R. Fernando, M. J. Kilgard, and . The, The Definitive Guide to Programmable Real-Time Graphics, 2003.

L. Muzic, M. Parulek, J. Stavrum, and A. , Illustrative Visualization of Molecular Reactions using Omniscient Intelligence and Passive Agents, Computer Graphics Forum, vol.33, issue.3, pp.141-150, 2014.

R. Toledo, B. Levy, and I. Lorraine, Extending the graphic pipeline with new gpuaccelerated primitives, 2004.

C. Sigg, T. Weyrich, and M. Botsch, GPU-based Ray-casting of Quadratic Surfaces, Proceedings of the 3rd Eurographics / IEEE VGTC Conference on Point-Based Graphics, pp.59-65, 2006.

M. Chavent, A. Vanel, and A. Tek, GPU-accelerated atom and dynamic bond visualization using hyperballs: A unified algorithm for balls, sticks, and hyperboloids, Journal of Computational Chemistry, vol.32, issue.13, pp.2924-2935, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00645162

A. Lesk and K. Hardman, Computer-generated schematic diagrams of protein structures, Science, vol.216, issue.4545, pp.539-540, 1982.

M. Carson, Ribbons 2.0, Journal of Applied Crystallography, vol.24, issue.5, pp.958-961, 1991.

, YASARA -Yet Another Scientific Artificial Reality Application

. Samson-connect,

J. Stone, J. Gullingsrud, and K. Schulten, A System for Interactive Molecular Dynamics Simulation, Proceedings of the 2001 Symposium on Interactive 3D Graphics, pp.191-194, 2001.

J. Maupetit, P. Tuffery, and P. Derreumaux, A coarse-grained protein force field for folding and structure prediction, Proteins, vol.69, issue.2, pp.394-408, 2007.

Y. Sugita and Y. Okamoto, Replica-exchange molecular dynamics method for protein folding, Chemical Physics Letters, vol.314, issue.1, pp.141-151, 1999.

S. Marrink, A. Vries, and A. E. Mark, Coarse Grained Model for Semiquantitative Lipid Simulations, The Journal of Physical Chemistry B, vol.108, issue.2, pp.750-760, 2004.

J. Rodrigues and A. Bonvin, Integrative computational modeling of protein interactions, FEBS Journal, vol.281, issue.8, pp.1988-2003, 2014.

S. Cooper, F. Khatib, and A. Treuille, Predicting protein structures with a multiplayer online game, Nature, issue.7307, pp.756-760, 2010.

Z. Lv, A. Tek, D. Silva, and F. , Game on, science -how video game technology may help biologists tackle visualization challenges, PloS one, vol.8, issue.3, p.57990, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01084644

P. Derreumaux, From polypeptide sequences to structures using Monte Carlo simulations and an optimized potential, The Journal of Chemical Physics, vol.111, issue.5, pp.2301-2310, 1999.

S. Pasquali and P. Derreumaux, HiRE-RNA: a high resolution coarse-grained energy model for RNA, The journal of physical chemistry. B, vol.114, issue.37, pp.11957-11966, 2010.

M. Abraham, T. Murtola, and R. Schulz, High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, pp.1-2, 2015.

J. Phillips, R. Braun, and W. Wang, Scalable molecular dynamics with NAMD, Journal of Computational Chemistry, vol.26, issue.16, pp.1781-1802, 2005.

T. Gallagher, P. Alexander, and P. Bryan, Two Crystal Structures of the B1 Immunoglobulin-Binding Domain of Streptococcal Protein G and Comparison with NMR, Biochemistry, vol.33, issue.15, pp.4721-4729, 1994.

A. Tanenbaum, Structured Computer Organization, 2005.

M. Pharr, J. W. Humphreys, and G. , Physically Based Rendering, Third Edition: From Theory to Implementation, 2016.

, CRYENGINE | The complete solution for next generation game development by Crytek

. Unity--game-engine,

, Unity. Unity -Scripting API: MonoBehaviour

J. Clark, Hierarchical Geometric Models for Visible Surface Algorithms, Commun. ACM, vol.19, issue.10, pp.547-554, 1976.

O. Lampe, I. Viola, and N. Reuter, Two-Level Approach to Efficient Visualization of Protein Dynamics, IEEE Transactions on Visualization and Computer Graphics, vol.13, issue.6, pp.1616-1623, 2007.

D. Goodsell, The Machinery of Life, 2009.

H. Edelsbrunner, Deformable Smooth Surface Design. Discrete & Computational Geometry, vol.21, pp.87-115, 1999.

M. Chavent, B. Levy, and B. Maigret, MetaMol: High-quality visualization of molecular skin surface, Journal of Molecular Graphics and Modelling, vol.27, issue.2, pp.209-216, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00339122

L. Pauling, R. Corey, and H. R. Branson, The structure of proteins; two hydrogenbonded helical configurations of the polypeptide chain, Proceedings of the National Academy of Sciences of the United States of America, vol.37, pp.205-211, 1951.

D. Eisenberg, The discovery of the ?-helix and ?-sheet, the principal structural features of proteins, Proceedings of the National Academy of Sciences, vol.100, issue.20, pp.11207-11210, 2003.

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.22, issue.12, pp.2577-2637, 1983.

D. Frishman and P. Argos, Knowledge-based protein secondary structure assignment, Proteins: Structure, Function, and Bioinformatics, vol.23, issue.4, pp.566-579, 1995.

M. Krone, K. Bidmon, and T. Ertl, GPU-based Visualisation of Protein Secondary Structure. ResearchGate, pp.115-122, 2008.

J. Weber, ProteinShader: illustrative rendering of macromolecules, BMC Structural Biology, vol.9, p.19, 2009.

W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, Journal of Molecular Graphics, vol.14, issue.1, pp.27-28, 1996.

W. L. Delano and . Pymol, An Open-Source Molecular Graphics Tool

E. Pettersen, T. Goddard, and C. Huang, UCSF Chimera-a visualization system for exploratory research and analysis, Journal of Computational Chemistry, vol.25, issue.13, pp.1605-1612, 2004.

