ref = 0, and ω
(4)
ref = 0.

(6.11)

In the second phase, the vehicle starts the merging manoeuvre. This prac-
tically means that its lateral position should change. To do so, the lateral
position reference yr,ref should be modified.

v
(4)
x,ref = v(2)

x

x
(4)
r,ref = max

(
x(2)
r − tgap · v(2)

x ,
x

(2)
r − tgap · v(2)

x + x
(1)
r + tgap · v(1)

x

2

)
y

(4)
r,ref = 3.5, ψ

(4)
ref = 0, v(4)

y,ref = 0, and ω
(4)
ref = 0.

(6.12)

The condition that should be valid to initiate a safe lane change (transition
from phase 1 to 2) is

φ12 := {x(4)
r < x(2)

r − tgap m · v(2)
x and x(4)

r > x(1)
r + tgap m · v(1)

x }. (6.13)

The switching logic can be visualized in Figure 6.23. The parameter values
and initial conditions used for simulation purposes are shown in Tables 6.5
and 6.6 respectively.

6.3. LANE CHANGE MANOEUVRE FOR AUTONOMOUS VEHICLES 139

Figure 6.23: Schematic of lane change manoeuvre - 2 phases of merging vehicle movement

Description Symbol Value

minimum velocity (km/h) vmin 0
maximum velocity (km/h) vmax 150
minimum acceleration (m/s2) αmin -3
maximum acceleration (m/s2) αmax 2
minimum steering angle (rad) δmin −π/4
maximum steering angle (rad) δmax π/4
desired platoon vehicle (km/h) vdes 70
time gap (sec.) tgap 1.5
minimum time gap (sec.) tgap m 1
constant gap (m) gap 70

3.6 ∗ 1.5

Table 6.5: Parameters for control design

Vehicle i x
(i)
1 (0) x

(i)
2 (0) x

(i)
3 (0) x

(i)
4 (0) x

(i)
5 (0) x

(i)
6 (0)

Rear 1 0 3.5 0 vdes 0 0
Interior 2 gap 3.5 0 vdes 0 0
Leader 3 2 ∗ gap 3.5 0 vdes 0 0
Merging 4 2 ∗ gap 0 0 vdes/2 0 0

Table 6.6: Initial conditions of each vehicle

6.3.2 Simulation Results

The simulation results for the specified scenario are depicted in Figure 6.24.
The 2D images have been constructed using the plot and patch commands
of MATLAB. Figure 6.25 shows the position of the vehicle doing the lane
change and the evolution of all vehicles velocity over time. Notice that in
Figure 6.25b the rear vehicle initially needs to decelerate, while the interior
and lead vehicles need to accelerate. As soon as there is enough space for the
merging vehicle to change lane, the velocities of all vehicles stabilize around
the desired platoon speed. For the 3D images, we have used Unity game
engine [117]. After setting up the scenario in Unity, we simulate the lane
change manoeuvre and get a 3D video [149]. Figure 6.26 illustrates the main
instances of the manoeuvre and it is obtained through Unity image capture.

140 6. CASE STUDIES

a) Initial Phase (before manoeuvre) b) Manoeuvre initiated

c) Manoeuvre just completed d) Pllatoon stabilized

Figure 6.24: Graphical illustration of a lane change manoeuvre - Simulation results
with MATLAB

a) Evolution of maneuvering vehicle po-
sition

b) Evolution of vehicles velocities over
time

Figure 6.25: Graphical illustration of a lane change manoeuvre - Simulation results
with MATLAB

6.3. LANE CHANGE MANOEUVRE FOR AUTONOMOUS VEHICLES 141

a) Initial Phase (before manoeuvre) b) Manoeuvre has begun

c) Manoeuvre - in progress d) Platoon stabilized

Figure 6.26: Graphical illustration of a lane change manoeuvre - Simulation results
with Unity

142 6. CASE STUDIES

7
C

h
a

p
t

e
r

Conclusion

7.1 Summary

In this thesis, we facilitate the verification of hybrid systems against rich
formal requirements by employing pattern templates. We define selected
patterns in a formalism which is suitable for hybrid automata and applicable
over both bounded and unbounded time. For these patterns, we give monitor
automata with correctness proofs. By composing the monitors with the
system model under study, the safety verification problem is transformed
into the reachability problem of an error state. Results obtained from an
industrial braking use case indicate that monitor automata can facilitate
the applicability of hybrid system verification tools to industrial settings
while inducing almost negligible computational overhead. These monitors
are applicable to the development process of industries that utilize text-
based safety requirements and they yield risk reduction when translating
requirements into formal specifications.

Model transformation plays a vital role in bridging the gap between
industrially relevant models and verification tools. This work aims to assist
the application of hybrid system reachability tools to models designed with
MATLAB/Simulink. We propose a methodology to construct verification
models out of Simulink systems. We employ a translator to handle the
mechanical aspects of the translation to hybrid automata and a simulation-
guided technique to get bounds on the signal ranges. To address the semantic
difference between Simulink/Stateflow models that are deterministic and
urgent, and hybrid automata models that are nondeterministic and non-

143

144 7. CONCLUSION

urgent, we propose a heuristic method that reconstructs the resulting hybrid
automaton model in order to comply with may semantics. For the Simulink
blocks that are not exactly translated, e.g. nonlinearities, we apply a new
hybridization method, which we call compositional syntactic hybridization.

Unlike standard state-space hybridization methods, we do not operate over
the fully composed (flattened) model but perform the PWA approximations
component-wise. In this way, we can obtain a significant reduction in terms
of model size. The constructed verification model consists of a network of
hybrid automata and is described in the SX format. It can then be fed into
the SpaceEx platform or other verification tools through the HYST translator.
Using SpaceEx for the reachability computations, we can take advantage of
the on-the-fly composition and instantiate only the reachable parts of the
approximation. Note that our compositional hybridization can be applied
not only to the dynamics but also to algebraic and initial constraints.

On an industrial benchmark, the wind turbine, our approach leads to a
very compact model that is orders of magnitude smaller than a standard
hybridization model. In particular, the wind turbine benchmark from the
ARCH workshop poses a challenging and relevant industrial model [267].
It is designed with MATLAB/Simulink and it is a large-scale model with
many nonlinearities. Ten nonlinear blocks were approximated with the
proposed hybridization scheme and the resulting model only has 72 locations
in all components combined. The standard hybridization would lead to an
O(1/`n) number of locations. Taking into account that the dimension of the
state-space is (at least) seven and considering 5 locations per state variable,
the standard method would yield 57 = 78125 locations. That indicates a
considerable difference between the hybridization methods in terms of the
model size.

7.2. FUTURE WORK 145

7.2 Future work

Pattern Templates and Monitor Automata. In this thesis, we con-
sidered 8 different pattern templates to specify system properties. Each
pattern template has a triggered and untriggered (global) version. The select
pattern templates correspond to some of the properties that most common
occur in industrial practice. In the future, we would like to construct mon-
itors to encode other patterns, such as bounded existence or constrained
precedence [34,196]. Another direction would be to employ these patterns
to describe other control objectives like ringing and spikes [43, 183]. In
addition, it would be noteworthy to consider adding quantitative metrics
in the monitors in the spirit of [73] and evaluate their efficiency. Finally,
optimized versions of our monitors could be provided that aim to mitigate
the computational costs of the standard parallel composition operation.

Compositional Hybridization. The next step is to improve the reacha-
bility tools so that they can efficiently employ these compositional models.
The primary objective is to instantiate as few locations and transitions as
possible during the analysis. There are three issues to address. The first
is the on-the-fly composition and instantiation of the models, which can
reduce the number of instantiated locations of the product automaton. The
second is a compositional pre-processing of the components, where we utilize
the pre-image of the target invariant when checking which transitions are
enabled. The third direction would be to perform compositional mapping
of the initial states. In the case of SpaceEx platform, the identification of
the initial conditions is done through enumeration. However, enumeration
of the locations of the product automaton is an operation that does not
scale. Applying compositional reasoning would allow us to identify the initial
locations and instantiate as few locations as possible.

Syntactic Hybridization. Our future work is targeted towards improve-
ments in all three steps of the syntactic approach. As for the decomposition,
we plan to broaden the syntactic method for a larger class of nonlinear
functions and we would like to find out what is the best method to break
down nonlinearities that includes a large amount of variables. As far as the
PWA approximation is concerned, we intend to perform refinement of the
discretization domains in order to reduce their total number and keep the
most relevant regions. Finally, we would like to explore the importance of
adding non-uniform, multidimensional grid methods as well as specialized
approaches to handle non-smooth functions.

146 7. CONCLUSION

Lance Chage Maneuver. Autonomous vehicles have stimulated both
industrial and academic interest, and have induced major advances in several
research areas, such as perception, sensing, control theory, verification, and
testing. Verification efforts have been directed towards the validation of
vehicle modules and subsystems, such as cruise control and lane-keeping. The
current model can serve as a basis for lane change maneuvers of autonomous
vehicles tailored for automated verification tools. It is not very complicated
but still realistic and expressive. Disturbances and measurement noise
increase the computational efforts during analysis with standard simulation
tools. This benchmark model can be extended in several directions. Different
controllers and vehicle models could be straightforwardly used and analysed.

Bibliography

[1] Alessandro Abate, Alessandro D’Innocenzo, Giordano Pola,
Maria Domenica Di Benedetto, and Shankar Sastry. The concept
of deadlock and livelock in hybrid control systems. In International
Workshop on Hybrid Systems: Computation and Control, pages 628–632.
Springer, 2007. (Cited on page 17.)

[2] Parosh Aziz Abdulla, Johann Deneux, Gunnar Stalmarck, Herman
Agren, and Ove Akerlund. Designing safe, reliable systems using Scade.
In International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation, pages 115–129. Springer, 2004.
(Cited on pages 4 and 32.)

[3] Aditya Agrawal, Gyula Simon, and Gabor Karsai. Semantic transla-
tion of Simulink/Stateflow models to hybrid automata using graph
transformations. ENTCS Journal, 109:43–56, 2004. (Cited on pages 9
and 112.)

