C. D. Aakre, T. N. Phung, D. Huang, and M. T. Laub, A bacterial toxin inhibits DNA replication elongation through a direct interaction with the ? sliding clamp, Mol. Cell, vol.52, pp.617-628, 2013.

F. M. Adamski, B. C. Donly, and W. P. Tate, Competition between frameshifting, termination and suppression at the frameshift site in the Escherichia coli release factor-2 mRNA, Nucleic Acids Res, vol.21, pp.5074-5078, 1993.

E. Aizenman, H. Engelberg-kulka, and G. Glaser, An Escherichia coli chromosomal "addiction module" regulated by guanosine [corrected] 3',5'-bispyrophosphate: a model for programmed bacterial cell death, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.6059-6063, 1996.

A. Refaii, A. , A. , and J. , Ribosome biogenesis is temperature-dependent and delayed in Escherichia coli lacking the chaperones DnaK or DnaJ, Mol. Microbiol, vol.71, pp.748-762, 2009.

S. Amitai, I. Kolodkin-gal, M. Hananya-meltabashi, A. Sacher, and H. Engelbergkulka, Escherichia coli MazF leads to the simultaneous selective synthesis of both "death proteins" and "survival proteins, PLoS Genet, vol.5, p.1000390, 2009.

S. Arora, S. P. Bhamidimarri, M. Bhattacharyya, A. Govindan, M. H. Weber et al., Distinctive contributions of the ribosomal P-site elements m 2 G966, m 5 C967 and the C-terminal tail of the S9 protein in the fidelity of initiation of translation in Escherichia coli, Nucleic Acids Res, vol.41, pp.4963-4975, 2013.

S. Arora, S. P. Bhamidimarri, M. H. Weber, and U. Varshney, Role of the Ribosomal P-Site Elements of m2G966, m5C967, and the S9 C-Terminal Tail in Maintenance of the Reading Frame during Translational Elongation in Escherichia coli, J. Bacteriol, vol.195, pp.3524-3530, 2013.

A. Aspedon, K. Palmer, and M. Whiteley, Microarray Analysis of the Osmotic Stress Response in Pseudomonas aeruginosa, J. Bacteriol, vol.188, pp.2721-2725, 2006.

T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Mol. Syst. Biol, vol.2, p.8, 2006.

A. G. Balakin, E. A. Skripkin, I. N. Shatsky, A. A. Bogdanov, and A. N. Belozersky, Unusual ribosome binding properties of mRNA encoding bacteriophage ? repressor, Nucleic Acids Res, vol.20, pp.563-571, 1992.

A. Bartholomäus, I. Fedyunin, P. Feist, C. Sin, G. Zhang et al., Bacteria differently regulate mRNA abundance to specifically respond to various stresses, Philos. Transact. A Math. Phys. Eng. Sci, vol.374, 2016.

G. N. Basturea and M. P. Deutscher, Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE. RNA, vol.13, pp.1969-1976, 2007.

G. N. Basturea, K. E. Rudd, and M. P. Deutscher, Identification and characterization of RsmE, the founding member of a new RNA base methyltransferase family, RNA, vol.12, pp.426-434, 2006.

F. R. Blattner, G. Plunkett, C. A. Bloch, N. T. Perna, V. Burland et al., The Complete Genome Sequence of Escherichia coli K-12, Science, vol.277, pp.1453-1462, 1997.

A. L. Blinkowa and J. R. Walker, Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III gamma subunit from within the tau subunit reading frame, Nucleic Acids Res, vol.18, pp.1725-1729, 1990.

D. Boehringer, H. C. O'farrell, J. P. Rife, and N. Ban, Structural Insights into Methyltransferase KsgA Function in 30S Ribosomal Subunit Biogenesis, J. Biol. Chem, vol.287, pp.10453-10459, 2012.

K. Bojanovi?, I. D'arrigo, and K. S. Long, Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida, Appl. Environ. Microbiol, vol.83, 2017.

M. Brigotti, P. G. Petronini, D. Carnicelli, R. R. Alfieri, M. A. Bonelli et al., Effects of osmolarity, ions and compatible osmolytes on cell-free protein synthesis, Biochem. J, vol.369, pp.369-374, 2003.

J. E. Brock, S. Pourshahian, J. Giliberti, P. A. Limbach, and G. R. Janssen, , 2008.

, Ribosomes bind leaderless mRNA in Escherichia coli through recognition of their 5'-terminal AUG, RNA N. Y. N, vol.14, pp.2159-2169

T. J. Bullwinkle, N. M. Reynolds, M. Raina, A. Moghal, E. Matsa et al., Oxidation of cellular amino acid pools leads to cytotoxic mistranslation of the genetic code, vol.3, p.2501, 2014.

