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Résumé:
Les méthodes de suivi de particules sont
couramment utilisées en mécanique des fluides
de par leur propriété unique de reconstruire
de longues trajectoires avec une haute résolu-
tion spatiale et temporelle. De fait, de nom-
breuses applications industrielles mettant en
jeu des écoulements gaz-particules, comme les
turbines aéronautiques utilisent un formalisme
Euler-Lagrange. L’augmentation rapide de la
puissance de calcul des machines massivement
parallèles et l’arrivée des machines atteignant
le petaflops ouvrent une nouvelle voie pour des
simulations qui étaient prohibitives il y a en-
core une décennie. La mise en œuvre d’un code
parallèle efficace pour maintenir une bonne per-
formance sur un grand nombre de processeurs
devra être étudié. On s’attachera en partic-
uliers à conserver un bon équilibre des charges
sur les processeurs. De plus, une attention par-
ticulière aux structures de données devra être
fait afin de conserver une certaine simplicité
et la portabilité et l’adaptabilité du code pour
différentes architectures et différents problèmes
utilisant une approche Lagrangienne. Ainsi,
certains algorithmes sont à repenser pour tenir
compte de ces contraintes. La puissance de
calcul permettant de résoudre ces problèmes
est offerte par des nouvelles architectures dis-
tribuées avec un nombre important de cœurs.
Cependant, l’exploitation efficace de ces archi-
tectures est une tâche très délicate nécessitant
une maîtrise des architectures ciblées, des mod-
èles de programmation associés et des appli-
cations visées. La complexité de ces nouvelles
générations des architectures distribuées est es-
sentiellement due à un très grand nombre de
nœuds multi-cœurs. Ces nœuds ou une partie
d’entre eux peuvent être hétérogènes et par-
fois distants. L’approche de la plupart des
bibliothèques parallèles (PBLAS, ScalAPACK,

P_ARPACK) consiste à mettre en œuvre la
version distribuée de ses opérations de base, ce
qui signifie que les sous-programmes de ces bib-
liothèques ne peuvent pas adapter leurs com-
portements aux types de données. Ces sous
programmes doivent être définis une fois pour
l’utilisation dans le cas séquentiel et une autre
fois pour le cas parallèle. L’approche par com-
posants permet la modularité et l’extensibilité
de certaines bibliothèques numériques (comme
par exemple PETSc) tout en offrant la réutil-
isation de code séquentiel et parallèle. Cette
approche récente pour modéliser des biblio-
thèques numériques séquentielles/parallèles est
très prometteuse grâce à ses possibilités de réu-
tilisation et son moindre coût de maintenance.
Dans les applications industrielles, le besoin de
l’emploi des techniques du génie logiciel pour
le calcul scientifique dont la réutilisabilité est
un des éléments des plus importants, est de
plus en plus mis en évidence. Cependant, ces
techniques ne sont pas encore maÃőtrisées et
les modèles ne sont pas encore bien définis.
La recherche de méthodologies afin de con-
cevoir et réaliser des bibliothèques réutilisables
est motivée, entre autres, par les besoins du
monde industriel dans ce domaine. L’objectif
principal de ce projet de thèse est de définir
des stratégies de conception d’une bibliothèque
numérique parallèle pour le suivi lagrangien en
utilisant une approche par composants. Ces
stratégies devront permettre la réutilisation du
code séquentiel dans les versions parallèles tout
en permettant l’optimisation des performances.
L’étude devra être basée sur une séparation en-
tre le flux de contrôle et la gestion des flux
de données. Elle devra s’étendre aux modèles
de parallélisme permettant l’exploitation d’un
grand nombre de cœurs en mémoire partagée
et distribuée.
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Abstract: Particle tracking is often used
in the domain of fluid dynamics because it
ables the reconstruction of long trajectories
with high spatial and temporal accuracy. Thus,
lots of applications in the industry related to
gas-particles as in aeronautic engines, use the
Euler-Lagrange method. The increase of the
computation power of high massively parallel
machines and the arrival of petaflop systems
begin a new approach for simulations that were
prohibited a decade ago. The implementation
of an efficient parallel code to keep high perfor-
mances on a large number of processors must
be studied. One especially tries to keep a good
work balancing on processes. In addition, a
special attention must be paid to data struc-
tures in order to keep a kind of simplicity, to
keep the code portable and adaptive to multi-
ple architectures and multiple problems using
a Lagrangian method. Thus, some algorithms
have to be thought again in order to respect
these constraints.
The computational power capabled to solve
such of these problems is given by modern dis-
tributed architectures with a large number of
cores. However, exploiting these machines is
difficult task that needs a lot of experience on
the targeted architecture and associated pro-
gramming models and adapted applications.
The complexity of these new generations of dis-
tributed architectures is essencially due to a
high number of multi-core nodes. Most of the
nodes can be heterogeneous and sometimes re-
mote. Today, nor the high number of nodes,
nor the processes that compose the nodes are

exploited by most of applications and numeri-
cal libraries. The approach of most of parallel
libraries (PBLAS, ScalAPACK, P_ARPACK)
consists in implementing the distributed ver-
sion of its base operations, which means that
the subroutines of these libraries can not adapt
their behaviors to the data types. These sub-
routines must be defined once for use in the
sequential case and again for the parallel case.
The object-oriented approach allows the mod-
ularity and scalability of some digital libraries
(such as PETSc) and the reusability of se-
quential and parallel code. This modern ap-
proach to modelize sequential/parallel libraries
is very promising because of its reusability and
low maintenance cost. In industrial applica-
tions, the need for the use of software engi-
neering techniques for scientific computation,
whose reusability is one of the most important
elements, is increasingly highlighted. However,
these techniques are not yet well defined. The
search for methodologies for designing and pro-
ducing reusable libraries is motivated by the
needs of the industries in this field. The main
objective of this thesis is to define strategies
for designing a parallel library for Lagrangian
particle tracking using a component approach.
These strategies should allow the reuse of the
sequential code in the parallel versions while
allowing the optimization of the performances.
The study should be based on a separation be-
tween the control flow and the data flow man-
agement. It should extend to models of paral-
lelism allowing the exploitation of a large num-
ber of cores in shared and distributed memory.
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"Wrong does not cease to be wrong because the majority share in it."
– Leo Tolstoy

"Vous ne serez jamais, et dans aucune circonstance, tout à fait malheureux si vous êtes bon envers
les animaux."
– Victor Hugo
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CHAPTER

1

Context of the Study.

1.1 Introduction

In the simulation field, particle tracking is used to solve many kind of simulations. Simulated particle
tracking is used by many scientists in multiple domains from aerospace to medical sciences. This
operation consists in computing the movements and the positions of a set of corpuscles or droplets in
the simulated environment. More precisely, it consists in observing the evolution of a large number
of simulated objects in time and computing interactions the scientists want to simulate. Especially,
particle tracking is used to simulate chemical reactions in a fluid like spray of diesel drops [1], solving
gas-liquid interactions [2, 3] or to follow sand transport in a fluid [4, 5]. In another field, particle
tracking is also used to draw streamlines for velocity field visualization [6].

Partial differential equation based problems are often solved using finite volume and finite ele-
ment methods. This is concretely solved using meshes, the environment is discretized in smaller areas
where solution is known in order to approximate the solutions of the equation. The finer the mesh,
the more the solution is precise and close to the real solution. Particle movement can be simulated
in a similar discretized environment and this study focuses on these cases.

People use several approaches depending on the targeted numerical precision, the machine’s per-
formance and compute capability.

The growth of size and complexity of the involved equations forced the scientists to search for
more efficient computing systems. The need for parallelization and high performance computing
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became obvious. Apart from the fact that simulations and meshes are more and more greedy in
computation, they also occupy more memory space and more energy. The main reason for this is
the need for more accurate simulations and computations in order to answer today’s challenges.
Today’s machines and high performance computers try to combine performances, precision and also
money saving as massively parallel machines cost a lot to maintain and are greedy in energy. The
popularity of contests and score tables such as Green500 [7] or the popularity of workshops such as
ENAHPC [8] proudly shows that scientists are aware and care about the actual climate change and
the global warming trying to save energy consumption. The energy consumption is directly linked
to the time spent to solve a problem. A simple way to reduce energy consumption of a system is
to reduce computation time. The clock speed of single CPUs ceased to grow since several years and
forces computer scientists to find new architectures to continue to increase the computation capa-
bilities of computers by enabling MIMD and MPMD paradigms. Today, we can observe that CPUs
use smaller clock rates and try to consume less power with highly parallel methods [9]. The conse-
quences of all these parameters are the important growth of accelerators and GPUs usage in HPC, the
use of multiple smaller clock rates together rather than a single high clock rate CPU and the study
of new approaches of parallel algorithms [10, 11, 12, 13, 14] and software/hardware architectures [15].

The simulation field is not spared by these modern challenges as the need of accuracy always
grows. Thus the parallelization of methods and the distribution of data on connected hardware be-
come more and more important. Today meshes used in simulations are partitioned, distributed on
several computing nodes and the equations are solved in parallel.
The particle tracking problem is no exception to this observation. In fact particle tracking can
be parallelized as well as the velocity field and because particles are considered as independent in
lagrangian formulation, particle load can be balanced as well as velocity fields using well known par-
titioning and domain decomposition methods [16, 17, 18] and distribution algorithms [19]. Some of
these techniques work very well with limited number of processes or on specific kind of architectures
which render today’s hybrid and heterogeneous HPC machines hard to use. The challenge brought
by particle tracking is the efficiency of the problem integration to the already parallelized problem
represented by the meshed and distributed velocity field. To be more concrete, the problem lies in
the fact that the mesh and particles can be parallelized with different methods that give two different
distribution results with high consequences in terms of data proximity and relevance.

1.2 Problem to solve

The problem of particle tracking is an old challenge, many scientists use particles to simulates multiple
granular and fluid behaviors. The fact is that recording particle paths requires a lot of computation
and data access and the more particles there are, the more accurate is the simulation.
This makes the problem of particle tracking a good candidate for high performance computation.
As particles may be followed independently, the paths computation is reduced to a SIMD (Single
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Instruction Multiple Data) problem. It means that the parallelization capacity of the simulation
highly depends on the parallelization and the distribution of the data.
As many scientists need the computation of particle tracking with high accuracy and high perfor-
mances, there are many studies, algorithm, methods and techniques to control particle paths in a
parallel context. Some of them perfectly distribute mesh and particle data in order to try to reduce
the memory occupancy per node and to improve work balance [20], whereas others prefer to reduce
the communications between computing nodes and do not take care about memory usage and work-
load [2, 21]. Most of these techniques try to balance both these points of view by communicating
data packages reducing communications for some time steps.

The main goal of this thesis is to propose an efficient solution unifying these approaches to
treat a very large number of particles on massively parallel and high performance systems. These
approaches and strategies are adapted in order to be efficient on heterogeneous parallel systems. As
the Lagrangian method allows the particles to be computed indepedently to the mesh and to other
particles, a library based on this method higly depends on the algorithms used to track a single
particle. Such a library can be adapted to modern architectures using full available computational
power from GPUs, accelerators and dispersed NUMA nodes.
This goal is the first one. The second objective concerns the library’s architecture. In order to
be adapted and efficient on parallel machines and especially on higly heterogeneous systems, the
implemented algorithms and methods must be independent as possible and such as the data used.
To do so, the library is based on independent components, easily maintainable and more adapted
to multiple architectures. In addition, the Lagrangian method implies independent particles which
means that a set of instructions applied on a single particle is adapted to a set of particles. So these
intructions and operations are almost ready to be reusable in sequential and parallel systems because
the parallelization of lagrangian particle tracking lies in the particle distribution.
To summarize, the two objectives are: implement, optimize and adapt efficient algorithm to massively
parallel systems to solve large number of particles, and develop a particle tracking library based on
component-based architecture to improve maintenance, sequential-parallel reuse and adaptation to
modern architectures, used in petascale computers and expected in exascale machines. The final
library is called ParOPTIC for Parallel Object Particle Tracking Interoperable Component.

1.3 Plan of the study

The goal of this study is to design an efficient library gathering methods to track and record particle
paths and study their interactions with the environment. These methods are efficient in a parallel
system and must scale as much as possible on massively parallel machines close to exaflop machines.

This thesis consists in 8 chapters. Chapter 2 describes the methods used to traditionally track
particles on parallel systems. These methods are used for several objectives from particle localization
to memory management. Chapter 3 consists in the description of the particle tracking operation and
the software architecture we have chosen to implement particle tracking and affiliated methods. This
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chapter is the first key to determine the dependencies between internal and data conflicts possibly
involved in parallel particle tracking. Chapter 4 describes the multiple algorithms we have chosen
and the specificity of their implementation in order to record simulated particle tracking efficiently
with a limited memory occupancy and execution time. This fourth chapter presents algorithms used
on local data in order to compute particle tracking in a sequential run. Chapter 5 describes the
implementation and the adaptation of the algorithms presented in chapter 4 to a parallel context.
Chapter 6 presents a method to distribute tasks and in our case particles on massively parallel systems
in order to balance the workload. This method is implemented, adapted and studied. Chapter 7 is
about the library adaptation, and in a more general case, the adaptation of efficient algorithms to
massively parallel machines. This chapter is the adaptation of particle tracking method to scale at
high parallelism level but the used approach is relevant for many algorithms and methods. The last
chapter 8 before the final conclusion is the experimentation and the study of the efficiency of the
library on several generic cases.
Chapters 4, 5, 6 and 7 describe methods, discuss about the advantages of these methods and the
encountered problems with a study of the efficiency brought by the various methods run in a general
case.
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2.1 Fluid resolution

The particle tracking problem often appears in a two phase problem [22, 23, 24]. This kind of prob-
lem consists in solving a fluid phase (a gas, a flow, a velocity field) and a solid phase, the particle
phase (granular flow, droplets, ...). The particles need the velocity field given by the fluid phase in
order to compute the direction of these particles and their next position. So the first computation to
do before any particle movement is the determination of the particle’s velocity by solving the local
fluid equations.
In a computational fluid dynamics problem, most of the time the Navier-Stokes equations are
solved [25, 26]. In order to adapt these equations to a computational form, several discretization
methods are used [27, 28, 29]. The choice of the discretization methods highly impacts the compu-
tation performances and the accuracy of the simulation. This is due to the quality of the resulting
mesh. Indeed, the mesh has a real impact on the convergence of the solution, the accuracy and the
CPU time. This is the reason why the geometry, the boundary treatment and the refinement of the
grid are very important in the computation of a fluid dynamic problem.
A mesh is defined by a set of vertices, cells, edges and faces that describe an environment using
geometrical objects. This mesh describes a set of areas where the solution is known or computed.
The methods used to solve a fluid equation at a particular point depends on the way that the mesh
describes the physics quantities. For example, figure 2.1 shows the fluid computation at a point
in a cell using quantities stored in the vertices. This figure 2.1 shows the computation of the fluid

θ1 θ2

θ3

θ4θ5

θ6

Figure 2.1: In-cell fluid computation using data on vertices.

velocity in the cell whereas the physics quantities (θ1 to θ6) are known at the vertices. Obviously
the fluid data can be stored elsewhere than on vertices, depending on the mesh, the data can be
stored on faces, edges, or cells. Beall and Shepard [30] gave a set of structures used to store and
manage meshes. A way to compute the fluid vector using these quantities (whereas the quantities
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inside the cell are not known because of the mesh discretization) is to compute the interpolation of
these quantities and use this value to compute the fluid inside the cell.
The accuracy of a mesh and thus the accuracy of the fluid solution highly depends on the cells shape.
The easiest manner is to use simple geometrical objects such as triangles, tetrahedron and prisms.
There are many solvers that use simple objects [31, 32]. Especially with triangles and tetrahedron.
The reason is the easier computations due to the simple shape of these objects and their properties.
Indeed, a tetrahedron is always a convex object, with a static number of vertices, faces and edges
and can be used to express very complex and curved areas. On the other hand, these objects are
not well adapted to describe dead regions or less intensive regions. Some researches are focusing on
hybrids grids that use multiple cell shapes regrouped in grid blocks [33].

In [34] the authors perform comparisons between two meshes of the same simulation. The differ-
ence between the two meshes is the shape of the cells, in one mesh, the cells are hexahedrons whereas
in the other mesh, the cells are tetrahedrons. Both shapes are tested on the same two models which
correspond to a NACA 0012 wing model [35] and a non-lifting rectangular helicopter rotor blade in
the second case. According to the authors, the tetrahedral schemes lead to some limitations such as
the loss of the mesh quality due to disparate cell sizes, large face angles and high vertex degrees. The
goal of this paper was to investigate the transformations of tetrahedral scheme to hexahedral scheme
in order to improve the quality of the mesh. The authors observed that hexahedral meshes utilize
computer resources more efficiently than tetrahedral meshes for the same level of solution accuracy.
They also have shown that hexahedral meshes have half the storage requirements and run almost
twice as fast as tetrahedral meshes.
This paper has shown the importance of the cells shape and that tetrahedral meshes do not necessary
go hand in hand with mesh quality and performances.

For hybrid meshes with both tetrahedrons and hexahedrons, Vinchurkar et al. found that hybrid
meshes showed no improvement in performance [33].

The final conclusion for this section is that the shape used to describe the geometry has a high
impact on the mesh convergence and on the computing performance. But as multiple shapes of cell
can be implemented in hybrid meshes it is clear that the developed algorithms for particle tracking
must be implemented for multiple and non uniform shapes.

2.2 Eulerian and Lagrangian methods to track particles

2.2.1 Eulerian method

The eulerian approach consists in considering the particle tracking as the resolution of a flow field.
Particles are considered as a velocity field representing the particle’s concentration. This concen-
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tration is a quantity integrated to the fluid phase. The eulerian approach considers the particles
and the disperse phase as a statistic resolution. Indeed, the particles do not literally move but a
concentration is computed in function of the local quantities of the fluid phase [36].
Briefly, the particle concentration computation is integrated to the fluid resolution. For each cell of
the mesh, the particle concentration is calculated and each time the fluid is solved, the new concen-
tration is determined in each cell according to the flow velocity.

This approach is very interesting as particle tracking is directly computed and linked to the fluid
phase. The equations involved are similar to those of the velocity and the concentration field so that
the integration is easily done.
On the other hand, particles are not measured with accuracy as only statistics represented by their
concentration are computed. Particles interactions with the environment become quite problematic
to compute. In fact boundary conditions are quite difficult to detect accurately and in specific cases
where particles are launched in multiple directions, the tracking could become difficult.
If we look at parallelization capability, the eulerian approach is quite easy to parallelize as the method
to describe the particles distribution is the same as the fluid phase. But the eulerian formulation is
better used in cases where the particles, or more specifically the particle’s concentrations, are close.
Particle dispersion means that more concentration computation are needed whereas if particles are
very close and located in the same area, less concentration equation have to be solved.

2.2.2 Lagrangian method

The Lagrangian approach considers the particles as independent entities. These particles are tracked
independently following the equations of motion:

dxi

dt
= ui(t) (2.1)

where xi is the ith particle’s coordinate, ui is the velocity of the ith particle and t represent the time
step [37]. To be more precise, ui represents the velocity vector of the particle which is determined
by the addition of all forces applied to the particle i.
This lagrangian approach is the simplest and the more accurate formulation of a particle evolution.
Indeed the accuracy of the particle movement only depends on the accuracy of the applied forces
and the chosen time scheme. In other words, the accuracy of the track depends on the precision
of the flow field with this formulation and the accuracy parameters. Another advantage with this
formulation is that as the particles are considered as independent, the particles can be sent, received
and distributed easily in a parallel system. On the other hand, the particles integration to the flow
field is more complicated as the distribution method and the equations are different. In fact an
operation of particle’s localisation is needed to determine the forces and the quantities applied to the
particle. This operation is described later in this manuscript.
It is to be noticed that a difference can be made between a stochastic and a deterministic Lagrangian
approach [38]. The stochastic approach consists in tracking a smaller number of Lagrangian particles
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that are the average quantities of neighbouring particles. The deterministic approach computes the
path of all numerical particles.

2.2.3 Methods comparison

Z. Zhang and Q. Chen have evaluated the differences between Eulerian and Lagrangian methods to
predict particle transport in enclosed spaces [39]. This evaluation compares the predicting particle
concentration distribution in two models: first under steady-state conditions, then under unsteady-
state conditions. To compare both methods, the authors compute the particle concentration in the
same enclosed space obtained with both methods and the experimental results. The authors con-
cluded that both methods yielded similar results close to experimental data. The Eulerian point
of view simulates the dispersion faster than the Lagrangian one and with a smoother concentration
under steady-state conditions. On the other hand, the Eulerian method has an important computa-
tion time increase under unsteady-state conditions whereas the Lagrangian method does not. The
increased computing of the Lagrangian effort mainly came from the calculation of unsteady state
airflow and turbulence.
This study gives pros and cons of the Eulerian and Lagrangian method to track particle concentra-
tions. The authors have shown that the Lagrangian point of view achieves better efficiency in terms
of execution time and precision under unsteady-state conditions and that the Eulerian point of view
is better under steady-state conditions. They also proved that the Lagrangian point of view is very
easy to adapt under both studied conditions.

The most common approach in simulation field is the Eulerian-Lagrangian [2, 4, 40, 41, 42, 21]
approach which corresponds to the application of the Eulerian point of view to the flow field whereas
the particles are tracked with a Lagrangian point of view. This allows the particles to be followed
independently of the flow field. This coupled method is very appreciated as it reflects perfectly the
two phases of the studied particle tracking simulation, one gaz phase to simulate the fluid modeled
by the velocity field and the solid phase that correspond to the set of traveling particles through the
fluid.
This coupled approach is quite efficient but brings up some difficulties and challenges such as the
integration of the solid phase into the flow phase. In other words, in this approach as the particles
do not have any relation with the eulerian phase, they have to be localized in the Eulerian phase to
compute particle’s motions. On the other hand, this approach, and the more general approach that
consists in computing independently multiple phases, has the advantage of having a high parallel
capacity.
M. Garcia [21] regrouped in a table the advantages and disadvantages of particle tracking using an
eulerian or lagrangian approach for the disperse phase and using in both cases an eulerian represen-
tation of the fluid.

Table 2.1 presents the advantages and disadvantages M. Garcia regrouped for two-phases simula-
tions. The Lagrangian approach is particularly well adapted to accurate simulations as this approach
allows to compute multiple paths of dispersed particles. The Eulerian approach on the other hand
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Euler-Euler Euler-Lagrange

Advantages • Numerically straightforward
treatment of dense zones,

• Numerically straightforward
modeling of particle movements and
interactions,

• Similarity with gaseous equations, • Robust and accurate for large
number of particles,

• Direct transport of Eulerian
quantities, • Size distributions easy to describe,

• Similarity with gaseous parallelism.

• Numerically straightforward to
implement physical phenomena (e.g.,
heat and mass transfer, wall-particle
interaction).

Disadvantages • Difficult description of
polydispersion, • Delicate coupling with combustion

• Difficulty of droplet crossing
treatment,

• Difficult parallel implementation
and integration

• Limitation of the method in very
dilute zones.