[4] Ayman Aljarbouh and Benôıt Caillaud. On the regularization of
chattering executions in real time simulation of hybrid systems. In
Baltic Young Scientists Conference, page 49, 2015. (Cited on page 17.)

[5] Ayman Aljarbouh and Benoit Caillaud. Robust simulation for hybrid
systems: Chattering path avoidance. In Proceedings of the 56th Con-
ference on Simulation and Modelling (SIMS 56), October, 7-9, 2015,
Linköping University, Sweden, number 119, pages 175–185. Linköping
University Electronic Press, 2015. (Cited on page 17.)

[6] Ayman Aljarbouh, Yingfu Zeng, Adam Duracz, Benôıt Caillaud, and
Walid Taha. Chattering-free simulation for hybrid dynamical systems
semantics and prototype implementation. In Computational Science
and Engineering (CSE) and IEEE Intl Conference on Embedded and
Ubiquitous Computing (EUC) and 15th Intl Symposium on Distributed

147

148 BIBLIOGRAPHY

Computing and Applications for Business Engineering (DCABES),
2016 IEEE Intl Conference on, pages 412–422. IEEE, 2016. (Cited on
page 17.)

[7] Hassane Alla and René David. Continuous and hybrid petri nets.
Journal of Circuits, Systems, and Computers, 8(01):159–188, 1998.
(Cited on page 3.)

[8] José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, and
Simao Melo de Sousa. An overview of formal methods tools and
techniques. In Rigorous Software Development, pages 15–44. Springer,
2011. (Cited on pages 2 and 13.)

[9] Matthias Althoff. Reachability analysis and its application to the safety
assessment of autonomous cars. Technische Universität München, 2010.
(Cited on page 14.)

[10] Matthias Althoff. An introduction to CORA 2015. In ARCH Work.,
2015. (Cited on pages 20 and 21.)

[11] Matthias Althoff, Stanley Bak, Dario Cattaruzza, Xin Chen, Goran
Frehse, Rajarshi Ray, and Stefan Schupp. Arch-comp17 category report:
Continuous and hybrid systems with linear continuous dynamics. In
ARCH Workshop, volume 48 of EPiC Series in Computing, pages
143–159, 2017. (Cited on page 21.)

[12] Matthias Althoff and John M Dolan. Set-based computation of vehicle
behaviors for the online verification of autonomous vehicles. In ITSC
Conf., 2011. (Cited on page 130.)

[13] Matthias Althoff and Goran Frehse. Benchmarks of the ARCH work-
shop. http://cps-vo.org/group/ARCH/benchmarks, 2014. (Cited on
page 98.)

[14] Matthias Althoff and Goran Frehse. Combining zonotopes and support
functions for efficient reachability analysis of linear systems. In Decision
and Control (CDC), 2016 IEEE 55th Conference on, pages 7439–7446.
IEEE, 2016. (Cited on page 21.)

[15] Matthias Althoff and Goran Frehse. ARCH Workshop. EPiC Series in
Computing, 2018. (Cited on page 20.)

[16] Matthias Althoff, Markus Koschi, and Stefanie Manzinger. Common-
Road: Composable benchmarks for motion planning on roads. In IV
Symposium, 2017. (Cited on pages 115 and 132.)

http://cps-vo.org/group/ ARCH/benchmarks

BIBLIOGRAPHY 149

[17] Matthias Althoff, Olaf Stursberg, and Martin Buss. Reachability anal-
ysis of nonlinear systems with uncertain parameters using conservative
linearization. In CDC Conference. IEEE, 2008. (Cited on pages 79
and 124.)

[18] Rajeev Alur. Formal verification of hybrid systems. In EMSOFT, 2011.
(Cited on pages 3, 4, 13, and 14.)

[19] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A Hen-
zinger, P-H Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and
Sergio Yovine. The algorithmic analysis of hybrid systems. Theoretical
computer science, 1995. (Cited on pages 3, 14, and 15.)

[20] Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin
Ho. Hybrid automata: An algorithmic approach to the specification
and verification of hybrid systems. In Hybrid systems, pages 209–229.
Springer, 1993. (Cited on pages 3, 14, and 27.)

[21] Rajeev Alur and Thomas A Henzinger. Modularity for timed and
hybrid systems. In International Conference on Concurrency Theory,
pages 74–88. Springer, 1997. (Cited on page 32.)

[22] Rajeev Alur, Thomas A Henzinger, and Pei-Hsin Ho. Automatic
symbolic verification of embedded systems. ITSE, 1996. (Cited on
page 18.)

[23] Rajeev Alur, Thomas A Henzinger, Gerardo Lafferriere, and George J
Pappas. Discrete abstractions of hybrid systems. Proceedings of the
IEEE, 88(7):971–984, 2000. (Cited on pages 4 and 14.)

[24] Rajeev Alur, Aditya Kanade, S Ramesh, and KC Shashidhar. Sym-
bolic analysis for improving simulation coverage of Simulink/Stateflow
models. In EMSOFT Conference. ACM, 2008. (Cited on pages 8, 75,
95, and 112.)

[25] Étienne André, Thomas Chatain, Laurent Fribourg, and Emmanuelle
Encrenaz. An inverse method for parametric timed automata. Inter-
national Journal of Foundations of Computer Science, 20(05):819–836,
2009. (Cited on page 14.)

[26] Étienne André and Laurent Fribourg. Behavioral cartography of timed
automata. In International Workshop on Reachability Problems, pages
76–90. Springer, 2010. (Cited on page 14.)

150 BIBLIOGRAPHY

[27] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram
Sankaranarayanan. S-TaLiRo: A tool for temporal logic falsification
for hybrid systems. In TACAS Conference. Springer, 2011. (Cited on
pages 8 and 112.)

[28] Argosim. Stimulus. http://argosim.com, 2015. (Cited on pages 7
and 73.)

[29] George W Arnold. Challenges and opportunities in smart grid: A
position article. Proceedings of the IEEE, 99(6):922–927, 2011. (Cited
on page 26.)

[30] Eugene Asarin and Thao Dang. Abstraction by projection and appli-
cation to multi-affine systems. In International Workshop on Hybrid
Systems: Computation and Control, pages 32–47. Springer, 2004. (Cited
on pages 5 and 20.)

[31] Eugene Asarin, Thao Dang, Goran Frehse, Antoine Girard, Colas
Le Guernic, and Oded Maler. Recent progress in continuous and hybrid
reachability analysis. In Computer Aided Control System Design, 2006.
(Cited on pages 2, 5, and 20.)

[32] Eugene Asarin, Thao Dang, and Antoine Girard. Reachability analysis
of nonlinear systems using conservative approximation. In HSCC
Workshop. Springer, 2003. (Cited on page 81.)

[33] Eugene Asarin, Thao Dang, and Antoine Girard. Hybridization Meth-
ods for the Analysis of Nonlinear Systems. Acta Informatica, 2007.
(Cited on pages 5, 20, 76, 77, and 79.)

[34] Marco Autili, Lars Grunske, Markus Lumpe, Patrizio Pelliccione, and
Antony Tang. Property Specification Patterns. http://ps-patterns.
wikidot.com/. (Cited on pages 7, 44, 51, and 145.)

[35] Radhakisan Baheti and Helen Gill. Cyber-physical systems. The Impact
of Control Technology, 2011. (Cited on pages 1, 4, 26, and 28.)

[36] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT press, 2008. (Cited on page 17.)

[37] Stanley Bak. HyCreate: A tool for overapproximating reachability of
hybrid automata. 2013. (Cited on pages 21 and 39.)

http://argosim.com
http://ps-patterns.wikidot.com/
http://ps-patterns.wikidot.com/

BIBLIOGRAPHY 151

[38] Stanley Bak, Omar Ali Beg, Sergiy Bogomolov, Taylor T Johnson,
Luan Viet Nguyen, and Christian Schilling. Hybrid automata: from
verification to implementation. International Journal on Software Tools
for Technology Transfer, 2017. (Cited on pages 95, 96, and 113.)

[39] Stanley Bak, Sergiy Bogomolov, Thomas A. Henzinger, Taylor T.
Johnson, and Pradyot Prakash. Scalable static hybridization methods
for analysis of nonlinear systems. In HSCC’16, pages 155–164, 2016.
(Cited on page 82.)

[40] Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson. HYST: a
source transformation and translation tool for hybrid automaton models.
In [HSCC’15], pages 128–133, 2015. (Cited on pages 39 and 76.)

[41] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno,
Claudio Passerone, and Alberto Sangiovanni-Vincentelli. Metropo-
lis: An integrated electronic system design environment. Computer,
36(4):45–52, 2003. (Cited on page 32.)

[42] Daniel Balasubramanian, Corina S Păsăreanu, Michael W Whalen,
Gábor Karsai, and Michael Lowry. Polyglot: modeling and analysis for
multiple statechart formalisms. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis, pages 45–55. ACM, 2011.
(Cited on pages 8 and 112.)

[43] Alessio Balsini, Marco Di Natale, Marco Celia, and Vassilios Tsa-
chouridis. Generation of Simulink monitors for control applications
from formal requirements. In SIES Symposium, 2017. (Cited on pages
48 and 145.)

[44] Pierfrancesco Bellini, Paolo Nesi, and Davide Rogai. Expressing and
organizing real-time specification patterns via temporal logics. Journal
of Systems and Software, 82(2):183–196, 2009. (Cited on pages 7
and 44.)

[45] Alberto Bemporad and Manfred Morari. Control of systems integrating
logic, dynamics, and constraints. Automatica, 35(3):407–427, 1999.
(Cited on page 14.)

[46] Albert Benveniste, Timothy Bourke, Benoit Caillaud, Jean-Louis
Colaço, Cédric Pasteur, and Marc Pouzet. Building a hybrid sys-
tems modeler on synchronous languages principles. Proceedings of the
IEEE, 106(9):1568–1592, 2018. (Cited on page 14.)

152 BIBLIOGRAPHY

[47] Albert Benveniste, Timothy Bourke, Benoit Caillaud, Bruno Pagano,
and Marc Pouzet. A type-based analysis of causality loops in hybrid
systems modelers. Nonlinear Analysis: Hybrid Systems, 26:168–189,
2017. (Cited on page 38.)