R. A. , WebGL protein viewer, vol.18, p.28, 2017.

. Jsmol,

S. Grudinin, M. Garkavenko, and A. Kazennov, Pepsi-SAXS: an adaptive method for rapid and accurate computation of small-angle X-ray scattering profiles, Acta Crystallographica Section D: Structural Biology, vol.73, issue.5, pp.449-464, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01516719

, Tachyon Parallel / Multiprocessor Ray Tracing System

M. Dreher, J. Prevoteau-jonquet, and M. Trellet, ExaViz: a flexible framework to analyse, steer and interact with molecular dynamics simulations, Faraday Discussions, vol.169, issue.0, pp.119-142, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00942627

J. Allard, V. Gouranton, and L. Lecointre, A Middleware for Large Scale Virtual Reality Applications. Euro-Par 2004 Parallel Processing, pp.497-505, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00085302

N. Bocquet, H. Nury, and M. Baaden, X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation, Nature, vol.457, issue.7225, pp.111-114, 2009.

P. Sloan, W. Martin, and A. Gooch, The Lit Sphere: A Model for Capturing NPR Shading from Art, Proceedings of Graphics Interface, pp.143-150, 2001.

S. Pérez, T. Tubiana, and A. Imberty, Three-dimensional representations of complex carbohydrates and polysaccharides-SweetUnityMol: A video gamebased computer graphic software, Glycobiology, p.133, 2014.

W. Lorensen and H. E. Cline, Marching Cubes: A High Resolution 3d Surface Construction Algorithm, Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp.163-169, 1987.

J. Kyte and R. F. Doolittle, A simple method for displaying the hydropathic character of a protein, Journal of Molecular Biology, vol.157, issue.1, pp.105-132, 1982.

D. Engelman, T. Steitz, and A. Goldman, Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins, Annual Review of Biophysics and Biophysical Chemistry, vol.15, pp.321-353, 1986.

D. Eisenberg, E. Schwarz, and M. Komaromy, Analysis of membrane and surface protein sequences with the hydrophobic moment plot, Journal of Molecular Biology, vol.179, issue.1, pp.125-142, 1984.

W. Wimley and S. H. White, Experimentally determined hydrophobicity scale for proteins at membrane interfaces, Nature Structural Biology, vol.3, issue.10, pp.842-848, 1996.

M. Tarini, P. Cignoni, and C. Montani, Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization, IEEE Transactions on Visualization and Computer Graphics, vol.12, issue.5, pp.1237-1244, 2006.

J. Finnerty, Molecular dynamics: thermostats and barostatsThermostats_and_barostats

/. Carloni/tutorials and . Fmcp/thermostats_and_barostats,

P. Hünenberger, Advanced Computer Simulation, Advances in Polymer Science, pp.105-149

T. Vojta and . Moleculardynamics,

L. Verlet and . Computer, Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, vol.159, issue.1, pp.98-103, 1967.

H. Berendsen, J. Postma, and W. Gunsteren, Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics, vol.81, issue.8, pp.3684-3690, 1984.

H. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, The Journal of Chemical Physics, vol.72, issue.4, pp.2384-2393, 1980.
DOI : 10.1063/1.439486

W. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical Review A, vol.31, issue.3, pp.1695-1697, 1985.
DOI : 10.1103/physreva.31.1695

M. Dreher, P. Marc, and T. Ahmed, Interactive Molecular Dynamics: Scaling up to Large Systems, International Conference on Computational Science, ICCS 2013, 2013.
DOI : 10.1016/j.procs.2013.05.165

URL : https://hal.archives-ouvertes.fr/hal-00809024

O. Delalande, N. Rey, and G. Grasseau, Complex molecular assemblies at hand via interactive simulations, J. Comput. Chem, vol.30, issue.15, pp.2375-2387, 2009.
DOI : 10.1002/jcc.21235

URL : https://hal.archives-ouvertes.fr/inserm-00713313

M. Levitt and A. Warshel, Computer simulation of protein folding, Nature, vol.253, issue.5494, pp.694-698, 1975.

M. Karplus and D. Weaver, Protein-folding dynamics, Nature, vol.260, issue.5550, pp.404-406, 1976.

A. Louis, Coarse-grained modelling of DNA and DNA self-assembly

H. Berendsen, Simulating the Physical World: Hierarchical Modeling from Quantum Mechanics to Fluid Dynamics, 2007.

F. Sterpone, S. Melchionna, and P. Tuffery, The OPEP protein model: from single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems, Chemical Society reviews, vol.43, issue.13, pp.4871-4893, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01084631

D. Case, T. Cheatham, and T. Darden, The Amber biomolecular simulation programs, Journal of Computational Chemistry, vol.26, issue.16, pp.1668-1688, 2005.

E. Willighagen and M. Howard, Fast and Scriptable Molecular Graphics in Web Browsers without Java3d, Nature Precedings, issue.713, 2007.

K. Darty, A. Denise, and Y. Ponty, VARNA: Interactive drawing and editing of the RNA secondary structure, Bioinformatics, vol.25, issue.15, pp.1974-1975, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00432548

S. Rüdisser and I. Tinoco, Solution structure of Cobalt(III)Hexammine complexed to the GAAA tetraloop, and metal-ion binding to G·A mismatches11edited by D. E. Draper, Journal of Molecular Biology, vol.295, issue.5, pp.1211-1223, 2000.

D. Lawrence, C. Stover, and J. Noznitsky, Structure of the Intact Stem and Bulge of HIV-1 ?-RNA Stem-Loop SL1, Journal of Molecular Biology, vol.326, issue.2, pp.529-542, 2003.

S. Nonin-lecomte, B. Felden, and F. Dardel, NMR structure of the Aquifex aeolicus tmRNA pseudoknot PK1: new insights into the recoding event of the ribosomal trans-translation, Nucleic Acids Research, vol.34, issue.6, pp.1847-1853, 2006.

N. Kim, Q. Zhang, and J. Zhou, Solution Structure and Dynamics of the Wild-type Pseudoknot of Human Telomerase RNA, Journal of Molecular Biology, vol.384, issue.5, pp.1249-1261, 2008.

B. Krishnamurthy and J. Rexford, Web Protocols and Practice: HTTP/1.1, Networking Protocols, Caching, and Traffic Measurement, 2001.