A. E. Bunner, S. Nord, P. M. Wikström, and J. R. Williamson, The effect of ribosome assembly cofactors on in vitro 30S subunit reconstitution, J. Mol. Biol, vol.398, pp.1-7, 2010.

D. E. Burakovsky, I. V. Prokhorova, P. V. Sergiev, P. Milón, O. V. Sergeeva et al., Impact of methylations of m2G966/m5C967 in 16S rRNA on bacterial fitness and translation initiation, Nucleic Acids Res, vol.40, pp.7885-7895, 2012.

L. Buts, J. Lah, M. Dao-thi, L. Wyns, L. et al., Increased translational fidelity caused by the antibiotic kasugamycin and ribosomal ambiguity in mutants harbouring the ksgA gene, Trends Biochem. Sci, vol.30, pp.119-124, 1984.

K. Byrgazov, O. Vesper, M. , and I. , Ribosome heterogeneity: another level of complexity in bacterial translation regulation, Curr. Opin. Microbiol, vol.16, pp.133-139, 2013.

K. Caban, M. Pavlov, M. Ehrenberg, and R. L. Gonzalez, A conformational switch in initiation factor 2 controls the fidelity of translation initiation in bacteria, Nat. Commun, vol.8, p.1475, 2017.

N. Caliskan, F. Peske, and M. V. Rodnina, Changed in translation: mRNA recoding by -1 programmed ribosomal frameshifting, Trends Biochem. Sci, vol.40, pp.265-274, 2015.
DOI : 10.1016/j.tibs.2015.03.006

J. Chen, A. Petrov, M. Johansson, A. Tsai, S. E. O'leary et al., Dynamic pathways of ?1 translational frameshifting, Nature, vol.512, pp.328-332, 2014.

Y. Chen, K. Chang, H. Hu, Y. Chen, Y. Lin et al., Coordination among tertiary base pairs results in an efficient frameshift-stimulating RNA pseudoknot, Nucleic Acids Res, vol.45, pp.6011-6022, 2017.

P. P. Cherepanov and W. Wackernagel, Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibioticresistance determinant, Gene, vol.158, pp.9-14, 1995.

P. Choudhury and A. M. Flower, Efficient Assembly of Ribosomes Is Inhibited by Deletion of bipA in Escherichia coli, J. Bacteriol, vol.197, pp.1819-1827, 2015.

K. Connolly, J. P. Rife, and G. Culver, Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA, Mol. Microbiol, vol.70, pp.1062-1075, 2008.

P. H. Culviner and M. T. Laub, Global Analysis of the E. coli Toxin MazF Reveals Widespread Cleavage of mRNA and the Inhibition of rRNA Maturation and Ribosome Biogenesis, Mol. Cell, vol.70, pp.868-880, 2018.

X. Dai, M. Zhu, M. Warren, R. Balakrishnan, H. Okano et al., Slowdown of Translational Elongation in Escherichia coli under Hyperosmotic Stress, MBio, vol.9, pp.2375-2392, 2018.

F. Darfeuille, C. Unoson, J. Vogel, and E. G. Wagner, An antisense RNA inhibits translation by competing with standby ribosomes, Mol. Cell, vol.26, pp.381-392, 2007.
DOI : 10.1016/j.molcel.2007.04.003

URL : https://doi.org/10.1016/j.molcel.2007.04.003

G. Das, D. K. Thotala, S. Kapoor, S. Karunanithi, S. S. Thakur et al., Role of 16S ribosomal RNA methylations in translation initiation in Escherichia coli, EMBO J, vol.27, pp.840-851, 2008.

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.6640-6645, 2000.

J. H. Davis and J. R. Williamson, Structure and dynamics of bacterial ribosome biogenesis, Phil Trans R Soc B, vol.372, 2017.

W. A. Decatur and M. J. Fournier, rRNA modifications and ribosome function, Trends Biochem. Sci, vol.27, pp.344-351, 2002.

M. A. Delivron, R. , and V. L. , Salmonella enterica Serovar Typhimurium BipA Exhibits Two Distinct Ribosome Binding Modes, J. Bacteriol, vol.190, pp.5944-5952, 2008.

N. Demeshkina, L. Jenner, E. Westhof, M. Yusupov, Y. et al., A new understanding of the decoding principle on the ribosome, Nature, vol.484, pp.256-259, 2012.

