Capitalisation pérenne de connaissances industrielles :
Vers des méthodes de conception incrémentales et itératives centrées sur l’activité
Carine Toure

To cite this version:

HAL Id: tel-02090741
https://tel.archives-ouvertes.fr/tel-02090741
Submitted on 5 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
M. Edith Klinjioh Toure

Capitalisation pérenne de connaissances industrielles : vers des méthodes de conception incrémentales et itératives centrées sur l’activité

Devant le jury composé de :

Garlatti, Serge
Professeur des Universités
IMT Atlantique
Président

George, Sébastien
Professeur des universités
IUT Laval
Rapporteur

Abel, Marie-Hélène
Professeure des universités
UT Compiègne
Examinateur

Prax, Jean-Yves
Docteur ès Sciences
Université Paris-Sud
Examinateur

Garlatti, Serge
Professeur des Universités
IMT Atlantique

Michel, Christine
Maître de conférences-HDR
INSA Lyon
Directrice de thèse

Marty, Jean-Charles
Maître de conférences-HDR
Université de Savoie
Directeur de thèse

Deltour, Jean-Luc
Ingénieur-Docteur
Société du Canal de Provence
Invité
Si tu veux aller vite, marche seul
mais si tu veux aller loin, marchons ensemble.
Proverbe africain
Table des matières
LISTE DES TABLEAUX ...10
1 Chapitre introductif ...11
1.1 Motivations générales ..11
1.1.1 La connaissance en entreprise ..11
1.1.2 Gérer la connaissance en entreprise ...12
1.2 Contexte industriel : la SCP ...13
1.2.1 L’activité ..13
1.2.2 Les systèmes d’information ..15
1.2.2.1 La base de connaissances ALEX ...16
1.2.2.2 Le SIG Netview ...17
1.2.2.3 La GMAO Mainta ...17
1.2.2.4 La Supervision ..18
1.2.2.5 La Régulation ..19
1.2.3 Particularités du contexte industriel ..19
1.3 Question générale de recherche ...20
1.4 Organisation du document ...21

PARTIE 1 ANALYSE THEORIQUE ..23
2 Etat de l’art sur l’usage des SGC ..24
2.1 Caractérisation des SGC en entreprise ...24
2.1.1 Définition d’un SGC ..24
2.1.2 Les types et fonctionnalités des SGC ..26
2.1.3 Mise en œuvre des SGC ...29
2.1.3.1 1ère génération : les mémoires documentaires et systèmes experts 29
2.1.3.2 2ème génération : les communautés de pratiques et réseaux d’experts 32
2.1.3.3 3ème génération : les systèmes de socialisation et médias sociaux d’entreprise ..33
2.1.4 Positionnement ...35
2.2 Facteurs influençant l’usage des SGC ..36
2.2.1 Les modèles de l’adoption des technologies36
2.2.1.1 L’acceptation initiale ..36
2.2.1.2 L’usage continu ..40
2.2.2 Les facteurs influençant l’usage des MSE41
2.2.2.1 Facteurs technologiques ..41
2.2.2.2 Facteurs personnels ..41
2.2.2.3 Facteurs sociaux ..42
2.2.3 Nécessité de moyens de régulation ..42
2.3 Moyens de régulation de l’usage des SGC43
2.3.1 Les méthodes humaines de pilotage43
2.3.2 Les méthodes de régulation technologiques43

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI095/these.pdf
© [C. Toure], [2017]. INSA Lyon, tous droits réservés
2.3.2.1 Les systèmes d’assistance ... 44
2.3.2.2 Les indicateurs comme moyen de régulation de l’usage ... 44

2.4 Discussions ... 46
2.4.1 1er point de discussion : les MSE dans le succès du KM 47
2.4.2 2ème point de discussion : la régulation pérenne des SGC 49
2.4.3 3ème point de discussion : la faiblesse des méthodes classiques d’ingénierie de la connaissance .. 50
2.4.4 Questions de recherche .. 51

3 Propositions .. 52
3.1 Caractérisation des SGC gérant la connaissance de façon pérenne 53
3.1.1 Point critique 1 : Adapter le SGC aux capacités des utilisateurs et au contexte d’usage ... 53
3.1.2 Point critique 2 : Assurer un corpus informationnel de qualité 53
3.1.3 Point critique 3 : Mettre en place des éléments de stimulation 54
3.1.4 Point critique 4 : Assurer la supervision et le contrôle de l’usage et des connaissances construites ... 55
3.1.5 Récapitulatif .. 55
3.2 Mise en œuvre d’une régulation pérenne des SGC 57
3.2.1 Proposition 1 : Une méthode de régulation mixte pour la pérennité des usages ... 57
3.2.2 Proposition 2 : Une méthodologie de conception centrée utilisateur 59
3.2.2.1 Présentation générale de la méthode agile SCRUM 61
3.2.2.2 Notre méthodologie de conception de SGC pérennes 64
3.2.2.3 Bilan ... 76

PARTIE 2 EXPERIMENTATION .. 77

4 Implémentation ... 78
4.1 Rappel du cadre d’application : la Société du Canal de Provence .. 78
4.2 Déroulement global du projet .. 79
4.3 Etat 0 du SGC ALEX (Séquence 1) .. 83
4.3.1 Constitution du groupe de travail (GT) 83
4.3.2 Etude de l’existant .. 84
4.3.3 Récapitulatif des revues de sprint (les focus groupes) 85
4.3.3.1 Les fonctionnalités de gestion du contenu (facette 1.1) 85
4.3.3.2 L’organisation du contenu (facettes 1.4 et 2.4) 85
4.3.3.3 Les rôles .. 86
4.3.3.4 Fin de la séquence .. 87
4.3.4 Evaluation .. 87
4.3.4.1 Utilité perçue ... 88
4.3.4.2 Facilité d’usage perçue .. 88
4.3.4.3 Attitude et intention d’usage .. 89
4.3.4.4 Satisfaction ... 89
4.3.5 Synthèse ... 89
4.4 Etat 1 du SGC ALEX (Séquence 2) .. 90
4.4.1 Constitution du groupe noyau (GN) 90
4.4.2 Récapitulatif des revues de sprint .. 91
4.4.3 Synthèse .. 93

4.5 Etat 2 du SGC ALEX (Séquence 3) .. 93
4.5.1 Récapitulatif des revues de sprints .. 94
4.5.1.1 Les commentaires et les ‘j’aime’ 95
4.5.1.2 Les indicateurs de l’activité .. 96
4.5.1.3 Les indicateurs de qualité de contenu 98
4.5.2 Evaluation .. 99
4.5.2.1 Sélection des participants .. 100
4.5.2.2 Collection des données et encodage 100
4.5.2.3 L’acceptation initiale de ALEX_V2 101
4.5.3 Synthèse ... 104

4.6 Etat 3 du SGC ALEX (Séquence 4) .. 105
4.6.1 Récapitulatif des revues de sprint sur le tableau de bord 105
4.6.2 Evaluation .. 107
4.6.2.1 Sélection des participants .. 107
4.6.2.2 Résultats ... 107

4.7 Evaluation globale du système .. 108
4.7.1 Sélection des participants ... 108
4.7.2 Instrumentation .. 109
4.7.2.1 Critères ... 109
4.7.2.2 Collection des données et encodage 110
4.7.3 Résultats : l’usage continu de ALEX_V3 110
4.7.4 Synthèse ... 116

4.8 Synthèse globale des résultats avec analyse des données d’usage 116

5 Discussions .. 122
5.1 Concernant le déroulement effectif de l’implémentation de notre proposition ... 122
5.1.1 Récapitulatif de notre proposition ... 122
5.1.2 L’implémentation ... 124
5.2 Concernant les retours utilisateurs sur les facettes 125
5.2.1 Sur les fonctionnalités de gestion de contenu 125
5.2.2 Sur les fonctionnalités sociales .. 126
5.2.3 Sur le tableau de bord ... 126
5.3 Les coûts de la méthode .. 127
5.4 Recommandations aux concepteurs .. 129

6 Conclusion ... 131
6.1 Bilan général .. 131
6.2 Contributions et limites .. 133
6.3 Perspectives .. 135

BIBLIOGRAPHIE .. 138

ANNEXES ... 145
ANNEXE 1 : INGENIERIE DES INDICATEURS 146
Ingénierie des indicateurs : calculer les indicateurs, de la collecte à la visualisation .. 146
La collecte .. 146
La transformation des données .. 147
L’exploitation et la visualisation .. 147

ANNEXE 2 : PROFILS DETAILLES DES PARTICIPANTS AUX EVALUATIONS ... 149

ANNEXE 3 : GRILLES DES EVALUATIONS QUALITATIVES .. 150
Grille d’évaluation - Séquence 1 : Prototype Drupal .. 150
Questions introductives .. 150
Qualité du système .. 150
Qualité de l’information .. 150
Facilité d’utilisation perçue .. 150
Attitude face à l’usage de l’application .. 151
Intention de comportement d’usage ... 151
Manière dont le système est proposé par la SCP ... 151
Utilité professionnelle perçue liée à l’usage de l’application 151
Utilité personnelle perçue liée à l’usage de l’application 152
Satisfaction ... 152

Grille d’évaluation - Séquence 3 : ALEX avec les fonctionnalités de stimulation sociale ... 152
Questions introductives .. 153
Comparaison des fonctionnalités de l’ancien ALEX vs le nouvel ALEX+ 153

Ancien ALEX ... 153
Nouvel ALEX .. 154

Questionnements sur l’information manipulée dans ALEX 155
Questionnements sur le support du management .. 155
Questionnements sur l’amélioration des performances /plaisir /utilité /image ... 156
Questionnements sur les intentions d’usage .. 156
Questionnements sur la satisfaction .. 156
Conclusion ... 157

Grille d’évaluation - Séquence 4 : ALEX avec l’outil de suivi de l’activité 157
Questions personnelles et contextuelles ... 157
Les fonctionnalités de gestion de contenu ... 157
Les fonctionnalités sociales ... 159

La page de suivi des contributions .. 159
Les noms des contributeurs/modificateurs .. 159
Les commentaires .. 160
Les “J’aime” ... 160
Les indicateurs de qualité de la fiche .. 161
Sommaire

Le tableau de bord ... 161
Qualité du service .. 162
Impact global d’ALEX sur l’activité et l’apprentissage informel 162
Liste des figures

Figure 1.1 Chaine de valorisation durable de la connaissance en entreprise............. 13
Figure 1.2 Organisation générale de la SCP... 15
Figure 1.3 A gauche : vue d’une fiche notice de ALEX. A droite : architecture simplifiée du dossier des fiches notices... 17
Figure 1.4 Vues de l’outil NetView.. 17
Figure 1.5 Vue de l’outil CarlMaster.. 18
Figure 1.6 Vue de l’outil Supervision.. 18
Figure 1.7 Vue de l’outil Régulation.. 19
Figure 1.8 Vue simplifiée de l’activité et des liens entre les systèmes d’information en présence à la DTE... 20
Figure 2.1 Représentation d’un SGC (S)... 25
Figure 2.2 Le framework conceptuel de structuration de l’information de Garett. ... 32
Figure 3.1 Boucle de régulation au niveau personnel.. 57
Figure 3.2 Cycle de régulation au niveau technologique................................. 58
Figure 3.3 Cycle d'usage et de régulation pérenne des systèmes.......................... 58
Figure 3.4 Vue globale de la démarche SCRUM... 63
Figure 3.5 Vue globale de notre démarche de conception de SGC pérenne............. 68
Figure 3.6 Fil de conception des différentes facettes de notre système pérenne. ... 72
Figure 4.1 Timeline de l’implémentation du SGC ALEX à la SCP de Février 2013 à Décembre 2016... 82
Figure 4.2 Séquence 1 : Etude de l’existant et conception de l’AI et des fonctionnalités de gestion de contenu... 83
Figure 4.3 Vue de la page d’accueil et d’une fiche Présentation du prototype ALEX... 86
Figure 4.4 Séquence 2 : Affinage de l’AI, des fonctionnalités de gestion de contenu et portage des contenus................................. 90
Figure 4.5 Vue de la page d’accueil d’un centre d’exploitation........................... 92
Figure 4.6 Vue de deux types de fiches... 92
Figure 4.7 Séquence 3 : Ajout des fonctionnalités sociales.................................. 94
Figure 4.8 Vue d’un commentaire... 95
Figure 4.9 Vue de la fonctionnalité ‘J’aime’.. 96
Figure 4.10 Vue de la page d’état de la contribution... 97
Figure 4.11 Vue des dernières fiches publiées avec le nom des auteurs.............. 97
Figure 4.12 Vue d’une zone de la page d’accueil-Dernières pages consultées..... 98
Figure 4.13 Vue des indicateurs de lisibilité (2) et complétude (1).................... 99
Figure 4.14 Séquence 4 : Conception d’un tableau de bord de suivi de l’activité, poursuite du portage des contenus................................. 105
Figure 4.15 Vue du tableau de bord d’activité ALEX................................. 106
Figure 4.16 Tendance de la collaboration sur les fiches.................................. 119
Figure 4.17 Détail de la courbe précédente par type de fiches.......................... 119
Figure 4.18 Evolution du nombre des événements de fiches sur les trois années d’usage... 120
Figure 4.19 Détail du nombre des événements de fiches par années et types de fiches... 120
Figure 4.20 Etat du nombre des publications dans ALEX classé par année. ... 121
Figure 5.1 Niveaux de participation dans les communautés de pratiques. 125
Figure 5.2 Exemple de burndown chart.. 128
Figure 6.1 Proposition d’une architecture fonctionnelle du système automatique de visualisation d’indicateurs.. 137
Liste des tableaux

Tableau 2.1 Classification des fonctionnalités du SGC. ... 27
Tableau 3.1 Récapitulatif des points critiques/facettes. ... 56
Tableau 3.2 Backlog de SGC pérenne. .. 69
Tableau 3.3 Instrument d’évaluation quantitative de l’usage d’un SGC. 75
Tableau 4.1 Synthèse des résultats qualitatifs de la première évaluation. 88
Tableau 4.2 Synthèse des résultats qualitatifs de la deuxième évaluation. 104
Tableau 4.3 Récapitulatif des évaluations de séquences en fonction des critères considérés. ... 110
Tableau 4.4 Synthèse des résultats qualitatifs de la dernière évaluation. 116
Tableau 5.1 Le Backlog de SGC pérenne avec recommandations aux concepteurs. .. 130
1 Chapitre introductif

1.1 Motivations générales
Dans ce travail de recherche, nous nous intéressons à la question de la pérennité de l’usage des systèmes de gestion des connaissances (SGC) dans les entreprises. Les SGC sont ces environnements informatiques qui sont mis en place dans les entreprises pour mutualiser et construire l’expertise commune grâce aux collaborateurs. En France, depuis le début des années 90, les travaux dans le domaine du Knowledge Management (KM) ont produit de nombreux outils méthodologiques pour soutenir la gestion des connaissances en entreprise. Le constat montre pourtant que malgré la rigueur employée pour la mise en œuvre de ces SGC, le risque d’échec des initiatives de gestion des connaissances, notamment lié à l’acceptation de ces environnements par les utilisateurs professionnels ainsi qu’à leur usage continu et durable, reste d’actualité. La persistance de cette problématique dans les entreprises a motivé notre intérêt d’apporter une contribution à cette question générale de recherche.

1.1.1 La connaissance en entreprise

La gestion des connaissances est un enjeu stratégique pour les entreprises. À l’instar du capital humain ou du capital financier, la connaissance est une ressource, un actif à part entière de l’entreprise qui, bien géré, joue un rôle déterminant dans sa productivité et sa compétitivité.

Plusieurs travaux proposent des définitions de la connaissance (Ermine, 2008; Maier, 2007a; Prax, 2003). Pour résumer, celle-ci peut être approchée comme l’ensemble des informations visibles, imagées, écrites ou orales que les individus interprètent en contexte pour générer des activités, des comportements ou des solutions face aux problèmes. Elle se distingue en deux types que sont la connaissance explicite et la connaissance tacite. La connaissance explicite est l’ensemble des routines, des procédures opérationnelles, etc. qui sont facilement codifiables et transcriptibles sur des supports tandis que la connaissance tacite représente les savoir-faire (aptitude, habileté, expérience, etc.) qui sont plus difficilement traduisibles et transférables. (Nonaka & Takeuchi, 1997) avancent que ces connaissances se créent et circulent dans les différentes dimensions (individuelle, collective, organisationnelle et inter-organisationnelle) de l’entreprise selon quatre modes de conversion que sont :
- La socialisation (lorsque par la collaboration et le partage d’expérience, la connaissance se transmet de façon tacite).
- L’extériorisation (lorsque l’on articule la connaissance tacite en concepts explicites).
- La combinaison (lorsque les individus échangent et combinent des connaissances explicites (documents, etc.) en de nouvelles connaissances explicites par le biais de médias).
- L’intériorisation (lorsque la connaissance explicite est incorporée par les individus en connaissance tacite).

Ainsi, les deux formes de connaissance, tacite et explicite, se combinent et se complètent : les savoir-faire sont indispensables pour générer, mais aussi pour utiliser de façon adéquate la connaissance explicite ; réciproquement, s’en imprégner génère des savoir-faire, de la connaissance tacite. Elles forment ainsi le capital des connaissances de l’entreprise qui est géré dans la plupart des cas via des environnements informatiques.

1.1.2 Gérer la connaissance en entreprise

L’objectif des initiatives de gestion des connaissances est d’assurer le succès des processus de capitalisation de la connaissance, c’est-à-dire le stockage utile, la structuration de l’information, son accessibilité, sa préservation et sa maintenance (Ermine, 2008). Gérer la connaissance en entreprise revient à mettre en place une chaîne de valorisation pérenne du capital connaissances de l’entreprise (cf. Figure 1.1). Ceci passe par l’implémentation de SGC offrant des fonctionnalités permettant de soutenir le repérage de la connaissance (notamment par une facilité d’identification et de localisation des contenus ou des collaborateurs détenant l’expertise), sa préservation (notamment par des fonctions de formalisation ou d’archivage), sa valorisation (notamment par des fonctionnalités permettant de créer de nouveau contenus), et son actualisation. Diverses causes peuvent entraver le bon usage de ces fonctionnalités : ce peut être comme l’énumère (Prax, 2003), des raisons d’ordre fonctionnel (outil trop complexe, ne répondant pas au besoin, mauvaise organisation de l’information, etc.), d’ordre managérial (stratégie d’accompagnement au changement inadaptée ou inexistante), ou même d’ordre humain (inadaptation du SGC au contexte culturel de l’entreprise).

Dans le cadre de ce travail, nous nous sommes attachés à étudier ces différentes causes.
1.2 Contexte industriel : la SCP

Ce projet de thèse s’inscrit dans les problématiques d’un partenaire industriel, la Société du Canal de Provence (SCP), qui est confrontée depuis plusieurs années à la problématique de l’acceptation et de l’usage continu de son système de capitalisation et de formalisation de ses procédures industrielles. Notre objectif est de travailler à la conception d’une méthode de capitalisation de connaissances acceptable et pérenne de manière suffisamment générique pour être ré-exploitable dans différents contextes industriels.

Cette thèse est une collaboration entre la SCP et le laboratoire LIRIS par le biais d’un contrat de doctorat CIFRE.

1.2.1 L’activité

La Société du Canal de Provence (SCP) est une société d'économie mixte située dans le sud de la France. Elle est spécialisée dans les services relatifs au transport et à la distribution de l’eau pour les entreprises, les agriculteurs et les collectivités de la région Provence-Alpes-Côte d'Azur, ce qui représente près de cinquante mille clients. Pour répondre au besoin en eau de sa clientèle, la SCP s’appuie sur un réseau d’infrastructures hydrauliques : les ouvrages (station de potabilisation, canaux, barrages, etc.), qui sont répartis sur le territoire provençal en zones géographiques appelées centres d’exploitation (CE). Les CEs sont au nombre de dix : Rognac, Cadenet, Manosque, Rians, Saint Maximin, Ollioules, La Crau, Saint Cannat, Puget sur Argens, et Le Tholonet. Les collaborateurs en
fonction dans les CEs sont appelés agents d’exploitation. Ils sont en charge de la maintenance de premier niveau des ouvrages.

Les infrastructures hydrauliques varient selon le CE : on ne retrouve pas le même type d’ouvrage, ce qui implique que la nature des interventions à effectuer diffère selon qu’un agent appartient à un CE ou à un autre.

La Figure 1.2 présente les différents services de la société. A la Direction de l’Exploitation (DE), au sein du Service Méthodes et Procédés, on trouve un centre de contrôle général de tous les ouvrages (le Centre de Télé Gestion - CTG) qui possède une vue globale du réseau hydraulique. Le CTG aide à la supervision des centres et assure une certaine cohérence dans l’activité d’exploitation. Ce service est majoritairement impliqué dans le projet de gestion des connaissances sur lequel nous avons travaillé, mais d’autres services de la société sont également demandeurs ou porteurs d’informations dans le projet : on peut citer en exemple le Service Exploitation (appelé SX à la SCP) qui contient le corps des agents d’exploitation ou encore le Service Maintenance (SM). En effet, lorsque les agents d’exploitation ne sont pas en mesure de résoudre les problèmes survenant sur les ouvrages, ils font appel aux agents SM qui assurent une maintenance de niveau deux des ouvrages.

Des systèmes d’information soutiennent les activités des différents collaborateurs. La section suivante fournit une description de chacun d’eux.
Dans l’exécution de leur activité quotidienne, les agents d’exploitation ont besoin d’accéder à des informations de type géographique notamment pour s’orienter en cas d’intervention sur le terrain. Ils utilisent NetView, un Système d’Information Géographique (SIG) pour répondre à ce besoin. La nature variée des ouvrages et des interventions à réaliser requiert la présence d’une base de connaissance qui sert d’aide-mémoire pour l’entretien ou la maintenance d’un ouvrage, d’où l’utilité de s’aider d’une base de connaissance. Cette base est organisée dans ALEX. Ainsi au SE, deux systèmes sont disponibles pour répondre aux besoins d’information géographique (NetView) et de soutien à l’activité de maintenance des agents d’exploitation (ALEX).

Au SM, un logiciel : Mainta, permettant la gestion de la maintenance assistée par ordinateur(GMAO), est également disponible pour la gestion des activités de ce service.
Au CTG, deux outils développés sur mesure, la *Supervision* et la *Régulation* sont utilisés au quotidien pour le contrôle et la gestion à distance de tout le réseau hydraulique de la SCP.

1.2.2.1 *La base de connaissances ALEX*

ALEX a été implémenté pour le SX dans le courant de l’année 1996. Il renferme un certain nombre d’informations sur les ouvrages, les métiers et les clients à contacter. C’est un ensemble de bonnes pratiques, un aide-mémoire et un guide pour toutes les opérations courantes ou non, d’entretien et de maintenance des ouvrages.

Il est organisé autour de deux modules :

- La consultation (fiches notice) est constituée d’environ quatre mille fiches (cf. *Figure 1.3*) qui décrivent les informations essentielles à connaître pour l’exploitation d’un ouvrage.

- La recommandation (fiches conduite) propose, de manière dynamique, sur la base d’états prédéfinis de l’ouvrage, l’attitude à adopter en cas de problème. Plusieurs fiches de conduite ont été définies pour réagir face à certains événements critiques selon les informations fournies par le système de supervision et des règles de comportement prédéfini.

Du fait de sa complexité et de son manque d’adaptation (le moteur de règles est inadapté au besoin des professionnels de terrain), le module de recommandation a été vite délaissé au profit du module de consultation, relativement plus simple d’utilisation. Nous nous intéressons ici à ce dernier. Les fiches notice sont un ensemble de fichiers Word décrivant les caractéristiques techniques des ouvrages. Le dossier des fiches notices est structuré en arbre autour du CTG et des CEs (cf. *Figure 1.3*). Après conversion au format HTML, les fiches sont disponibles à partir de l’intranet de l’entreprise. Chaque CE est doté d’un ordinateur spécialement dédié à l’accès et la consultation des fiches. La création et la mise à jour des fiches sont confiées aux soins des agents d’exploitation dans chaque centre concerné ; les fichiers modifiés sont ensuite copiés sur le serveur ALEX du CTG qui est ainsi mis à jour. Cependant, le mode de création et d’accès à l’information se révèle chronophage et peu adapté à la mobilité des agents.

La GMAO Mainta
L’outil de GMAO Mainta a été développé pour assister les activités de maintenance de deuxième niveau effectuées par les agents SM sur les ouvrages, chez les clients ou avec les sous-traitants. Le logiciel est basé sur une nomenclature structurée des ouvrages. Trois opérations principales peuvent y être effectuées :
la mise en place de demande d’intervention du SX vers le SM, la mise en place de demandes d’intervention du SM vers le SX, la mise en place de statistiques sur les ouvrages (la durée de vie, l’investissement, etc.).

Figure 1.5 Vue de l’outil CarlMaster.

1.2.2.4 **La Supervision**

Les ouvrages sont constitués d’équipements (pompes, régulateurs de pression, filtres, vannes …) qui permettent de contrôler la desserte de l’eau. Le logiciel de supervision fournit aux agents du CTG des vues synoptiques des ouvrages avec les relevés de mesures variées : débits, pressions, ouvertures de vannes, hauteurs d'eau, température, turbidité, PH... Lorsque le système détecte un problème, des alarmes sont signalées par synthèse vocale au collaborateur qui est d’astreinte.

Figure 1.6 Vue de l’outil Supervision.
1.2.2.5

La Régulation

Ce logiciel est un système de gestion dynamique du débit d’eau distribuée dans les ouvrages. La régulation permet aux agents du CTG d'optimiser le pompage pour le remplissage des réservoirs au moment où l'énergie est la moins chère. Les prévisions sont faites sur la base des consommations enregistrées pendant les dix jours précédents. La réactualisation des prélèvements se fait toutes les quinze minutes.

Figure 1.7 Vue de l'outil Régulation.

1.2.3 Particularités du contexte industriel

La description du contexte industriel présente une activité d’exploitation complexe, multi-site et multi-rôle qui requiert une forte collaboration entre les agents. Comme le montre la figure 1.8, les systèmes d’information plus ou moins intégrés soutiennent les différents services dans leurs fonctions et leur permettent de collaborer entre eux. Consciente de ces difficultés d’accès à la connaissance, la DE a développé l’outil d’aide ALEX qui permet aux agents d’exploitation d’obtenir l’information nécessaire à leur activité de gestion et de maintenance. *ALEX* a été mis en place pour capitaliser les informations et les bonnes pratiques au sein de fiches descriptives, servant ainsi de soutien et d’assistance des agents d’exploitation.

Pour que la mise en œuvre de cette initiative de gestion de connaissance fonctionne, une bonne acceptation des utilisateurs est requise. L’expérience fait toutefois face à des difficultés puisque ALEX est peu utilisé : le constat est que le module dynamique est globalement non utilisé, car le moteur de règles est inadapté au besoin des professionnels de terrain et le module de consultation qui
répond à un vrai besoin d’informations de terrain, présente des limites technologiques.

ALEX est un exemple typique des problèmes d’acceptation et d’usage des SGC traditionnels que rencontrent les entreprises. Il est donc nécessaire de mener une étude analysant les problèmes plus finement. Ceci est bien entendu corrélé avec des aspects ergonomiques tels que le maintien à jour de l’information ou la validation de celle-ci. De même, la place d’un tel système dans les usages en place devra être identifiée. Enfin, l’organisation de la connaissance, sa structuration, sa présentation en contexte de travail devront être étudiées. Nous présentons nos axes de travail dans la section suivante.

Figure 1.8 Vue simplifiée de l’activité et des liens entre les systèmes d’information en présence à la DTE.

1.3 Question générale de recherche

Face à la problématique d’acceptation et d’usage des SGC énoncée précédemment, la question de recherche sur laquelle nous allons travailler consiste à identifier les moyens informatiques pour une mise en place suffisamment générique de SGC pérennes, c’est-à-dire qui soient mieux acceptés et utilisés par les collaborateurs et qui permettent un pilotage en continu de la capitalisation de connaissance dans le système.

Notre proposition pour répondre à la question de recherche est axée sur les points suivants :
- Un premier objectif est de prendre en compte les futurs utilisateurs tout au long du cycle de conception et d’exploitation du système. Nous pro-
posons de travailler à la conception d’un dispositif de gestion des connaissances adapté aux utilisateurs et valorisant leurs traces d’utilisation du dispositif pour stimuler les usages et construire un capital de connaissances sur le long terme. Les méthodes de conception proposées dans la littérature produisent des solutions utilisables, mais il n’y a pas de garantie concernant l’utilisation effective. Une utilisation effective ne peut être réalisée que si le dispositif technique s’inscrit dans une stratégie de support à l’activité et de stimulation de l’usage.

Plus globalement, les méthodes proposées prennent en considération des besoins stratégiques en amont du processus de conception, mais pas en aval ou au cours de l’usage. Notre objectif consiste donc à étudier les moyens et méthodes permettant le pilotage de l’activité de capitalisation en l’intégrant dans le dispositif de capitalisation lui-même; cela suppose une stimulation de l’activité, une supervision de celle-ci et une évaluation/valorisation des bénéfices industriels.

1.4 Organisation du document

Ce document est organisé en deux grandes parties, chacune étant articulée en chapitres.

La première partie contient l’analyse théorique qui nous permet de présenter les fondements de nos propositions. En effet, le chapitre deux présente notre état de l’art sur la question de l’usage pérenne des systèmes de gestion des connaissances (SGC) en entreprise. L’étude de l’ingénierie de ces systèmes révèle trois générations de SGC qui se sont succédées dans les entreprises et qui constituent les antécédents d’un nouveau genre d’environnements informatiques pour la gestion des connaissances : ce sont les médias sociaux d’entreprise (MSE). Les MSE présentent divers facteurs favorisants, mais pouvant aussi entraver la gestion efficace et pérenne de l’expertise des utilisateurs. Nous présentons ces différents facteurs puis les moyens permettant de réguler l’usage des
SGC. Cet état de l’art nous permet de dégager les questions de recherche plus précises sur lesquelles nous travaillerons. Dans le chapitre trois, nous présentons les propositions de notre travail de recherche : dans un premier temps, nous présentons une caractérisation des SGC pérennes. À partir de notre étude de l’état de l’art, nous avons dégagé quatre facettes qui sont requises pour une plateforme gérant la connaissance de façon pérenne : ce sont l’adaptation au profil des utilisateurs professionnels, la qualité des contenus informationnels manipulés, les moyens de stimulation de la socialisation mis en place ainsi que les moyens de supervision et de contrôle stratégique de l’activité mis en place. Dans un deuxième temps, nous proposons une méthode de régulation mixte permettant la mise en œuvre de ces différents facteurs. Cette méthode pour l’adoption pérenne du SGC unifie des outils de stimulation pour l’autorégulation et des outils soutenant l’accompagnement au changement. Nous proposons de la réifier par une méthodologie de conception basée sur les principes « Agile ». Nous concluons cette partie par la présentation de questionnements qui émergent, notamment la question de l’articulation la plus appropriée pour les incréments de la méthodologie. Pour répondre à cette question mais aussi au vu de la place prégnante de l’humain et du besoin d’adaptation dans nos propositions, il est nécessaire de les tester en contexte pour pouvoir les valider. Ceci nous permet d’introduire la partie suivante.

La deuxième partie présente la phase d’expérimentation de nos propositions. Nous présentons l’implémentation de notre méthodologie de conception en contexte industriel qui s’est faite en quatre séquences, périodes de conception dont les thèmes correspondent à des facettes caractérisant les SGC pérennes. Les première et deuxième séquences nous ont permis de reconcevoir les fonctionnalités de gestion de contenu du SGC initial pour le rendre plus adapté aux besoins des collaborateurs. Dans la troisième séquence, nous avons rajouté des fonctionnalités de stimulation pour favoriser l’autorégulation du SGC. Au cours de la quatrième séquence, nous avons proposé un outil de supervision de l’activité dans le SGC qui affiche des indicateurs de différents points critiques à surveiller, notamment l’activité d’usage général de la plateforme ou encore la qualité du contenu. Le chapitre quatre décrit l’implémentation de notre méthodologie en conditions industrielles, ce qui nous permet de valider la faisabilité de nos propositions. Dans le chapitre cinq, nous discutons au regard de nos propositions les résultats de cette évaluation.

Le chapitre de conclusion nous permet de dresser un bilan général de notre étude et de présenter des perspectives.
Partie 1
Analyse théorique
2 Etat de l’art sur l’usage des SGC

2.1 Caractérisation des SGC en entreprise

2.1.1 Définition d’un SGC

Reprenant la définition de (Maier, 2007b p.86), un système de gestion des connaissances (SGC) est une plateforme technologique qui combine et intègre des fonctions pour la manipulation en contexte par les acteurs de la connaissance, de connaissances tacites et explicites au sein de l’organisation où est mené le projet de gestion des connaissances. Sont qualifiés d’acteurs de la connaissance l’ensemble des collaborateurs concernés par le projet de gestion des connaissances, qu’ils appartiennent au corps exécutif ou de décision de l’entreprise. Ces acteurs sont composés d’individus plus ou moins organisés en communautés et qui utilisent leurs connaissances dans leurs activités. Le SGC offre des services pour rendre accessible aux acteurs de la connaissance, les objets de connaissance (documents, écrits, bases de données, taxonomies, bonnes pratiques, images, etc.) tout au long de la chaîne de valorisation de la connaissance.

(Érmine, 2008 p. 17) élargit la définition des SGC en attribuant aux acteurs de la connaissance une place plus prégnante :

« Un système de gestion des connaissances (ou système gérant des connaissances) est un système où des réseaux d’acteurs interagissent avec un système d’information (par des fonctions d’appropriation et d’expression). Ce système produit et consomme des connaissances (par des fonctions de compétences et de cognition). Ces connaissances s’accumulent dans le patrimoine de connaissances de l’organisation. Les connaissances sont évaluées par une fonction valeur. Un tel système apporte de la valeur ajoutée pour les connaissances, c’est-à-dire que les connaissances produites ont une valeur plus grande que les connaissances consommées. » Le SGC n’est plus la plateforme technologique toute seule mais l’ensemble du système d’information (SI), des acteurs et des interactions acteurs-SI.

Le modèle AIK (Érmine, 2005) représente cette approche systémique de la gestion des connaissances en entreprise (cf. Figure 2.1).
Dans le modèle, la lettre A représente le réseau d’acteurs de la connaissance. Il regroupe les composantes opérante et décision de l’entreprise. La composante opérante est en charge de l’exécution opérationnelle de toutes les tâches nécessaires au processus de production de biens et la composante décision a pour objet de concevoir et de piloter les activités effectuées par la composante opérante. I est le système d’information et K le patrimoine de connaissances de l’entreprise. Chacune des composantes A et I est porteuse de connaissances qui lui sont propres et qui constituent le patrimoine K de connaissances de l’entreprise. En effet, le système d’information est intrinsèquement porteur de connaissances explicites ; de même que les acteurs. La fonction de I est d’assurer le stockage, la mémorisation et la mise à disposition des objets de connaissance internes à l’entreprise, mais aussi externes (par exemple, les informations relatives aux organismes nationaux ou internationaux éditant les lois ou réglementations …) qui doivent être pris en compte dans le processus de production de biens et de services de l’entreprise. En utilisant le système d’information, les collaborateurs interagissent au travers des processus de socialisation, d’externalisation, de combinaison et d’internalisation (cf. section 1.1.1), contribuant ainsi à leur apprentissage, à la construction et/ou l’enrichissement de leurs connaissances tacites/explicites et donc à la création et à l’enrichissement du patrimoine de connaissances de l’entreprise.

Ce flux d’interactions entre le SI et les acteurs pour alimenter le patrimoine de connaissance est représenté dans le modèle d’Ermine par deux usages de base que sont la cognition (représentée dans la Figure 2.1 par cog) : l’ensemble des usages qui permettent aux acteurs de s’approprier des connaissances et d’apprendre) et la compétence (représentée dans la Figure 2.1 par comp : l’ensemble des usages permettant de rajouter de la connaissance au patrimoine). Le patrimoine de connaissances de l’entreprise s’enrichit et prend ainsi de la valeur grâce aux fonctions de support à la cognition et à la compétence du système.
L’auteur définit également des opérateurs : w est l’opérateur d’agrégation des acteurs en communautés de savoirs ou des communautés entre elles ; c représente l’opérateur de combinaison d’information que peut réaliser un acteur dans un système d’information ; s est l’opérateur de socialisation permettant aux acteurs d’engendrer de nouvelles connaissances en combinant les leurs.

Pour être menée de façon efficace, la gestion des connaissances en entreprise requiert de considérer simultanément quatre entités qui sont essentielles dans le processus de support à l’activité professionnelle et la construction des connaissances : la composante de décision, la composante opérante, le système d’information et le patrimoine de connaissances. Le système d’information a une place centrale dans ce dispositif dans la mesure où il fournit les fonctionnalités par le biais desquelles les acteurs manipulent les objets de connaissance et apportent de la valeur ajoutée au patrimoine de connaissances. Pour alléger le discours dans la suite du manuscrit, nous utiliserons le terme SGC pour parler du SI ou de l’artefact technologique/le média « ciblant l’activité managériale et professionnelle en mettant l’accent sur la création, la collecte, l’organisation et la diffusion de la connaissance d’une organisation » (Alavi & Leidner, 1999).