, The Web framework for perfectionists with deadlines | Django

R. Home--django and . Framework,

|. Homepage and . Celery, Distributed Task Queue

P. Cock, T. Antao, and J. Chang, Biopython: freely available Python tools for computational molecular biology and bioinformatics, Bioinformatics, vol.25, issue.11, pp.1422-1423, 2009.

. Git,

, CentOS Project

, uwsgi: uWSGI application server container, vol.25, p.31, 2017.

, Welcome to The Apache Software Foundation!

, RabbitMQ -Messaging that just works

. Mysql,

A. Saladin, C. Amourda, and P. Poulain, Modeling the early stage of DNA sequence recognition within RecA nucleoprotein filaments. Nucleic Acids Research, vol.38, pp.6313-6323, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00533099

P. Netz, R. Potestio, and K. Kremer, Adaptive resolution simulation of oligonucleotides, The Journal of Chemical Physics, vol.145, issue.23, p.234101, 2016.

J. Nasica-labouze, P. Nguyen, and F. Sterpone, Amyloid ? Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies, Chemical Reviews, vol.115, issue.9, pp.3518-3563, 2015.

C. Caillava, S. Ranaldi, and I. Lauritzen, Study on A?34 biology and detection in transgenic mice brains, Neurobiology of Aging, vol.35, issue.7, pp.1570-1581, 2014.

Y. Naritomi and S. Fuchigami, Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: The case of domain motions, The Journal of Chemical Physics, vol.134, issue.6, p.65101, 2011.

G. Wei, P. Derreumaux, and N. Mousseau, Sampling the complex energy landscape of a simple ?-hairpin, The Journal of Chemical Physics, vol.119, issue.13, pp.6403-6406, 2003.

T. Cragnolini, K. Sutherland-cash, and D. Wales, Wide Exploration of OPEP Protein Energy Landscapes using Advanced Monte Carlo Methods, Biophysical Journal, vol.106, issue.2, p.256, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01498048

J. Moe and I. Russu, Kinetics and energetics of base-pair opening in 5'-d(CGCGAATTCGCG)-3' and a substituted dodecamer containing G.T mismatches, Biochemistry, issue.36, pp.8421-8428, 1992.

P. Bhattacharya, J. Cha, and J. Barton, 1h NMR determination of base-pair lifetimes in oligonucleotides containing single base mismatches, Nucleic Acids Research, vol.30, issue.21, pp.4740-4750, 2002.

P. Debye and . Zerstreuung-von-röntgenstrahlen, Annalen der Physik, vol.351, issue.6, pp.809-823, 1915.

. Vrpn and . Vrpn, Virtual Reality Peripheral Network -Official GitHub Repository, 2017.

J. Crowley, Simulator sickness: a problem for Army aviation, Aviation, Space, and Environmental Medicine, vol.58, issue.4, pp.355-357, 1987.

J. Laviola, A Discussion of Cybersickness in Virtual Environments, SIGCHI Bull, vol.32, issue.1, pp.47-56, 2000.

A. Kemeny, P. George, and F. Mérienne, New VR Navigation Techniques to Reduce Cybersickness. Electronic Imaging, pp.48-53, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01779593

. Iii-t-e-c, P. Cieplak, and P. A. Kollman, A Modified Version of the Cornell et al. Force Field with Improved Sugar Pucker Phases and Helical Repeat, Journal of Biomolecular Structure and Dynamics, vol.16, issue.4, pp.845-862, 1999.

M. Zacharias, Protein-protein docking with a reduced protein model accounting for side-chain flexibility, Protein Science: A Publication of the Protein Society, vol.12, issue.6, pp.1271-1282, 2003.
DOI : 10.1110/ps.0239303

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1110/ps.0239303

M. Zavodszky, M. Lei, and M. Thorpe, Modeling correlated main-chain motions in proteins for flexible molecular recognition, Proteins: Structure, Function, and Bioinformatics, vol.57, issue.2, pp.243-261, 2004.
DOI : 10.1002/prot.20179

URL : http://www.cs.duke.edu/~brd/Teaching/Bio/asmb/current/Papers/NMA/zavodsky-proteins-sfb-2004.pdf

P. Ducarme, M. Rahman, and R. Brasseur, IMPALA: A simple restraint field to simulate the biological membrane in molecular structure studies, Proteins: Structure, Function, and Bioinformatics, vol.30, issue.4, pp.357-371, 1998.

A. Tek, Visualisation et simulations numériques avancées en biologie : applications au complexe SNARE impliqué dans la fusion membranaire, vol.6, 2012.

O. Beckstein, E. Denning, and J. Perilla, Zipping and unzipping of adenylate kinase: atomistic insights into the ensemble of open\textless-\textgreaterclosed transitions, Journal of Molecular Biology, vol.394, issue.1, pp.160-176, 2009.

S. Mori, Y. Tezuka, and A. Arakawa, Crystal structure of the guanylate kinase domain from discs large homolog 1 (DLG1/SAP97), Biochemical and Biophysical Research Communications, vol.435, issue.3, pp.334-338, 2013.

H. Schreuder, C. Tardif, and S. Trump-kallmeyer, A new cytokine-receptor binding mode revealed by the crystal structure of the IL-1 receptor with an antagonist, Nature, vol.386, issue.6621, pp.194-200, 1997.

, Les origines moléculaires de la vie

A. Tanenbaum, D. Wetherall, and . Networks, , 2010.

M. Chavent, GPU-accelerated atom and dynamic bond visualization using hyperballs: a unified algorithm for balls, sticks, and hyperboloids, J. Comput. Chem, vol.32, issue.13, pp.2924-2935, 2011.
DOI : 10.1002/jcc.21861

URL : https://hal.archives-ouvertes.fr/hal-00645162

S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee et al., Predicting protein structures with a multiplayer online game, Nature, vol.466, issue.7307, pp.756-760, 2010.
DOI : 10.1038/nature09304

URL : http://europepmc.org/articles/pmc2956414?pdf=render

T. Cragnolini, Coarse-grained simulations of RNA and DNA duplexes, J. Phys. Chem. B, vol.117, issue.27, pp.8047-8060, 2013.
DOI : 10.1021/jp400786b

URL : https://hal.archives-ouvertes.fr/hal-01498061

O. Delalande, Complex molecular assemblies at hand via interactive simulations, J. Comput. Chem, vol.30, issue.15, pp.2375-2387, 2009.
DOI : 10.1002/jcc.21235

URL : https://hal.archives-ouvertes.fr/inserm-00713313

M. Gao, M. Wilmanns, and K. Schulten, Steered molecular dynamics studies of titin i1 domain unfolding, Biophysical Journal, vol.83, issue.6, pp.3435-3445, 2002.
DOI : 10.1016/s0006-3495(02)75343-5

URL : https://doi.org/10.1016/s0006-3495(02)75343-5

J. D. Hirst, D. R. Glowacki, and M. Baaden, Molecular simulations and visualization: introduction and overview, Faraday Discussions, vol.169, issue.0, pp.9-22, 2014.
DOI : 10.1039/c4fd90024c

URL : https://hal.archives-ouvertes.fr/hal-01084628

W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, Journal of Molecular Graphics, vol.14, issue.1, pp.27-28, 1996.