[48] Albert Benveniste, Timothy Bourke, Benoit Caillaud, and Marc Pouzet.
Divide and recycle: types and compilation for a hybrid synchronous
language. In ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, Tools and Theory for Embedded Systems (LCTES’11), 2011.
(Cited on page 36.)

[49] Albert Benveniste, Timothy Bourke, Benoit Caillaud, and Marc Pouzet.
Non-standard semantics of hybrid systems modelers. Journal of Com-
puter and System Sciences, 78(3):877–910, 2012. (Cited on page 14.)

[50] Albert Benveniste, Benoit Caillaud, and Marc Pouzet. The fundamen-
tals of hybrid systems modelers. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 4180–4185. IEEE, 2010. (Cited on
page 14.)

[51] Béatrice Bérard and Laurent Fribourg. Reachability analysis of (timed)
petri nets using real arithmetic. In International Conference on Con-
currency Theory, pages 178–193. Springer, 1999. (Cited on page 14.)

[52] Jan A Bergstra, Cornelis A Middelburg, et al. Process algebra for
hybrid systems. Theoretical Computer Science, 335(2-3):215–280, 2005.
(Cited on pages 3 and 14.)

[53] Arendse Bernth. EasyEnglish: a tool for improving document quality.
In Proceedings of the fifth conference on Applied natural language
processing, pages 159–165. Association for Computational Linguistics,
1997. (Cited on page 6.)

[54] Gérard Berry. SCADE: Synchronous design and validation of em-
bedded control software. In Next Generation Design and Verification
Methodologies for Distributed Embedded Control Systems, pages 19–33.
Springer, 2007. (Cited on page 32.)

[55] Martin Berz and Georg Hoffstätter. Computation and application of
Taylor polynomials with interval remainder bounds. Reliable Comput-
ing, 4(1):83–97, 1998. (Cited on page 79.)

[56] Dirk Beyer, Sumit Gulwani, and David Schmidt. Combining Model
Checking and Data-Flow Analysis. Springer, 2018. (Cited on page 7.)

BIBLIOGRAPHY 153

[57] A. Bita. SpeAR — specification and analysis for requirements tool.
https://github.com/AFifarek/SpeAR, 2016. (Cited on pages 7
and 73.)

[58] Rick Bitter, Taqi Mohiuddin, and Matt Nawrocki. LabVIEW: Advanced
programming techniques. Crc Press, 2006. (Cited on pages 32 and 36.)

[59] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Frédéric Viry, An-
dreas Podelski, and Christian Schilling. Reach set approximation
through decomposition with low-dimensional sets and high-dimensional
matrices. In Proceedings of the 21st International Conference on Hybrid
Systems: Computation and Control (part of CPS Week), pages 41–50.
ACM, 2018. (Cited on page 21.)

[60] Sergiy Bogomolov, Daniele Magazzeni, Stefano Minopoli, and Mar-
tin Wehrle. Pddl+ planning with hybrid automata: Foundations of
translating must behavior. 2015. (Cited on page 113.)

[61] Olivier Bouissou and Alexandre Chapoutot. An operational semantics
for simulink’s simulation engine. In ACM SIGPLAN Notices, volume 47,
pages 129–138. ACM, 2012. (Cited on pages 9 and 113.)

[62] Olivier Bouissou, Alexandre Chapoutot, Adel Djaballah, and Michel
Kieffer. Computation of parametric barrier functions for dynamical
systems using interval analysis. In Decision and Control (CDC), 2014
IEEE 53rd Annual Conference on, pages 753–758. IEEE, 2014. (Cited
on page 14.)

[63] Olivier Bouissou, Samuel Mimram, and Alexandre Chapoutot. HySon:
Set-based simulation of hybrid systems. In RSP Symposium. IEEE,
2012. (Cited on page 112.)

[64] Olivier Bouissou, Samuel Mimram, Baptiste Strazzulla, and Alexandre
Chapoutot. Set-based simulation for design and verification of Simulink
models. In Embedded Real Time Software and Systems (ERTS2), 2014.
(Cited on pages 1 and 112.)

[65] Jean-Louis Boulanger, François-Xavier Fornari, Jean-Louis Camus, and
Bernard Dion. SCADE: Language and applications. 2015. (Cited on
page 34.)

[66] Hamza Bourbouh, Pierre-Loic Garoche, Christophe Garion, Arie
Gurfinkel, Kahsai Temesghen, and Thirioux Xavier. Automated analy-
sis of stateflow models. In 21st International Conference on Logic for

https://github.com/AFifarek/SpeAR

154 BIBLIOGRAPHY

Programming, Artificial Intelligence and Reasoning, 2017. (Cited on
pages 9 and 113.)

[67] Timothy Bourke, Jean-Louis Colaço, Bruno Pagano, Cédric Pasteur,
and Marc Pouzet. A synchronous-based code generator for explicit
hybrid systems languages. In CC Conference, pages 69–88. Springer,
2015. (Cited on page 37.)

[68] Barry Bozeman. Technology transfer and public policy: a review of
research and theory. Research policy, 29(4-5):627–655, 2000. (Cited on
page 29.)

[69] Davide Bresolin. HyLTL: a temporal logic for model checking hybrid
systems. In Hybrid Autonomous Systems Workshop, 2013. (Cited on
page 73.)

[70] Davide Bresolin. Improving HyLTL model checking of hybrid systems.
In GandALF Symposium, 2013. (Cited on page 73.)

[71] Dag Brück, Hilding Elmqvist, Sven Erik Mattsson, and Hans Olsson.
Dymola for multi-engineering modeling and simulation. In Proceedings
of modelica, volume 2002. Citeseer, 2002. (Cited on page 36.)

[72] A. A. Bruto da Costa and Pallab Dasgupta. Formal interpretation of
assertion-based features on ams designs. IEEE Design & Test, 2015.
(Cited on page 42.)

[73] Antonio Anastasio Bruto da Costa, Goran Frehse, and Pallab Dasgputa.
Formal feature interpretation of hybrid systems. TCAD Transactions,
2018. (Cited on page 145.)

[74] BTC. Embedded specifier. http://www.btc-es.de, 2015. (Cited on
pages 7 and 73.)

[75] Joseph T Buck, Soonhoi Ha, Edward A Lee, and David G Messer-
schmitt. Ptolemy: A framework for simulating and prototyping hetero-
geneous systems. 1994. (Cited on page 4.)

[76] Axel Busboom, Simone Schuler, and Alexander Walsch. formalSpec:
Semi-automatic formalization of system requirements for formal veri-
fication. In ARCH Workshop, 2016. (Cited on pages 38, 42, 56, 71,
and 118.)

http://www.btc-es.de

BIBLIOGRAPHY 155

[77] Vadim A Butakov and Petros Ioannou. Personalized driver/vehicle lane
change models for adas. IEEE Transactions on Vehicular Technology,
64(10):4422–4431, 2015. (Cited on page 129.)

[78] Quick Facts by National Highway Traffic Safety Administration. Avail-
able at http://www-nrd.nhtsa.dot.gov, 2011. (Cited on page 26.)

[79] Alexandre Chapoutot, Laurent-Stéphane Didier, and Fanny Villers.
Range estimation of floating-point variables in Simulink models. In
Design and Architectures for Signal and Image Processing (DASIP),
2012 Conference on, pages 1–8. IEEE, 2012. (Cited on page 89.)

[80] Alexandre Chapoutot and Matthieu Martel. Abstract simulation: a
static analysis of simulink models. In Embedded Software and Systems,
2009. ICESS’09. International Conference on, pages 83–92. IEEE, 2009.
(Cited on page 89.)

[81] Hongxu Chen, Sayan Mitra, and Guangyu Tian. Motor-transmission
drive system: a benchmark example for safety verification. In ARCH@
CPSWeek, 2014. (Cited on page 98.)

[82] Xin Chen, Erika Abraham, and Sriram Sankaranarayanan. Taylor
model flowpipe construction for non-linear hybrid systems. In RTSS
Symposium, pages 183–192. IEEE, 2012. (Cited on pages 5 and 20.)

[83] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*:
An analyzer for non-linear hybrid systems. In CAV Conference, 2013.
(Cited on pages 21 and 39.)

[84] Xin Chen and Sriram Sankaranarayanan. Decomposed reachability
analysis for nonlinear systems. In Real-Time Systems Symposium
(RTSS), 2016. (Cited on page 80.)

[85] Xin Chen, Stefan Schupp, Ibtissem Ben Makhlouf, Erika Ábrahám,
Goran Frehse, and Stefan Kowalewski. A benchmark suite for hybrid
systems reachability analysis. In NASA Formal Methods Symposium,
pages 408–414. Springer, 2015. (Cited on page 20.)

[86] Remy Chevallier, Emmanuelle Encrenaz-Tiphene, Laurent Fribourg,
and Weiwen Xu. Timed verification of the generic architecture of a
memory circuit using parametric timed automata. FORM METHOD
SYST DES, 2009. (Cited on page 14.)

http://www-nrd.nhtsa.dot.gov

156 BIBLIOGRAPHY

[87] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano
Tonetta. Verifying LTL properties of hybrid systems with K-Liveness.
In CAV Conf., 2014. (Cited on page 73.)

[88] Alessandro Cimatti, Marco Roveri, and Stefano Tonetta. Requirements
validation for hybrid systems. In CAV Conference, 2009. (Cited on
page 73.)

[89] Alessandro Cimatti, Marco Roveri, and Stefano Tonetta. HRELTL:
A temporal logic for hybrid systems. Inf. Comput., 2015. (Cited on
page 73.)

[90] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking.
MIT press, 1999. (Cited on pages 13 and 23.)

[91] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors. Handbook of Model Checking. Springer, 2018. (Cited
on pages 2 and 13.)

[92] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. Scade 6: a
formal language for embedded critical software development. In TASE
Symposium, pages 1–11. IEEE, 2017. (Cited on page 33.)

[93] Pieter Collins, Davide Bresolin, Luca Geretti, and Tiziano Villa. Com-
puting the evolution of hybrid systems using rigorous function calculus.
Proc. of ADHS, 12:284–290, 2012. (Cited on page 20.)