• Time spent in locating particles on
unstructured grids.

Table 2.1: Advantages and disadvantages of Eulerian method and Lagrangian method in the disperse
phase using Eulerain approach for the liquid phase.

is adapted to observe more global phenomena, like concentration controls and particles moving in a
single localization, in the same main direction. As M. Garcia noticed, the Lagrangian approach is
better used in polydispersion simulation, with particles moving in different directions in the same
area. This is the approach to implement in order to simulate radiative transfers [43] for example.

The Lagrangian point of view is adopted for the rest of this study for the main reason of its
parallel capacity. Another advantage is that this approach is not intrusive in the flow phase, so this
approach allows to be independent from the kind of application and the method with which the
velocity field is computed. The following chapters are about the methods to integrate the particle
phase to the coupled fluid: particle localization, particle movement, particle-fluid interactions and
particle and work distribution.

2.3 Methods to localize objects

2.3.1 Containment problem

In a volumic particle tracking simulation, the environment is discretized using volumes to approx-
imate the solution of the simulation in 3D. It means that volumic entities contains a part of the
solution and that is used in particle tracking. So the particles have to be localized and the volumic
element where a particle is has to be determined.

During the implementation of their new algorithm, Haselbacher et al. use a specific algorithm to
localize particles in the computing mesh [44]. This algorithm is a pretty traditional one and consists
in determining for each face of a cell if the particle is on the right side of this face. This is called the
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"in-cell test" by the authors and is also used by many others. This test consists in computing the
outward unit normal of all faces of a cell and then checks whether:

(fi − p) · ni > 0 (2.2)

where fi is the centroid of the ith face of the cell, p is the particles coordinates and ni is the outward
unit normal of the ith face. In other words, this test checks for each face of a cell if the particle is
always on the same side of the face. If this test is passed for all faces, the particle is considered inside
the cell. If the test is wrong for one or more cases, the particle is outside.
This algorithm is very simple to implement and to understand. It is also very fast as the complex-
ity depends on the number of faces, the operation is done with the same number of vector operations.

There are two main problems with this algorithm. The first problem is related to the centroid
of the faces. The "in-cell test" depends on the centre of the face. This algorithm works with faces
with convex shape. Today, there are some research about cells fusion and mesh simplifications in
order to save space and time to compute the flow field [45, 46]. But this problem can be solved by
triangulation. The cell and its faces can be triangulated on the fly and the algorithm can be applied
normally. The second problem is the need to compute or store the outward normal of each face. On
moving meshes, this is not a good idea as the face equation has to be computed during each change
of the mesh.
The fact is that this algorithm is still very efficient as it can be adapted to unstructured cells by
transforming cells and faces into simplexes (faces into triangles and cells into tetrahedrons).

Kalay [47] discusses about two specific algorithms used to determine the position of a point
according to a general polyhedra that are solved with a complexity of O(n) where n is the number of
faces of the polyhedra. Both algorithms use the same approach that consist in counting the number
of intersections between the faces of the polyhedra and a ray with the tested point for origin.
The author proposes an algorithm that consists in launching a determined ray from the tested point
and counts the number of faces of the polyhedra this ray intersects. If this number is odd it means
that the tested point is inside the polyhedra. On the other hand, if the ray does not intersect any
face or intersects an even number of faces, the point is considered to be outside of the polyhedra.
Both algorithms, called projection method and intersection method developed by Kalay are based on
this approach. The first one, the projection method consists in projecting the faces of the polyhedra,
onto a planar surface reducing the 3 dimensional problem into a 2D problem. The faces are projected
onto an image-plane that is perpendicular to the ray.
During the computation of ray-face intersections, some singularities can appear: if the intersection
point coincides with a vertex of the face, or is in an edge of the face, the position of the tested
point can not be determined by counting the intersections. Another singularity appears if the ray
is coplanar with the face. In this case too, the number of intersections can not be determined. By
projecting the face on a plane that is perpendicular to the ray, the intersection computation and the
detection of singularities is easier.
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The second algorithm, the intersection method also reduces the dimension of the problem into a 2D
one by generating planar polygons that contain the tested point. These new polygons are shaped
according to the polyhedra. They are generated by identifying the intersection line segments between
each face of the shape and the new plane of the polygon. The containment of the tested point with
the polygon is then computed. If the tested point is inside the polygon (computed with ray-edge
intersections), the point is inside the polyhedra. Otherwise, the point is outside.
In comparison with the first algorithm, the intersection method also encounters singularities.
The paper presents the approach of determining the position of a point compared to an object by
computing intersections with the faces. This approach is robust if the singularities are treated. This
method is particularly robust with polyhedrons that have very complex shapes, but on the other
hand, it requires a lot of computation.
This is also considered as the most recommended algorithm in geometric books [48] and vizualisation
guides.

Jing Li and Wencheng Wang implemented a fast and robust algorithm able to determine if a point
is in a polyhedron or not [49]. They have adapted this algorithm to a GPU architecture enjoying the
high number of available processes and the high parallelization of the algorithm.
This algorithm consists in performing local ray intersection tests in a general mesh. To do so, the
environment is discretized into boxes that correspond to the cells of an overlapping grid. This grid
fits with the boundaries of the cell. This is the bounding box of the general cell where the point
probably is. The faces of the general polyhedron are then assigned to each cell of the bounding box.
The authors then predetermine the position of the center point of the cuboids according to the cell
of the computing mesh. To determine if the center of a cuboid is inside or outside the original cell,
the idea is to count the number of intersected faces.
For each sub-box, the position is saved as In, Out or Sin if a singularity is encountered. The list
of centroids are determined and a ray is built from the point the authors want to localize and the
nearest centroid. If the centroid is noticed to have a singularity, the next nearest centroid is chosen.
The algorithm parallelization is made on the number of centroids in the bounding box structure.

2.3.2 Localization by intersection computation

During the movement of a particle, it has to be located in case this particle leaves the current cell.
The first and naive algorithm is to localize the particle’s new location using traditional cell search.
The method is quite accurate but is very greedy in terms of computation time and memory access.
Haselbacher et al. proposed a smarter algorithm that consists in searching faces of the cell where the
particle is passing through [44]. This algorithm is very efficient as it requests less computation than
the traditional localization operation. In addition, this algorithm guarantees not to skip any cell in
the path and that way, a more accurate particle’s path can be computed.
The algorithm takes the advantage of the previous particle’s location to deduce the next cell where
the particle is localized. It consists in repeatedly computing ray/face intersections to find the neigh-
bouring cell and move the particle until the next time step. The authors used this algorithm to
localize particles during the movement but also to detect domain boundaries and compute boundary
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conditions and interactions. Another advantage we found in this algorithm is its accuracy for very
unusual cell shapes. Figure 2.2 presents an example of this particular case.

WALL

aI3

I2

I1

Figure 2.2: Particle intersecting multiple faces of its current cell. Faces are checked in this order :
I1, I2 and I3.

In figure 2.2, particle a intersects 3 faces at I1, I2 and I3. In the loop that determines the face the
particle is passing through, the intersection point I1 is first revealed. If the algorithm stops here, when
the first intersection point is detected, then the particle will go to this I1. The problem is that this
simulation is false because of the wall presence in figure 2.2. In this example a boundary condition
has to be solved first at I3 intersection point which has not been detected yet. This example demon-
strates the importance of checking all faces of the current cell to determine the next intersection point.

The authors also made a very pertinent note related to the advantage figure 2.2 refers to: if the
intersection point lies outside the cell, this intersection point will not be retained as only the smallest
distance between the intersection point and the particle will be stored. This is a workaround that
allows not to check if the intersection point is inside the face or not. If it is inside the face, the
corresponding intersection point will be at the shortest distance from the particle whereas if it is
outside the face, a closer intersection point will be found. The drawback of this algorithm is that all
intersection must be computed to find the closest intersection.

2.3.3 Space discretization and geometric partitioning

Localizing points in space is a very difficult operation that requires many computations. The most
efficient strategy to reduce computation time of this operation is to reduce the space to localize a
point. Using grids is one application of this method, the space is reduced to a set of subspaces and
an additional localization step is implemented in order to determine the subspace where the points
are localized.

A smarter and more dynamic way to construct and determined subspaces is to use tree structures
through geometric partitioning methods [16]. Numerical trees are structures used in graphs theory
in order to describe a graph. A numerical tree is a connected graph where two nodes are connected
with a single path. The path used to connect two nodes is unique.
Each node or group of nodes of the tree represent a subspace and the total tree represents the entire
computing space of the simulation.
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Figure 2.3: A graph and the associated tree

In this figure 2.3 a graph is represented with its associated tree. Each node has a value, that can
represent a cell of a computing mesh. A node value is then a solution in a subspace of the simulated
space.

The graph in figure 2.3 is discretized into multiple subspaces and each of these subspaces is rep-
resented by a node in the tree that is not a leaf.

The search in the tree is then reduced to a complexity equal to O(n) = log2(n), where n is the
number of stages visited in the tree. The maximum number of stages is equal to the maximum height
of the tree.

The ways to discretize space using trees are many, kd-trees, octrees, binary trees etc ... These dif-
ferent methods have multiple advantages and disadvantages, but these methods are called recursive
bisections as it always consists in recursively building sub-domains of the spatial domain in order to
reduce the area of computation.
A structured grid is a specific tree where the root of the tree is the whole simulated space and the
leaves are the cells of the structured grid. On the other hand, the structured grid needs different
methods as its construction is linear and does not depend on iterative schemes.

Binary trees and Kd-trees

Discretizing space using kd-trees consists in iteratively cutting the space following a dimension. In
this tree, the nodes represent the different cuts. The nodes of a common level cut the space in the
same direction. Figure 2.4 represent a mesh discretization and the related kd-tree.

The computation space represented by the unstructured mesh in figure 2.4 is discretized itera-
tively. At each iteration, a cut in each subspace is done in a direction according to the level in the
tree. Each node that is not a leaf is a cut. The tree can be unbalanced as shown in the figure but this
allows to regroup large areas into the same leaf, by example for poor areas in terms of computation.

A Kd-tree is a particular case of binary trees that are data structures where a non terminal node
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Figure 2.4: Spatial decomposition by Kd-tree.

has two children and an unique ancestor. W. Thibault from Georgia Institute of Technology studied
operations on polyhedrons using binary trees [50]. The author proposes an original representation
for polyhedrons using Binary Space Partitioning Trees. This representation is based on boundaries
representation, using surface planes.
A position compared to a polyhedron can be determined by comparing the requested position accord-
ing to the multiple surfaces of the polyhedron. The surfaces are stored in the form of a binary tree
and by visiting the tree, it can be deduced that a point is inside or outside of the tested polyhedron.
This representation uses the similar localization algorithm that consists in comparing the position of
the requested point to the faces of the polyhedron.

Quadtrees and Octrees

Quadtrees and Octrees are other structures that are particularly adapted to geometric partitioning.
Figure 2.5 gives an example of such a decomposition.
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Figure 2.5: Spatial decompositon with Quad-tree.

Quadtrees are numerical trees where each node which is not a leaf, has 4 children. This is
particularly well adapted to 2D and surface models. The computing space is decomposed into a grid
of 4 cells which can very easily localize a position.
As numerical trees are dynamic objects (that can be augmented or reduced according to an arbitrary
accuracy), quadtrees can fit to a more adapted shape than fixed structures such as cartesian grids.
An octree is the same object, built in the same manner but adapted for 3d models. In fact, a node
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of an octree has 8 children and one ancestor. At each iteration, the subspace is decomposed into 8
new subspaces forming the shape of a 3d cartesian grid with 8 cells.

Structured grid

In the very special case where cells are cuboids, localization is one of the easiest problem to solve.
In fact, determining the position of a point in relation to a cuboid consists in comparing maximum
and minimum coordinates of the cuboid’s vertices.
As a cuboid (or a rectangle in a 2D model) can be described with only 2 vertices, the point to
localize is compared to these two vertices and if the point’s coordinates are between the minimal and
maximal coordinates of both vertices, then the point is inside the cell. This gives, compared to the
previous techniques, a very fast and very easy algorithm to localize a particle as far as tree leaves
and subspaces are simple shapes such as cuboids or rectangles.
The major problem of trees and iterative algorithms lies in the complexity of localization in the tree.
This localization requires at the worst a visit of the deepest leaf.
Localizing a point in a set of cuboids of the same size, in other words in a regular grid, is a direct
operation that does not have any intermediate operation of approximation. M. Garcia [21] remarks
that localizing a point in a regular grid is done with a constant complexity that depends on the
number of directions of the grid. The author uses regular grids to localize particles in unstructured
meshes drawing a second mesh, a regular grid, of the size of the mesh partition. This method allows
the author to first localize particles in the regular grid, with a constant complexity and then in a
second time localize particles in cells of the unstructured mesh inside the area of the determined
cuboid.
The advantage of this approach is that building a regular mesh is very fast to compute, the created
object is light to store in memory and localization is very efficient. On the other hand, the size of the
regular grid and the size of cuboids depend on the size of the computing mesh. In addition, it can
happen that a cuboid cell of the overlapping regular grid, does not contain any cell of the computing
mesh. It happens if the step discretization used to build the regular grid is too small compared to the
average size of the computed mesh. One workaround consists in building another grid with higher
steps. A more interesting workaround is to determine dynamically the steps according to the form
of the computing mesh for example the size of a cuboid can not be smaller that the smallest edge of
the computing mesh.

2.4 Methods to compute intersections

As some of the algorithms of localization require to compute particle-face intersections, this operation
is one of the most important in the particle tracking instructions set. This operation is also used to
compute boundary conditions when a particle intersects a wall for example. There is much work on
the subject as the computation of a ray and a plane is used in graphics and in CFD.
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Badouel [51] defined an algorithm to compute ray/polygon intersection efficiently. Earlier in
1987, Snyder and Barr [52] wrote a similar algorithm based on barycentric coordinates. Based on
this algorithm Badouel proposed a faster algorithm that consists in 2 main steps : first, the algo-
rithm determines if the ray intersects on the plane of a face of the tested polygon. This is done by
computing a cross product with the ray and the face normal. The coordinates of the intersection
point is also determined at the same time.
The second step determines if the intersection point is inside the face borders. To do so, the inter-
section point position is determined regarding with respect to the face normal. If the point is on the
same "side" of each edge, then the intersection point is inside the face.
The faces are considered as sets of triangles if the number of vertices is greater than 3. For this
reason, only intersections with convex polygons can be found with this algorithm. This problem is
the same with many other algorithms that attempt to compute ray-polygon/face intersections. That
is why faces are triangulated or simple and convex objects are used by scientists.

Möller and Trumbore [53] give an algorithm to determine whether a ray intersects a triangle. This
algorithm published in 2005 is capable to determine the intersection point of a ray and a triangle in
3D. To do so, the triangle is translated to an origin and transformed into a unit triangle. The ray
is then aligned with an axis and finaly the linear system 2.3 is solved where D is the ray direction,
V0, V1 and V2 are the triangle’s vertices, O is the orign of the ray (the particle), u and v are the
barycentric coordinates of the intersesction point and t is the distance from the ray origin to the
intersection point.

[−D, V1 − V0, V2 − V0][t, u, v] = O − V0 (2.3)

The algorithm is really interesting to use because of its computing performances and its low need
of memory storage. The algorithm does not need to compute or store plane equations and normal
vectors of the triangles. The authors obtained execution time comparable to the ray/polygon in-
tersection algorithm of Badouel [51] without computation and storage of normals and plane equations.

Shevtsov et al. [54] defined an algorithm to compute ray-triangle intersection for modern CPU
architectures. The algorithm is tested using SIMD instructions. They noticed that ray intersections
are computed using 2 main operations: computation of the intersection point between the ray and
the triangle plane, then the aperture test that consists in determining if the intersection point is
inside the triangle face or not. The authors also noticed that the aperture test exits more often
than the distance test in ray-intersection operations. The idea is then to proceed to the aperture
test before the distance test. The Plücker test and coordinates allow this operation. The tests have
been implemented using precomputed data like edges and normal data and also using SSE instruc-
tions [55].
The advantage of this paper is that the Plücker test is presented and the aligned structures designed
to use SSE instructions are presented.

The algorithms used are based on the same two steps that consist in computing the intersection
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point and the distance to the origin of the ray, then determine if the intersection point is inside the
polygon we are checking.
Some algorithms need more information about plane equations and plane normals, some others need
more computation and a more specific formulation but all of them can be used with no loss of pre-
cision.

2.5 High Performance Computing and problem parallelization

2.5.1 Objectives of HPC

The High Performance Computing (HPC) is a branch of computer science that becomes more and
more important since the advent of this field. Computers and serial processors rapidly showed their
limitation in terms of computation capabilities and people show high interest in this field because of
the theoretical capacity to reduce computation time without loosing computation’s accuracy. Multi-
ple processes working in parallel on the same discretized problem make reduce the number of tasks
per process. The requiered amount of data is also reduced. As the number of tasks and the memory
occupancy are reduced, the saved execution time and memory space can be used to improve the
accuracy of the computation. The need for parallelization has become more and more important as
the computation capacity of processors grows starting with vector processors.
Todays challenges are still the same with some additional ones, simulations and models are more
accurate, and in addition, the need to reduce computation time reducing the energy cost of super-
computers is becoming more and more important due to environment challenges of our time.

2.5.2 HPC Technologies and execution models.

Flynn’s Taxonomy

The models used in HPC are well known and based on the Flynn’s Classification. This classification
is a set of four classes that can describe a machine architecture.

Simple Instruction Simple Data This model is directly connected to a von Neumann architec-
ture (Figure 2.6) which consists in setting a computing unit, a memory controller and a memory
unit.

An instruction flow comes into the device with its data flow and a single output comes out. In
this execution model, the flow works the same : a single set of instructions comes into the input of
the computing unit, the associated data is stored in the memory unit of this computing unit and the
computed data comes out of the computing unit.

Simple Instruction Multiple Data The SIMD model performs a single set of instructions or a
single set of tasks at a time on multiple sets of data structures. This is the model exposed by the
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Figure 2.6: Von Neumann architecture (Diagram from Wikipedia).

particle tracking: the single instruction is the track of particles (localization, movement, interactions,
...) applied to multiple particles (multiple data sets). This is also the model that illustrates operations
on vectors, a single operation is executed on multiple data stored in the form of a vector.

Multiple Instruction Simple Data The MISD model performs multiple instructions on a single
set of data. Several processes uses the same data to compute different operations in parallel. This
model is close to task-parallelism as different tasks are computed on the data flow. This architecture
is represented by pipeline parallelism as multiple tasks are pushed into a pipeline with a data set
and the tasks are run in parallel on the same data flow.

Multiple Instruction Multiple Data The MIMD is used to perform several instructions on sev-
eral data sets. This is the model of today’s complex solvers, the parallel processes execute different
tasks on parallel data sets. This model is the most complex to implement as several problems caused
by data synchronization, tasks stealing, and communication priorities.

As modern challenges are solved by multiple programs and libraries, we are not talking about
instructions but programs. The same architectures are used but multiple programs are called on a
set of data for a single simulation. This is the case for many CFD solvers that call in the same run
a partitioner, a fluid solver, a solid solver, a task manager and a solution writer.

Memory Accesses and Communications.

The memory access, or the access of a datum, highly depends on multiple factors : the data distri-
bution, the needs of the simulation, the shape of the network, and the machine architecture (Flynn’s
architectures). We have already seen that architectures and data distribution is part of this study.
As there is as much data access needs as simulations, the last factor that impacts the performances
of data access concerns the network and its topology.

The topology of a network is an application of graph theory, where the node of a network (the
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multiple units of a network) is modeled by a node of a graph. Several network topologies are used
in the design of massively parallel machines. We can cite star networks, rings and toruses, trees and
meshes.
The topology of a network highly impacts the parallel performances as it determines the complexity
of the data flow, this complexity depending on the length of the path needed to access a remote node.
The more this path is long and complex, the less is the parallel efficiency. For example the longest
path of a ring network is equal to nnodes

2
, where nnodes is the total number of nodes in the network.

Today, many HPC machines have custom network topologies that correspond most of the time to a
hybrid topology, mixing several topologies for the same architecture.

Non Uniform Memory Access (NUMA) [56] is a memory access design that is characterized by
a set of NUMA nodes. Each NUMA node is connected to the other ones by a network. The speci-
ficity of a NUMA system is that all NUMA node see the global memory in the same way. As NUMA
nodes do not share memory spaces in terms of hardware, these multiple memories are connected to a
network. A defined process located in a NUMA node has access to all memory spaces of the NUMA
system. To do so, to access a remote data stored on the memory of a remote NUMA node, the above
process needs to see the memory. The requested data is then transfered to the local memory. This
transfer is totally hidden from the requesting process. Transfers from remote memory spaces require
latency due to the distance in the entire machine the data flow need to cross. Thus the time to access
a data set in a NUMA design depends on the data location relative to the requesting processor.
NUMA nodes are the most used nowadays because of the production of multiprocessing units such
as multi core processors, accelerators and graphic cards and now many-cores.

In fact, massively parallel machines can be sets of NUMA systems connected by a network topol-
ogy. Each node of a machine has a memory address scheme (that can be based on NUMA design)
and a memory policy. Accessing a data set stored on a remote memory space, on a remote NUMA
system, requires a communication protocol which is often by Message Passing Interface for the ma-
jority of simulations and HPC softwares. Such a communication protocol allows to send and receive
data sets though the network. Obviously the more the path of a dataflow is long, the longer is the
communication.

2.5.3 Processes proximity and core affinity.

Balaj et al. [57] made a review of the 2009 MPI implementation. The authors evaluate the scalabil-
ity of the current MPI implementation. MPI is an interface used to transfer data from a process to
another one that does not share the same memory space. This communication is done using mes-
sages based on send and receive calls. The MPI implementation allows the user to call for collective
messages, these are messages transfer from a group of processes to another group of processes. The
authors measured that MPI is ready to scale to a million of processors with some deficiencies due
to irregular collective communications that do not scale to this number of processes and also due to
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the actual topology of processes virtual representation.
This paper advises then to avoid irregular collective communications in order to scale to a high
number of processes. During the implementation of this library, this advice has been followed and
the times where collective communications need to be called, efforts have been made to call regular
collective communications, with a constant message size.

Placing processes can have a real impact on computation time. Indeed, the location of processes
compared to the hardware placement and the numerical placement of data impacts the performances
of the communications because of the size and the number of messages.
Emmanuel Jeannot and Guillaume Mercier [58] propose an algorithm TreeMatch able to map pro-
cesses to available resources in order to reduce communication cost.
To do so, the authors use Hwloc [59], a software able to catch informations about hardware and
architecture. This tool is then used to analyze these informations and manage or remap processes
and numerical ranks in order to improve performances.
The strategy the authors developed is based on a tree structure that is a more reliable representation
and a more adaptable representation than static structures as matrices. In addition, Hwloc also uses
a tree structure to represent hardware informations.
The TreeMatch algorithm consists in ordering processes according to a communication matrix that
stores communication speeds between processes. This matrix also corresponds to the processes prox-
imity as far processes generate slow communications. The processes are then regrouped into multiple
groups of processes.
According to the authors, this algorithm provides an optimal mapping as it outperforms other ap-
proaches.
This study shows the importance of process distance in case of communication bound applications.

