A. .. , 6 5.1 Overall methodology for the numerical comparison between NRA, vol.87

, Input probabilistic model for Example #1

. #. Results-for-example,

. #. Results-for-example,

, Input probabilistic model for Example #2

, Score functions for normal (Case #1) and uniform (Case #2) prior distributions on an uncertain parameter ? j

, Overall strategy for the numerical tests of the proposed methodology, p.105

, Input probabilistic model for Example #1

. #. Results-for-example,

, Input probabilistic model for Example #2

. #. Results-for-example,

, Results for Example #2 considering the influence of the failure event rareness, p.109

.. .. Different,

, Overall strategy for the numerical tests of the proposed methodology, p.127

, Input probabilistic model for Example #1

. #. Results-for-example,

, Input probabilistic model for Example #2

. #. Results-for-example,

.. .. Input,

, Input probabilistic model under bi-level input uncertainty

. #. Results-for-step,

. #. Results-for-step,

, Results for Step #2 considering the influence of the failure event rareness, p.145

. #. Results-for-step, 117 7.2.1 Basic formulation of the Sobol indices on the indicator function

, Sobol indices on the indicator function adapted to the bi-level input uncertainty119 7.3.1 Bi-level input uncertainty: aggregated vs. disaggregated types of uncertainty, p.121

. .. , 124 7.4.3 Methodology based on subset sampling and data-driven tensorized G-KDE, Efficient estimation using subset sampling and kernel density estimation . . 123 7.4.1

, 125 7.5.1 Example #1: a polynomial function toy-case

. .. , 130 7.5.3 Synthesis about numerical results and discussion, p.133

.. .. Conclusion,

, Moreover, one can see that these nonlinearities seem to be specific to the variable X 4 , i.e., the azimuth angle perturbation at separation, By analyzing these cross-cuts, one can formulate the following remarks: ? firstly, one can notice that

?. Secondly, )) present possible multiple MPFPs

M. Ahammed and R. E. Melchers, Gradient and parameter sensitivity estimation for systems evaluated using Monte Carlo analysis, Reliability Engineering and System Safety 91, pp.594-601, 2006.

, Guide for the Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077-1998), AIAA, 1998.

A. Alexanderian, P. A. Gremaud, and R. C. Smith, Variance-based sensitivity analysis for time-dependent processes, pp.1-23, 2017.

G. Allaire, A review of adjoint methods for sensitivity analysis, uncertainty quantification and optimization in numerical codes, Actes du Congrès Simulation SIA, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01242950

G. Apostolakis, The Concept of Probability in Safety Assessments of Technological Systems, Science, vol.250, pp.1359-1364, 1990.

. Arianespace, Vega User's Manual, 2014.

, Ariane 5 User's Manual, Issue 5 Revision 2

. Asme, Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer (ASME V&V 20-2009). Tech. rep. The American Society of Mechanical Engineers, 2009.

S. Asmussen and P. W. Glynn, Stochastic Simulation: Algorithms and Analysis. Stochastic Modelling and Applied Probability, 2007.

S. K. Au, Reliability-based design sensitivity by efficient simulation, Computers & Structures, vol.83, pp.1048-1061, 2005.

S. Au and J. L. Beck, A new adaptive importance sampling scheme for reliability calculations, Structural Safety, vol.21, pp.135-158, 1999.

, Estimation of small failure probabilities in high dimensions by subset simulation, Probabilistic Engineering Mechanics 16, vol.4, pp.263-277, 2001.

, Important sampling in high dimensions, Structural Safety, vol.25, pp.139-163, 2003.

S. Au and Y. Wang, Engineering Risk Assessment with Subset Simulation, 2014.

S. Au, J. Ching, and J. L. Beck, Application of subset simulation methods to reliability benchmark problems, Structural Safety, vol.29, pp.183-193, 2007.

B. Auder and B. Iooss, Global sensitivity analysis based on entropy, Proc. of the 20th European Safety and Reliability Conference, 2009.

B. M. Ayyub, Elicitation of Expert Opinions for Uncertainty and Risks, 2001.

M. Balesdent, Multidisciplinary Design Optimization of Launch Vehicles, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00659362

M. Balesdent, J. Morio, and J. Marzat, Kriging-based adaptive Importance Sampling algorithms for rare event simulation, Structural Safety, vol.44, pp.1-10, 2013.

M. Balesdent, J. Morio, and L. Brevault, Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters, Methodology and Computing in Applied Probability, vol.18, pp.197-216, 2014.