H. Demirci, F. Murphy, R. Belardinelli, A. C. Kelley, V. Ramakrishnan et al., Modification of 16S ribosomal RNA by the KsgA methyltransferase restructures the 30S subunit to optimize ribosome function, RNA, vol.16, pp.2319-2324, 2010.

P. M. Desai and J. P. Rife, The adenosine dimethyltransferase KsgA recognizes a specific conformational state of the 30S ribosomal subunit, Arch. Biochem. Biophys, vol.449, pp.57-63, 2006.

M. P. Deutscher, Chapter 9 Maturation and Degradation of Ribosomal RNA in Bacteria, Progress in Molecular Biology and Translational Science, pp.369-391, 2009.

J. D. Dinman, Mechanisms and implications of programmed translational frameshifting, Wiley Interdiscip. Rev. RNA, vol.3, pp.661-673, 2012.

B. C. Donly, C. D. Edgar, F. M. Adamski, and W. P. Tate, Frameshift autoregulation in the gene for Escherichia coli release factor 2: partly functional mutants result in frameshift enhancement, Nucleic Acids Res, vol.18, pp.6517-6522, 1990.

S. Dukan and T. Nyström, Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells, J. Biol. Chem, vol.274, pp.26027-26032, 1999.

J. A. Dunkle and C. M. Dunham, Mechanisms of mRNA frame maintenance and its subversion during translation of the genetic code, Biochimie, vol.114, pp.90-96, 2015.

A. El-hage, A. , and J. , Authentic precursors to ribosomal subunits accumulate in Escherichia coli in the absence of functional DnaK chaperone, Mol. Microbiol, vol.51, pp.189-201, 2004.

F. G. Ernst, L. Erber, J. Sammler, F. Jühling, H. Betat et al., Cold adaptation of tRNA nucleotidyltransferases: A tradeoff in activity, stability and fidelity, RNA Biol, vol.15, pp.144-155, 2018.

C. R. Evans, Y. Fan, K. Weiss, L. , and J. , Errors during Gene Expression: Single-Cell Heterogeneity, Stress Resistance, and Microbe-Host Interactions, MBio, vol.9, 2018.

Y. Fan, J. Wu, M. H. Ung, N. De-lay, C. Cheng et al., Protein mistranslation protects bacteria against oxidative stress, Nucleic Acids Res, vol.43, pp.1740-1748, 2015.

P. J. Farabaugh, Programmed translational frameshifting, Annu. Rev. Genet, vol.30, pp.507-528, 1996.

N. Fischer, P. Neumann, A. L. Konevega, L. V. Bock, R. Ficner et al., Structure of the E. coli ribosome-EF-Tu complex at <3 Å resolution by C s -corrected cryo-EM, Nature, vol.520, pp.567-570, 2015.

A. M. Flower and C. S. Mchenry, The gamma subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting, Proc. Natl. Acad. Sci. U. S. A, vol.87, pp.3713-3717, 1990.

B. R. Fritz, O. K. Jamil, and M. C. Jewett, Implications of macromolecular crowding and reducing conditions for in vitro ribosome construction, Nucleic Acids Res, vol.43, pp.4774-4784, 2015.

H. Gao, Z. Zhou, U. Rawat, C. Huang, L. Bouakaz et al., RF3 Induces Ribosomal Conformational Changes Responsible for Dissociation of Class I Release Factors, Cell, vol.129, pp.929-941, 2007.

N. R. Genuth and M. Barna, The Discovery of Ribosome Heterogeneity and Its Implications for Gene Regulation and Organismal Life, Mol. Cell, vol.71, pp.364-374, 2018.

J. Giliberti, S. O&apos;donnell, W. J. Van-etten, and G. R. Janssen, A 5?-terminal phosphate is required for stable ternary complex formation and translation of leaderless mRNA in Escherichia coli, RNA, vol.18, pp.508-518, 2012.

E. Giudice and R. Gillet, The task force that rescues stalled ribosomes in bacteria, Trends Biochem. Sci, vol.38, pp.403-411, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00865335

C. Grigoriadou, S. Marzi, D. Pan, C. O. Gualerzi, and B. S. Cooperman, The Translational Fidelity Function of IF3 During Transition from the 30 S Initiation Complex to the 70 S Initiation Complex, J. Mol. Biol, vol.373, pp.551-561, 2007.

S. Grill, I. Moll, D. Hasenöhrl, C. O. Gualerzi, and U. Bläsi, Modulation of ribosomal recruitment to 5?-terminal start codons by translation initiation factors IF2 and IF3, FEBS Lett, vol.495, pp.167-171, 2001.