Nous garderons néanmoins à l’esprit la place prégnante de l’utilisateur dans le système et comment ce dernier doit être adapté aux besoins utilisateur.

Nous identifions dans le paragraphe suivant les différents types de SGC.

2.1.2 Les types et fonctionnalités des SGC

Les méthodes d’ingénierie de KM aboutissent à quatre types de SGC (Dudezert, Prével, & Sellin, 2016; Hahn & Subramani, 1999) que sont:
- Les SGC de capitalisation de connaissances *experts* (par exemple les systèmes experts, les bases de données experts, etc.).
- Les SGC de mémoire d’entreprise (par exemple les bases de connaissances, les entrepôts de documents, etc.).
- Les réseaux d’experts et communautés de pratiques (par exemple les plateformes collaboratives, les listes de discussions, etc.).
- Les SGC de socialisation (par exemple les médias sociaux d’entreprises qui font partie des plateformes les plus récentes pour la gestion de la connaissance en entreprise).

En fonction des objectifs stratégiques de la gestion des connaissances et du contexte de l’entreprise, un type de SGC sera préféré à un autre. Cependant quel que soit son type, le SGC doit répondre à un certain nombre de tâches/fonctionnalités qui lorsqu’elles sont utilisées par les collaborateurs, participent à maintenir la chaîne de valorisation de la connaissance.
Ces fonctionnalités découlent d’interactions intervenant entre l’artefact technologique et les utilisateurs. L’objectif de ces interactions est d’assurer la continuité de la chaîne de valorisation de la connaissance et d’enrichir le patrimoine de l’entreprise. (Ermine, 2008 p. 21) en présente une classification (cf. Erreur ! Référence non valide pour un signet.).

Tableau 2.1 Classification des fonctionnalités du SGC.

Source : (Ermine, 2008 p. 21).

Le SGC doit permettre de capter la connaissance en fournissant à l’utilisateur des fonctions notamment pour rechercher l’information circulant, la suivre, pouvoir établir des corrélations entre les contenus présentés. Il doit aussi permettre de capitaliser la connaissance en vue d’une réutilisation notamment par des moyens de catégorisation ou de synthèse. Les acteurs doivent pouvoir comprendre (par des fonctions permettant notamment de relier, associer l’information, etc.) et transmettre l’information par des fonctions de publication,
de mise à jour, etc. Cette classification est plus orientée sur les aspects technologiques que doivent présenter les SGC.

(Maier, 2007b) propose une autre répartition, plus axée sur les objectifs des utilisateurs. Il répartit les fonctionnalités en quatre grandes classes que sont la découverte de connaissances, la publication, la collaboration et l’apprentissage. Cette classification nous intéresse particulièrement puisqu’elle se situe dans une approche centrée sur l’humain. Selon Maier, la découverte correspond à l’utilisation (inter) active par l’utilisateur des fonctions de recherche de l’information (recherche par mot clé, système de méta-recherche ou encore filtres utilisateurs). Les fonctions de recherche permettent à l’utilisateur d’extraire la connaissance disponible dans le système. La publication représente l’ensemble des fonctionnalités facilitant la présentation de l’information et la navigation dans celle-ci.

La découverte et la publication sont axées sur la manipulation de connaissances explicites tandis que la collaboration et l’apprentissage sont davantage orientés vers la circulation de connaissances tacites. La collaboration correspond à l’utilisation des fonctionnalités pour communiquer et coopérer : on peut citer par exemple les mails, les listes de discussions de types synchrone ou asynchrone qui sont le biais d’échange d’idées entre les collaborateurs. Ces activités de coopération et de communication sont un cadre d’apprentissage, car ils permettent le développement de discussions, un transfert de l’expérience, la réutilisation des connaissances et la résolution de problèmes.

Lorsqu’il est adéquatement utilisé, le SGC joue un rôle majeur dans la chaîne de valorisation des connaissances puisqu’il fournit les fonctionnalités appropriées pour réaliser les quatre modes de conversion de la connaissance : la socialisation, l’extériorisation, l’intériorisation et la combinaison (Nonaka & Takeuchi, 1997). En fonction de l’objectif visé en termes de gestion de connaissances (conserver, créer, identifier, partager, etc.) et de culture d’entreprise, la connaissance des usages qui doivent être faits des SGC permet d’orienter leur conception et leur implémentation. Les systèmes ainsi mis en œuvre selon le contexte permettent de réduire les risques d’usages inappropriés et de soutenir au mieux l’apprentissage et le partage des connaissances.

Dans la section suivante, nous présentons l’historique de mise en œuvre des SGC qui a su la succession de trois générations de systèmes gérant des connaissances dans l’entreprise (Ackerman, Dachtera, Pipek, & Wulf, 2013; Hahn & Subramani, 1999).
2.1.3 Mise en œuvre des SGC

2.1.3.1 1ère génération : les mémoires documentaires et systèmes experts

La première génération de SGC comprend les systèmes de type mémoire d’entreprise tels que les entrepôts de données, les systèmes de gestion électronique de documents ou les livres de connaissance et ceux de capitalisation de connaissance experts. Pour mettre en place les mémoires d’entreprises, il convient d’évaluer les contours du patrimoine de connaissances de l’entreprise : l’ensemble du capital de connaissances explicites (documents de référence, les glossaires, les brevets, etc.) est référencé et capitalisé.

La mise en œuvre des systèmes de capitalisation experts passe par le processus de préservation des connaissances qui englobe les méthodes de modélisation, de formalisation et d’archivage des connaissances. En ingénierie des connaissances, les ontologies sont un exemple de méthode de modélisation. Elles permettent de capturer le modèle descriptif des connaissances de l’entreprise. Elles servent à donner une représentation unifiée du vocabulaire d’un domaine, et permettent ainsi une meilleure réutilisation de la connaissance. Toutefois c’est un exercice difficile et un projet à part entière compte tenu de la tâche délicate qui est de faire s’accorder des experts sur un langage unique. Un autre exemple est les réseaux d’experts. La cartographie des expertises internes sert à aiguiller les recommandations dans les outils de communautés de pratiques.

La formalisation englobe l’ensemble des procédures et savoir-faire qui structurent l’activité, de manière à les rendre ré-exploitables. Les méthodes de formalisation permettent d’instancier les modèles dans l’entreprise, d’expliciter de façon structurée les connaissances. Comme exemple de méthodes de formalisation, citons la méthodologie KADS (Knowledge Acquisition and Document Structuring) qui est une démarche de mise en place de système de connaissance depuis le recueil de la connaissance jusqu’au développement de la solution. Elle a été conçue en 1985, dans le cadre d’un projet de recherche européen (Programme Esprit CEE). C’est une méthode d’analyse et de modélisation centrée sur le cycle de vie de la connaissance et la modélisation de l’activité métier (Wielinga, Schreiber, & Breuker, 1992). La méthode KOD (Knowledge Oriented Design) proposée par Vogel en 1988 (Ermine, 2008) qui s’attache à modéliser la connaissance d’un expert à partir de son discours libre. La méthode MEREX (Prax, 2003) développée chez Renault propose de faire des retours d’expérience sous la forme de fiches. La méthode MASK (Ermine, 2008) qui consiste en la structuration des connaissances des experts en corpus de documents et d’informations, la diffusion de ces connaissances dans l’entreprise et...
leur intégration dans les processus de l’entreprise est basée sur un ensemble de modèles pour aborder l’activité et décrire la connaissance. La démarche aboutit à la publication d’une synthèse structurée des connaissances du domaine nommée ‘Livre de connaissances’. En leur état final, ces livres de connaissances constituent des centres multimédias d’une documentation sur la connaissance. Ils permettent de retrouver, de comprendre et d’utiliser les informations facilement. Les connaissances utiles ainsi formalisées sont sauvegardées dans les mémoires d’entreprises ou les systèmes experts en vue d’une réutilisation. Ces systèmes permettent de valoriser la connaissance ainsi captée par des fonctionnalités pour rendre la connaissance accessible, la diffuser, l’exploiter, la combiner, la créer ; par exemple les systèmes de gestion électroniques de documents fournissent des fonctionnalités pour l’acquisition des objets de connaissances, leur indexation, leur classement, la navigation, la recherche et la diffusion.

Néanmoins, le fait que les outils résultant de ces méthodes de modélisation et de formalisation ne prennent pas la plupart du temps en compte le profil de l’utilisateur qui interagit avec le système peut entraver leur utilisation. De plus, le fait de réduire la mémoire collective à de simples artefacts est utopique sans compter les problématiques de recherche d’information et d’ajout de méta données qui surviennent de façon récurrente. D’autres disciplines proposent des moyens qui répondent à cette faiblesse des méthodes classiques de conception des SCG. Ils proposent notamment des outils méthodologiques pour améliorer l’ergonomie des interfaces et des contenus.

Par exemple, le domaine de l’Interaction Homme Machine (IHM) étudie et conçoit des modalités d’interaction entre les utilisateurs et les artefacts technologiques. Le challenge est non seulement de produire des interactions utiles, utilisables et acceptables, mais aussi d’améliorer l’expérience de l’utilisateur conformément à son système de valeurs, à son contexte d’activité et ses objectifs. En effet, l’expérience utilisateur se définit comme l’ensemble des perceptions d’un utilisateur en situation d’interaction avec un produit (Garrett, 2011). Ces perceptions déterminent le succès ou l’échec d’un produit. La philosophie de la conception centrée utilisateur est une approche qui prend en considération les caractéristiques, les besoins et les attentes des utilisateurs vis-à-vis du système à chacune des étapes de conception (Nielsen, 1993). Cette tâche peut s’avérer complexe dans la mesure où les utilisateurs ne savent en général pas ce qu’ils veulent. (Mathis, 2011) présente quelques approches pour mieux cerner les attentes des utilisateurs et les mettre en œuvre de façon plus efficace. Comme outils de conception centrée utilisateur, nous pouvons citer par exemple les interviews contextuelles ou le compagnonnage qui est largement utilisé en gestion des connaissances pour la formalisation des connaissances. Les focus groupes sont également un outil puissant dans le cadre de la conception centrée utilisateur. L’utilisateur intéressé trouvera dans le papier de (Tremblay & Hevner,
une description détaillée de comment les conduire dans le cas de l’amélioration d’une plateforme. La conception centrée utilisateur affine la compréhension des besoins, des possibilités et des limites de l’utilisateur dans son activité et vis-à-vis d’une proposition technologique.

Pour répondre à la problématique de l’accessibilité et des différents modes d’accès au contenu informationnel, nous nous sommes intéressés à la discipline de l’architecture de l’information (AI).

L’AI s’intéresse à la présentation des informations, à la manière la plus adaptée de le faire, en fonction des futurs utilisateurs et de leur contexte d’usage. L’objectif visé par l’AI est de définir la forme qui rendra les informations les plus utilisables au sens de compréhensibles et exploitables. Ainsi, une bonne architecture informationnelle doit être explorable (l’utilisateur n’est pas désorienté), cohérente (sémantique adaptée au contexte d’usage), adaptable, simple (quantité d’information présentée juste suffisante), capable de faire des recommandations d’informations à consulter. Différentes méthodes sont proposées pour atteindre ces objectifs. (Resmini & Rosati, 2011) indiquent par exemple les méthodes taxonomiques (identification des relations hiérarchiques et des similarités sémantiques entre les concepts), les méthodes de tri de cartes qui sont utilisées pour identifier et organiser les super catégories et les catégories intermédiaires, représentant les grandes classes des besoins utilisateurs. (Garrett, 2011) propose un framework conceptuel plus global pour structurer la conception, particulièrement adapté pour les applications Web. Sa caractéristique principale est de dissocier et de coordonner la conception des fonctionnalités du produit et des informations qu’il doit prendre en compte. Cette méthode est basée sur cinq étapes : stratégie, périmètre, structure, squelette et surface. Ces étapes décrivent comment passer des éléments abstraits de la conception du produit aux éléments les plus concrets (cf. Figure 2.2).
Pour structurer l’information, des directives sont proposées (par exemple les approches bottom up et/ou top down pour la structuration de l’information) pour concevoir des systèmes d’information de manière plus cohérente, adaptable et plus simple (Resmini & Rosati, 2011). L’AI permet la construction d’une meilleure qualité des accès et du contenu.

2.1.3.2 2ème génération : les communautés de pratiques et réseaux d’experts

La deuxième génération de SGC met en exergue le partage de la connaissance des experts. Il diffère de la première génération en ce sens que le focus est sur les pratiques des collaborateurs et sur leurs connaissances tacites sans chercher à les formaliser de façon stricte. Il s’agit de trouver la bonne personne à qui s’adresser pour obtenir l’information la plus appropriée.

La connaissance tacite est extraite au moyen d’outils de repérage tels que le compagnonnage, les récits de situation (Story Telling) ou les jeux d’animation de groupe de type Mind Mapping ou les jeux de rôles (Prax, 2003). Ces approches peu formelles permettent de faire émerger de façon ludique le savoir implicite de l’acteur de connaissance. Ce sont également des moyens de valorisation de la connaissance tacite, celle-ci pouvant être identifiée et diffusée par ce biais sans nécessiter un besoin de formalisation. Cela se fait le plus souvent par socialisation avec la création de communautés de pratiques (CP). Au sein des entreprises, les communautés de pratiques sont des groupes de collaborateurs partageant un intérêt et des problèmes communs. Ils s’engagent mutuellement dans une entreprise commune par la complémentarité de leurs compétences et la capacité des individus à relier leurs connaissances avec celles des
autres (Hautdidier, 2006). Leur collaboration aboutit à la production d’un capital connaissances commun, à la fois explicite (documents, formulaires, etc.) et tacite (rituels, vocabulaire partagé, etc.).

L’actualisation de ces connaissances se fait par le biais de fonctionnalités de mise à jour de l’information. Les outils collaboratifs pour le support aux CP fournissent par exemple des espaces d’échanges ou des fonctions d’édition de contenu pour l’actualisation des connaissances. On peut également citer les campagnes spécifiques d’étude de terrain qui permettent d’identifier de nouvelles connaissances et ainsi d’enrichir le capital des connaissances.

Des problèmes peuvent néanmoins être relevés avec les systèmes de recommandation d’experts comme la question de la précision dans le développement des profils d’experts et les algorithmes de recherche ou les questions de contrôle et de vie privée (Ackerman et al., 2013).

2.1.3.3 3ème génération : les systèmes de socialisation et médias sociaux d’entreprise

La troisième génération de SGC correspond aux espaces de collaboration qui combinent les caractéristiques des deux premières générations à savoir les mémoires d’entreprises et les processus de communication et de collaboration. Un exemple parmi les plus récents est les médias sociaux d’entreprise (MSE) que les entreprises adoptent de plus en plus pour améliorer leur performance, particulièrement dans le contexte du partage de la connaissance (Ellison, Gibbs, & Weber, 2015). Ces nouveaux modes d’échange et de communication deviennent de plus en plus courants dans le quotidien des personnes. Ce sont des plateformes de socialisation qui supportent la recherche et le partage de connaissances.

Dans leur proposition, (Leonardi, Huysman, & Steinfield, 2013 p.2) définissent les fonctionnalités essentielles des médias sociaux d’entreprise comme : ‘[…] des plateformes web permettant aux travailleurs (1) de communiquer avec des collaborateurs spécifiques ou de diffuser des messages ; (2) d’indiquer explicitement ou révéler implicitement des collaborateurs spécifiques comme des partenaires de communication ; (3) de poster, éditer, filtrer du texte ou des fichiers qui leur sont reliés ou reliés à d’autres ; et (4) de voir les messages, les connexions, les textes, les fichiers communiqués, postés, édités et filtrés par n’importe qui d’autre dans l’organisation et cela à chaque fois qu’ils le veulent.’

Les médias sociaux, outils technologiques du web, incarnent les principes de celui-ci que sont l’ouverture et le partage avec un intérêt marqué pour la prise en compte de la relation humaine (Dudezert & Boughzala, 2008).

Dans le cadre de la gestion des connaissances, ils offrent à l’utilisateur une extension de leur mémoire avec une capacité à la diffusion et au partage de
cette mémoire. Ils favorisent l’échange d’information en temps réel et un filtrage élaboré de celui-ci grâce aux technologies RSS, au tagging ou au ranking. Ces fonctionnalités présentent des caractéristiques que nous exposons ci-après.

Les MSE permettent la visibilité et la persistance des actions communicatives en multipliant les personnes, les réseaux et les contextes dans lesquels les collaborateurs peuvent apprendre dans l’organisation. Ils constituent un moyen simple et rapide pour publier l’information, se rendre visible aux autres et réduire l’effort nécessaire pour savoir qui a communiqué et à quel sujet. (Ersoy & Güneyli, 2016) avancent que ces caractéristiques attirent particulièrement les utilisateurs en milieu professionnel, car il satisfait leur besoin de gratification. Comme fonctionnalités de visibilité et de persistance, nous pouvons citer la définition et la mise à jour de profils et de statuts, la connexion à et le suivi des personnes, le téléchargement ou la publication de contenus en temps réel (Leonardi et al., 2013). Créer un profil, l’adapter et l’enrichir offre aux personnes la possibilité de mettre en lumière des aspects de leur personnalité (Stocker & Müller, 2013).

Les MSE promeuvent par ailleurs, la participation, la collaboration et la gestion des connaissances conversationnelles (wikis, commentaires, fonctionnalités d’évaluations). Les commentaires sont un exemple emblématique d’expression et de communication. Les utilisateurs peuvent donner leur opinion et participer à la construction de contenus. En effet, l’information qui est capturée dans les SGC évolue et peut rapidement devenir obsolète. Cela est détecté le plus souvent par hasard et les personnes signalent les erreurs soit par email ou en personne lorsqu’ils n’oublient pas de le faire ! Les commentaires ont cet avantage que les collaborateurs peuvent exprimer leur avis ou signaler des erreurs juste-à-temps pour une construction adéquate du corpus informationnel (Kaplan & Haenlein, 2010). Ils réduisent les risques d’oubli et constituent un moyen de détecter, mais aussi de discriminer les informations obsolètes. Les fonctionnalités d’évaluation (les ‘j’aime’, les étoiles, etc.) sont un autre moyen d’interactivité et de participation. En effet, les contenus appréciés attirent l’œil et l’intérêt du lecteur, augmentant ainsi leur probabilité d’être consultés et de bénéficier de l’information. Ces fonctionnalités jouent également le rôle de motivateurs intrinsèques puisqu’ils aident à construire la réputation des auteurs : ceux qui soumettent les contenus voient une rétroaction concrète, la reconnaissance par leurs pairs de leurs contributions (Kietzmann, Hermkens, McCarthy, & Silvestre, 2011). Les wikis facilitent pour leur part la gestion des activités, l’innovation pour la résolution de problèmes, augmentent la réputation, facilitent l’activité et aident les entreprises à faciliter les processus métier (Turban, Bolloju, & Liang, 2011).

Un troisième principe des MSE est l’awareness qui est une notion centrale dans la discipline du travail collaboratif médié par ordinateur (en anglais,
Analyse théorique / Etat de l’art

De par leurs fonctionnalités, les MSE permettent justement aux collaborateurs d’être conscients de qui participe aux groupes de partage et de ce que les autres font (par les fonctions de notification, nombre de post, etc.) (Zhao, Salchi, Naranjit, & Alwaalan, 2013). Cette prise de conscience à travers l’affichage d’informations réflexives (c’est-à-dire sur ce que l’on fait et aussi ce que font les autres) développe la métacompréhension (c’est-à-dire comprendre comment on utilise et apprend à travers le média) des utilisateurs. L’awareness devient donc la source de connaissance et d’apprentissage. Par exemple, on peut citer les indicateurs de l’activité que l’on peut trouver dans les blogs et présentés sous forme de notifications de qui et quand sont faites de nouvelles soumissions, du nombre de commentaires, statut des contributions, qui permettent d’apprendre de l’activité des autres. Les indicateurs de qualité que l’on trouve dans les articles de wiki expriment des critères de qualité de l’information tels que la lisibilité ou la complétude. Ils servent à développer l’appréciation des contenus et évaluer dans quelles mesures ils peuvent être améliorés. Les indicateurs dans les médias sociaux aident au tri de l’information. De plus, la prise de conscience du groupe développe la connaissance sociale et de l’environnement collaboratif que le collaborateur utilise. Elle fournit des informations pour faciliter la coordination des activités dans l’espace de contenu (espace de collaboration ou on échange, discute ou résout des problèmes) ou l’espace social (espace de climat positif, effectif et de collaboration efficace) (Janssen, Erkens, & Kirschner, 2011). Elle supporte la communication particulièrement dans les groupes de partage de connaissance tels que les communautés de pratiques.

2.1.4 Positionnement

Les MSE fournissent des outils permettant l’acquisition de connaissances (par les diverses fonctionnalités de soumission et de recherche de contenu), l’identification et l’accessibilité aux réseaux d’experts, la préservation de l’information (par la caractéristique de persistance de l’information), la visibilité et l’actualisation des connaissances. Ils rencontrent ainsi de plus en plus de succès dans les entreprises. Pour ces raisons, nous nous intéresserons particulière-
ment aux avantages et aux risques liés à l’usage de ces types de SGC dans le processus de gestion des connaissances. Nous analysons avant toute chose dans la section suivante, les facteurs favorisant et/ou limitant l’usage optimal des SGC. À l’instar de (Prax, 2003), nous les avons classés en trois catégories : les facteurs technologiques, les facteurs personnels (éléments de jugement personnel, intrinsèques à la personne) et les facteurs sociaux (relevant de l’environnement interpersonnel et organisationnel).

2.2 Facteurs influençant l’usage des SGC
La recherche en Sciences de l’information fait état de nombreux modèles proposant des facteurs influençant l’usage des technologies. Ils permettent d’apporter des réponses à la problématique de l’adoption des technologies (Hevner, March, & Park, 2004). Dans cette section, nous commençons par aborder les modèles majeurs proposés dans cette discipline avec les différents facteurs les composant puis nous présenterons ceux intervenant dans l’usage des SGC.

2.2.1 Les modèles de l’adoption des technologies
L’adoption des technologies est décrite par les modèles d’acceptation qui montrent un processus cognitif démarrant par un stimulus conduisant à l’émergence de croyances et d’attitudes plus ou moins modérées. Celles-ci induisent des intentions positives ou négatives conduisant théoriquement à la réalisation du comportement d’usage de la technologie.

La quasi-totalité de la littérature sur l’adoption des technologies considère ce processus en deux étapes : l’usage initial puis l’usage continu. (Bobilier-Chaumont & Dubois, 2009) parlent à ce sujet d’acceptation a priori (ou acceptabilité) qui est l’évaluation que l’utilisateur effectue en amont de l’usage du SGC et d’acceptation in situ qui est l’expérimentation concrète de l’acceptabilité du SGC mis à disposition. L’adoption est donc le résultat de l’acceptabilité du système (déterminé par les fonctionnalités disponibles et les particularités technologiques du système) et de son acceptation qui est liée à l’individu et à l’environnement dans lequel il se situe. C’est l’utilisateur qui ayant initialement accepté la technologie, continuera de l’utiliser de façon effective et continue. Ses considérations cognitives doivent être prises en compte lors de la conception du SGC pour que celui-ci soit adopté.

2.2.1.1 Les facteurs d’usage initial
Les différents facteurs pris en compte dans les modèles d’acceptation des technologies tirent pour la plupart leur origine des théories de la psychologie sociale (telles que la théorie de l’action raisonnée (Sheppard, Hartwick, & Warshaw,

De même, le domaine de la gestion des connaissances a proposé des facteurs d’acceptation et de succès des SGC. Le but était de fournir un matériel d’évaluation du succès des SGC en entreprise, de stimuler le management sur ce qui est important et justifier les investissements en gestion des connaissances. (Jennex & Olfman, 2006) reprennent ainsi les facteurs de ISSM en les adaptant au contexte de la gestion des connaissances notamment au sujet du facteur *qualité de l’information* qu’ils reprennent en *qualité de la connaissance*. (Kulkarni, Ravindran, & Freeze, 2007) en font de même lorsqu’ils considèrent le contenu de la connaissance, la qualité du système et le support organisationnel comme déterminants des bénéfices nets et de l’usage de la connaissance.

Facteurs technologiques

Les facteurs technologiques de l’acceptation et d’usage initial des systèmes d’information que nous avons tirés des modèles ISSM et ISSM2 sont : la qualité du SI qui définit et permet d’évaluer les fonctionnalités requises pour le type de système, la qualité de l’information qui définit et permet d’évaluer les caractéristiques de l’information propres au système et la qualité du service qui définit et permet d’évaluer le support mis à disposition par le fournisseur du service.

Facteurs personnels

Dans les facteurs personnels de l’acceptation initiale des technologies, nous avons classé toutes les croyances subjectives des utilisateurs. Issus des modèles TAM, ISSM, ISSM2, UTAUT et UTAUT2, ce sont : l’utilité perçue qui est la croyance que l’usage d’une technologie augmente les performances professionnelles, la facilité d’usage perçue (nommée également effort dans d’autres modèles) qui est la croyance ou la perception que la technologie sera plus ou moins difficile à comprendre et à utiliser, la satisfaction qui est l’état émotionnel positif résultant de l’utilisation du système, la performance qui est la croyance que l’utilisation du système améliore les performances professionnelles, les motivations hédoniques qui sont le plaisir et l’amusement que l’utilisateur tire de l’usage du système. L’habitude qui est le comportement automatique acquis suite à un apprentissage influence également l’usage effectif du système.

Dans le cadre de la gestion des connaissances, les facteurs personnels de l’acceptation et d’usage initial des SGC (Ericsson & Avdic, 2005; He & Wei, 2009; M.-J. J. Lin et al., 2009; T. Lin & Huang, 2008) sont : l’utilité qui est la perception pour l’utilisateur de l’intérêt de l’usage du SGC, celle-ci est stimulée en apportant une attention particulière à l’intégration du système aux pratiques des travailleurs ; les bénéfices de la contribution qui mesurent les avantages que l’utilisateur obtient lorsqu’il soumet du contenu dans le SGC : la joie, une meal-
leur image et l’augmentation de son influence, la réciprocité, les diverses récompenses organisationnelles... de même les bénéfices de la recherche mesurent les avantages que l’utilisateur obtient lorsqu’il recherche du contenu dans le SGC, notamment l’augmentation de sa connaissance ; les perceptions personnelles constituent le dernier groupe de facteurs personnels que nous citons et qui englobe la confiance en soi (confiance que les utilisateurs ont dans la réalisation de leurs tâches), la compatibilité perçue (l’acte de partage concorde avec son système originel de valeurs) ; ces facteurs influencent le partage de connaissance et la loyauté au SGC et à la communauté.

Facteurs sociaux et environnementaux

Nous avons classé dans cette section les croyances liées aux groupes, à l’interaction entre les utilisateurs à travers la technologie et à l’action de l’environnement organisationnel. Les facteurs sociaux de l’acceptation initiale des technologies sont : l’influence sociale qui se définit par les normes subjectives (impact de la perception de la culture d’utilisation des groupes de référence : en effet les personnes/groupes importants aux yeux de l’utilisateur ont un impact sur ses choix d’utilisation), par le statut social et l’image de l’individu dans le groupe ; les conditions facilitatrices qui sont la croyance qu’il existe un support organisationnel et technique de l’utilisation du système, la perception des contraintes internes et externes sur le comportement d’usage de la technologie : la disponibilité des ressources, la disponibilité technologique, l’aide disponible, la compatibilité qui fait que le système est cohérent avec les valeurs, les besoins et les expériences des utilisateurs ; le coût du système (son prix) est le dernier facteur environnemental que nous citons, il influence également l’utilisation d’une technologie.

Dans le cadre de la gestion des connaissances, les facteurs sociaux et environnementaux de l’acceptation initiale des SGC (Jennex & Olfman, 2006; Kulkarni et al., 2007; Lehner & Haas, 2010; M.-J. J. Lin et al., 2009) sont : la qualité du service qui évalue le support du management, le leadership des facilitateurs et l’implication des pairs ; la performance du projet qui englobe le niveau d’expertise du staff, le processus de gestion des connaissances, les choix de contenu, la présentation et l’organisation de la connaissance, l’utilisabilité du système, la facilité d’usage perçue et la cohérence avec les tâches soutenues ; la volonté du management qui englobe des facteurs tels que le support financier et la disponibilité du top management, les relations sociales et la personnalité des acteurs de la connaissance (le caractère de chacun, la volonté des membres du projet, etc.), les buts du système, la délégation/participation (définition claire des rôles, des responsabilités et des compétences), la culture des travailleurs vis-à-vis du partage des connaissances ; et les normes de réciprocité qui éva-
luent si l'échange de connaissance est mutuel et perçu comme obligatoire et juste ; cela influence la confiance entre les gens et donc le partage de connaissance.

Ces différents facteurs combinés avec la qualité technologique et informationnelle du SGC vont favoriser l’acceptation du système par les collaborateurs et son utilisation. Au cours de l’utilisation, les croyances a priori suscitées initialement par le système vont se consolider et évoluer. On entre alors dans la phase de l’expérience utilisateur qui va déterminer la continuité de l’usage du système.

2.2.1.2 Les facteurs d’usage continu
L’usage continu se réfère à la tendance à poursuivre l’utilisation d’une technologie suite à son adoption initiale. Le comportement d’usage continu est favorisé par une acceptation a priori du système, l’utilisation initiale et une expérience utilisateur positive. Nous décririons cette dernière dans la section suivante.

Expérience utilisateur et appropriation
L’expérience utilisateur se définit comme étant l'expérience que suscite un outil lorsqu'un utilisateur entre en contact avec celui-ci. (Garrett, 2011) avance qu’il s’agit pour l’utilisateur de répondre aux problématiques d’interactions avec le système, d’évaluer la difficulté d’utilisation des fonctionnalités proposées par le système. (Kraft, 2012) en reprenant la définition du standard iso (“Human centered design for interactive systems (ISO FDIS 9241-210:2009),” n.d.) avance que l’expérience utilisateur est l'ensemble des perceptions et réponses résultant de l'utilisation effective ou anticipée d'un produit ou d'un service.

Lors de cette phase émerge le processus d’appropriation par lequel l’utilisateur va compléter le travail du concepteur en rendant l'outil fonctionnel dans son contexte de travail (Belin & Prié, 2012). La théorie de l’activité explique qu’il s’effectue en deux processus réciproques que sont l'instrumentation où l'utilisateur va personnaliser l’utilisation des fonctionnalités dans des contextes qui lui sont spécifiques et l’instrumentalisation par lequel l’artefact va faire émerger chez l’utilisateur de nouveaux schémas d’usage.

Dans le cadre de la gestion des connaissances, (Folcher, 2003) souligne l’importance de l’organisation de l’information dans le processus d’appropriation. Il ne suffit pas pour le système d’avoir un corpus informationnel rempli, les contenus doivent être au contraire intégrés dans le contexte de travail et leur structuration bien définie ; il y a un besoin d’unification « des formes de l’activité avec celles de l’instrument ». De même, (Ericsson & Avdic, 2005) avancent qu’il doit y avoir correspondance entre les pratiques des utilisateurs et la technologie. Cela se fait pendant le développement de la technologie,
c’est-à-dire les phases d’analyse, de conception, de construction et d’implémentation du SGC. De plus en impliquant les travailleurs dans le choix et la signification des concepts gérés par le système, la connaissance représentée ne perd ni son origine, ni sa signification. Il faut une proximité entre la perception des concepts par les utilisateurs et leur représentation dans le système.

Continuité de l’usage

Le modèle ECM (Expectation Confirmation Model) (Bhattacherjee, 2001) présente les variables influençant l’acceptation continue des technologies. Ce sont l’utilité perçue et la confirmation (qui est la croyance résultant de l'évaluation cognitive du couple attentes-performances), ils vont influencer la satisfaction qui à son tour va influencer l’intention d’usage continu (intention positive ou négative de continuer à utiliser la technologie) puis l’usage continu du système.

2.2.2 Les facteurs influençant l’usage des MSE

Nous avons précisé dans la section 2.1.4, notre intérêt pour le type particulier de SGC que sont les MSE. Dans cette section, nous présentons les particularités technologiques, personnelles et sociales des MSE, qui favorisent leur adoption et leur succès en entreprise.

2.2.2.1 Facteurs technologiques

Le principal facteur technologique favorisant l’usage des MSE est la qualité du système réfiée par la facilité d’usage, l’utilisabilité et la diversité des fonctionnalités de collaboration et de partage proposées aux utilisateurs. Les MSE sont facilement adaptables au profil des utilisateurs et facilitent l’accessibilité à l’information, la connexion avec les pairs, les échanges synchrones et asynchrones et la communication. La qualité des objets de connaissances manipulées est favorisée par les facilités de soumission et de recherche de contenu, d’avis ou de commentaires, mais peut constituer un facteur bloquant en termes d’exhaustivité (certains médias sociaux ne favorisant que des échanges brefs et peu précis).

2.2.2.2 Facteurs personnels

Les facteurs personnels de l’usage des MSE sont les croyances subjectives de l’intérêt de ces systèmes pour l’utilisateur et qui l’encouragent à les utiliser. Ce sont : l’habitude (en effet, avec l’avènement du web 2.0, les médias sociaux font partie intégrante du quotidien et la plupart des utilisateurs en sont aujourd’hui familiers), l’utilité perçue, des bénéfices nets tels que l’apprentissage et
l’augmentation de la connaissance, la reconnaissance par les pairs et par l’organisation du fait de la visibilité que permettent les MSE.

2.2.2.3 Facteurs sociaux
La dimension sociale est une des forces majeures des MSE et joue un rôle important dans leur adoption par les utilisateurs. Nous avons classé dans cette catégorie les croyances subjectives et les bénéfices suscités par la collaboration et la participation des pairs dans le système, les croyances nées de l’interaction avec ceux-ci telles que les relations sociales, l’augmentation de l’influence sociale, la confiance et la réciprocité. Les MSE favorisent l’accès, la mutualisation et le partage des connaissances dans l’entreprise par le biais des technologies collaboratives et des modes de collaboration libres (pair-à-pair, wikis ou blogs) (Dudezert & Boughzala, 2008).

2.2.3 Nécessité de moyens de régulation
Les déterminants de l’usage des SGC interviennent dans les trois niveaux technologique, personnel et social comme nous le présentons dans les sections précédentes. Ils permettent d’assurer le succès des initiatives de KM, mais la pratique dévoile cependant des insuffisances dues à la nature dynamique et changeante du système Humain-Dispositif numérique-Organisation dans lequel est implémenté le processus de KM. Ces insuffisances s’illustrent notamment en ingénierie classique pour la conception des SGC de première génération (cf. section 2.1.3) qui dénote une faible prise en compte des attentes de l’utilisateur final en termes d’ergonomie, de facilité d’usage, de collaboration ou encore de stimulation. Les systèmes en résultant ne couvrent pas le plus souvent toutes les étapes de l’adoption du SGC, ce qui peut augmenter les risques d’échec des initiatives de gestion des connaissances.

Il y a alors une nécessité de mettre en place des éléments de régulation pour corriger ces limites et/ou maintenir un contrôle et une supervision de l’usage permettant de prendre des décisions stratégiques pour limiter les risques de non ou de mauvaise utilisation du SGC. Dans ce contexte, (Graessser, 2009, 2011) recommande par exemple de privilégier des stratégies basées sur l’autorégulation et métacognition de manière à former les utilisateurs à mieux comprendre leurs propres processus d’apprentissage et ainsi faciliter l’appropriation de la technologie. Pour le cas des MSE, (Turban et al., 2011) propose des solutions pour réduire les risques d’utilisation détournée qui peuvent subvenir par exemple : en mettant en place une gouvernance et des règles pour la gestion des MSE, en éduquant les employés, en effectuant des phases d’introduction pour tester l’accueil du MSE, en contrôlant, supervisant ou filtrant les accès. Ces solutions peuvent néanmoins se révéler chronophages et coût-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI095/these.pdf
© [C. Toure], [2017], INSA Lyon, tous droits réservés
teuses spécialement pour les entreprises avec des budgets limités qui ont besoin de solutions simples et rapides de partage de connaissances.

Nous présentons dans la section suivante des moyens de régulation de l’usage des SGC.

2.3 Moyens de régulation de l’usage des SGC

La régulation de l’usage se définit comme toute action que l’on propose à l’utilisateur pour favoriser et développer, lors de l'utilisation d’une technologie, les processus d'adaptation, d'engagement, de participation, d’apprentissage et de développement chez les individus ou les communautés (Michel, 2015). Elle englobe et fournit les outils nécessaires pour mettre en œuvre les facteurs favorisant l’usage continu tel que décrit dans la section 2.2.1.2.