M. Balesdent, J. Morio, and J. Marzat, Recommendations for the tuning of rare event probability estimators, Reliability Engineering and System Safety, vol.133, pp.68-78, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01064029

P. Barbe and M. Ledoux, Probabilité. (in French), 2007.

M. Baudin and J. Martinez, Introduction to sensitivity analysis with NISP, 2014.

R. J. Beckman and M. D. Mckay, Monte Carlo Estimation under Different Distributions Using the Same Simulation, Technometrics 29, vol.2, pp.153-160, 1987.

J. Bect, D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez, Sequential design of computer experiments for the estimation of a probability of failure, Statistics and Computing, vol.22, pp.773-793, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00689580

J. Bect, L. Li, and E. Vazquez, Bayesian Subset Simulation, SIAM/ASA Journal of Uncertainty Quantification, vol.5, pp.762-786, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01253706

M. Beer, S. Ferson, and V. Kreinovich, Imprecise probabilities in engineering analyses, Mechanical Systems and Signal Processing, vol.37, pp.4-29, 2013.

M. Beer, F. A. Diazdelao, E. Patelli, and S. K. Au, Conceptual comparison of Bayesian approaches and imprecise probabilities, Computational Technology Reviews, vol.9, pp.1-29, 2014.

J. R. Benjamin and C. A. Cornell, Probability, statistics, and decision for civil engineers, 1970.

N. Benoumechiara and K. Elie-dit-cosaque, Shapley effects for sensitivity analysis with dependent inputs: bootstrap and kriging-based algorithms, pp.1-30, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01677501

N. Benoumechiara, B. Michel, P. Saint-pierre, and N. Bousquet, Detecting and modeling worst-case dependence structures between random inputs of computational reliability models, pp.1-42, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01779484

J. O. Berger, Statistical Decision Theory and Bayesian Analysis. Second ed. Springer Series in Statistics, 1985.

A. Berlinet and C. Thomas-agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, 2004.

P. Bernard and M. Fogli, Un calcul probabiliste en génie civil. Évaluation de la probabilité de ruine des structures par une méthode de Monte-Carlo fondée sur une technique de conditionnement, Annales scientifiques de l'Université, pp.47-90, 1986.

, Evaluation of measurement data -Guide to the expression of uncertainty in measurement, Mesures (BIPM), Joint Committee for Guides in Metrology (JCGM), vol.100, 2008.

P. Bjerager, Probability integration by directional simulation, Journal of Engineering Mechanics, vol.114, pp.1288-1302, 1988.
DOI : 10.1061/(asce)0733-9399(1988)114:8(1285)

P. Bjerager and S. Krenk, Sensitivity measures in structural reliability analysis, Reliability and Optimization of Structural Systems '87: Proceedings of the 1st IFIP WG 7.5 Conference, pp.459-470, 1987.

, Parametric Sensitivity in First Order Reliability Theory, Journal of Engineering Mechanics, vol.115, pp.1577-1582, 1989.

R. Bolado-lavin and A. C. Badea, Review of sensitivity analysis methods and experience for geological disposal of radioactive waste and spent nuclear fuel, JRC Scientific and Technical Reports EUR 23712 EN -2008, Tech. rep. Joint Research Center, 2008.

E. Borgonovo, A bew uncertainty importance measure, Reliability Engineering and System Safety, vol.92, pp.771-784, 2007.
DOI : 10.1016/j.ress.2006.04.015

, Sensitivity Analysis. An Introduction for the Management Scientist. International Series in Operations Research & Management Science, 2017.

E. Borgonovo and E. Plischke, Sensitivity analysis: a review of recent advances, European Journal of Operational Research, vol.248, pp.869-887, 2016.

Z. I. Botev, D. P. Kroese, and T. Taimre, Generalized Cross-Entropy methods with applications to rare-event simulation and optimization, Simulation 83, vol.11, pp.785-806, 2007.
DOI : 10.1177/0037549707087067

Z. I. Botev, J. F. Grotowski, and D. P. Kroese, Kernel density estimation via diffusion, The Annals of Statistics, vol.38, pp.2916-2957, 2010.
DOI : 10.1214/10-aos799

URL : https://doi.org/10.1214/10-aos799

J. Bourinet, Rare-event probability estimation with adaptive support vector regression surrogates, Reliability Engineering and System Safety, vol.150, pp.210-221, 2016.
DOI : 10.1016/j.ress.2016.01.023

, FORM Sensitivities to Distribution Parameters with the Nataf Transformation, Risk and Reliability Analysis: Theory and Applications, pp.277-302, 2017.

, Reliability analysis and optimal design under uncertainty -Focus on adaptive surrogatebased approaches, 2018.

J. Bourinet and M. Lemaire, FORM sensitivities to correlation: application to fatigue crack propagation based on Virkler data, Proc. of the 4th International ASRANet Colloquium, 2008.

J. Bourinet, C. Mattrand, and V. Dubourg, A review of recent features and improvements added to FERUM software, Proc. of the 10th International Conference on Structural Safety and Reliability (ICOSSAR'09, 2009.