[94] Scott Cotton, Goran Frehse, and Olivier Lebeltel. The SpaceEx mod-
eling language, 2010. (Cited on pages 22 and 80.)

[95] Javier Sanchez Cubillo, Simone Schuler, Daniel Heß, Maria Prandini,
and Mark Burgin. UnCoVerCPS Deliverable D5.1: Report on Appli-
cation Models. https://cps-vo.org/node/24201, 2015. (Cited on
page 134.)

[96] Dennis R Dams and Kedar S Namjoshi. Orion: High-precision methods
for static error analysis of C and C++ programs. In International
Symposium on Formal Methods for Components and Objects, pages
138–160. Springer, 2005. (Cited on page 7.)

[97] Thao Dang and Tarik Nahhal. Coverage-guided test generation for
continuous and hybrid systems. FMSD Journal, 34(2):183–213, 2009.
(Cited on page 22.)

https://cps-vo.org/node/24201

BIBLIOGRAPHY 157

[98] Thao Dang and Romain Testylier. Reachability Analysis for Poly-
nomial Dynamical Systems Using the Bernstein Expansion. Reliable
Computing, 17(2):128–152, 2012. (Cited on pages 5 and 20.)

[99] Jennifer Mary Davoren and Anil Nerode. Logics for hybrid systems.
IEEE Proceedings, 2000. (Cited on page 73.)

[100] Kees Van Deemter, Mariët Theune, and Emiel Krahmer. Real versus
template-based natural language generation: A false opposition? Com-
putational Linguistics, 31(1):15–24, 2005. (Cited on pages 6 and 41.)

[101] Jyotirmoy V Deshmukh, Hisahiro Ito, Xiaoqing Jin, James Kapin-
ski, Ken Butts, Jürgen Gerhard, Behzad Samadi, Kevin Walker, and
Yuzhen Xie. Piecewise-affine approximations for a powertrain con-
trol verification benchmark. In Workshop on Applied Verification for
Continuous and Hybrid Systems, 2015. (Cited on page 82.)

[102] David L Dill. What’s between simulation and formal verification?
In Design Automation Conference, 1998. Proceedings, pages 328–329.
IEEE, 1998. (Cited on page 22.)

[103] Julien Alexandre dit Sandretto, Alexandre Chapoutot, and Olivier
Mullier. Formal verification of robotic behaviors in presence of bounded
uncertainties. In Robotic Computing (IRC), IEEE International Con-
ference on, pages 81–88. IEEE, 2017. (Cited on page 14.)

[104] Adel Djaballah, Alexandre Chapoutot, Michel Kieffer, and Olivier
Bouissou. Construction of parametric barrier functions for dynamical
systems using interval analysis. Automatica, 78:287–296, 2017. (Cited
on page 14.)

[105] Adel Dokhanchi, Bardh Hoxha, and Georgios Fainekos. Metric interval
temporal logic specification elicitation and debugging. In MEMOCODE,
2015. (Cited on page 49.)

[106] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James
Diebel. Path planning for autonomous vehicles in unknown semi-
structured environments. The International Journal of Robotics Re-
search, 29(5):485–501, 2010. (Cited on page 115.)

[107] Alexandre Donzé. Breach: a toolbox for Verification and Parameter
Synthesis of Hybrid Systems. In CAV Conference, pages 167–170.
Springer, 2010. (Cited on pages 8, 22, 36, 89, and 112.)

158 BIBLIOGRAPHY

[108] Alexandre Donzé, Thomas Ferrere, and Oded Maler. Efficient robust
monitoring for STL. In CAV Conference, pages 264–279. Springer,
2013. (Cited on page 23.)

[109] Alexandre Donzé and Goran Frehse. Modular, hierarchical models
of control systems in SpaceEx. In Control Conference (ECC), 2013
European. IEEE, 2013. (Cited on pages 18 and 81.)

[110] Francois-Xavier Dormoy. Scade 6: a model based solution for safety
critical software development. In Proceedings of the 4th European
Congress on Embedded Real Time Software (ERTS?08), pages 1–9,
2008. (Cited on page 34.)

[111] Laurent Doyen, Goran Frehse, George Pappas, and A. Platzer. Verifi-
cation of hybrid systems. Handbook of Model Checking, 2017. (Cited
on pages 2, 4, 5, 14, 19, 20, and 76.)

[112] Marie Duflot, Laurent Fribourg, and Ulf Nilsson. Unavoidable configura-
tions of parameterized rings of processes. In International Conference
on Concurrency Theory, pages 472–486. Springer, 2001. (Cited on
page 13.)

[113] Parasara Sridhar Duggirala, Sayan Mitra, Mahesh Viswanathan, and
Matthew Potok. C2E2: A verification tool for stateflow models. In
TACAS Conference, 2015. (Cited on page 20.)

[114] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In ICSE Conference, 1999.
(Cited on pages 6, 44, and 73.)

[115] Johan Eker, Jörn W Janneck, Edward A Lee, Jie Liu, Xiaojun Liu,
Jozsef Ludvig, Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong.
Taming heterogeneity-the ptolemy approach. Proceedings of the IEEE,
91(1):127–144, 2003. (Cited on page 32.)

[116] Hilding Elmqvist, Sven Erik Mattsson, and Martin Otter. Modelica –
a language for physical system modeling, visualization and interaction.
In Computer Aided Control System Design, 1999. Proceedings of the
1999 IEEE International Symposium on, pages 630–639. IEEE, 1999.
(Cited on pages 4, 17, and 32.)

[117] Unity Game Engine. Official website. http://unity3d. com, 2008. (Cited
on page 139.)

BIBLIOGRAPHY 159

[118] MW Esser and Peter Struss. Obtaining models for test generation
from natural-language-like functional specifications. In International
workshop on principles of diagnosis, pages 75–82, 2007. (Cited on
page 6.)

[119] Daniel J Fagnant and Kara Kockelman. Preparing a nation for au-
tonomous vehicles: opportunities, barriers and policy recommendations.
Transportation Research Part A: Policy and Practice, 2015. (Cited on
page 115.)

[120] Paolo Falcone, Francesco Borrelli, Jahan Asgari, Hongtei Eric Tseng,
and Davor Hrovat. Predictive active steering control for autonomous
vehicle systems. IEEE CST Transactions, 2007. (Cited on page 115.)

[121] Chuchu Fan, Bolun Qi, Sayan Mitra, Mahesh Viswanathan, and
Parasara Sridhar Duggirala. Automatic reachability analysis for non-
linear hybrid models with C2E2. In CAV Conference, 2016. (Cited on
pages 8 and 112.)

[122] Predrag Filipovikj, Nesredin Mahmud, Raluca Marinescu, Cristina
Seceleanu, Oscar Ljungkrantz, and Henrik Lönn. Simulink to UPPAAL
statistical model checker: Analyzing automotive industrial systems. In
FM Symposium. Springer, 2016. (Cited on page 8.)

[123] Emilio Frazzoli. Robust hybrid control for autonomous vehicle motion
planning. PhD thesis, Massachusetts Institute of Technology, 2001.
(Cited on page 129.)

[124] Goran Frehse. Compositional Verification of Hybrid Systems Using
Simulation Relations. PhD thesis, Radboud University Nijmegen, 2005.
(Cited on page 82.)

[125] Goran Frehse. An introduction to SpaceEx v0.8. http://spaceex.
imag.fr/sites/default/files/introduction_to_spaceex_0.pdf,
2010. (Cited on pages 22, 71, and 72.)

[126] Goran Frehse. An introduction to hybrid automata, numerical simula-
tion and reachability analysis. In Formal Modeling and Verification
of Cyber-Physical Systems, pages 50–81. Springer, 2015. (Cited on
page 15.)

[127] Goran Frehse. Reachability of hybrid systems in space-time. In EM-
SOFT, pages 41–50. IEEE, 2015. (Cited on pages 2 and 21.)

http://spaceex.imag.fr/sites/default/files/introduction_to_spaceex_0.pdf
http://spaceex.imag.fr/sites/default/files/introduction_to_spaceex_0.pdf

160 BIBLIOGRAPHY

[128] Goran Frehse. Scalable Verification of Hybrid Systems. PhD thesis,
Univ. Grenoble Alpes, 2016. (Cited on pages 4 and 5.)

[129] Goran Frehse, Sergiy Bogomolov, Marius Greitschus, Thomas Strump,
and Andreas Podelski. Eliminating spurious transitions in reachability
with support functions. In HSCC Conference. ACM, 2015. (Cited on
page 21.)

[130] Goran Frehse, Arne Hamann, Sophie Quinton, and Matthias Woehrle.
Formal analysis of timing effects on closed-loop properties of control
software. In RTSS Symposium, 2014. (Cited on pages 14, 49, and 71.)

[131] Goran Frehse, Rajat Kateja, and Colas Le Guernic. Flowpipe approxi-
mation and clustering in space-time. In HSCC Conference. ACM, 2013.
(Cited on page 21.)

[132] Goran Frehse, Nikolaos Kekatos, and Dejan Nickovic. Formally correct
monitors for hybrid automata. Verimag Research Report, 2017. (Cited
on page 41.)

[133] Goran Frehse, Nikolaos Kekatos, Dejan Nickovic, Jens Oehlerking, Si-
mone Schuler, Alexander Walsch, and Matthias Woerhle. A Toolchain
for Verifying Safety Properties of Hybrid Automata via Pattern Tem-
plates. In ACC Conference, 2018. (Cited on pages 41 and 118.)

[134] Goran Frehse, Bruce H Krogh, and Rob A Rutenbar. Verifying analog
oscillator circuits using forward/backward abstraction refinement. In
DATE Conference. European Design and Automation Association,
2006. (Cited on page 14.)

[135] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton,
Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao
Dang, and Oded Maler. SpaceEx: Scalable verification of hybrid
systems. In CAV Conference. Springer, 2011. (Cited on pages 20, 21,
72, 76, 90, 118, and 120.)

[136] Laurent Fribourg. Petri nets, flat languages and linear arithmetic.
Citeseer. (Cited on pages 3 and 14.)