De la littérature se dégagent deux approches majeures de régulation des systèmes : les méthodes humaines d’accompagnement ou de pilotage et celles technologiques. Le domaine de la gestion des connaissances utilise ces deux approches, mais a néanmoins traditionnellement plus eu recours aux méthodes humaines d’accompagnement et de pilotage.

2.3.1 Les méthodes humaines de pilotage

Utilisées traditionnellement dans les processus de gestion de connaissance, les méthodes d’accompagnement et de pilotage servent à assurer l’acceptation et la pérennité des SGC. Elles sont de nature variée : conduite du changement, stimulation de la confiance, campagnes d’évaluation qualitative pour suivre les usages et appliquer les leviers du management (Prax, 2003).

(Prax, 2000) avance que la conduite du changement requiert des compétences en sociologie des organisations et en communication, de l’exemplarité, de la pédagogie et de la coercition (aller à l’encontre des idées reçues et des routines défensives telles que le syndrome du ‘je n’ai pas le temps’). La présence de facilitateurs et la mise en place de projets concrets (par exemple les plans de sensibilisation, les groupes de pilotage ou un cadre technologique cohérent) sont également nécessaires. Cependant, la mise en place de ces actions stratégiques peut être soutenue et facilitée par la technologie au travers de supports d’aide à la décision, ceux-ci font partie des méthodes de régulations technologiques.

2.3.2 Les méthodes de régulation technologiques

Dans notre travail, nous considérons comme régulation technologique toute fonction de suivi et de stimulation pour soutenir la supervision des usages de la technologie et pour leur auto régulation. Ces méthodes sont employées seules ou
en renfort à des méthodes de pilotage humain et peuvent être adressées aussi bien aux acteurs financiers qu’aux collaborateurs de la composante décision de l’entreprise. (Volet, Vauras, & Salonen, 2009) avancent que les moyens pour l’autorégulation se concentrent sur les processus cognitifs et métacognitifs, utilisés par des individus pour planifier, mettre en œuvre et renforcer les actions qu’ils ont eux-mêmes choisi de réaliser. Parmi ces moyens, on compte les indicateurs pour aider les utilisateurs à la prise de conscience de l’activité (Schmidt, 2002) ou encore les systèmes d’assistance pour pallier les problématiques de prise en main auxquelles peuvent être confrontés les utilisateurs (Ginon & Jean-Daubias, 2013).

2.3.2.1 Les systèmes d’assistance

Les systèmes d’assistance aux utilisateurs sont des outils permettant de soutenir l’utilisation des applications informatiques (Ginon, Jean-Daubias, Champin, & Lefevre, 2014). Les systèmes d’assistance permettent d’éviter la sous-exploitation ou le rejet du logiciel. Les auteurs définissent l’assistance comme l’ensemble des moyens qui permettent de faciliter la prise en main et l’utilisation d’une application, de manière adaptée à l’utilisateur et au contexte d’utilisation. Elle vise à permettre à l’utilisateur d’exploiter pleinement toutes les possibilités d’une application, et elle facilite l’appropriation des connaissances et compétences nécessaires à l’utilisation de cette application. Cette assistance se fait sous forme de messages d’information, de conseils ou encore de vidéo d’exemples (Ginon & Jean-Daubias, 2013). On distingue l’assistance qui consiste à aider à prendre en main l’outil et celle qui consiste à finaliser une tâche. C’est à cette dernière que nous nous intéressons.

Dans ces systèmes d’assistance, les indicateurs sont abondamment utilisés pour le soutien et la supervision de l’activité.

2.3.2.2 Les indicateurs comme moyen de régulation de l’usage

Qu’est-ce qu’un indicateur ?

Dans son travail de thèse, (Gendron, 2010) fournit plusieurs définitions génériques du concept d’indicateur que l’on retrouve dans des domaines variés tels que l’informatique, la finance, la météorologie, etc. Nous retiendrons néanmoins la définition reprise de (Dimitracopoulou & Bruillard, 2006) qui qualifie les indicateurs de l’activité d’usage numérique de « variables décrivant, représentant ou même évaluant, un facteur relatif au mode, au processus, ou à la qualité de l’activité du système cognitif considéré[...]. Ils fournissent des moyens d’abstraire, de synthétiser, d’inférer et souvent de visualiser des informations. »
Les indicateurs sont calculés à partir des traces de l’activité des utilisateurs sur la plateforme. Lorsqu’ils sont adressés aux utilisateurs finaux, ils permettent de susciter l’émergence de processus cognitifs attendus chez la personne et de générer les croyances nécessaires à l’adoption de la technologie. Ils soutiennent l’autorégulation de l’usage du système. Lorsqu’ils sont adressés à des acteurs avec un pouvoir de décision plus élevé, ils permettent d’observer l’utilisation de la plateforme et d’anticiper les problèmes d’usage pouvant survenir. Ils viennent en renfort de l’accompagnement humain en fournissant les moyens d’adapter la stratégie d’animation des équipes ou de mettre en œuvre des actions spécifiques pour résoudre les problèmes observés. L’observation de l’activité se fait au moyen d’outils d’analyse tels que les éditeurs d’indicateurs ou les tableaux de bord décisionnels. Ces outils pour optimiser la prise de décision doivent être porté de compréhension des utilisateurs cibles (Devillers, Bédard, & Gervais, 2004); il est important que les utilisateurs comprennent les indicateurs qui leur sont présentés, leur sémantique, leur méthode de construction et qu’ils puissent les manipuler au besoin.

Dans le cadre de cette thèse et notamment du fait de l’intérêt de notre équipe de recherche pour les problématiques de régulation d’activités par les traces d’activité, nous nous sommes particulièrement intéressés aux indicateurs de l’activité pour l’autorégulation et l’aide à la décision par la supervision. Le lecteur intéressé trouvera en Annexe 1, une présentation de l’ingénierie des indicateurs par les traces d’activité. Ces indicateurs peuvent notamment être utilisés soit pour la régulation des SGC, soit pour les aspects de socialisation, importants dans cette démarche.

Indicateurs pour la régulation des SGC

De l’analyse des facteurs technologiques, personnels et sociaux favorisant l’adoption des SGC (cf. section 2.2), nous proposons une classification d’indicateurs pour la régulation des SGC dont l’objectif est de présenter aux collaborateurs des informations pouvant susciter l’émergence de croyances favorables à l’usage du système. Ils sont répartis en trois classes, les *indicateurs de stimulation* (par l’awareness, la réflexivité et la collaboration), les *indicateurs de qualité de la connaissance* et les *indicateurs de suivi et de supervision* de l’activité.

Dans les indicateurs de stimulation, nous considérons les indicateurs pour la prise de conscience (*l’awareness*) de la rétroaction (*feedback*) des autres utilisateurs, les indicateurs réflexifs de l’activité permettant à l’utilisateur de prendre conscience de sa propre activité, les indicateurs de la collaboration pour la prise de conscience de l’activité sociale qui favorise chez l’utilisateur l’émergence de croyances sociales favorables à l’adoption. Dans les MSE et les
SGC de socialisation par exemple, il peut être ainsi intéressant de proposer aux utilisateurs finaux des indicateurs tels que le nombre de commentaires par contribution, les likes, le fil des contributions, le nombre et les caractéristiques des contributions, les auteurs qui fournissent des informations spécifiques sur l’activité.

Les indicateurs de la qualité de l’information et des objets de connaissance permettent aux utilisateurs de prendre conscience de la qualité du contenu qui lui est proposé et de participer à son enrichissement. Ils favorisent notamment les croyances de confiance, d’utilité et de performance. Les indicateurs de qualité du contenu sont réifiés par des données telles que la fréquence de mise à jour du contenu, la fréquence des échanges sur le contenu, la diversité et/ou l’expertise des contributeurs, la lisibilité du contenu, son exhaustivité ou encore son accessibilité (Lee, Strong, Kahn, & Wang, 2002; Salau & Flores, 2001).

Le troisième groupe d’indicateurs est le plus souvent proposé aux acteurs de décision pour la supervision de l’activité sur le SGC et la prise de décision stratégique. Leur implémentation nécessite d’étudier le contexte dans lequel ils seront déployés. Dans les cas des SGC de socialisation, les indicateurs de supervision doivent permettre de prendre conscience du fonctionnement des différentes communautés de partage de connaissance. Ce sont les indicateurs illustrant le degré d’identification des membres à la communauté (taux de connexion à la plateforme de partage, taux de nouvelles connexions, fréquence des visites de la plateforme, temps moyen passé sur la page de sa communauté, évolution dans le temps de ces éléments), les échanges de connaissances entre les membres (caractéristique des objets manipulés, taux d’ajout des nouveaux objets de connaissances, taux de modification, de suppression, de recherche, workflow de modération, évolution dans le temps de ces éléments), la création de nouvelles connaissances, et le degré d’intégration des connaissances dans l’activité quotidienne (nombre d’accès disponibles et utilisés de et vers les autres SI de l’organisation, caractéristiques des schémas de connexion à la plateforme) (Hautdidier, 2006) (Kaushik, 2011).

2.4 Discussions

Dans ce travail de recherche, nous nous intéressons à la question générale de la pérennisation de l’usage des SGC d’entreprises. Nous avons étudié cette problématique selon l’angle de la théorie de l’adoption des technologies telle que proposée par le domaine des sciences de l’information à travers les grands modèles de l’acceptation des usages. Pérenniser les usages revient à mettre en œuvre des moyens pour favoriser l’usage initial et continu du SGC et à réguler cet usage par la stimulation et le suivi stratégique de l’activité. Nous avons choisi de nous intéresser particulièrement aux MSE car bien qu’utilisés de plus en
plus dans les entreprises pour la socialisation et les échanges de connaissances, peu de travaux se sont attachés à étudier l’impact de l’usage de ces types de systèmes dans le succès des initiatives de gestion de connaissance (Leonardi et al., 2013). Les MSE constituent un exemple emblématique des SGC de troisième génération mettant en œuvre des fonctionnalités favorisant la chaîne de valorisation de la connaissance, nous discutons dans la section suivante le rôle qu’ils peuvent jouer dans le succès des initiatives de gestion des connaissances.

2.4.1 1er point de discussion : les MSE dans le succès du KM

Nous avons présenté dans la section 2.1.3.3, les principales caractéristiques des MSE qui encourage la pérennité de l’usage du SGC et favorise ainsi la valorisation du capital connaissance.

Des limites peuvent néanmoins être relevées. Elles sont réparties en deux groupes : les risques liés aux contenus publiés par les utilisateurs et ceux liés à l’utilisation des MSE (Turban et al., 2011). Le premier groupe de risques concerne l’utilisation des MSE. En effet, le succès des médias sociaux dépend aussi des connaissances technologiques, des capacités et attitudes des utilisateurs. Une utilisation appropriée de ceux-ci requiert des utilisateurs une bonne connaissance des technologies 2.0, une bonne capacité cognitive pour chercher, analyser puis se faire un jugement de toute l’information recueillie, et la volonté d’interagir via des solutions digitales (Benson, Johnson, & Kuchinke, 2002). En milieu professionnel particulièrement, les utilisateurs peuvent être réfractaires à participer. A l’opposé, on peut également observer une utilisation abusive du MSE (perte de temps ou abus des ressources internet). Le second groupe de
risques concerne la validité et la qualité de l’information créée et publiée. Bien qu’ils présentent des aspects positifs pour le partage de connaissances en entreprise, les MSE ne constituent pas forcément un corpus informationnel de base de qualité. En effet, on trouve un grand nombre de sources d’information inutiles et désinformatrices alors que la mémoire organisationnelle de l’entreprise requiert des objets de connaissance détaillés et attestés, quelquefois techniquement complexes. Dans les MSE, les informations sont souvent brèves avec des contenus génériques et sans détail. Prenons l’exemple des commentaires que l’on peut laisser sur les pages de wiki qui conviennent aux actions de mises à jour mais qui ne permettent pas de construire le corps d’information de base. Par ailleurs, il y a le risque pour les collaborateurs de se laisser aller à des comportements informels tels que l’usage de langage familier (commentaires offensants, potentiellement dangereux…), la diffusion d’informations confidentielles ou incomplètes, l’usage des fonctionnalités d’évaluations pour le harcèlement des collègues. Discerner la qualité de l’information revient aux utilisateurs qui ont finalement très peu de contrôle sur celle-ci dans ces environnements aussi libres (Benson et al., 2002; Turban et al., 2011). Ceci peut affecter négativement l’usage du SGC et le partage de connaissances.

Ces risques peuvent être contrôlés en mettant en place des dispositifs de supervision de l’activité. Cette solution répond à notre deuxième objectif de ce travail de recherche de mettre en place des moyens de suivi continu de l’usage des SGC (cf. section 1.3). Ces dispositifs peuvent être obtenus grâce aux traces d’activités des utilisateurs qui sont collectables relativement aisément au sein des MSE du fait de la caractéristique de persistance des actions. La section sur les indicateurs pour la régulation des SGC nous a permis de présenter des indicateurs de supervision qui s’adaptent au cas des MSE, cette solution pose néanmoins la problématique de l’accueil de ce contrôle par les utilisateurs au sein de plateformes où la liberté est un principe majeur.

Pour conclure, les MSE présentent des caractéristiques qui suscitent des croyances adéquates pour leur usage pérenne. Dans ce sens, ils se présentent en théorie comme des types de SGC favorisant le succès du KM en entreprise ; ce constat fait émerger la question de recherche plus générale de :

- Quels sont les aspects ou facettes d’un SGC que l’on pourrait qualifier de pérenne, c’est-à-dire les caractéristiques fonctionnelles du système qui susciteraient une utilisation durable ?

Les MSE révèlent cependant des limites qui peuvent être contenues par la mise en place d’une supervision des usages. Ce suivi qui apparaît comme antinomique du principe de liberté d’expression qui est propre aux MSE soulève la question de recherche :
- Comment rendre le contrôle et la supervision des usages acceptables pour les utilisateurs de manière à réduire le risque de mauvais usage sans freiner l'usage lui-même ?

2.4.2 2ème point de discussion : la régulation pérenne des SGC

Dans la section 2.3, nous présentons les moyens de régulation de l’usage des SGC. En effet, même si des conditions d’utilisation sont optimales à un moment donné, cet état peut évoluer du fait de la nature même de l’entreprise qui est dynamique (changement de technologie, de management ou des humains). Il y a donc nécessité de mettre en place en parallèle des moyens de régulation pour la pérennité des usages. Dans le cadre de la gestion des connaissances, ceux-ci sont traditionnellement de nature stratégique et managériale (mesure d’accompagnement au changement, pilotage humain). Nous avons également les régulations de type technologique qui peuvent être utilisées seules ou en renfort des actions humaines. Les indicateurs sont un outil de régulation à la fois technologique et humain selon les acteurs à qui ils sont adressés. Ils permettent la réflexivité, l’awareness et l’auto régulation lorsqu’ils sont présentés aux utilisateurs finaux, et permettent la supervision de l’activité et la prise de décision stratégique lorsqu’ils sont présentés aux acteurs avec un pouvoir de décision.

Les indicateurs pour la régulation des SGC de socialisation (indicateurs de régulation, indicateurs de qualité de l’information et indicateurs de suivi et de supervision) que nous présentons dans la section 2.3.2.2 agissent à deux niveaux et permettent une double boucle de régulation.

La première boucle de régulation s’effectue au niveau personnel. Elle consiste en la mise en place dans le système d’éléments de motivation et de stimulation de l’attention de l’utilisateur. Les indicateurs de régulation et de qualité de l’information servent ce but. Par exemple, signaler à la personne que quelqu’un vient de répondre à une de ses soumissions de contenu stimule la prise de conscience de l’intérêt que suscite sur la plateforme la participation de l’utilisateur. Ces éléments de stimulation promeuvent l’émergence de croyances favorables à l’acceptation et à l’usage continu de la plateforme. Les paradigmes comportementaux proposés par les modèles de l’adoption des systèmes illustrent bien ce fait et révèlent une continuité, une évolution des croyances conduisant à l’usage continu du système.

A ce processus d’auto régulation s’ajoute une autre boucle de régulation qui, elle, s’effectue au niveau technologique, au niveau de l’outil. Les indicateurs de suivi et de supervision alimentent cette deuxième boucle. Elle consiste en effet, en se basant sur les observations de l’activité des utilisateurs et sur les changements de l’environnement, à faire évoluer l’outil pour mieux l’adapter au contexte. Ces observations de l’usage de la plateforme se font en amont ou en

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI095/these.pdf
© [C. Toure], [2017], INSA Lyon, tous droits réservés
aval de l’usage de l’outil par le biais d’évaluations qualitatives, mais peuvent aussi être effectuées au cours de l’usage par la mise en place d’indicateurs de suivi de l’activité. Par exemple, observer que les utilisateurs ont tendance à utiliser une fonctionnalité beaucoup plus qu’une autre, peut entraîner la décision, en accord avec la stratégie de KM, de supprimer cette dernière ou de proposer des moyens complémentaires pour son amélioration.

Les deux boucles de régulation agissent réciproquement sur les usages. Les éléments de stimulation font évoluer les croyances et donc les comportements d’usage qui à leur tour, en fonction des observations de l’activité peuvent faire évoluer l’outil. Ce constat soulève la question de recherche ci-après :
- Quelle méthode unifiée proposer pour assurer une régulation pérenne des SGC ?

A cela, nous rajoutons la question suivante, à l’instar de (Ackerman et al., 2013) :
- Quelle méthodologie de conception à échelle micro mettre en œuvre pour une spécification de SGC pérenne, c’est-à-dire pour proposer aux utilisateurs une plateforme acceptable, adaptée et pour conduire une régulation durable ?

2.4.3 3ème point de discussion : la faiblesse des méthodes classiques d’ingénierie de la connaissance

En considérant les méthodes classiques de l’ingénierie des connaissances notamment pour la conception des mémoires documentaires et des outils à l’attention des communautés de pratiques (cf. section 2.1.3), nous remarquons qu’elles sont incomplètes du fait de la faible considération de l’utilisateur final dans le processus de conception, ce qui conduit à des SGC éloignés des attentes des utilisateurs.

En effet, les méthodes classiques telles que KADS, KOD, MASK, MERE, etc. intervenant dans la conception des SGC consistent essentiellement en la formalisation de l’ensemble des procédures et savoir-faire qui structurent l’activité, de manière à les rendre ré-exploitable. Ces méthodes sont essentiellement centrées sur la formalisation de la connaissance, elles font appel aux experts métiers mais ne prennent pas en compte les préférences fonctionnelles des collaborateurs en tant qu’utilisateurs finaux interagissant avec le système. Si le produit résultant est inadapté, cela peut entraver le partage et l’exploitation effective de la connaissance. Nous avons donc étudié quelles démarches ayant fait leurs preuves dans d’autres disciplines sont disponibles pour améliorer les limites liées à l’adaptation aux besoins des utilisateurs et à l’ergonomie des interfaces et des contenus des SGC (cf. section 2.1.3). Ainsi, les méthodes de conception centrées utilisateurs permettent de concevoir des systèmes plus adaptés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI095/these.pdf
© [C. Toure], [2017]. INSA Lyon, tous droits réservés
aux contextes humains et organisationnels dans lesquels ils sont amenés à être utilisés. L’architecture de l’information permet une meilleure accessibilité de l’information, contribuant ainsi à sa qualité au sein du système.

Les techniques de conception participatives et de structuration de l’information offrent des moyens aux concepteurs de mieux comprendre et d’adapter les besoins utilisateurs aux cas de la conception/re-conception des systèmes. L’ergonomie et l’accessibilité des contenus étant des points critiques à prendre en considération dans la conception des SGC pour leur usage continu, nous soulevons la question suivante :

- Quels outils méthodologiques utiliser pour adapter l’ergonomie des interfaces et des contenus des SGC aux utilisateurs professionnels ?

2.4.4 Questions de recherche

Nous résumons dans cette partie les questions formulées dans les sections précédentes. En effet, les différentes problématiques soulevées dans les points de discussion articulent notre réflexion autour des questions de recherche suivantes :

- Quelle caractérisation des SGC pérennes :
 - Quelles sont les facettes (les caractéristiques fonctionnelles) qui sont requises pour l’obtention d’un SGC favorisant une utilisation durable ?
- Comment mettre en œuvre et accompagner cet usage durable des SGC :
 - Quelle méthode unifiée pour leur régulation pérenne ?
 - Quelle méthodologie de conception à échelle micro pour une conception de SGC pérennes ?
 - Quel outils méthodologiques utiliser pour adapter l’ergonomie des interfaces et des contenus des SGC aux utilisateurs professionnels ?
 - Comment implémenter un contrôle et une supervision de l’usage acceptable pour les utilisateurs ?

Le chapitre suivant présente nos propositions pour répondre à ces questions.
3 Propositions

Nous devons tout d’abord caractériser les SGC pérennes. Une analyse de l’état de l’art présenté nous permet cette caractérisation. Nous considérons comme pérennes, les SGC qui proposent des caractéristiques permettant de répondre aux points critiques suivants :
- L’adaptation du SGC aux interactions des utilisateurs avec le système et à leurs profils.
- La qualité de l’information, notamment dans la mise en place du corpus initial des objets de connaissances dans le SGC, tout en maintenant des principes de valorisation et d’actualisation qui sont mieux adaptés aux profils des utilisateurs en entreprise
- Une stratégie de régulation durable passant par la mise en œuvre des moyens de stimulation de l’activité et par la supervision et le contrôle des usages.

Ce chapitre est organisé comme suit : dans la section 3.1, nous présentons notre caractérisation des SGC pérennes en partant de ces points critiques qui sont à surveiller pour réduire les échecs des initiatives de KM. Nous présentons ensuite dans la section 3.2.1 la proposition d’une méthode de régulation mixte unifiant les processus d’autorégulation et de régulation technologique de l’usage. Dans la section 3.2.2, nous proposons une méthodologie de conception basée sur un certain nombre de principes agiles, notamment centrés utilisateur et itératifs, qui permettent de répondre au besoin de prise en compte, tout au long du cycle de conception, du changement pouvant intervenir en contexte d’entreprise : changements d’ordre humain (préférences ou besoins de l’utilisateur ou encore le contexte d’usage), mais aussi technologiques (changement de technologie) ou managériaux (stratégie de KM). Toujours dans cette section, nous détaillons les outils méthodologiques pour l’exécution des différentes étapes de notre méthodologie. Nous proposons ainsi des éléments de réponse à la question de recherche quels outils méthodologiques pour adapter l’ergonomie des interfaces et des contenus des SGC aux utilisateurs professionnels ?
3.1 Caractérisation des SGC gérant la connaissance de façon pérénne

Dans cette partie, nous présentons sur la base des points critiques identifiés une caractérisation des SGC pérennes. L’objectif est de mettre en exergue des points de repère permettant de concevoir ou d’adapter/améliorer dans une optique de pérénité les différents types de SGC, quelle que soit la génération à laquelle ils appartiennent.

3.1.1 Point critique 1 : Adapter le SGC aux capacités des utilisateurs et au contexte d’usage

L’état de l’art souligne l’importance des interactions des acteurs avec le SGC qui permettent la construction du capital de connaissances. Un choix du type de SGC adapté à la culture et aux prérequis de l’entreprise, le soin apporté à l’ergonomie du système et l’adaptation des fonctionnalités aux capacités des utilisateurs lors de la conception sont autant de points importants qui améliorent l’expérience utilisateur et favorisent l’usage pérénne.

Pour ce faire, les concepteurs doivent veiller à ce que les fonctionnalités proposées par le système ainsi que le type de connaissances manipulées répondent aux besoins d’information et d’apprentissage des professionnels. La façon de présenter ces fonctionnalités aux utilisateurs doit permettre de réduire la charge cognitive, l’effort et faciliter l’utilisation du système. L’accès au SGC doit être adapté au contexte d’usage (selon par exemple que l’utilisateur se trouve en mobilité ou au bureau), les objets de connaissances doivent être organisés et présentés aux utilisateurs de façon à faciliter leur recherche et leur accessibilité.

Pour répondre au premier point critique : *Adapter le SGC aux utilisateurs et aux usages*, le SGC doit avoir la facette suivante :

- **Facette 1 (F1) : SGC adapté aux utilisateurs**
 - F1.1 : Exhaustivité (relativement au besoin utilisateur) des fonctionnalités de gestion de contenu
 - F1.2 : Ergonomie
 - F1.3 : Accessibilité du système
 - F1.4 : Accessibilité de l’information (organisation, indexation et présentation).

3.1.2 Point critique 2 : Assurer un corpus informationnel de qualité

La connaissance manipulée dans les SGC est au cœur de la démarche de KM. Comme nous l’avons défini, elle est matérialisée par des informations, les ob-
jets de connaissance dont la qualité est primordiale, notamment pour alimenter la confiance des utilisateurs à les utiliser et ainsi poursuivre la construction du capital de connaissances. Assurer le corpus d’information du SGC, revient à s’intéresser à la question de la qualité de l’information.

(Lee et al., 2002) présentent quatre dimensions de la qualité de l’information : la qualité intrinsèque, la qualité représentationnelle, la qualité contextuelle, l’accessibilité. La qualité intrinsèque répond à la nécessité d’un contenu pertinent, complet, exhaustif par rapport au contexte et apportant de la valeur ajoutée. Le critère de qualité intrinsèque permet de n’assurer que le stockage de la connaissance utile au processus d’apprentissage des individus. La qualité représentationnelle consiste pour le système utilisé à présenter l’information d’une manière facilement interprétable, facile à comprendre et à manipuler. La qualité contextuelle permet d’adapter la présentation de l’information au contexte d’usage tandis que l’accessibilité permet notamment d’améliorer la recherche et la sécurisation de l’information ; il s’agit de la qualité de l’architecture de l’information telle que nous l’avons décrite dans le point précédent. Dans (Salau & Flores, 2001), les auteurs définissent une information de qualité comme celle qui satisfait les critères d’appréciation spécifiés par les utilisateurs en fonction d’un standard de prérequis, par exemple : l’information à jour. Les propriétés requises du système pour une bonne qualité de l’information reposent sur des échanges continus et répétés - cette fréquence favorise l’actualité de l’information et également l’apprentissage - , une fiabilité des échanges (c’est-à-dire correspondant aux standards et contrôles établis), la pertinence des contenus, l’accessibilité et la compréhension du contenu notamment par l’usage d’une indexation appropriée de l’information (tags adaptés et pertinents par exemple).

Ceci nous permet de répondre au deuxième point critique : Assurer un corpus informationnel de qualité avec la facette suivante :

- **Facette 2 (F2)** : SGC présentant une qualité des objets de connaissances
 - F2.1 : Information exhaustive
 - F2.2 : Information fiable
 - F2.3 : Information à jour
 - F2.4 : Accessibilité de l’information (idem à la facette F1.4).

3.1.3 Point critique 3 : Mettre en place des éléments de stimulation

Les éléments de stimulation et d’auto régulation de l’activité favorisent l’apprentissage informel, l’acceptation et le maintien durable de l’usage des SGC (C. Touré, Michel, & Marty, 2017a, 2017c). Les moyens de régulation humains tels qu’une communication adaptée ou des techniques d’accompagnement au changement, permettent un accueil positif du SGC et son maintien (par les
usages de consultation et de dépôt d’information ou de communication). Par ailleurs, la présence d’éléments de stimulation automatisés peut soutenir et remplacer une partie des actions d’accompagnement du management, permettant ainsi de réduire les coûts. (Graesser, 2011) propose ainsi de mettre en place au sein du système des fonctionnalités d’autorégulation, à savoir des indicateurs de collaboration, des indicateurs réflexifs, des fonctionnalités d’évaluation, qui permettent aux utilisateurs de prendre conscience de leur activité et de celles des autres et de favoriser des croyances de confiance, d’influence sociale ou de plaisir.

Le troisième point critique : *Mettre en place une stimulation automatisée des usages* est décrit par la facette suivante :

- **Facette 3 (F3) : SGC doté de fonctionnalités d’autorégulation**
 - F3.1 : Fonctionnalités de méta cognition : indicateurs de collaboration et réflexifs
 - F3.2 : Fonctionnalités d’évaluation et de participation
 - F3.3 : Fonctionnalités de valorisation : indicateurs réflexifs.

3.1.4 Point critique 4 : Assurer la supervision et le contrôle de l’usage et des connaissances construites

La supervision des usages permet le suivi de l’usage effectif des SGC et du bénéfice pour les collaborateurs ou l’entreprise. Il permet au management de prendre les décisions stratégiques nécessaires au maintien des processus de capitalisation. Cela se fait traditionnellement par des campagnes d’évaluation qualitative a priori et/ou a posteriori des usages, nous proposons pour répondre à ce point critique de mettre place des moyens de supervision au cours de l’usage. Les tableaux de bord décisionnels qui sont conçus à partir des traces d’activité des utilisateurs sur la plateforme permettent d’observer les usages et de soutenir le management dans leur prise de décision, notamment face aux usages inappropriés du SGC.

Nous adressons ce quatrième point critique : Besoin d’assurer la supervision et le contrôle de l’usage et des connaissances construites avec la facette suivante :

- **Facette 4 (F4) : SGC doté d’un outil décisionnel**
 - F4.1 : Suivi de l’activité et aide à la décision.

3.1.5 Récapitulatif

Plusieurs des facettes présentées précédemment sont générales. Elles dépendent fortement du contexte de la mise en place du SGC. Elles requièrent donc d’être discutées en contexte, avec les futurs utilisateurs pour pouvoir être implémentées. Nous proposons donc en deuxième partie de la section suivante une métho-
dologie de conception des SGC pérennes. La nécessité de prendre en compte des contextes qui évoluent (gestion du changement) nous a orientés vers un socle reprenant les principes des méthodologies Agiles. Nous avons choisi la méthode SCRUM (Aubry, 2015) que nous avons adaptée à notre cas de recherche.

<table>
<thead>
<tr>
<th>Points critiques</th>
<th>Adapter le SGC aux utilisateurs et aux usages</th>
<th>Assurer un corpus informationnel de qualité</th>
<th>Mettre en place des éléments de stimulation</th>
<th>Assurer la supervision et le contrôle des usages et connaissances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facettes (Fn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1.1 : Fonctionnalités et type de connaissance manipulée adaptés</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1.2 : Ergonomie des fonctionnalités adaptée</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1.3 : Accessibilité du SGC</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1.4 : Accessibilité de l’information</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2.1 : Information manipulée exhaustive</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2.2 : Information manipulée faible</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2.3 : Fonctionnalités facilitant la mise à jour de l’information</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2.4 : Organisation et indexation facilitant l’accessibilité de l’information</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3.1 : Fonctionnalités métacognition : indicateurs de collaboration, réflexifs</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3.2 : Fonctionnalités d’évaluation, de participation</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>F3.3 : Fonctionnalités de valorisation : indicateurs réflexifs</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>F4.1 : SGC doté d’un outil décisionnel</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 3.1 Récapitulatif des points critiques/facettes.
3.2 Mise en œuvre d’une régulation pérenne des SGC

3.2.1 Proposition 1 : Une méthode de régulation mixte pour la pérennité des usages

Cette proposition est le résultat de l’unification des deux boucles de régulation (au niveau personnel et technologique) décrites dans le deuxième point de discussion (cf. section 2.4.2).

La première boucle décrit le processus d’autorégulation qui peut être suscité par la mise en œuvre d’éléments de motivation au sein du SGC et qui est présenté dans les modèles d’adoption et d’usage pérenne des systèmes. En effet, le processus d’adoption commence par l’émergence de premières croyances qui sont générées par des stimuli initiaux que sont la qualité du système, la qualité du service, la qualité de la connaissance ou de l’information. Ces croyances modérées par des facteurs tels que l’âge, le genre, l’expérience impactent l’attitude de l’utilisateur vis-à-vis du système, son intention de l’utiliser et donc son usage initial effectif. Après ce cycle initial d’usage, l’utilisateur acquiert une expérience qui favorise la construction de nouvelles croyances ou bénéfices (la facilité d’usage, l’utilité, efficacité, apprentissage…) confirmant ou infirmant les précédentes. Cette confirmation/infirmation impacte leur attitude (satisfaction ou insatisfaction) et l’intention de l’utiliser dans le futur (Toure, Michel, & Marty, 2014). Dans la Figure 3.1, nous illustrons cette boucle d’autorégulation qui se passe au niveau interne de l’utilisateur.

![Figure 3.1 Boucle de régulation au niveau personnel.](image-url)

La deuxième boucle décrit un processus de régulation que nous avons qualifié de technologique et qui permet grâce notamment à la mise en œuvre du suivi de
l’activité au sein du SGC, de faire évoluer l’outil en fonctions des changements de contexte (comportements d’usage, environnement technique, stratégie managériale, etc.). Cette boucle de régulation fait évoluer de manière incrémentale ou itérative l’artefact de partage de connaissances d’une version v_0 à une version v_n, en fonction des besoins du contexte (cf. Figure 3.2).

Figure 3.2 Cycle de régulation au niveau technologique.

Ces deux boucles sont à prendre en compte pour une régulation pérenne, car elles agissent conjointement l’une avec l’autre. Nous proposons donc un schéma général unifiant (cf. Figure 3.3) qui traduit cette double régulation pérenne des usages. Dans ce schéma, la pérennité des usages est assurée par le fait de fournir aux utilisateurs des fonctionnalités correspondant aux facettes de systèmes pérennes. Une méthodologie de conception permet d’appliquer les évolutions requises. Cette méthode de régulation mixte qui s’appuie sur des moyens humains et technologiques nous semble indispensable pour une régulation pérenne des usages.

Figure 3.3 Cycle d’usage et de régulation pérenne des systèmes

3.2.2 Proposition 2 : Une méthodologie de conception centrée utilisateur

Le processus de régulation mixte que nous proposons dans la section 2.4.2 requiert de mettre en œuvre une méthodologie de conception qui puisse accompagner les différents changements du contexte (besoins humains, organisationnels, technologiques), particulièrement ceux intervenant au niveau humain, à savoir les préférences utilisateur, les besoins ou encore les pratiques.

Parmi les méthodologies de gestion de projet, ce sont les méthodes agiles qui permettent une prise en compte plus efficace du changement. Très utilisées dans le monde informatique, elles mettent l’utilisateur au centre du système et permettent d’obtenir des produits répondant aux besoins des clients (y compris lorsque ceux-ci évoluent en cours de projet). Les problématiques que nous rencontrons liées au changement de contexte nous incitent à identifier les bonnes pratiques issues des méthodes agiles qui pourraient contribuer à l’usage pérenne des SGC.

Le Manifeste Agile, document énoncé par (Beck et al., 2001) pour un développement amélioré des logiciels par la pratique, met en avant quatre caractéristiques majeures :

- La valorisation des individus et des interactions plutôt que les processus et les outils.
- La livraison de logiciels opérationnels plutôt qu’une documentation exhaustive.
- La collaboration avec les clients (commanditaires du logiciel) plutôt qu’une négociation exhaustive.
- L’adaptation au changement plutôt que le suivi d’un plan pré-établi.

Bien qu’appliquées au développement des systèmes informatiques, ces caractéristiques propres aux processus de conception agiles correspondent généralement à ce que nous recherchons dans le cadre de notre thèse. En effet :

- **Concernant la valorisation des individus et des interactions.** Lorsqu’on considère la définition que nous donnons des SGC dans l’état de l’art, le SGC n’est pas seulement une plateforme technologique, mais
bien un ensemble formé du SI, des utilisateurs et des interactions que ceux-ci entretiennent avec le SI. Il y a donc un besoin de valorisation de l’individu et de ses interactions avec le système dans la méthodologie de conception. Celle-ci doit être centrée utilisateur, c’est-à-dire basée sur le fait d’adapter le système aux utilisateurs. Cette caractéristique permet la proposition d’un SGC ‘sur mesure’ qui favorise l’adhésion et la valorisation des utilisateurs. Les collaborateurs impliqués dans le processus de conception sont plus en mesure de promouvoir l’outil et son usage effectif auprès de leurs collègues. Les concepteurs en interagissant avec les futurs utilisateurs comprennent mieux le contexte, et proposent des fonctionnalités plus en adéquation avec les réalités professionnelles des collaborateurs. Il faut surtout permettre de recueillir les nouveaux besoins des utilisateurs. Dans les méthodes agiles, ceci se fait en général à intervalle régulier (en partageant le temps en périodes de temps appelées sprints).

- Concernant la livraison d’un produit opérationnel plutôt que de la documentation. Bien que ce ne soit pas tout à fait la même idée, les utilisateurs sont plus enclins à utiliser directement des fonctionnalités du système jusqu’à son utilisation complète plutôt que de lire des documents de spécification du logiciel (souvent bien trop complexes vu le besoin). Cette livraison évolutive passe notamment par le principe incrémental, qui permet de modifier au fur et à mesure des parties fonctionnelles de l’outil, en ajoutant tout au long du cycle de conception des fonctionnalités additionnelles, en en modifiant ou en en supprimant. Cela facilite par ailleurs l’adoption du système puisqu’une solution simple est fournie aux utilisateurs qui ont le temps de se l’approprier avant que celle-ci s’enrichisse peu à peu.