Z. Lv, Game on, science -how video game technology may help biologists tackle visualization challenges, PLoS ONE, vol.8, issue.3, p.57990, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01084644

A. Molza, N. Frey, M. Czjzek, E. L. Rumeur, J. Hubert et al., Innovative interactive flexible docking method for multi-scale reconstruction elucidates dystrophin molecular assembly, Faraday Discuss, vol.169, pp.45-62, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01018071

S. Pasquali and P. Derreumaux, HiRE-RNA: a high resolution coarsegrained energy model for RNA, J. Phys. Chem. B, vol.114, issue.37, pp.11957-11966, 2010.

S. Prez, T. Tubiana, A. Imberty, and M. Baaden, Three-dimensional representations of complex carbohydrates and polysaccharidesSweetUnityMol: A video game-based computer graphic software. Glycobiology, page cwu133, 2014.

A. Saladin, C. Amourda, P. Poulain, N. Frey, M. Baaden et al., Modeling the early stage of DNA sequence recognition within RecA nucleoprotein filaments, Nucleic Acids Res, vol.38, issue.19, pp.6313-6336, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00533099

A. Tek, M. Chavent, M. Baaden, O. Delalande, P. Bourdot et al., Advances in human-protein interaction -interactive and immersive molecular simulations, Protein-Protein Interactions -Computational and Experimental Tools, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00760181

M. Trellet, N. Frey, M. Baaden, and P. Bourdot, Content-guided navigation in multimeric molecular complexes, BIOIMAGING 2014 -Proceedings of the International Conference on Bioimaging, pp.76-81, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01498053

. 150appendix-a, UNITYMOL: INTERACTIVE AND LUDIC VISUAL MANIPULATION OF COARSE REFERENCES

H. M. Berman, C. Westbrook, and . Zardecki, The nucleic acid database, Acta Crystallogr. D Biol. Crystallogr, vol.58, pp.889-898, 2002.

N. B. Leontis, J. Stombaugh, and E. Westhof, The non-WatsonCrick base pairs and their associated isostericity matrices, Nucleic Acids Res, vol.30, pp.3497-3531, 2002.

J. A. Cruz, M. F. Blanchet, and E. Westhof, RNA-Puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction, RNA, vol.18, pp.610-625, 2012.

Z. Miao, R. W. Adamiak, and E. Westhof, RNA-Puzzles Round II: assessment of RNA structure prediction programs applied to three large RNA structures, RNA, vol.21, pp.1066-1084, 2015.

Z. Miao, R. W. Adamiak, and E. Westhof, RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme, RNA, vol.23, pp.655-672, 2017.

C. Y. Cheng, F. Chou, and R. Das, Modeling complex RNA tertiary folds with ROSETTA, Methods Enzymol, vol.553, pp.35-64, 2015.

M. Parisien and F. Major, The MC-fold and MC-sym pipeline infers RNA structure from sequence data, Nature, vol.452, pp.51-55, 2008.

D. H. Turner and D. H. Mathews, NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure, Nucleic Acids Res, vol.38, pp.280-282, 2010.

M. Zuker and P. Stiegler, Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information, Nucleic Acids Res, vol.9, pp.133-148, 1981.

R. Nussinov and A. B. Jacobson, Fast algorithm for predicting the secondary structure of single-stranded RNA, Proc. Natl. Acad. Sci. USA, vol.77, pp.6309-6313, 1980.

J. Ruan, G. D. Stormo, and W. Zhang, An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots, Bioinformatics, vol.20, pp.58-66, 2004.

E. Rivas and S. R. Eddy, A dynamic programming algorithm for RNA structure prediction including pseudoknots, J. Mol. Biol, vol.285, pp.2053-2068, 1999.

R. B. Lyngsø and C. N. Pedersen, RNA pseudoknot prediction in energy-based models, J. Comput. Biol, vol.7, pp.409-427, 2000.

Z. Xia, D. R. Bell, and P. Ren, RNA 3D structure prediction by using a coarse-grained model and experimental data, J. Phys. Chem. B, vol.117, pp.3135-3144, 2013.

F. Ding, N. V. Sharma, and . Dokholyan, Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms, RNA, vol.14, pp.1164-1173, 2008.

P. Sulc, A. A. Romano, and . Louis, A nucleotide-level coarsegrained model of RNA, Interactive RNA Folding Simulations Biophysical Journal, vol.113, p.235102, 2014.

S. Pasquali and P. Derreumaux, HiRE-RNA: a high resolution coarse-grained energy model for RNA, J. Phys. Chem. B, vol.114, pp.11957-11966, 2010.

T. Cragnolini, P. Derreumaux, and S. Pasquali, Ab initio RNA folding, J. Phys. Condens. Matter, vol.27, p.233102, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01498011

P. Stadlbauer, J. Mazzanti, and . Sponer, Coarse-grained simu, 2016.

, J. Chem. Theory Comput, vol.12, pp.6077-6097

S. S. Cho, D. L. Pincus, and D. Thirumalai, Assembly mechanisms of RNA pseudoknots are determined by the stabilities of constituent secondary structures, Proc. Natl. Acad. Sci. USA, vol.106, pp.17349-17354, 2009.

P. Sulc, T. E. Ouldridge, and A. A. Louis, Modelling toeholdmediated RNA strand displacement, Biophys. J, vol.108, pp.1238-1247, 2015.