[137] Laurent Fribourg. A superposition oriented theorem prover. Theoretical
Computer Science, 35:129–164, 1985. (Cited on page 13.)

[138] Laurent Fribourg and Ulrich Kühne. Parametric verification and test
coverage for hybrid automata using the inverse method. In International

BIBLIOGRAPHY 161

Workshop on Reachability Problems, pages 191–204. Springer, 2011.
(Cited on page 14.)

[139] Laurent Fribourg and Hans Olsén. Reachability sets of parameterized
rings as regular languages. Electronic Notes in Theoretical Computer
Science, 9:40, 1997. (Cited on page 13.)

[140] Laurent Fribourg and Julian Richardson. Symbolic verification with
gap-order constraints. In International Workshop on Logic Program-
ming Synthesis and Transformation, pages 20–37. Springer, 1996. (Cited
on page 21.)

[141] Sanford Friedenthal, Alan Moore, and Rick Steiner. A practical guide
to SysML: the systems modeling language. Morgan Kaufmann, 2014.
(Cited on page 32.)

[142] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns–
elements of reusable object-oriented software. 1995. (Cited on pages
42 and 43.)

[143] Yiqi Gao, Andrew Gray, H. Eric Tseng, and Francesco Borrelli. A tube-
based robust nonlinear predictive control approach to semiautonomous
ground vehicles. Vehicle System Dynamics, 2014. (Cited on page 130.)

[144] Biniam Gebremichael and Frits Vaandrager. Specifying urgency in
timed i/o automata. In Software Engineering and Formal Methods,
2005. SEFM 2005. Third IEEE International Conference on, pages
64–73. IEEE, 2005. (Cited on page 104.)

[145] Markus Gerdin. Identification and estimation for models described
by Differential-Algebraic Equations. PhD thesis, Institutionen för
systemteknik, 2006. (Cited on page 81.)

[146] Helen Gill. From vision to reality: Cyber-physical systems. 2008.
(Cited on page 24.)

[147] KAHN Gilles. The semantics of a simple language for parallel program-
ming. 1974. (Cited on page 34.)

[148] Rafal Goebel, Ricardo G Sanfelice, and Andrew R Teel. Hybrid
dynamical systems. IEEE Control Systems, 29(2):28–93, 2009. (Cited
on page 14.)

162 BIBLIOGRAPHY

[149] Deepthi Gopalakrishna. Simulating autonomous vehicles in Unity.
https://github.com/deepkrishna/AV-simulation, 2018. (Cited on
page 139.)

[150] Andrew Gray, Yiqi Gao, J Karl Hedrick, and Francesco Borrelli. Robust
predictive control for semi-autonomous vehicles with an uncertain driver
model. In IV Symposium, 2013. (Cited on page 130.)

[151] Robert Grosse. International technology transfer in services. Journal of
international business studies, 27(4):781–800, 1996. (Cited on page 29.)

[152] Orna Grumberg and Helmut Veith. 25 years of model checking: history,
achievements, perspectives, volume 5000. Springer, 2008. (Cited on
pages 3 and 29.)

[153] L. Grunske. Specification patterns for probabilistic quality properties.
In ICSE Conference, 2008. (Cited on pages 7, 44, and 73.)

[154] Feng Guo, Brian M Wotring, and Jonathan F Antin. Evaluation of
lane change collision avoidance systems using the national advanced
driving simulator. Technical report, 2010. (Cited on page 129.)

[155] Willem Hagemann, Eike Möhlmann, and Astrid Rakow. Verifying a
PI controller using SoapBox and Stabhyli: Experiences on establishing
properties for a steering controller. In ARCH Workshop, 2014. (Cited
on page 21.)

[156] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers
and the verification of reactive systems. In AMAST Conference, 1993.
(Cited on pages 7, 42, 56, and 57.)

[157] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pi-
laud. The synchronous data flow programming language LUSTRE.
Proceedings of the IEEE, 79(9):1305–1320, 1991. (Cited on page 33.)

[158] Grégoire Hamon. A denotational semantics for stateflow. In Proceedings
of the 5th ACM international conference on Embedded software. ACM,
2005. (Cited on pages 9 and 113.)

[159] Grégoire Hamon and John Rushby. An operational semantics for
stateflow. STTT Journal, 9(5):447–456, 2007. (Cited on pages 9
and 113.)

https://github.com/deepkrishna/AV-simulation

BIBLIOGRAPHY 163

[160] Grégoire Hamon, John Rushby, et al. An operational semantics for
stateflow. In FASE, volume 2984. Springer, 2004. (Cited on pages 9
and 113.)

[161] Marianne Hartung, Daniel Heß, Ray Lattarulo, Jens Oehlerking, Joshué
Pérez, and Alexander Rausch. UnCoVerCPS Deliverable D5.2: Report
on Conformance Testing of Application Models. https://cps-vo.
org/node/39012, 2016. (Cited on pages 131, 134, and 135.)

[162] Kaveh Hassani and Won-Sook Lee. Multi-objective design of state
feedback controllers using reinforced quantum-behaved particle swarm
optimization. Applied Soft Computing, 41:66–76, 2016. (Cited on
page 135.)

[163] Matthew Hause et al. The SysML modelling language. In Fifteenth Eu-
ropean Systems Engineering Conference, volume 9, pages 1–12. Citeseer,
2006. (Cited on page 32.)

[164] Wilhemus PMH Heemels, Bart De Schutter, and Alberto Bemporad.
Equivalence of hybrid dynamical models. Automatica, 37(7):1085–1091,
2001. (Cited on page 14.)

[165] WPMH Heemels, Johannes M Schumacher, and S Weiland. Linear
complementarity systems. SIAM journal on applied mathematics,
60(4):1234–1269, 2000. (Cited on page 14.)

[166] Thomas A Henzinger, Peter W Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? Journal of computer and
system sciences, 57(1):94–124, 1998. (Cited on pages 15 and 19.)

[167] Daniel Heß, Matthias Althoff, and Thomas Sattel. Formal verification
of maneuver automata for parameterized motion primitives. In IROS
Conf., 2014. (Cited on pages 130 and 134.)

[168] Daniel Heß, Christian Löper, and Tobias Hesse. Safe cooperation of
automated vehicles, 2017. (Cited on page 49.)

[169] Daniel Heß, Bastian Schürmann, Marcelo Forets, and Goran Frehse.
UnCoVerCPS Deliverable D3.2: Report on Precomputation of Reach-
able Sets and Advances in Reachability Analysis. https://cps-vo.
org/node/39010, 2017. (Cited on page 134.)

[170] ML Ho, PT Chan, and AB Rad. Lane change algorithm for autonomous
vehicles via virtual curvature method. Journal of Advanced Transporta-
tion, 43(1):47–70, 2009. (Cited on page 129.)

https://cps-vo.org/node/39012
https://cps-vo.org/node/39012
https://cps-vo.org/node/39010
https://cps-vo.org/node/39010

164 BIBLIOGRAPHY

[171] Pei-Hsin Ho. Automatic analysis of hybrid systems. Technical report,
Cornell University, 1995. (Cited on pages 106 and 113.)

[172] B Hoxha, N Mavridis, and G Fainekos. VISPEC: a graphical tool
for easy elicitation of MTL requirements. In IROS, 2015. (Cited on
page 49.)

[173] Franz Huber, Bernhard Schätz, Alexander Schmidt, and Katharina
Spies. AutoFocus– a tool for distributed systems specification. In
FTRTFT Symposium, 1996. (Cited on pages 7 and 73.)

[174] Petros A Ioannou and Cheng-Chih Chien. Autonomous intelligent
cruise control. IEEE Transactions on Vehicular technology, 42(4):657–
672, 1993. (Cited on page 116.)

[175] Jonas Jansson and Fredrik Gustafsson. A framework and automotive
application of collision avoidance decision making. 2008. (Cited on
page 115.)

[176] Jean-Baptiste Jeannin and André Platzer. dTL2: Differential temporal
dynamic logic with nested temporalities for hybrid systems. In IJCAR,
2014. (Cited on page 73.)

[177] Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V Deshmukh, and Sanjit A
Seshia. Mining requirements from closed-loop control models. TCAD
Journal, 2015. (Cited on page 31.)

[178] Barnabas D Johnson. The cybernetics of society: The governance of
self and civilization, 2012. (Cited on page 25.)

[179] Taylor T Johnson. ARCH-COMP17 Repeatability Evaluation Report.
2017. (Cited on page 20.)

[180] Michael Kaiser. Untersuchung zur online abgesicherten Fahrer-Fahrzeug
Interaktion in Kollisionsvermeidungs-Szenarien. PhD thesis, Technische
Universität Braunschweig, 2017. (Cited on page 132.)

[181] Christine Kamprath, Eric Adolphson, Teruko Mitamura, and Eric
Nyberg. Controlled language for multilingual document production:
Experience with caterpillar technical english. In Proceedings of the
Second International Workshop on Controlled Language Applications,
1998. (Cited on page 6.)

[182] Aaron Kane. Runtime monitoring for safety-critical embedded systems.
Dissertation, 2015. (Cited on pages 7 and 73.)

BIBLIOGRAPHY 165

[183] James Kapinski, Xiaoqing Jin, Jyotirmoy Deshmukh, Alexandre Donze,
Tomoya Yamaguchi, Hisahiro Ito, Tomoyuki Kaga, Shunsuke Kobuna,
and Sanjit Seshia. ST-Lib: A library for specifying and classifying
model behaviors. SAE Technical Report, 2016. (Cited on pages 48
and 145.)

[184] Jim Kapinski, Bruce H Krogh, Oded Maler, and Olaf Stursberg. On
systematic simulation of open continuous systems. In International
Workshop on Hybrid Systems: Computation and Control, pages 283–297.
Springer, 2003. (Cited on page 22.)

[185] Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty. Model-
integrated development of embedded software. Proceedings of the IEEE,
91(1):145–164, 2003. (Cited on pages 1, 31, and 32.)

[186] Nikolaos Kekatos. A guide on interleaving MATLAB modeling
and SpaceEx reachability computations. https://github.com/
nikos-kekatos/Matlab-SpaceEx, 2018. (Cited on page 39.)