J. Bourinet, F. Deheeger, and M. Lemaire, Assessing small failure probabilities by combined subset simulation and Support Vector Machines, Structural Safety 33, vol.6, pp.343-353, 2011.
DOI : 10.1016/j.strusafe.2011.06.001

K. Breitung, Asymptotic Approximations for Multinormal Integrals, In: Journal of Engineering Mechanics, vol.110, pp.357-366, 1984.
DOI : 10.1061/(asce)0733-9399(1984)110:3(357)

, The geometry of limit state function graphs and subset simulation: Counterexamples, Reliability and Optimization of Structural Systems '90: Proceedings of the 3rd IFIP WG 7.5 Conference, vol.182, pp.98-106, 1990.

L. Brevault, Contributions to Multidisciplinary Design Optimization under uncertainty, application to launch vehicle design, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01320231

B. Broto, F. Bachoc, M. Depecker, and J. Martinez, Sensitivity indices for independent groups of variables, pp.1-16, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01680687

T. Browne, Regression models and sensitivity analysis for stochastic simulators: applications to non-destructive examination, 2017.

J. A. Bucklew, Intoduction to Rare Event Simulation, Springer Series in Statistics, 2004.

H. Bungartz and M. Griebel, Sparse grids". In: Acta Numerica 13, pp.147-269, 2004.

D. G. Cacuci, Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach, Sensitivity and Uncertainty Analysis, vol.22, pp.2794-2802, 1981.

D. G. Cacuci, M. Ionescu-bujor, and I. M. Navon, Sensitivity and Uncertainty Analysis, vol.II, 2005.

F. Campolongo, J. Cariboni, and A. Saltelli, An effective screening design for sensitivity analysis of large models, Environmental Modelling & Software, vol.22, pp.1509-1518, 2007.

Y. Caniou, Global sensitivity analysis for nested and multiscale modelling, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00864175

C. Cannaméla, Apport des méthodes probabilistes dans la simulation du comportement sous irradiation du combustible à particules". (in French), 2007.

V. Caron, A. Guyader, M. M. Zuniga, and B. Tuffin, Some recent results in rare event estimation, ESAIM Proceedings, vol.44, pp.239-259, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00908575

E. Castillo, R. Mínguez, and C. Castillo, Sensitivity analysis in optimization and reliability problems, Reliability Engineering and System Safety 93, pp.1788-1800, 2008.

F. Cérou and A. Guyader, Adaptive Multilevel Splitting for Rare Event Analysis, Stochastic Analysis and Applications 25.3, pp.417-443, 2007.

F. Cérou, P. Moral, T. Furon, and A. Guyader, Sequential Monte Carlo for rare event estimation, Statistics and Computing, vol.22, pp.795-808, 2012.

V. Chabridon, M. Balesdent, J. Bourinet, J. Morio, and N. Gayton, Evaluation of failure probability under parameter epistemic uncertainty: application to aerospace system reliability assessment, Aerospace Science and Technology, vol.69, pp.526-537, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01632784

, Reliability-based sensitivity analysis of aerospace systems under distribution parameter uncertainty using an augmented approach, Proc. of the 12th International Conference on Structural Safety and Reliability (ICOSSAR'17), 2017.

V. Chabridon, N. Gayton, M. Balesdent, J. Bourinet, and J. Morio, Some Bayesian insights for statistical tolerance analysis, Actes du 23ème Congrès Français de Mécanique, 2017.

K. Chan, Spacecraft Collision Probability. The Aerospace Press. American Institute of Aeronautics and Astronautics, 2008.

K. Chan, A. Saltelli, and S. Tarantola, Sensitivity analysis of model output: variancebased methods make the difference, Proc. of the 1997 Winter Simulation Conference (WSC'97), 1997.

G. A. Atlanta and U. ,

G. Chastaing, Indices de Sobol généralisés pour variables dépendantes". (in French), 2013.

R. Cherng and Y. K. Wen, Reliability of Uncertain Nonlinear Trusses under Random Excitation. II, Journal of Engineering Mechanics, vol.120, pp.748-757, 1994.

M. Chiachío, J. Chiachío, S. Sankararaman, K. Goebel, and J. Andrews, A new algorithm for prognostics using Subset Simulation, Reliability Engineering and System Safety, vol.168, pp.189-199, 2017.

R. Chocat, P. Beaucaire, L. Debeugny, J. Lefebvre, C. Sainvitu et al., Reliability analysis in fracture mechanics according to combined failure criteria, Proc. of the VII European Congress on Computational Methods in Applied Sciences and Engineering, 2016.