- Concernant l’adaptation au changement. Cette problématique est au cœur de notre recherche. Les méthodes agiles déploient un grand nombre de bonnes pratiques pour cet aspect des choses. Il nous faut donc les présenter pour pouvoir définir lesquelles sont adaptées dans notre contexte. Nous désirons par ailleurs proposer une démarche générique, mais suffisamment détaillée pour être reproductible dans des contextes similaires. Ceci permet ainsi
de pallier le manque mis en exergue par (Ackerman et al., 2013) de spécifications détaillées et à micro échelle de méthodologies de conception de SGC. Les principes agiles sont actuellement appliqués par plusieurs méthodologies. Nous présentons succinctement SCRUM, une des méthodes les plus utilisées avant d’expliquer comment nous la mettons en œuvre dans le cadre de notre travail.

3.2.2.1 Présentation générale de la méthode agile SCRUM
SCRUM (terme anglais signifiant mêlée) (Aubry, 2015; Rubin, 2013) est une démarche de gestion pour la conception de systèmes. Elle peut être vue comme une méta-méthodologie proposant des pratiques de base dont les méthodes d’exécution sont laissées au libre choix des responsables de projet. Ses objectifs sont de produire de meilleurs logiciels, de façon plus rapide et dans de meilleures conditions de travail pour les concepteurs et les développeurs. Nous décrivons ci-après la méthodologie.

Les rôles et les artefacts dans Scrum
La méthode définit trois entités (ou rôles) impliquées dans la conception du système, ce sont le product owner (chef de produit), le scrum master (maître de développement), et la team (l’équipe). Nous désignons par artefacts les documents produits par les différents rôles entrant en jeu dans la méthodologie Scrum et qui leur servent de support de travail. Ce sont le backlog de produit et le backlog de sprint. Nous décrivons ces éléments ci-après :

- Le ‘product owner’ _ équivalent du maître d’ouvrage (MOA) en génie logiciel _ est une personne (et non un groupe) qui fait le lien entre l’équipe de développement et le client (dont les utilisateurs). Il identifie les fonctionnalités du produit final et est en charge de la mise en place d’une liste priorisée de toutes les fonctionnalités. En fonction du besoin recueilli auprès du client, il choisit l’ordre dans lequel les fonctionnalités doivent être développées : en général, les incréments priorisés sont ceux à forte valeur ajoutée avec des coûts de production moindres. De cette analyse résulte un artefact appelé backlog de produit ou carnet de production contenant la liste ordonnée des fonctionnalités à développer. Le backlog de produit est extensible et re-ordonnable selon l’évolution des besoins et/ou des priorités. En fonction de la priorité définie, les fonctionnalités les plus ‘urgentes’ sont retranscrites dans une liste, le backlog de sprint qui est ensuite introduit dans le flux de développement. Ces fonctionnalités seront réalisées lors du sprint suivant.

- Le ‘scrum master’ qui est le chef d’orchestre de l’équipe de développement (il est l’équivalent du maître d’œuvre : MOE en génie logiciel), il est en charge de l’organisation et du pilotage des développements.

Le sprint dans Scrum

La conception d’un système avec la méthode SCRUM (cf. Figure 3.4) se subdivise en périodes de temps allant de deux à quatre semaines appelées *sprints*. Ce sont des itérations courtes au terme desquelles l’équipe délivre une version du produit, potentiellement livrable au client. Une fois la durée du sprint convenue, celle-ci doit rester la même tout au long du projet de conception. Un nouveau sprint démarre dès la fin du précédent. Cette caractéristique respecte le principe Agile de l’adaptation au changement (gestion de la variabilité et de l’incertitude) selon lequel il est plus efficace de livrer fréquemment des éléments opérationnels qui seront enrichis, adaptés, améliorés au fur et à mesure de l’évolution des besoins du client.

Durant l’exécution du sprint, le *scrum master* organise des réunions de groupe quotidiennes appelées *scrum quotidien* (ou mêlées quotidiennes) ; ce sont des réunions rapides, debout, qui permettent aux membres de l’équipe de développement de se tenir informés du statut des items sur lesquels ils travaillent (ce qu’ils ont fait hier, ce qu’ils comptent faire aujourd’hui et les éléments bloquants éventuels). Au cours du sprint, les items du *backlog de sprint* prennent le *statut Achevé* au fur et à mesure de leur réalisation. Le sprint se termine par la livraison d’un sous bloc fonctionnel potentiellement utilisable par le client.

Les activités dans Scrum

Chaque sprint est organisé en activités qui sont :

- **La planification de sprint** (sprint planning) : cette étape débute chaque sprint. Elle permet de passer en revue l’ensemble des items du backlog de sprint. L’équipe (*product owner*, le *scrum master* et la *team*) revoit les priorités, planifie les coûts pour l’exécution (temps pour chaque item, ressources nécessaires…) et s’engage sur le contenu de la prochaine itération, notamment le choix des fonctionnalités les plus importantes (appartenant au backlog de produit) qui seront développées dans le prochain livrable : c’est le *backlog de sprint*. Les fonctionnalités, décrites sous forme de scénarios d’utilisation, sont ensuite subdivisées en tâches élémentaires qui seront exécutées tout au long de la durée du sprint.

- **La revue de sprint** qui est une activité d’inspection/adaptation consistant à présenter le livrable aux différentes parties prenantes pour des discussions autour des fonctionnalités proposées ; la session permet d’avoir un retour d’appréciation du client et de recueillir des éléments
d’information (ces nouvelles spécifications viennent augmenter le backlog de produit) pour adapter ou améliorer le produit.

- **La rétrospective de sprint** qui est une réunion s’effectuant entre le *product owner*, le *scrum master* et la *team* de développement est une discussion autour du processus de production du produit en vue d’une amélioration ou d’une adaptation des pratiques techniques. A la suite de cela, le sprint est clos et un autre débute avec la planification de sprint où les fonctionnalités les plus prioritaires seront définies pour être développées.

Les approches agiles mettent donc bien l’accent sur les aspects incrémentaux et itératifs que nous recherchons dans ce travail de recherche.

L’utilisateur travaille toujours sur des versions à jour de l’artefact proposé. Il est vrai que les changements et modifications éventuels dans les items ne peuvent pas être pris en compte au cours du sprint, mais seulement dans les backlog de sprints suivants. D’autres méthodologies, telles que XP (eXtreme Programming), permettraient de prendre en compte au cours de l’itération les modifications suggérées par les utilisateurs (Bailet, 2016; Kniberg, 2015) ; ces changements s’ils sont systématiques et intertempes peuvent allonger déraisonnablement le sprint. Nous retenons donc l’idée de pouvoir indiquer en cours de sprint des desiderata alimentant le backlog de produit et à examiner de manière prioritaire pour le sprint suivant.

Une prise en compte plus fine, plus factuelle de la qualité de l’outil livré aux utilisateurs est souhaitable pour avoir une mise en place pertinente du SGC. Nous proposons donc de puiser dans ces méthodes agiles, les pratiques qui correspondent le mieux à la mise en place d’une méthodologie de conception de SGC pérennes telle que définie dans notre travail.

Figure 3.4 Vue globale de la démarche SCRUM.

3.2.2.2 Notre méthodologie de conception de SGC pérennes

Processus général

Le principe de notre proposition est de mettre en place une conception initiale et une régulation pérenne des SGC.

Nous nous focalisons sur l’organisation du projet de conception sans considérer les techniques de codage elles-mêmes qui sont à particulariser en fonction du contexte. C’est la raison pour laquelle nous ne mentionnerons pas tout ce qui concerne les pratiques des équipes de développement (*les mêlées quotidiennes, le burndown chart, les statuts de backlog*) qui ne sont abordées que lors de la mise en place du SGC dans un contexte particulier.

Nous reprendrons ici en les adaptant les entités et les artefacts entrant en jeu dans les pratiques de management de projet Scrum tels que : *le product owner, le scrum master, la team, le backlog de produit, le backlog de sprint et la planification de sprint*.

Les rôles dans notre proposition

La prise en compte de l’utilisateur final est d’une importance capitale dans les démarches de KM. Dans cette optique, nous reprenons les principes généraux d’agilité pour impliquer l’utilisateur final dans la conception et les phases de tests.

Ainsi nous proposons d’attribuer le rôle de *product owner* non pas à une personne unique, mais au couple (*product owner : groupe d’utilisateurs finaux*). Nous nommerons ici ce rôle : *SGC owner*. La fonction de SGC owner est donc tenue par le *product owner* qui travaillera en collaboration avec un *groupe d’utilisateurs* tout au long du processus de conception. Ils décident ensemble lors de réunions de sprint des items et de leur priorité dans le *backlog de sprint*. Le groupe d’utilisateurs est un échantillon représentatif des futurs utilisateurs du SGC qui est constitué pour participer à sa conception. Le *scrum master* (le maître des développements) et la *team* (l’équipe de développement) sont des rôles qui bien entendu demeurent dans notre proposition. Comme dans Scrum, le *SGC owner* travaille également avec le *scrum master* lors de la planification de sprint, la revue de sprint et la rétrospective de sprint.

L’intérêt de l’implication explicite d’utilisateurs finaux dans notre proposition est quadruple pour le succès de la mise en place de la plateforme de KM :

- Favoriser le sentiment d’appartenance des utilisateurs finaux au projet de KM.
- Leur permettre d’être plus en mesure de promouvoir l’outil et son usage effectif auprès des collègues.
- Accorder aux utilisateurs finaux une part de maîtrise dans le choix de la priorité des changements à prendre en compte.
- De plus, le *scrum master*, en interagissant avec les futurs utilisateurs, a une meilleure compréhension du contexte d’usage ce qui favorise des fonctionnalités plus adaptées. On rejoint donc ici les approches agiles classiques.

Les séquences et les artefacts dans notre proposition

Nous avons présenté précédemment quatre facettes requises pour la conception de SGC pérennes. Ces facettes, correspondant à des grands groupes de fonctionnalités, sont des points critiques à considérer pour la mise en place d’un SGC pérenne, ce sont :

- Un SGC adapté aux utilisateurs et au contexte d’usage.
- Un SGC présentant un corpus informationnel de qualité.
- Un SGC doté d’interactions d’autorégulation.
- Un SGC doté d’un outil de suivi de l’activité et des contenus.

Nous proposons d’utiliser comme outil directeur du projet de conception du SGC pérenne, un artefact organisé selon chacune des facettes présentées : c’est le *backlog de SGC pérenne* (cf. *Tableau 3.2*). C’est le backlog de produit initial de notre processus de conception d’un SGC pérenne. Il est subdivisé en quatre grandes parties correspondant aux quatre facettes des SGC pérennes : un corpus de connaissances de qualité, des interactions adaptées au profil des utilisateurs, des éléments de stimulation et d’engagement, des éléments de supervision de l’activité. Notre objectif avec cette proposition est de répondre à notre prérequis de généralité d’une méthodologie de conception de SGC. Ainsi, le *backlog de SGC pérenne* peut être réutilisé dans des contextes variés en servant de fil directeur aux concepteurs, quel que soit le SGC.

Chacune des quatre parties du backlog de SGC est une liste de grands groupes de fonctionnalités à mettre en place que nous nommerons *backlog de référence* : nous précisons ‘de référence’, car dans notre cas cette liste ne contiendra pas des scénarios d’utilisation précis, mais récapitulera plutôt les propriétés auxquelles le SGC doit répondre pour rentrer dans les critères de pérennité que nous avons définis en amont.

Nous voyons que nous nous éloignons ici des méthodes agiles classiques, d’une part car les items de nos quatre backlog de référence sont plus abstraits que les ‘use cases’ habituels, et d’autre part car la priorité des items constituant les backlogs n’est pas seulement définie par le couple (*SGC owner ; groupe utilisateur*), mais aussi par les caractéristiques indispensables du SGC à mettre en place au préalable.

La conception de chaque facette se fera sur une période de temps dont la durée dépendra des fonctionnalités précises à mettre en place. Nous nomme-
rons ici la période de conception d’une facette : séquence. Ainsi, notre méthodologie consistera en quatre séquences, correspondant à la mise en place initiale des quatre facettes requises pour la pérennité des SGC.

Les items de chacun des backlog de référence nécessitent d’être détaillés en contexte. Ce travail de spécification des scénarios d’usage propres à chacune des séquences est effectué au cours de périodes de temps plus courtes, les sprints, qui permettent la livraison régulière d’artefacts (backlog de sprint enrichi et/ou de fonctionnalités) plus précis. Nous revenons ainsi au principe de sprint propre aux méthodes agiles.

Une première séquence consistera à concevoir un corpus informationnel de base respectant les critères d’exhaustivité, de complétude et dont l’architecture est adaptée au contexte et aux préférences des utilisateurs. Une deuxième séquence consistera à proposer des fonctionnalités de gestion de l’information utilisables et correspondantes au profil et aux habitudes des utilisateurs, mais aussi à la stratégie de l’entreprise. A ce stade, le SGC est opérationnel et exploitable en production, les séquences suivantes auront pour objectif de contribuer à entretenir l’usage sur le long terme du système, d’opérationnaliser la régulation pérenne de l’usage du SGC. En effet, une troisième séquence permettra de rajouter notamment des indicateurs d’awareness de l’activité et de la collaboration tandis que la quatrième consistera à intégrer dans le dispositif de KM des éléments de surveillance pour le contrôle stratégique de l’activité. L’ordre de priorité des différentes séquences ainsi que de leurs items de backlog à développer reste à déterminer.

Récapitulons : Dans notre proposition, le projet de conception du SGC pérenne est mené à partir d’une liste initiale, le backlog de SGC pérenne reprenant les facettes requises pour la mise en place d’un système pérenne. Le backlog de SGC pérenne est subdivisé en quatre sous-parties, les backlog de référence. Ils servent de fils directeurs pour l’exécution de quatre séquences de conception au cours desquelles plusieurs sprints pour la livraison d’artefacts plus spécifiques (backlog de sprint et/ou fonctionnalités) peuvent être menés.

Les activités dans notre proposition
En début de chaque séquence se tient une réunion de planification de la séquence. Lors de la première itération, nous proposons, pour gagner du temps et avoir un ensemble de scénarios de base qui sont priorisés en fonction des besoins stratégiques, de réaliser cette réunion de planification avec les commanditaires du SGC. Lors des itérations suivantes, celles-ci pourront être menées avec des utilisateurs finaux pour enrichir et affiner les propositions.

La revue de sprint est une réunion de retour d’appréciation du groupe de conception (SGC owner et scrum master) qui permet de présenter des fonc-
tionnalités développées ou de recueillir des éléments d’information pour adapter ou améliorer le produit, les nouvelles spécifications viennent augmenter le backlog pour le sprint suivant.

Toujours dans une approche centrée utilisateur, nous préconisons de mettre en place à chaque itération, une période de mise à disposition et d’utilisation par les utilisateurs finaux au cours desquelles des campagnes de sensibilisation et de formation à l’utilisation de l’outil sont effectuées. Cette stratégie d’accompagnement des utilisateurs pour une gestion des connaissances, où le management joue son rôle de moteur du projet de KM et montre son impli-
cation, est un complément aux méthodes agiles. Cet aspect d’accompagnement au déploiement des versions intermédiaires de l’artefact n’est en effet que très peu considéré dans les méthodes agiles\(^1\). Pendant la période d’utilisation, les traces d’utilisation de la version livrée sont collectées. À la fin de la période d’utilisation test, une campagne d’évaluation qualitative de la satisfaction des utilisateurs est menée. Les résultats de l’évaluation qualitative et des données d’usage sont analysés conjointement. L’unification de ces deux méthodes d’évaluation permet de recueillir des retours utilisateurs plus objectifs permet-
tant de compléter/d’adapter le backlog de SGC et aussi de déterminer la priorité des incrément qui seront développés dans les sprints suivants.

Les préconisations des méthodes agiles concernant la durée des sprints sont une livraison la plus rapide possible (jusqu’à quatre semaines pour Scrum). Dans notre proposition, la durée de la séquence est variable et englobe le temps de conception et de livraison d’une facette requise de SGC pérenne et la période d’utilisation test, elle s’achève par une évaluation qualitative. Cependant, pour les sprints, nous partirons sur la même durée que dans Scrum, c’est-à-dire un mois maximum.

Récapitulons : Pendant chaque séquence de notre projet de conception d’un SGC pérenne, seront régulièrement menés des sprints pour la spécification et la mise à jour de backlogs plus précis que les backlog de référence (cf. figure 3.2). Après la livraison d’une version du SGC présentant une facette requise, une pé-
riode d’utilisation test est instaurée au cours de laquelle les traces d’usage de l’outil sont collectées. Au terme de la période d’utilisation test, une campagne d’évaluation qualitative est menée. L’analyse combinée des deux types d’évaluation permet la mise à jour du backlog de sprint suivant, notamment concernant la priorité à accorder aux différents items proposés. Nous laissons la du-
rée de la période d’utilisation test être définie en contexte.

\(^1\) Certaines entreprises contournent d’ailleurs ce problème en créant des groupes utilisateurs associés au projet en cours de développement, groupes qui sont en communication directe avec le product owner.

Cette thèse est accessible à l’adresse : http://theses.insa-lyon.fr/publication/2017LYSEI095/these.pdf © [C. Toure], [2017], INSA Lyon, tous droits réservés
Ainsi, dans notre proposition, une séquence comprend une réunion de planification pour la définition du besoin initial, un ou plusieurs sprints réguliers de conception/développement menant à la livraison de versions fonctionnelles du SGC. Dès qu’une facette de SGC pérenne est jugée opérationnelle, celle-ci est mise à disposition pour une période d’utilisation test avec collecte de données d’usage et campagne d’évaluation qualitative.

La Figure 3.5 illustre notre proposition de méthodologie avec ses particularités.

Figure 3.5 Vue globale de notre démarche de conception de SGC pérenne.

Note : Nous avons marqué en rouge les éléments différents des méthodes agiles que nous apportons dans notre proposition.
Tableau 3.2 Backlog de SGC pérenne.

Notes : Tableau proposé selon le modèle de (Kniberg, 2015 p. 17). L’ordre dans lequel sont disposés les séquences n’est pas figé. Il sera testé en implémentation en contexte réel.

Les outils pour l’exécution des séquences

Nous avons présenté dans les sections précédentes le processus et l’organisation générale de notre méthodologie de conception de SGC pérennes (les rôles, les artefacts, les activités de séquences et de sprint). Nous précisons dans cette section la méthode spécifique que nous utilisons pour réaliser les différentes séquences de notre démarche. Pour cela nous nous sommes inspirés du framework en cinq étapes de (Garrett, 2011) (cf. section 2.1.3.1), qui dissocie de façon explicite l’information et les interactions utilisateur/système dans la conception.

Pour la conception des livrables (facettes de SGC pérenne)

Ainsi pour chacune des séquences de notre méthodologie, la facette particulière du SGC est conçue en cinq étapes (voir Figure 3.6) décrites ci-après :

L’étape de stratégie.
Il s’agit de l’étape de la définition des objectifs de la séquence et du recueil de besoin initial. Dans notre cas, celle-ci aura lieu lors de l’étape de planification de séquence.

Les composantes entrant dans la construction initiale du SGC sont analysées, notamment le type de connaissance qui sera manipulé, la cartographie des informations à consigner dans le système à savoir les pratiques et savoir-faire, la documentation, etc., les attentes des utilisateurs relativement au type de système et aux fonctionnalités de gestion de la connaissance, et les objectifs stratégiques du management. Ces informations recueillies permettent d’analyser et de faire un choix de proposition de fonctionnalités qui seront en adéquation avec le contexte industriel, les attentes des utilisateurs et de l’entreprise.

Pour le recueil de ce besoin initial, nous proposons d’utiliser l’interview contextuelle (Mathis, 2011) qui permet une immersion dans le milieu du groupe cible et ainsi une meilleure compréhension du contexte. Il permet également de comprendre les difficultés rédhibitoires que peuvent rencontrer les utilisateurs qu’il faudra éviter pour garantir une adoption initiale satisfaisante.

Le besoin des utilisateurs s’ajuste au cours de la séquence et permet d’affiner et de mettre à jour les backlogs de sprint. Nous proposons alors pour les revues de sprints avec le groupe d’utilisateurs, le focus groupe. Les focus groupes orientés conception sont des réunions de groupes restreints de participants qui discutent les potentialités d’un artefact, une version d’un logiciel ou comment celui-ci peut être amélioré (Cabitza, 2014). Le product owner est le modérateur de ces réunions de travail. Les résultats des discussions avec le groupe utilisateur permettent à ce dernier de compléter le backlog de SGC ou de sprint, ou encore d’effectuer la planification des sprints suivants.

L’étape de périmètre.

Il s’agit de l’étape de proposition de l’artefact et des fonctionnalités. Les différentes suggestions aux utilisateurs sont faites au moyen de maquettes qui, construites en fonction des informations collectées lors des focus groupes précédents, vont permettre aux participants de poser les questions qu’ils jugent nécessaires et donner leur point de vue. Ceci va le cas échéant conduire à la proposition de versions améliorées des fonctionnalités qui seront discutées dans les séances suivantes jusqu’à l’obtention d’un consensus entre utilisateurs et concepteurs.

L’étape de structuration.

Cette étape adresse la problématique d’une structuration de l’information adaptée au contexte. Elle consiste en la conception de modèles d’interaction et de structuration de l’information qui sont familiers aux utilisateurs et au contexte professionnel.
Pour cela, les exercices de mind-mapping (Prax, 2003) pendant les séances de focus groupe aident à mieux comprendre le vocabulaire métier à travers des jeux de caractérisation. Ce sont des moyens ludiques de classifier des concepts métiers importants en catégories et super catégories qui permettent de mieux cerner l’activité des utilisateurs et la structuration de l’information. Par exemple, une première catégorisation est présentée aux utilisateurs. Durant la séance, les participants interagissent librement face à la proposition et le résultat des discussions est pris en compte dans les séances suivantes. Le mind-mapping permet d’identifier les concepts clés qui seront par la suite organisés en fonction de l’approche choisie.

Deux approches permettent de proposer des structurations de l’information : la méthode top down et la méthode bottom up. Dans la méthode top-down par exemple, le contenu est structuré en fonction de l’organisation de l’entreprise (départements, services, équipes, projets). De plus en plus, la combinaison des approches « top down » et « bottom up » est utilisée pour la présentation de telle ou telle sous-partie du SGC en fonction des préférences des utilisateurs. Des modes d’accès de et vers les autres systèmes d’information de l’entreprise sont ainsi étudiés et éventuellement intégrés dans les propositions pour le SGC ; ceci permet aux utilisateurs de garder un lien avec les autres SI lorsqu’ils sont en train d’utiliser le SGC.

L’étape de conception du squelette et de conception visuelle.
Il s’agit ici de concevoir l’ergonomie et l’interconnexion des principales zones fonctionnelles. L’apparence graphique et textuelle générale du système est présentée et discutée par le biais de maquettes.

Nous recommandons de proposer un design visuel concordant avec la charte visuelle et de communication de l’entreprise, cela pour maintenir la familiarité que les utilisateurs ont avec les interfaces qu’ils utilisent au quotidien. De plus, l’amélioration de l’utilisabilité est ainsi effectuée simultanément en fonction des préférences des utilisateurs et des normes de conception de l’entreprise.
Pour l’évaluation des croyances et de la satisfaction après la période d’utilisation test

L’objectif de cette évaluation est de voir en condition écologique si nous avons réussi à retranscrire les besoins latents des utilisateurs après chaque sprint. Nous mesurons à ce stade la satisfaction des utilisateurs et recueillons les avis de ceux-ci qui permettront de compléter le backlog de SGC. Nous proposons pour cela de mettre en œuvre des campagnes d’évaluation qualitative instrumentées par un questionnaire d’évaluation construit à partir des critères de mesures de la satisfaction issus des modèles d’acceptation des technologies TAM, UTAUT, ISSM et également le modèle ISO 9241-11\(^2\).

\(^2\) (International Organization for Standardization (ISO), 1998)
sont d’abord perçues a priori et participent à la construction du sentiment de satisfaction et d’une attitude positive envers la technologie.

Au cours de l’usage, ces avis se consolident ou évoluent en fonction du sentiment de bénéfice éprouvé par l’utilisateur. Ils conditionnent, avec d’autres critères liés à la situation et au contexte d’usage, les usages sur le long terme. L’ensemble du processus d’acceptation ainsi que les critères que nous prendrons en compte pour les évaluations de période test sont décrits dans la Figure 3.6. Les flèches indiquent le sens de l’influence des facteurs en amont vers ceux en aval.

Figure 3.7 Instrument d’évaluation qualitative de l’utilisation et de la satisfaction utilisateur.

Pour le recueil de données d’usage en périodes d’utilisation test

L’objectif de cette évaluation de l’usage est d’analyser les données factuelles collectées en condition écologique d’utilisation. Les indicateurs d’usage sont issus des traces d’activités et seront ensuite comparés avec les données qualitatives pour les corroborer et évaluer la qualité du système proposé.

La littérature fournit des indicateurs de base couramment utilisés pour l’analyse de l’usage d’un système. On peut citer notamment les indicateurs clés de performance (KPI) utilisés traditionnellement en Web Analytics pour évaluer les performances d’un système. Nous proposons dans le cadre de notre recherche, de baser notre recueil de données quantitatives sur trois groupes d’indicateurs :

- Les indicateurs permettant de se faire une idée objective de la qualité de la connaissance produite dans le SGC.
- Les indicateurs permettant de se faire une idée de la collaboration et du partage des connaissances au sein du SGC.
- Les indicateurs permettant de se faire une idée de l’usage effectif du SGC, ce sont toutes les données analytiques qu’on peut avoir sur l’activité d’utilisation des différentes fonctionnalités.

Ces types d’indicateurs constituent à notre sens des informations permettant de compléter de façon précise l’analyse qualitative du SGC et de soutenir la prise
de décision stratégique pour l’accompagnement et la conduite du projet de KM. Dans la section 2.3.2.2, nous les avons énumérés de façon non exhaustive, ce sont des :

- **Indicateurs de la qualité du contenu** : fréquence des mises à jour, la fréquence des échanges sur le contenu, la diversité et/ou l’expertise des contributeurs, la diversité du contenu, son exhaustivité…

- **Indicateurs de la collaboration** : les échanges de connaissances entre les membres (caractéristique des objets manipulés, taux d’ajout des nouveaux objets de connaissances, taux de modification, de suppression, de recherche, workflow de modération, évolution dans le temps de ces éléments…

- **Indicateurs de l’activité d’usage du SGC** : nombre de consultations, de créations, de recherche de contenu, taux de connexion au SGC, taux de nouvelles connexions, fréquence des visites, temps moyen passé sur la page de sa communauté, nombre d’accès disponibles et utilisés de et vers les autres SI de l’organisation, caractéristiques des schémas de connexion à la plateforme…

Le **Tableau 3.3** en donne une liste plus complète, basée sur la littérature. Ceux-ci seront néanmoins librement adaptés par l’analyste en fonction de l’itération courante et du besoin d’observation identifié à ce moment-là.
<table>
<thead>
<tr>
<th>Familles d'indicateurs</th>
<th>Liste d'indicateurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicateurs de qualité du contenu</td>
<td>Fréquence de mise à jour</td>
</tr>
<tr>
<td></td>
<td>Continuité et fréquence des échanges</td>
</tr>
<tr>
<td></td>
<td>Durée de vie des échanges</td>
</tr>
<tr>
<td></td>
<td>Exhaustivité</td>
</tr>
<tr>
<td></td>
<td>Pertinence</td>
</tr>
<tr>
<td></td>
<td>Lisibilité</td>
</tr>
<tr>
<td></td>
<td>Précision</td>
</tr>
<tr>
<td></td>
<td>Nombre des échanges autour du contenu</td>
</tr>
<tr>
<td></td>
<td>Evaluation des contenus (par les utilisateurs)</td>
</tr>
<tr>
<td></td>
<td>Information fournie en temps opportun</td>
</tr>
<tr>
<td></td>
<td>Distribution des catégories</td>
</tr>
<tr>
<td>Indicateurs de la collaboration</td>
<td>Nombre de vues de contenu (portée d'un contenu)</td>
</tr>
<tr>
<td></td>
<td>Liens intercommunautaires</td>
</tr>
<tr>
<td></td>
<td>Centralité des utilisateurs</td>
</tr>
<tr>
<td></td>
<td>Nombre d'interventions sur les fiches des autres</td>
</tr>
<tr>
<td></td>
<td>Nombre de soumission</td>
</tr>
<tr>
<td></td>
<td>Nombre des échanges autour du contenu</td>
</tr>
<tr>
<td></td>
<td>nombre de communautés connectées</td>
</tr>
<tr>
<td></td>
<td>Position de l'utilisateur dans le réseau d'interaction</td>
</tr>
<tr>
<td></td>
<td>Nombre de 'followers' et de 'following'</td>
</tr>
<tr>
<td>Indicateurs de l'activité d'usage</td>
<td>Nombre de consultation/création/Recherche/contribution</td>
</tr>
<tr>
<td></td>
<td>Nombre d'utilisateurs</td>
</tr>
<tr>
<td></td>
<td>Nombre et diversité des nouveaux utilisateurs</td>
</tr>
<tr>
<td></td>
<td>Nombre de rôles</td>
</tr>
<tr>
<td></td>
<td>Rôles les plus actifs</td>
</tr>
<tr>
<td></td>
<td>Nombre de visites/vues/pages</td>
</tr>
<tr>
<td></td>
<td>Pourcentage de nouvelles visites</td>
</tr>
<tr>
<td></td>
<td>Taux de rebond (les personnes qui se connectent et repartent immédiatement)</td>
</tr>
<tr>
<td></td>
<td>Taux de conversion (nombre de soumissions/nombre de visiteurs uniques (ou de sessions)</td>
</tr>
<tr>
<td></td>
<td>Taux de sortie (la page où les visiteurs achèvent le plus souvent leur navigation)</td>
</tr>
<tr>
<td></td>
<td>Profondeur de navigation</td>
</tr>
<tr>
<td></td>
<td>Nombre d'usage</td>
</tr>
<tr>
<td></td>
<td>Nombre de partage</td>
</tr>
<tr>
<td></td>
<td>Nombre de révisions</td>
</tr>
<tr>
<td></td>
<td>Nombre de validation</td>
</tr>
<tr>
<td></td>
<td>Historique des usages</td>
</tr>
<tr>
<td></td>
<td>Participation à l'évolution de l'outil</td>
</tr>
<tr>
<td></td>
<td>Distribution des catégories</td>
</tr>
<tr>
<td></td>
<td>Date de dernière visite</td>
</tr>
</tbody>
</table>

Tableau 3.3 Instrument d’évaluation quantitative de l’usage d’un SGC.

Sources : Indicateurs de qualité de contenu : (Edwards, Bahjat, Jiang, Cook, & La Porta, 2014; Kane & Ransbotham, 2012; Lee et al., 2002; Salau & Flores, 2001) ; Indicateurs de collaboration : (Gendron, 2010; Parsons, Sedig, Didandeh, & Khosravi, 2015; Räbiger & Spiliopoulou, 2015; Stocker & Müller, 2013) ; Indicateurs de l’activité : (Bratitsis & Dimitracopoulou, 2006; Gendron & Pourroy, 2012; Kaushik, 2011).
3.2.2.3 Bilan

Pour mettre en place des SGC pérennes, nous avons proposé dans ce chapitre un schéma général d’usage pérenne des SGC par la mise en place d’une régulation mixte. La méthodologie que nous proposons, basée sur les méthodes agiles, permet de réifier le processus de régulation mixte proposé et produit des plate-formes de partage de connaissance que nous voulons adaptatives et évolutives (capables de prendre en compte les changements dans le contexte).

La méthodologie a les caractéristiques suivantes :
- Itérative et incrémentale.
- Intègre une stratégie d’évaluation centrée utilisateur de la qualité du SGC, (combinant évaluation de la satisfaction et de l’usage) permettant de soutenir l’accompagnement et l’adaptation de la stratégie de KM.
- Permet une plus grande implication des utilisateurs finaux qui participent à la conception et décident eux-mêmes grâce aux résultats d’évaluation de sprint, des modifications à effectuer dans les items de backlog à développer.
- Intègre des outils d’IHM (framework d’architecture de l’information) pour l’exécution des différentes séquences.

Elle propose par ailleurs des artefacts génériques (les backlogs de références) pour mettre en place en contexte industriel des SGC pérennes selon la caractérisation que nous en avons fait à la section 3.1.

Nous proposons pour apporter une réponse à la question de la priorité (l’ordre dans lequel ceux-ci doivent être pris en compte dans le processus de conception) des quatre facettes de notre backlog de SGC, de prendre en compte les résultats des périodes d’évaluation test.

En effet, l’observation de l’usage et les besoins exprimés par les utilisateurs finaux peuvent permettre d’orienter le choix de l’itération suivante. Elles permettent de déterminer ‘juste à temps’ les incréments que les utilisateurs auront jugés ‘prioritaires’ à chaque changement de sprint.

Nous avons cependant besoin de tester notre proposition de méthodologie de conception en contexte. Nos objectifs sont de :
1) Tester la faisabilité de notre proposition ;
2) Déterminer si possible un ordre de priorité dans la conception des différentes facettes pour un système pérenne ;
3) Affiner les propositions de fonctionnalités en fonction de données réelles ;
4) Retenir des observations de contexte pouvant aiguiller les concepteurs dans la mise en place de SGC pérennes.
Partie 2
Expérimentation
4 Implémentation

L’implémentation de notre proposition est nécessaire car elle nous permet de tester sa faisabilité en contexte réel et de déterminer un ordre de priorité pour la conception des quatre facettes de SGC pérenne. Elle nous permet par ailleurs d’avoir une vision globale de la méthodologie à travers un exemple concret. Nous pouvons ainsi préciser quelles fonctionnalités concrètes sont adaptées dans un contexte spécifique pour favoriser l’usage pérenne des SGC et quelles sont celles qui sont généralisables, comme recommandations pouvant servir par la suite à d’autres concepteurs.

Ce chapitre est en effet, une mise en œuvre d’une analyse par théorisation ancrée (Strauss & Corbin, 1994). Cette méthodologie de recherche permet à partir de l’analyse de données de terrain de faire émerger des concepts et/ou des théories. L’expérimentation en contexte réel nous permet d’observer l’accueil par les utilisateurs finaux de la méthodologie, de l’outil résultant et d’en tirer les conclusions nécessaires.

Nous avons travaillé avec la SCP, une entreprise ayant un contexte de travail hétérogène et techniquement complexe et où le problème de la capitalisation des connaissances est crucial et est soutenu par la publication d’informations sur les tâches techniques variées des collaborateurs, mises à jour en fonction de leurs pratiques, expérience et savoir-faire.

4.1 Rappel du cadre d’application : la Société du Canal de Provence

Comme nous l’avons décrit au chapitre 1.2, notre contexte industriel est celui d’une entreprise de gestion de canaux et de réseaux de conduite d’eau localisée dans le sud de la France. L’ensemble des infrastructures hydrauliques, appelées ouvrages, est organisé en zones géographiques : les CEs\(^3\). La SCP compte dix CEs au sein desquels on retrouve des ouvrages variés. Plusieurs métiers appartenant à des services distincts collaborent à l’entretien des ouvrages, ce sont les *agents d’exploitation*, les *agents de maintenance* et les *techniciens du CTG*\(^4\). Les agents d’exploitation sont déployés dans les CEs et sont en charge des interventions de maintenance des ouvrages de niveau 1\(^5\). Dans les CEs, ils sont organisés le plus souvent en trois corps ayant des fonctions distinctes : les *agents d’exploitation* (ils sont en charge des interventions de terrain sur les ouvrages et auprès des clients), les *techniciens supports et relation client* (TSRC : ils

3 Centres d’Exploitation
4 Centre de TéléGestion
5 Opérations de dépannage, opérations mineures d’entretien et de maintenance préventive.
n’interviennent pas sur le terrain mais sont en charge de recevoir et de traiter les appels provenant de la hotline) et les techniciens coordinateurs (TC : ils sont en charge de la coordination technique du travail des agents de terrain).

Le contexte métier requiert une connaissance pointue des ouvrages qui sont complexes et qui varient selon la zone géographique et le centre d’exploitation auxquels ils appartiennent. Les collaborateurs disposent de plusieurs systèmes d’information qui les aident dans leurs fonctions, ce sont : une GMAO6 Mainta, un SIG7 NetView, un outil de Supervision, un autre de Régulation des ouvrages à distance, un outil de GED8, iGed et un livre de connaissance, ALEX.

Ce cadre d’application est extrêmement diversifié. Les collaborateurs, en fonction de leurs CEs, de leur niveau hiérarchique et de leurs activités, ont une culture et des objectifs différents. Ce contexte est bien représentatif de la diversité organisationnelle que l’on peut rencontrer dans les entreprises. Complex et riche, il nous permet de tester les possibilités de notre méthodologie, notamment sa capacité à accompagner le changement et à produire un outil adapté, qui puisse satisfaire toutes les parties.