[187] Nikolaos Kekatos, Marcelo Forets, and Goran Frehse. Construct-
ing Verification Models of Nonlinear Simulink Systems via Syntactic
Hybridization. In CDC Conference, 2017. (Cited on pages 71, 75,
and 116.)

[188] Nikolaos Kekatos, Marcelo Forets, and Goran Frehse. Modeling the
wind turbine benchmark with PWA hybrid automata. In ARCH
Workshop, 2017. (Cited on pages 49, 71, 115, and 116.)

[189] Nikolaos Kekatos, Daniel Heß, and Goran Frehse. Lane change ma-
neuver for autonomous vehicles. In ARCH Workshop, volume 54 of
EPiC Series in Computing, pages 229–241. EasyChair, 2018. (Cited
on page 115.)

[190] Roozbeh Kianfar, Paolo Falcone, and Jonas Fredriksson. Reachability
analysis of cooperative adaptive cruise controller. In Conference on
Intelligent Transportation Systems. IEEE, 2012. (Cited on page 116.)

[191] Uwe Kiencke and Lars Nielsen. Automotive control systems: for engine,
driveline, and vehicle. Springer Science & Business Media, 2005. (Cited
on page 115.)

[192] Kyoung-Dae Kim and PR Kumar. An overview and some challenges
in cyber-physical systems. Journal of the Indian Institute of Science,
93(3):341–352, 2013. (Cited on pages 26 and 27.)

https://github.com/nikos-kekatos/Matlab-SpaceEx
https://github.com/nikos-kekatos/Matlab-SpaceEx

166 BIBLIOGRAPHY

[193] Edda Klipp, Ralf Herwig, Axel Kowald, Christoph Wierling, and Hans
Lehrach. Systems biology in practice: concepts, implementation and
application. John Wiley & Sons, 2008. (Cited on page 80.)

[194] Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli.
Kinematic and dynamic vehicle models for autonomous driving control
design. In IV Symposium, 2015. (Cited on pages 115 and 132.)

[195] Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke. dreach: δ-
reachability analysis for hybrid systems. In TACAS Conference, pages
200–205. Springer, 2015. (Cited on pages 20 and 39.)

[196] S. Konrad and B. Cheng. Real-time specification patterns. ICSE, 2005.
(Cited on pages 7, 42, 44, 51, 73, and 145.)

[197] Markus Koschi and Matthias Althoff. Spot: A tool for set-based
prediction of traffic participants. In IV Symposium. IEEE, 2017. (Cited
on page 115.)

[198] Tobias Kuhn. A survey and classification of controlled natural lan-
guages. Computational Linguistics, 2014. (Cited on pages 5, 6, and 41.)

[199] Robert P Kurshan. Verification technology transfer. In 25 Years
of Model Checking, pages 46–64. Springer, 2008. (Cited on pages 3
and 30.)

[200] Robert P Kurshan. Transfer of model checking to industrial practice.
In Handbook of Model Checking, pages 763–793. Springer, 2018. (Cited
on page 30.)

[201] Colas Le Guernic. Reachability analysis of hybrid systems with lin-
ear continuous dynamics. PhD thesis, University of Joseph-Fourier
Grenoble, 2009. (Cited on page 105.)

[202] Colas Le Guernic and Antoine Girard. Reachability analysis of hybrid
systems using support functions. In CAV Conference. Springer, 2009.
(Cited on page 105.)

[203] Colas Le Guernic and Antoine Girard. Reachability analysis of linear
systems using support functions. Nonlinear Analysis: Hybrid Systems,
2010. (Cited on page 21.)

[204] Edward A Lee. Cyber physical systems: Design challenges. In 11th
IEEE Symposium on Object Oriented Real-Time Distributed Computing
(ISORC), pages 363–369. IEEE, 2008. (Cited on page 28.)

BIBLIOGRAPHY 167

[205] Edward A Lee. CPS foundations. In Design Automation Conference
(DAC), 2010 47th ACM/IEEE, pages 737–742. IEEE, 2010. (Cited on
page 27.)

[206] Edward A Lee. The past, present and future of cyber-physical systems:
A focus on models. Sensors, 15(3):4837–4869, 2015. (Cited on pages
25 and 28.)

[207] Edward Ashford Lee and Sanjit A Seshia. Introduction to embedded
systems: A cyber-physical systems approach. MIT Press, 2016. (Cited
on pages 3, 4, 14, and 25.)

[208] Insup Lee, Oleg Sokolsky, Sanjian Chen, John Hatcliff, Eunkyoung
Jee, BaekGyu Kim, Andrew King, Margaret Mullen-Fortino, Soojin
Park, Alexander Roederer, et al. Challenges and research directions in
medical cyber–physical systems. Proceedings of the IEEE, 100(1):75–90,
2012. (Cited on page 26.)

[209] Daniel Liberzon. Switching in systems and control. Springer Science &
Business Media, 2003. (Cited on page 14.)

[210] Sarah M Loos, André Platzer, and Ligia Nistor. Adaptive cruise
control: Hybrid, distributed, and now formally verified. In International
Symposium on Formal Methods, 2011. (Cited on page 115.)

[211] Pericles Loucopoulos and Vassilios Karakostas. System requirements
engineering. McGraw-Hill, Inc., 1995. (Cited on page 41.)

[212] Xiao-Yun Lu and J Karl Hedrick. Longitudinal control algorithm for
automated vehicle merging. International Journal of Control, 2003.
(Cited on page 131.)

[213] Jan Lunze and Françoise Lamnabhi-Lagarrigue. Handbook of hybrid
systems control: theory, tools, applications. Cambridge University
Press, 2009. (Cited on page 14.)

[214] John Lygeros, Karl Henrik Johansson, Slobodan N Simic, Jun Zhang,
and Shankar S Sastry. Dynamical properties of hybrid automata. IEEE
Transactions on automatic control, 48(1):2–17, 2003. (Cited on pages 3
and 14.)

[215] Silvia Magdici and Matthias Althoff. Fail-safe motion planning of
autonomous vehicles. In ITSC Conf., 2016. (Cited on page 115.)

168 BIBLIOGRAPHY

[216] Silvia Magdici, Zhenzhang Ye, and Matthias Althoff. Determining the
maximum time horizon for vehicles to safely follow a trajectory. In
ITSC Conf., 2017. (Cited on page 115.)

[217] Ibtissem Ben Makhlouf, Norman Hansen, and Stefan Kowalewski.
HyReach: A reachability tool for linear hybrid systems based on
support functions. In ARCH Workshop, 2016. (Cited on page 21.)

[218] Oded Maler. Algorithmic verification of continuous and hybrid systems.
In Infinity, 2013. (Cited on pages 2, 5, 20, 22, and 76.)

[219] Oded Maler. Some thoughts on runtime verification. In International
Conference on Runtime Verification, pages 3–14. Springer, 2016. (Cited
on page 13.)

[220] Oded Maler, Zohar Manna, and Amir Pnueli. From timed to hybrid
systems. In Workshop/School/Symposium of the REX Project (Research
and Education in Concurrent Systems), pages 447–484. Springer, 1991.
(Cited on page 27.)

[221] Oded Maler and Dejan Nickovic. Monitoring temporal properties of
continuous signals. In FORMATS Conference, 2004. (Cited on pages
23, 24, and 73.)

[222] Oded Maler and Dejan Nickovic. Monitoring properties of analog and
mixed-signal circuits. STTT Journal, 2013. (Cited on pages 23 and 73.)

[223] Karthik Manamcheri, Sayan Mitra, Stanley Bak, and Marco Caccamo.
A step towards verification and synthesis from Simulink/Stateflow
models. In HSCC Conference. ACM, 2011. (Cited on pages 8, 9, 99,
and 112.)

[224] Zohar Manna and Amir Pnueli. Temporal verification of reactive
systems: safety. Springer Science & Business Media, 2012. (Cited on
page 23.)

[225] MapleSoft. MapleSim: Advanced System-Level Modeling. (Cited on
page 17.)

[226] Mathworks. Modeling a dc motor in stateflow.
https://fr.mathworks.com/help/stateflow/examples/
modeling-a-dc-motor-in-stateflow.html. (Cited on page 101.)

[227] MATLAB 9.0 and Simulink 8.7. The MathWorks, Inc., Natick, Mas-
sachusetts, United States. (Cited on pages 4, 17, 32, 36, 75, and 88.)

https://fr.mathworks.com/help/stateflow/examples/modeling-a-dc-motor-in-stateflow.html
https://fr.mathworks.com/help/stateflow/examples/modeling-a-dc-motor-in-stateflow.html

BIBLIOGRAPHY 169

[228] B Meenakshi, Abhishek Bhatnagar, and Sudeepa Roy. Tool for trans-
lating Simulink models into input language of a model checker. In
International Conference on Formal Engineering Methods, pages 606–
620. Springer, 2006. (Cited on page 8.)

[229] Stefano Minopoli and Goran Frehse. Non-convex invariants and urgency
conditions on linear hybrid automata. In International Conference
on Formal Modeling and Analysis of Timed Systems, pages 176–190.
Springer, 2014. (Cited on pages 9, 104, and 113.)

[230] Stefano Minopoli and Goran Frehse. From simulation models to hybrid
automata using urgency and relaxation. In HSCC Conference, pages
287–296. ACM, 2016. (Cited on pages 9, 17, 98, 104, and 113.)

[231] Stefano Minopoli and Goran Frehse. SL2SX translator: From Simulink
to SpaceEx models. In HSCC Conference, pages 93–98. ACM, 2016.
(Cited on pages 9, 35, 71, 90, 116, and 120.)

[232] Ramon E Moore. Methods and applications of interval analysis, vol-
ume 2. Siam, 1979. (Cited on page 14.)

[233] Sergio Mover, Alessandro Cimatti, Ashish Tiwari, and Stefano Tonetta.
Time-aware relational abstractions for hybrid systems. In Embedded
Software (EMSOFT), 2013 Proceedings of the International Conference
on, pages 1–10. IEEE, 2013. (Cited on page 81.)