T. Zhang, Y. Zhang, and . Mu, Molecular mechanism of the inhibition of EGCG on the Alzheimer Ab(1-42) dimer, J. Phys. Chem. B, vol.117, pp.3993-4002, 2013.

S. Cooper, F. Khatib, and . Players, Predicting protein structures with a multiplayer online game, Nature, vol.466, pp.756-760, 2010.

J. Lee, R. Kladwang, and . Das, RNA design rules from a massive open laboratory, Proc. Natl. Acad. Sci. USA, vol.111, pp.2122-2127, 2014.

T. Cragnolini, S. Laurin, and . Pasquali, Coarse-grained HiRE-RNA model for ab initio RNA folding beyond simple molecules, including noncanonical and multiple base pairings, J. Chem. Theory Comput, vol.11, pp.3510-3522, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01498008

Z. Lv, M. Tek, and . Baaden, Game on, science-how video game technology may help biologists tackle visualization challenges, PLoS One, vol.8, p.57990, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01084644

S. Doutreligne, M. Gageat, and . Baaden, Unitymol: interactive and ludic visual manipulation of coarse-grained RNA and other biomolecules, 2015 IEEE 1st International Workshop on Virtual and Augmented Reality for Molecular Science, pp.1-6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01498023

F. Sterpone, P. Melchionna, and . Derreumaux, The OPEP protein model: from single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems, Chem. Soc. Rev, vol.43, pp.4871-4893, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01084631

Y. Chebaro, S. Pasquali, and P. Derreumaux, The coarse-grained OPEP force field for non-amyloid and amyloid proteins, J. Phys. Chem. B, vol.116, pp.8741-8752, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01498091

P. H. Nguyen, Y. Okamoto, and P. Derreumaux, Communication: simulated tempering with fast on-the-fly weight determination, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01498062

, J. Chem. Phys, vol.138, p.61102

S. P-erez, M. Tubiana, and . Baaden, Three-dimensional representations of complex carbohydrates and polysaccharides-sweetunityMol: a video game-based computer graphic software, Glycobiology, vol.25, pp.483-491, 2015.

S. R?-udisser and I. Tinoco, Solution structure of Cobalt(III) hexammine complexed to the GAAA tetraloop, and metal-ion binding to G.A mismatches, J. Mol. Biol, vol.295, pp.1211-1223, 2000.

D. C. Lawrence, C. C. Stover, and M. F. Summers, Structure of the intact stem and bulge of HIV-1 Psi-RNA stem-loop SL1, J. Mol. Biol, vol.326, pp.529-542, 2003.

S. Nonin-lecomte, B. Felden, and F. Dardel, NMR structure of the Aquifex aeolicus tmRNA pseudoknot PK1: new insights into the recoding event of the ribosomal trans-translation, Nucleic Acids Res, vol.34, pp.1847-1853, 2006.

N. Kim, J. Zhang, and . Feigon, Solution structure and dynamics of the wild-type pseudoknot of human telomerase RNA, J. Mol. Biol, vol.384, pp.1249-1261, 2008.

H. H. Gan, S. Pasquali, and T. Schlick, Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design, Nucleic Acids Res, vol.31, pp.2926-2943, 2003.

D. Fera, T. Kim, and . Schlick, RAG: RNA-As-Graphs web resource, BMC Bioinformatics, vol.5, p.88, 2004.

X. Xu, P. Zhao, and S. Chen, Vfold: a web server for RNA structure and folding thermodynamics prediction, PLoS One, vol.9, p.107504, 2014.

F. Khatib, F. Cooper, and . Players, Algorithm discovery by protein folding game players, Proc. Natl. Acad. Sci. USA, vol.108, pp.18949-18953, 2011.

O. Delalande, N. Erey, .. , and M. Baaden, Complex molecular assemblies at hand via interactive simulations, J. Comput. Chem, vol.30, pp.2375-2387, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00713313

. Mazzanti,

, Biophysical Journal, vol.113, pp.302-312, 2017.

M. Waterman, Secondary structure of single-stranded nucleic acids, Advances in mathematics supplementary studies, vol.1, pp.167-212, 1978.

H. H. Gan, S. Pasquali, and T. Schlick, Exploring the repertoire of rna secondary motifs using graph theory; implications for rna design, Nucleic Acids Res, vol.31, pp.2926-2943, 2003.

D. Fera, N. Kim, N. Shiffeldrim, J. Zorn, U. Laserson et al., Rag: Rna-as-graphs web resource, BMC Bioinf, vol.5, p.88, 2004.

J. E. Stone, J. Gullingsrud, and K. Schulten, A System for Interactive Molecular Dynamics Simulation, Proceedings of the 2001 Symposium on Interactive 3D Graphics. I3D '01, pp.191-194, 2001.

O. Delalande, G. N.-f'erey, M. Grasseau, and . Baaden, Complex molecular assemblies at hand via interactive simulations, J Comput Chem, vol.30, pp.2375-2387, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00713313

M. Dreher, P. Marc, T. Ahmed, C. Matthieu, M. Baaden et al., Interactive Molecular Dynamics: Scaling up to Large Systems, International Conference on Computational Science, ICCS 2013, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01084652

J. Morrison, Will chemists tilt their heads for virtual reality?, vol.94, 2016.

T. Cragnolini, P. Derreumaux, and S. Pasquali, Coarse-grained simulations of rna and dna duplexes, J Phys Chem B, vol.117, pp.8047-8060, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01498061