Nous proposons donc d’appliquer notre méthodologie de conception à ce contexte représentatif des difficultés d’usage auxquelles sont confrontés les SGC de première génération.

\section*{4.2 Déroulement global du projet}

Le projet ALEX s’est étendu sur une période de quatre ans, de Février 2013 à Décembre 2016. Notre objectif était de travailler chacune des différentes facettes de ALEX pour que celui-ci réponde aux critères de pérennité que nous avons définis dans la section 3.1. Pour rappel, les facettes caractérisant un SGC pérenne sont :

- \textbf{F1} : l’adaptation aux utilisateurs
 - \textbf{F1.1} : Fonctionnalités de gestion de contenu
 - \textbf{F1.2} : Ergonomie
 - \textbf{F1.3} : Accessibilité du système
 - \textbf{F1.4} : Accessibilité de l’information (organisation et présentation).

- \textbf{F2} : la qualité du corpus informationnel
 - \textbf{F2.1} : Information exhaustive
 - \textbf{F2.2} : Information fiable

6 Gestion de la Maintenance Assistée par Ordinateur.
7 Système d’Information Géographique.
8 Gestion Electronique de Documents.
Nous avons consacré à chacune de ces facettes une séquence de notre méthodologie. La Figure 4.1 présente la timeline récapitulative du projet ALEX à la SCP. Nous résumons ci-après le déroulement global du projet.

La première séquence a débuté en Février 2013. L’objectif était d’étudier l’existant et de comprendre la problématique d’usage. Cela nous a mené à reconcevoir l’architecture de l’information (facettes F1.4 et F2.4) et à proposer des fonctionnalités de gestion de contenu plus adaptées aux utilisateurs (facettes F1.1, F1.2 et F1.3). La période de reconception du corpus informationnel et des interactions de gestion de contenu s’est achevée fin Juin 2013 avec la conduite d’une évaluation qualitative de l’acceptation a priori du prototype du nouvel ALEX.

La période de Juillet 2013 à Décembre 2013 a été consacrée au développement de la première version du SGC ALEX_V0, ainsi qu’au portage des contenus de l’ancienne base de connaissances à la nouvelle.

La deuxième séquence s’est faite en Décembre 2013. Elle a été l’occasion d’affiner les fonctionnalités proposées dans la séquence 1 (facettes F1.1, F1.2 et F1.3) et d’effectuer le portage et la mise à jour du contenu informationnel (facettes F2.1, F2.2 et F2.3). La version ALEX_V0 avec des fonctionnalités de gestion de contenu opérationnel n’a pas tout de suite été mise à disposition des utilisateurs, car le portage du contenu et des tests de validation de l’outil étaient nécessaires pour sa mise en production, ce qui a été poursuivi jusqu’en Septembre 2014. Ceci a abouti à une nouvelle version ALEX_V1, mise à disposition des utilisateurs tests.

La quatrième séquence, commencée en Octobre 2015 a duré jusqu’en Décembre 2016. L’objectif était la mise en place d’un outil de suivi de l’activité (facette F4.1). Nous avons effectué au terme de cette séquence, une évaluation qualitative globale de l’acceptation continue et de la satisfaction des utilisateurs vis-à-vis de la version ALEX_V3 de l’outil avec l’ensemble des fonctionnalités proposées.

Les sections suivantes présentent les détails de chacune des séquences que nous avons menées. Nous rapportons notamment les retours des utilisateurs face aux propositions de fonctionnalités faites au cours des différents sprints.
Figure 4.1 Timeline de l’implémentation du SGC ALEX à la SCP de Février 2013 à Décembre 2016.

Séquence 1: Étude de l’aidant, Conception de l’architecture de l’information et des fonctionnalités de gestion du contenu

- 10/11/12 : Réunion de planification
 - Prise de contact avec l’industriel
 - Revue du backlog de référence
 - Mise en place du backlog de travail

- 21/01/14 : Reprise du backlog de travail
 - Artifact° version de production ALEX_V0
 - Revue du backlog de référence

- 12/02/14 : RS 2 (BN)
 - Big_s1.2

- 13/02/14 : RS 3 (BN)
 - Big_s1.3

- 27/02/14 : RS 4 (BN)
 - Big_s1.4

- 01/04/15 : RS 5 (BN)
 - Big_s1.5

Séquence 2: Adaptation des fonctionnalités de gestion du contenu, Réalisation et mise à jour de la base de connaissance

- 10/14 : Artfact III version ALEX_V1
 - Mise à disposition utilisation text

- 07/11/14 : Communication 2
 - Présentation officielle ALEX_V1

- 12/14 : Communication 4
 - Présentation officielle ALEX_V2

- 11/05/15 : RS 10 (Suite Séquence 3)
 - Focus groupe GT
 - Présentation ALEX_V2.3

- 06/06/15 : RS 15 (Suite Séquence 4)
 - Focus groupe GT

- 06/06/15 : RS 15 (Suite Séquence 4)
 - Focus groupe GT

Séquence 3: Ajuditant fonctionnalités de stimulation sociale, Ajuditant de la version disponible, Réalisation et mise à jour de la base de connaissance

- 26/11/15 : RS 11 (Suite Séquence 3)
 - Présentation ALEX_V2.3

- 07/02/16 : RS 12 (Suite Séquence 3)
 - Focus groupe GT
 - Présentation ALEX_V2.3

- 07/02/16 : RS 12 (Suite Séquence 3)
 - Focus groupe GT
 - Présentation ALEX_V2.3

Séquence 4: Conception tableau de bord de suivi, Affidait de la version disponible, Réalisation et mise à jour de la base de connaissance

- 01/10/15 : Réunion de planification
 - Artifact IV version de production ALEX_V1
 - Revue du backlog de référence

- 12/02/16 : RS 16 (BN)
 - Big_s1.6

- 05/06/16 : Communication 3
 - Présentation officielle ALEX_V3
 - Mise à jour de la base de connaissance
4.3 Etat 0 du SGC ALEX (Séquence 1)

L’objectif de cette première séquence était d’étudier l’existant et de travailler sur la reconception des facettes F2.4 et F1.4 de ALEX, à savoir respectivement l’architecture de l’information et les fonctionnalités de gestion de contenu (C. E. Toure, Michel, & Marty, 2015; C. Touré, Michel, & Marty, 2014). Cette séquence a duré environ cinq mois avec quatre sprints débutant chacun avec une revue de sprint (cf. Figure 4.2). Cette séquence a mené à la proposition d’un prototype Drupal9 qui a été évalué.

![Figure 4.2 Séquence 1 : Etude de l’existant et conception de l’AI et des fonctionnalités de gestion de contenu.](image)

4.3.1 Constitution du groupe de travail (GT)

Comme décrit dans notre proposition théorique, le groupe de travail (GT) est un groupe d’utilisateurs qui a pour objectif de participer avec le product owner aux choix de conception du SGC. Ensemble, ils ont le rôle de SGC owner et participent aux revues de sprint, à la rédaction et à la mise à jour (par relecture et avis) de la priorité des items du backlog de SGC et des backlogs de sprints suivants. Dans notre contexte, le rôle de product owner a été tenu en fonction de la séquence par moi ou par un alternant embauché dans le cadre du projet.

Parmi les dix CEs présents à la SCP, quatre ont été sélectionnés par les collaborateurs en charge du projet ALEX pour participer à la phase pilote du projet. Les collaborateurs en charge du projet au nombre de deux (un chef de groupe et un technicien) appartiennent au CTG. Ces quatre CEs sont représentatifs de la diversité et de la complexité que l’on rencontre dans les ouvrages.

9 Drupal (https://www.drupal.org/) est un système de gestion de contenu (en anglais CMS pour Content Management System) servant à la mise en place de plateformes web (sites, intranets, blogs...).
La constitution du GT dépend du contexte. Dans notre cas, nous avons voulu un GT représentatif des différentes fonctions et rôles interagissant avec l’outil *ALEX*.

Ainsi, provenant des CEs concernés par la phase pilote du projet, six collaborateurs se sont portés volontaires pour faire partie du GT (quatre TC, un *agent de maintenance* et un *agent du groupe Méthode*). A ceux-ci, ce sont rajoutés deux membres du SI qui avaient en charge la gestion de l’exécution des développements techniques qui ont été confiés à une entreprise prestataire. Une collaboratrice du service des ressources humaines qui était intéressée par le projet s’est également engagée portant à douze personnes (moi y compris) l’effectif du GT.

4.3.2 Étude de l’existant

Nous avons réalisé une étude préliminaire auprès du GT (C. E. Touré, 2013). Celle-ci a permis de constater que *NetView* est l’outil le plus utilisé par les agents essentiellement pour la richesse d’informations qu’il contient, sa caractéristique mobile (utilisable sur des tablettes, il est donc disponible sur le terrain) et sa prise en main facile. Ensuite, viennent *iGed* selon les CEs, la *Supervision* puis la *GMAO*.

Cet ordre de l’usage est directement lié aux exigences du métier des utilisateurs et des possibilités qu’offrent les outils.

Depuis sa mise en place au sein de la SCP (milieu des années 90), les utilisateurs ont conforté leur opinion sur l’utilité d’*ALEX* pour des actions de consultation et de recherche d’information concernant les ouvrages. Tous les collaborateurs interrogés (agents et non-agents) reconnaissent l’importance du rôle que tient ce système dans l’activité ; pourtant très peu déclarent l’utiliser régulièrement.

Les raisons évoquées sont :

- La prise en main difficile de l’outil : en effet, pour renseigner les fiches, les agents doivent au préalable passer par des fichiers Word préformatés avant de les convertir au format HTML. La procédure est jugée trop longue et complexe.
- Un manque de fiabilité de la connaissance, car les données ne sont pas ou sont mal renseignées.
- Un manque d’indexation qui cause des difficultés pour la recherche.
- Une interaction difficile ou inexistante entre *ALEX* et les autres systèmes d’information.

Les utilisateurs ont déjà un certain nombre d’outils informatiques à leur disposition et *ALEX* s’intègre difficilement dans leurs habitudes de travail. Le système est donc consulté le plus souvent en dernier recours.
Au regard de la quantité de connaissances formalisée dans ALEX, l’application de la méthodologie ne s’amorcera donc pas par une conception ex-nihilo mais plutôt par une amélioration de l’existant qui est, à la SCP, un SGC de type *Livre de connaissances* (Aries, 2014). Nous vérifierons cependant que le corpus informationnel de base d’ALEX répond aux critères de qualité (exhaustive, fiable, accessible et à jour) que nous avons définis et appliquerons les évolutions nécessaires le cas échéant.

4.3.3 Récapitulatif des revues de sprint (les focus groupes)

Après analyse des résultats de l’étude préliminaire et sur la base de notre *back-log générique de SGC pérenne*, nous avons décidé pour cette séquence de faire un état des lieux du corpus informationnel de base et de proposer une réorganisation du contenu et de sa typologie, de proposer de nouvelles fonctionnalités de gestion du contenu et d’organiser le portage et la mise à jour des contenus de la version initiale vers la nouvelle version d’ALEX qui serait proposée. Nous résumons dans la section suivante les réactions des membres du GT et l’évolution de leurs besoins au fil des revues de sprints de la séquence.

4.3.3.1 Les fonctionnalités de gestion du contenu (facette 1.1)

Les utilisateurs ont exprimé le besoin d’avoir une plateforme adaptive, accessible aussi bien au bureau qu’en mobilité, avec des fonctionnalités plus faciles à prendre en main qui permettent de réduire les temps de saisie, une amélioration de la recherche. Les focus groupes se sont déroulés sans problèmes majeurs, les utilisateurs étaient généralement d’accord avec les propositions faites de mettre en place une plateforme web avec possibilité de saisie en ligne (pour résoudre le problème d’accessibilité et de gain de temps), un moteur de recherche en langage naturel et par mots-clés pour faciliter la recherche (il s’agit d’un moteur de recherche comme on en trouve dans la plupart des intranets actuels, mais qui n’existait pas dans la version initiale).

4.3.3.2 L’organisation du contenu (facettes 1.4 et 2.4)

L’organisation du site a été proposée en fonction des CEs (une page centrale présentant des onglets menant aux contenus des différents CEs, organisation que nous avons conservée de la version initiale), et les discussions autour de l’activité professionnelle a fait émerger une classification des fiches en onze types définis par les utilisateurs (notons qu’un douzième type de contenu est spontanément apparu plus tard au fil de l’usage lorsque les personnes se sont rendu compte de la redondance de certains contenus, communs à tous les CEs; ce type a été intitulé fiches génériques et tous les contenus y appartenant ont été classés dans un onglet distinct).
Les types de fiches sont des formes informationnelles liées aux concepts métiers. Les types de fiches actuellement définis dans l’outil ALEX sont: Ensemble, Présentation, Opération, Opération Générique, Calcul, Alarmes, Alarmes Générique, Organe, Organe Générique, Process, Process Générique, Contrat-Contact, Contrat-Contact Générique, Schéma. Par exemple, la structure des ouvrages hydrauliques est décrite par des fiches de type Présentation, les fiches de type Organe proposent une description des équipements et organes constitutifs des ouvrages, les consignes d’exploitation sont données par des fiches de type Opération, les interventions de type processus sont décrites par des fiches Process, les fiches de type Alarmes soutiennent la résolution des incidents pouvant survenir sur les ouvrages.

Nous présentons une vue du prototype résultant qui a été livré au terme de la séquence (cf. Figure 4.3).

![Figure 4.3 Vue de la page d’accueil et d’une fiche Présentation du prototype ALEX.](image)

Notes: La zone 1 présente la liste des fiches publiées dans le centre. La zone 2, la liste des fiches à valider, la zone 3, le contenu d’une fiche de type Présentation. Les zones 7 et 4 de la barre latérale sont respectivement la zone de soumissions des images et les liens relatifs à la fiche courante. La zone 5 montre un diaporama des photos publiées tandis que la zone 9 présente le formulaire de recherche. La zone 8 présente un fil d’Ariane qui soutient la navigation de l’utilisateur en indiquant sa localisation dans le site.

4.3.3.3 **Les rôles**

Les utilisateurs ont réclamé une sécurisation des accès au contenu, notamment par droit d’accès et avec un processus de validation des contenus. Cela requérait la définition de rôles utilisateurs. Nous avons proposé lors du troisième focus groupe trois rôles: le validateur (possède les droits les plus élevés dans l’outil, c’est lui qui valide la publication du contenu), le contributeur (possède les droits d’édition et de consultation) et le lecteur (qui ne possède que le droit de lecture). Ces rôles sont initialement actifs par CEs (c’est-à-dire que le validateur d’un CE
4.3.3.4 Fin de la séquence

Pour cette séquence, notre livrable, typique des solutions d’intranet collaboratif que l’on retrouve dans les entreprises, est un prototype (cf. Figure 4.3). Nous avons effectué une première action de communication officielle auprès du management. Cette présentation a suscité des discussions sur les rôles mis en place dans le système. Les participants ont demandé l’ajout d’un rôle supplémentaire, celui du gestionnaire. En effet, les rôles de validateur, de contributeur et de lecteur sont tenus par des collaborateurs ayant déjà d’autres fonctions dans l’entreprise, l’inquiétude était que de devoir tenir un rôle supplémentaire au sein de la plateforme pouvait avoir un effet dissuasif sur la pérennité de l’utilisation de l’outil. Le gestionnaire serait donc un collaborateur dont la fonction serait d’assurer une double animation de l’outil : par des actions d’administration sur l’outil (administrateur technique) et des actions de suivi et d’encouragement sur le terrain (animateur de communautés). Le service informatique de l’entreprise assurerait l’administration informatique et la mise en œuvre de développements logiciels.

Au cours de cette réunion, le prototype a été validé par le management et la décision de la conception et de la planification du portage et de la mise à jour des contenus a été prise pour être réalisée à la séquence suivante.

4.3.4 Evaluation

Pour cette première évaluation, aucune nouvelle version n’a encore été mise à disposition des utilisateurs. Nous avons donc évalué l’acceptation a priori sur la base du prototype. Des questions semi-ouvertes (cf. Annexe 3) relatives à la qualité du système, de l’information et du service ont été posées aux membres du GT sur la base d’un prototype qu’ils avaient à disposition pour se faire une idée de leur accueil. Nous avons cependant pris en considération uniquement les critères antérieurs à l’usage que sont l’utilité perçue, l’attitude face à l’usage de l’application, la facilité d’utilisation perçue, les intentions d’usage et la satisfaction. Le but était de vérifier si les conditions supposées garantir une attitude positive, une satisfaction et une intention d’usage étaient satisfaites dans la première version d’ALEX. Une synthèse des résultats de l’analyse qualitative est présentée en fin de section (cf. Tableau 4.1). Pour l’analyse des résultats de l’évaluation, nous avons utilisé la méthode d’analyse de contenu basique proposé par (Chi, 1997). L’ensemble des réponses des participants ont été décomptées puis classifiées en fonction des critères d’évaluation. Pour chaque critère d’évaluation, les réponses sont évaluées selon leur polarité, c’est-à-dire positive, négative ou neutre. Le nombre n indiqué dans le tableau de synthèse (cf. Tableau 4.1) correspond au décompte des réponses (ou appréciations) des participants.
Nous avons divisé cette thématique en deux sous sections, l’utilité professionnelle et l’utilité personnelle. Les réponses des participants illustrent une utilité de l’outil ALEX un peu moindre sur le plan professionnel que sur le plan personnel. Les participants ont en effet, affirmé que ALEX ne leur permettrait pas d’avoir une plus grande autonomie dans leur manière de réaliser leur activité, d’avoir une meilleure connaissance des services, ni ne leur permettrait d’avoir une meilleure reconnaissance et d’améliorer leur expertise métier. Ce retour semble négatif, mais cela peut s’expliquer par le niveau de connaissance que possèdent les acteurs interrogués, ce sont des experts.

Par contre, au plan personnel, les réponses des participants stipulaient que l’usage d’ALEX les amènerait probablement à être plus exigeants envers eux-mêmes et envers les autres.

Facilité d’usage perçue
À propos de la facilité d’utilisation perçue, plus de la moitié des participants ont exprimé un avis positif au sujet des améliorations effectuées sur la plateforme.

Tous les utilisateurs s’accordent à dire que la solution proposée semble plus facile à utiliser, mais beaucoup précisent que cette impression pourrait changer au fil de l’utilisation, la période d’acquisition du prototype n’étant pas significative pour se faire une idée sur le long terme : « le nouvel Alex devrait être plus simple à utiliser que sa version précédente... (mais) je ne pourrai le juger effectivement qu’avec une utilisation plus approfondie ».

Tableau 4.1 Synthèse des résultats qualitatifs de la première évaluation.

<table>
<thead>
<tr>
<th>Criteres</th>
<th>Appréciations positives n=210</th>
<th>Appréciations négatives n=40</th>
<th>Appréciations neutres n=30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Système</td>
<td>Information</td>
<td>Professionnelle</td>
</tr>
<tr>
<td>Appréciations positives</td>
<td>96,10%</td>
<td>83,30%</td>
<td>64,40%</td>
</tr>
<tr>
<td>Appréciations négatives</td>
<td>0%</td>
<td>2,80%</td>
<td>26,70%</td>
</tr>
<tr>
<td>Appréciations neutres</td>
<td>3,70%</td>
<td>13,90%</td>
<td>8,90%</td>
</tr>
</tbody>
</table>
4.3.4.3 Attitude et intention d’usage
En ce qui concerne l'attitude à l'égard des fonctionnalités de gestion de contenu, l'un des participants a souligné : « […] je pense pouvoir utiliser le système à l'heure actuelle sans problèmes majeurs, mais ce sentiment pourrait changer avec le temps ». Ce qui est normal dans la mesure où l’outil n’avait pas encore été mis en production dans les centres pilotes.

4.3.4.4 Satisfaction
Les résultats révèlent une majorité de réponses positives aux questions sur la qualité du système, de l'information et de la satisfaction. De même, on ne note aucune réponse en dessous de la moyenne de satisfaction. En effet, presque tous les commentaires (86,1%) sont positifs en ce qui concerne la satisfaction. Celle-ci concerne les liens envisagés avec les autres SI métiers, les fonctionnalités de recherche et de mise à jour de l’information et la façon dont est organisée l’information au sein du système.

4.3.5 Synthèse
Au terme de cette séquence, notre avis est globalement positif sur son déroulement. Les discussions lors des focus groupes sont animées, les collaborateurs participent volontiers et on arrive à un consensus qui satisfait tout le monde.

Cependant, d’un point de vue méthodologique, nous nous écartons de notre proposition dans la mesure où nous n’avons pas eu de version opérationnelle à mettre à disposition des collaborateurs pour une utilisation test. En effet, il était nécessaire de présenter les résultats de ce travail préliminaire au management pour validation et pour que les moyens financiers et matériels soient investis pour le développement du système, ce qui a été fait lors de la communication 1 (cf. Figure 4.2).

Par ailleurs, les résultats de l’évaluation sont positifs. Les commentaires laissés par les participants au sujet de l'utilisation sur le long terme dénotent néanmoins des limites de cette évaluation qui ne tiennent compte que de l'acceptation a priori. Le risque que les utilisateurs perdent de la motivation pour utiliser le système si celui-ci échoue à remplir les besoins des utilisateurs en conditions écologiques est réel.

On voit le besoin de la mise à disposition effective d’une version opérationnelle d’ALEX pour confirmer ou infirmer les avis et impressions recueillis. C’est ce qui a motivé, avec les retours de la rencontre avec le management, l’objet de la séquence suivante qui a été l’affinage des fonctionnalités de gestion de contenu proposées (facettes 1.1 et 1.2) et le portage et la mise à jour des contenus (facettes 2.1, 2.2 et 2.3) pour fournir aux collaborateurs une version utilisable.
4.4 Etat 1 du SGC ALEX (Séquence 2)

Après l’évaluation du prototype ALEX, la période de Juillet 2013 à Décembre 2013 a été consacrée au développement d’une première version du SGC : ALEX_V0, ainsi qu’au portage des contenus de l’ancienne base de connaissances à la nouvelle.

La séquence 2 a débuté avec la livraison d’une version opérationnelle de l’outil : ALEX_V0 au sein duquel le portage des contenus de l’ALEX initial avait été initié. Ce portage est effectué par un alternant spécialement embauché pour cette fonction. Il est en charge du portage initial des contenus et d’actions d’animation et d’encouragement auprès des collaborateurs des CEs pour que ceux-ci mettent à jour les fiches soumises dans ALEX_V0. Il tient le rôle de gestionnaire d’ALEX tel que proposé dans les réunions de discussions précédentes (cf. section 4.3.3.4). L’alternant a rejoint le GT à son arrivée.

La phase de conception a duré environ une année avec sept sprints débutant avec des revues de sprint. Ces revues avaient essentiellement pour but des discussions d’améliorations des fonctionnalités présentes dans le système et la spécification de backlog de sprints qui sont ensuite fournis à la société de développement pour leur exécution. Des sous-blocs fonctionnels sont en effet fournis au GT qui les testent au fur et à mesure lors des focus groupes (ateliers de démonstration) et qui discutent de la manière de les améliorer pour les revues suivantes. Cette séquence a mené à la livraison d’ALEX_V1, une version affinée de ALEX_V0 avec les fonctionnalités de gestion de contenu.

Figure 4.4 Séquence 2 : Affinage de l’AI, des fonctionnalités de gestion de contenu et portage des contenus.

4.4.1 Constitution du groupe noyau (GN)

Le groupe noyau (GN) est un groupe d’utilisateurs, sous-groupe du GT qui était composé d’utilisateurs ayant une expertise reconnue. En effet, certains aspects plus précis concernant notamment le visuel et l’ergonomie de certaines fonctionnalités nécessitaient d’être discutées avec des collaborateurs ayant une expérience et un niveau hiérarchique un peu plus élevés dans le projet. Notre GN
était constitué des quatre membres du GT (les deux collaborateurs du CTG, porteurs du projet ALEX à la SCP, le collaborateur du SI, l’alternant tenant le rôle de gestionnaire) et d’un collaborateur de la société prestataire de développement, lorsque cela était possible et/ou nécessaire. Ainsi à partir de la séquence 2, selon les fonctionnalités qui devaient être discutées, les revues de sprints étaient alternées entre le GT et GN.

4.4.2 Récapitulatif des revues de sprint

Durant ces focus groupes, les collaborateurs ont discuté des aspects des facettes de SGC pérenne, F1 : *adapter le SGC aux utilisateurs et au contexte* et F2 : *soigner le corpus informationnel*. Pour citer quelques points de discussions, il a été question notamment de l’organisation et de l’accès aux images et photos de galeries, de la hiérarchisation du menu de navigation et des différents scénarios d’accès aux contenus, des fonctionnalités de gestion des images. Il a été également question d’aspects plus précis concernant le visuel et le squelette des fiches, tels que le choix de la typographie dans l’éditeur de fiches, l’organisation intrinsèque des fiches (mise en place d’une trame générique de remplissage), les possibilités d’annotations d’images, la nomenclature des différentes zones d’interfaces (par exemple, renommer ‘Galerie’ en ‘Galerie Photos’ pour désigner le répertoire d’images). La Figure 4.6 et la Erreur ! Source du renvoi introuvable. présentent une vue de l’outil résultant avec les fonctionnalités initiales proposées.

Pendant ce temps, l’alternant en charge du remplissage poursuivait sa mission de portage des fiches.

Les réunions de sprints notamment avec le GN, ont également été l’occasion d’aborder la question de la mise à disposition de versions opérationnelles aux utilisateurs. Il a été décidé de procéder à une mise à disposition graduelle de l’outil, d’abord aux membres du GT pour qu’ils procèdent à des tests et donnent des retours lors des réunions de sprints suivantes ; puis de l’étendre aux autres membres des CEs, seulement à l’obtention d’une version d’ALEX jugée satisfaisante (en termes de fonctionnalité et de portage des fiches) pour être présentée aux autres collaborateurs non membres du GT. Cette décision avait pour objectif de réduire au maximum les problèmes fonctionnels pouvant bloquer l’accueil de l’outil par les futurs utilisateurs. Ce travail d’affinage des fonctionnalités et de test en amont, effectué seulement par le GT, a abouti à la livraison d’une version ALEX_V1 satisfaisante qui a été mise à disposition des collaborateurs dans les différents CEs appartenant à la phase du projet pilote. La période d’utilisation test a donc débuté en fin d’année 2014.
Figure 4.5 Vue de la page d’accueil d’un centre d’exploitation.

Notes : Les zones 1 et 2 présentent les différents types de navigation, par les onglets en haut ou par un menu déroulant à droite. La zone 3 présente le défilé des photos postées dans la bibliothèque de photos du centre d’exploitation. Dans la zone 4, nous avons positionné le bloc de soumission de fiches et la zone 5 montre le formulaire de recherche.

Figure 4.6 Vue de deux types de fiches.

Notes : Le formulaire 1 est celui d’une fiche organe et le 2 celui d’une feuille de calcul, l’organisation du contenu de la fiche diffère en fonction de son type : une fiche organe s’agence en paragraphes prédéfinis alors qu’une feuille de calcul contient un fichier attaché avec une zone de contenu libre.
4.4.3 Synthèse

Cette séquence est une continuité de la séquence 1 qui a permis l’affinage des choix d’architecture de l’information, des fonctionnalités de gestion de contenu et la poursuite du remplissage et de la mise à jour des fiches.

Le travail avec le GN a par ailleurs permis de relever un point critique concernant le concept de mise à disposition de versions opérationnelles aux futurs utilisateurs pour une utilisation test. En effet, proposer à des collaborateurs un SGC non-finalisé, particulièrement concernant les questions d’organisation et d’exhaustivité du contenu et des fonctionnalités de gestion de contenu peut avoir un effet bloquant sur l’acceptation de la plateforme. Les membres du GT ont rapidement pris conscience de l’importance de cet aspect et l’ont fait remarquer à plusieurs reprises. Cela conforte par ailleurs notre postulat de placer les aspects fonctionnels (ergonomie, adaptativité…) et informationnels (accessibilité, exhaustivité…) comme facettes critiques pour l’acceptation pérenne de SGC en entreprise.

Après la mise en production de ALEX_V1, nous avons laissé cette version en utilisation test et nous avons enchainé sur les séquences suivantes, notamment pour respecter nos contraintes de dates. Des revues de sprints pour l’affinage des fonctionnalités de la séquence 2 ont continué au cours de séquences suivantes pour permettre aux membres du GT qui avait des retours d’utilisation de les faire remonter pour prise en compte dans les développements ultérieurs.

4.5 Etat 2 du SGC ALEX (Séquence 3)

L’objectif de cette séquence était de travailler la facette F3 : mise en place de fonctionnalités de stimulation sociale. Nous avons décidé de poursuivre sur les aspects sociaux pour respecter le fil d’Ariane proposé par notre backlog de SGC pérenne. En effet, les fonctionnalités sociales ont pour but de stimuler et de soutenir la collaboration et le partage des connaissances ; ils serviront d’éléments régulateurs de l’usage après la mise en place des facettes informationnelles et de gestion de contenu.

La période de conception a duré environ huit mois avec neuf revues de sprint (cf. Figure 4.7). Au cours de la première revue de sprint, nous avons présenté trois groupes de fonctionnalités de stimulation sociale issus de notre état de l’art sur les MSE. Ils se voulaient représentatifs des fonctionnalités sociales classiques pour :

- Favoriser la participation et la collaboration des utilisateurs ainsi que leurs visibilité et réputation par les commentaires et les ‘j’aime’ :
o Ces fonctionnalités sont des moyens d’expression et de communication permettant aux utilisateurs de rétroagir et de participer à la construction du contenu. Ils permettent aux collaborateurs de s’impliquer dans la création et la mise à jour de la connaissance mise à disposition.

- Susciter une réflexivité sur l’activité par l’indication des nouvelles contributions, du nom des auteurs et du nombre de commentaires et de ‘j’aime’ :
 o Ces indicateurs favorisent la réflexivité et la prise de conscience sociale (qui a fait quoi ?).
- Susciter la croyance de confiance par des indicateurs de qualité de contenu : la lisibilité, la complétude et la pertinence :
 o Ces indicateurs permettent la prise de conscience de la qualité et de la validité du contenu, mais servent aussi de critères pour cibler les besoins d’amélioration de contenu ainsi que la recherche.

Figure 4.7 Séquence 3 : Ajout des fonctionnalités sociales.

4.5.1 Récapitulatif des revues de sprints

Dans cette section, nous rapportons les discussions des utilisateurs sur les différentes fonctionnalités sociales proposées. Celles-ci étaient rajoutées de façon incrémentale dans l’outil. L’alternant était en charge de la promotion et de la formation des collaborateurs dans les CEAs aux nouvelles fonctionnalités rajoutées. Une lettre d’information qui était diffusée mensuellement (le plus souvent à la livraison de nouvelles ou de mises à jour de fonctionnalités) a par ailleurs été mise en place pour promouvoir l’outil et ses aspects sociaux. Ce travail a abouti à la livraison d’une version ALEX_V2 augmentée de fonctionnalités sociales qui a été évaluée par la suite.
4.5.1.1 Les commentaires et les ‘j’aime’

Commentaires
En tant que caractéristique de la co-construction et de la participation aux connaissances, nous avons proposé des commentaires pour imiter ce qui est couramment utilisé dans les outils de construction de connaissances Web 2.0 comme les blogs ou les wikis, où n'importe qui peut donner son avis ou demander des corrections en ajoutant des commentaires. Nous les avons proposés dans leur forme la plus classique : les liens cliquables nommés 'Commentaires' qui, lorsqu'ils sont sélectionnés, ouvrent un champ de texte pouvant être édité. Ils ont été suggérés comme un moyen de signaler une erreur ou de faire connaître une fiche d'expérience particulière, par exemple si une information est utile et devrait être généralisée dans un autre CE ; les opérateurs de tout rôle peuvent communiquer par commentaires afin que chacun soit autorisé à participer à la construction de la feuille.

Les participants ont adopté l’idée des commentaires (cf. Figure 4.8), considérés comme un moyen d’expression plus systématique que les mails traditionnels. Ils ont néanmoins réclamé la possibilité d’être informés lorsque de nouveaux commentaires sur leurs contenus sont postés. Ils ont également spontanément demandé une modération des commentaires, effectuée par le gestionnaire, pour s’assurer de la prise en compte effective des remarques effectuées sur les contenus de fiches.

Figure 4.8 Vue d’un commentaire.

J’aime
Le but de cette fonctionnalité est de satisfaire le besoin de valorisation des travailleurs tel que décrit dans la revue de la littérature. Toutes les fiches sont validées avant d’être publiées. Cet outil permet à tous les lecteurs d’ajouter une appréciation et de classer les fiches. Les fiches classées comme les plus appréciées
sont mises en évidence pour attirer l'intérêt des collaborateurs et leur donner l'envie de les lire et bénéficier des informations.

La fonctionnalité ‘j’aime’ (cf. Figure 4.9) a été longuement discutée. Une partie des participants a été enthousiasmée par cette fonctionnalité qu’ils ont jugé ludique dans un contexte professionnel tandis que l’autre avait de réelles inquiétudes quant au sens de marquer un ‘j’aime’ sur une fiche. Ils craignaient notamment les abus potentiels et l’impact négatif que cela pouvait avoir sur la motivation des contributeurs qui ne recevraient pas de ‘j’aime’. Un consensus a été trouvé au terme du focus groupe pour remplacer l’expression ‘j’aime’ par ‘fiche utile’, ce que nous avons consigné. Cependant, lors de la session suivante, lorsque la fonctionnalité résultante a été présentée aux utilisateurs, la discussion a repris pour finalement convenir que dans le contexte particulier de la SCP, l’évaluation des fiches par les pairs n’est pas un moteur pertinent pour susciter la valorisation des individus, mais plutôt la réactivité des pairs au travers des commentaires et de leur prise en compte. Ils n’ont cependant pas manifesté l’intérêt de supprimer cette fonctionnalité, nous l’avons donc remis à son état initial, c’est-à-dire avec le terme ‘j’aime’. Ces changements d’avis successifs sont un exemple du point de vue évolutif des utilisateurs sur le SGC en fonction de leur degré de maturité sur l’utilisation concrète d’une nouvelle fonctionnalité.

![Figure 4.9 Vue de la fonctionnalité ‘J’aime’](image)

4.5.1.2 Les indicateurs de l'activité
Les indicateurs d'activité servent de paramètres de contrôle et de réflexion pour être conscients de l'activité de chacun. Plusieurs informations ont été proposées comme représentatives d'indicateurs réflexifs : notifications de nouvelles publications, auteurs et date de soumission, dernière lecture des feuilles, vue du statut des contributions, nombre de commentaires reçus sur une feuille ... Nous avons présenté aux personnes du groupe de travail des cas d'utilisation de ces indica-
teurs. Par exemple, lorsqu'ils prennent le temps de soumettre une fiche, ils permettent de savoir si et quand le validateur prend en compte leur contribution. Ils sont également destinés à faciliter l'utilisation de la plate-forme en donnant des indications, liées aux fiches, afin de pouvoir contacter les auteurs pour des discussions, de connaître quelles sont les dernières soumissions classées par type ou pour avoir la possibilité d'ouvrir directement un contenu spécifique.

Nouvelles contributions et nombre de commentaires
Cette information est affichée sur chaque page personnelle de contributeur. Les indications de nouvelles contributions et du nombre des commentaires n’ont pas suscité de discussions. Cela leur était naturel au vu de la proposition d’une plateforme en ligne collaborative et intégrée dans les habitudes métiers. Dans la Figure 4.10, la zone 1 énumère toutes les fiches publiées de l'utilisateur actuel ; la zone 2 énumère les fiches en attente et la zone 3, les fiches refusées. Avec cette vue, l’utilisateur peut surveiller en ligne l'état de sa participation et évaluer la réactivité des validateurs sur ses contributions.

Figure 4.10 Vue de la page d'état de la contribution.

Nom des auteurs de contenu
La proposition d’afficher le nom de l’auteur d’une contribution a été considérée comme non significative puisque la création initiale des fiches est en général effectuée par des stagiaires qui ne sont pour la plupart pas connus des collaborateurs permanents. Nous avons donc supprimé cette fonctionnalité. Les participants ont néanmoins demandé à la place l’affichage du nom de la dernière personne ayant modifié le contenu, qui a été jugée plus intéressante.

Figure 4.11 Vue des dernières fiches publiées avec le nom des auteurs.
Les participants ont également demandé la possibilité d’avoir une trace des dernières fiches consultées par l’utilisateur. Ces indicateurs sont systématiquement affichés sur la page d'accueil du centre d’exploitation (cf. Figure 4.12). Cette information est utile pour servir de support mémoriel et de raccourci en cas de volonté de reconsulter le même contenu (gain de temps).

Figure 4.12 Vue d’une zone de la page d'accueil-Dernières pages consultées.