2.5.4 Mesh Partitionning

Partitioning meshes is a NP-hard problem. In general the mesh is considered as a graph with
connectivities and geometrical properties. There are many methods to partition a mesh on a parallel
system with advantages and drawbacks.

Schloegel et al. summarized and wrote the state of the art of mesh and graph partitioning meth-
ods [16]. In this book, the authors summarize and explain the different methods to cut and partition
meshed based problems. They studied several metrics to compare the different partitioning methods
like the final partition quality, the required runtime to perform a partitioning scheme or the degree
of parallelism.
To conclude the authors compared some partitioning tools related to their functionalities and the
proposed schemes. It is important to specify that this study has been made in 2000, so the current
tools may have evolved since that year. Generally this comparison shows that partitioners are spe-
cific tools. For example Metis [60] performs multilevel schemes, ParMetis [61] performs dynamic and
parallel partitioning, Chaco [62] especially performs spectral schemes and Scotch [63] is specialized
in combinatorial schemes.
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A specific method to partition meshes consists in using space-filling curves to number mesh ele-
ments according to their spacial position. Curves like Hilbert curve, Peano curve and Lebesgue curve
are famous ones and used to partition space.
Meng et al. [64] proposed to use the Hilbert curve to cut and partition spatial data. The algorithm
is quite simple, it consists in building a Hilbert curve with the different spatial elements and sorting
these element according to their position in the Hilbert curve. This sort determines the "disk" to
which each element is assigned.
The Hilbert curve guarantees that close elements have higher chances to be contiguous in memory.
The authors show that partitioning using Hilbert curve brings better response for element access
compared to the Oracle Spatial algorithm. This is due to the spatial and temporal locality improve-
ments brought by space filling curves.
Castro et al. [17] also confirmed performance improvements by using Hilbert space filling curve to
partition space. The Hilbert partitioning method improves the execution time linearly and quadrat-
ically on a parallel run.
In the following, the Hilbert space filling curve is used to partition the mesh of the test cases.

2.5.5 Particle tracking in HPC.

Hiroshi Nishimura et al. [65] did a feasibility study of using GPU to track particles in a parallel code.
It demonstrated that tracking particles on a GPU gives about one order of magnitude less time to
solve even if only the tracking is done on the GPU. It shows that the track can be parallelized on
shared memory accelerators and is the hotspot of the application.
The authors revealed a drawback of the adaptation of particle tracking which is connected to the size
of data. A GPU, and more generally, an accelerator has its own memory. This memory is shared with
the multiple cores of the accelerator and the access to this memory is done using a communication
protocol.
Because the available memory space is reduced compared to HPC nodes, the total amount of parti-
cles and mesh data exportable to the accelerator’s memory is limited.
Another problem the authors encountered is the huge number of pointers and data class they hardly
managed on the GPU. The last obstacle they dealt with is the fact that the compilation of the entire
particle tracking library failed. The reason is that some functions are too big to be optimized and
so the compilation runs out of memory. Unfortunately the authors removed some computation from
the GPU kernel to perform them in the CPU part.
On the other hand the speed-up obtained by porting particle tracking on GPUs is around 120 for
optimized functions. In fact the functions ported on GPUs run 120 times faster than the same on
CPUs.
This paper gives an overview of parallel and porting capacities of particle tracking on GPUs and
other accelerators.
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2.6 Parallelization strategies and Load Balancing

The particle localization is the most important step in order to compute particle tracking. This
operation consists in localizing a set of particles in a given set of cells or a mesh partition. Localizing
a particle allows the computation of the particle direction by giving the position of the particle and
computing the sum of forces applied to the particle.

Plimpton et al. [20] have developed an algorithm to optimize load-balancing in a parallel electro-
magnetic particle-in-cell code. The field is partitioned and distributed to all processors in the form
of blocks. These processors have to solve the fluid phase within the block it owns and push particles
that are in this block. The algorithm describes a way to optimize load-balancing of particles in the
case of a processor owning most of the particles. To do so, the authors have described field blocks
and sub-blocks in the form of "windows". A window is a set of contiguous grid cells that can be
assigned to a new processor. In this way particles can be sent to an other processor with its window,
as long as they remain in the window.
Using the same serial multi-blocks approach of the original serial simulation, the authors developed
a particle distribution algorithm that is independent of the partitioning method of the flow field.
This method is based on the concentration of particles. Sub-domains are assigned to new processes
as long as they contain particles to track and as long as the load-balancing is not good enough. The
approach the authors developed has an impressive parallel efficiency as it scales close to the scaling
of problems without load-balancing issues. It means that their distribution method is quite efficient.
In the application of electromagnetics, their performances show that their distribution algorithm is
close to the ideal particle balancing.
This study is very interesting and important in a parallel particle tracking code. The authors proved
the efficiency of a well balanced particle code on parallel context and the efficiency of independent
solves of the field and particle phases. This study is a very good inspiration to implement any
approach for parallel particle tracking as the authors took care about particle balancing, flow parti-
tioning and implicitly for particle localization and carry of cache usage.
On the other hand, the size of the window can be an entire block. Each time step they must send
those values (Field) to the appropriate child processors to enable them (windows). The study shows
that static imbalance of particles is 10 to 35% more efficient than a dynamic imbalance. But is about
20~30% more efficient than a run without any particle unbalance. The particle balance is very close
to the ideal. Building a window can be very complex due to its building method which depends on
the number of particles. The complexity does not exists in a regular grid build.

Fonlupt et al. made the theoretical analysis of existing load-balancing algorithms for data parallel
computation [19]. These algorithms were written and their computation complexity and communi-
cation pattern are studied.
This study is a summary of many load-balancing algorithms which are usable in a parallel context.
These algorithms are compared using mathematical analysis. To do so, the authors defined two char-
acters: the cost which is the complexity of one iteration of the algorithm and the quality which is the
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product of one iteration cost by the number of iterations needed to reach a steady-state where each
virtual processor owns the average load of the system. The method of evaluation the authors used is
completely theoretical but it allows a first comparison and classification of the different algorithms.
This study is relatively complete and provides many algorithms to optimize work and load balancing.
The authors propose a classification of these algorithms and give some advice to decide what kind
of algorithm to use on a specific architecture or in order to solve a specific problem.

The authors in [66] developed a scalable load-balancing technique for a massively parallel Monte
Carlo particle transport code. Particle workload is distributed across processors using MPI. The final
aim of the authors is to find a technique able to distribute workload over millions of computing units.
The complexity of their previous algorithm was O(N2) where N is the total number of processors.
Processors are paired and work is distributed between these two processors. A partner rank is chosen
as the following : rank+ 2k if the kth binary digit of rank is 0

rank− 2k if the kth binary digit of rank is 1.

The partner changes at each round of load balancing.
The authors test these algorithms on the Godiva critical assembly test problem from the Nuclear
Energy Agency on the Sequoia super computer as a weak scaling problem (fixed work per process).
The results of this test show that their algorithm maintains the parallel efficiency to 95% up to
2 millions processors whereas the application without load balancing brings the efficiency down to
68%. The results also show that the implemented algorithm impacts the tracking time, as it becomes
constant compared to the same application without load balancing.
The authors give a load balance efficiency definition and measurement. They have developed a
scalable load balancing algorithm that has a complexity of O(log(N)) where N is the number of
processes. This algorithm is very interesting as it is very efficient for a high number of processes and
take less than 12 seconds for millions of processes. The main drawback of this algorithm is that it is
limited to a certain number of processes: the algorithm can be applied only to a number of processes
equal to a power of 2. The reason is that the key of this algorithm lies in the coupling of processes.

Darmana et al. [2] developed a parallel algorithm to follow particles in a Euler-Lagrange model
using a mirror domain technique. This technique consist in copying particles to follow on all pro-
cessors. The authors have partitioned the flow field using PETSc. The particles and their data
are scattered to all the system. For any process, it choses a subset of particles to track, computes
their path and updates their position on all other processes. Particle’s paths can then be computed
completely independently.
The authors modeled the dispersed phase dynamics accounts for bubble-bubble collisions in the
Poisson pressure equation. The fluid equation of the continuous phase is solved using decomposition
domain with PETSc implementation. Concerning the bubbles (their particles to track), the authors
want to simulate the interactions between bubbles, a very difficult operation often done in a second
run once the theoretical paths are known which is very difficult to parallelize especially on very dense
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regions, regions where the density of bubbles is very high.
The authors also measured the parallel efficiency of the application that reaches 20 for 32 processors.
This means that the reached efficiency is around 62%.
This study is useful because the authors recall the importance of keeping particles independent. And
that to keep a high level of independence between particles but also between processes, some data
needs to be known by all the computing system. This way, the amount of communications and time
spent in these communications is drastically lowered. This technique also allowed to not care about
the particle’s distribution as all processors have and update of all particles localization and velocity.
A direct advantage of this strategy is that the theoretical parallelization of particle tracking is close
to the ideal one. It can be noticed that subsets of bubbles are chosen by their location in memory.
So that transfers and bubbles updates are very efficient as contiguous data are sent.

2.7 Methods to implement efficient libraries

2.7.1 Technology reuse.

Reusing softwares, codes and technologies has an old history in software engineering back in the
1970’s. Developpers and scientists very often reused old codes, older methods to import in a new one
in order to not invent repeatedly the wheel. In computer science and software engineering, reusing
codes, applications and frameworks is unfortunately limited by the language, software patterns or
conflicting structures.
According to Kang et al. [67], the development of a reuse-based software helps to identify the crucial
activities and tasks to carry on during the software development. The whole paper proposed a general
methodology to develop efficiently a software based on code and component reuse. This methodology
includes multiple gears in the production and development chain but the most important thing to
remember concerns the implementation of a component of the software: a new function, or component
must follow this set of routines:

1. test locally (Coding and unit testing),

2. test and integrate the Computer Software Components (CSC),

3. test the Computer Software Configuration Item, and finally

4. test the whole system.

This simple plan can remove most singularities in the software components as all new component
are drastically tested before its integration in the whole system.
In the methodology, another thing to note is that algorithms and solvers are constantly challenged
with the idea of component reuse. To be clear, algorithms are encouraged to reuse already tested
components in order to reduce maintenance costs and maximize the robustness of calling functions.
The main principles have been followed during the development of the particle tracking library, using
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independent components and calling the same reused and tested components.

Merijn de Jonge [68] gives further advices for components implementation, development of reusable
components have two main objectives: increase the reuse level of the application increasing the pay-
off in terms of development time and robustess and increase the reuse of inidividual components by
implementing more general components.
In addition, the author specifies the different ways a component or a set of components can be con-
nected: by file, system pipes or by other communication protocols. In our case in for a CFD solver,
meshes, partitions and other data are often saved and exchange by files using specific data structures.
A special attention is paid on the data structures to correspond to the expected structures and data
types.

2.7.2 Component reuse adapted to HPC

Emad et al. [69, 70] apply the reuse politics and habits to parallel softwares. They presented a HPC
software LAKe and its architecture that is designed for the use of the same code for the sequential
and the parallel version.
The software architecture of LAKe is object oriented designed. There is a list of classes that describe
an object or an operation from the most coarse grain to the most accurate and precise operator.
The example of Arnoldi’s method [71] is given and shows the need of a Matrix class, operators on
matrices, a class for Arnoldi’s blocks, a class that performs an iterative method and a class that per-
forms the iterative block Arnoldi’s method. Thus, this last class is a fine grain class that describes
a precise operation with precise matrix storage, on the other hand it calls more coarse grain classes
like Matrix class and Arnoldi class to compute the iterative block method.
The authors also make some remarks about the object oriented architecture and parallelism. A
wrong design of classes can lead to inefficient parallelism. For example, accessing a single element
of a matrix in parallel leads to numerous memory accesses that generate many accesses to class
members.
In order to limit the number of accesses to members and to classes, a list of services is developed.
These services are stored in a Service Pattern block that stores a state of arguments and performs
multiple operation on the data base.
This study gives good advices and concrete examples of a well designed reuse library.

In another paper [72], the authors describe a high level design for reusable parallel library based
on 3 main components that are the Data Component that stores and manage serial and parallel
objects, the Computation Component that performs computations on an determined data-flow and
the Communication Component that is used to manage communications between computation units
using communication protocols like MPI [73] and accelerators management [74, 14, 75].
This architecture is very simple and allows to clearly define the role of each component of the library
developed for particle tracking.
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2.8 Conclusion

Parallel particle tracking calls for methods from several domains: the developpment of an efficient
parallel library requires knowledges of HPC and parallel architectures, software engineering and
network. In order to be as efficient as possible multiple techniques have to be implemented and the
structures representation have to be well designed.
In addition, particle tracking requires the implementation of methods to localize particles in a defined
area and other methods to compute the potential particle interactions. For example, a ray/face
intersection algorithm is deployed in order to compute particle interactions and collisions with walls.
The current studies on particle tracking show that hybrid methods are used in simulations. Most
of the time, the flowfield is solved using Euler equations whereas particle paths are computed using
Langrangian equations. This technique allows to keep particles resolution independent from the flow
field computation. On the other hand, an integration method have to be implemented in order to
record particle paths using the flowfield. The most important impact of this integration is the fact
that particles must be localized in the computing mesh.
This is an additional difficulty for particle tracking computation but gives in the same time multiple
advantages as a better parallelisation and a more accurate particle localisation.
A last domain of study concerns the algorithms to distribute tasks on a parallel context. This
is applied for particle tracking because the parallel efficiency of such a simulation depends on the
number of particles per computing unit.
Studies on parallel particle tracking are many and many implementations have already been done.
The scientists use and invented several strategies in order to compute particle tracking in parallel
contexts in different operations. The main difficulty that rises in all studies lies in the particle
distribution. Performances of particle tracking are correlated with the number of particles to track
per process. Modern NUMA architectures such as accelerators and many-cores are well adapted for
particle tracking that is a data-parallel problem.
As the final library is designed to compute parallel particle tracking, some of these methods are
tested, implemented and optimized in order not to fit to a specific particle resolution but in order to
compute particle tracking in a more general context. For this reason, the methods that are efficient
for unstructured meshes and random cell shapes such as concave cells are selected and adapted to
the software architecture.
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Design of a Particle Tracking Library.
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3.1 Introduction

In this chapter, we describe the different operations needed to compute particle tracking and then
deduce and justify the software architecture of the implemented library ParOPTIC. The general ar-
chitecture is designed from an analysis of operations required for particle tracking. With this general
architecture, general usages are detailed, as the strategies to access data structures, preconditioning
methods and data preparation for transfers through a network, parallel strategies and good practices
in order to efficiently adapt particle tracking to massively parallel machines.
Structures, classes and data types are detailed and justified to fit with parallel good practices and
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some metrics are introduced in order to evaluate the sequential and parallel efficiency of the final
library.

3.2 Description of the main operations to compute particle

tracking.

As we have seen earlier in this manuscript, the Lagrangian approach describes the particle movement
as the sum of forces applied to the particle. It means that, in order to know what forces are applied
to the particle, what interactions the particle is going to create, this particle needs to be localized in
the current flow field.

Mesh/Particles Initialization

LP1 LP2 LPn

MP1 MP2 MPn

LP1 LP2 LPn

STOP MP2 MPn

LP2

STOP

Figure 3.1: Particle tracking task graph. Pn stand for the nth particle, a group of particles or a group
of processes, L stands for Localization operation and M for Particle Movement.

Figure 3.1 is a sketch of operations used in particle tracking. We can see that two main operations
are used to track particles in the Lagrangian way : the particle localization and the particle movement.
This figure also shows two things: particle tracking is an embarrassingly parallel problem and as
particles are independants, they call independent operations and datasets. We can sketch processors
or computing units and memory spaces with the same graph as the different columns can stand for
a group of particles, a group of processes or a group of memory spaces. Dashed arrows between
processes represent the communications as a process may need a dataset, a part of the mesh to
track its particles. In this example the first process P1 imports the data owned by the nth process,
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Pn, to localize the particle during the first localization step and exports data to help the second
process to localize its particle during the second step. This figure gives a good overview of the main
difficulty to express high parallelism: a well balanced workload. As processes would work during
different duration depending on particle’s lives, a process that has finished all its work (first process
in figure 3.1), will wait for other processes to send it some data. This is an opportunity to give
it some particle to track. As the particle localization is the operation in which a process needs to
import data, this step is implicitly a synchronization step.

According to these comments, we can extract a pattern, an architecture from the task graph.

3.3 Proposition of a software architecture.

The design of a software architecture is one of the most important step in a computer project. The
explanation of this importance is that the entire code will be developed according to the decided
design. This design has to reflect the main objectives of the application. In other words, it is not very
efficient to design an architecture that renders the application difficult to use, exploit and maintain.
An example of a bad architecture can be an interface that does not give any access to important and
often used tools and services. We can imagine a mathematical library, a BLAS-like tool that only
gives the user access to the Arnoldi’s iteration computation. The Arnoldi’s method needs matrix-
vector multiplications and vector-vector operations. Even if these operators have been developed
in the library, the user will need to find another one to compute other operations on matrices or
implement them again instead of reusing the already developed ones in the Arnoldi library. This is
the kind of frustration a well thought software design can avoid.
In the case of particle tracking, the most important quality the design must have is the ability to
reuse important and often used functions.

Computation
* Localization

* Movement

Data
* Particles
* Mesh
* Memory Management

Communications
* Particle Distribution
* Mesh information sharing
* Accelerators Management

(CPU ⇔GPU)

Figure 3.2: Component Graph of the library.

In this particular study applied to particle tracking, and according to the task graph particle
localization and movement are the most important features that have to be accessible to the users.
But the fact is that this study and the final library has to perform efficient particle tracking opera-
tions on massively parallel systems. So the final software must provide features to manage data and
communications in a parallel context.
According to the graph of tasks seen earlier in this manuscript and taking into account the challenges
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of high performance computing, the library is designed with a component based architecture. This
architecture and the attached component graph is described in figure 3.2.
The architecture is based on three main components which are the Computation component, the
Data component and the Communication component. On this component graph dependencies are
also described. We tried to keep the components as independent as possible from each other but the
dependency on data representation still remains. In fact this is a question of efficiency of a data rep-
resentation that is not necessary a primitive one. In the following part, these components are quickly
described and more technical and implementation details are available later in this manuscript.

Computation Component. The computation component is, as its name obviously says, the com-
ponent used to do computation. In the study of particle tracking, most of the needed computations
are geometrical based computations. In this component, the user finds any function that is needed to
track particles for example, the user can use the function to compute the intersection point of a ray
and a plane, the different functions and methods to localize a particle in a discretized environment or
in a set of polyhedrons. Globaly, the functions implemented in this component are used to localize
and move objects (like particles) and compute different interactions.
Most of these functions are instantiated for 32 and 64 bits to be more accurate in the case of het-
erogeneous architectures. The data representation to use this component is quite regular as it is
based on primitive data representations. To be more explicit, this component uses integers, floats,
bytes and their equivalent for 64 bits representations. In addition of these data representations, a
special data structure is used to localize particles in a parallel context. This structure is based on
bit manipulations and it is described later.

Data Component. The data component describes the special data structures and objects used
to localize and move particles efficiently. The structures are used to describe an internal mesh
partition, a set of cells or a communication protocol. Most of these structures are only for internal
use, but a structure that is a light mesh representation. The most important structures that might
be sent through the network of a parallel machine is implemented using bytes in order to render the
communications protocol easier to use and to limit the number of communication calls. As the data
access is more difficult using bytes, the data transformations are done internally.

Communication Component. The communication component is used to describe the communi-
cation protocols in a parallel system. This component manages data structures and services used to
partition, distribute data and work over multiple processes and manage memory of accelerators. For
example, this component contains MPI calls, CUDA stream creations and particle balance methods.
This component also contains methods to read and write files especially log files that contain debug
informations and also mesh readers and writers in standard formats like CGNS [76]and GMSH [77]
files.
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3.4 Functions and data strucutres adaptation for parallel con-

text.

3.4.1 Integration to a calling solver.

The development of a new library that has the objective to reuse sequential and parallel code using
external mesh and external simulation data leads to deal with external and specific data formats.
The use of external data raises some questions:

1. can the imported structures be modified in order to coincide with the library,

2. does the imported data need to be cast to less complex data types,

3. can the memory allocated for imported data be modified,

4. can the data arrangement be modified and returned with a new data arrangement,

5. are the imported data types robust and suitable for particle tracking.

These questions can be reduced to a general one which is: the library has to deal with external
data managed by an external component or with a copy of these data managed by an internal
component.
A concrete example is simply the allocated data for the particle coordinates: during the particle
tracking, some possibly leave the simulation. As these lost particles are not tracked anymore, the
storage of their data (coordinates, velocity, diameter, weight, energy, localization, ...) is then useless.
This useless memory space can be reallocated for another injected particle or a better parallel particle
distribution.
Thus, the question is what does the particle tracking library do with the unused memory.
At this moment, the library is in charge of memory management. The current version of the library
takes care of the allocation and deallocation of particle data. On the other hand, the computing
mesh and the flow field are copied in the Data component in order to be less invasive as possible in
the data storage of the whole simulation. Thus the data from the computing mesh is updated when
the update service is called.
Future work will consist in adapting the particle data to this non invasive objective. To do so
the variadic templates of C++11 [78] are used and strides help the implementation of AOS data
structures.

3.4.2 Parallel adaptation of a library.

Because the study is to perform particle tracking in High Performance Computing field, there are
some rules to apply in order to be efficient at higher scales. In other words, some serial techniques
and programming usuals are not efficient and adapted to HPC machines. This section is dedicated
to some rules followed during the implementation of the library useful in this particular challenge of
particle tracking and applicable to similar problems.
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Keep data close to the local process and its neighbors.

This rule is very important and its efficiency and impact is one of the observations of this study. The
principle is to keep as long as possible important data close to the core, the computing unit or the
local shared memory space.
This is important especially in massively parallel machines because of the communication costs. In
fact, communications efficiency in parallel computing is a very large field of study because of its
importance in major parallel simulations and computations. The graph of tasks of particle tracking
shows the high parallel capability of the operation due to the distribution of particles over the system.
Because particles can be considered as independent objects they can be tracked independently of the
parallel system : a computing system can track particles without communications as far as it owns
the needed data. That is why the more data a core can keep, the better the performances will be.
This sentence has to be understood properly. We do not say that all particles and all data have to be
on the same memory space, but the computing units must have the maximum size of work and data
with an acceptable load and work balance between the units. In other words, computing units have
the same amount of work to do which corresponds to the maximum of work that can be given to a unit.

This rule is not only true for parallel computation, but also to any kind of application. Modern
computers and machines have multiple cache and memory levels. They are in general named and
classified by the proximity to the core and their latency. A universal characteristic is that the more
the memory space is far from the core, the more space is available. It means that the more different
data is needed, the more space and memory levels we need to compute an operation. To minimize
memory need and transfer latencies, the idea is to do the maximum number of operations on the
same data set.

Difficulties due to particle tracking implementation are mentioned later.