S. Takada, R. Kanada, C. Tan, T. Terakawa, W. Li et al., Acc. Chem. Res, vol.48, p.3026, 2015.

H. X. Zhou, Curr. Opin. Struct. Biol, vol.25, p.67, 2014.

M. Karplus, Angew. Chem. Int. Ed. Engl, vol.53, p.9992, 2014.

W. L. Jorgensen, Cell, vol.155, p.1199, 2013.

M. Levitt and A. Warshel, Nature, vol.253, p.694, 1975.

M. G. Saunders and G. A. Voth, Annu. Rev. Biophys, vol.42, p.73, 2013.

S. J. Marrink and D. P. Tieleman, Chem. Soc. Rev, vol.42, p.6801, 2013.

P. J. Bond and M. S. Sansom, J. Am. Chem. Soc, vol.128, p.2697, 2006.

D. L. Parton, A. Tek, M. Baaden, and M. S. Sansom, PLoS Comput. Biol, vol.9, p.1003034, 2013.

A. Y. Shih, A. Arkhipov, P. L. Freddolino, and K. Schulten, J. Phys. Chem. B, vol.110, p.3674, 2006.

R. Devane, W. Shinoda, P. B. Moore, and M. L. Klein, J. Chem. Theory Comput, vol.5, p.2115, 2009.

A. Leaver-fay, M. J. O'meara, M. Tyka, R. Jacak, Y. Song et al., Methods Enzymol, vol.523, p.109, 2013.

M. Cheon, I. Chang, and C. K. Hall, Proteins, vol.78, p.2950, 2010.

M. Pasi, R. Lavery, and N. Ceres, J. Chem. Theory Comput, vol.9, p.785, 2013.

M. Zacharias, Proteins, vol.81, p.81, 2013.

A. Davtyan, N. P. Schafer, W. Zheng, C. Clementi, P. G. Wolynes et al., J. Phys. Chem. B, vol.116, p.8494, 2012.

N. Basdevant, D. Borgis, and T. Ha-duong, J. Chem. Theory Comput, vol.9, p.803, 2013.

T. Bereau and M. Deserno, J. Chem. Phys, vol.130, p.235106, 2009.

D. Bochicchio and G. M. Pavan, ACS Nano, vol.11, p.1000, 2017.

A. Davtyan, G. A. Voth, and H. C. Andersen, J. Chem. Phys, vol.145, p.224107, 2016.

P. A. Netz, R. Potestio, and K. Kremer, J. Chem. Phys, vol.145, p.234101, 2016.

M. Invernizzi, O. Valsson, and M. Parrinello, Proc. Natl. Acad. Sci. U. S. A, vol.114, p.3370, 2017.

W. Zheng and H. Wen, Curr. Opin. Struct. Biol, vol.42, p.24, 2017.

P. Stadlbauer, L. Mazzanti, T. Cragnolini, D. J. Wales, P. Derreumaux et al., J. Chem. Theory Comput, vol.12, p.6077, 2016.