4.5.1.3 Les indicateurs de qualité de contenu

Trois indicateurs sont proposés ici pour exprimer la qualité de l’information : lisibilité, exhaustivité par rapport au concept décrit, pertinence (Lee et al., 2002). L’appréciation est donnée par le validateur lorsqu’il valide la fiche. L’objectif est d’informer l’utilisateur de l’effort de lecture nécessaire en cas d’application pratique des informations affichées dans des situations de travail réelles ou des résolutions de problèmes. Ces indicateurs peuvent être critiques et faire échouer l’expérience si les informations affichées ne sont pas pertinentes.

Lisibilité

L’échelle d’évaluation de cet indicateur est déclinée en quatre niveaux : Opérationnel (l'information sur la feuille est immédiatement ou rapidement exploitable, par exemple les enregistrements d’alarmes décrivant spécifiquement chaque étape d'une opération de maintenance corrective à effectuer), Support (peut être utilisé cas de Urgence, mais nécessite une analyse plus détaillée pour l'appropriation de l'information), Acquisition (informations générales pour la formation du lecteur) et Partage (informations qui doivent être retravaillées en équipe). Les discussions portaient alors sur la nomenclature de cet indicateur. Le « Temps d'acquisition » et « Durée d'utilisation » de la fiche ont été proposés pour la première fois, mais n'ont pas été jugés suffisamment clairs. Un accord a été conclu sur le nom « Niveau de présentation » de la fiche. Cette information est actuellement présentée en langage naturel (niveau de lisibilité littéralement écrit sur chaque fiche) (cf. Figure 4.13) ; l'objectif final est de leur donner une forme picturale, mais un accord sur le pictogramme à appliquer doit encore être
atteint, car plusieurs propositions ont été faites (étoiles, feux de signalisation ...) sans choix définitif.

Complétude

Cet indicateur évalue si le contenu de la feuille couvre toutes les informations requises pour le concept décrit et le type de feuille. L'échelle d'évaluation de cet indicateur est déclinée en trois niveaux : « Initial », « Moyen », « Total ». En tant qu'indicateur de lisibilité, l'évaluation de l'intégralité de la feuille est effectuée par les validateurs et elle est présentée pour le moment en langage naturel (cf. Figure 4.13).

Pertinence

Des trois types d’indicateurs proposés, seule la pertinence n’a pas été retenue par les participants, car considérée comme inutile puisque le processus de validation permet d’assurer que toutes les fiches publiées sont d’office pertinentes.

La lisibilité et l’exhaustivité ont été globalement acceptées par les participants, les principaux points de discussion concernaient les questions de leur visualisation. Ils ont exprimé le besoin d’avoir ces indicateurs sous forme textuelle.

![Figure 4.13 Vue des indicateurs de lisibilité (2) et complétude (1).](image)

> **4.5.2 Evaluation**

Lors de cette campagne, nous avons évalué le résultat de la troisième séquence du projet ALEX : ALEX_V2 augmenté par les fonctionnalités de stimulation sociales.

Les thématiques des entretiens étaient la *qualité du système* (au travers des fonctionnalités de recherche, création, modification, commentaires, j’aime et les indicateurs de stimulation et de qualité de l’information), *la qualité de*

4.5.2.1 Sélection des participants
Les travailleurs sollicités pour les entretiens qualitatifs proviennent de la population de collaborateurs à qui ALEX est mis à disposition pour la période d’évaluation test. Certains de ces collaborateurs peuvent avoir participé au groupe de travail. En effet, cette mise à disposition concernait au début du projet, les quatre centres de la phase pilote et s’est progressivement étendue au fil des itérations à d’autres centres. La période de mise en production test débute à la fin d’un sprint et se poursuit pendant l’exécution du sprint suivant.

Des demandes de participation sont envoyées par courrier électronique à un nombre de 15 collaborateurs appartenant aux CEs où ALEX est mis à disposition. Les participants sollicités occupent des postes différents représentatifs des métiers que l’on rencontre dans les CEs (technicien coordinateurs, exploitants, techniciens support et relation). 10 collaborateurs ont répondu positivement ce qui donne un taux de réponses \(t = 66.7\% \) qui est très positif.

Les profils détaillés (genre, expérience et poste occupé) des participants sont présentés en annexe 2.

4.5.2.2 Collecte des données et encodage
Tous les entretiens ont été réalisés de façon individuelle et duraient environ une heure par personne. Ceux-ci ont été enregistrés anonymement avec la permission des participants et, pour des raisons de préservation de la vie privée, ils ont été assurés de l’anonymisation des enregistrements (LongHurst, 2010). Au cours des entretiens, l’outil ALEX était à la disposition des participants pour soutenir et corroborer leurs explications lors des réponses aux questions.

Les entrevues enregistrées ont été codées en utilisant la méthode d'analyse de contenu basique (Chi, 1997), et appliquée comme suit. Lors de la retranscription des enregistrements, nous les avons segmentés en unités d’analyse correspondant aux différentes thématiques de la grille d’entretien chaque fois que celles-ci sont abordées par les participants. Nous avons ensuite recherché puis sélectionné les énonciations\(^\text{10}\) (leur granularité varie, allant de groupes de mots à des groupes de phrases ou des expressions) exprimant des sentiments en rapport avec les thématiques abordées. Nous avons ensuite attribué une polarité à chaque énonciation sélectionnée, qui a été vérifiée par un outil en ligne.

\(^\text{10}\) La lettre \(n \) dans les différents tableaux de synthèse représente le nombre de ces énonciations
d’analyse automatique du sentiment11. Nous avons enfin analysé les appréciations des participants en fonction du nombre d’énoncations positives (+), neutres (=) ou négatives (-). Les énoncations sont considérées comme neutres lorsque les participants ont déclaré qu’ils n’avaient pas de réponse à une question donnée ou lorsqu’il n’était pas possible de détecter une polarité dans la réponse donnée. Une synthèse des résultats est présentée dans le Tableau 4.2.

4.5.2.3 L’acceptation initiale de ALEX_V2

Qualité du système

Les participants ont fourni dans cette partie leur avis sur les différentes fonctionnalités proposées dans ALEX, notamment les fonctionnalités de stimulation sociale.

Les fonctionnalités sociales proposées favorisent pour la plupart des participants la communication et la socialisation. En particulier les commentaires, car les gens ont énoncé des groupes de mots tels que « fonctionnalité pratique », « intéressant », « pratique et rapide pour faire un point » ou « très bien, ils favorisent la collaboration ». Un participant a déclaré que : "puisque les commentaires fournissent un moyen pour tous les utilisateurs d'ALEX, contributeurs ou non, pour collaborer et participer à la construction des feuilles, nous avons de meilleures chances d'avoir une information finale plus fiable ".

Un participant a cependant formulé une appréciation que nous avons classée comme négative. En effet, il a fait remarquer que les commentaires étaient incomplets sans l’ajout d’un indicateur de Statut des commentaires permettant aux auteurs d’avoir une liste de leurs commentaires qui ont effectivement été pris en compte dans une modification de fiche.

En ce qui concerne les « j’aime », un participant a qualifié de « sympathique » l’idée d’avoir ajouté cette fonctionnalité sociale et a souligné qu’il y avait effectivement « un manque de communication et de composantes sociales dans la version précédente d’ALEX ".

Les réactions des utilisateurs concernant la qualité et l’utilité des différents indicateurs de qualité de l’information sont mitigées. A part un participant qui a clairement reconnu leur utilité, la plupart des autres semblaient ne pas comprendre les termes choisis par le groupe de travail pour décrire les niveaux d'indicateurs de lisibilité et d'exhaustivité. Un autre participant a néanmoins proposé une autre utilité pour ces indicateurs : « Ils peuvent servir de critères de tri pour les validateurs qui souhaitent suivre les contributions de leur centre d’exploitation et doivent avoir une vue d'ensemble des feuilles, ceux qui sont bons, ceux qui doivent être complétés, etc. ».

11 https://werfamous.com/fr/sentimentanalyzer/
Qualité de l’information
Concernant la qualité de l’information, un participant affirme :

« ... dans la version précédente d’ALEX, nous ne pouvions pas vraiment compter sur les fiches pendant les opérations de maintenance ... dans la mesure où l’information évolue rapidement, quand quelqu’un remarquait une erreur ou autre chose, il le discutait face à face avec la personne en charge des modifications de fiches, [...] ce qui était fait (les modifications) ... ou pas ! [...] pour moi, les commentaires sont une fonctionnalité plus gratifiante que les échanges oraux, les commentaires viennent de tout le monde ... une trace de leur point de vue est conservée, moins de chances d’oublier ou de perdre de l’information comme c’était souvent le cas dans les versions précédentes ».

En effet, avoir des informations à jour est un point important de la qualité de l’information, et cela est positivement corrélé à une utilisation efficace du système d’information (DeLone & McLean, 2003).

Qualité du service
La plupart des participants n’avaient pas d’avis sur le support du management dans le projet ALEX.

Trois ont cependant donné une position sur la question, à savoir : « ... oui par les retours de mon TC (il fait partie du groupe de travail), les mails, la newsletter... on sent qu’il y a une vie autour du projet et ça encourage effectivement à contribuer, mais ... il faut que tout le monde joue le jeu derrière pour ça perdure », un autre avance : « il y a clairement plus de personnes ... il y a un effort d’associer les personnes concernées dans l’édification du produit ...mais moi personnellement ça n’impacte pas ma façon d’utiliser l’outil [...] moi ce qui me motiverait le plus, c’est la garantie d’avoir une information fiable... ». Enfin un troisième affirme : « oui, il y a l’investissement de l’entreprise dans les tablettes qui est un gros plus ! ».

Les participants s’accordent sur l’investissement du management dans le projet, cependant à ce stade, ils ne semblaient pas le voir comme un catalyseur de l’utilisation continue de l’outil.

Usage effectif et Utilité
Au moment des entretiens, la plupart des participants ne mentionnaient pas un changement dans leur utilisation comparée à l’usage antérieur à la mise en place des fonctionnalités sociales. Quatre des dix participants étaient des utilisateurs fréquents (de deux fois par semaine à chaque jour en fonction des tâches de travail à effectuer) tandis que six sur dix participants l’utilisaient environ une fois par mois ou moins. À la question de savoir pourquoi les modifications effectuées
n’avaient pas eu de changement sur l’usage, la plupart d’entre eux ont répondu qu’ils avaient suffisamment d’expérience et de connaissances sur les infrastructures hydrauliques. Ils le justifient également par le fait qu’ils sont rarement confrontés à des problèmes difficiles ou atypiques qu’ils ne connaissent pas déjà ou qui nécessitent des connexions plus fréquentes à ALEX.

Nous notons quasiment les mêmes réactions concernant l’impact sur les performances de travail, à l’exception de deux participants qui étaient nouveaux dans leur CE respectifs et qui ont affirmé qu’ALEX leur a permis indéniablement de « gagner du temps pour accéder à un lieu d’intervention inconnu […] (et d’) obtenir des informations sur les composants des ouvrages du CE » et « (d’avoir une) assistance lors d’une opération de drainage, opération de maintenance commune à beaucoup ouvrages ».

Attitude et perspective d’usage

Nous avons constaté généralement une attitude et une intention d’utilisation positives. En effet, environ la moitié des participants ont exprimé un point de vue sur la question de l’intention d’utilisation, la plupart pour la recherche d’informations, quelques-uns pour soumettre et collaborer sur le contenu d’ALEX.

Un participant a précisé que « les perspectives d’utilisation d’ALEX sont positives … sous les conditions d’une campagne de publicité générale au sein de la société … ».

Un autre a également souligné l’effet positif de l’approche de conception centrée sur l’utilisateur sur la valorisation des travailleurs et sur la durabilité du nouvel ALEX sans même que je ne pose la question : «… comme je l’ai dit tout à l’heure, chacun a participé au raffinement de l’outil, le résultat a satisfait plus de personnes et cela motorise le projet … tout le monde voit plus clairement son véritable intérêt ce qui n’était pas nécessairement le cas avant, alors je pense qu’il sera utilisé de façon plus durable … ». Cette remarque est d’autant plus vraie que les avis sur l’utilité professionnelle de l’outil lors de la campagne d’évaluation précédente n’étaient pas favorables.

Ces appréciations soulignent l’importance de la conception participative dans l’acceptation de l’outil et il donne un aperçu du rôle que les membres du groupe de travail pourraient jouer pour la promotion de l’outil et son utilisation efficace et continue.

Facilité d’usage, Bénéfices et Satisfaction

Les participants sont globalement satisfaits du nouvel ALEX et de ses fonctionnalités. Ils trouvent généralement la plateforme plus moderne, globalement satisfaisante ; ils n’ont pas trouvé d’aspects négatifs à souligner. Un participant a déclaré qu’ALEX était « Un outil rénové, similaire à ceux que l’on peut trouver
sur Internet... plus ludique et agréable » alors qu’un autre soutenait qu’ALEX était « plus convivial et plus facile d’utilisation ».

À la question de savoir quels bénéfices ils gagnent lors de l'utilisation d'ALEX et ce qui les motivait dans les fonctionnalités sociales, un participant a utilisé les mots « collaboration avec les collègues » et « se sentait utile ».

Un autre a déclaré qu’il aimait « communiquer et transmettre, faire sa part (...), diffuser l’information ».

Un troisième a précisé que « ... comme il est maintenant plus facile à utiliser », il donne plus de temps « pour soumettre et rechercher des informations » ; « ... Je suis personnellement satisfait de participer à la construction de l’outil ... entre autres pour aider les nouveaux collègues à s’intégrer dans la Société [...]», mais j’aimerais être conscient de mon rôle exact dans l’outil et avoir une reconnaissance de la part de l’entreprise ...

4.5.3 Synthèse

C’est un retour intéressant pour nous qui nous conforte dans nos choix d’incréments de stimulation sociale pour cette séquence dans la mesure où les avantages intrinsèques comme la réputation, la joie ou encore la croissance du savoir favorisent l’utilisation continue des outils de partage des connaissances (He & Wei, 2009).

Cependant en regardant le détail des fonctionnalités de stimulation sociale proposées, on constate que les indicateurs de qualité de la fiche pour des raisons de vocabulaire et de présentation ne sont pas favorablement accueillis par les collaborateurs. Cette fonctionnalité doit donc être réintroduite dans un backlog de sprint dans la séquence suivante pour re-conception (ce qui a d’ailleurs été le cas). Par ailleurs les avis des utilisateurs ne nous ont pas donné des indications sur la facette à implémenter dans la séquence suivante, nous avons donc suivi notre feuille de route (pour la mise en place d’un tableau de bord de suivi de l’activité : Facette F4.1).

<table>
<thead>
<tr>
<th>Critères</th>
<th>Usage</th>
<th>Qualité Système</th>
<th>Facilité d’usage et Satisfaction</th>
<th>Qualité Information et Qualité Service</th>
<th>Utilité</th>
<th>Attitudes et Intentions d’usage</th>
<th>Moyennes</th>
<th>Ecart-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appréciations positives n=66</td>
<td>50,00%</td>
<td>52,50%</td>
<td>90%</td>
<td>60%</td>
<td>72,73%</td>
<td>35,71%</td>
<td>60,16%</td>
<td>19,02%</td>
</tr>
<tr>
<td>Appréciations négative n=14</td>
<td>31,25%</td>
<td>15,00%</td>
<td>0%</td>
<td>0%</td>
<td>0,00%</td>
<td>21,43%</td>
<td>11,28%</td>
<td>13,40%</td>
</tr>
<tr>
<td>Appréciations neutres n=31</td>
<td>18,75%</td>
<td>32,50%</td>
<td>10%</td>
<td>40%</td>
<td>27,27%</td>
<td>42,86%</td>
<td>28,56%</td>
<td>12,60%</td>
</tr>
</tbody>
</table>

Tableau 4.2 Synthèse des résultats qualitatifs de la deuxième évaluation.
4.6 Etat 3 du SGC ALEX (Séquence 4)

La conception de l’outil de suivi de l’activité constituait la quatrième séquence. Celle-ci a duré environ douze mois avec quatre sprints et sept revues de sprint dont la moitié concernaient les facettes travaillées dans les séquences précédentes. Il a abouti au prototype d’un tableau de bord de suivi de l’activité qui présente trois indicateurs de l’activité :

- Les événements de fiches : reportent les différentes actions d’ajout, de commentaire, de suppression, d’édition de fiches. Ils permettent d’avoir une vue succincte de l’activité de construction de la connaissance dans les CEs.

Nous rapportons dans les sections suivantes l’avis des utilisateurs vis-à-vis du tableau de bord proposé.

4.6.1 Récapitulatif des revues de sprint sur le tableau de bord

Les revues de sprint sur le tableau de bord décisionnel se sont faites exclusivement avec le groupe noyau puisqu’il n’était pas destiné à être proposé à tous les utilisateurs, mais seulement à ceux ayant un rôle de décision dans les CEs, ce sont les validateurs et les gestionnaires.

L’objectif est de surveiller l'utilisation de la plate-forme et de donner aux collaborateurs des éléments d’information sur le retour sur investissement et les éléments décisifs pour l’amélioration continue d’ALEX. Le premier prototype (cf. Figure 4.15) soumis à des discussions se compose de trois indicateurs « Ac-
activité sur les fiches », « Modes d'accès aux fiches » et « Temps passé sur les fiches ».

L'indicateur « Activité sur les fiches » indique les différents événements effectués sur le contenu (ajouter une feuille, ajouter un commentaire, supprimer une feuille, modifier une feuille).

L'indicateur « Modes d'accès aux fiches » donne des informations sur la maîtrise de l'outil par les collaborateurs, pour observer le chemin qu'ils empruntent pour accéder à une feuille dans la plate-forme et déduire si elles réussissent leurs actions ou se perdent.

L'indicateur « Temps passé sur les fiches » est un indicateur exprimant la qualité du contenu manipulé dans la plate-forme de partage des connaissances. Il est actuellement exprimé par le temps passé par un utilisateur à lire une fiche.

L'idée de proposer un tableau de bord est positivement accueillie. Le groupe a cependant discuté des abus potentiels, car il peut être utilisé comme un outil pour contrôler les utilisateurs. Il est très important pour eux de maintenir la vie privée et la liberté des travailleurs dans l'utilisation de la plate-forme. Ils ont donc par exemple demandé l'impossibilité de voir le nom des utilisateurs effectuant les différentes actions, mais tout simplement des informations générales comme le nom du CE auquel appartiennent les utilisateurs. Pour l'indicateur ‘Temps passé sur les fiches’, les participants ont proposé de classifier les valeurs présentées en quatre classes de temps : ‘moins d’une minute’, ‘de une à cinq minutes’, ‘de cinq à dix minutes’ et ‘plus de dix minutes’. Et également de compléter cette information avec l'indicateur de lisibilité de la feuille, ce qui donnera plus de pertinence pour cet indicateur.

Figure 4.15 Vue du tableau de bord d’activité ALEX.
4.6.2 Évaluation

Lors de cette évaluation, nous avons évalué l’acceptation a priori du résultat de la quatrième séquence du projet : le tableau de bord de supervision de l’activité.

Le tableau de bord n’ayant pas encore été mis à disposition aux utilisateurs lors de la réalisation de l’entretien, l’évaluation consistait à leur présenter une maquette du tableau de bord avec les différents indicateurs proposés : les événements de fiches, les modes d’accès aux fiches et les temps passés sur les fiches.

4.6.2.1 Sélection des participants

Comme lors de la précédente évaluation, les participants proviennent de la population de collaborateurs à qui ALEX est mis à disposition pour la période d’évaluation test. Nous avons envoyé les demandes de participation par courrier électronique à 8 collaborateurs. 5 ont répondu positivement. Le taux de réponses t=62,5% est positif.

4.6.2.2 Résultats

Les participants qui sont en majorité des responsables d’équipes ont semblé très intéressés par cette possibilité de suivre l’activité des collaborateurs :

« Oui, c'est important de savoir qui utilise, ça permet de voir s'il y a un engouement pour aller utiliser, pour se rendre compte vu l'investissement qui a été fait... je pense que c'est important qu'on le sache, qu'il apporte quelque chose que les gens le consultent... (par contre) je ne suis intéressé que par l'activité des gens du centre pas de tous ceux qui ont créé des fiches... savoir pour les gens du centre, qui a consulté particulièrement [...] ».

« Ben, c'est bien parce que après tu peux plus ou moins demander aux agents de changer leur mode de fonctionnement... euh pour regarder les trucs... non c'est bien d'avoir ça [...] ».

« C’est toujours intéressant, ça donne une idée un peu de la vie d'ALEX dans les centres, [...] on fait des réunions de debriefing hebdomadaire [...] si je vois qu’il n'y a pas de consultation pas d'utilisation, ça me permet de mener des actions de motivation, de formation après des collaborateurs... ».

Vu l’intérêt des participants pour le tableau de bord, on peut avancer que l’outil est très attendu par les responsables de centres, particulièrement les indicateurs d’événements de fiches et les modes d’accès.
Nous présentons dans la section suivante, l’évaluation globale de l’outil que nous avons mené au terme des quatre séquences.

4.7 Evaluation globale du système

Lors de cette évaluation, nous avons évalué la version ALEX_V3, résultat du projet au terme des quatre séquences.

C’est une évaluation globale de l’outil dont l’objectif était de se faire une idée de l’adoption par les exploitants de l’outil ALEX dans sa globalité, c’est-à-dire avec l’ensemble des fonctionnalités proposées tout au long du projet : ce sont la re-conception des fonctionnalités de gestion de contenu (ajout, modification, recherche, consultation), l’ajout de fonctionnalités sociales (commentaires, j’aime, indicateurs de l’activité), la proposition d’un tableau de bord de l’activité. La grille des entretiens était basée sur les mêmes critères que ceux utilisés précédemment à savoir : la qualité du système, la qualité de l’information, la qualité du service, l’utilité (impact sur la performance et divers bénéfices), l’usage effectif, la facilité d’usage, la satisfaction et les intentions d’usage. Une synthèse des résultats de l’analyse qualitative est présentée en fin de section dans le Tableau 4.4.

4.7.1 Sélection des participants

Nous avons effectué cette évaluation globale avec le même groupe de participants que pour l’évaluation du prototype de tableau de bord (8 invitations, 5 réponses positives, t=62,5%).

Les questionnements préliminaires (cf. annexe 3) ont révélé que la majorité des participants ne sont pas familiers des réseaux sociaux. Dans leur quotidien, ils n’ont pas l’habitude de commenter ou de poser des ‘J’aime’. Ils possèdent une forte expertise dans leurs métiers respectifs avec en moyenne plus de 16 ans d’expérience. Dans l’exercice habituel de leur fonction et lorsque confrontés à des problématiques, le réflexe est le plus souvent d’avoir recours aux collègues, à la consultation de support papier, aux archives personnelles constituées au fil du temps. Une moindre place est occupée par les bases de connaissances métiers (en premier Mainta, iGed, et enfin ALEX qui a souvent été constaté comme incomplet vient en dernier des outils consultés). Les profils détaillés (genre, expérience et poste occupé) des participants sont présentés en annexe 2.
4.7.2 Instrumentation

4.7.2.1 Critères
Les entretiens, semi-structurés car basés sur une grille d’entretien, ont été réalisés sur la base des critères (qualité du système, qualité de la connaissance, qualité du service, facilité d’usage, utilité, satisfaction usage effectif, bénéfices) issus des modèles d’adoption des systèmes proposés dans la section ‘Outils pour l’évaluation des périodes d’utilisation test’ (cf. section 3.2.2.2). Les grilles d’évaluation nous ayant servi de support aux entretiens sont proposées aux lecteurs intéressés en annexe 3. Du fait de l’état d’évolution progressive de l’outil ALEX, il n’était pas toujours possible de l’évaluer sur les mêmes critères au fil des séquences. Par exemple, lors de l’évaluation 1 qui est une évaluation a priori, il était impossible d’avoir des réponses objectives sur la qualité du système puisque celui-ci n’avait pas encore été mis à disposition ; de même lors de la troisième évaluation, le tableau de bord n’était pas encore mis à disposition du fait de contraintes contextuelles. Le Tableau 4.3 présente au lecteur intéressé un récapitulatif des critères sur lesquels ont été basées les différentes évaluations au fil des séquences.
La collecte et l’encodage des données ont été effectués sur le même principe que l’évaluation précédente (cf. section 4.5.2.2). La synthèse des résultats des analyses est présentée dans le Tableau 4.4.

4.7.3 Résultats : l’usage continu de ALEX_V3

Qualité du système

La fonctionnalité de recherche déjà utilisée par la majorité des participants (4/5) n’apporte pas de satisfaction. La majorité des recherches n’aboutissent pas à des succès et les participants ont demandé une amélioration du moteur de recherche, un outil plus puissant, avec des possibilités plus avancées de filtrage.
La consultation
La rubrique les ‘dernières fiches consultées’ est très appréciée. Par contre, un participant s’est plaint du fait que la classification des fiches par type de fiches sur la page d’accueil chargeait celle-ci et pouvait induire le lecteur en erreur :
« [...] si j’ai besoin de rechercher des fiches d’un certain type, le volet de navigation de droite me suffit pour cela, [...] il y a vraiment beaucoup de choses sur cette page... il faut faire plus simple... moins chargé... ».

Commentaires
4/5 participants n’ont jamais posé de commentaires bien que tous soient convaincus de l’utilité de cette fonctionnalité :
« [...] les commentaires permettront à faire des fiches les plus complètes possibles [...] ».
« C’est bien pour faire vivre la plateforme, on ne va pas aller voir celles du voisin déjà qu’on a pas le temps pour voir les nôtres, mais c’est bien, ça encourage de voir que ça réagit ».

On remarque également un effet ludique du commentaire lorsque l’un des participants lors de l’entretien voit un commentaire d’un de ses collègues et s’exclame : « [...] Ah c’est (prénom de la personne) qui a écrit ça ! ... toujours quelque chose à dire ! (Rires, puis il lit le commentaire et fait remarquer que celui-ci n’est pas traité...) [...] ».
Le manque d’utilisation actuel s’explique essentiellement par le fait qu’ils n’en ont pas encore ressenti le besoin. Les participants soutiennent par ailleurs avoir le réflexe d’appeler leurs collègues directement en cas de remarques plutôt que de laisser un commentaire. Les centres sont en réalité à taille humaine.

Les ‘J’aime’
Le fait d’avoir la possibilité de mettre des ‘j’aime’ a amusé quelques participants, mais le succès n’est pas au rendez-vous. Certains se sont même posé la question de leur l’intérêt dans un contexte professionnel :
« [...] Est ce que ça a son intérêt ? Peut-être pas forcément sur la fiche, mais sur ... euh ça dépends... ça peut apporter quelque chose hein.... Mais est-ce que les gens vont y aller ? Moi ça ne me viendrait pas à l’idée de mettre des j’aime... peut être les jeunes ils vont le faire, si ça m'a apporté quelque chose, mais pour l'utiliser il faut vraiment qu'ils le sachent, que ce soit plus voyant... ».

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI095/these.pdf
© [C. Toure], [2017], INSA Lyon, tous droits réservés
« C’est un truc que je n’ai pas trop regardé ça les j’aime... c’est toujours bien effectivement surtout ça donne un retour sur la qualité et l’utilité de la fiche, mais ce n’est pas une fonctionnalité ludique pour moi [...] ».

« Non, je trouve que c’est un peu copier les réseaux sociaux... dans le domaine de l’entreprise, quand on soumet un truc on ne recherche pas des j’aime ou pas, je la consulte pas parce qu’il y a des j’aime, mais c’est parce que ça m’est utile... non je n’en mettrai pas, je n’en vois pas l’utilité ».

Page de suivi des contributions
La plupart des participants ne sont pas familiers de cette page, mais tous s’accordent sur l’intérêt d’un récapitulatif de leurs contributions :
« [...] c’est un peu ce que je recherchais tout à l’heure, quand je cherchais ma fiche, du coup ça tombe bien... si je sais que c'est moi qui l'ai fait je vais là-bas directement [...] je pense que dans un premier temps je vais plus aller là-bas plutôt que de rechercher dans ce que les autres on fait... vraiment l'ergonomie n’est pas mal, mais il faut juste s'habituer à l’interface. [...] ».

« [...] non, franchement ... c'est bien fait, c'est assez clair l’interface et l’ergonomie... ».
Un participant en a relevé l’intérêt dans le suivi de l’activité de ses collaborateurs en tant que validateur : « [...] parce que tout seul je ne sais pas ce qu’ils font dans leur coin, avec cette page tac je clique je vois ce qu’ils font à la fin de la semaine, ça permet de voir ce qui est fait par les agents... ».

Nom des auteurs/modificateurs
Le fait de voir les noms des personnes ayant créé ou modifié une fiche est un point positif pour les participants :
« Je ne recherche pas une fiche par le nom mais je regarde le nom de la personne, [...] mais ce n’est pas un critère de consultation... pour moi l’intérêt c’est que je vois qui l’a fait et je peux lui poser des questions... ».

« Oui, je regarde toujours les noms, mais ... je ne crois pas que je vais ouvrir plus spécifiquement une fiche en me disant parce que cette personne a créé une fiche, je vais la voir [...] ».
Cette information est utile, mais on remarque que ce n’est cependant pas un critère de consultation de la fiche.
Indicateurs de qualité de l’information

Concernant les indicateurs de taux de couverture et le niveau de présentation, ils ont été jugés utiles sur le principe mais la plupart des participants ne le consultent pas lors de la lecture de la fiche :

« [...] oui, oui je connais les indicateurs, mais je ne (les) consulte pas... c'est une bonne idée, mais pour l'instant je ne consulte pas trop du fait que je n'ai pas une utilisation habituelle d’ALEX [...] »

Un participant a précisé que c'est une information qu’il regarderait, car (elle) lui sert à l'aiguiller sur la qualité du contenu cependant il déplore le vocabulaire employé pour les désigner les niveaux : « ... je ne suis pas complètement d'accord ... j'ai l'impression que le niveau de présentation défini à qui ça s'adresse, pour moi c'est un peu confus... »

Un autre a déclaré : « je ne sais pas...je pense que les termes sont compliqués et qu'on ne comprend pas grand-chose, c’est un facteur bloquant pour moi, je pense pas que je vais pas l'utiliser en l'état... peut être mettre des étoiles par exemple : trois étoiles en fonction du niveau d'opérationnalité... »

Qualité de l’information

Les types de fiches

La typologie des fiches est considérée comme exhaustive et correspondant au métier des exploitants. Elle est acceptée par les participants. Les types de fiches les plus utiles et prisées pour les participants sont les fiches Opération et Process, les fiches Alarmes et les fiches Présentation. Un participant a cependant demandé l’ajout de plus d’indications concernant ce qui est attendu dans le remplissage des différents types de fiches.

Organisation des fiches

L’organisation des fiches en ensembles est généralement satisfaisante (4/5 personnes ont approuvé). Un bémol a cependant été posé par un des participants qui a constaté lors de la navigation qu’une fiche qui avait été placée dans un ensemble donné n’y appartenait pas en réalité et a souligné le fait qu’il existe un certain nombre d’ouvrages qui traversent plusieurs ensembles et qui demandent réflexion avant de les classer dans tel ou tel ensemble. Il s’interroge sur la pertinence de classifier de façon aussi systématique en ensembles les différents ouvrages renseignés dans ALEX.

L’organisation intrinsèque des fiches en sous-sections à compléter est appréciée : « [...] le canevas des fiches est très bien construit, je trouve ça pas mal, ça nous guide pour construire la fiche », « l'organisation des fiches alarmes est claire... ça correspond tout à fait à ce que je m’attends à voir dans une fiche alarme [...] ».
Les avis concernant la qualité de l’information contenue dans ALEX sont néanmoins mitigés et dépend fortement des centres. Mais généralement, les participants s’accordent à dire qu’il reste un réel travail d’alimentation de la base. Malgré le travail qui a été réalisé, il faut encore du temps pour corriger et mettre à jour les fiches existantes et pour en rajouter de nouvelles.

Qualité du service

Ce critère permet d’évaluer la perception de l’implication du management dans le projet ALEX. La majorité des participants ont relevé une plus grande implication du management dans le projet ALEX, notamment au travers des actions de sensibilisation, notamment par la diffusion de la newsletter ALEX et la mise à disposition des alternants pour le remplissage, ce qui a un effet motivant sur l’utilisation d’ALEX :

« [...] les réunions d'information me donnent des idées sur comment le mettre en place dans mon CE... (aussi), quand il y a la lettre ça te met une petite pique de rappel [...] ».

« Oui, (il y a) une plus grande implication de la hiérarchie... C'est le forcing ! (Rires) L'implication est flagrante [...] des fois je leur dirais d'y aller plus lentement, si je n'avais que ça à faire je le ferais bien, mais j'ai d'autres choses à faire... ».

« [...] par exemple la lettre d'information, c'est bien parce que même si on ne les lit pas toutes c'est bien [...] c'est bien pour ceux qui veulent s'informer ».

Cependant un autre a relevé le fait que cette implication du management n’entraîne pas forcément l’engouement de tous les collaborateurs : « [...] je suis pas sûr que le nouvel ALEX génère une plus grande implication des exploitants, tout dépend au niveau des centres des moyens qu'on donne et des objectifs par rapport à ALEX, je pense qu'il doit y avoir pas mal d'écarts entre les différents centres... ».

Usage effectif et utilité

Concernant les habitudes d’utilisation d’ALEX, celles-ci sont le plus souvent ponctuelles et interviennent lors de permanences de nuit où le recours aux collègues est difficile et pour l’aide à la résolution d’opérations complexes dont les participants savent qu’ils n’auront pas de réponse ailleurs. Globalement, la re-conception d’ALEX n’a pas vraiment changé cette habitude de consultation.
Attitude et perspective d’usage
Concernant les perspectives d’usage, celles-ci sont globalement encourageantes. 4/5 ont explicitement exprimé leur volonté de plus s’investir dans la consultation et la familiarisation à l’outil (le parcourir et l’utiliser plus souvent pour se faire la main) :
« Je pense que dans un avenir proche, on va aller de plus en plus parce que chaque année on retombe sur les mêmes opérations qu’il faut refaire à chaque fois et cette année l’objectif est d’alimenter pour éviter les problèmes d’oubli qu’on peut rencontrer [...] ».
« [...] c’est un très bel outil qui pourrait avoir sa place dans l’apprentissage et le support aux nouveaux... non, non je pense que c’est une bonne chose... ».

Pour la création et la modification des fiches, tous ont relevé le facteur bloquant du manque de temps :
« [...] vous voyez c'est ce que je dis, il y a une erreur ici... les gars de chez moi ils verraient par exemple qu’il y a 3 pompes et non 2... moi je ne me vois pas vérifier tous ces petits détails là... ça me prendrait des semaines ça... de toutes les façons, c'est facile à prendre en main, il faut l'utiliser c'est tout ! ».
« ... dans l’avenir, je sais que ça va faire partie de l’environnement de l’exploitant... mais il faut trouver le temps... on a plus de choses à faire, moins de temps... on est obligé de se fixer des priorités... ce qu’il faudrait c’est revenir à la démarche d’avant où c’est un stagiaire qui vient et remplit tout tout tout... par exemple avec (nom d’un alternant) qui nous met la pression (rires) ça motive à le faire effectivement [...] ».

Un autre utilisateur ajoute que sa motivation est vraiment de supprimer dans son centre l’usage des supports papier qu’ils utilisent beaucoup pour tracer dans l’outil ALEX les opérations dont ils ont besoin.

Facilité d'usage et satisfaction
Les avis sont très positifs concernant les fonctionnalités de gestion de contenu :
« L’outil est plus convivial [...] , plus pratique ».
« [...] c’est très complet et bien fait sincèrement [...] ».
« J’ai travaillé avec (nom d’un alternant) dessus, [...] , je le trouve très bien organisé [...] ».

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI095/these.pdf © [C. Toure], [2017], INSA Lyon, tous droits réservés
Les participants sont généralement d’accord avec les propositions faites, très peu de suggestions d’améliorations ont été relevées par rapport à la dernière série d’entretiens. Les principales recommandations sont de poursuivre les efforts entamés avec la forte probabilité qu’avec le temps ALEX va gagner de plus en plus de place dans les habitudes des exploitants.

4.7.4 Synthèse

Avec cette évaluation, nous avons pu recueillir les avis utilisateurs sur l’outil dans sa globalité. Les changements progressifs de l’outil ont été très bien accueillis par les utilisateurs. Les habitudes d’usage n’enregistrent pas de changement significatif, il y a toujours une prépondérance du syndrome ‘je n’ai pas le temps’, mais on voit une claire différence dans les perspectives d’usage par rapport aux premières évaluations, que les utilisateurs sont plus confiants en l’avenir de l’outil à la SCP et conviennent que ce n’est qu’une question de temps : le temps de l’acquisition de l’outil, mais surtout celui de la consolidation de la qualité de l’information dans le système, par la poursuite de l’effort de portage des fiches, par la mise en place d’un gestionnaire fixe (en effet, les alternants ne restent pas longtemps en poste, et n’ont pas le temps de bien se faire connaître et de gagner la confiance des collaborateurs, critères importants pour le succès de leurs démarches), qui se chargera de l’animation auprès des CEs et du maintien de la qualité des contenus de façon directe ou par délégation aux personnes les plus adaptées.