Minimize data needs.

Parallel computing often involves communication and data movement through a network. Com-
munications are often hotspots in parallel softwares for multiple reasons : communications need
synchronizations between two computing units that communicate, communication performances are
limited by the network performance that depends on the machine and also on the distance between
the two units and finally the size and number of communications highly impact the performances of
communications.
The topology is also very important because the network topology can be designed to reduce dis-
tance between nodes. But the fact that the topology reduces maximum and average distance is not
efficient if nodes communicate all the time with small sized messages, the communication phases are
still hotspots to reduce.
One way to optimize communications and reduce their impact on overall performances is to try to
reduce the number of messages and communication calls and optimize the size of these messages.
In most cases, increasing the message size will yield better performance but this is limited by the
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number of tasks (for MPI implementations). In addition this improvement is only valuable for a
limited range of message size [79, 80]. This is explained when the message size approximates the
network bandwidth. For sure, this bandwidth is saturated when the size of the message exceeds the
network performances.
So the main idea is to reduce communication calls by regrouping data in a few number of messages,
but sending packed data if the message sizes are too large. Another way to optimize the commu-
nications is to reduce the data needed for computations. Finding and using algorithms that need
less external data is another way to reduce communications because any gap in a message can be
replaced by needed data used later or for another operation.

The advice is thus to minimize the amount of data needed for computations and to gather a
maximum amount of data in a few number of messages. On the other hand, this advice has a high
impact on the software design and on the data representation.

Use universal and primitive datatypes.

A special attention must be paid to data representation and data types. The reason is that it im-
pacts communication latency, data copies, computations and data access, vectorization capabilities
and efficiency.

The data representation highly depends on the problem and on the targeted machine’s archi-
tecture. To be more concrete, an attention must be paid on the size of a data structure and also
on the regularity of accessing multiple data sets. In a SIMD model (Single Instruction Multiple
Data), the model executes a few number of instructions on multiple data sets. These data sets can
be represented with different data types and structures. An instruction can be vectorized and easily
optimized if these multiple data sets are encoded in the same way and with the same size. A well
known application in computer sciences is to align data structures to the size of a page or a block.
This way the instruction pointer does the same jumps in memory. In parallel computation, this
principle is also good to applied for the same reasons and adds to the efficiency of communications
and vectorization.
For particle tracking, this principle can be applied to communications to accelerate data transfers
mostly on particle and mesh movements through the global network. The second optimization ob-
served in a parallel context is the improvement of the vectorization. Some computations on particles
can be vectorized depending on the size of a vector unit and the number of particles. In order to
accelerate these computations, one can modify the size of a particle or the number of particles per
instruction block.

Due to the usage of several protocols for communications, work distribution and due to hetero-
geneity of targeted parallel machines, primitive data type are also a good way to be efficient and
adaptable to multiple data representations. For example in our case the data transfers are only done
with bytes representation in order to send mesh data, particles data and internal data using the
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same protocol. It means that communicated data has to be encoded with types of size of a byte. In
current languages, this can be done using unsigned char data types.

Data representation and data types usage is important for the global performances of the appli-
cation. Developers really have to take care of it in the implementation of a library or any software.

Ordering, arrange and precondition data to converge to an ideal case.

Many good practices are based on data, may it be on data representation, data flow and movement
or on data computation. These good practices are used to be close to the ideal case an application is
built for. The more a case is close to this ideal case, the more the application is efficient to compute
the case. However preconditioning data sets is an operation that can be very expensive in terms
of execution time. This preconditioning operation can include communications on a wired network,
data copies and imports from a memory space to a lower cache level, data gathering for cache block-
ing and per block computations and data re-ordering.

Data re-ordering and arrangement is one of the rules that can be very efficient and that can
have a more durable impact on performances. In fact, data arrangement impacts several steps and
operations during the runtime, from data communication to complex computations. A concrete ap-
plication of this principle applied in particle tracking is the reordering of particles. Particles are
sorted according to their position. The more the particles are close to each other, the more the en-
gaged data are close in memory. This improves the spatial an temporal localities. Spatial locality is
improved because the close particles use close data sets in memory. Therefore, references, instruction
pointers and addresses are close and do not need a lot of computation. In addition this can allow
vectorization in accepting architectures.
Temporal locality is improved by data rearrangement because close data can be reused on different
time steps or different operations that follow each other. For particle reordering, the temporal lo-
cality is improved when two particles are in the same location and use the same datasets. Tracking
the first and the following particles then uses the same data sets and no data movement or reference
computation is needed.

Generally, data arrangement is a principle that has a real impact on the entire runtime. On the
other hand, arranging data can be a very complex operation. For example particle sort is completed
with a complexity of O((nParticles) × log(nParticles)) with nParticles corresponding to the number of
particles with a quick sort and O(nParticles + nbuckets) with a bucket sort of nbuckets buckets. That is
why a preconditonner is more efficient if it has an impact on the maximum amount of computations.
If an expensive preconditioning method is only efficient for a small number of operations of the sim-
ulation or for a reduced number of iterations and time steps, then this preconditioning method can
not be qualified as useful.

A special attention must be paid to the complexity of the method and its temporal efficiency.
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3.5 Evaluated metrics

There are several metrics evaluated, the most are direct metrics like execution time and memory
occupancy. Three calculated metrics are also used: speedup, parallel efficiency and distribution
quality. The distribution quality has already been defined but its definition is recalled here:

Q = 1− nexternal

ntotal

(3.1)

where Q the distribution quality, nexternal is the number of imported cells and ntotal is the number of
imported and local cells on the memory’s process.

The speedup of an application is defined as the relation between an old quantity and the newest.
For example, the speedup calculation applied to execution times is defined as this :

Speedup =
Told
Tnew

(3.2)

where Told is the old execution time to compare with the new one represented by Tnew. In a
parallel context, the speedup can represent the scale up obtained by the parallelization. This metric
is obtained with the same formula but where Told is the sequential performance and Tnew is the
parallel performance.

Applied to parallelism, the third metric is the parallel efficiency of a software seen as this :

Efficiency =
Tseq

Tpar ∗ nProcs
(3.3)

where Tseq is the performance of the sequential run, Tpar is the performance of the parallel run
and nProcs is the number of processes or the number of computing units used in the parallel run.
This metric gives a percentage to represent the parallelism quality.

3.6 Technical details about structures and implementation

This section is a brief talk about data structures used during the implementation of this library.
The previous section gives some advices in order to implement and adapt efficient code in a parallel
context. Obviously, we have tried to follow these tips for the creation of the library.

During particle tracking, the input data are the mesh (cells, faces, vertices, flow field, bound-
aries, ... ) and the particles coordinates and direction vectors. Entities that must be modelized are
coordinates (vertices, points and vectors) and lists of elements with correlations (the connectivities
between elements).

There are two well known ways to store coordinates and vectors. The first one consists in storing
the coordinates of elements one after the other. In a single array, each element members are stored
in a contiguous way. For example in a 3D coordinates element set, the first three elements of the
coordinates array correspond to the coordinate of the first point, the three following correspond to the
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three coordinates of the second point, and so on. This storage method is so called array of structures
(AOS) [55]. The advantage of this storage method is the fact that a single object or block is stored
in the same area in memory. This improve spatial locality. The drawback is that vectorization is
difficult with this shape as members of objects are not contiguously stored.
The second method used to store data is named SOA for Structure Of Arrays. This method consists
in storing object elements continuously in multiple arrays. This design is very useful to vectorized
and SIMD operations but needs more cache loads for more general operations on data. The following
code presents an example of AOS and SOA designs.

typedef struct {

float x[N], y[N], z[N];

int icell[N];

} SOA_3DCoordinates;

typedef struct {

float x, y, z;

int icell;

}AOS_3DCoordinates;

For the implementation of the library, the array of structure pattern has been chosen because of
the simplicity to implement memory management. In fact, the library is designed to localize, move
particles and also balance workload and communicate particles. Communicating arrays of structures
is more efficient for message passing protocols and communications occupy a very important part of
the computations. Another reason for this choice is the fact that particle localization needs a lot of
data from the mesh, the vertices, the cells, faces planes and normals and object connectivities. This
kind of operation is greedy in terms of memory accesses and using a lot of different data sets is not
shaped for vectorization. On the other hand, an AOS design is more likely to be efficient because of
the spatial proximity of elements in memory.

Structures from mesh data are also designed with AOS format as it is a often a format to describe
finite elements. Other format exist [81] and are more adapted to more specific mesh forms like face
set based meshes for example that are specific to triangle faces. But the main advantage of AOS
structures is the compatibility with many meshes. Briefly, the structures can be described with a
couple of arrays. One array describes the element and its members and the second array stores the
addresses to access to an element and its member. This design is well known to store compressed
sparse matrix (CSR and CSC) [82].
These two formats are used for all the library and input data is assumed to coincide with these
formats.

Concerning the data types used to represent the mesh, there are two ways to store information :
input mesh is assumed to be described with primitive data types (integers, floats, double, boolean,
...), and these data types are described using template structured and functions. Most of these oper-
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ations require two types, unsigned integers and signed reals. In order to be compatible with multiple
architectures, template functions and structures are instantiated for 32 and 64 bits. The library can
eventually be improved by instantiating for extended and smaller precision.

As the mesh data is imported and will probably be used after going through the particle tracking
library, the library must not modify any data from this mesh. For this reason, the required data
from the mesh is copied in order to be managed, transformed and distributed. Thus, cloned mesh
data can be stored with specific data types. In a parallel context, communications are frequently
computed and in order to accelerate and facilitate communication implementations and flexibility, a
unique primitive data type is used to store mesh data copies. In fact, important data from the mesh
is copied and stored in the form of a single array of bytes. This way, memory management, data
exchange and communications are very easy to implement and do not depend on the original data
types and problem precision. The difficulty lies on the data access performed by interfaces. A mesh
partition is internally modelized using the same data format which is similar to a compressed sparse
matrix, but all the mesh partition data is stored in a single bytes array. A second array stores the
addresses to access the different elements in the array of bytes.

The data of the mesh and geometric entities inside the library is represented with the same
method of modern meshes. Figure 3.3 gives an example of the storage methods used in the library.
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faceVtx : v1 v2 v2 v3 v3 v4 ... v10 v1 v3 v8

faceVtxIdx : 0 2 4 6 8 10 12 14 16 18 20 22

faceCell : −1 C1 −1 C1 −1 C2 ... −1 C1 C1 C2

Figure 3.3: Representation and storage method of mesh data.

In this chart, 2 mesh cells are modeled with 11 faces and 10 vertices. In this example, the two cells
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are connected together and also with the different geometric objects. C1 and C2 represent the cells,
F1−11 represent the faces of the mesh and v1−10 are the vertices.
To connect these geometric entities and to represent their relations, connectivity arrays are used in
the form of two distinct arrays: the first array (cellFace, faceV tx) stores the data. This array gives
the other objects to which the object we are looking is connected. To give an example, cellFace gives
the faces connected to each cell. According the cellFace array of the chart, the cell C1 is connected
to the faces F1, F2, F11, F8, F9 and F10. The second array is an index array. It represent the virtual
adresses to access the data connected to an object. With the same example, the faces connected to
the cell C2 are given by cellFaceIdx[C2]. This array cellFaceIdx is of size nCell + 1, with nCell the
number of cells in the current mesh partition. Thus, the faces connected to C2 start from the index
cellFaceIdx[C2]= 6.
The advantage of this format is that the access to a set of data is direct and contiguous. In addition,
the index array implicitly stores the number of entities connected to an object. Indeed, the number
of faces connected to the cell C2 is equal to cellFaceIdx[C2 + 1] - cellFaceIdx[C2]. This is the reason
why the size of this array is nobject+1.
The same storage method is applied on multiple object in the mesh.

The third array represented in figure 3.3 is faceCell which represent a different kind of data.
This array gives the different cells connected to each face. It is assumed that, a face is connected
to a maximum of 2 cells (1 or 2 cells, a non connected face is not taken into account). Each cell
correspond to a "side" of the face, and this "side" can correspond to the number of a cell, which is
an integer, or can have a value out of the range of the cells numbers. Here this special value is set to
−1. This special value defines the boundaries of the mesh partition. It can be a wall, an obstacle,
or the end of the space discretization and the solution range.
This array is of size nFace× 2, where nFace corresponds to the number of faces in the mesh parti-
tion. This size is fixed for the single reason that a face is considered as possibly connected to 1 or 2
cells. For this reason there is no need to implement an index array as the "sides" of a face Fi are
accessible with faceCell [Fi × 2 + {0|1}].

3.7 Conclusion

The architecture of ParOPTIC’s library is designed in order to take into account the high parallelism
capability of particle tracking problem. This is finally a problem that is highly parallel if particles are
well distributed, that has a high re-use potential in the way that all particles are tracked using the
same operations, and that can be easily adapted to heterogeneous machines. The component-based
library corresponds to these qualities as this approach allows high potential of re-usability, it allows
high potential of parallelism due to the independency of the components, and the component-based
design is easily adapted to heterogeneous machine due to the same quality.
In the next chapter, the algorithms that compose the components are described.
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CHAPTER

4

Optimization of a set of basic algorithms.
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4.1 Introduction

As shown in the graph of tasks, particle tracking in a meshed environment is basically a couple of
operations which are particle localization and particle movement. These operations are very ba-
sic geometrical operations scientists have been working on for centuries. The computation of these
operations has been studied for many cases from visualization and light modelization to the treat-
ment of boundary conditions in CFD simulations. This chapter is dedicated to the implementation,
optimization and analysis of these operations used to localize and move particles in very large meshes.
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4.2 Particle Localization.

4.2.1 Particle Localization in a single Cell.

This operation can be done at different grains, at the scale of a single cell, a set of cells and set
of mesh partitions but these algorithms depend on the algorithm used to determine if a particle is
inside a cell or not. This is also known as a containment problem which is the subject of many
studies [83, 84, 85, 86]. Our study is not about the different methods and problems linked to the
containment problem but a focus on two methods that are highly used to determine the position of
a point compared to convex polyhedrons and polygons [47, 87].
The first method to determine if a particle is inside a polygon (or a polyhedron) consists in computing
the plane equations of the polygon’s faces (or polyhedron’s faces) and to determine, using the face’s
normals, the position of the particle compared to each face. In other words, this algorithm consists
in determining on which side of the plane the particle is.
The advantage of this algorithm is that it is relatively efficient for regular cell shapes. In fact, this
algorithm is quite efficient on convex regular cells such as tetrahedrons and cubic cells. On the other
hand, it does not work at all on more complex cells such as concave cells.

a

b

a

b

Figure 4.1: Example of the application of the first method to determine if a polygon contains a
point using face positions. On the left, two particles a and b are localized using the outsiding normals
of the convex polygon’s faces. On the right the same particles are localized in a non-convex polygon.
Colored normals indicate that the particle of the same color is outside of the polygon.

The figure 4.1 shows an application of this first method on two different shapes of polygons: the
first polygon on the left is a convex polygon, the second one, on the right is concave. In both cases,
two particles a and b are localized and a is localized inside the polygon whereas and b is outside. This
first method consists in determining for each face of the polygon if the vector from the particle to its
orthographic projection on the current face has the same direction than the outsiding face normal.
In the figure 4.1, colored vectors correspond to vectors that are not in the same direction that the
projection vector from the particle. In other words, colored vectors indicate that the particle (of the
same color) are not inside the polygon.
In the first case, on the left, which corresponds to localizing particles in a convex polygon, a and
b are both correctly localized, a single face normal is not in the same direction than the projection
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vector from b, so b is calculated as being outside the polygon, which is currently right.
On the other hand, this method does not correctly calculate the position of the particle a in a concave
polygon on the right as one of the face normal indicates that a is outside of the polygon.
So this first method is not adapted to irregular meshes and cells with non-convex shapes.

The second method to determine the position of a point in relation to a polygon or polyhedron
consists in firing a ray from this point and count the number of faces of the polyhedron this ray
intersects. This method has the advantage to be efficient with irregular geometric objects like concave
polygons. On the other hand, this method requires the computation of ray-planes intersections
which is very greedy in terms of computation time. Another disadvantage of this method is that all
intersections with all the faces of the cell has to be computed, so no optimization can be done by
computing a reduced number of intersections. The reason of this last disadvantage is that the result
depends on the number of intersections, if the ray from the point intersects an odd number of faces,
the point is then inside the object. Otherwise, the point is outside of the object.

a

b

c

Figure 4.2: Example of the application of the second method to determine if a polygon contains a
point using rays.

Figure 4.2 gives an example of this method applied to three points. In this example, we have to
determine if these points are inside the drawn polygon. To do this, a ray is traced with a random
direction (here the direction is set to a unit vector of coordinates (1, 0, 0, ...)). The three points
a, b and c have to be localized using this method. By counting the number of faces each ray is
intersecting, we can figure out that the ray from point a intersects only one face, the ray from b does
not intersect any face and the ray from c intersects 2 faces. So the rays from b and c intersect a even
number of faces whereas the one from a intersects an odd number of faces. With this parity, we can
determine that a is inside the polygon, whereas b and c are outside.
The algorithm of this method is proposed in 1.

We encountered a particular case when this method does not work and that is discussed by
Hormann et al. [87] and Kalay [47], the point localization can not be determined when the ray
intersects the faces and the intersection point is a vertex of the polygon. Figure 4.3 presents this
particular case.

In figure 4.3, we retrieve two points that have to be localized. Rays are launched from these
two points and unfortunately these rays intersect some faces at a vertex of the polygon. The ray
that comes from a intersects faces p and q at the common vertex of both faces. According to the
algorithm 1, a is considered as being outside of the polygon which is completely wrong. The same
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nb_intersections ← 0;
for iface in polygon do

is_intersecting ← intersects(iface);
if is_intersecting is true then

nb_intersections ++;
end

end

if nb_intersections is even then
/** the point is outside of the polygon **/

else
/** the point is inside of the polygon **/

end
Algorithm 1: Localization of particle in polyhedra using ray/plane intersections.

w

q

p

v
ua

b

Figure 4.3: Example of the application of the second method to determine if a polygon contains a
point using rays.

effect is noticed with point b, its ray intersects 3 faces u, v and w. b is then considered as being
inside the polygon.
It can be noticed that if we consider a ray intersecting a vertex as a not intersected face, the problem
still remains.
Two main solutions can be carried out, the first consists in launching several random rays from the
point and hope the problem will not persist with the new ray. This first solution has the advantage
of not being intrusive if the problem is not encountered but has the drawback to force the process to
restart until the localization is rightly determined. The second solution consists in determining a ray
that is surely not passing through a vertex of the polyhedron. This solution has the advantage to be
easily implemented and to give an instant right result, but on the other hand, requires to compute
a ray for each particle. This ray has to be computed dynamically.
The computed ray is determined as the one that goes to the barycenter of one face of the cell. The
drawback of this solution is that if the barycenter of the face is outside the face, in the case of a
concave shape of this face, launching a ray to this external barycenter will not work properly. That
is why during the face loop, for each face of a polyhedron, the face is divided into triangular faces.
The problem is that even with all these computation, when a ray is passing through a face barycenter
and hits other faces at a vertex, the localization can not be determined. Another computation has
to be made. The final test to add is to count the number of vertices that are hit. If this number is
greater than 0, in other words, if the ray hits any vertex or edge of the polyhedron, the ray has to
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be changed.
The next ray corresponds to the ray hitting the barycenter of another triangular face. The

algorithm is given in algorithm 2

/* Faces are triangles */ ;
nb_intersections ← 0;
nb_rays ← nb_faces;

/* compute the different rays, an additional random ray is added at the end */
for iray in nb_rays do

/* while a right ray is not found */
ray_vector ← compute_ray_to_face_barycenter(iray);
nb_intersections ← 0;
for iface in nb_faces do

intersectionPoint ← intersects(ray_vector, iface);
if intersectionPoint exists then

nb_intersections ++;
for iborder in iface do

if intersectionPoint ∈ iborder then
nb_intersections ← 0;
/** Stop and change the ray "iray" **/

end
end

end
end
if nb_intersections > 0 then

/* We found a good ray and the number of intersections */ iray ← nb_rays;
end

end

if nb_intersections is pair then
/** the point is outside of the polygon **/

else
/** the point is inside of the polygon **/

end
Algorithm 2: Localization of a particle in a polyhedron using ray/plane intersections taking into
account singularities.

The algorithm written in algorithm 2 can determine precisely when a point or a particle is inside
a cell or not. In the simulation field, meshes are more often composed of several cells.
To localize a particle or a set of particles in a set of cells, the first method that can be implemented
is to iterate over the cells and for each cell, determine if a particle is contained in this cell. This
method is very expensive as the number of cells grows. In addition the complexity of algorithm 2 is
very high and is about O(n2×m) for a single particle where n is the number of faces of the cell and
m the number of vertices of a face which is 3 for triangles.
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4.2.2 Particle Localization in a set of cells.

Localizing a point in a polyhedron is a very expensive operation as it requires several singularity
checks and intersection computation with all faces of the polyhedron. This operation is then expensive
in terms of computation time and also intensive in terms of number memory accesses. The main idea
from multiple authors is then to reduce the number of cells to check to find the final one in which
the point is localized. Several techniques have been experienced, some consists in choosing a subset
of candidate cells by space discretization. The point is first localized in a coarse grain subset of
subspaces that contain a limited number of candidate cells. Another technique consiste in localizing
the point in approximated cells. The candidate cells are approximated with a bounding box or a
regular shape to select a limited number of candidates.
We implemented a method that reduces drastically the number of candidate cells. The idea is to
select a subset of cells due to their proximity to the particle. To build this subset, the vertex of
the mesh that has the minimal distance with the particle is determined. This algorithm reduces the
candidate cells to the cells that own the vertex closest to the desired point. It also has the advantage
to be very easy to implement and is presented in algorithm 3.

ivtx_tmp ← ivtx1;
minimal_distance ← distance(particle, ivtx1)
for ivtx in mesh do

if minimal_distance > distance(particle, ivtxi) then
ivtx_tmp ← ivtxi;
minimal_distance ← distance(particle, ivtxi);

end
end

Algorithm 3: Determination of the minimal distance

Obviously the minimal distance is computed not using a square root which is a very expensive
operator. As the accurate distance is not required, only an approximation is made to compare with
other vertices, this distance is calculated with

distanceAB = (xB − xA)2 + (yB − yA)2 + (zB − zA)2 (4.1)

With these two algorithm executing at different scales, a set of particles can be localized by first
determining a subset of candidate cells and in a second time determining among this subset of cells
the one that contains the particles. This method at this scale has the advantage to be more efficient
than a simple iteration over all known cells, but has the same drawback as the first method: if the
number of cells and the number of vertices grows, even the computation cost of the distance can
become very greedy and inefficient. The reason is the same, increasing the number of candidate
vertices takes more time to compute.
In order to reduce again the computation time of particle localization in large meshes, another
localization method can be added at the scale of a mesh partition.
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4.2.3 Particle Localization in a large local mesh.