X. R. Gu, C. Gustafsson, J. Ku, M. Yu, and D. V. Santi, Identification of the 16S rRNA m5C967 Methyltransferase from Escherichia coli, Biochemistry, vol.38, pp.4053-4057, 1999.

C. O. Gualerzi and C. L. Pon, Initiation of mRNA translation in bacteria: structural and dynamic aspects, Cell. Mol. Life Sci, vol.72, pp.4341-4367, 2015.

C. O. Gualerzi, A. M. Giuliodori, A. Brandi, F. Di-pietro, L. Piersimoni et al., Translation initiation at the root of the cold-shock translational bias, Ribosomes: Structure, Function, and Dynamics, pp.143-154, 2011.

J. C. Guimaraes, M. Rocha, and A. P. Arkin, Transcript level and sequence determinants of protein abundance and noise in Escherichia coli, Nucleic Acids Res, vol.42, pp.4791-4799, 2014.

T. S. Gunasekera, L. N. Csonka, and O. Paliy, Genome-Wide Transcriptional Responses of Escherichia coli K-12 to Continuous Osmotic and Heat Stresses, J. Bacteriol, vol.190, pp.3712-3720, 2008.

L. M. Guzman, D. Belin, M. J. Carson, and J. Beckwith, Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter, J. Bacteriol, vol.177, pp.4121-4130, 1995.

T. Hamma and A. R. Ferré-d&apos;amaré, Pseudouridine Synthases, Chem. Biol, vol.13, pp.1125-1135, 2006.

D. Hanahan, Studies on transformation of Escherichia coli with plasmids, J. Mol. Biol, vol.166, pp.557-580, 1983.

S. W. Harcum and W. E. Bentley, Heat-shock and stringent responses have overlapping protease activity in Escherichia coli. Implications for heterologous protein yield, Appl. Biochem. Biotechnol, vol.80, pp.23-37, 1999.

A. Harms, D. E. Brodersen, N. Mitarai, and K. Gerdes, Toxins, Targets, and Triggers: An Overview of Toxin-Antitoxin Biology, Mol. Cell, vol.70, pp.768-784, 2018.

Y. Hase, S. Yokoyama, A. Muto, and H. Himeno, Removal of a ribosome small subunit-dependent GTPase confers salt resistance on Escherichia coli cells, RNA, vol.15, pp.1766-1774, 2009.

Y. Hase, T. Tarusawa, A. Muto, and H. Himeno, Impairment of Ribosome Maturation or Function Confers Salt Resistance on Escherichia coli Cells, PLOS ONE, vol.8, p.65747, 2013.

A. Hecht, J. Glasgow, P. R. Jaschke, L. A. Bawazer, M. S. Munson et al., Measurements of translation initiation from all 64 codons in E. coli, Nucleic Acids Res, vol.45, pp.3615-3626, 2017.

M. Helm, Post-transcriptional nucleotide modification and alternative folding of RNA, Nucleic Acids Res, vol.34, pp.721-733, 2006.

T. L. Helser, J. E. Davies, and J. E. Dahlberg, Mechanism of Kasugamycin Resistance in Escherichia coli, Nature. New Biol, vol.235, pp.6-9, 1972.

K. Ito, M. Uno, and Y. Nakamura, A tripeptide 'anticodon' deciphers stop codons in messenger RNA, Nature, vol.403, pp.680-684, 2000.

M. C. Jewett, B. R. Fritz, L. E. Timmerman, and G. M. Church, In vitro integration of ribosomal RNA synthesis, ribosome assembly, and translation, Mol. Syst. Biol, vol.9, p.678, 2013.

L. Jiang, C. Schaffitzel, R. Bingel-erlenmeyer, N. Ban, P. Korber et al., Recycling of aborted ribosomal 50S subunit-nascent chain-tRNA complexes by the heat shock protein Hsp15, J. Mol. Biol, vol.386, pp.1357-1367, 2009.

H. Jin, A. C. Kelley, D. Loakes, and V. Ramakrishnan, Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.8593-8598, 2010.

P. G. Jones, R. A. Vanbogelen, and F. C. Neidhardt, Induction of proteins in response to low temperature in Escherichia coli, J. Bacteriol, vol.169, pp.2092-2095, 1987.

M. G. Jørgensen, D. P. Pandey, M. Jaskolska, and K. Gerdes, HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea, J. Bacteriol, vol.191, pp.1191-1199, 2009.

S. Jozefczuk, S. Klie, G. Catchpole, J. Szymanski, A. Cuadros-inostroza et al., Metabolomic and transcriptomic stress response of Escherichia coli, Mol. Syst. Biol, vol.6, p.364, 2010.