R. Chowdhury and S. Adhikari, Stochastic sensitivity analysis using preconditioning approach, Engineering Computations 27, vol.7, pp.841-862, 2010.

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler et al., Geometric Diffusions as a Tool for Harmonic Analysis and Structure Definition of Data: Diffusion Maps, Proceedings of the National Academy of Sciences of the United States of America 102, vol.21, pp.7426-7431, 2015.

C. A. Cornell, A Probability-Based Structural Code, Journal of the American Concrete Institute 66, vol.12, pp.974-985, 1969.

L. Cui, Z. Lu, and X. Zhao, Moment-independent importance measure of basic random variable and its probability density evolution solution, Science China Technical Sciences, pp.1138-1145, 2010.

S. Da-veiga, Global sensitivity analysis with dependence measures, In: Journal of Statistical Computation and Simulation, vol.85, pp.1283-1305, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00903283

G. Damblin, Contributions statistiques au calage et à la validation des codes de calcul, 2015.

P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Computer Science and Applied Mathematics, 1984.

,. De-boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, A Tutorial on the CrossEntropy Method". In: Annals of Operations Research, vol.134, pp.19-67, 2005.

J. De-la-porte, B. M. Herbst, W. Hereman, S. J. Van-der, and . Walt, An Introduction to Diffusion Maps, Proc. of the 19th Symposium of the Pattern Recognition Association of South Africa, 2008.

M. De-lozzo and A. Marrel, Estimation of the Derivative-Based Global Sensitivity Measures Using a Gaussian Process Metamodel, SIAM/ASA Journal of Uncertainty Quan, pp.708-738, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01164215

, New improvements in the use of dependence measures for sensitivity analysis and screening, Journal of Statistical Computation and Simulation, vol.86, pp.3038-3058, 2016.

, Sensitivity analysis with dependence and variance-based measures for spatio-temporal numerical simulators, Stochastic Environmental Research and Risk Assessment, vol.31, pp.1437-1453, 2016.

E. De-rocquigny, La maîtrise des incertitudes dans un contexte industriel. 1ère partie : une approche méthodologique globale basée sur des exemples, Journal de la Société Française de Statistique, vol.147, pp.33-71, 2006.

, La maîtrise des incertitudes dans un contexte industriel. 2ème partie : revue des méthodes de modélisation statistique physique et numérique, Journal de la Société Française de Statistique, vol.147, pp.73-106, 2006.

E. De-rocquigny, N. Devictor, and S. Tarantola, Uncertainty in industrial practice: a guide to quantitative uncertainty management, 2008.

A. Der-kiureghian, Measures of Structural Safety Under Imperfect States of Knowledge, Report No. UCB/SEMM-88/06, Journal of Structural Engineering ASCE, vol.115, pp.1119-1140, 1988.

, Structural reliability methods for seismic safety assessment: a review, Engineering Structures 18, vol.6, pp.412-424, 1996.

, Introduction to Structural Reliability, Class Notes for CE229, Structural Reliability, Probabilistic Engineering Mechanics 23, vol.4, pp.351-358, 1999.

A. Der-kiureghian and T. Dakessian, Multiple design points in first and second-order reliability, Structural Safety 20.1, pp.37-49, 1998.

A. Der-kiureghian and M. Stefano, Efficient Algorithm for Second-Order Reliability Analysis, Journal of Engineering Mechanics ASCE 117, vol.12, pp.2904-2923, 1991.

A. Der-kiureghian and O. Ditlevsen, Aleatory or epistemic? Does it matter?, In: Structural Safety, vol.31, pp.105-112, 2009.

A. Der-kiureghian and P. Liu, Structural Reliability Under Incomplete Probability Information, Journal of Engineering Mechanics ASCE, vol.112, pp.85-104, 1986.

P. Derennes, J. Morio, and F. Simatos, Estimation of moment independent importance measures using a copula and maximum entropy framework, Proc. of the 2018 Winter Simulation Conference (WSC'18). Gothenburg, pp.1-27, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02103155

O. Ditlevsen, Generalized Second Moment Reliability Index, Journal of Structural Mechanics, pp.435-451, 1979.

O. Ditlevsen, Narrow Reliability Bounds for Structural Systems, Journal of Structural Mechanics, pp.453-472, 1979.

, Distribution arbitrariness in structural reliability, Proc. of the 6th International Conference on Structural Safety and Reliability (ICOSSAR'93), pp.73-86, 1982.

O. Ditlevsen and H. O. Madsen, Structural Reliability Methods, 2007.

Y. Dong, H. Lu, and L. Li, Reliability sensitivity analysis based on multi-hyperplane combination method, Defence Technology, vol.10, pp.354-359, 2014.