Particles can be localized in mesh blocks in order to reduce the local size of the mesh. The method
used consists in localizing particles in a secondary mesh in the form of multiple implementations
with advantages and disadvantages. Most of the implementations are based on tree structures. The
idea is to transform the involved graph by discretizing nodes or gathering some of them to manage
the accuracy of the search operation. More specifically, some close cells are regrouped in the same
structure object that is used to reduce the search area of a localization.
There are multiple implementations of tree constructions from kd-trees to octrees and binary trees.
Cartesian grids can be considered as trees, indeed the tree is single rooted which is the unique node
with multiple leaves that represent the cells of the cartesian grid.
All the tree shapes have advantages and disadvantages depending on the memory occupancy, the
search complexity and the parallelization capacity.
In a parallel CFD application, the computing mesh that simulates the fluid phase, is parallelized
using partitions. These partitions are distributed on the different processes of the target parallel
machine. The adjacent graph modelizes the processes and the partitions, a node corresponding to a
partition or to a process.

Figure 4.4 gives an example of a structured grid on the left and a tree (a quadtree) on the right
to localize particles in a large mesh.

1
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Figure 4.4: Cartesian grid overlapping a mesh (left) and quadtree(right).

To implement a tree to localize a set of particles has multiple advantages. First of all, a tree
structure is very light to store. Another advantage of a tree structure is the complexity to access
a leaf. This complexity is about (log2(n)) with n the number of steps in the tree. In addition,
according to figure 4.4, the quadtree requires less leaves to store because of the localization of the
particles. Indeed, a region that does not contain particles or fluid is not important to store in the
tree. In other words, an empty or less dense region can be less accurate for the search operation.

The structured grid has almost the same advantages such as the memory occupancy that is very
light or the complexity to access a leaf or a cell of the structured grid. The time to access a cell
with a structured grid depends on the number of directions of this grid but the time complexity is
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constant. In fact, the access to a cell is done with a single division per direction:

ic = b(
(xp − xmin)

(xmax − xmin)
Nx)c+ 1 (4.2)

with xp the particle’s coordinates we want to localize, Nx the number of cells of the structured
grid in a direction and xmin and xmax the minimum and maximum coordinates of the structured grid.
This formula gives ic which is the number of the structured cell in a direction where the particle is.

To compare the two localization methods, we can notice that the localization in a tree structure
is more complex than localizing in a structured grid. On the other hand, the tree can perform local-
ization more precisely than a static structured grid, as the constructions of leaves in a dynamic tree
can be more accurate (due to regions with less density) than a static structure as structured and
cartesian grids.
Figure 4.5 gives an example where the localization can be more precise with a dynamic tree struc-
ture. In this example, in terms of space occupancy, the structure is building more leaves than in
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Figure 4.5: Cartesian grid on the left and Kd-tree on the right. Leaves of the Kd-tree are built
according to the position of particles or the density of the fluid computation.

the equivalent tree. In addition, the tree is more accurate to localize these particles in the same
area. This is due to the dynamic construction of a tree structure, in fact a tree node can be built
instantly during the run of the localization step in order to be more precise by reducing the number
of candidates cells in the computing mesh. In this case, the structured grid needs to build all cells
(corresponding to the leaves in a tree structure) to localize particles anywhere in the computing mesh
partition.
In our implementation, the structure we have chosen to localize particles at coarse grain, is the over-
lapping structured grid for the following reasons: the light space occupancy required, the complexity
of the localization and the static construction of the grid. In fact this default of the structured
grid is an advantage for particle tracking simulations because particles travel all over the computing
mesh and they do not guarantee to be close during the simulation. In addition, linking leaves and
structured cells to the computing mesh is quite expensive in terms of computation operations and
number of memory accesses. This will be discussed in chapter 5 which is about particle tracking on
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massively parallel systems.

4.2.4 Performances obtained.

This section presents some performances obtained for particle localization which is the most expen-
sive operation for particle tracking. The results are obtained by localizing 640, 000 particles with
random coordinates. Only the localization step is measured depending on the size of the overlapping
structured grid.
The computing mesh is a structured mesh with 256, 000 cuboids and is not parallelized. The sequen-
tial performances are studied. Figure 4.6 gives the speed-up obtained by increasing the size number
of the overlapping structured grid.

Figure 4.6: Speed-up obtained to localize particles

In the figure 4.6 the speed-up is calculated comparing a run without a structured grid to localize
particles and different discretization of an overlapping structured grid.
The increase of the size of the structured implies that the number of cells of the original computing
mesh per structured cell decreases. This directly impacts the grid initialization and the time to
localize particles. In fact the more the grid is discretized, the less there are computing cells per box
and the higher is the speed-up.
The maximum speed-up obtained for the execution of the localization and the initialization of the
grid is obtained for the maximum size of the structured grid and is equal to 95 for the localization
operation and 68 for the grid initialization. It means that for an overlapping grid of size 10×10×10,
localizing particles in a computing mesh of 256.000 cells is close to 100 times faster than localizing
particles without a grid.
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On the other hand the memory occupancy increases with the size of the structured grid. It is due
to the creation of ghost cells explained in the next chapter that concerns the particle operations in
a parallel context.

4.3 Particle Movement.

The movement of a particle is a simple operation to compute if all data are available. In fact, the
movement of a particle is computed using equations of motion [88], although these equations depend
on the underlying simulation, the computation can be summarized as the sum of all forces applied
to the droplet.
This operation is then quite easy to implement and to compute, the only difficulties come from the
methods to gather data from the mesh. As we are talking about these methods, it can be noticed
that there are many methods depending on the computation the flow field. But these methods do
not concern the particle localization and tracking.
The fact that gathering forces applied to particles does not concern particle tracking computation
and the fact that this operation is done by the fluid computation does not mean that ParOPTIC
does not have to take care about the fluid phase. This is discussed later in the flow field section.

As a particle is moving, it is possible that this particle leaves the current cell of the computing
mesh where the particle was localized before its move. Contrary to the particle movement computa-
tion, determining the localization of the particle after its movement can be an additional difficulty
during the runtime.
In order to perform the particle localization, the previous algorithms can be used, they are quite effi-
cient and particularly accurate. On the other hand, these previous algorithms remain very expensive
in terms of computation time and complexity. This is the reason why, these algorithms have to be
called the least possible. Other algorithms to localize efficiently with the available data during the
runtime are then used.

The first algorithm that can be used is to use previous algorithm with a neighborhood visit.
Previous algorithms can be used to determine the cell of the computing mesh described previously
named the in-cell test. As the use of this algorithm highly depends on the number of candidate
cells, during the runtime, and the previous location is still known, the number of candidates can
hardly be reduced. Candidates during the particle movement are determined by the proximity of
these candidates with the current particle location. In other words, this first approach consists in
visiting neighboring cells of the current particle’s location, moving the particle and determining the
next location by visiting the neighboring cells. Figure 4.7 shows an example of this approach. The
algorithm is presented below (Algorithm 4).

In figure 4.7, two particles are tracked : P and P ′. P is moving from cell C to a neighboring cell.
For the localization of the next position P + 1 of particle P , the idea is to compute the in-cell test
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Figure 4.7: Particle localization using in− cell test and neighboring cells visits.

/* The current localization of the particle is known*/
begin

/*particle movement*/
for ivtx to visit do

for icell in visiting cell containing ivtx do
if icell has not been visited then

if localize_particle_in_cell() is true then
/* The cell is found –> Stop*/
stop

else
for ivtx2 in icell do

ivtxToVisit ← ivtx2;
end

end
end

end
end

end
Algorithm 4: Particle localization using in− cell test and neighboring cells visits

for all neighbours of C. P is then localized in a maximum of 6 iterations in this example.
The other particle P ′ goes faster or further than P . P ′ is so fast that it leaves C and its directly
neighboring cells. As for a naive path finding algorithm, this particle localization algorithm visits
and checks the direct neighbors of C, then the next neighbors of the direct neighbors and so on.
In the end, if the particle is not in any cell of the mesh partition, the particle is declared lost and
has to be relocalized in the grids.

The example presented in figure 4.7 shows the advantages and drawbacks of this approach. The
advantages are in fact the reusability of an already used algorithm and so the ease of implementation.
Another advantage is the very low number of candidates to visit in order to determine the new
location of the particle. On the other hand, a drawback is immediately linked to the low number
of candidates. The fact that the number of candidate cells is low, is a consequence of a particle
that moves slowly. In the case of a particle at very high speed or in the case of a very precise mesh
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discretization, the particle has higher chances to be localized further than the closest neighboring
cells. So, in this particular case, the number of candidate cells is considerably higher which has a real
and high impact on the performances. It can be noticed that in this particular case, the precision of
the simulation is directly impacted too as the particle that moves further than the closest cells is not
integrated and does not take into account the field of the forgotten cells. In simulation field some
time integration methods are used to associate time and space discretization, Runge-Kutta methods
and Euler schemes [89] can be given as examples. These methods can also be used in particle tracking
but still do not guarantee that no cell will be forgotten. In the example of figure 4.7, P ′ direction
and speed does not integrate the velocity modelized by the direct neighboring cells of C as P ′ passes
through these temporary cells.
In addition, regarding the algorithm 4 the algorithm complexity is around O(n × m) if the most
internal loop is considered as negligible compared to both other loops and where n is the number of
vertices per cell and m is the number of cells containing a vertex.

Regarding these drawbacks, we looked for another approach to be more efficient in terms of
computation time and complexity and in terms of precision. The authors Haselbacher et al. [44]
developed an algorithm able to localize particles with more precision, with a single memory access
and with less memory occupancy. The algorithm consists in memorizing the connectivity between
faces and cells of the computing mesh and determining the face the particle trajectory is going to
cross. A face can be connected with any number of cells greater than 0. In our implementation, the
case where faces are connected to 1 and 2 cells is only supported.
So with the information that a face is connected to one or more cells, a connectivity association can
be set in order to determine the number of cells connected to each face. This way, the intersection
point between the particle path and the faces of the current cell is computed and determined. If the
particle is not moving enough to cross the face, the particle stays in the current cell. Whereas, if the
particle crosses a face and is going to leave the current cell, then the cell is updated and the particle’s
path is computed until the time step is finished. Figure 4.8 shows an example of this algorithm. The
final algorithm is written below in algorithm 5

T

T + 1
2

T ′

T + 1
a

b

Figure 4.8: Particle movement and localization by computing particle-face intersections.

In figure 4.8, a particle is moving and is leaving its current cell. In this example the ray/face
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/* The current localization of the particle is known*/
begin

/*particle movement*/
dmin ← MAX;
pt ← 0;
for iface ∈ facescurrentcell do

ptIntersection ← intersects(ray, iface);
if ptIntersection exists then

if dmin > distance (particle, ptIntersection) then
dmin ← distance (particle, ptIntersection);
pt ← ptIntersection;

end
end

end
/* pt is the intersection point */
/* dmin is the distance between the particle and pt */
return {pt, dmin}

end
Algorithm 5: Particle movement and localization by computing particle-face intersections.

intersection is computed and as it is shown in the figure, allows the field of the crossed cells to be
taken into account. As it is equivalent to discretizing the particle’s movement and the time step, the
ray-face intersection is iteratively computed until the particles movement is finished.
The advantage of this algorithm is that no computing cell can be skipped and this renders the particle
tracking more accurate compared to the previous one. Another advantage of this algorithm to be
noticed is that the same algorithm of face/ray intersection is used. In fact, the only difference comes
from the input data. The drawback is obviously the usage and the need of this face/ray intersection
call. We have seen that this intersection operation is quite expensive in terms of computation time,
but compared to the neighboring cells algorithm, the complexity is constant and equal to the num-
ber of faces of the current cell as the next cell is obtained with a single memory access. So this last
algorithm has been chosen and implemented.

An important problem still remains, with the particle localization using ray intersections, the
use of ray-face intersection for particle movement encounters the same singularities : problems come
when particles leave their current cell and intersect an edge or a vertex of the cell. The result of this
problem is that the edge and the vertex are possibly connected to more than 2 cells. Indeed, in the
case of a complete face, this face is connected to two cells : the current one and the neighboring cell.
If a particle intersects an edge or a vertex, the edge or the vertex is possibly connected to more than 2
cells and the more the cells the more the solutions, the more the solution is hard to find. In fact, it is
very hard in our implementation to determine and choose the right cell, as all candidate cells are right
solutions (an edge and a vertex can belong to more than 2 cells). A solution is to move further the
particle and not take care about the intersection point and determine the final cell to localize the lost
particles. We believe that a better solution can be found and it will be the subject of our future work.
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4.3.1 Flowfield

The flow field that is in general represented by a velocity field is computed with different methods
than particles. We have seen above in this manuscript that Eulerian schemes are often used to com-
pute the fluid phase compared to the Lagrangian approach that is used to track particles.
As the objective of this work is to study algorithms used for particle tracking and to deliver an
efficient library that performs these operations, we chose not to implement methods that solve flow
velocities because of the large number of existing methods.
On the other hand, the flow field has to be represented in a reduced way in order to compute particles
positions. As the particle movement depends on the forces applied on it, which are computed by
the fluid phase, a general and independent representation has to be done to represent these forces.
The flow representation must be independent concerning the vector computation methods and the
number of forces and physical variables because of the existence of multiple physical models.
The choice has been made to store the flow field in the form of a unique velocity field. Our imple-
mentation does not store the physical quantities and the different forces for the reason above, but
the final velocity field is stored in the form of an array of vectors. The velocity field stored modelizes
the velocity of the fluid in the cells. The array that stores the forces is then of the size of the number
of cells of the computing mesh. Updating this field is very easy in a shared memory context, the
interface can easily allow to update the velocity field.
On the other hand two particles in the same cell can go to different directions in simulations that
take into account momentum or that do not depend on the fluid (for example the light generation).
For these cases the velocity of a unique particle is important and is computed outside the library.
The flow field member is very useful to manage velocity field of a partitioned mesh with a different
distribution than the particle phase which is completely within our case of study.

4.4 Conclusion

This chapter describes the different algorithms used to compute particle tracking. These are very
basic algorithms and have already been dealt with in the literature. Algorithms have been selected
in order to be efficient in a sequential run, cheap in terms of data access and memory occupancy
and that can be intensively reused. Indeed localization algorithm and particle movement (which
corresponds to the particle localization during its movement computation) both use efficient ray in-
tersections.
All these algorithms have been adapted for AOS structures to optimize vector operations on inde-
pendent particles.
Sequential tests also show the performances of the algorithms and especially the performances of an
overlapping structured grid that decrease the number of candidate solutions for expensive algorithms.
The next chapter talks about the algorithms, adaptations and performances for a parallel system
and for distributed memory architectures.
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CHAPTER

5

A Design for localizing and tracking particles on a
remote memory space.
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5.1 Introduction

In the previous chapter, a set of structures and algorithms has been discussed in order to localize and
move particles in a particle tracking simulation with large meshes. In a parallel context, this kind
of simulation is run on massively parallel machines which have multiple memory spaces dispatched
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on an irregular network. As each node of this network has possibly different components, different
architecture and different computing performances, each node is considered as singular.
At this point, implemented algorithms are efficient on a local and limited environment. This effi-
ciency is essentially due to the way to parallelize particles on a system that does not need to import
remote data from another memory space.

In order to study the different algorithms, communications have been implemented with message
passing tools using MPI [73]. The global approach is reproducible with other communication proto-
cols but the implementation and the different optimization of the code or the structures allocations
are specific to MPI usage.

5.2 Particle Localization in a different mesh partition.

A mesh partition is defined as a set of vertices, faces, cells and other numerical entities and a struc-
tured grid defined earlier for particle localization at high scale. This grid overlaps any mesh partition
as it is based on the maximum and minimum vertices coordinates. The partitioned mesh is then
scattered on multiple remote memory spaces in the form of mesh partitions that are considered as
local meshes.
These local meshes are used to localize and track our particles. When the particle or a set of particles
are localized in a different mesh partition there are different solutions in the literature.

The first solution consists in sending the set of particles to the remote memory space where the
mesh partition is stored and where the particles will be localized. This first solution is quite efficient
when particles are equally, homogeneously dispatched in the global computing mesh [2, 90, 91, 92].
On the other hand, the particle tracking can become sequential if all or a majority of the particles
to be tracked are localized in the same area (in the case of an injector for example) all particles
are sent to the same memory space that belongs to a single node. With this approach there are
no communication needs except for particles migrations which is achieved with high efficiency. The
drawback is the risk of the simulation to turn into a sequential simulation or in the best of cases the
system has an unbalanced and irregular workload during the run time.

A second solution is to store a copy of mesh partitions on every memory spaces of the computing
system. This solution has the advantage to perfectly balance the workload, which corresponds to the
particle distribution in particle tracking simulations. Another advantage is that it has an important
impact on the entire simulation, as no communications are needed during the entire run in the case
where the all partitions are copied on every remote memory space. The particles are perfectly dis-
tributed and no data transport is needed to keep the balance quality. This last advantage impacts a
lot the entire simulation as it does not really need any barrier or any form of synchronization between
the processes except in simulations where particles interactions are observed.
On the other hand, several drawbacks come with this approach. The first one concerns the memory
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occupancy of the simulation. Scientists are interested in HPC and parallelism for two main reasons:
the possible acceleration of their application and the possibility to run simulations on larger prob-
lems due to the storage parallelization. So storing several mesh partitions on the same memory space
drastically limits the maximum size of the studied problem.
The second drawback also concerns an objective of HPC usage : parallelizing a problem generally
accelerates the simulation. For the particle tracking, the problem does not exists as particles are still
well distributed so the work is well balanced. The problem is the balance of the flow field computa-
tion. In fact, for simulations that use multiple phases (as Euler/Lagrange methods), the fluid phase
is solved in parallel. Having copies of the solution of the fluid phase on all the memory spaces does
not impact the parallelization of the fluid phase but it adds an update step. In order to keep the
whole mesh up to date for all copies, the whole solution of the mesh has to be sent and received.
This additional operation requires lots of communications with very large messages (the size of a
mesh partition) with synchronization problems and message concurrencies.

A third solution is a mix of both previous solutions that consists in balancing and distributing
particles and mesh partitions and proceeding to the transfer of subsets of mesh partitions, from 1
to a limited number of computing cells [20]. The extreme cases are obviously sending 1 cell and
sending all cells of the mesh partition. This third approach has the advantages of the second solution
that consists in sending the whole mesh partition to other remote memory spaces but may occupy
less memory space as it becomes possible and reasonable to receive and remove subsets of mesh
partitions when they are not used. Another advantage also due to the second solution is that a
particle can be localized and tracked for several time steps depending on the size of the partition
subset received. The larger this subset is, the less communication calls it needs, the second solution
being the particular case where no communication is needed as all memory spaces possess all mesh
partitions. There are unfortunately some drawbacks with this approach, the first one is the fact
that a method to determine a subset of cells to be communicated has to be implemented. The
second drawback concerns the need of synchronizations and frequent communications. In fact, this
drawback depends on the particles behaviour, as particles can stay in the same area during the entire
simulation. But in general, any time a particle moves and visits another subset of computing cells,
this subset has to be called and received. This is a good agreement between particles and mesh
balance.

This last approach has been chosen to localize and track particles in partitioned and distributed
mesh over multiple memory spaces for these multiple advantages and the good agreement between
memory occupancy and workload.

As we said earlier in the drawbacks of this hybrid approach, a method is needed to determine the
number of computing cells by subsets, by boxes to communicate.
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5.3 Particle Localization using a grid.

The adopted solution is the one that consists in communicating subsets of computing cells. This
solution is presented in figure 5.1. This figure shows an example where a set of 8 particles are tracked.
These particles are distributed as 4 of them (no1, 2, 3, 4) are stored in memory space a○ and the
rest (5, 6, 7, 8) is stored in memory space b○.
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a b
Figure 5.1: Example of cells imported and exported to localize and track removed particles. a○ and
b○ are processes that own a different mesh partition and all particles are localized in a○. Particles
1, 2, 3 and 4 are tracked by a○ whereas 5, 6, 7 and 8 are tracked by process b○. A set of cells are
possibly communicated, the three triangle cells, the entire mesh of a○, or the cells contained inside
the dashed circle.

The particles stored in b○ are localized in the mesh partition owned by a○, so mesh data has
to be imported by b○ in order to track particles 5, 6, 7 and 8. These particles are localized in 3

triangle cells stored in a○ memory space. The approach allows to import these 3 cells from a○, but
the particles have a high chance to leave these cells and go to the neighbouring cell. This forces b○
to import again mesh data from a○, which is expensive in terms of communication time. We have
seen that the entire mesh partition stored in a○ can be imported but this approach requires a lot of
memory space and is not efficient in terms of spacial locality.
A good agreement in this example presented in figure 5.1 can be to import the list of cells inside
the dashed circle from a○. This will import the 3 cells where the particles are and the neighbouring
cells, allowing particle tracking without communications for a limited time.

We previously introduced a data structure, a structured grid, in order to localize particles at
the scale of a mesh partition. This structure is discretized to form cells and kind of boxes used to
localize and track particles. If the boxes (created with the cells of the overlapping structured grid)
are considered as independent mesh partitions, these boxes can be sent and received easily to and
from other memory devices. In fact, we used this implementation to define subsets of cells to import.
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The figure 5.2 presents the same example shown in figure 5.1 with an overlapping structured cells
composed of independant boxes. In figure 5.2 the example is the same than the one presented in
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Figure 5.2: Example of structured cells import and export to localize and track removed particles.
a○ and b○ are processes that own a different mesh partition and all particles are localized in a○.
Particles 1, 2, 3 and 4 are tracked by a○ whereas 5, 6, 7 and 8 are tracked by process b○.

figure 5.1 as two memory spaces are represented ( a○ and b○), each memory space is used to store
a mesh partition and the balanced number of particles. The problem is the same, b○ has the task
to track particles {5 − 8} and does not store the required environment that is stored on a○. The
proposed solution is to import the three boxes, where particles 5, 6, 7 and 8 are, from a○ and b○ is
finally able to track particles in these boxes.

With this approach, particle distribution is not changed, as the workload and the distribution of
the mesh and the number and the size of communications is reduced as also the memory occupancy
of external boxes.
The different structures and algorithms to describe a box and to communicate are detailed in the
next section.

72



5.4 Implementation details.

5.4.1 Identification of a subpartition.

BoxID {

unsigned int icontext : 8;

unsigned int igrid : 8;

unsigned int icell : 16;

};

In order to characterize the particle localization in the
structured grid, a special structure is used. This struc-
ture is described in the code snippet on the right. This
structure is a set of three unsigned integers. For the
sake of performance, this structure is aligned to 32
bits. In the case of very large meshes, this structure
can be scaled up in order to represent large number of
boxes and large number of processes.
The structure is composed of three integers that represent the following: icontext is the numeral
representation of the computing mesh, in fact it is possible to launch several meshes and simulations
at the same time. In chapter 7 this element will be used for another usage. The member igrid is
the numeral representation of the mesh partition, this number represents the mesh partition and the
associated structured grid. Icell represents the cell number of the structured grid. As we considered
the cells of the structured grid as independent sub-partitions, this number represents the static loca-
tion of the sub-partition in the mesh partition represented by the structured grid. This is the local
identification of the sub-partition.
By default, the bit representation of the three different components is aligned to 32 bits with the
following representation : icontext and igrid are encoded on 8 bits and icell is encoded on 16 bits.
This representation allows to instantiate up to 511 simulations of 511 partitions each discretized with
131071 boxes each.
In the idea to assign a single partition to a single process, it can be noticed that this representation
only allows 511 processes per context, and so per simulation launched at the same time.
This structure is very important as it allows to identify the box, where particles are probably local-
ized. This structure is obviously accessible from outside the library.