S. Kimura and T. Suzuki, Fine-tuning of the ribosomal decoding center by conserved methyl-modifications in the Escherichia coli 16S rRNA, Nucleic Acids Res, vol.38, pp.1341-1352, 2010.

K. S. Koutmou, M. E. Mcdonald, J. L. Brunelle, and R. Green, RF3:GTP promotes rapid dissociation of the class 1 termination factor, 2014.

W. Krzyzosiak, R. Denman, K. Nurse, W. Hellmann, M. Boublik et al., In vitro synthesis of 16S ribosomal RNA containing single base changes and assembly into a functional 30S ribosome, Biochemistry, vol.26, pp.2353-2364, 1987.

C. G. Kurland, Translational accuracy and the fitness of bacteria, Annu. Rev. Genet, vol.26, pp.29-50, 1992.

D. Lafontaine, J. Delcour, A. L. Glasser, J. Desgrès, and J. Vandenhaute, , 1994.

, The DIM1 gene responsible for the conserved m6(2)Am6(2)A dimethylation in the 3'-terminal loop of 18 S rRNA is essential in yeast, J. Mol. Biol, vol.241, pp.492-497

K. Lang, M. Erlacher, D. N. Wilson, R. Micura, and N. Polacek, The Role of 23S Ribosomal RNA Residue A2451 in Peptide Bond Synthesis Revealed by Atomic Mutagenesis, Chem. Biol, vol.15, pp.485-492, 2008.

B. Larsen, N. M. Wills, R. F. Gesteland, and J. F. Atkins, rRNA-mRNA base pairing stimulates a programmed -1 ribosomal frameshift, J. Bacteriol, vol.176, pp.6842-6851, 1994.

B. Larsen, R. F. Gesteland, and J. F. Atkins, Structural probing and mutagenic analysis of the stem-loop required for Escherichia coli dnaX ribosomal frameshifting: programmed efficiency of 50%, J. Mol. Biol, vol.271, pp.47-60, 1997.

M. Laurberg, H. Asahara, A. Korostelev, J. Zhu, S. Trakhanov et al., Structural basis for translation termination on the 70S ribosome, Nature, vol.454, pp.852-857, 2008.

D. V. Lesnyak, J. Osipiuk, T. Skarina, P. V. Sergiev, A. A. Bogdanov et al., Methyltransferase That Modifies Guanine 966 of the 16 S rRNA FUNCTIONAL IDENTIFICATION AND TERTIARY STRUCTURE, J. Biol. Chem, vol.282, pp.5880-5887, 2007.

P. Liao, P. Gupta, A. N. Petrov, J. D. Dinman, and K. H. Lee, A new kinetic model reveals the synergistic effect of E-, P-and A-sites on +1 ribosomal frameshifting, Nucleic Acids Res, vol.36, pp.2619-2629, 2008.

J. Ling and D. Söll, Severe oxidative stress induces protein mistranslation through impairment of an aminoacyl-tRNA synthetase editing site, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.4028-4033, 2010.

P. J. Lopez, I. Iost, and M. Dreyfus, The use of a tRNA as a transcriptional reporter: the T7 late promoter is extremely efficient in Escherichia coli but its transcripts are poorly expressed, Nucleic Acids Res, vol.22, pp.1186-1193, 1994.

P. Lu, C. Vogel, R. Wang, X. Yao, and E. M. Marcotte, Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation, Nat. Biotechnol, vol.25, pp.117-124, 2007.

I. Marianovsky, E. Aizenman, H. Engelberg-kulka, and G. Glaser, The regulation of the Escherichia coli mazEF promoter involves an unusual alternating palindrome, J. Biol. Chem, vol.276, pp.5975-5984, 2001.

J. H. Miller, Experiments in molecular genetics, 1972.

I. Moll and H. Engelberg-kulka, Selective translation during stress in Escherichia coli, Trends Biochem. Sci, vol.37, pp.493-498, 2012.
DOI : 10.1016/j.tibs.2012.07.007

URL : http://europepmc.org/articles/pmc4894542?pdf=render

I. Moll, G. Hirokawa, M. C. Kiel, A. Kaji, and U. Bläsi, Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs, Nucleic Acids Res, vol.32, pp.3354-3363, 2004.