V. Dubourg, Adaptive surrogate models for reliability analysis and reliability-based design optimization, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00697026

V. Dubourg and B. Sudret, Reliability-based design optimization using kriging surrogates and subset simulation, Structural and Multidisciplinary Optimization, vol.44, pp.673-690, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00587311

, Metamodel-based importance sampling for reliability sensitivity analysis, Structural Safety 49, pp.27-36, 2014.

V. Dubourg, B. Sudret, and F. Deheeger, Metamodel-based importance sampling for structural reliability analysis, Probabilistic Engineering Mechanics, vol.33, pp.45-57, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00590604

S. Dubreuil, N. Bartoli, C. Gogu, and T. Lefebvre, Propagation of modeling uncertainty by polynomial chaos expansion in multidisciplinary analysis, Journal of Mechanical Design, vol.138, pp.111411-111412, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01342356

R. Durrett, Probability: Theory and Examples. Fourth, 2010.

J. P. Dussault, D. Labrecque, P. L'ecuyer, and R. Y. Rubinstein, Combining the Stochastic Counterpart and Stochastic Approximation Methods, Discrete Event Dynamic Systems: Theory and Applications, vol.7, pp.5-28, 1997.

A. Dutfoy and R. Lebrun, Practical approach to dependence modelling using copulas, Proceedings of the Institution of Mechanical Engineers, vol.223, pp.347-361, 2009.

B. Echard, N. Gayton, and M. Lemaire, AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation, Structural Safety 33, vol.2, pp.145-154, 2011.

B. Echard, N. Gayton, M. Lemaire, and N. Relun, A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models, Reliability Engineering and System Safety, vol.111, pp.232-240, 2013.

M. Ehre, I. Papaioannou, and D. Straub, Efficient estimation of variance-based reliability sensitivities in the presence of multi-uncertainty, Proc. of the 2018 IFIP WG 7.5 Working Conference on Reliability and Optimization of Structural Systems, 2018.

P. Ekström and R. Broed, Sensitivity analysis methods and a biosphere test case implemented in EIKOS, Tech. rep. Posiva Oy, 2006.

S. Engelund and R. Rackwitz, A benchmark study on importance sampling techniques in structural reliability, Structural Safety, vol.12, pp.255-276, 1993.

Z. Feng, Z. Lu, L. Cui, and S. Song, Reliability sensitivity algorithm based on stratified importance sampling method for multiple failure modes systems, Chinese Journal of Aeronautics, vol.23, pp.660-669, 2010.
DOI : 10.1016/s1000-9361(09)60268-5

URL : https://doi.org/10.1016/s1000-9361(09)60268-5

S. Ferson and L. R. Ginzburg, Different methods are needed to propagate ignorance and variability, Reliability Engineering and System Safety, vol.54, pp.133-144, 1996.
DOI : 10.1016/s0951-8320(96)00071-3

S. Ferson and W. L. Oberkampf, Validation of imprecise probability models, In: International Journal of Reliability and Safety, vol.3, issue.1, pp.3-22, 2009.
DOI : 10.1504/ijrs.2009.026832

J. Fort, T. Klein, and N. Rachdi, New sensitivity analysis subordinated to a contrast, Communications in Statistics -Theory and Methods 45, vol.15, pp.4349-4364, 2016.
DOI : 10.1080/03610926.2014.901369

URL : https://hal.archives-ouvertes.fr/hal-00821308

J. Fruth, O. Roustant, and S. Kuhnt, Support indices: Measuring the effects of input variables over their supports, Reliability Engineering and System Safety, 2018.

F. Gamboa, A. Janon, T. Klein, A. Lagnoux, and C. Prieur, Statistical inference for Sobol pick freeze Monte Carlo method, Statistics, pp.1-22, 2015.
DOI : 10.1080/02331888.2015.1105803

URL : https://hal.archives-ouvertes.fr/hal-01980691

J. Garza and H. R. Millwater, Higher-order probabilistic sensitivity calculations using the multicomplex score function method, Probabilistic Engineering Mechanics, vol.45, pp.26-39, 2016.
DOI : 10.1016/j.probengmech.2015.12.001

URL : https://manuscript.elsevier.com/S0266892015300631/pdf/S0266892015300631.pdf

N. Gayton, P. Beaucaire, J. Bourinet, E. Duc, M. Lemaire et al., APTA: advanced probability-based tolerance analysis of products, In: Mechanics & Industry, vol.12, pp.71-85, 2011.

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari et al., Bayesian Data Analysis. Third ed. Texts in Statistical Science, 2006.

J. E. Gentle, Random number generation and Monte Carlo methods, Statistics and Computing, 2003.

J. Geul, E. Mooij, and R. Noomen, Analysis of Uncertainties and Modeling in Short-Term Reentry Predictions, Journal of Guidance, Control, and Dynamics, pp.1-14, 2018.