5.4.2 Definition and communication of a subpartition.

So all local particles are localized using the structure BoxID. All processes have the knowledge of
the size of all partitions, this way all processes can determine the BoxID of its particles. As this
approach is a pre-localization step that determines the approximative area of the final computing
cell where the particle is, a particle can be localized in multiple boxes. Figure 5.3 shows an example
case where a particle can be localized in multiple boxes at the same time.

As boxes are localization approximations, particles can be localized in several grids. In figure 5.3,
4 grids are represented NW , NE, SW and SE with 3 particles A, B and C. As we can see, particle
A is only localized in the grid SE, whereas particle B is localized in both NW and NE grids and C
is localized in all grids. As the four grids are structured grids or four sets of boxes, it means that A
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Figure 5.3: Example of a particle localized in multiple boxes.

is localized in a single box, B is possibly in 2 different boxes and C is localized in 4 different boxes.
In addition, boxes also own ghost cells which are duplicated cells imported from other boxes and
other mesh partitions. In other words a particle that is localized in a ghost cell is also localized
in another box. On the other hand, ghost cells are added after the boxes creation. It means that
ghost cells that are added are all situated outside the boxes. So the particle localization step firstly
localizes the particle in a box. It means that a particle localized in a ghost cell can not be localized
in multiple boxes of the same grid but can be in multiple boxes of different remote grids.
The local box number is the .icell member of the BoxID structure.

Once the group of boxes where a particle can be are singled out, they are all received from other
remote memory spaces. As the box is identified with a unique BoxID, the process location is directly
found. The target process then receives the set of needed boxes from all other known processes,
stores them, localizes particles in all the boxes it owns (internal and external boxes) and determines
the unique box and the unique cell for each particle.
In terms of communications, this operation requires 4 communication calls that are resumed in al-
gorithm 6.

The 4 calls consist in communicating the number of required boxes, communicating the BoxID,
receiving the sizes of each boxes in order to store them properly and finally receive the asked boxes.
As we can see, this algorithm needs the communication of messages of variable size to each known
processes due to the communication of the number and the sizes of the boxes. This is highly not rec-
ommended, as some processes may do more communications than others. This is due to the chosen
overlapping structured grid where some cells of the grid may own more data than others especially
where the fluid is mode dense. A dynamic box construction can solve this.
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/* All processes run this algorithm */
/* Requested boxes are sorted in terms of the grid */
for gridi ∈ {grids/processes} do

send(nRbox, gridi);
// Send the number of boxes to recv from gridi
recv(nSbox, gridi);
// Recv the number of boxes to send to gridi

send(RboxId, gridi);
// Send the box ids to recv from gridi
recv(SboxId, gridi);
// Recv the box ids to send to gridi

send(SboxSize, gridi);
// Send the size of boxes to send to gridi
recv(RboxSize, gridi);
// Recv the size of boxes to recv from gridi

send(Sbox, gridi);
// Send the boxes to send to gridi
recv(Rbox, gridi);
// Recv the boxes to recv from gridi

end
Algorithm 6: Communication and exchanges of sub-partitions using Boxes.

As a few number of long message is better recommended in order to reach the maximum rate of
the network, the first communication is not efficient as it exchanges the number of boxes in the next
messages which corresponds to a single integer per exchange.
Another approach is implemented to reduce the number of communication calls and to increase the
size of the messages. The found solution consists in communicating to each process an array of
booleans which indicates true if the box is needed and false otherwise. This way, the number of
needed boxes and the box ids are sent in the same message. This is due to the fact that the size
of the message can be precomputed and is static as all processes have the size of each grid of the
parallel system.
With this algorithm a local process sends to each other process a vector and receives from each
process another vector that contains the needed boxes from other processes. Globally a matrix is
sent and another matrix is received.

The next instruction consists in sending and receiving the boxes and their data to and from other
processes. (see algorithm 7 ).
This algorithm that consists in transmitting an array of booleans can be considered as an adminis-
trative form or a Multiple Choice Question a process has to complete and return to the process to
which he is asking boxes.
A very useful information is the fact that processes store different mesh partitions. It means that a
process can only send boxes it manages and can only receive boxes it does not own. This information
is very helpful for the completion of the form and for communications destinations.
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/* All processes run this algorithm */
for gridi ∈ {grids/processes} do

bool Rarray[nTotalBoxesi] ← {false};
bool Sarray[nTotalBoxesme] ← {false};
for Rboxj do

if Rboxj ∈ gridi then
array[Rboxj.icell] ← false;

end
end
send(Rarray, gridi);
// Send the array of bool to recv from gridi
recv(Sarray, gridi);
// Recv the array of bool to send to gridi

for Sboxj do
if Sarray[j] = true then

send(SboxSizej, gridi);
// Send the size of boxes to send to gridi
send(Sboxj, gridi);
// Send the boxes to send to gridi

end
end
for Rboxj do

if Rboxj = true then
recv(RboxSize, gridi);
// Recv the size of boxes to recv from gridi

recv(Rbox, gridi);
// Recv the boxes to recv from gridi

end
end

end
Algorithm 7: Exchanges of boxes using forms filled by processes.

Now that all processes store all needed boxes to localize local particles, they must be stored in
order to keep boxes that are only needed for the particle movement. In the set of received boxes,
some of them are not used because of the fact that a particle is possibly localized in multiple boxes
or some boxes do not contain any data of the mesh partition.
So a particle is localized in cells of each box with the in-cell test seen earlier in this manuscript. The
returned cell is considered as a unique solution so as soon as the in-cell test is satisfied, the algorithm
stops and goes to the next particle to localize.
When all particles are localized (or not, some particles may be outside the computing mesh), the
boxes that are marked as unused are removed from local memory.

76



Box {

BoxID id;

int nCell, nFace, nVtx;

int cellFace [];

int cellFaceIdx [];

int faceVtx [];

int faceVtxIdx [];

{. . .}

float vtxCoords [dim x nVtx];

float borders[dim x 2]

float flowfield [dim x nCell];

};

A box is identified with the BoxID structure de-
fined in the following and as it is used to represent
a sub-partition of the mesh, it needs data from the
mesh to localize and track particles. The needed data
is defined on the right hand side. A Box contains mul-
tiple object connectivities of cells, faces and vertices
that are used to track particles in any memory space.
This is a condensed mesh data only useful for parti-
cle tracking. No data concerning particles is stored in
this structure. In addition to the mesh data, an array
of floats named flowfield is stored. This array has the
size of dimension × nCell. It represents the vector
field of a cell. The reason is that there are multiple
ways to store physics data in the mesh and also mul-
tiple ways to compute the acceleration vector of a particle. In order not to have to store all of these
data that drastically increases the size of the messages and the final size of stored boxes, the choice
was made to let the flow phase compute alone the vector field and update the final vector field used
to move particles in cells of the mesh. The drawback of this choice is that particles in the same cell
compute the same direction vector from the field. Multiple particles localized in the same computing
cell can have different directions from the field with this approach but it requires to update the vector
field between the computation of two continuous particles. Direction vectors that do not depend on
the flow phase are obviously computed independently.
Because of the MPI library, the data members of this Box structure are condensed into two main ar-
rays data which is an array of bytes that stores all data except nCell, nFace, nVtx and BoxID and an
array dataIdx which is a fixed size array of integers to store the addresses of each structure member.
This the same method to store data that is used that consists in two arrays, one for the data values
and the other to store the data addresses. With this representation, the data access is not harder and
it allows to send the whole structure in a few number of messages independently from the data types.

The update of the flow field can be a very expensive operation as all boxes in the parallel context
and all mesh partition must be updated. This operation is described in the next section.

5.4.3 Optimizations on communications

Communications are very expensive in terms of execution time. As a particle localized in a remote
box, need the data of this remote mesh partition, this box will travel through the network and will be
imported on the local process memory. Such a communication is very expensive as a very important
amount of data is received and no computation on the particle can be started before all data has
arrived.
This part of the particle tracking is known as communication bound problem, it means that the
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performances, the execution time depends on the time of communication. Generally in HPC field
the solutions developed to reduce communication time are:

• reduce the number of communications,

• reduce the size of messages,

• do some work and computations while the data are received.

In our implementation the size and the number of messages can be tuned with the size of a box.
Indeed the smaller are the boxes, the smaller are the messages and the more frequently they are
exchanged. On the other hand, bigger boxes allow the track of particles for a longer time but require
more storing space and bigger messages.
In order to optimize time spent in communications and not waste any time waiting data, some com-
putation can be done during boxes exchanges. These exchanges are done during particle localization
and for this reason the only computation that can overlap communications is the localization of other
lost particles.
To do so, non-blocking communications are used to transfer boxes. Thus, processes do not need to
wait for the communications to be complete to start working. Thanks to the MPI routine MPI_Test
the completion of a MPI communication can be tested. The processes that do not receive all data
frequently test the communication in order to start particle localization. Some particles can be lo-
calized while the data arrive, for example particles that are localized on the local mesh which do not
need to wait for any communication to be complete.
The algorithm is presented in algorithm 8.
During the particle localization, the particles are stored in an array. For each particle the commu-
nications are tested, if the particle is in a box that has been received or that is already stored in
local memory, the particle is localized. If the box has not arrived, the particle is not localized and is
moved to the end of the array. This way the particle will be localized later.

In this algorithm 8, the processes try to localize all particles. Some particles that are located in
the local mesh partition or in an imported box that has already arrived can be localized.
On the other hand, some of the required boxes are not already received, and particles that can not
be localized are moved to the end of the loop in order to try to localize them later.

The advantage is that no time is wasted to wait for boxes and communications to be complete. If
a set of particles can not be localized because of missing data, they are moved in order to be localized
later. It allows to compute particles that do not need to wait for additional data.
On the other hand, a singularity can happen, because of communication failures. If one or more
communications fail for any reason, the algorithm will loop and run out of memory. In a future
work, a watch-dog will be added, a set of tests in order to garanty the robustess of communications.
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/* All processes run this algorithm */
/* Requested boxes are sorted in terms of the grid */
for processi ∈ {grids/processes} do

// Recv the boxes from processi with a non-blocking message.
irecv(nbox, processi);

end

for iparticle ∈ list_of_particles do
/* If the box has been received, the particle can be localized */
if boxiparticle exists then

localize(iparticle);
else

/* If the box has not been received, the particle is added at the end of the list. The
particle will be localized later, at the end */
list_of_particles ←add iparticle;

end
end

Algorithm 8: Receive of Boxes and communication overlap.

5.4.4 Flowfield update

As multiple mesh partitions are exported to other memory spaces, a modified mesh has to be updated
on all these memory spaces. As structural changes in the mesh render the current boxes and grids
out of date, the flow field update operation only considers the changes on the fluid.
This update operation is very simple as it consists in updating the values of local and exported
velocity vectors.
So first, the local vector field is updated, for each local box, the flow field array is modified. In a
second time, the list of outdated boxes have to be determined.

5.4.5 Definition of the grid, the set of local boxes.

Grid {

int igrid; // Same as the BoxID.igrid

int nBox;

float borders[dim x 2];

Box boxes [nBox];

};

We already have seen that the mesh partition is sub-
divided into a fixed number of boxes. These boxes
are arranged as a structured grid in order to have
all local boxes as unique. This way the localiza-
tion of a point in a structured grid has a single so-
lution. The grid is numerically represented on the
right.

We already talked about the parallelization of
this structure and the fact that in order to accel-
erate the particles localization with the BoxID pre-
computation, the data of all grids have to be stored on every memory space of the parallel system.
To be more precise, and now that the Grid is defined, the amount of data that is sent to other
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processes is equal to the sum of the size of igrid, nBox and borders members. It means that the
total amount of the whole problem on each process is equal to :
nGrid× (igrid+ nBox+ borders) + boxes

which corresponds to 2 integers plus 2× dim floats plus the size of local boxes. This is the starting
and minimum memory occupancy of the structures per process. Obviously the memory occupancy
increases as remote boxes are imported to track external particles.
The shared data (igrid, nBox and borders members) is represented in the same way as the Box and
mesh data. An array of bytes stores the three members. The particularity is that because the size
of these members are known and fixed, the address array is not required.
The grid unique number is the .igrid member of the BoxID structure.

We can notice that the range of identification numbers (icontext, igrid and icell) is limited to
the local range of a block. In other words, these numbers represent the local number inside a same
block (inside a single box, inside a single grid or inside a single context). To be more accurate, the
box indentification number is valid in the range of the number of boxes in a single grid, the grid’s
identification number is in the range of the total number of grids inside a single context and finally
the identification number of a context is valid in the range of the total number of existing contexts.
The following definitions summarize the ranges:

ibox ∈ [0, nBoxigrid]

igrid ∈ [0, nGridicontext]

icontext ∈ [0, nContext]

where nBoxigrid corresponds to the number of boxes in the igridth grid, nGridicontext corresponds
to the number of grids in the icontextth context and nContext corresponds to the total number of
existing contexts in the run.

5.5 Acceleration obtained with traveling boxes.

This approach that consists in creating sub-meshes is applied to a parallel particle tracking simula-
tion. In this application, 12.8 millions particles are localized using the structures developed above
and the next position of each particle is computed.
The graph in figure 5.4 gives the speed-up obtained by partitioning local meshes into boxes for the
particle localization phase. In this graph 5.4, the execution time of particle localization is measured
on different number of processes and different number of local boxes. The localization speed-up is
obtained by comparing the execution time of particle localization to show the parallel scaling of
traveling boxes. The speed-up is based on the average time as it has been run with parallelized
processes, 2 different processes can execute particle tracking operations with different efficiencies.
The x axis refers to the number of boxes per local grid. The represented number corresponds to
the number of boxes per dimension. For example the results associated to a structured size of 4
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Figure 5.4: Speed-up obtained using boxes of different sizes on 128 processes.

corresponds to the speed-up obtained with a structured grid of 4 boxes (so 4 structured cells) per
dimension, which corresponds to a total number of 4× 4× 4, so 64 boxes per local grid.
The cross points represent the execution time (the associated speed-up) of particle localization using
multiple sizes of boxes in a sequential run.
The speed-up is calculated by comparing the execution of a parallel run without the use of boxes (that
is equivalent to a single box per local grid) and the same execution with the same number of processes
but with several boxes and grid discretizations. For example the open circles represent the speed-
up of particle localization in multiple grid sizes on 32 cores compared to the execution time with a
single box per process on 32 cores. This is the reason why all curves start with a speed-up of 1(100%).

According to figure 5.4, the more the particle localization is parallelized, the less is the speed-up.
This is due to the growing part occupied by communications. Indeed, the communications are more
important as the number of boxes increases.
On the other hand the use of boxes is very efficient on low number of processes. The use of numerous
boxes is efficient and brings high speed-up for simulations run on 16 processes or less.
The cost of communications become too heavy compared to the acceleration obtained with the use
of boxes starting from 32 cores where the speed-up starts to decrease as the number of boxes per
grid increases.

Speed-up values lower than 1 mean that the localization is more time consuming than the origi-
nal one that do not requires boxes. These values are encountered for parallel runs on more than 64

processes. This is the sign that communications cost more thant the acceleration brought by boxes.
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The interpretation we can do is that if the communications are not optimized, the use of travelling
boxes is efficient for 32 processes or less. This is again a common problem in parallel applications,
especially in parallel particle tracking that is bounded by communication in the case of distributed
and dispersed particles.
Another remark we can make is the fact that the simulations are the same in terms of parameters
and data states. In other words, the same mesh and exactly the same particles are used in this test.
So, the run on different number of processes differs from the parallelization of the mesh (the number
of computing cells per process ), the particle distribution (the number of particles per process) and
also the number of computing cells per box. Thus, in cases of high parallel runs with the maximum
number of boxes per grid, the number of cells per box is the lowest. This has a high consequence in
terms of performances and execution time because it increases the number of box swaps for moving
particles. In fact, as particles move and leave boxes, they have to be localized again in the right box
in order to continue the track computation. This movement requests new communications as the
new boxes to which the particles go must be imported if they are not already stored in local and
accessible memory.

As we are talking about memory, the next figure 5.5 shows the memory occupancy of the run
used in figure 5.4. The memory usage of the application is analyzed compared to the number of
boxes and the number of processes in the parallel run.

Figure 5.5: Memory used by the boxes (intern+imported boxes) per process.

The trend we can figure out is that the more the mesh is discretized, the more the memory per
process is used. This is explained by two different effects: first, a box is a set of cells, faces and
vertices extracted from the original computing mesh partitions. On each mesh partition, a set of
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boxes is initialized in order to share mesh subpartitions with other memory spaces and to accelerate
particle localization in local grids. As boxes contains cells, faces and vertices inside this box and also
ghost cells, a box is slightly heavier than the sum of geometric objects that contain a box. Indeed,
ghost cells are cells that are directly connected to the cells localized inside a box. Thus, ghosts cells
regroup cells, faces, and vertices that are outside of a box that are connected to the geometric objects
inside a box. These ghost cells are cell clones localized in neghbouring boxes. In other words, the size
of ghost cells is added to the size of each box in memory. This is the first reason why the memory
occupancy increases as the number of boxes increases.
On the other hand, the boxes have been implemented in order to send and receive blocks of mesh
partitions instead of entire mesh partitions to localize and track particles. So, the second reason of
this high memory occupancy on massively parallel runs lies in the particles spatial localization. In
the test case, the particles coordinates are randomly initialized in the range of the global computing
mesh. It means that all processes have to localize and track particles initialized in all the partitions
of the mesh. So during the particle localization, all existing boxes of the simulation are received by
all processes and the final memory occupancy corresponds to the maximum possible as all processes
store all mesh partitions. In this condition of particle distribution, the grid structure and the asso-
ciated boxes are completely useless in a massively parallel context.
This second remark also means a lot in terms of performances: first, contigous particles have very
low chances to be localized in the same box, which means that the localization of a set of particles
implies that data of boxes are not reused from one particle to another. There are then lots of cache
misses and page replacements between two particles.

The other observation we can do is that the use of boxes does not improve the efficiency of next
particle movement. This is explained by the fact that the particle movement is computed using
local and targeted data. The required data objects for particle movement are already stored in local
memory and known by the processes. The particle movement computation is then not improved by
the implemented structures.

For technical reasons, a test case with a larger mesh could not be launched because of the too
important memory occupancy per computing node. We believe that performances using traveling
boxes is highly connected to the number of computing data (cells, faces, vertices, ...) in each box. In
other words, depending on the size of the problem, the performance of the cartesian grid is tunable
with the size of a box. In all cases, the tendencies of the performance is always similar, the speed-up
increases until a maximum size of box that corresponds to the mesh partition discretization, that is
to define, and from this adapted box size, the performance decreases as the size of boxes increase on
a limited number of processes. On the other hand, starting from 32 processes, the communications
are too heavy to show high performances in particle localization.
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5.6 Conclusion

The structures developed in this section are used to perform particle tracking on remote memory
spaces. The local mesh is partitioned into a set of boxes that are considered as independent meshes.
These boxes are sent and received from and to other memory spaces in order to track particles stored
on remote memory spaces.
Using boxes that represent partitions of the local mesh partition allows to efficiently distribute par-
ticles through the parallel system. Indeed, particles are distributed in order to balance the workload
(the number of particles to track), regardless of flow field phase computation.

Using sub-partitions such as these boxes improves the particle localization step. Indeed, the lo-
calization time is divided up by almost 100 for 8 parallel processes.
On the other hand, the implementation has no impact on the computation of particle movement.
As this computation is a local operation with data that is already in place, the impact of reducing
partition size is null. In addition, the chosen implementation that uses ghost cells implies a growth
of the memory occupancy. In fact, the more the boxes are small, the more there are ghost cells and
the higher is the memory occupancy.
Another reason why the obtained speed-up does not scale with higher number of processes is the
increase of communications. Indeed, the number of boxes that are exchanged with other processes
increases. This additional fact decreases the parallel performances.

It has to be noticed that the tested case simulates the random creation of particles. It means that
all particles of the simulation are initialized with random coordinates. In this simulation, all cores
own particles that are randomly localized everywhere in the global computing mesh. Localizing and
moving a single particle needs the import of an entire box. This implies that the current distribution
of particles stores the entire computing mesh in the form of boxes on each memory space of the
parallel system. This is shown by the distribution quality of particles 5.4 that is equal to 0.78125%

for every size of boxes which corresponds to the rate of a single partition in the global computation
mesh ( 1

128
). This explains the growth of the memory occupancy.

The particle distribution algorithm used is detailed in the next chapter 6 as a proposed optimization
to organize particles and to gather close data on the same memory space.
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CHAPTER

6

Proposition of an Efficient Particle Distribution
Method.
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6.1 Introduction

The parallelization of particle tracking is similar to any HPC challenge as it depends on the work-
load of the simulation. As we have seen in the graph of tasks, particle tracking parallelization (the
work balance) is defined by the amount of particles to track on each process. It means that the
parallelization of particle tracking highly depends on the particle distribution efficiency. This sec-
tion describes an algorithm to distribute tasks we have chosen and some optimizations in order to
distribute particles and tasks in a parallel context.
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6.2 Particle Distribution on a shared memory machine.

Particle tracking is very easy to parallelize in a shared memory context. The particles are all local-
ized in the same memory device and no communication protocol is needed. In HPC and computer
science the use of these architectures is very often especially today with the concept of accelerators
and GPGPUs used to compute graphics and also more scientific simulations.
So particles can be easily parallelized and distributed over the parallel processes. At the very begin-
ning of this thesis, the test has been made on a single processor of 32 cores, the parallel efficiency
for this test was equal to 93%. This test on a single processor was performed by OpenMP [93, 94].
The conclusion we made at this time is that particle tracking is very efficient in a local parallel
context but there is many cache misses during the run time as data of particles that are contiguous
in memory and continuous in the runtime are far from a particle to another. The local cache is then
constantly renewed and the local data is not reused as much as possible.
To solve this problem and try to bring closer particle data, the idea was to renumber particles ac-
cording to their position and more precisely, according to the Box in which they are localized. To
do so, a bucket sort [95] is used that has a complexity equal to the number of particles to sort. Here
the buckets are the local boxes of the overlapping structured grid.
By applying a sort on particles, sorting them by their box localization, the speed-up obtained is
about 20% on the overall simulation (particle localization + particle movement).
Renumbering particles in order to optimize data reuse, spatial and temporal locality improves the
overall runtime and the sorting algorithm is particularly adapted to the use of boxes to localize par-
ticles. This is a way to keep data close to the core and to reduce temporal locality of data. Sorting
and arranging data on local memory was the premise of our particle distribution algorithm.