Y. Motorin and M. Helm, RNA nucleotide methylation, Wiley Interdiscip. Rev. RNA, vol.2, pp.611-631, 2011.
DOI : 10.1002/wrna.79

M. Muthuramalingam, J. C. White, and C. R. Bourne, Toxin-Antitoxin Modules Are Pliable Switches Activated by Multiple Protease Pathways, Toxins, vol.8, 2016.
DOI : 10.3390/toxins8070214

URL : https://www.mdpi.com/2072-6651/8/7/214/pdf

T. Nagano, K. Kojima, T. Hisabori, H. Hayashi, E. H. Morita et al., Elongation Factor G Is a Critical Target during Oxidative Damage to the Translation System of Escherichia coli, J. Biol. Chem, vol.287, pp.28697-28704, 2012.

T. Nagano, R. Yutthanasirikul, Y. Hihara, T. Hisabori, T. Kanamori et al., Oxidation of translation factor EF-G transiently retards the translational elongation cycle in Escherichia coli, J. Biochem. (Tokyo), vol.158, pp.165-172, 2015.

N. Netzer, J. M. Goodenbour, A. David, K. A. Dittmar, R. B. Jones et al., Innate immune and chemically triggered oxidative stress modifies translational fidelity, Nature, vol.462, pp.522-526, 2009.
DOI : 10.1038/nature08576

URL : http://europepmc.org/articles/pmc2785853?pdf=render

M. O&apos;connor, C. L. Thomas, R. A. Zimmermann, and A. E. Dahlberg, , 1997.

, Decoding Fidelity at the Ribosomal A and P Sites: Influence of Mutations in three Different Regions of the Decoding Domain in 16S rRNA, Nucleic Acids Res, vol.25, pp.1185-1193

S. M. O&apos;donnell and G. R. Janssen, Leaderless mRNAs Bind 70S Ribosomes More Strongly than 30S Ribosomal Subunits in Escherichia coli, J. Bacteriol, vol.184, pp.6730-6733, 2002.

H. C. O&apos;farrell, N. Pulicherla, P. M. Desai, and J. P. Rife, Recognition of a complex substrate by the KsgA/Dim1 family of enzymes has been conserved throughout evolution, RNA, vol.12, pp.725-733, 2006.

J. M. Ogle, D. E. Brodersen, W. M. Clemons, M. J. Tarry, A. P. Carter et al., Recognition of cognate transfer RNA by the 30S ribosomal subunit, Science, vol.292, pp.897-902, 2001.

C. Orelle, E. D. Carlson, T. Szal, T. Florin, M. C. Jewett et al., Protein synthesis by ribosomes with tethered subunits, Nature, vol.524, pp.119-124, 2015.
DOI : 10.1038/nature14862

URL : https://zenodo.org/record/894862/files/article.pdf

R. Page and W. Peti, Toxin-antitoxin systems in bacterial growth arrest and persistence, Nat. Chem. Biol, vol.12, pp.208-214, 2016.
DOI : 10.1038/nchembio.2044

B. Poldermans, L. Roza, and P. H. Van-knippenberg, Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3' end of 16 S ribosomal RNA of Escherichia coli. III. Purification and properties of the methylating enzyme and methylase-30 S interactions, J. Biol. Chem, vol.254, pp.9094-9100, 1979.

Y. S. Polikanov, S. V. Melnikov, D. Söll, and T. A. Steitz, Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly, Nat. Struct. Mol. Biol, vol.22, pp.342-344, 2015.

B. Qin, H. Yamamoto, T. Ueda, U. Varshney, and K. H. Nierhaus, The Termination Phase in Protein Synthesis is not Obligatorily Followed by the RRF/EF-G-Dependent Recycling Phase, J. Mol. Biol, vol.428, pp.3577-3587, 2016.

R. T. Ranasinghe, M. R. Challand, K. A. Ganzinger, B. W. Lewis, C. Softley et al., , 2018.

, Detecting RNA base methylations in single cells by in situ hybridization, Nat. Commun, vol.9, p.655

O. René, A. , and J. , Late steps of ribosome assembly in E. coli are sensitive to a severe heat stress but are assisted by the HSP70 chaperone machine, Nucleic Acids Res, vol.39, pp.1855-1867, 2011.

N. M. Reynolds, B. A. Lazazzera, and M. Ibba, Cellular mechanisms that control mistranslation, Nat. Rev. Microbiol, vol.8, pp.849-856, 2010.

S. Ringquist, S. Shinedling, D. Barrick, L. Green, J. Binkley et al., Translation initiation in Escherichia coli: sequences within the ribosome-binding site, Mol. Microbiol, vol.6, pp.1219-1229, 1992.

M. V. Rodnina, R. Fricke, L. Kuhn, and W. Wintermeyer, Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome, EMBO J, vol.14, pp.2613-2619, 1995.