S. Geyer, I. Papaioannou, and D. Straub, Cross entropy-based importance sampling using Gaussian densities revisited, Structural Safety, vol.76, pp.15-27, 2019.
DOI : 10.1016/j.strusafe.2018.07.001

R. Ghanem, D. Higdon, and H. Owhadi, Handbook of Uncertainty Quantification, 2017.

G. H. Givens and A. E. Raftery, Local Adaptive Importance Sampling for Multivariate Densities With Strong Nonlinear Relationships, Journal of the American Statistical Association 91, vol.433, pp.132-141, 1996.
DOI : 10.1080/01621459.1996.10476670

P. Glasserman, P. Heidelberger, P. Shahabuddin, and T. Zajic, Multilevel splitting for estimating rare event probabilities, Operations Research, vol.47, pp.585-600, 1999.
DOI : 10.1287/opre.47.4.585

F. Grooteman, Adaptive radial-based importance sampling method for structural reliability, Structural Safety, vol.30, pp.533-542, 2008.
DOI : 10.1016/j.strusafe.2007.10.002

, An adaptive directional importance sampling method for structural reliability, Probabilistic Engineering Mechanics, vol.26, pp.134-141, 2011.

A. Gut, An Intermediate Course in Probability. Second ed. Springer Texts in Statistics, 2009.
DOI : 10.1007/978-1-4757-2431-8

A. Guyader, N. Hengartner, and E. Matzner-løber, Simulation and Estimation of Extreme Quantiles and Extreme Probabilities, In: Applied Mathematics and Optimization, vol.64, pp.171-196, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00911891

M. S. Hamada, A. G. Wilson, C. S. Reese, and H. F. Martz, Bayesian Reliability, 2008.

A. Harbitz, An efficient sampling method for probability of failure calculation, Structural Safety, vol.3, pp.109-115, 1986.

A. M. Hasofer and N. C. Lind, Exact and Invariant Second-Moment Code Format, Journal of the Engineering Mechanics Division ASCE, vol.100, pp.111-121, 1974.

W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57.1, pp.97-109, 1970.

T. Haukaas and A. Der-kiureghian, Parameter Sensitivity and Importance Measures in Nonlinear Finite Element Reliability Analysis, Journal of Engineering Mechanics, vol.131, pp.1013-1026, 2005.

F. Heiss and V. Winschel, Quadrature on sparse grids: Code to generate and readily evaluated nodes and weights (Matlab toolbox, Journal of Econometrics, vol.144, pp.62-80, 2007.

J. C. Helton, Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty, Journal of Statistical Computation and Simulation, vol.57, pp.3-76, 1997.

J. C. Helton and F. J. Davis, Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, Reliability Engineering and System Safety, vol.81, pp.23-69, 2003.

J. C. Helton, J. D. Johnson, and W. L. Oberkampf, An exploration of alternative approaches to the representation of uncertainty in model predictions, In: Reliability Engineering and System Safety, vol.85, pp.39-71, 2004.

J. C. Helton, J. D. Johnson, C. J. Sallaberry, and C. B. Storlie, Survey of sampling-based methods for uncertainty and sensitivity analysis, Reliability Engineering and System Safety 91, pp.1175-1209, 2006.

T. C. Hesterberg, Estimates and Confidence Intervals for Importance Sampling Sensitivity Analysis, Mathematical and Computer Modelling, vol.23, pp.79-85, 1996.

W. Hoeffding, A class of statistics with asymptotically normal distribution, The Annals of Mathematical Statistics, vol.19, pp.293-325, 1948.

F. O. Hoffman and J. S. Hammonds, Propagation of uncertainty in risk assessments: the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability, Risk Analysis 14, vol.35, pp.707-712, 1994.

M. Hohenbichler and R. Rackwitz, Non-Normal Dependent Vectors in Structural Safety, Journal of the Engineering Mechanics Division ASCE, issue.6, pp.1227-1238, 1981.

, Sensitivity and importance measures in structural reliability, Civil Engineering Systems, vol.3, pp.203-209, 1986.

T. Homem-de-mello, A study on the Cross-Entropy method for rare-event probability estimation, INFORMS Journal on Computing, vol.19, pp.381-394, 2007.

T. Homem-de-mello and R. Y. Rubinstein, Estimation of rare event probabilities using cross-entropy, Proc. of the 2002 Winter Simulation Conference (WSC'02), 2002.

T. Homma and A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering and System Safety, vol.52, pp.1-17, 1996.

H. P. Hong, Evaluation of the Probability of Failure with Uncertain Distribution Parameters, Civil Engineering Systems, vol.13, pp.157-168, 1996.