6.3 Particle Distribution Algorithm on remote memory spaces.

There are many algorithms in the literature to distribute and balance tasks on a parallel system,
some authors propose multiple algorithms to distribute particles and in general tasks [19, 66]. In
order to distribute particles, we chose an algorithm among them all proposed by O’Brien, Brantley
and Joy named Partner Processor Algorithm. This algorithm consists in iteratively assigning to each
process a partner process. Each process chooses a list of other processes with which it communicates
and balances particles.

The algorithm runs on a parallel system where processes have unbalanced work to do. This
amount of work per process is determined iteratively, the number of iteration depending on the
number of processes. In fact the number of iterations is determined with :

dlog2(nProcs)e (6.1)

where nProcs is the total number of computing processes.
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The work balance is done through several steps, first each process chooses a partner process with
which it will communicate. The selection of the partner is done with the following operation :

rank
(1<<iteration)
myself (6.2)

where rankmyself is the number of the current process, the local process, and iteration is the number
of iteration which is the number of previous partners.
So the idea is to choose iteratively multiple partners and both partners balance their work. The final
result is impressive as the work balance is reached very fast and is very accurate. In fact the final
work balance is perfect.

To better understand the effect of this algorithm an example is presented in figure 6.1. In this

{10}

a

{2}

b

{4}

c

{5}

d

{6} {6} {4} {5}

{5} {6} {5} {5}

Figure 6.1: Distribution of tasks over 4 processes using the Partner Process Algorithm

figure 6.1, 4 processes (a, b, c, d) have a set of 21 particles to track. Because the workload is not
well balanced, particles have to be distributed in order to optimize the parallelization rate of the
application. Before the execution of the distribution algorithm, particles are distributed as this : 10
particles are tracked by process a, 2 particles belong to process b, 4 particles belong to process c
and 5 particles belong to process d. We can figure out that in the end of this example, each process
has to track at least 5 particles. To execute the distribution algorithm, the first step is to choose
a subset of process partners with which a process is going to balance their particles. During the
first iteration, the partners couples formed to balance the workload are {a, b} and {c, d}. After two
iterations (corresponding to two partners to each process), the workload of the entire application is
perfectly balanced.

In this paragraph, we discuss the different advantages and disadvantages of this algorithm to
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distribute tasks over multiple computing units. Let us begin with the pros. The first advantage
of this algorithm is its simplicity to implement it. The complexity of the algorithm remains in the
communications between two processes, this algorithm does not care about communication priorities
and global communications. Indeed, there is no need to share any information on the global network
as any information that has to be shared is communicated to the partner during each iteration. This
gives another advantage of this algorithm that is a reduced and limited number of communications.
The number of communications depends on the number of processes and the number of partners. In
fact the number of communication calls is equal to the number of iterations of the algorithm. The final
advantage of this algorithm is its efficiency. The load-balancing is obtained at up to dlog2(nProcs)e
iterations, where nProcs is the number of processes in the system.

There are some disadvantages coming with this algorithm, the first one is the limitation in the
adaptation with different number of processes. Indeed, the number of processes has to be a power
of 2 in order to select a process partner for each process.

A very important remark to add is that the algorithm has been chosen for its ease of imple-
mentation. The algorithm performances are not studied in this manuscript and is not compared to
other algorithms. The modifications and the different approaches used are applied on this particular
algorithm but this can be applied on every other algorithm to distribute tasks.

6.4 Approach to optimize Particle Distribution Algorithm.

Particles can be easily and efficiently localized with the developed structures and especially with the
BoxID structure. The fact is that a set of random particles has to be localized and moved efficiently
in different times. The first time is to write efficient algorithms to localize and move a single particle.
In a second time these algorithms are used for multiple particles. The fact is that when a particle has
moved and the process goes to the next particle to track, some data can be reused if both continuous
particles are close to each other. In other words, if two particles are close in the environment, local
data have a higher chance to be reused and cache memory has a chance to be reused accelerating
execution time. Thus the particle numerical localization is very important compared to the numerical
localization of other particles in the same memory space.

So now that the main objective is defined as trying to group close particles in the same memory
space, the idea is to modify the distribution algorithm in order to bring closer in memory the data
that is numerically close. To do so, the algorithm is modified in order to take into account the
particle position during the distribution.
The formula used to select a partner process is not modified, neither the number of iteration but
some steps are added before any communication between the both partner processes.
Particles are locally sorted in 5 categories :

• A: particles that are located in the environment of the partner process,
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A B C D E

Send first

Priority ++

Figure 6.2: Array of particles to send to partner.

• B: particles that are located in one future partner of the current partner process,

• C: unlocalized particles ( 6∈ {A ∪B ∪D ∪ E}),

• D: particles that are in a future partners of the current process,

• E: particles that are in current process.

So the modification of the particle distribution algorithm is made in 5 important steps that have
to be executed in the right order :

1. send particles that are located in the environment of the partner process,

2. send particles that are located in one future partner of the current partner process,

3. send unlocalized particles,

4. send particles that are in a future partners of the current process,

5. send local particles.

The general idea is that particles closest to the local process are sent the latest. The figure 6.2
represents the array of particles that have to be sent with the priorities. As the A category represent
the category with the highest priority and E with the lowest one, particles that are categorized with
the highest priority are sent first to the current partner.

Obviously, the sending priorities are locally computed as all process can localize particles in any
grid of the simulation, compute the list of partners of all processes and so determine the category of
each particle. The modified algorithm is detailed in algorithm 9.

In order to make it clearer, the example presented in the previous section concerning 4 unbalanced
processes is modified and sketched in figure 6.3.

In this figure 6.3, 4 processes (a, b, c, d) have a set of 21 particles to track. Here, the patterns
represent the particles localization, for example all particles managed by process d are localized in
the mesh partition and the associated grid stored and managed by process c. Because the workload
is not well balanced, particles have to be distributed in order to optimize the parallelization rate of
the application.
The context and the problem are the same as the example presented in the previous section : 10
particles are tracked by process a, 2 particles belong to process b, 4 particles belong to process c and
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begin
list_partners[dlog2(nProcs)e];
for ipartner < dlog2(nProcs)e do

list_partners[ipartner] ← rank
(1<<iteration)
myself ;

end
for each ipartner ∈ list_partners[] do

box_ids ← localise_particles(particles);
nideal ← nlocal+npartner

2
;

exchange(nlocal, npartner, ipartner);

int categories[5];
for each iparticle ∈ list_particles[] do

if (iparticle ∈ A) /* Send particles localized in A catgory */
categories[0] ←addiparticle;

else if (iparticle ∈ B) /* Send particles localized in B catgory */
categories[1] ←addiparticle;

else if (iparticle ∈ C) /* Send particles localized in C catgory */
categories[2] ←addiparticle;

else if (iparticle ∈ D) /* Send particles localized in D catgory */
categories[3] ←addiparticle;

else if (iparticle ∈ E) /* Send particles localized in E catgory */
categories[4] ←addiparticle;

end
/* Send/receives particles to/from partner */
send (categories, ipartner);
recv (particles, ipartner)

end
end

Algorithm 9: Modified Particle Distribution Algorithm.
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Figure 6.3: Distribution of tasks over 4 processes using the modified Partner Process Algorithm that
takes into account the particles localization in grids.

5 particles belong to process d.
The difference lies in the objective to send particles with different priorities. At the start of the
algorithm, the particles localization is distributed in the memory of the process in this way a : 3

particles are localized in the process a, 2 particles are localized in process d and 5 particles are
localized in process b. All other particles stored in the memory of other processes are localized in
the mesh partition stored in process c.
At the end of the algorithm’s execution, the particles distribution is perfectly balanced again and
the localization has been taken into account.
The figure also shows a limit to the current algorithm :process a owns all particles localized in process
d whereas this process d does not store any particle that can be localized in its local mesh partition.
This is explained by the fact that a and d did not communicate during the execution. On the other
hand, the limit can be fixed in this example by applying the additional step of our future work
that consists in sending as a second priority particles that are localized in the future partners of the
current partner.
In this example, during the first iteration, a sends in priority the particles localized in b and, as
process d is one of the future partner of b, a sends in a second time particles localized in the grid of
d instead of receiving particles from b that are localized in c.

In this paragraph, we discuss the different advantages and disadvantages of this algorithm to
distribute tasks over multiple computing units. Let us begin with the pros. The first advantage
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of this algorithm is its simplicity to implement it. The complexity of the algorithm remains in the
communications between two processes, this algorithm does not care about communication priorities
and global communications. Indeed, there is no need to share any information on the global network
as any information that has to be shared is communicated to the partner during each iteration. This
gives another advantage of this algorithm that is a reduced and limited number of communications.
The number of communications depends on the number of processes and the number of partners. In
fact the number of communication calls is equal to the number of iterations of the algorithm. The final
advantage of this algorithm is its efficiency. The load-balancing is obtained at up to dlog2(nProcs)e
iterations, where nProcs is the number of processes in the system.

There are some disadvantages coming with this algorithm, the first one is the limitation in the
adaptation with different number of processes. Indeed, the number of processes has to be a power
of 2 in order to select a process partner for each process.
The second disadvantage is the fact that all processes do not communicate. It means that some
particles are not sent to the right process, in the process they are localized. This is the case of
processes a and d.

6.5 Acceleration obtained with our distribution algorithm.

The different modifications we implemented in order to distribute particles compared to their local-
ization give in theory a better distribution quality and a better data proximity. This improves the
execution time of multiple operations of particle tracking.

Figure 6.4 shows the speed-up obtained by tracking 64 millions particles in a mesh with a total
of 1.728 million cells with a 4 × 4 × 4 overlapping cartesian grid on each mesh partition. This test
case has been experimented on several number of processes and the results are presented in our
previous proceeding paper of the High Performance Computing Symposium [96]. The chart shows
that the particle localization and the computation of the particle’s next position are from 50% to
almost 150% faster than the original particle distribution. We remember that the difference with our
algorithm is that our algorithm takes into account the particle’s localization and generates a priority
rank compared to the other particles in order to decide to send it or not.
It is important to notice that the obtained speed-up is high because of the memory occupancy of
the application. Ideed, during this run, the original distribution algorithm that distributes particles
regardles of their localization, randomly dispatched the particles and brought the situation where all
processes need to track particles located in all the mesh. This situation implies that all processes
need data of all the partitioned mesh and after the particle localization phase, all processes store a
copy of the entire mesh and of all mesh partitions.
With the number of data used for this run, we noticed that some of the nodes use the swap memory
that has slower data access. So the speed-up obtained in this test is mainly due to the current
machine memory that can not store all the data on all its node.
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Figure 6.4: Speedup obtained on particle localization, distribution and particle movement.

So the first conclusion we can figure out is that our algorithm saves a lot of memory as particles
localized in the local boxes are sent with the very last priority. Processes keep particles that are close
to the local mesh and do not require to receive additional boxes from remote processes.
In order to observe the speed-up obtained without the influence of memory capacity of weaker nodes,
the problem size has been reduced.

The following charts show the speed-up for distribution quality, the obtained speed-up to localise
particles, the speed-up obtained for movement computation and on the memory occupancy. The
initial particles are stored in the memory of the first process of the system. Again, the particles are
initialized with random coordinates in the range of the global mesh with random initial direction
and velocity vectors.
The computing mesh is made of 1 million cells and 12.8 millions of particles are followed for a single
time step. It means that a single call to particle distribution is done and that particles are localized
and move only once. The speed-ups of the 2 operations (particle localization and particle movement)
as the gains obtained on distribution quality and memory occupancy on different number of proces-
sors are shown in figure 6.6.

According to these charts of figure 6.6, the particle distribution algorithm helps to improve per-
formances of particle localization, particle movement computation and the memory occupancy as the
distribution quality. Indeed, our particle distribution algorithm that takes into account the particle
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a) Localization b) Movement
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Figure 6.5: Speed-up obtained by distributing particles with the modified algorithm

localization before sending a particle to another process, decreases the execution time to localize
particles.

The obtained speed-up are lower than the speed-up obtained with larger mesh and more particles
because of the memory occupancy of the original algorithm. In fact, our modifications saved more
than 130% of memory occupancy ( 6.6.d). On the other hand, the more there are processes in the
run, the less is the speed-up obtained concerning memory occupancy. To summarize the speed-up
reported on figure 6.6, the localization speed-up is obtained with 32 processes and a grid size of 6, the
particle movement computation get 15% of acceleration with 32 and 64 processes and no cartesian
grid, the best memory save is obtained with the most discretized grid and 16 processes, and finally,
the distribution quality is the best for 32 and 64 processes.
It can be noticed that the speed-up obtained on 128 processes are not the worst but the speed-up
seem to decrease as the number of processes increases. Globally, the distribution algorithm is more
efficient on an average of 32 processes.
The particle movement phase is accelerated because the particle distribution algorithm implicitly does
a sort on particles according to their position. Indeed, particles in the same grid will be gathered and
sent together. This sort is not doing enough to sort particles according to their box, so contiguous
particles are not necessary localized in the same box. This is why the obtained speed-up are low but
observable.
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The reason why the best perfomances are obtained for a limited number of processes is because of
the original algorithm. As the chosen algorithm iteratively deals with pairs of processes and because
a process does not encounter all other processes in this algorithm, some particles are never placed in
the right memory device.
A workaround can be to implement another distribution algorithm or increase the number of part-
ners in order to make each process be the partner of every other partner. A round robin shuffle can
determine such a list of partners.

As a reminder, the particles in this test are all initialized in the memory of the first awakened
process and coordinates are randomly initialized using a pseudo random generator with a discrete
distribution. In other words, a particle have a constant chance to be localized in any box. So the
particles are equally distributed in space. The consequence of this fact is that the first rank well
distributes the particles to the partners it encounters.
In addition, the other ranks that do not have any particle to share at the begining, skip the first
partners because of this lack of particles to send and receive. For these two reasons, this test can be
considered as false or guided.
In order to observe the particle distribution in a different situation, during the next test case the par-
ticles are distributed using the original algorithm is order to randomly distribute data on processes.
Then our algorithm is called.

Figure 6.6 shows the same graphics as the previous case, that represent the speed-up obtained on
particle localization, particle movement the distribution quality and the average memory occupancy.

According to these new tests, the best accelerations are obtained with low number of processes
and high number of boxes. Our particle distribution brings 30% of speed-up on distribution quality
that reverberates on particle localization and memory occupancy.
On the other hand, the particle movement computation is no longer impacted according to the values
of figure 6.6.

The obtained speed-ups are very low compared to the previous tests because of the starting par-
ticle distribution. As particles are equally distributed on processes and randomly initialized, each
process has the same amount of particles located in all the mesh. Calling our distribution algorithm
is equivalent to improving a little the particle distribution law.
Again, the distribution improvement is limited by the distribution method that consists in selecting
a subset of partners with which the particles are shared.
According to the particle distribution algorithm, some particles are not sent to the right processes and
are used to complete the work balance corresponding to the number of particles. For this reason, the
distribution quality is lower and directly impacts the other operations especially on a high number
of processes as the number of process partners is not linear compared to the total number of processes.
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Figure 6.6: Speed-up obtained by distributing particles with the modified algorithm
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Our conclusion with this final test is that our algorithm still improves particle distribution but
is limited to the number of processes in the entire system because of the partners selection method.
One workaround that consists in changing the partner selection method of the distribution algorithm
can improve the quality distribution.

6.6 Conclusion

This chapter reveals an approach and its good performances on the execution time and on mem-
ory occupancy of the whole particle tracking solver. The modifications we brought to the original
algorithm show the importance of keeping close data near to the core where they are. Taking into
account some data proximity has multiple effects and positive impacts at different steps of the ap-
plication: it reduces the number of communications which highly impacts the localization execution
time, it increases the proximity of particles reducing the temporal and spatial locality of data during
the movement of particles, and it reduces the memory occupancy on each process as the number of
imported boxes.
On the other hand, the time required to distribute particles obviously increases as the modifications
added instructions to the original algorithm.
The other conclusion we can make is the accuracy of the distribution quality metric. This metric
represent the percentage of imported mesh parts on a process. As the quality increases, the perfor-
mances also increases with the same tendencies. It means that this quality is quite useful and gives
an idea of performances.

As shown in the results, as the number of processes increases, the distribution quality decreases
and is close to the original algorithm for a run on 128 processes.
It means that the algorithm is not adapted for a high number of processes if we continue the particle
localization and data affinity. This is an often encountered problem, when a parallel algorithm is
efficient on a limited and reduced number of processes. Our simple approach to improve the particle
distribution, detailed in the next chapter solves this problem by adapting a reduced environment in
order to execute efficient algorithms in a close to ideal environment and case. In other words, the
algorithms are executed in an encapsulated range of data close to an ideal case.
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CHAPTER

7

Algorithm Adaptation to Large Parallel Systems.
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7.1 Introduction

Many parallel algorithms have difficulties to scale to a large number of processes. This is generally
due to the growing cost of communications. Many papers and studies have the objective to try to
scale up an application for a maximum number of processes or a modern architecture and particle
tracking is by far not an exception.
In fact, our implementation also shows communication difficulties in the previous chapter
The problem with particle tracking (and with several other parallelized problems especially data
parallelism) is that the more the simulation is parallelized, the more the network is occupied by ad-
ditional processes. The risk is then that communications occupy more space in the whole execution
time. There are many techniques to accelerate parallelized applications and to maximize the involved
speed-up. The main idea is in general to reduce the size of communications so as not to invade the
network or to pack data in order to reduce the number of communications.
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The fact is that in our library, ParOPTIC, the particle localization is the most expensive operation
and the more the processes , the less the localization phase scales. The difficulty to scale is also found
in the distribution method of the particles. Indeed, the developed algorithm quickly looses interest
as it gives an interesting distribution only up to 16 processes.
We have two important algorithms that give very good results for a limited number of processes. In
order to scale up to higher number of processes, we developed an approach that consists in reducing
the number of processes and isolate them instead of finding and optimizing other algorithms that
have better performances on higher number of processes. This way, we can approach the ideal case
for an algorithm.

The next sections introduce this concept, giving some implementations for the particle localiza-
tion and distribution and give general results obtained with this approach. As particle movement and
face/ray impacts are only computed with local data, there is no need to adapt this part of particle
tracking work flow.

7.2 Approach to adapt an efficient algorithm to large HPC

systems.

The concept is very simple and has already been used by some researchers, the main idea is to regroup
processes into smaller and more adapted groups than the global one formed with the processes of
the entire system.
The concept can be compared to modern architectures of workstations as a group of processes
corresponds to the processes located in a single NUMA node and the parallelization is adapted
to each of these nodes. Each group, or node communicates with the others in range. The size of
these groups are determined in order to complete a specific task. For example and in our study of
particle tracking, the implemented particle distribution algorithm works for a number of processes
equal to a power of 2. It means that the number of processes within a single group has to be a power
of 2 to distribute particles in the same group. The figure 7.1 shows the concept in a sketch.

1(1) 2(2) k(1) k + 1(2) n− 1(1) n(2)

G1 Gi Gp

Figure 7.1: Gi is the ith group composed with 2 processes. The first number is the global rank or id
of the process from 1 to N , the second number between parentheses is the process local rank in the
group.

In figure 7.1, decorated boxes represent a process in the global system. These processes are as-
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signed to a list of operations. A total of n processes has to be distributed into p groups. In this
example all groups own 2 processes. The dashed arrows represent the communications, the possible
data flows between groups and the dense arrows represent the priority communications inside a single
group including collective communications.
All processes of the same group execute the same instructions and multiple groups can execute the
same instructions set. That is why two groups can communicate with each other. The way in which
groups communicate is based on point to point communications. In other words, a set of groups can
not communicate with collective communications. But an algorithm has been developed in order
to allow collective communications between two groups. This is done thanks to group unions. A
temporary group is created when two groups are initiating communications. This new group is the
union of both communicating original groups. That way, the processes of both communicating groups
can communicate with the same protocol and are able to use collective communications. When the
communication operation is done between two groups, the temporary group is deleted.
The figure 7.2 gives an example of this temporary group. Gi and Gj are two groups that are composed

Gi Gj

Gtmp

idomain1

idomain2

idomain3

idomain4

idomain1

idomain2

idomain3

idomain4

Figure 7.2: Gtmp is the temporary group composed with 2 groups Gi and Gj. Gi and Gj are formed
with 4 processes each, so Gtmp allows these processes to communicate.

with 4 processes each. Each group, Gi and Gj, can distribute particles between the process inside
the group. For example, the processes in group Gi, can distribute particles with the other processes
inside Gi. This permit the processes inside a single group to maximize the distribution quality. But
as all the groups do not track the same number of particles, groups also have to communicate and
distribute particles with each other. To do so, Gtmp is temporary group formed with all processes
of two groups, then all processes can distribute particles with all others within the global parallel
context.
In the figure 7.2, the communications and the partner processes of the first process of Gi are shown.
According to the implemented distribution algorithm, the total number of processes becomes 8 in
Gtmp group and the distribution is executed.
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The groups can theoretically be formed according to several qualities like the hardware proximity
of processes, CPUs and accelerators, like the numerical proximity of stored data, or like any reorder-
ing function. This is theoretical, no group arrangement has been tested yet, but it can be done in an
additional study. We believe that cache usage and memory proximity can be optimized using groups
management.
In the same way all tested groups execute the same instructions sets. The groups are theoretically
shaped to execute different instructions but no tests have been done at this moment.

For the next sections, groups are used to optimize localization phase and particle distribution.

7.3 Adaptation of Particle Localization

In this section, communication groups are used in order to optimize the particle localization oper-
ation. As a reminder, localizing a particle is the most expensive operation of the particle tracking
and has been optimized to accelerate the execution. First we have chosen an algorithm efficient for
any shape of the cell. In a second time, the number of candidate cells is reduced by selecting cells
that own the nearest vertex of the particle. Then this nearest vertex is selected from a reduced
number of candidate vertices by localizing the particle in an overlapping structured grid. Given that
a structured grid describes a local mesh partition, a particle can be localized by finding the possible
structured grids. Indeed, a particle can only be localized in a single cell of the computing mesh but
this cell can be owned by multiple structured grids as these structured grids include ghost cells. This
way, a particle can be localized in multiple structured grids.
To be brief, this first check that consists in testing if a particle is localized inside a structured grid,
has an average complexity of O(n) where n is the total number of structured grids. This is due to
the fact that all structured grids have to be checked in order to test all mesh partition candidates
where the particle can be. This complexity is linear but can be reduced by grouping processes and
their mesh partitions. Indeed this complexity can become close to O(log(n)).
Applied to parallel particle tracking with our implementation this is completely different as particles
can be localized in multiple mesh partitions. For this reason, all groups and all mesh partitions have
to be checked. It means that for the particular case of particle tracking, the particle localization is
always in the worst case. So the complexity is always of O(n) for both approaches.

Modelisation of the group concept was very easy to implement for particle localization. We earlier
introduced an internal data structure in order to identify a particle localization with a 32 bits sized
object. The group id is added to this structure and the size of other members is managed. This new
structure is described in figure 7.3.