[234] Venkatesh Mysore, Carla Piazza, and Bud Mishra. Algorithmic alge-
braic model checking II: Decidability of semi-algebraic model checking
and its applications to systems biology. In ATVA, 2005. (Cited on
page 73.)

[235] Anil Nerode and Wolf Kohn. Models for hybrid systems: Automata,
topologies, controllability, observability. In Hybrid systems, pages
317–356. Springer, 1993. (Cited on page 14.)

[236] Dejan Nickovic. Monitoring and measuring hybrid behaviors. A tutorial.
In RV Conference, 2015. (Cited on page 73.)

[237] Gabriela Nicolescu and Pieter J Mosterman. Model-based design for
embedded systems. CRC Press, 2009. (Cited on pages 1, 31, 32, and 75.)

[238] Julia Nilsson, Mattias Brännström, Erik Coelingh, and Jonas Fredriks-
son. Lane change maneuvers for automated vehicles. ITS, 2017. (Cited
on pages 129, 130, and 131.)

170 BIBLIOGRAPHY

[239] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a
roadmap. In Proceedings of the Conference on the Future of Software
Engineering, pages 35–46. ACM, 2000. (Cited on page 41.)

[240] Sharon O’Brien. Controlling Controlled English: An analysis of several
Controlled Language Rule Sets. Proceedings of EAMT-CLAW, 2003.
(Cited on page 5.)

[241] Martin Otter, Nguyen Thuy, Daniel Bouskela, Lena Buffoni, Hilding
Elmqvist, Peter Fritzson, Alfredo Garro, Audrey Jardin, Hans Ols-
son, Maxime Payelleville, et al. Formal requirements modeling for
simulation-based verification. In Proceedings of the 11th International
Modelica Conference, Versailles, France, September 21-23, 2015, num-
ber 118, pages 625–635. Linköping University Electronic Press, 2015.
(Cited on page 48.)

[242] Hans Pacejka. Tire and vehicle dynamics. Elsevier, 2005. (Cited on
page 132.)

[243] Miroslav Pajic, Zhihao Jiang, Insup Lee, Oleg Sokolsky, and Rahul
Mangharam. From verification to implementation: A model translation
tool and a pacemaker case study. In Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), 2012 IEEE 18th, pages
173–184. IEEE, 2012. (Cited on page 113.)

[244] Cédric Pasteur, Jean-Louis Colaço, and Goran Frehse. UnCoVerCPS
Deliverable D4.2: Extension of the Scade language for continuous
modeling. https://cps-vo.org/node/39011, 2017. (Cited on pages
34 and 37.)

[245] Aaron Pereira and Matthias Althoff. Safety control of robots under
computed torque control using reachable sets. In ICRA Conference.
IEEE, 2015. (Cited on page 14.)

[246] Julius Cuong Pham, Monica S Aswani, Michael Rosen, HeeWon Lee,
Matthew Huddle, Kristina Weeks, and Peter J Pronovost. Reducing
medical errors and adverse events. Annual review of medicine, 63:447–
463, 2012. (Cited on page 27.)

[247] Alessandro Pinto, Luca P Carloni, Roberto Passerone, and Alberto
Sangiovanni-Vincentelli. Interchange format for hybrid systems: Ab-
stract semantics. In International Workshop on Hybrid Systems:
Computation and Control, pages 491–506. Springer, 2006. (Cited on
page 112.)

https://cps-vo.org/node/39011

BIBLIOGRAPHY 171

[248] Alessandro Pinto, Alberto Sangiovanni-Vincentelli, Luca Carloni, and
Roberto Passerone. Interchange formats for hybrid systems: Review
and proposal. Hybrid Systems: Computation and Control, pages 526–
541, 2005. (Cited on pages 8 and 112.)

[249] André Platzer. Differential dynamic logic for verifying parametric
hybrid systems. In International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods, pages 216–232. Springer,
2007. (Cited on pages 3 and 14.)

[250] André Platzer. Logical analysis of hybrid systems: proving theorems for
complex dynamics. Springer Science & Business Media, 2010. (Cited
on pages 4 and 14.)

[251] André Platzer and Jan-David Quesel. Keymaera: A hybrid theorem
prover for hybrid systems (system description). In International Joint
Conference on Automated Reasoning, pages 171–178. Springer, 2008.
(Cited on page 21.)

[252] Amir Pnueli. The temporal logic of programs. In FOCS, 1977. (Cited
on pages 5, 23, and 42.)

[253] Klaus Pohl. Requirements engineering: fundamentals, principles, and
techniques. Springer Publishing Company, Incorporated, 2010. (Cited
on page 41.)

[254] A. Post, I. Menzel, and A. Podelski. Applying restricted English
grammar on automotive requirements–does it work? a case study. In
RREFSQ Workshop, 2011. (Cited on pages 7 and 73.)

[255] Zhihua Qu. Cooperative control of dynamical systems: applications to
autonomous vehicles. Springer Science & Business Media, 2009. (Cited
on page 115.)

[256] Jean-Pierre Queille and Joseph Sifakis. Specification and verifica-
tion of concurrent systems in cesar. In International Symposium on
programming, pages 337–351. Springer, 1982. (Cited on page 23.)

[257] Rajesh Rajamani. Vehicle dynamics and control. Springer Science &
Business Media, 2011. (Cited on pages 132 and 133.)

[258] Ragunathan Rajkumar. A cyber–physical future. Proceedings of the
IEEE, 100(Special Centennial Issue):1309–1312, 2012. (Cited on pages
3 and 26.)

172 BIBLIOGRAPHY

[259] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. Cyber-
physical systems: the next computing revolution. In Design Automation
Conference (DAC), 2010 47th ACM/IEEE, pages 731–736. IEEE, 2010.
(Cited on pages 2, 3, 25, 26, 27, and 28.)

[260] Jean-François Raskin. An introduction to hybrid automata. In
Handbook of networked and embedded control systems, pages 491–517.
Springer, 2005. (Cited on pages 7, 14, and 56.)

[261] Alexandre Rocca. Formal methods for modelling and validation of
biological models. PhD thesis, Université Grenoble Alpes, 2018. (Cited
on pages 5 and 20.)

[262] Mauno Rönkkö, Anders P Ravn, and Kaisa Sere. Hybrid action
systems. Theoretical Computer Science, 290(1):937–973, 2003. (Cited
on page 14.)

[263] Sriram Sankaranarayanan, Thao Dang, and Franjo Ivančić. Symbolic
model checking of hybrid systems using template polyhedra. In TACAS
Conference. Springer, 2008. (Cited on pages 5 and 20.)

[264] Peter Schrammel and Bertrand Jeannet. From hybrid data-flow lan-
guages to hybrid automata: A complete translation. In HSCC Confer-
ence. ACM, 2012. (Cited on pages 8, 104, and 112.)

[265] S. Schuler, F. D. Adegas, and A. Anta. Benchmark problem: hyrid
modelling of a wind turbine. In ARCH Workshop, 2016. (Cited on
page 49.)

[266] S. Schuler, A. Walsch, and M. Woehrle. Unifying control and verifi-
cation of cyber–physical systems (UnCoVerCPS), Deliverable D1.1 —
Assessment of languages and tools for the automatic formalisation of
system requirements. http://cps-vo.org/node/24197, 2016. (Cited
on page 49.)

[267] Simone Schuler, Fabiano Daher Adegas, and Adolfo Anta. Hybrid
modelling of a wind turbine (benchmark proposal). Applied Verification
for Continuous and Hybrid Systems (ARCH), 2016. (Cited on pages
120, 121, and 144.)

[268] Stefan Schupp, Erika Abraham, Ibtissem Ben Makhlouf, and Stefan
Kowalewski. HyPro: A C++ library of state set representations
for hybrid systems reachability analysis. In NASA Formal Methods
Symposium, pages 288–294. Springer, 2017. (Cited on page 21.)

http://cps-vo.org/node/24197

BIBLIOGRAPHY 173

[269] Bastian Schürmann and Matthias Althoff. Convex interpolation control
with formal guarantees for disturbed and constrained nonlinear systems.
In HSCC, 2017. (Cited on page 130.)

[270] Rolf Schwitter. Controlled natural languages for knowledge repre-
sentation. In Proceedings of the 23rd International Conference on
Computational Linguistics: Posters, pages 1113–1121. Association for
Computational Linguistics, 2010. (Cited on page 6.)

[271] Bran Selic and Sébastien Gérard. Modeling and Analysis of Real-Time
and Embedded Systems with UML and MARTE: Developing Cyber-
Physical Systems. Elsevier, 2013. (Cited on page 32.)

[272] Ondřej Šerỳ. Enhanced property specification and verification in
BLAST. In International Conference on Fundamental Approaches to
Software Engineering, pages 456–469. Springer, 2009. (Cited on page 7.)

[273] Sanjit A Seshia, Shiyan Hu, Wenchao Li, and Qi Zhu. Design automa-
tion of cyber-physical systems: challenges, advances, and opportunities.
TCAD Journal, 36(9):1421–1434, 2017. (Cited on pages 1, 28, and 31.)

[274] Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga, and
Joseph Sifakis. Compositional translation of Simulink models into
synchronous BIP. In Industrial Embedded Systems (SIES), 2010 In-
ternational Symposium on, pages 217–220. IEEE, 2010. (Cited on
page 8.)

[275] Lui Sha, Sathish Gopalakrishnan, Xue Liu, and Qixin Wang. Cyber-
physical systems: A new frontier. 2008. (Cited on page 26.)

[276] Sigurd Skogestad and Ian Postlethwaite. Multivariable feedback control:
analysis and design, volume 2. Wiley New York, 2007. (Cited on pages
1, 31, and 32.)

[277] MacKenzie Smith, Mary Barton, Mick Bass, Margret Branschofsky,
Greg McClellan, Dave Stuve, Robert Tansley, and Julie Harford Walker.
DSpace: An open source dynamic digital repository. 2003. (Cited on
page 32.)

[278] Ian Sommerville and Pete Sawyer. Requirements engineering: a good
practice guide. John Wiley & Sons, Inc., 1997. (Cited on page 41.)