M. V. Rodnina, A. Savelsbergh, V. I. Katunin, and W. Wintermeyer, , 1997.

, Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome, Nature, vol.385, pp.37-41

A. A. Saraiya, T. N. Lamichhane, C. S. Chow, J. Santalucia, and P. R. Cunningham, Identification and role of functionally important motifs in the 970 loop of Escherichia coli 16S ribosomal RNA, J. Mol. Biol, vol.376, pp.645-657, 2008.

M. Sauert, H. Temmel, and I. Moll, Heterogeneity of the translational machinery: Variations on a common theme, Biochimie, vol.114, pp.39-47, 2015.

T. M. Schmeing and V. Ramakrishnan, What recent ribosome structures have revealed about the mechanism of translation, Nature, vol.461, pp.1234-1242, 2009.

E. Scolnick, R. Tompkins, T. Caskey, and M. Nirenberg, Release factors differing in specificity for terminator codons, Proc. Natl. Acad. Sci. U. S. A, vol.61, pp.768-774, 1968.

T. Seier, D. R. Padgett, G. Zilberberg, V. A. Sutera, N. Toha et al., Insights into Mutagenesis Using Escherichia coli Chromosomal lacZ Strains that Enable Detection of a Wide Spectrum of Mutational Events, 2011.

O. V. Sergeeva, I. V. Prokhorova, Y. Ordabaev, P. O. Tsvetkov, P. V. Sergiev et al., Properties of small rRNA methyltransferase RsmD: Mutational and kinetic study, RNA, vol.18, pp.1178-1185, 2012.

P. V. Sergiev, A. Y. Golovina, I. V. Prokhorova, O. V. Sergeeva, I. A. Osterman et al., Modifications of ribosomal RNA: From enzymes to function, pp.97-110, 2011.

P. V. Sergiev, N. A. Aleksashin, A. A. Chugunova, Y. S. Polikanov, and O. A. Dontsova, Structural and evolutionary insights into ribosomal RNA methylation, Nat. Chem. Biol, vol.14, pp.226-235, 2018.

L. Shabala, J. Bowman, J. Brown, T. Ross, T. Mcmeekin et al., Ion transport and osmotic adjustment in Escherichia coli in response to ionic and non-ionic osmotica, Environ. Microbiol, vol.11, pp.137-148, 2009.

Z. Shajani, M. T. Sykes, and J. R. Williamson, Assembly of Bacterial Ribosomes, Annu. Rev. Biochem, vol.80, pp.501-526, 2011.

J. Shine and L. Dalgarno, The 3?-Terminal Sequence of Escherichia coli 16S, 1974.

, Ribosomal RNA: Complementarity to Nonsense Triplets and Ribosome Binding Sites, Proc. Natl. Acad. Sci, vol.71, pp.1342-1346

A. Srivastava, P. Gogoi, B. Deka, S. Goswami, and S. P. Kanaujia, In silico analysis of 5'-UTRs highlights the prevalence of Shine-Dalgarno and leaderlessdependent mechanisms of translation initiation in bacteria and archaea, respectively, J. Theor. Biol, vol.402, pp.54-61, 2016.

J. Tamarit, E. Cabiscol, R. , and J. , Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress, J. Biol. Chem, vol.273, pp.3027-3032, 1998.

K. Tedin, I. Moll, S. Grill, A. Resch, A. Graschopf et al., Translation initiation factor 3 antagonizes authentic start codon selection on leaderless mRNAs, Mol. Microbiol, vol.31, pp.67-77, 1999.

P. Thammana and W. A. Held, Methylation of 16S RNA during ribosome assembly in vitro, Nature, vol.251, pp.682-686, 1974.

J. S. Tscherne, K. Nurse, P. Popienick, H. Michel, M. Sochacki et al., Purification, Cloning, and Characterization of the 16S RNA m5C967 Methyltransferase from Escherichia coli, Biochemistry, vol.38, pp.1884-1892, 1999.

Z. Tsuchihashi and P. O. Brown, Sequence requirements for efficient translational frameshifting in the Escherichia coli dnaX gene and the role of an unstable interaction between tRNA(Lys) and an AAG lysine codon, Genes Dev, vol.6, pp.511-519, 1992.

Z. Tsuchihashi and A. Kornberg, Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme, Proc. Natl. Acad. Sci. U. S. A, vol.87, pp.2516-2520, 1990.

K. J. Turnbull and K. Gerdes, HicA toxin of Escherichia coli derepresses hicAB transcription to selectively produce HicB antitoxin, Mol. Microbiol, vol.104, pp.781-792, 2017.