In this structure presented in figure 7.3, the igroup member is the identity of the group, igrid
represents the identity of the grid or the process within the igroupth group and icell is the number
of the cell in igridth structured grid. Just for the record, the maximum number of groups with this
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BoxID {
unsigned int igroup : 8;
unsigned int igrid : 8;
unsigned int ibox : 16;

}

Figure 7.3: Members of the data structure BoxID that implements the identification of a cell in an
overlapping structured grid.

implementation on 32 bits is 511, as the maximum number of grid/processes per group. The max-
imum number of cells per grid is then 131071 cells, this can be reached with a 3D cubic grid of 50
cells per dimension. This is the default configuration, and can be adapted to a particular simulation.

Algorithm 10 presents the adapted algorithm to localize particles in a set of mesh partitions
gathered in multiple groups.

for i from 0 ngroups do
if particle ∈ groupi then

for j from 0 ngrid[groupi] do
if particle ∈ gridj then

particle is localized in a structured cell of gridj in groupi;
end

end
end

end
Algorithm 10: Particle Localization using process groups.

Compared to the original algorithm which consists in determining the grid where the particle is
localized and then the box inside this grid, this adaptation has an additional external loop and an
additional condition statement in order to localize particles in the borders of groups (sets of grids).
On the other hand, the loop ranges are reduced. But as we noticed earlier, the grids all have to be
checked to localize particles. This renders the complexity of both approaches equal to the worst case.
In terms of execution time, the cost of the additional condition statement is added to the original
algorithm.

Figure 7.4 presents the comparison of execution time with a single group of 128 grids, and multiple
groups of 2, 4, 8, 16, 32, 64 and 128 grids each. The test is configured for 1 grid per process and
localizes a set of 12 millions particles. The case of 128 processes in the same group corresponds to
the case where no groups are used. Indeed if all processes and the associated grids are in the same
group, no communication and operations between groups are called.

Figure 7.4 shows that the number of groups and the size of each group do not impact the execution
time of particle localization. This is explained by the fact that the complexity does not change, all
grids from all groups have to be checked as a particle can be localized in several grids as in several
groups.
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Figure 7.4: Execution Time to localize 12 millions particles. The localization operation is run in
parallel on 128 processes. Some processes are gathered into groups depending on the size of a group.

7.4 Adaptation of Particle Distribution

The distribution algorithm we implemented and customized gives a high speed-up on localization
operations. It means that the particle localization has an impact as it determines the number of
communications needed to localize particles and the spacial and temporal locality of mesh data.
As we have noticed earlier, the quality of particle distribution becomes worse as the number of
processes grows. In fact, it was revealed that the number of processes corresponding to the peak
of distribution quality (and the highest speed-up obtained for particle localization and movement
phases) is from 2 processes to 16 processes. For a number of processes higher than 16, the distri-
bution quality and corresponding speed-up decrease drastically until being as efficient as a standard
distribution run.
Grouping processes and executing efficient algorithm on reduced numbers of processes can make the
algorithm efficient and scalable on massively parallel systems with large number of processes. As the
original algorithm requires a specific number of processes that has to be a power of 2, the groups are
created in order to satisfy this constraint.

The adapted and modified algorithm is explained in 11.
This adaptation 11 is very simple to implement and shows that any algorithm can be easily

adapted this way. The same distribution algorithm is executed with processes owned by the both
groups Glocal and Gi at each iteration. This means that the sum of processes in Glocal and Gi must
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for Gi 6= Glocal do
Gtmp ← Glocal ∪Gi;
distribute_particles(Gtmp);

end
Algorithm 11: Algorithm to distribute particles on multiple groups. A pair of groups is formed
and their context is unified, the distribution is executed on the process members of the couple.

be equal to a power of 2 for this particular case.

In order to create pairs of group, the algorithm of particle distribution has been chosen: a group
selects a partner group iteratively in order to unify the processes involved and distribute particles
with the implemented and modified algorithm. There are two main advantages: the pairs are formed
in parallel, there is no concurrency between groups when partners are selected and the second ad-
vantage is the efficiency of the convergence, indeed because not all groups are visited, the number of
iteration and the number of partners are reduced.
On the other hand, the disadvantages of the distribution algorithm appears because the number of
groups must be a power of 2 and as a reduced number of groups are visited, it impacts the accuracy
of the particle distribution quality.
Another method of partner selection can be implemented and perform better efficiency, but the gen-
eral idea of process grouping in order to reduce large problems to the resolution of multiple smaller
cases still remains and is appropriate.

Figure 7.5 gives the efficiency, obtained with the adaptation of the distribution algorithm accord-
ing to the number of processes per group with a total number of 128 processes. The execution times
are compared to the same execution with all processes gathered in a single group.

Results presented in figure 7.5 show multiple remarks : first, it confirms the previous conclusions
that the distribution algorithm is very efficient in a limited range of number of processes. The
performances (execution time and memory occupancy) decrease as the number of processes per
group increases. The exception is the execution time of distribution operation, indeed, the more
processes are in a group, the less is the execution time to distribute particles. This is due to the
number of iteration of the distribution algorithm which is logarithmic. Iterating the algorithm on
twice the number of processes converges faster than the sum of two groups iterations.
Another thing that can be noticed is that the peak is reached for 8 processes (16 groups of 8 processes
each). This confirms previous observations.
If we compare these results with those presented previously, we can also notice that the performances
are not as good as expected. In fact, the study of the distribution quality explained this lack of
efficiency (figure 7.6).

Figure 7.6 presents the average quality of the particle distribution of the same run with a total of
128 processes dispatched into 1 to 128 groups. The quality gives back the trend shown by the study
of efficiencies in figure 7.5. The distribution quality is quite related to the computing performances
of particle tracking. In this case, the average quality is shown but in reality, the quality distribution
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Figure 7.5: Speed-up of operations and quantities with groups of multiple sizes. The speedup are
compared to the performances of the group created with 128 processes.

of each process is not well distributed. One can have an excellent particle distribution with a quality
distribution of 100% (so all mesh data are local data, no communication is needed), and another
can have a very bad particle distribution and receive dispatched particles as its distribution quality
criterion can be less than 5%. This is again related to the chosen algorithm that makes the processes
visit a limited number of partners.

The algorithm 11 shows that the approach encapsulates both groups that balance their particles.
As both groups have particles not localized in this encapsulated temporary group, particles that do
not remain in one process in the group are randomly dispatched instead of being organized to be
sent to future partner groups.
The structural reason is that the work flow is based on the local shape of a group and does not take
into account other groups. A workaround can be to pre-compute future partner groups and add these
future groups and the underlying processes to the list of future partners, so that particles localized
in these future partners will not be sent in priority. This workaround has not been tested during the
writing of this manuscript but can be a future work in order to improve the library.

7.5 Conclusion

The approach that consists in creating groups of processes has been implemented and shows in the
case of the distribution algorithm fast improvements. The implementation was quite simple and
allows to easily adapt an algorithm not shaped for large number of processes.

Many tests remain to be done, for example the optimization of the distribution algorithm that is
still a particular case applied to this approach. Other tests to be done that could show more general
interests are the different strategies to manage groups like renumbering processes in groups, grouping
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Figure 7.6: Distribution quality with groups of multiple sizes.

criteria groups balance and heterogeneity.
These tests are not done at this moment but a priority strategy to form groups, for the particular case
of particle tracking, can be grouping processes that are numerically close. In other words, processes
that own close particles and close mesh data are gathered in the same group in priority. Another
strategy that can be adapted for particle tracking is the grouping of processes close in the hardware.
This way processes of the same socket or with the same memory controller are regrouped together.
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CHAPTER

8

Evaluation of the particle tracking library.
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8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.1 Test implementation and machines specifications.

Performances of the distribution algorithm are measured with the execution time of a parallel parti-
cle tracking simulation. Particle coordinates and their direction vectors are randomly initialized on
process of rank 0, which means that all other processes have no particles to track at the beginning
of the simulation. The mesh represents a three-dimensional cube discretized with cubic cells. Two
situations are evaluated, the first test case measures the performances on re-injected particles. Dur-
ing this case, particles that come out of the global mesh are removed from the simulation and the
same number of particles are randomly created in the same simulation, in the memory of the same
process. The second test case measures the performances when leaving particles are not replaced.
Particles leaving the simulation’s mesh are simply removed and not tracked anymore. So the number
of particles decreases according to the time steps.
The reason why particles and their velocity are randomly initialized is because we thought that
having lot of particles in the same area as this is a particular case which is very efficient with any
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approach. We want to simulate general cases where particles localization is undetermined and where
the cache efficiency is undetermined and can be optimized.

The cube’s dimension is 100× 100× 100 cubic cells for a total of 1.000.000 cells. The dimensions
of the overlapping structured grid used to manage traveling boxes are fixed to a cube of 4 boxes each
side. It means that the grid is formed with 64 boxes per process.
In order to perform particle distribution, all particles are initialized in a single process, the first one.
All other processes do not own any particle to track. This garantees the correct balance of particle
distribution in terms of work balancing.

To move the particles, we choose to set a number of time steps represented by the particle/face
intersection computation. Each time step, the particles move to the intersection point on the face
of the cell the particle is crossing. Performances are measured on the same problem size which
corresponds to the track of 12, 8 millions particles and on different number of processes. The more
processes there are, the more particles and mesh are distributed on cores.
Table 8.1 summarize characteristics of the used nodes.

Node Number of cores CPU Model Clock Speed (GHz) Local Memory (Go)
1 12 Xeon X5670 2.93 48
2 12 Xeon X5670 2.93 36
3 12 Xeon X5670 2.93 36
4 12 Xeon X5670 2.93 36
5 12 Xeon X5670 2.93 36
6 12 Xeon X5670 2.93 36
7 24 AMD Opteron 6168 1.9 32
8 24 AMD Opteron 6168 1.9 32
9 32 AMD Opteron 6274 2.2 32

Table 8.1: Characteristics of computing nodes used during tests.

The distribution step is done a single time before any particle movement. This allows us to com-
ment the distribution quality at each time steps and perhaps determine when a particle distribution
can be called again to balance the workload.

To perform communications we used Message Passing Interface(MPI) on all cores initializing one
MPI thread per physical thread. The machine is a set of heterogeneous nodes with different number
of cores, different type of processors and different memory sizes. These nodes are connected to a
single switch. This topology corresponds to a star network. The network uses gigabit ethernet tech-
nologies. The tests are run with a total of 128 MPI processes, one process per core.
The main goal of these tests is to evaluate the performances of the particle tracking library and
particle distribution by studying the evolution of distribution quality for moving particles.
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8.2 Parallel Reusability of the components.

A large part of this study is to use efficient software engineering techniques to develop a maintainable,
easy to use and reusable in parallel and sequential contexts.
We can summarize the different blocks and structures that define the particle tracking implementa-
tion to prove and evaluate the code reusability and the library architecture efficiency.
The first chapter that treats algorithms and implementation details is chapter 4. This chapter details
sequential algorithms used to solve general Lagrangian particle tracking. These algorithms are sum-
marized in two operations: particle localization and particle next position computation. For both
operations, the same algorithm is used that consists in using face-ray intersections, first to determine
the particle localization compared to a polyhedron and then to compute the next interaction between
the particle and the mesh.
In addition, a data structure which is an overlapping cartesian grid, is introduced in order to accel-
erate particle localization.
The chapter 5 talks about the techniques used to export mesh data to remote memory spaces and
then parallelize particle tracking resolution. To do so, the previous cartesian grid is used and each
cell of this grid is expressed as independant mesh partitions. Thus, the same data structures are used
to localize particles in sequential computations and also used to communicate and export data to
remote memory spaces. So the same data structures and the same operations are used in sequential
and parallel contexts to localise and move particles.
This reusability is mainly due to the Lagrangian point of view of particle tracking.
The last approach is developped in order to adapt non scaling methods and algorithm that encounter
difficulties to be parallelized. This approach consists in grouping processes in multiple encapsulated
groups able to execute a set of instructions. This approach highly depends on the reusability of oper-
ations as the same instructions can be executed in a large group of processes as in a group containing
a single process.

A lot of efforts have been made to reuse the same instructions in sequential as in parallel runs
and these efforts participate in the maintainability and the upgrade of the library. In addition of the
high reusability of methods, the component-based structure of the software allows to separate these
methods and improve the reusability of these methods independently to the problem’s nature.

8.3 Particle tracking with reinjected particles.

This test case treats moving particles during 50 time steps with re-injected particles. It means that
particles that come out of the computing mesh are re-injected in the same memory space of the lost
particle but with a random velocity and random coordinates. The new injected particles have to be
localized.
Figure 8.1 illustrates the evolution of particle distribution quality at each time steps.
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Figure 8.1: Distribution Quality for moving and re-injected particles.

The presented results in figure 8.1 include the distribution quality for a fixed grid size. The
structured grid size is fixed to 4 boxes per dimension.
As shown in figure 8.1, the distribution quality decreases rapidly with the first iterations but begins
to decrease slowly and continuously around the 20th iteration for groups of size 2, 4 and 8 processes
(sizes that correspond to the ideal number of processes where the distribution algorithm is the most
efficient).
As a reminder groups distribute their particles by iterations and each iteration partner groups (groups
that are going to balance particles), a new group is formed as a result of the union of the two partner
groups. This transitory group then contains the sum of processes of the two original groups. Thus,
the particle distribution of two groups of size 2 corresponds to the distribution of particles of 4 pro-
cesses, as the particle distribution of groups of size 8 corresponds to the particle distribution of 16
processes.
This is due to the random initialization of new particles and the movement of particles already
tracked. Indeed, new particles have equal chance to be localized in the local mesh than in another
remote mesh partition. In addition, some external particles move from a remote mesh partition to
the local one, which balances the quality loss generated by lost particles and by particles moving to
a remote mesh partition.
More generally, the distribution quality decreases as iterations increase and converge to the minimal
distribution quality that corresponds to the distribution quality generated by the non modified al-
gorithm (in the case of 128 mesh partitions, the minimal quality is equal to 1

128
).

This effect is illustrated by group sizes that are unadapted to the distribution algorithm: the distri-
bution quality stays low or slowly converges to this minimal limit.
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8.4 Particle tracking with deleted particles.

This test treats moving particles during 50 time steps with removed particles. Particles that come
out of the computing mesh are removed from the simulation and not replaced.
The main goal is to see the evolution of distribution quality when particles are removed from the
simulation.
The figure 8.2 illustrates the particle distribution quality at each time steps.

Figure 8.2: Distribution Quality for moving and deleted particles.

Statistically, the distribution quality does not strongly change as processes have the same chances
to have a set of particles that leaves the simulation.
If lost particles are removed from the simulation, the distribution quality evolves interestingly: the
quality decreases as observed in the case of re-injected particles, but instead of continuously decreas-
ing in order to converge to the minimal quality, it increases starting from the 20th iteration again.
This observation can be made for all sizes of groups, but the increase is more noticeable for groups
of ideal size which correspond to groups of 2, 4 and 8 processes and for the smallest one, a group
formed with a single process.
Our assumption is that removed particles participate in deleting imported boxes which increases the
distribution quality.
Indeed, as the number of particles slowly decreases, around the 20th iteration the remaining particles
do not require as much boxes as at the begining of the run. The less there is remaining particles, the
less the processes require external boxes.
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8.5 Conclusion

The two test cases illustrate two cases often encountered in particle tracking simulations : some par-
ticles may leave the simulation by being deposed on a wall for example and some other may appear
during the runtime in the case of fuel droplets continuously injected for example.
The two examples try to simulate general cases where sets of particles are injected and removed
during the simulation.

These examples demonstrate that the distribution quality decreases as time goes by when the
number of particles does not change drastically and is very impacted in cases where the number of
droplets changes.
The idea is then to adapt the frequency of distribution calls in order to balance the particle distri-
bution in the case of unbalanced processes when particles are removed from the simulation and in
order to optimize the particle localization in memory.
More various tests have to be run because the two current examples illustrate the evolution of dis-
tribution quality in terms of data proximity. Indeed, this metric does not show the particle balance,
the evolution of number of particles to track per process.
This metric, the distribution quality must also be combined with the number of particles per process.
in order to represent more accurately the quality of work distribution of a simulation.

Other tests can be run, which for example show the evolution of the particle number distribution
in the case of particles that are injected in the memory of a single process. In this case, the work
slowly decreases as the injected particles are initialized in a single process. On the other hand, the
current distribution quality that only shows the particle proximity to the mesh data, will increase
for the same reasons encountered in our second test case: the particles are too few to request high
number of external boxes.
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CHAPTER

9

Conclusion, Discussion and Perspectives

This study made a general state of the art of operations used in particle tracking simulations with a
Lagrangian point of view. There are multiple methods to localize particles and compute interactions
with the environment in order to track particles in large meshes. Some of these methods have been
studied, implemented and optimized for HPC applications.
A final library, ParOPTIC, based on component-based architecture is developped which regroups the
studied operations summarized in three components: the Communication component dedicated to
communication and network operations and management, the Computation component that regroups
the operations on particles and meshes, especially geometric operations and the Data component that
stores and manages internal data structures and brings some functions to manage external data.
The current library architecture is designed to be easily modified and updated by external actors and
developers. In addition, this architecture allows to easily apply optmizations as the chosen methods
are implemented in order to maximize the reusability of operations. Indeed, ParOPTIC reuses the
same code in sequential-parallel context and also in distinct operations, for example the particle
localization uses the same method as the particle boundary collision computation which consists
in compute ray-plane intersections. This ray-plane intersection computation is used in sequential
context as well in a massively parallel context.
This implementation is facilitated by the high parallel capability of particle tracking in a Lagrangian
point of view.
Operations are optimized in order to run in a sequential context as particles are considered as inde-
pendent objects in the Lagrangian point of view. It means that the performances of a run correspond
to the sum of performances of the track of each particle.
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Much remains to be done such as optimizations in every component but we think we can consider
the structures as efficient message-based protocols as the data are stored in the form of arrays of
bytes. This is why there is no need to cast any complex structures in order to be compatible with
the communication protocol.

Anyway, a great deal of optimization is still to do especially in the communication component as
it is the hotspot of the application. Even with the communications overlapped with some particle
localizations, the application is still memory bound as shown in chapter 5. In addition, the particle
proximity improvements we have done are not sufficient to improve particle localizations. On the
other hand, the method has shown good speed-up for very few of messages and iterations. We be-
lieve that another method of distribution, a more accurate one, can perform better performances.
The particularity of the distribution algorithm we have chosen and developped by O’Brien is that a
limited number of partners are visited. It means that the number of particles that are not localized
in the set of partners can be high. This number can be reduced by using another algorithm that
increases the number of visited processes. Increasing the number of partners increases the quality of
the distribution. For example, the list of partners can be calculated using Round-Robin scheduling.
This algorithm garantees that every process visits and communicates with all other process.
The global idea does not change as the presented results proved that a distribution algorithm have to
take into account the numerical data proximity with the data already stored on the different remote
memory spaces.

The graph of tasks reveals the implicit synchronizations between localization and particle move-
ment steps and, as the movement speed of an army is dictated by the slowest cart, the synchronization
and the time a process is waiting, is equal to the required time to wait for the slowest one.
In the configuration of large test cases, the particle tracking is run on an heterogeneous parallel
machine, so that the execution time measured is in fact the execution time of the slowest process.
This is a lack of work-balance if we take into account the performances of each node. Indeed, slowest
nodes must have less work to achieve than fastest ones in order to balance computation times.
There is a related problem that also concerns communications and node concurrency: in order to
perform communications between nodes, some barriers are essential especially during particle dis-
tribution, when processes exchange their particles 2 by 2, and during particle localization when
processes look for mesh parts and ask other processes. More researches need to be done in order to
perform non rendez-vous communications with data stealing and general NUMA strategies.
Indeed, processes communicate with each other because of the exchange of data and explicit rendez-
vous. In the case of data stealing or perhaps open memory spaces where processes can perform
deposits and withdrawals, the processes could communicate without barrier and became entirely
independent.

At this moment, boxes are sent independently. They are sent and received through multiple
messages composed with a single box per message. Another approach can be implemented in order
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to reduce the number of messages that consists in packing box data in a single message per asking
process. If a process requests a set of boxes, these boxes are packed in a single array of byte, the sizes
of the boxes are sent and then the resulting array is finally sent. This can improve communications
between processes as particle exchanges have been improved by sending groups of particles and not
particles one by one for the distribution operation.

The developpment of such a library is very long and difficult, but the chosen architecture allows to
easily improve existing functions and add new ones. We intend to maintain and upgrade this library
as particle tracking also involves more specific operations to be computed in scientific simulations.
An update is in progress that consists in treating the particles data as a set of fields. The global
structure that represent particles is a set of unknown fields related to particles. For example the
particle coordinates are stored in a field of this structure as also the diameters of the particles.
These fields are designed to store unknown types in order to store single and double precision types,
integers as reals, thanks to variadic templates of C++11.
The structure is based on a simple interface that consists in adding and deleting fields of different
size in order to manage particles data. This structure allows to manage data easily as the storage is
based on C++ standard vectors, so the memory management is left to the language standard library.
Another advantage of this approach is that the storage strategy is not important. In fact, this new
structure can manage data Structure of Arrays as Array of Structures because to use SOA format,
multiple fields of multiple data types can be added in the structure, whereas a single field of the
same data type can be added to perform AOS data format.
Because the structure is based on a set of vectors to represent several fields, the access to these fields
is performed by using field index that are integers given to the user to access data. An example of
use is given in algorithm 12.

particle_data<real, real, integer, char, LeafID>();

/* add particles coordinates in AOS format [x1, y1, x2, y2, x3, y3, ...]*/
idx_coordsAOS = particle_data.add(2*nParticles, pcoords);

/* add particles coordinates in SOA format in distinct fields [x1, x2, x3, ...][y1, y2, y3, ...]*/
idx_coordsSOAx = particle_data.add(nParticles, pxcoords);
idx_coordsSOAy = particle_data.add(nParticles, pycoords);

/* add particles densitiy */
idx_density = particle_data.add(nParticles, pDensity);

/* add particles box localization */
idx_box = particle_data.add(nParticles, pBoxes);

/* get and print box localization of the third particle */
print (particle_data.get(idx_box, 3));

Algorithm 12: Example of use of our new data structure based on unkown fields.

This new data representation has the advantage to let the user manage the memory used by the
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particles on the side of the user domain. On the other hand, the library manage a copy of particles
and is allowed to distribute data for better performances. The disadvantage of this implementation
concerns the memory occupancy as it requires to copy particle data as mesh data inside the Data
Component.
Lots of improvements are possible because of the chosen software architecture and many can be
implement in a little time.

The main ideas developped in this study are efficient and adaptable to massively parallel sys-
tems. They can be summarized by the following good practices. Traveling data must travel or be
sent close to other data numerically close. For particle tracking, moving particles must be sent with
neighbouring mesh data and must be sent to processes that manage mesh data numerically close to
particles. In other words, the data proximity is very important and has a high impact on execution
time.
The second good practice concerns the adaptation of algorithms to large HPC machines. Grouping
processes can be a fast solution to adapt a code to parallel machines by enclosing processes in adapted
environments to solve a part of the computation.
The third good practice concerns the software architecture. The main idea to retain is that indepen-
dant components make the maintainability, the use and the development of the application.
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