[279] Springer-Verlag. International Journal on Software Tools for Technology
Transfer (STTT). (Cited on page 29.)

174 BIBLIOGRAPHY

[280] Stateflow 8.7. The MathWorks, Inc., Natick, Massachusetts, United
States. http://www.mathworks.com/products/stateflow/. (Cited
on pages 7 and 33.)

[281] Thomas Strathmann and Jens Oehlerking. Verifying properties of an
electro-mechanical braking system. In ARCH Workshop, 2015. (Cited
on pages 49 and 71.)

[282] Paulo Tabuada. Verification and control of hybrid systems: a symbolic
approach. Springer Science & Business Media, 2009. (Cited on pages 4
and 14.)

[283] Esterel Technologies. ANSYS Simplorer. www.ansys.com, 2014. (Cited
on pages 4 and 36.)

[284] Russ Tedrake. Underactuated robotics: Learning, planning, and control
for efficient and agile machines course notes for MIT 6.832, 2009. (Cited
on page 88.)

[285] Bernhard Amadeus Thiele. Framework for Modelica Based Function
Development. PhD thesis, Technische Universität München, 2015.
(Cited on page 32.)

[286] Michael Tiller. Introduction to physical modeling with Modelica, volume
615. Springer Science & Business Media, 2012. (Cited on page 32.)

[287] Ashish Tiwari. Formal semantics and analysis methods for simulink
stateflow models. Technical report, Technical report, SRI International,
2002. (Cited on pages 9 and 113.)

[288] Ashish Tiwari. Abstractions for hybrid systems. Formal Methods in
System Design, 32(1):57–83, 2008. (Cited on pages 5 and 20.)

[289] Martin Treiber, Arne Kesting, and Dirk Helbing. Understanding widely
scattered traffic flows, the capacity drop, and platoons as effects of
variance-driven time gaps. Physical review E, 2006. (Cited on page 130.)

[290] Stavros Tripakis, Christos Sofronis, Paul Caspi, and Adrian Curic.
Translating discrete-time Simulink to Lustre. ACM Transactions on
Embedded Computing Systems (TECS), 4(4):779–818, 2005. (Cited on
page 8.)

[291] Torgeir Vaa, Merja Penttinen, and I Spyropoulou. Intelligent transport
systems and effects on road traffic accidents: state of the art. IET
Intelligent Transport Systems, 1(2):81–88, 2007. (Cited on page 115.)

http://www.mathworks.com/products/stateflow/

BIBLIOGRAPHY 175

[292] Ardalan Vahidi and Azim Eskandarian. Research advances in intelligent
collision avoidance and adaptive cruise control. IEEE transactions
on intelligent transportation systems, 4(3):143–153, 2003. (Cited on
page 116.)

[293] Richard van der Horst and Jeroen Hogema. Time-to-collision and
collision avoidance systems. 1993. (Cited on page 131.)

[294] Arjan J Van Der Schaft and Johannes Maria Schumacher. An introduc-
tion to hybrid dynamical systems, volume 251. Springer, 2000. (Cited
on page 14.)

[295] Pravin Varaiya. Reach set computation using optimal control. In
Verification of Digital and Hybrid Systems, pages 323–331. Springer,
2000. (Cited on page 105.)

[296] Norbert Wiener. Cybernetics or Control and Communication in the
Animal and the Machine, volume 25. MIT press, 1961. (Cited on
page 25.)

[297] N. Zhan, S. Wang, and H. Zhao. Formal verification of Simulink/State-
flow diagrams: a deductive approach. Springer International Publishing,
2016. (Cited on pages 1, 2, 8, 9, 32, 112, and 113.)

[298] Liang Zou, Naijun Zhan, Shuling Wang, and Martin Fränzle. Formal
verification of simulink/stateflow diagrams. In International Symposium
on Automated Technology for Verification and Analysis. Springer, 2015.
(Cited on pages 4, 7, 32, 33, 89, and 113.)

[299] Paolo Zuliani, André Platzer, and Edmund M Clarke. Bayesian statisti-
cal model checking with application to Stateflow/Simulink verification.
Formal Methods in System Design, 43(2):338–367, 2013. (Cited on
page 8.)

Formal Verification of Cyber-Physical Systems
in the Industrial Model-Based Design Process

Nikolaos Kekatos
Thesis Directed By Goran Frehse and Thao Dang

Cyber-Physical Systems form a class of complex, large-scale systems of frequently safety-critical
nature. Formal verification approaches can provide performance and safety guarantees for
these systems. They require two elements, a formal model and a set of formal specifications.
However, industrial models are typically non-formal, they are analyzed in non-formal simulation
environments, and their specifications are described in non-formal natural language. In this
thesis, we aim to facilitate the integration of formal verification into industrial model-based
design.
Our first key contribution is a model transformation methodology. Starting with a standard
simulation model, we transform it into an equivalent verification model, a network of hybrid
automata. The transformation process addresses differences in syntax, semantics, and other
aspects of modeling. For this class of formal models, so-called reachability algorithms can be
applied to verify safety properties. An obstacle is that scalable algorithms exist for piecewise
affine (PWA) models, but not for nonlinear ones. To obtain PWA over-approximations of
nonlinear dynamics, we propose a compositional syntactic hybridization technique. The result is
a highly compact model that retains the modular structure of the original simulation model and
largely avoids an explosion in the number of partitions.
The second key contribution is an approach to encode rich formal specifications so that they can
be interpreted by tools for reachability. Herein, we consider specifications expressed by pattern
templates since they are close to natural language and can be easily understood by non-expert
users. We provide (i) formal definitions for select patterns that respect the semantics of hybrid
automata, and (ii) monitors which encode the properties as the reachability of an error state.
By composing these monitors with the formal model under study, the properties can be checked
by off-the-shelf fully automated verification tools.
Furthermore, we provide a semi-automated toolchain and present results from case studies
conducted in collaboration with industrial partners.

Les systèmes cyber-physiques sont une classe de systèmes complexes, de grande échelle, souvent
critiques enlever de sûreté, qui apparaissent dans des applications industrielles variées. Des
approches de vérification formelle sont capable de fournir des garanties pour la performance et
la sûreté de ces systèmes. Elles nécessitent trois éléments: un modèle formel, une méthode de
vérification, ainsi qu’un ensemble de spécifications formelles. En revanche, les modèles industriels
sont typiquement informels, ambigus par nature. Ils sont analysés dans des environnements
de simulation informels et leurs spécifications sont décrites dans un langage naturel informel.
Dans cette thèse, nous visons à faciliter l’intégration de la vérification formelle dans le processus
industriel de la conception basée sur des modèles.
Notre première contribution clé est une méthodologie de transformation de modèle. À partir d’un
modèle de simulation standard, nous le transformons en un modèle de vérification équivalent,
plus précisément en un réseau d’automates hybrides. Pour cette classe de modèle formel, des
algorithmes de l’atteignabilité peuvent être appliqués pour vérifier des propriétés de sûreté.
Le processus de transformation prend en compte les différences de syntaxe, de sémantique
et d’autres aspects de la modélisation. L’un des obstacles rencontré est que des algorithmes
d’atteignabilité passent à l’échelle pour des modèles affines par morceaux, mais pas pour des
modèles non linéaires. Pour obtenir des surapproximations affines par morceaux des dynamiques
non linéaires, nous proposons une technique compositionnelle d’hybridisation syntaxique. Le
résultat est un modèle très compact qui retient la structure modulaire du modèle d’origine de
simulation, tout en évitant une explosion du nombre de partitions.
La seconde contribution clé est une approche pour encoder des spécificatio-ns formelles riches
de façon à ce qu’elles puissent être interprétées par des outils d’atteignabilité. Nous prenons
en compte des spécifications exprimées sous forme d’un gabarit de motif (pattern template),
puisqu’elles sont proches du langage naturel et peuvent être comprises facilement par des
utilisateurs non experts. Nous fournissons (i) des définitions formelles pour des motifs choisis,
qui respectent la sémantique des automates hybrides, et (ii) des observateurs qui encodent les
propriétés en tant qu’atteignabilité d’un état d’erreur. En composant ces observateurs avec le
modèle formel, les propriétés peuvent être vérifiées par des outils standards de vérification qui
sont automatisés.
Finalement, nous présentons une châıne d’outils semi-automatisée ainsi que des études de cas
menées en collaboration avec des partenaires industriels.

	Abstract
	Résumé
	Contents
	Introduction
	Context
	Contributions
	Outline

	Formal Verification using Reachability Analysis
	Hybrid Automata
	Networks of Hybrid automata
	Set-Based Reachability Analysis
	Formal Verification Tools & SpaceEx
	Semi-Formal Verification Tools & Breach
	Temporal Logic
	Cyber-Physical Systems

	Bringing Formal Verification to Industrial Model-Based Design
	Industrial Model-Based Design & Tools
	Simulink
	SCADE

	Tool Integration

	From Informal Requirements to Formal Specifications via Pattern Templates
	Pattern Templates
	Patterns occurring in Control Systems
	Patterns found in Industrial Use Cases

	Formalizing Pattern Templates for Hybrid Automata
	Preliminaries
	Formal Definitions

	Verifying Pattern Templates using Monitor Automata
	Correctness of Monitor Automata
	Preliminaries
	Sufficient Conditions
	Necessary Conditions
	Buggy Monitors

	Application Example
	Related Work

	From Simulation Models to Formal Models
	Compositional Syntactic Hybridization
	Syntactic PWA Approximation
	Compositional Scheme
	Algorithm for Compositional Syntactic Hybridization

	From Simulink to Hybrid Automata
	Model Adaptation
	Estimation of the signal range
	Translation to SX format
	Hybridization
	Example

	From Stateflow Diagrams to Hybrid Automata
	Stateflow Semantics
	Translation Scheme
	Examples

	Urgent Semantics
	Reach Tubes under Invariant Constraints
	Examples

	Related Work

	Case Studies
	Cruise Controller
	Wind Turbine
	Benchmark Model
	Model Transformation
	Reachability Results

	Lane Change Manoeuvre for Autonomous Vehicles
	System Description
	Simulation Results

	Conclusion
	Summary
	Future work

	Bibliography