T. Udagawa, Y. Shimizu, and T. Ueda, Evidence for the Translation Initiation of Leaderless mRNAs by the Intact 70 S Ribosome without Its Dissociation into Subunits in Eubacteria, J. Biol. Chem, vol.279, pp.8539-8546, 2004.

M. Valle, A. Zavialov, W. Li, S. M. Stagg, J. Sengupta et al., Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy, Nat. Struct. Biol, vol.10, pp.899-906, 2003.

O. Vesper, S. Amitai, M. Belitsky, K. Byrgazov, A. C. Kaberdina et al., Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli, Cell, vol.147, pp.147-157, 2011.

E. Villa, J. Sengupta, L. G. Trabuco, J. Lebarron, W. T. Baxter et al., Ribosomeinduced changes in elongation factor Tu conformation control GTP hydrolysis, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.1063-1068, 2009.

X. Wang, D. M. Lord, H. Cheng, D. O. Osbourne, S. H. Hong et al., A new type V toxinantitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS, Nat. Chem. Biol, vol.8, pp.855-861, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00955874

A. Weber, S. A. Kögl, J. , and K. , Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli, J. Bacteriol, vol.188, pp.7165-7175, 2006.

C. Weitzmann, S. J. Tumminia, M. Boublik, and J. Ofengand, A paradigm for local conformational control of fucntion in the ribosome: binding of ribosomal protein S19 to Escherichia coli 16S rRNA in the presence of S7 is required for methylation of m 2 G966 and blocks methylation of m 5 C967 by their respective methyltransferases, Nucleic Acids Res, vol.19, pp.7089-7095, 1991.

A. Weixlbaumer, H. Jin, C. Neubauer, R. M. Voorhees, S. Petry et al., Insights into Translational Termination from the Structure of RF2 Bound to the Ribosome, Science, vol.322, pp.953-956, 2008.

A. J. Winter, C. Williams, M. N. Isupov, H. Crocker, M. Gromova et al., The molecular basis of protein toxin HicA-dependent binding of the protein antitoxin HicB to DNA, J. Biol. Chem, 2018.

B. Withman, T. S. Gunasekera, P. Beesetty, R. Agans, and O. Paliy, Transcriptional Responses of Uropathogenic Escherichia coli to Increased Environmental Osmolality Caused by Salt or Urea, Infect. Immun, vol.81, pp.80-89, 2013.

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman et al., Osmosensing and osmoregulatory compatible solute accumulation by bacteria, Comp. Biochem. Physiol. A. Mol. Integr. Physiol, vol.130, pp.437-460, 2001.

H. Yamamoto, D. Wittek, R. Gupta, B. Qin, T. Ueda et al., 70S-scanning initiation is a novel and frequent initiation mode of ribosomal translation in bacteria, Proc. Natl. Acad. Sci, 2016.

D. Zhang, K. Yan, Y. Zhang, G. Liu, X. Cao et al., New insights into the enzymatic role of EF-G in ribosome recycling, Nucleic Acids Res, vol.43, pp.10525-10533, 2015.

H. Zhang, H. Wan, Z. Gao, Y. Wei, W. Wang et al., Insights into the Catalytic Mechanism of 16S rRNA Methyltransferase RsmE (m3U1498) from Crystal and Solution Structures, J. Mol. Biol, vol.423, pp.576-589, 2012.

Y. Zhang, J. Zhang, K. P. Hoeflich, M. Ikura, G. Qing et al., MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli, Mol. Cell, vol.12, pp.913-923, 2003.

Y. Zhang, Z. Xiao, Q. Zou, J. Fang, Q. Wang et al., , 2017.

, Ribosome Profiling Reveals Genome-wide Cellular Translational Regulation upon Heat Stress in Escherichia coli, Genomics Proteomics Bioinformatics, vol.15, pp.324-330

Y. Zhang, D. H. Burkhardt, S. Rouskin, G. Li, J. S. Weissman et al., A Stress Response that Monitors and Regulates mRNA Structure Is Central to Cold Shock Adaptation, Mol. Cell, vol.70, pp.274-286, 2018.

K. Zhao, M. Liu, and R. R. Burgess, The global transcriptional response of Escherichia coli to induced sigma 32 protein involves sigma 32 regulon activation followed by inactivation and degradation of sigma 32 in vivo, J. Biol. Chem, vol.280, pp.17758-17768, 2005.

X. Zheng, G. Hu, Z. She, and H. Zhu, Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotes, BMC Genomics, vol.12, p.361, 2011.