R. Hoogendoorn, E. Mooij, and J. Geul, Uncertainty propagation for statistical impact prediction of space debris, Advances in Space Research, vol.61, pp.167-181, 2018.

G. J. Hou, .. , C. R. Gumbert, and P. A. Newman, A most probable point-based method for reliability analysis, sensitivity analysis and design optimization, Proc. of the 9th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability (PMC2004), 2004.

J. E. Hurtado, Dimensionality reduction and visualization of structural reliability problems using polar features, Probabilistic Engineering Mechanics, vol.29, pp.16-31, 2012.

T. Igusa and A. Der-kiureghian, Dynamic characterization of two-degree-of-freedom equipment-structure systems, Journal of Engineering Mechanics ASCE, issue.1, pp.1-19, 1985.

R. L. Iman and J. M. Davenport, Rank correlation plots for use with correlated input variables, Communications in Statistics: Simulation and Computation, vol.11, pp.335-360, 1982.

B. Iooss, Contributions au traitement des incertitudes en modélisation numérique : propagation d'ondes en milieu aléatoire et analyse statistique d'expériences simulées". 120 pages, (in French). HDR (French Accreditation to Supervise Research), 2009.

B. Iooss and L. L. Gratiet, Uncertainty and sensitivity analysis of functional risk curves based on Gaussian processes, Reliability Engineering and System Safety, pp.1-9, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01357005

B. Iooss, P. Lemaître, and ;. Meloni, A Review on Global Sensitivity Analysis Methods". In: Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications, pp.101-122, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00975701

B. Iooss and C. Prieur, Shapley effects for sensitivity analysis with dependent inputs: comparisons with Sobol' indices, numerical estimation and applications, pp.1-37, 2017.

J. Iott, R. T. Haftka, and H. M. Adelman, Selecting step sizes in sensitivity analysis by finite differences, NASA Technical Memorandum 86382. Tech. rep. National Aeronautics, Space Administration, Scientific, and Technical Information Branch, 1985.

J. Jacod and P. E. Protter, Probability Essentials, 2004.

L. Jaeger, C. Gogu, S. Segonds, and C. Bes, Aircraft multidisciplinary design optimization under both model and design variables uncertainty", In: Journal of Aircraft, vol.50, pp.528-538, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02180338

S. K. Jha, H. R. Millwater, and J. M. Larsen, Probabilistic sensitivity analysis in lifeprediction of an ? + ? titanium alloy, Fatigue & Fracture of Engineering Materials & Structures, vol.32, pp.493-504, 2009.

Z. Jiang, W. Chen, and B. J. German, Multidisciplinary Statistical Sensitivity Analysis Considering Both Aleatory and Epistemic Uncertainties, AIAA Journal, vol.54, pp.1326-1338, 2016.

M. C. Jones, J. S. Marron, and S. J. Sheather, A Brief Survey of Bandwidth Selection for Density Estimation, Journal of the American Statistical Association, vol.91, pp.401-407, 1996.

H. Kahn and T. E. Harris, Estimation of particle transmission by random sampling, National Bureau of Standards Applied Mathematics Series, vol.12, pp.27-30, 1951.

A. Karamchandani and C. A. Cornell, Sensitivity estimation within first and second order reliability methods, Structural Safety 11, pp.95-107, 1992.

J. M. Karandikar, N. H. Kim, and T. L. Schmitz, Prediction of remaining useful life for fatigue-damaged structures using Bayesian inference, Engineering Fracture Mechanics, vol.96, pp.588-605, 2012.

L. S. Katafygiotis and K. M. Zuev, Geometric insight into the challenges of solving highdimensional reliability problems, Probabilistic Engineering Mechanics, vol.23, pp.208-218, 2008.

M. Keller, A. Pasanisi, and E. Parent, On uncertainty analysis in an industrial context: Or, how to combine available information with decisional stakes, Journal de la Société Française de Statistique, vol.152, pp.60-77, 2011.

T. Kim and J. Song, Development of generalized reliability importance measure (GRIM) using Gaussian mixture, Proc. of the 2018 IFIP WG 7.5 Working Conference on Reliability and Optimization of Structural Systems, vol.173, pp.105-115, 2018.

Y. B. Kim, D. S. Roh, and M. Y. Lee, Nonparametric adaptive importance sampling for rare event simulation, Proc. of the 2000 Winter Simulation Conference (WSC'00, 2000.