M. Chavent, A. L. Duncan, and M. S. Sansom, Curr. Opin. Struct. Biol, vol.40, p.8, 2016.

S. Kmiecik, D. Gront, M. Kolinski, L. Wieteska, A. E. Dawid et al., Chem. Rev, vol.116, p.7898, 2016.

F. Sterpone, S. Melchionna, P. Tuffery, S. Pasquali, N. Mousseau et al., Chem. Soc. Rev, vol.43, p.4871, 2014.

F. Sterpone, P. Derreumaux, and S. Melchionna, J. Chem. Theory Comput, vol.11, p.1843, 2015.

M. Chiricotto, F. Sterpone, P. Derreumaux, and S. Melchionna, Philos. Trans. A, vol.374, p.20160225, 2016.

P. Derreumaux, J. Chem. Phys, vol.106, p.5260, 1997.

P. Derreumaux, J. Chem. Phys, vol.111, p.2301, 1999.

Y. Chebaro, S. Pasquali, and P. Derreumaux, J. Phys. Chem. B, vol.116, p.8741, 2012.

F. Sterpone, P. H. Nguyen, M. Kalimeri, and P. Derreumaux, J. Chem. Theory. Comput, vol.9, p.4574, 2013.

P. Derreumaux, Phys. Rev. Lett, vol.85, p.206, 2000.

F. Forcellino and P. Derreumaux, Proteins, vol.45, p.159, 2001.

G. H. Wei, P. Derreumaux, and N. Mousseau, J. Chem. Phys, vol.119, p.6403, 2003.

G. H. Wei, N. Mousseau, and P. Derreumaux, J. Chem. Phys, vol.117, p.11379, 2002.

A. Melquiond, N. Mousseau, and P. Derreumaux, Proteins, vol.65, p.180, 2006.

A. Melquiond, G. Boucher, N. Mousseau, and P. Derreumaux, J. Chem. Phys, vol.122, p.174904, 2005.

P. Derreumaux and N. Mousseau, J. Chem. Phys, vol.126, p.25101, 2007.

Y. G. Spill, S. Pasquali, and P. Derreumaux, J. Chem. Theory Comput, vol.7, p.1502, 2011.

J. Nasica-labouze, M. Meli, P. Derreumaux, G. Colombo, and N. Mousseau, PLoS Comput. Biol, vol.7, p.1002051, 2011.

A. Barducci, M. Bonomi, and P. Derreumaux, J. Chem. Theory Comput, vol.14, p.1928, 2011.

P. H. Nguyen, Y. Okamoto, and P. Derreumaux, J. Chem. Phys, vol.138, p.61102, 2013.

T. Zhang, P. H. Nguyen, J. Nasica-labouze, Y. Mu, and P. Derreumaux, J. Phys. Chem. B, vol.119, p.6941, 2015.

Y. Shen, J. Maupetit, P. Derreumaux, and P. Tuffery, J. Chem. Theory Comput, vol.10, p.4745, 2014.

P. Thevenet, Y. Shen, J. Maupetit, F. Guyon, P. Derreumaux et al., Nucleic Acids Res, vol.40, p.288, 2012.

M. Kalimeri, P. Derreumaux, and F. Sterpone, J. Non Cryst. Solids, vol.407, p.494, 2015.

P. Kynast, P. Derreumaux, B. Strodel, and . Biophys, , vol.9, p.4, 2016.

S. Pasquali and P. Derreumaux, J. Phys. Chem. B, vol.114, p.11957, 2010.

T. Cragnolini, P. Derreumaux, and S. Pasquali, J. Phys. Chem. B, vol.117, p.8047, 2013.

G. Wei, N. Mousseau, and P. Derreumaux, Biophys. J, vol.87, p.3648, 2004.

W. Song, G. Wei, N. Mousseau, and P. Derreumaux, J. Phys. Chem. B, vol.112, p.4410, 2008.

A. Laganowsky, C. Liu, M. Sawaya, J. Whitelegge, J. Park et al., Science, vol.335, p.1228, 2012.

A. D. Simone and P. Derreumaux, J. Chem. Phys, vol.132, p.165103, 2010.

M. Chiricotto, S. Melchionna, P. Derreumaux, and F. Sterpone, J. Chem. Phys, vol.145, p.35102, 2016.

W. E. Hart and A. Newman, Handbook of Molecular Biology, pp.1-24, 2006.

K. A. Dill, Biochemistry, vol.24, p.1501, 1985.

V. I. Abkevich, A. Gutin, and E. I. Shakhnovich, Biochemistry, vol.49, p.11, 1994.

K. B. Zeldovich, I. N. Berezovsky, and E. I. Shakhnovich, J. Mol. Biol, vol.357, p.1335, 2006.

S. Miyazawa and R. L. Jernigan, Macromolecules, vol.18, p.534, 1985.

S. Kmiecik, D. Gront, M. Kolinski, L. Wieteska, A. E. Dawid et al., Chem. Rev, vol.116, p.7898, 2016.

J. Skolnick and A. Kolinski, Science, vol.250, p.1121, 1990.

V. S. Pande and D. S. Rokhsar, Proc. Natl. Acad. Sci. U. S. A, vol.96, p.1273, 1996.

A. Sali, E. I. Shakhnovich, and M. Karplus, Nature, vol.369, p.248, 1994.

C. J. Camacho and D. Thirumalai, Proc. Natl. Acad. Sci. U. S. A, vol.90, p.6369, 1993.

R. Melin, H. Li, N. Wingreen, and C. Tang, J. Chem. Phys, vol.110, p.1252, 1999.

H. S. Chan, Z. Zhang, S. Wallin, and Z. Liu, Annu. Rev. Phys. Chem, vol.62, p.301, 2011.

M. S. Li, D. K. Klimov, J. E. Straub, and D. Thirumalai, J. Chem. Phys, vol.129, p.175101, 2008.

M. S. Li, N. T. Co, C. K. Reddy, J. Straub, and D. Thirumalai, Phys. Rev. Lett, vol.105, p.218101, 2010.

A. Irback, S. E. Jonsson, N. Linnemann, B. Linse, and S. Wallin, Phys. Rev. Lett, vol.110, p.58101, 2013.

S. Abeln and D. Frenkel, PLoS Comput. Biol, vol.4, p.1000241, 2008.

S. Abeln and D. Frenkel, Biophy. J, vol.100, p.693, 2011.

S. Abeln, M. Vendruscolo, C. Dobson, and D. Frenkel, PLoS One, vol.9, p.85185, 2014.

E. Van-dijk, A. Hoogeveen, and S. Abeln, PLoS Comput. Biol, vol.11, p.1004277, 2015.

R. Ni, S. A. Schor, M. A. Stuart, and P. Bolhuis, Phys. Rev. Lett, vol.111, p.58101, 2003.

P. Derreumaux, J. Chem. Phys, vol.107, p.1941, 1997.

T. T. Tran, P. H. Nguyen, and P. Derreumaux, J. Chem. Phys, vol.144, p.205103, 2016.

P. H. Nguyen, M. S. Li, and P. Derreumaux, Phys. Chem. Chem. Phys, vol.13, p.9778, 2011.

M. R. Sawaya, S. Sambashivan, R. Nelson, M. I. Ivanova, S. A. Sievers et al., Nature, vol.447, issue.7143, pp.453-457, 2007.

R. Nelson and D. Eisenberg, Curr. Opin. Struct. Biol, vol.16, p.260, 2006.

M. Chiricotto, T. T. Tranh, P. H. Nguyen, S. Melchionna, F. Sterpone et al., Isr. J. Chem, vol.57, p.564, 2017.

W. E. Thomas, V. Vogel, and E. Sokurenko, Ann. Rev. Biophys, vol.37, p.399, 2008.

T. A. Springer, Blood, vol.124, p.1412, 2014.

O. Yakovenkoa, V. Tchesnokovab, E. V. Sokurenkob, and W. E. Thomas, Proc. Natl. Acad. Sci. U. S. A, vol.112, p.9884, 2015.

M. M. Sauer, R. P. Jakob, J. Eras, S. Baday, D. Eris et al., Nat. Comm, vol.7, p.10738, 2015.

V. Kalas, J. S. Pinkner, T. J. Hannan, M. E. Hibbing, K. W. Dodson et al., Sci. Adv, vol.3, p.1601944, 2017.

F. Sterpone, P. H. Nguyen, M. Kalimeri, and P. Derreumaux, J. Chem. Theory. Comput, vol.9, p.4574, 2013.

C. E. Sing and A. Alexander-katz, Biophys. J, vol.98, p.35, 2010.

P. Szymczak and M. Cieplak, J. Chem. Phys, vol.127, p.155106, 2007.

L. Mazzanti, S. Doutreligne, C. Gageat, P. Derreumaux, A. Taly et al., Biophys. J, vol.113, p.302, 2017.

J. Nasica-labouze, P. H. Nguyen, F. Sterpone, O. Berthoumieu, N. Buchete et al., Chem. Rev, p.115

F. Sterpone, / Biochemical and Biophysical Research Communications, pp.1-9, 2017.

F. Sterpone, Multi-scale simulations of biological systems using the OPEP coarse-grained model, Biochemical and Biophysical Research Communications, p.3518, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01644564

C. Caillava, S. Ranaldi, I. Lauritzen, C. Bauer, J. Fareh et al., Neurobiol. Aging, vol.35, p.1570, 2014.

J. E. Stone, J. Gullingsrud, and K. Schulten, Proceedings of the 2001 Symposium on Interactive 3D Graphics, 2001.

O. Delalande, N. Erey, G. Grasseau, and M. Baaden, J. Comput. Chem, vol.30, p.2375, 2009.

M. Dreher, M. Piuzzi, A. Turki, M. Chavent, M. Baaden et al., Procedia Comput. Sci, vol.18, p.20, 2013.

Z. Lv, A. Tek, F. Silva, C. Empereur-mot, M. Chavent et al., PLoS One, vol.8, p.57990, 2013.

T. Cragnolini, K. H. Sutherland-cash, D. Wales, S. Pasquali, and P. Derreumaux, Biophys. J, vol.106, p.256, 2014.

P. H. Nguyen and P. Derreumaux, Acc. Chem. Res, vol.47, p.603, 2014.

A. J. Doig and P. Derreumaux, Curr. Opin. Struct. Biol, vol.30, p.50, 2015.

A. J. Doig, M. P. Castillo-frias, O. Berthoumieu, B. Tarus, J. Nasica-labouze et al., ACS Chem. Neurosci, vol.8, p.1435, 2017.