Dans la section suivante, nous faisons une analyse comparée des retours qualitatifs avec les données d’usage recueillies.

<table>
<thead>
<tr>
<th>Critère</th>
<th>Appréciations positives n=110</th>
<th>Appréciations négatives n=52</th>
<th>Appréciations neutres n=45</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Qualité Système</td>
<td>Qualité Information</td>
<td>Qualité Service</td>
</tr>
<tr>
<td></td>
<td>45,63%</td>
<td>67,74%</td>
<td>71,43%</td>
</tr>
<tr>
<td></td>
<td>Usage et Utilité</td>
<td>61,11%</td>
<td>55,56%</td>
</tr>
<tr>
<td></td>
<td>Attitudes et intentions d’usage</td>
<td>60,30%</td>
<td>20,48%</td>
</tr>
<tr>
<td></td>
<td>Moyennes</td>
<td>10,21%</td>
<td>5,32%</td>
</tr>
<tr>
<td></td>
<td>Ecart-type</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 4.4 Synthèse des résultats qualitatifs de la dernière évaluation.

4.8 Synthèse globale des résultats avec analyse des données d’usage

Nous avons mené trois évaluations du SGC ALEX : une évaluation d’acceptation a priori du prototype en Juin 2013, une évaluation d’acceptation

Les résultats des évaluations qualitatives sont globalement positifs. Il est bien entendu impossible vu le temps qui nous était imparti dans ce travail de thèse (trois ans) d’observer une réelle pérennité, mais nous avons néanmoins pu observer l’acceptation et l’impact de l’outil sur les habitudes et les intentions d’usage des collaborateurs dans l’entreprise. Nous recherchons particulièrement les signes de pérennité que l’on peut détecter des résultats pour soutenir la validité de notre démarche. En observant les trois composantes clés de notre système que sont l’humain, la connaissance et l’organisation (au travers de la communauté de pratique), on remarque que :
- Les schémas de croyances (la satisfaction, l’utilité ou encore la facilité d’usage) des collaborateurs interrogés sont restés constants au fil des itérations. Les perspectives d’usage positives sont cependant beaucoup plus affirmées dans les propos des participants lors de l’évaluation globale, ce qui montre un retour satisfaisant pour les prochaines années d’utilisation de l’outil.
- La connaissance renseignée ainsi que la qualité des contenus présentent une progression : c’est-à-dire, la création d’un plus grand nombre de nouvelles fiches, une information plus complète. La problématique de la mise à jour reste cependant d’actualité.
- Au niveau des communautés de pratiques, les points de vue des collaborateurs ne permettent pas d’entrevoir de nouvelles dynamiques sociales intra et extra-communautaires.
Nous observons ainsi une amélioration au niveau humain (meilleures dispositions des utilisateurs vis-à-vis de l’outil), et également une évolution au niveau de la qualité de l’information. La dynamique sociale au sein du système n’a cependant pas été impactée par les évolutions que nous avons menées. Cela peut s’expliquer par le contexte particulier de la SCP où les communautés de pratiques sont à taille humaine et où les collaborateurs préfèrent interagir de façon physique plutôt que digitale.

Dans la suite de cette partie, nous allons regarder les données d’usage que nous avons collectées depuis la mise à disposition de l’outil en Octobre 2014, jusqu’à la fin du projet, c’est-à-dire en Décembre 2016. L’objectif est de voir si les données quantitatives corroborent les résultats observés et/ou si l’on peut observer des éléments supplémentaires ou plus précis d’information.
Ainsi, les données d’usage montrent généralement que l’activité sur la plateforme s’est vraiment intensifiée à partir du deuxième semestre de l’année...
2016, on peut identifier comme élément déclencheur la campagne de communication 3 qui a été effectuée en milieu d’année 2016 au cours de la séquence 4 (cf. Figure 4.14) et qui a permis de présenter à l’ensemble des collaborateurs de la société l’outil ALEX dans sa globalité. Ce n’était pas la première campagne de communication, mais ce changement peut être interprété par le fait qu’à ce stade et grâce au travail d’affinage continu de l’outil par les membres du groupe de travail, ALEX remplissait les conditions optimales de son accueil par les collaborateurs. Le constat est le même concernant l’évolution de la collaboration (cf. Figure 4.16 et Figure 4.17), l’usage des fonctionnalités de gestion de contenu (cf. Figure 4.18 et Figure 4.19) et l’information publiée (cf. Figure 4.20). On ne remarque pas de réels écarts avec les avis des utilisateurs, néanmoins le détail par types de fiches permet par exemple de constater que les fiches de type Alarme suscitent la plus forte collaboration ou que les fiches de type Présentation sont celles qui ont été le plus publiées. Ces informations peuvent permettre de cibler de façon précise les actions stratégiques à mener dans les séquences suivantes pour favoriser l’usage durable de la plateforme. Ce qui constitue un point positif de notre méthodologie.
Figure 4.16 Tendance de la collaboration sur les fiches.

Note : Evolution dans le temps (en abscisse) du nombre moyen de personnes différentes (en ordonnée) intervenant dans la mise à jour (co-construction) des fiches.

Figure 4.17 Détail de la courbe précédente par type de fiches.

Note : Les valeurs négatives sont dues à l’option de lissage des courbes. Elles correspondent à 0.
Figure 4.18 Evolution du nombre des événements de fiches sur les trois années d’usage.

Note: Les événements concernent les créations, les mises à jour et les suppressions de fiches.

Figure 4.19 Détail du nombre des événements de fiches par années et types de fiches.
Figure 4.20 État du nombre des publications dans ALEX classé par année.

Note : Tous types confondus, on observe une progression du nombre de fiches publiées au fil des années.
5 Discussions

Dans cette partie, nous proposons de discuter la pertinence de nos propositions au regard de la problématique posée et des solutions existantes. Dans le chapitre précédent, nous avons présenté l’implémentation de notre méthodologie de conception pour la mise en place d’un SGC utilisé de façon pérenne. Les objectifs de cette expérimentation étaient :
- D’avoir une vision globale de la méthode en contexte réel pour pouvoir discuter les différents éléments de notre proposition
- De déterminer les choix de conception qui sont contextuels et ceux qui sont généralisables pouvant faire office de recommandations pour d’autres concepteurs
- Et enfin de déterminer quelle priorité accorder à quelle facette lors de la mise en place d’un SGC pérenne.

Nous discutons dans ce chapitre les différentes observations tirées de l’implémentation en contexte réel.

5.1 Concernant le déroulement effectif de l’implémentation de notre proposition

L’implémentation en contexte réel présente quelques écarts avec la proposition théorique présentée au chapitre 3 (cf. section 3.2.2). Dans cette partie, nous allons passer en revue les différences survenues lors de la mise en œuvre de notre méthodologie.

5.1.1 Récapitulatif de notre proposition

Nous avons proposé un processus de conception dont l’objectif est de mettre en œuvre une régulation pérenne des SGC. Le projet de conception est basé sur au moins quatre séquences qui sont des périodes de conception dont les thèmes correspondent aux quatre facettes (ou points critiques à traiter) caractérisant la pérennité des SGC. Pour rappel, les facettes à prendre en considération pour la mise en œuvre d’un SGC pérenne sont :
- **F1** : Un SGC adapté aux utilisateurs et au contexte d’usage.
- **F2** : Un SGC présentant un corpus informationnel de qualité.
- **F3** : Un SGC doté d’interactions d’autorégulation.
- **F4** : Un SGC doté d’un outil de suivi de l’activité et des contenus.

Les points suivants résument les éléments clés de notre proposition :

1. Le projet de conception utilise comme fil directeur une liste que nous avons nommée *Backlog de SGC pérenne* récapitulant les facettes ainsi que leurs sous-items. L’objectif est de définir les sous-fonctionnalités
précises des différentes facettes en collaboration avec le groupe ayant le rôle de *SGC owner* (il s’agit de notre équivalent du rôle *Product owner* dans la méthode agile SCRUM).

2. Chaque séquence est décomposée en un nombre \(n \) de sprints permettant le choix, la spécification et le développement des fonctionnalités précises décrivant la facette traitée.

3. Les séquences sont traitées de façon successive et uniforme : chacune d’elle commence par une réunion de planification de la séquence et se termine par une évaluation qualitative de la satisfaction utilisateur.

4. Nous n’avons pas déterminé d’ordre de priorité de traitement des différentes facettes. Nous avons décidé de laisser le contexte (l’expérimentation) répondre à cette question.

5. Nous avons défini deux périodes clés dans chaque séquence : la période de conception/réalisation pendant laquelle se déroulent les sprints et les développements ainsi que la mise en œuvre des propositions dans le SGC, et la période d’utilisation test au cours de laquelle les utilisateurs prennent en main l’outil en conditions écologiques. Pendant cette période, les données d’usage de l’outil sont collectées.

6. La période de conception est pilotée par une méthode d’AI\(^{12}\) en cinq étapes : stratégie, périmètre, structuration, squelette, visuel. Celle-ci permet la prise en considération explicite des contenus en même temps que des fonctionnalités dans le processus de conception. L’information étant une composante vitale dans le SGC, celle-ci est ainsi discutée à chaque étape de conception des différentes fonctionnalités.

7. Pour l’étape d’évaluation en fin de séquence, l’analyse combinée des données d’usage et de l’évaluation qualitative permet d’appréhender de façon plus riche la satisfaction des utilisateurs et d’orienter le choix des facettes et fonctionnalités suivantes à intégrer dans le flux de conception.

Nous avons pensé notre proposition pour qu’elle produise un système qui accorde la place adéquate aux trois composantes clés des SGC que sont : l’utilisateur, l’information et le système. De plus, l’entreprise et le management ne sont pas en reste puisque les outils de suivi et d’évaluation permettent d’avoir un retour sur l’appropriation du SGC par les collaborateurs et de mieux accompagner le changement. Dans la section suivante, nous faisons un bilan de l’implémentation telle qu’elle s’est déroulée.

\(^{12}\) Architecture de l’information
5.1.2 L’implémentation

La mise en œuvre de notre méthodologie de conception s’est déroulée de façon satisfaisante puisqu’elle a abouti à la conception d’une version améliorée du SGC qui existait à la SCP. L’outil remplit une grande partie des besoins exprimés par les collaborateurs du GT et ceux qui n’y ont pas participé, ce qui nous permet d’avancer que celui-ci est adapté à leurs différents profils et contextes d’usage. De plus, ces derniers annoncent des perspectives d’usage encourageantes de la plateforme.

Cependant, on note des différences entre notre proposition et comment celle-ci a effectivement été mise en place dans la réalité. Nous proposons de discuter ces éléments d’écarts dans les points suivants :

1. Un groupe de travail (GT) représentatif des rôles et métiers concernés par l’outil a été constitué. Il y avait une réelle implication des membres du groupe dans la re-conception du produit ALEX. Au cours de la séquence 2, il a été nécessaire de poursuivre une partie de l’affinement des fonctionnalités avec un sous-groupe du GT, le groupe noyau (GN). Le GN est constitué de membres « un peu plus experts » avec également un niveau supplémentaire de décision. Ils étaient particulièrement efficaces pour discuter et faire évoluer les aspects stratégiques des fonctionnalités mais également les aspects pratiques comme adapter le visuel des interfaces des prototypes au système d’information opérationnel (Sharepoint) choisi par l’entreprise.

2. La facette F2 : corpus informationnel de qualité, a été travaillée de façon continue tout au long du projet, et n’a pas fait l’objet de séquence spécifique. En effet, il était difficile de considérer tous les aspects informationnels indépendamment des fonctionnalités de gestion de contenu, de stimulation sociale et même de suivi de l’activité. Ainsi, le contenu, son architecture ainsi que ses différents autres aspects qualitatifs sont traités au fur et à mesure de l’entrée des items dans le processus de conception.

3. Pareillement, il est difficile de proposer un ordre ferme de priorité dans le traitement des facettes, puisque celui-ci est fortement dépendant du contexte et des besoins utilisateurs exprimés. Cependant, le backlog de SGC pérenne tel que nous l’avons initialement ordonné sert de support décisionnel pour le thème de la séquence suivante, lorsque le besoin utilisateur n’est pas clairement détecté.

4. Ainsi dans la pratique, les frontières entre les différentes séquences sont très floues. En effet, l’affinement des fonctionnalités de la deuxième séquence a continué jusqu’à la fin du projet, de même que celui de la troisième séquence. Le cloisonnement dans la conception des différentes
fonctionnalités n’existe pas réellement pendant l’implémentation, celle-ci se fait de façon continue et itérative, en fonction des retours utilisateurs.

5. De même, la frontière entre les deux périodes intra séquence : la période de conception/réalisation et la période de test n’est pas aussi cloisonnée que prévue. Une fois l’outil mis à disposition des collaborateurs, les tests d’utilisation et retours se sont poursuivis jusqu’à la fin du projet.

6. Des fonctionnalités plus précises ont pu être définies, mais elles sont très relatives au contexte et au besoin exprimé par les collaborateurs. Nous présentons néanmoins dans la section suivante les éléments généralisables que nous avons pu relever concernant les fonctionnalités et choix de conception proposés à la SCP.

5.2 Concernant les retours utilisateurs sur les facettes

5.2.1 Sur les fonctionnalités de gestion de contenu

Pour ce groupe de fonctionnalités, nous suggérons, dans le cadre des livres de connaissances à l’attention de communautés de pratiques, de mettre en place un niveau d’accès par rôle. Dans notre contexte, les rôles définis au sein de l’outil, respectent les différents niveaux de participation que l’on retrouve classiquement dans les communautés de pratiques (cf. Figure 5.1) : le noyau dur (qui ici ont été appelés Gestionnaires et qui ont pour rôle de maintenir la vie de la communauté, jouent un double rôle administratif technique et humain), les membres actifs (qui sont ici appelés Validateurs et Contributeurs) et la périphérie (qui ont été appelés Commentateurs). Cette hiérarchie est essentielle à la vie de la communauté et doit être encouragée. Les revues de sprint ont permis aux participants de spontanément réaliser son importance pour une meilleure adoption de l’outil.

Figure 5.1 Niveaux de participation dans les communautés de pratiques.

Source : (Hautdidier, 2006 p.36).
5.2.2 Sur les fonctionnalités sociales

La collecte des commentaires des travailleurs sur les fonctionnalités proposées et l'observation de leur réaction à ce sujet montrent que :

- Les commentaires peuvent être un outil intéressant d'expression et de participation à la construction de contenu sous condition d'être modérés et archivés.
- Les ‘j’aime’, outils d'évaluation collective, permettent aux utilisateurs de donner des appréciations, mais leur véritable sens et leurs objectifs devraient être clairement expliqués aux utilisateurs.
- Les indicateurs d'activités et de la qualité de l'information au sein de la plate-forme sont utiles pour la sensibilisation et la facilitation de la collaboration, ainsi qu'un tableau de bord pour le suivi et la supervision des activités.

Les fonctionnalités sociales proposées semblent être des éléments acceptables pour socialiser une plate-forme de partage des connaissances, répondre aux besoins des utilisateurs en matière de qualité et de valorisation et favoriser ainsi un environnement d'apprentissage informel plus propice sur le lieu de travail.

Il était par ailleurs intéressant de constater l'adhésion aux propositions de plusieurs membres du groupe une fois qu'ils se sentaient plus à l'aise avec le sujet. La maturité d'un concept pour son acceptation dans un groupe doit donc être considérée, ce qui conforte notre proposition de procéder à plusieurs revues de sprint au cours d’une séquence. Elles apparaissent nécessaires dans une telle approche pour faciliter la traduction et l’acceptation des thèmes discutés pour des besoins métiers.

5.2.3 Sur le tableau de bord

Le point principal que l’on remarque ici est l’expression du besoin d’un certain respect de l’anonymat dans l’outil de supervision. Il était important pour les utilisateurs de pouvoir, grâce à cet outil d’aide à la décision, mettre en œuvre des actions de régulation sans porter atteinte à la liberté d’utilisation qui prévaut et provoquer le sentiment d’être contrôlé.

Cette observation apporte un élément de réponse à la deuxième question soulevée dans notre premier point de discussion (cf. section 2.4.1) : Comment rendre le contrôle et la supervision des usages acceptable pour les utilisateurs de manière à réduire le risque de mauvais usage sans freiner l’usage lui-même ?
5.3 Les coûts de la méthode

Jusqu’ici, nous n’avions pas abordé la question des coûts de mise en œuvre de notre proposition. Cet aspect est important pour permettre aux décideurs d’évaluer le retour sur investissement. Nous les présentons dans cette section.

La mise en œuvre de notre proposition a vu le déploiement de moyens qui se sont avérés nécessaires pour mener à bien le projet de conception d’un système pérenne à la SCP. Ce sont :

- **L’embauche d’alternants pour le portage des fiches** : elle a été nécessaire face au manque de temps auquel les collaborateurs étaient confrontés pour effectuer eux-mêmes le transfert de l’information d’un système à l’autre. Ils ont par ailleurs demandé l’embauche d’une personne de façon permanente pour le remplissage, la mise à jour et l’animation des différentes communautés de pratiques en présence dans l’entreprise. Ce rôle devra être pris en compte pour la mise en œuvre dans d’autres contextes d’une démarche similaire de mise en place de SGC pérenne.

- **La sollicitation d’une entreprise prestataire pour le développement des fonctionnalités** : les investissements relatifs à la réalisation de la solution peuvent être réduits si l’entreprise dispose de ressources en interne pour effectuer cette fonction.

- **Le temps consacré à la discussion concernant les différents items de backlog** : les discussions pour l’affinage des fonctionnalités proposées se sont faites avec de multiples utilisateurs finaux. Elles peuvent s’avérer chronophages si ces derniers n’arrivent pas à se décider sur les modifications/améliorations à effectuer. Si les changements que les collaborateurs proposent sont systématiques et intempestifs, la durée de la séquence peut être allongée déraisonnablement et mener dans les cas les plus extrêmes à l’abandon du projet. Une solution à ce problème est de mettre en place un groupe ‘expert’ en parallèle du groupe utilisateur, plus restreint et avec un pouvoir de décision pour la conduite des discussions ‘délicates’. Les décisions de ce sous-groupe sont mises en place et testées par les utilisateurs finaux qui gardent ainsi un moyen d’émettre au cours des sprints suivants, leur point de vue sur les choix de conception.

- **Les coûts de communication auprès de la société et des autres collaborateurs** : ceux-ci sont inhérents à tout projet de gestion des connaissances et contribuent à l’accompagnement des collaborateurs au changement et à l’acception du SGC. L’embauche de collaborateurs pour la saisie des contenus, les coûts de communication et les coûts de développements sont classiques aux démarches de KM et doivent être pris en compte dans les dépenses du projet.

L’aspect qui est particulier à notre méthodologie est cependant les coûts liés aux temps de discussions nécessaires avec les groupes d’utilisateurs qui
peuvent affecter la productivité des collaborateurs (à qui on demande à chaque focus groupe de « mettre de côté » leur travail courant pour participer aux séances de conception) et qui peuvent menacer la bonne conduite du projet.

Pour contrôler ce coût, nous proposons d’explorer les outils disponibles dans les méthodes Agiles, notamment dans Scrum. En effet, le *burndown chart* (cf. *Figure 5.2*) est un graphe permettant de consolider les informations sur l’avancement des développements lors des mêlées quotidiennes. Il prend en abscisse la date et en ordonnée le temps de travail restant. C’est un indicateur permettant de superviser l’exécution des développements et de déterminer les points d’ajustement requis pour atteindre les objectifs. L’idéal pour cette courbe est de tendre de façon asymptotique vers le ‘zéro effort’. Chaque jour, les membres de l’équipe mettent à jour sur le *burndown chart*, leurs estimations du temps restant pour l’exécution de l’item en cours.

Il nous semble intéressant d’introduire une utilisation du *burndown chart* dans la phase de conception pour contrôler l’évolution des discussions (par analogie au contrôle des développements pour lesquels il est actuellement utilisé), par exemple en mettant en ordonnée la quantité de points à discuter (au lieu des développements restants à effectuer) et en gardant en abscisse la date. Lorsque le *burndown chart* n’évolue pas vers le zéro effort, le *Product owner* peut décider de faire intervenir par exemple le groupe noyau d’experts pour accélérer les prises de décisions concernant la conception. Cette proposition nécessiterait d’être testée en contexte.

Figure 5.2 Exemple de burndown chart\(^\text{13}\).

\(^{13}\text{Source : https://fr.wikipedia.org/wiki/Burndown_chart.} \)
5.4 **Recommandations aux concepteurs**

À partir des éléments discutés dans les sections précédentes, nous présentons dans cette partie des ajustements/recommandations sur la conduite de notre méthodologie et notre backlog de SGC pérenne enrichi des résultats et recommandations obtenus grâce à l’implémentation. Il demeure cependant nécessaire de tester cet artefact dans d’autres contextes pour l’améliorer et attester de sa généralité.

Nous récapitulons ci-après les éléments d’ajustement et les recommandations que nous apportons à notre méthodologie :

1- Nous ne faisons plus correspondre chaque facette à une séquence qui porte son nom. En effet, les différentes facettes sont traitées en fonction du besoin émis par les utilisateurs lors des revues de sprint ou des résultats des évaluations combinées. Lorsque le choix de la prochaine facette à traiter n’est pas explicite, le concepteur s’en remet à l’ordre suggéré par le backlog de SGC pérenne. Ainsi, dans le backlog de SGC pérenne (cf. Tableau 5.1), les quatre séquences du backlog de SGC pérenne sont éliminées, celui-ci ne sera désormais classé que par les facettes.

2- La composition du groupe utilisateur ayant le rôle de *SGC owner* se fait relativement au contexte. Lorsque le groupe constitué est grand (par souci de représentativité par exemple), une recommandation est de constituer un sous-groupe noyau qui sera chargé, notamment pour faire avancer les discussions de décider de certains aspects stratégiques et plus spécifiques dont le traitement peut s’avérer chronophage (notamment les questions concernant les aspects visuels des interfaces).

3- Les périodes de conception/développement et de tests peuvent s’effectuer en parallèle.

4- Concernant la conception de l’architecture de l’information et des fonctionnalités de gestion de contenu du SGC, *nous recommandons aux concepteurs de proposer une hiérarchisation correspondant à l’organisation pratique des communautés au sein de l’entreprise*. En effet comme précisé dans la section 5.2.1, *cela facilite l’identification des collaborateurs au SGC et son acquisition*.

5- Concernant la conception du suivi de l’activité au sein du SGC, *nous recommandons aux concepteurs de proposer des visualisations et des interactions permettant le respect de l’identité des personnes tracées (par exemple par le retrait du nom ou la mise en place d’une granularité où les éléments d’identité apparaîtraient en dernier)*. En effet, comme précisé dans la section 5.2.3, *cet aspect est important pour faciliter l’acceptation par les collaborateurs du contrôle de l’usage qui est fait de leur activité* dans un contexte où les réseaux sociaux et autres outils collaboratifs offrent une certaine liberté d’expression aux utilisateurs.
6- Nous précisons qu’il faut prévoir en fin de séquence, des actions de communications qui interviennent dans le processus d’acceptation et d’acquisition du SGC et qui peuvent constituer de véritables boosters de l’usage comme nous avons pu le constater dans notre expérimentation (cf section 4.8).

<table>
<thead>
<tr>
<th>Séquences</th>
<th>ID</th>
<th>Items</th>
<th>Recommandations aux concepteurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facette 1 : Adapter le SGC au profil des utilisateurs</td>
<td>F1</td>
<td>Fonctionnalités de gestion de contenu</td>
<td>Le cas échéant, mettre en place des niveaux d'accès aux fonctionnalités en respectant les niveaux de participation en présence dans les communautés de pratiques</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soumission</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mise à jour</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recherche</td>
<td></td>
</tr>
<tr>
<td>Facette 2 : Mettre en place un corpus informationnel de qualité</td>
<td>F2.1</td>
<td>Information exhaustive</td>
<td>Le contenu, l'architecture et les autres éléments de qualité de l'information sont pris en considération à chaque étape de conception</td>
</tr>
<tr>
<td></td>
<td>F2.2</td>
<td>Information fiable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F2.3</td>
<td>Information à jour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F2.4</td>
<td>Accessibilité de l'information</td>
<td></td>
</tr>
<tr>
<td>Facette 3 : Mettre en place des éléments de stimulation</td>
<td>F3.1</td>
<td>Indicateurs de collaboration</td>
<td>Besoin de modération et d'archivage des outils de co-construction des contenu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commentaires</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F3.2</td>
<td>Indicateurs réflexifs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Informations sur les contributeurs</td>
<td>(nom, date de contribution, …)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Informations sur les commentateurs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Informations de contribution</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Informations de validation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F3.3</td>
<td>Fonctionnalités d’évaluation et de participation</td>
<td>Expliquer clairement aux utilisateurs le sens et les objectifs des fonctionnalités d'évaluation pour éviter qu'elles aient un effet démotivateur (contraire à celui escompté)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicateurs de lisibilité des contenus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicateurs de pertinence des</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicateurs d’exhaustivité des</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>J’aime</td>
<td></td>
</tr>
<tr>
<td>Facette 4 : Assurer la supervision et le contrôle des usages</td>
<td>F4.1</td>
<td>Outil de suivi de l'activité et des contenus</td>
<td>Besoin de discrétion et/ou de respect de l'anonymat dans les informations de suivi présentées</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activité sur le contenu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(création, suppression, mise à jour, commentaires…)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode d'accès au contenu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temps passés sur les contenus</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 5.1 Le Backlog de SGC pérenne avec recommandations aux concepteurs.

Note : Les sous-fonctionnalités sont des propositions et sont non exhaustives.
6 Conclusion

6.1 Bilan général
Dans ce travail de recherche, nous nous sommes intéressés à la question de la pérennité de l’usage des systèmes de gestion des connaissances (SGC) dans les entreprises.

Pour résoudre cette problématique, nous avons dans un premier temps, étudié l’usage pérenne des systèmes de gestion des connaissances (SGC) en entreprise sous l’angle des théories de l’adoption (acceptation initiale et continue) des technologies. L’étude de l’ingénierie des SGC révèle trois générations qui se sont succédé dans les entreprises et qui constituent les antécédents d’un nouveau genre d’environnements informatiques pour la gestion des connaissances : ce sont les médias sociaux d’entreprise (MSE). Les MSE présentent divers facteurs favorisants, mais pouvant aussi entraver la gestion efficace et pérenne de l’expertise des utilisateurs. Nous avons ensuite abordé les facteurs influençant l’usage des SGC puis les moyens permettant de réguler celui-ci. Cet état de l’art a suscité des points de discussion qui ont permis d’articuler notre réflexion autour des questions de recherche suivantes :
- Quelle caractérisation des SGC pérennes :
 o Quelles facettes requises pour un SGC favorisant une utilisation durable ?
- Comment mettre en œuvre et accompagner cet usage durable des SGC :
 o Quelle méthode unifiée pour leur régulation pérenne ?
 o Quelle méthodologie de conception à échelle micro pour une conception de SGC pérennes ?
 o Quels outils méthodologiques utiliser pour l’exécution de cette méthodologie ?
- Comment implémenter un contrôle et une supervision de l’usage acceptable pour les utilisateurs ?

Nous avons, dans un deuxième temps, émis des propositions de réponse à nos différentes questions de recherche.

Une analyse de l’état de l’art nous a permis d’émettre une caractérisation des SGC pérennes par la définition de points critiques à adresser au sein des SGC pour favoriser une adoption durable du système par les utilisateurs. Nous avons donc dégagé quatre facettes qui sont requises pour une plateforme gérant la connaissance de façon pérenne : ce sont F1 : l’adaptation au profil des utilisateurs professionnels, F2 : la qualité des contenus informationnels manipulés, F3 : les moyens de stimulation de la socialisation ainsi que F4 : les moyens de supervision et de contrôle stratégiques de l’activité.
Nous avons ensuite proposé **une méthode théorique de régulation mixte permettant la mise en œuvre des différents facteurs stimulant l’usage pérenne des SGC.** Cette méthode unifie des outils de stimulation pour l’autorégulation et des outils soutenant l’accompagnement au changement. Nous avons proposé pour la réifier une méthodologie de conception basée sur le concept *Agile.* Celle-ci est caractérisée par :

- **Les rôles entrant en jeu dans le processus de conception :** le SGC owner correspondant au couple *(product owner ; groupe d’utilisateurs finaux)*, le scrum master *(le maître des développements)* et la team *(l’équipe de développement)*.

- **Les séquences, activités et artefacts produits :** dans notre proposition, le projet de conception du SGC pérenne est mené à partir d’une liste initiale, le *backlog de SGC pérenne* récapitulant les facettes requises pour la mise en place d’un système pérenne. Le *backlog de SGC pérenne* est subdivisé en quatre sous parties, les *backlog de référence.* Ils servent de fils directeurs pour l’exécution de quatre séquences de conception au cours desquelles plusieurs *sprints* pour la livraison d’artefacts plus spécifiques *(backlog de sprint et/ou fonctionnalités)* peuvent être menés. Une *séquence* comprend une *réunion de planification* pour la définition du besoin initial, un ou plusieurs *sprints* réguliers de conception/développement menant à la *livraison de versions fonctionnelles* du SGC. Dès qu’une facette de SGC pérenne est jugée opérationnelle, celle-ci est mise à disposition pour une *période d’utilisation test* avec *collecte de données d’usage* et campagne d’évaluation qualitative. Pour exécuter chacune des séquences proposées, nous avons précisé une méthode d’AI, inspirée du framework en cinq étapes de *(Garrett, 2011)* qui dissocie de façon explicite l’information et les interactions utilisateur/système dans la conception.

Pour tester la faisabilité et valider cette proposition de méthodologie, nous l’avons implémentée en contexte réel à la SCP, entreprise de gestion de patrimoine hydraulique localisée dans le sud de la France. L’expérimentation a duré quatre années et une douzaine de personnes ont participé à la conception de l’outil.

Ainsi, les première et deuxième séquences de la mise en œuvre de notre méthodologie nous ont permis de reconcevoir les fonctionnalités de gestion de contenu du SGC initial pour le rendre plus adapté aux besoins des collaborateurs. Dans la troisième séquence, nous avons rajouté des fonctionnalités de stimulation pour favoriser l’autorégulation du SGC. Au cours de la quatrième séquence, nous avons proposé un outil de supervision de l’activité dans le SGC qui...
affiche des indicateurs de différents points critiques à surveiller, notamment l’activité d’usage général de la plateforme ou encore la qualité du contenu.

Les résultats des évaluations sont positifs. Les collaborateurs ont activement participé à la conception de leur outil de partage de connaissance et sont satisfaits du produit qui leur a été livré. Nous avons cependant constaté des écarts entre notre proposition et l’implémentation qui nous ont permis de procéder à des ajustements dans notre proposition initiale et faire des recommandations aux concepteurs. A savoir que :

1- Nous ne faisons plus correspondre chaque facette à une séquence qui porte son nom : en effet, les différentes facettes sont traitées en fonction du besoin émis par les utilisateurs lors des revues de sprint ou des résultats des évaluations combinées. Lorsque le choix de la prochaine facette à traiter n’est pas explicite, le concepteur s’en remet à l’ordre suggéré par le backlog de SGC pérenne.

2- La composition du groupe utilisateur ayant le rôle de SGC owner se fait relativement au contexte. Lorsque le groupe constitué est grand (par souci de représentativité par exemple), une recommandation est de constituer un sous-groupe noyau qui sera chargé, notamment pour faire avancer les discussions, de décider de certains aspects stratégiques et plus spécifiques dont le traitement peut s’avérer chronophage (notamment les questions concernant les aspects visuels des interfaces).

3- Les périodes de conception/développement et de tests peuvent s’effectuer en parallèle.

4- Prévoir en fin de séquence, des actions de communication qui interviennent dans le processus d’acceptation et d’acquisition du SGC.

6.2 Contributions et limites
Dans cette section, nous faisons le bilan de nos contributions. Pour rappel, notre travail de recherche pour répondre aux problématiques d’acceptation et d’usage pérenne des SGC était axé autour des objectifs suivants :

1- Prendre en compte les futurs utilisateurs tout au long du cycle de conception et d’exploitation du système pour proposer un dispositif adapté ; une utilisation effective ne pouvant être réalisée que si le dispositif technique s’inscrit dans une stratégie de support à l’activité et de stimulation de l’usage.

2- Mettre en place des moyens de suivi continu de l’usage par des campagnes d’évaluation quantitatives suffisamment précises pour compléter l’analyse qualitative et soutenir les prises de décision stratégiques industrielles.
Dans le cadre de notre travail, nous avons donc proposé quatre contributions :

- Une méthode théorique de régulation mixte permettant la mise en œuvre continue des différents facteurs stimulant l’usage pérenne des SGC : cette méthode de régulation pour l’adoption pérenne du SGC unifie des outils de stimulation pour l’autorégulation et des outils soutenant l’accompagnement au changement.

- Une méthodologie de conception basée sur les principes agiles. Elle présente les caractéristiques suivantes : 1) itérative et incrémentale, 2) intégrant une stratégie d’évaluation centrée utilisateur de la qualité du SGC (combinant évaluation de la satisfaction et des données d’usage), 3) permettant de soutenir l’accompagnement et l’adaptation de la stratégie de KM et une plus grande implication des utilisateurs finaux qui participent à la conception et décident eux-mêmes grâce aux résultats d’évaluation de sprint, des modifications à effectuer dans les items de backlog à développer et 4) intégrant des outils d’IHM (framework d’architecture de l’information) pour l’exécution des différentes séquences.

- L’implémentation de la méthodologie en contexte réel qui a permis de tester notre méthodologie en conditions écologiques. Les retours utilisateurs lors des différentes campagnes d’évaluation ont permis de confirmer l’importance de chacune des facettes fonctionnelle, informationnelle, sociale et de suivi que nous avons proposé pour un SGC pérenne. Les attitudes des collaborateurs au fil des différentes séquences ont montré en effet, l’intérêt de travailler particulièrement chacun de ces points critiques. L’implémentation a par ailleurs permis de proposer des recommandations génériques aux concepteurs pour l’application en contexte de notre méthodologie et a abouti à la mise en place d’un SGC ALEX_V3 présentant les caractéristiques préconisées de pérennité.

Les résultats d’évaluation montrent une évolution positive des croyances des utilisateurs, particulièrement des perspectives d’usages. La limite majeure de notre travail est qu’il a été implémenté dans un seul contexte d’activité, il demeure nécessaire de tester notre méthodologie dans d’autres contextes pour l’améliorer.
et attester de sa généralité. De plus, la maturité du système est encore faible et il faudra attendre plus d’années d’utilisation pour être assuré de sa pérennité effective.

6.3 Perspectives
Cette section est l’occasion d’élargir le champ de notre étude. L’affichage et la visualisation des indicateurs de régulation et de supervision, par exemple dans le tableau de bord de suivi, nous semblent importants à affiner. En effet, les collaborateurs du GT n’étaient pour certains pas forcément familiers des outils décisionnels et de l’activité complexe que requiert l’analyse des données présentées. Nous proposons donc de travailler à la problématique de visualisation et d’adaptation de la visualisation aux profils des utilisateurs novices à qui ces outils ne sont pas destinés a priori. (Parsons & Sedig, 2014; Sedig, Parsons, & Babanski, 2012) proposent un framework reprenant la plupart des propriétés des représentations visuelles de données et permettant de les ajuster pour améliorer la qualité des interactions dans les outils de visualisation de données. Ils déplorent cependant le manque de mise en application de leur framework.

Pour répondre à ce manque et en perspective de notre travail, nous avons eu l’idée d’intégrer, dans notre outil de suivi de l’activité, un système adaptatif de visualisation d’indicateurs en fonction du profil utilisateur et du contexte d’usage et dont l’architecture est à définir.

L’idée : mettre en place un système d’adaptation automatique de la visualisation des indicateurs en fonction du contexte (essentiellement rôles et profils).

Objectif : par une démarche centrée utilisateur (c’est-à-dire prenant en compte le profil et l’activité utilisateur), adapter, au profil de l’utilisateur, la charge cognitive relative à l’utilisation d’un outil de visualisation de données.

Proposition : Système de visualisation d’indicateurs autonome (qui actualise automatiquement ses paramètres), interactif, adaptatif et centré utilisateur (basé sur le profil utilisateur _profil de base défini pour l’utilisateur en conditions initiales_ et ses traces d’utilisation _qui peuvent permettre de détecter une évolution ou un changement dans son profil de base).
- Le système fait évoluer de façon automatique les paramètres des indicateurs en fonction des évolutions ou changements éventuels identifiés sur le profil utilisateur par ses traces d’activités : par exemple, dans les communautés de pratiques, on observe différents rôles et types d’utilisateurs. Ces profils et rôles évoluent au cours de la durée de vie de la communauté en fonction de l’implication de l’utilisateur dans la communauté. Dans le cadre des communautés de pratique en ligne, pour présenter de façon efficace des indicateurs à ces utilisateurs, il faut les adapter à leurs différents profils et les faire évoluer avec eux pour conserver leur efficacité et leur pérennité.

- Le système est autonome et évolutif. En effet, le module d’adaptation (cf. Figure 6.1) gère de façon automatique le processus d’adaptation, le module d’apprentissage gère de façon autonome le processus d’adaptation de la visualisation de l’indicateur.

Idées pour la mise en œuvre : pour mettre en œuvre ce système, il est nécessaire d’effectuer une description formelle :
- De l’indicateur et de ses paramètres (cela nous emmène à nous interroger sur les paramètres d’un indicateur : il est possible de les définir à partir d’un l’état de l’art sur les indicateurs).
- De l’activité d’usage par la définition formelle des traces (modèles de traces) : il est possible de définir ces modèles grâce aux travaux et techniques sur la trace modélisée.

La figure ci-après présente une proposition d’architecture du système automatique de visualisation d’indicateurs.
Figure 6.1 Proposition d’une architecture fonctionnelle du système automatique de visualisation d’indicateurs.

Nous rappelons enfin que ces compléments d’information sur les approches de formalisation de traces et d’indicateurs sont disponibles dans l’annexe 1.
Bibliographie

http://www.iso.org/iso/catalogue_detail.htm?csnumber=52075
de traces d’utilisation d’une activité d’apprentissage : une approche
requirements for office work with visual display terminals (ISO 9241-
It’s what you do with it that matters. Computers in Human Behavior,
27(3), 1046–1058.
Self-Regulation in Project-based Learning. INSA Lyon.
Information Quality in Social Media. Proceedings of 33rd International
Conference on Information Systems, 1–16.
challenges and opportunities of Social Media. Business Horizons,
53(1), 59–68.
des réseaux sociaux pour optimiser sur votre activité et répondre aux
attentes de vos visiteurs.
Social media? Get serious! Understanding the functional building blocks
nous appliquons SCRUM (2nd Editio). United States of America:
C4Media.
Works.
success model: theoretical development and empirical validation.
methodology for information quality assessment. Information &
Management, 40(2), 133–146.
Proposal of an Empirical Research, 8(1), 79–90.
media: Definition, history, and prospects for the study of social
technologies in organizations. Journal of Computer-Mediated
Communication, 19(1), 1–19.
of knowledge sharing in professional virtual communities. Computers in
usage antecedents: An integration of social cognitive theory and task

Carine TOURE / Thèse en informatique / 2017 / Institut national des sciences appliquées de Lyon

Bibliographie

Analytics, 3(1), 12–28. https://doi.org/10.1145/0000000.0000000

Annexes
Annexe 1 : Ingénierie des indicateurs

Ingénierie des indicateurs : calculer les indicateurs, de la collecte à la visualisation

De nombreux travaux existent sur l’élaboration d’indicateurs, les outils de génération et d’édition d’indicateurs ainsi que les tableaux de bord décisionnels. Par exemple, le processus de conception préconisé dans la méthode liée au formalisme UTL (Iksal & Choquet, 2008) est le suivant : les utilisateurs assistés d’un analyste expriment leurs besoins d’observation. L’analyste par la suite formalise le besoin exprimé. La formalisation équivaut à analyser le besoin et à le décrire de façon formelle. Le besoin est ensuite implémenté ; cela consiste à repérer les données d’usage (ou traces) sources, à les collecter puis à les transformer successivement jusqu’à l’obtention de l’indicateur recherché.

La collecte

La collecte consiste à l’analyse du besoin et au recueil dans les sources de données des informations nécessaires au calcul des indicateurs. Cela se fait en fonction du contexte selon trois approches qui sont :

- l’approche axée utilisateur (qui consiste à déterminer les besoins d’observation des différents utilisateurs qui sont ensuite intégrés puis normalisés pour former un unique ensemble multidimensionnel), le plus souvent utilisée pour les systèmes collaboratifs, les systèmes de gestion de connaissance ou les tableaux de bords décisionnels (Gendron, 2010), (Devillers et al., 2004),

- l’approche axée données le plus souvent utilisée pour les environnements d’apprentissage autorégulés (où on analyse les sources de données opérationnelles pour identifier les données pertinentes pour le processus de décision) (Ji, 2015),

- et l’approche axée sur les objectifs (consistant à analyser des processus d’entreprise clés, à les compléter en interviewant le top management et à proposer un ensemble d’indicateurs jugés appropriés) (Champalle, 2014).

Ces trois approches peuvent être combinées comme le montre (Golfarelli, 2010) lorsqu’il présente la conception d’indicateurs pour un entrepôt de données. Le principal est de permettre à l’utilisateur final de comprendre le choix des indicateurs qui lui sont proposés, de pouvoir aisément les manipuler, et même dans certains cas les personnaliser, en créer pour favoriser, faciliter l’utilisation de l’outil et donc le succès de la régulation.
La transformation des données

Les méthodes de cette phase permettent de successivement transformer les données extraites à partir des méthodes de collecte jusqu’à l’obtention des valeurs des indicateurs. Ces méthodes se répartissent en deux groupes que sont les méthodes ad hoc et les méthodes génériques.

Dans les méthodes ad-hoc, nous avons toutes les méthodes qui encapsulent dans la fonction de calcul de l’indicateur les différentes transformations qui doivent être faites sur les données brutes collectées (Djouad, Mille, Reffay, & Benmohamed, 2009). La transformation des données de façon ad hoc fonctionne très bien dans un contexte spécifique mais ne permet pas la réutilisation d’une ou plusieurs étapes de transformation en cas de changement de contexte, c’est-à-dire si l’on change par exemple d’environnement observé ou s’il évolue.

Nous pouvons citer par exemple les méthodologies issues de la Business Intelligence. Ces solutions implémentent des processus dit ETL (Extract Transform Load) qui proposent généralement une interface claire permettant de visualiser et de maintenir le flux de transformations effectuées sur la donnée. Cependant, ce flux est pensé pour et est dépendant du type de donnée traitée, l’analyse et les opérations effectuées doivent être reprises pour chaque donnée extraite et ne sont pas réutilisables.

Les méthodes génériques sont celles qui dissocient explicitement les différentes étapes de traitement des données et favorisent donc leur maintenance et/ou leur réutilisation dans d’autres contexte. Nous pouvons citer par exemple les méthodes d’ingénierie par les modèles avec le concept de la trace modélisée, les méthodes d’intelligence artificielle à base de règles, les méthodes de Data Mining ou les méthodes par patron de conception (Thi Ngoc, 2011).

L’exploitation et la visualisation

Les indicateurs sont utilisés pour des objectifs d’observation et d’analyse de l’activité pour la prise de décision, la régulation d’activité, l’assistance, et l’apprentissage. Les modes de visualisation proposés aux utilisateurs dépendent des objectifs d’observation et des profils d’utilisateurs à qui ils doivent être présentés. Par exemple, à un administrateur de système qui doit superviser et évaluer l’activité sur sa plateforme, seront proposés des indicateurs sous forme de tableau de bord, tandis qu’à un utilisateur que l’on veut assister, on présentera directement les indicateurs au cours de l’activité. Comme exemples de visualisations d’indicateurs, nous pouvons citer les visualisations descriptives des données (moyenne, médiane, histogramme, etc.), les visualisations des relations (diagramme de réseaux, nuage de points, etc.), les visualisations illustratives de données (icônes, pictographies, etc.), etc. (Icke & Sklar, 2009).
Les méthodes d’analyse et de transformation des traces aboutissent à des outils utilisateurs permettant l’analyse, la gestion et la manipulation des indicateurs résultant. Nous avons classé ces outils en deux groupes :

- Les outils axés sur l’analyse de traces et d’indicateurs intermédiaires : (transformation de traces, visualisation de modèles), plutôt adressés à un public ‘expert’ : analystes, etc. Nous avons par exemple l’outil D3KODE (Champalle, 2014) qui permet l’analyse de données numériques et basé sur le principe de la trace modélisée. Cet outil n’a pas pour objectif a priori de calculer des indicateurs mais l’intérêt pour l’analyste réside dans le fait de présenter aux utilisateurs une représentation visuelle des différents niveaux d’abstraction de la trace au cours des transformations successives, ce qui facilite la compréhension et la réutilisation de l’analyse faite sur la trace.

Annexe 2 : Profils détaillés des participants aux évaluations

Nous présentons les données dans le tableau récapitulatif ci-après.

<table>
<thead>
<tr>
<th>ID</th>
<th>Genre</th>
<th>Expérience (années)</th>
<th>Poste occupé</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>F</td>
<td>NR</td>
<td>RH</td>
<td>RH</td>
</tr>
<tr>
<td>P2</td>
<td>M</td>
<td>NR</td>
<td>TC</td>
<td>TREVARESSE</td>
</tr>
<tr>
<td>P3</td>
<td>M</td>
<td>NR</td>
<td>TECHNICIEN</td>
<td>SMP</td>
</tr>
<tr>
<td>P4</td>
<td>M</td>
<td>NR</td>
<td>TECHNICIEN</td>
<td>CTG</td>
</tr>
<tr>
<td>P5</td>
<td>M</td>
<td>NR</td>
<td>TC</td>
<td>BERRÉ</td>
</tr>
<tr>
<td>P6</td>
<td>M</td>
<td>16</td>
<td>TC</td>
<td>VAREST</td>
</tr>
<tr>
<td>P7</td>
<td>M</td>
<td>NR</td>
<td>TC</td>
<td>OLLIOULES</td>
</tr>
<tr>
<td>P8</td>
<td>F</td>
<td>20</td>
<td>INGENIEUR</td>
<td>STI</td>
</tr>
<tr>
<td>P9</td>
<td>F</td>
<td>1</td>
<td>ALTERNANT</td>
<td>CTG</td>
</tr>
<tr>
<td>P10</td>
<td>M</td>
<td>33</td>
<td>TC</td>
<td>TREVARESSE</td>
</tr>
<tr>
<td>P11</td>
<td>M</td>
<td>20</td>
<td>INGENIEUR</td>
<td>STI</td>
</tr>
<tr>
<td>P12</td>
<td>M</td>
<td>13</td>
<td>TC</td>
<td>NR</td>
</tr>
<tr>
<td>P13</td>
<td>M</td>
<td>16</td>
<td>TECHNICIEN</td>
<td>CTG</td>
</tr>
<tr>
<td>P14</td>
<td>M</td>
<td>28</td>
<td>TC</td>
<td>NR</td>
</tr>
<tr>
<td>P15</td>
<td>M</td>
<td>12</td>
<td>AGT EXPLOIT</td>
<td>NR</td>
</tr>
<tr>
<td>P16</td>
<td>M</td>
<td>20</td>
<td>AGT EXPLOIT</td>
<td>NR</td>
</tr>
<tr>
<td>P17</td>
<td>M</td>
<td>2</td>
<td>TSRC</td>
<td>NR</td>
</tr>
<tr>
<td>P18</td>
<td>M</td>
<td>NR</td>
<td>TC</td>
<td>CADENET</td>
</tr>
<tr>
<td>P19</td>
<td>M</td>
<td>16</td>
<td>TC</td>
<td>OLLIOULES</td>
</tr>
<tr>
<td>P20</td>
<td>M</td>
<td>15</td>
<td>TC</td>
<td>THOLONET</td>
</tr>
<tr>
<td>P21</td>
<td>M</td>
<td>13</td>
<td>TC</td>
<td>MANOSQUE</td>
</tr>
</tbody>
</table>

Profil de participants.
Annexe 3 : Grilles des évaluations qualitatives

Grille d’évaluation - Séquence 1 : Prototype Drupal
Lors de cette évaluation, nous avons évalué a priori le résultat de la première occurrence de notre démarche cyclique : la re-conception des fonctionnalités de gestion de contenu de ALEX.
Les questions étaient semi-ouvertes avec une échelle d’appréciation à cinq niveaux allant de ‘a’ (absolument pas = pas du tout d’accord) à ‘e’ (tout à fait d’accord) avec possibilité d’argumenter les réponses.
La grille était organisée en neuf thématiques présentées ci-après :

Questions introductives

Nom :
Prénom(s) :
Sexe :
Fonction :

Qualité du système

- Présentation de l’information
- Recherche
- La mise à jour

Qualité de l’information

- Adaptation de l’information présentée à l’activité professionnelle
- Richesse de l’information
- Précision de l’information
- L’information est-elle à jour ?

Facilité d’utilisation perçue

- Les interfaces sont claires et faciles à comprendre
- La recherche de l’information est efficace
- La mise à jour de l’information est efficace
- La recherche est rapide
- La mise à jour est rapide
- La manipulation de l’information ne requiert pas une trop grande concentration

Attitude face à l’usage de l’application

- Je me sens à l’aise à l’idée de travailler avec cette application
- Si j’ai un peu d’entrainement, je pense que je pourrai utiliser cette application sans problèmes
- Je pense pouvoir utiliser ALEX dès à présent sans problème

Intention de comportement d’usage

- Je pense que je vais utiliser ALEX pour consulter des fiches
- Je pense que je vais utiliser ALEX pour mettre à jour des fiches
- Je pense que je vais utiliser ALEX pour créer de nouvelles fiches
- Je prévoie d’utiliser ALEX aussi souvent que possible

Manière dont le système est proposé par la SCP

- Je pense que le fait d'avoir ALEX sur les tablettes est un élément déterminant pour en permettre l'usage
- Je pense que le fait d'avoir ALEX sur les postes fixes est un élément déterminant pour en permettre l'usage
- Je pense que le fait d'avoir uniquement les informations sur son centre est suffisant au lieu d’une version complète incluant tous les centres
- Je pense que le fait de pouvoir télécharger et mettre à jour l'ensemble des informations sur la tablette via le réseau quand on travaille sur un ouvrage est un élément déterminant pour en permettre l'usage
- Je pense qu'une formation sera nécessaire
- Je pense que des réunions régulières du groupe de travail seront nécessaires pendant environ un an

Utilité professionnelle perçue liée à l'usage de l'application

- ALEX va me permettre d'avoir plus d'autonomie dans ma manière de réaliser mon activité
- ALEX va me permettre d'améliorer mon expertise métier
- ALEX va me permettre d'être mieux reconnu dans ma manière de réaliser mon activité
- ALEX va me permettre d'avoir une meilleure connaissance des services et des personnes
- Je pense qu’ALEX est utile pour le développement de la SCP

Utilité personnelle perçue liée à l'usage de l'application

- ALEX va m'aider à réaliser des tâches d'exploitation
- ALEX va me permettre d'apprendre des choses sur la manière de réaliser mon travail
- ALEX va me permettre d'améliorer mon efficacité et ma performance au travail
- ALEX va me permettre de travailler plus vite
- ALEX va me permettre d’être plus exigeant sur le travail réalisé par les autres
- ALEX va me permettre que les autres deviennent plus exigeants sur mon travail et me sollicitent

Satisfaction

- Je suis satisfait la manière dont l'information est présentée dans ALEX
- Je suis satisfait des fonctionnalités de recherche d'information proposées dans ALEX
- Je suis satisfait des fonctionnalités de mise à jour d'information proposées dans ALEX
- Je suis satisfait des liens envisagés entre ALEX et les autres systèmes d'information

Grille d'évaluation - Séquence 3 : ALEX avec les fonctionnalités de stimulation sociale

L’objectif de l’entretien est de faire une évaluation du travail qui a été fait sur ALEX. Je vais vous poser des questions de comparaison entre l’ancienne et la nouvelle version sur des points spécifiques et relatifs à votre façon de l’utiliser. A la fin, je vous demanderai si vous avez des retours sur comment améliorer votre utilisation de l’outil. L’entretien offre la possibilité pour moi de valider des points spécifiques qu’on n’a pas forcément abordé de façon particulière pendant les séances du GT, de mieux explicitier mes questions que dans un questionnaire, et pour vous de vous exprimer de façon plus détaillée. C’est un outil adapté, me semble-t-il, à notre choix de conception (centré utilisateur) qui est de faire participer effectivement les utilisateurs.
Interroger également les personnes du groupe de travail, permet de valider que nous avons su transcrire le besoin, recueillir les retours d’utilisation effective et par comparaison avec les réponses des autres, valider que les choix du groupe de travail étaient représentatifs des besoins du reste des utilisateurs.

Questions introductives

- Quel est l’intitulé de votre poste ?
- Pouvez-vous rappeler ton CE (votre département) ?
- Combien d’années d’expérience avez-vous dans votre métier ?

Comparaison des fonctionnalités de l’ancien ALEX vs le nouvel ALEX+

Ancien ALEX

La recherche
- Vous est-il déjà arrivé d’utiliser l’ancien ALEX ? A quelle fréquence l’utilisiez-vous pour chercher de l’information ?
- Comment faisiez-vous ? c’est-à-dire en termes de procédure, de contexte, de lieu d’accès. Pouvez-vous me décrire un cas où ça a été particulièrement difficile ? dans quels cas c’était facile ?
- Quels sont les aspects de la recherche que vous préfériez dans l’ancien ALEX ? Ceux que vous aimiez le moins ?

La création de fiches
- Avez-vous déjà soumis une fiche dans l’ancien ALEX ?
- Combien de fois environ l’avez-vous utilisé pour soumettre une fiche ?
- Comment faisiez-vous ? Pouvez-vous décrire un cas où ça a été difficile ? dans quels cas c’était facile ?
- Sur l’interface, quels sont les aspects de la recherche que vous préfériez dans l’ancien ALEX ? Ceux qui vous déplaisaient le plus ?

La modification de fiches
- Concernant les modifications de fiches déjà créées, comment procédais-tu ? (Ou comment fallait-il procéder ?)
- Environ combien de fois l’avez-vous fait ?
- Dans quels cas était-ce facile ? plus difficile ?
- Quels aspects de la modification préférez-vous le plus ? Aimiez-vous le moins ?

Les commentaires

a) Comment procédiez-vous quand vous constatiez qu’il y avait une fiche plus à jour ou quand vous aviez une suggestion à faire sur une fiche ?
b) Qu’est-ce qui vous déplaisait le plus concernant cela ? au contraire il y a-t-il des aspects que vous appréciez (ou qui ne vous dérangeaient pas) concernant cela ?

Nouvel ALEX

La recherche

a) Avez-vous déjà eu à utiliser le nouvel ALEX pour effectuer une recherche d’information ?
b) A quelle fréquence ?
c) Comment faîsiez-vous ? c’est-à-dire en termes de procédure, de contexte, de lieu d’accès. Pouvez-vous me décrire un cas où ça a été particulièrement difficile ? dans quels cas c’est facile ?
d) Quels sont les aspects de l’interface que vous préférez ? Et ceux que vous aimez le moins ?

La création de fiches

a) Avez-vous déjà soumis une fiche dans le nouvel ALEX ? (Par l’alternant ?)
b) Combien de fois environ ?
c) Comment faîsiez-vous ? Pouvez-vous décrire un cas où ça a été difficile ? dans quels cas c’est facile ?
d) Sur l’interface, quels sont les aspects de la création de fiches que vous préférez dans ALEX+ ? Ceux qui vous déplaisent le plus ?

La modification de fiches

a) Combien de fois environ avez-vous utilisé ALEX+ pour modifier une fiche ?
b) Concernant les modifications de fiches déjà créées, comment procédez-vous ? (Ou comment fallait-il procéder ?)
c) Environ combien de fois l’avez-vous fait ?
d) Dans quels cas était-ce facile ? Plus difficile ?
e) Quels aspects de la modification préférez-vous le plus dans ALEX+? Aimez-vous le moins?

Les commentaires

d) Combien de fois avez-vous utilisé ALEX pour commenter, apporter de la valeur ajoutée à une fiche ?
e) Comment faites-vous ?
f) Quels aspects des commentaires préférez-vous le plus ? Aimez-vous le moins ?

Questionnements sur l’information manipulée dans ALEX

a) Que pensez-vous de l’information contenue dans les fiches ? était-elle exacte ? Complète (couvre l’ensemble des informations requises sur l’ouvrage décrit) ? Facile à comprendre, cohérente avec les ouvrages que vous gérez ? …. Pouvez-vous me donner un exemple où tu as obtenu dans la fiche ce qu’il te fallait ?
(Si le participant n’en parle pas, orienter le discours vers les problématiques d’information à jour, exacte (qualité des validations), de complétude (couvre l’ensemble des informations requises sur l’objet décrit). Faire verbaliser également sur la possibilité de commenter numériquement comme nouveau moyen d’échange et de collaboration pour la soumission et la maintenance du contenu dans les fiches)

b) Comment cela se passait-il dans l’ancien ALEX pour pouvoir maintenir l’information à jour (par exemple vous arrivait-il de discuter avec des collègues au sujet du contenu) ?
c) Et maintenant, que pensez-vous des commentaires numériques comme support pour la maintenance des fiches ?
(Les échanges autour d’une information permettent son maintien à jour)

Questionnements sur le support du management

a) Sais-tu un peu comment ALEX a été reconnu ?
b) De ton point de vue, as-tu l’impression d’une plus grande implication des gens, de la hiérarchie, responsables de centres, etc. dans ALEX ? Pourquoi ?
(Exemple d’actions menées : Embauche de stagiaires pour le pré-remplissage des fiches et le support à l’utilisation, Implication du service communication de l’entreprise, Diffusion d’un article dans le journal de l’entreprise, Diffusion d’une lettre d’information mensuelle avec possibilité de suggestions et re-
marques sur l’outil par retours de mails, Réunions régulières d’information du comité de pilotage)

c) Est-ce que c’était déjà le cas avec l’ancien ALEX ?
d) Pensez-vous que ça change votre manière d’utiliser l’outil ? Pourquoi ?

Questionnements sur l’amélioration des performances /plaisir /utilité
/image

a) Quel est pour vous l’utilité principale d’ALEX ? A quoi vous sert-il dans votre métier ?
b) Pouvez-vous citer des exemples où ALEX vous a permis d’améliorer votre activité professionnelle ? Ou au contraire l’a dégradée ?
c) Quelle est votre motivation principale à contribuer au système (poser des fiches / les commenter/modifier). Pensez-vous que vos contributions (fiches, commentaires, images) dans ALEX sont utiles à vos collègues, votre CE ?

Questionnements sur les intentions d’usage

(Parce que mieux adapter à mes besoins
 ▪ Moins de temps pour rechercher, soumettre ou modifier du contenu
 ▪ J’y ai accès sur mes sites d’intervention
Les processus de formalisation de la connaissance sont plus simples
 ▪ Rédaction en langage naturel
 ▪ Processus de validation des soumissions ou des modifications
Parce que je peux compter sur le support de ma hiérarchie
 ▪ Assistance technique)
b) Avez-vous des commentaires sur l’amélioration d’ALEX ? en termes de fonctionnalités par exemple dans ALEX, qu’est ce qui d’après vous pourrait améliorer sa prise en main et son utilisation ?

Questionnements sur la satisfaction

Quels sont les aspects qui vous procurent la plus grande satisfaction quand vous utilisez ALEX+ ? Pourquoi ? Avez-vous des exemples ?
(Autour de cette question orienter les reformulations vers le travail, l’ouverture aux autres, le fait d’être rassuré, synthétiser certains éléments qui sont là =>
Dans votre activité, avez-vous constaté ou pensez-vous constater une amélioration dans vos performances (Rapidité dans l’accomplissement de ses tâches, Augmentation du nombre de problèmes résolus) à court ou moyen terme ? D’un point de vue personnel, quel intérêt trouvez-vous à utiliser ALEX+ : meilleure image, reconnaissance de la part des supérieurs, agréable à utiliser
(Par exemple, l’outil est plus utilisable : plus facile à prendre en main, plus familier ; l’outil est plus accessible : j’y accède plus facilement ; l’outil reflète l’expression explicite de mes besoins : faire préciser les points de satisfaction)

Quelles sont d’après vous les éléments que l’on pourrait apporter pour améliorer votre expérience avec ALEX+ ? Quels éléments pour améliorer l’usage ?

Conclusion

Nous avons maintenant terminé cet entretien, merci de votre participation.

Grille d’évaluation - Séquence 4 : ALEX avec l’outil de suivi de l’activité

Questions personnelles et contextuelles

1. Pouvez-vous préciser votre position ? le nombre d’années d’expérience ?
3. Habituellement, par quels moyens recherchez-vous les informations pour résoudre des problèmes ou questions techniques peu fréquentes ou complexes dans votre travail (par exemple demander aux collègues, une documentation personnelle, des fiches, etc.) ?
4. *(Question pour les techniciens coordinateurs)* Comment se fait le mentoring des nouveaux collaborateurs dans votre centre ? Quel est la place d’ALEX dans ce processus ? Est-ce que cela a toujours été le cas, ou y a-t-il eu un changement ?

Les fonctionnalités de gestion de contenu

Ouvrir la page générale d’accueil ALEX.

1. *Organisation du site*. Le site est organisé par centre d’exploitation (chaque CE a sa propre page, tous les CEs sont organisés de la même
2. Présenter les différents types de fiches. Quels sont les types de fiches que vous utilisez le plus souvent ? Pourquoi ? qu’en est-il des autres types proposés ? pourquoi ? Comment était organisée l’information dans l’ancien ALEX ? Quels sont les aspects que vous appréciez, ou au contraire que vous n’appréciez pas ?

3. Accès. A partir de la page d’accueil, comment procédez-vous pour accéder à une fiche dans ALEX ? (Par exemple, pouvez-vous me raconter une (ou plusieurs) situation (s) où vous avez recherché une fiche (ou une image/document) spécifique dans ALEX ?) Etait-ce facile d’y accéder ? ou plutôt difficile ? pourquoi ?

4. Accès aux fiches. Pouvez-vous me donner quelques accès par lesquels vous accédez aux fiches ? Quel est votre avis sur les différents types d’accès d’ALEX (par l’intranet de l’entreprise, sur les tablettes, par Net-View, par la Supervision…) Comment accédiez-vous à ALEX dans la version originelle ?

5. Recherche. Utilisez-vous la recherche dans ALEX ? A quelle fréquence ? Si oui, pouvez-vous me relater une situation où vous avez recherché une fiche ? Si non, pourquoi n’avez-vous jamais utilisé le moteur de recherche ? Avez-vous des suggestions d’amélioration ?

7. Modification, Information à jour. Avez-vous déjà modifié une fiche ? A quelle fréquence ?

Si oui, pouvez-vous me relater une situation où vous avez modifié une fiche, comment avez-vous procédé ?

8. Perspectives d’usage. Comment imaginez-vous l’utilisation future des fonctionnalités de soumission, modification, recherche, validation ? Qu’est-ce qui va vous motiver à le faire ? (En cas de réponse négative, s’informer sur les facteurs potentiellement bloquants : technique, humain, sociaux, culturel)

Les fonctionnalités sociales

La page de suivi des contributions

1. Il y a la page de suivi des soumissions (lui présenter) qui permet à la personne de connaitre le statut de ses soumissions, l’avez-vous déjà utilisée ? à quelle fréquence ? Pouvez-vous me raconter un cas où vous avez consulté cette page ? Comment avez-vous procédé ?

2. Quand vous avez utilisé la fonctionnalité, avez-vous rencontré des situations où vous avez été gêné, surpris ? pouvez-vous me relater lesquelles ?

3. Plus globalement, comment imaginez-vous l’utilisation future de cette fonctionnalité ? Qu’est-ce qui va vous motiver à le faire ? (En cas de réponse négative, s’informer sur les facteurs potentiellement bloquants : technique, humain, sociaux, culturel)

4. Avez-vous des suggestions d’amélioration de la fonctionnalité ?

(Si la personne ne l’a jamais utilisé, lui présenter quand même l’interface et lui demander son avis sur les choix ergonomiques effectués : quels sont les aspects que vous appréciez ? Ceux que vous appréciez moins ? Pourquoi ?)

Les noms des contributeurs/modificateurs

5. Les noms des auteurs et de la dernière personne à modifier la fiche est indiquée sur la page d’accueil du centre. A quelle fréquence vous arrive-t-il de jeter un coup d’œil sur le nom de la personne qui a écrit le contenu ? Pourquoi (i.e. quelles sont vos motivations : connaitre le contributeur, contacter le contributeur, connaitre la diversité des contributeurs dans mon CE...) ? Pouvez-vous par exemple me raconter une situation où ça vous a servi d’avoir cette information ?
6. Plus globalement, comment imaginez-vous l’utilisation future de cette fonctionnalité ? Qu’est-ce qui va vous motiver à le faire ? (En cas de réponse négative, s’informer sur les facteurs potentiellement bloquants : technique, humain, sociaux, culturel).

7. Avez-vous des suggestions d’amélioration de la fonctionnalité ?

Les commentaires

8. Il y a la possibilité de rajouter des commentaires à chaque fiche, avez-vous déjà soumis des commentaires dans ALEX ?
 Si oui, à quelle fréquence ? Pouvez-vous me raconter un cas où vous avez soumis un commentaire ? Quelles étaient vos motivations à commenter (amusant, donner son avis, faire une suggestion, participer à la construction de la fiche) ? Comment avez-vous procédé ? Etait-ce plutôt facile ? Difficile ? Pourquoi ?
 Si non, pourquoi ? (S’informer sur les facteurs potentiellement bloquants : technique, humain, sociaux, culturel)

10. A l’usage des commentaires (soumettre, consulter) Avez-vous remarqué des changements dans vos rapports avec vos collègues ? dans la façon dont les autres vous voient ou que vous voyez vos collègues ? Avez-vous des suggestions d’amélioration de la fonctionnalité ?

Les ‘J’aime’

11. Il y a la possibilité de rajouter les ‘J’aime’ sur les fiches. Vous est-il déjà arrivé de mettre un ‘j’aime’ à une fiche ?
 Si oui, à quelle fréquence environ ? Pouvez-vous me raconter une situation où vous l’avez fait ? Quelles étaient vos motivations ? (Amusant, exprimer mon avis, encourager…)
 Si non, pourquoi ? (S’informer sur les facteurs potentiellement bloquants : technique, humain, sociaux, culturel)

12. Et consulter vous le nombre de ‘j’aime’ quand il y en a sur une fiche ?
Si oui, à quelle fréquence ? Quelles sont vos motivations ? (Curiosité, m’informe de la qualité de la fiche, m’informe de l’intérêt des autres, m’encourage à contribuer, mes relations sociales…)

Sinon, pourquoi ? (S’informer sur les facteurs potentiellement bloquants : technique, humain, sociaux, culturel)

Comment imaginez-vous l’utilisation future de cette fonctionnalité ? Qu’est-ce qui va vous motiver à le faire ? Avez-vous des suggestions d’amélioration ?

13. A l’usage ‘j’aime’ (soumettre, consulter) Avez-vous remarqué des changements dans vos rapports avec vos collègues ? dans la façon dont vous voyez vos collègues ?

Les indicateurs de qualité de la fiche

14. Le niveau de complétude et de lisibilité sont indiqués sur chaque fiche.
- Pour les validateurs : A quelle fréquence utilisez-vous cette fonctionnalité lors de la validation de la fiche ? Pourquoi ? Comment procédez-vous ? Quels sont les aspects que vous appréciez et ceux que vous appréciez moins ? Pourquoi ?
- Pour les autres : Vous est-il déjà arrivé de consulter les indicateurs de la fiche ? A quelle fréquence ? quelles sont vos motivations ? (Curiosité, m’informe de la qualité de la fiche, m’encourage à consulter, m’encourage à contribuer…) Comment procédez-vous ? Quels sont les aspects que vous appréciez ? pourquoi ? qui vous déplaisent ? pourquoi ?
- Plus globalement, comment imaginez-vous l’utilisation future de cette fonctionnalité ? Qu’est-ce qui va vous motiver à le faire ? (En cas de réponse négative, s’informer sur les facteurs potentiellement bloquants : technique, humain, sociaux, culturel)
- Avez-vous des suggestions d’amélioration de la fonctionnalité ?

Le tableau de bord

(Seulement pour les validateurs et/ou les rôles concernés)

15. Présenter le TdB et les différents indicateurs proposés. Quels sont selon vous les objectifs du tableau de bord ? (Guider la personne avec les propositions ci-après si elle ne sait pas trop quoi répondre : m’informer de l’activité de mon CE ? mieux comprendre l’activité ? faire évoluer l’outil ? me soutenir dans mes séances hebdomadaires de débriefing avec mes collègues, planifier ma stratégie d’animation ALEX dans mon centre ?…)

16. Parmi les indicateurs proposés (activité sur le contenu (ajout, suppression, modification), les consultations par classe de temps, chemins
d’accès), quels sont ceux qui vous paraissent les plus pertinents ? ceux qui vous donnent une meilleure information sur l’activité dans l’outil ? Pourquoi ? Avez-vous des commentaires/suggestions pour l’amélioration des indicateurs du TdB ?

17. Quand il sera mis à disposition, à quelle fréquence projetez-vous de consulter le TdB ? Quelles seront vos raisons pour le consulter ?

Qualité du service

1. Pour ce projet ALEX, avez-vous constaté une plus grande implication des collègues, des responsables de centres, de la hiérarchie en général, etc. dans ALEX ? Pourquoi ?

2. Citer en exemple certaines actions menées : Embauche de stagiaires pour le pré-remplissage des fiches et le support à l’utilisation, Implication du service communication de l’entreprise, Diffusion d’un article dans le journal de l’entreprise, Diffusion d’une lettre d’information mensuelle avec possibilité de suggestions et remarques sur l’outil par retours de mails, Réunions régulières d’information du comité de pilotage. Est-ce que c’était déjà le cas avec l’ancien ALEX ? Quel est votre point de vue sur ces actions ? Cela a-t-il impacté votre manière d’utiliser (fréquence, motivation…) l’outil ? Pourquoi ?

3. Avez-vous des remarques/commentaires sur l’implication du management dans le projet pour le soutenir ?

Impact global d’ALEX sur l’activité et l’apprentissage informel

1. Pouvez-vous me relater une (des) situation(s) où ALEX vous a aidé à effectuer une de vos activités professionnelles (vous a servi de pense-bête, de support d’archivage d’opérations menées, d’aide-mémoire pour se rappeler d’opérations à effectuer, etc.) ? ou au contraire, une situation où ALEX a dégradé une de vos activités professionnelles ? Comment vous sert-il dans votre activité, quelle est pour vous son utilité ?

2. De votre point de vue, qu’est-ce que le nouvel ALEX a changé dans votre manière de travailler avec vos collègues ? Du centre ? des autres centres ? dans la collaboration avec vos collègues autour de votre activité professionnelle ? Merci de votre participation.
RESUME
Dans ce travail de recherche, nous nous intéressons à la question de la pérennité de l’usage des systèmes de gestion des connaissances (SGC) dans les entreprises. Les SGC sont ces environnements informatiques qui sont mis en place dans les entreprises pour mutualiser et construire l’expertise commune grâce aux collaborateurs. Le constat montre que, malgré la rigueur employée par les entreprises pour la mise en œuvre de ces SGC, le risque d’échec des initiatives de gestion des connaissances, notamment lié à l’acceptation de ces environnements par les utilisateurs professionnels ainsi qu’à leur usage continu et durable, reste d’actualité. La persistance et l’ampleur de ce constat dans les entreprises a motivé notre intérêt d’apporter une contribution à cette question générale de recherche. Comme propositions de réponse à cette problématique, nous avons donc 1) dégagé à partir de l’état de l’art, quatre facettes qui sont requises pour favoriser l’usage pérenne d’une plateforme gérant la connaissance ; 2) proposé un modèle théorique de régulation mixte qui unifie des outils de stimulation pour l’autorégulation et des outils soutenant l’accompagnement au changement et qui permet la mise en œuvre continue des différents facteurs stimulants l’usage pérenne des SGC ; 3) proposé une méthodologie de conception, adaptée à ce modèle et basée sur les concepts Agile, qui intègre une méthode d’évaluation mixte de la satisfaction et de l’usage effectif ainsi que des outils d’IHM pour l’exécution des différentes itérations de notre méthodologie ; 4) implémenté la méthodologie en contexte réel, à la Société du Canal de Provence, ce qui nous a permis de tester sa faisabilité et de proposer des ajustements/recommandations génériques aux concepteurs pour son application en contexte. L’outil résultant de notre implémentation a reçu un accueil positif par les utilisateurs en termes de satisfaction et d’usages.

MOTS-CLÉS
Knowledge Management, Gestion des connaissances en entreprise, Systèmes de gestion des connaissances, Régulation, Auto-régulation, Méthodologie de conception agile, IHM, Indicateurs réflexifs et de socialisation, Apprentissage informel, Visualisation de données.

Laboratoire (s) de recherche : LIRIS

Directeur de thèse : Christine MICHEL

Président de jury :

Composition du jury :
- GEORGE Sébastien, Professeur des universités, Rapporteur
- ABEL Marie-Hélène, Professeur des universités, Rapporteure
- GARLATTI Serges, Professeur des universités, Examinateur
- PRAX Jean-Yves, Docteur ès Sciences, Examinateur
- MICHEL Christine, Maître de conférences-HDR, Directeur de thèse
- MARTY Jean-Charles, Maître de conférences-HDR, Co-Directeur de thèse