F. Sterpone, Biochemical and Biophysical Research Communications, pp.1-9, 2017.

, UnityMol: Interactive and Ludic Visual Manipulation of Coarse-Grained RNA and other Biomolecules Sébastien Doutreligne, Marc Baaden Biophysical Journal, 2017.

L. Mazzantia, S. Doutreligne, C. Gageat, P. Derreumeaux, A. Taly et al., Multi-scale and Multi-physics Simulations of Biological Systems using the OPEP Coarse-grained Model Fabio Sterpone, Simone Melchionna, Marc Baaden, Phuong H. Nguyen, and Philippe Derreumaux -BioSpring: multi-scale modeling with spring networks Sébastien Doutreligne, 2017.

T. Cragnolini, S. Pasquali, and P. Derreumaux, UnityMol: Interactive Scientific Visualization for Integrative Biology Sébastien Doutreligne, vol.9080

Z. Lv, Game on, science -how video game technology may help biologists tackle visualization challenges, PLoS ONE, vol.8, issue.3, p.57990, 2013.
DOI : 10.1371/journal.pone.0057990

URL : https://hal.archives-ouvertes.fr/hal-01084644

M. Chavent, GPU-accelerated atom and dynamic bond visualization using hyperballs: a unified algorithm for balls, sticks,and hyperboloids, J. Comput. Chem, vol.32, issue.13, pp.2924-2935, 2011.
DOI : 10.1002/jcc.21861

URL : https://hal.archives-ouvertes.fr/hal-00645162

O. Delalande, Complex molecular assemblies at hand via interactive simulations, J. Comput. Chem, vol.30, issue.15, pp.2375-2387, 2009.
DOI : 10.1002/jcc.21235

URL : https://hal.archives-ouvertes.fr/inserm-00713313

S. Pasquali and P. Derreumaux, HiRE-RNA: a high resolution coarse-grained energy model for RNA, J. Phys. Chem. B, vol.114, issue.37, pp.11957-11966, 2010.

K. Darty, VARNA: Interactive drawing and editing of the RNA secondary structure, Bioinformatics, vol.25, issue.15, pp.1974-1975, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00432548

S. Pasquali and P. Derreumaux, HiRE-RNA: a high resolution coarse-grained energy model for RNA, J. Phys. Chem. B, vol.114, issue.37, pp.11957-11966, 2010.
DOI : 10.1021/jp102497y

T. Cragnolini, Coarse-grained simulations of RNA and DNA duplexes, J. Phys. Chem. B, vol.117, issue.27, pp.8047-8060, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01498061

Z. Lv, Game on, science -how video game technology may help biologists tackle visualization challenges, PLoS ONE, vol.8, issue.3, p.57990, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01084644

S. Pérez, T. Tubiana, A. Imberty, and M. Baaden, Three-dimensional representations of complex carbohydrates and polysaccharides -Sweet UnityMol: A video game-based computer graphic software, Glycobiology, p.133, 2014.

-. Hire and . Contest, UnityMol pour l'éducation des études structurales des molécules d'ADN, ARN et protéines. Une des applications possibles est l'enseignement. Entre mai 2015 et aujourd'hui, nous

, Ce travail a be?ne?ficiebe?ne?be?ne?ficie d'une aide de l'Etat ge?reége?reé par l'Agence Nationale de la Recherche au titre du programme Investissements

T. E. Iii, P. Cieplak, and P. A. Kollman, A modified version of the cornell et al. force field with improved sugar pucker phases and helical repeat, Journal of Biomolecular Structure and Dynamics, vol.16, issue.4, p.10217454, 1999.

M. Zacharias, Protein-protein docking with a reduced protein model accounting for sidechain flexibility, Protein Science: A Publication of the Protein Society, vol.12, issue.6, pp.1271-1282, 2003.

N. A. Baker, D. Sept, S. Joseph, M. J. Holst, and J. A. Mccammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proc. Natl. Acad. Sci. USA, vol.98, pp.10-037, 2001.

L. G. Trabuco, E. Villa, K. Mitra, J. Frank, and K. Schulten, Flexible Fitting of Atomic Structures into Electron Microscopy Maps Using Molecular Dynamics, Structure, vol.16, issue.5, pp.673-683, 1993.

P. Ducarme, M. Rahman, and R. Brasseur, IMPALA: A simple restraint field to simulate the biological membrane in molecular structure studies, Proteins: Structure, Function, and Bioinformatics, vol.30, issue.4, pp.357-371, 1998.

O. Delalande, N. Ferey, B. Laurent, M. Gueroult, B. Hartmann et al., Multihaptic device, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, pp.205-215, 2010.

A. Saladin, C. Amourda, P. Poulain, N. Férey, M. Baaden et al., Modeling the early stage of DNA sequence recognition within RecA nucleoprotein filaments, Nucleic Acids Research, vol.38, issue.19, pp.6313-6323, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00533099

A. Molza, N. Férey, M. Czjzek, E. L. Rumeur, J. Hubert et al., Innovative interactive flexible docking method for multi-scale reconstruction elucidates dystrophin molecular assembly, Faraday Discuss, vol.169, issue.0, pp.45-62, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01018071

A. Molza, K. Mangat, E. L. Rumeur, J. Hubert, N. Menhart et al., Structural Basis of Neuronal Nitric-Oxide Synthase Interaction with Dystrophin Repeats 16 and 17, Journal of Biological Chemistry, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01214011

W. Humphrey, A. Dalke, and K. Schulten, VMD -Visual Molecular Dynamics, J. Molec. Graphics, vol.14, pp.33-38, 1996.

Z. Lv, A. Tek, F. Silva, C. Empereur-mot, M. Chavent et al., Game on, Science -how video game technology may help biologists tackle visualization challenges, PLoS ONE, vol.8, issue.3, p.57990
URL : https://hal.archives-ouvertes.fr/hal-01084644

K. Hinsen, Analysis of domain motions by approximate normal mode calculations, Proteins: Structure, Function, and Bioinformatics, vol.33, issue.3, pp.417-429, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02159766