H. Klinkrad, Space Debris -Models and Risk Analysis, 2006.

K. Konakli and B. Sudret, Global sensitivity analysis using low-rank tensor approximations, Reliability Engineering and System Safety, vol.156, pp.64-83, 2016.
DOI : 10.1016/j.ress.2016.07.012

URL : https://hal.archives-ouvertes.fr/hal-01428988

A. Kouassi, Propagation d'incertitudes en CEM. Application à l'analyse de fiabilité et de sensibilité de lignes de transmission et d'antennes". (in French), 2017.
URL : https://hal.archives-ouvertes.fr/tel-01787676

A. Kouassi, J. Bourinet, S. Lalléchère, P. Bonnet, and M. Fogli, Reliability and sensitivity analysis of transmission lines in a probabilistic EMC context, IEEE Transactions on Electromagnetic Compatibility 58, vol.2, pp.561-572, 2016.

B. Krzykacz-hausmann, Epistemic sensitivity analysis based on the concept of entropy, Proc. of the Sensitivity Analysis on Model Output (SAMO) Conference, 2001.

S. Kucherenko and B. Iooss, Derivative-Based Global Sensitivity Measures". In: Handbook of Uncertainty Quantification, vol.36, pp.1241-1263, 2017.
DOI : 10.1007/978-3-319-11259-6_36-1

URL : https://hal.archives-ouvertes.fr/hal-01079358

S. Kucherenko, M. Rodriguez-fernandez, C. Pantelides, and N. Shah, Monte Carlo evaluation of derivative-based global sensitivity measures, Reliability Engineering and System Safety, vol.94, pp.1135-1148, 2009.
DOI : 10.1016/j.ress.2008.05.006

S. Kucherenko, O. V. Klymenko, and N. Shah, Sobol' indices for problems defined in non-rectangular domains, Reliability Engineering and System Safety, vol.167, pp.218-231, 2017.

S. Kullback and R. A. Leibler, On information and sufficiency, The Annals of Mathematical Statistics, vol.22, pp.79-86, 1951.

N. Kurtz and J. Song, Cross-entropy-based adaptive importance sampling using Gaussian mixture, Structural Safety, vol.42, pp.35-44, 2013.
DOI : 10.1016/j.strusafe.2013.01.006

A. Lagnoux, Rare event simulation, Probability in the Engineering and Informational Sciences, vol.20, pp.45-66, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00644139

M. Lamboni, B. Iooss, A. Popelin, and F. Gamboa, Derivative-based global sensitivity measures: General links with Sobol' indices and numerical tests, Mathematics and Computers in Simulation, vol.87, pp.45-54, 2013.
DOI : 10.1016/j.matcom.2013.02.002

URL : https://hal.archives-ouvertes.fr/hal-00666473

L. Gratiet, L. , S. Marelli, and B. Sudret, Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes, Handbook of Uncertainty Quantification, vol.38, pp.1289-1325, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01428947

R. Lebrun, Contributions à la modélisation de la dépendance stochastique, 2013.

R. Lebrun and A. Dutfoy, A generalization of the Nataf transformation to distributions with elliptical copula, In: Probabilistic Engineering Mechanics, vol.24, pp.172-178, 2009.

, Do Rosenblatt and Nataf isoprobabilistic transformations really differ?, In: Probabilistic Engineering Mechanics, vol.24, pp.577-584, 2009.

I. Lee, K. K. Choi, Y. Noh, L. Zhao, and D. Gorsich, Sampling-based stochastic sensitivity analysis using score functions for RBDO problems with correlated random variables, Journal of Mechanical Design, vol.133, pp.1-10, 2011.

M. Lemaire, A. Chateauneuf, and J. Mitteau, Structural Reliability. ISTE Ltd &, 2009.

P. Lemaître, Analyse de sensibilité en fiabilité des structures, 2014.

P. Lemaître, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa et al., Density modification-based reliability sensitivity analysis, Journal of Statistical Computation and Simulation, vol.85, pp.1200-1223, 2015.

C. Lemieux, , 2009.

M. Carlo and Q. Sampling, Springer Series in Statistics

L. Li, Z. Lu, F. Jun, and W. Bintuan, Moment-independent importance measure of basic variable and its state dependent parameter solution, Structural Safety, vol.38, pp.40-47, 2012.

L. Li, Z. Lu, and C. Chen, Moment-independent importance measure of correlated input variable and its state dependent parameter solution, Aerospace Science and Technology, vol.48, pp.281-290, 2016.

P. Limbourg, E. De-rocquigny, and G. Andrianov, Accelerated uncertainty propagation in two-level probabilistic studies under monotony, Reliability Engineering and System Safety 95, pp.998-1010, 2010.

H. Liu, W. Chen, and A. Sudjianto, Relative entropy based method for probabilistic sensitivity analysis in engineering design, Proc. of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, vol.128, pp.326-336, 2004.

, Relative Entropy Based Method for Probabilistic Sensitivity Analysis in Engineering Design, Journal of Mechanical Design, vol.128, pp.326-336, 2006.

P. Liu and A. Der-kiureghian, Multivariate distribution models with prescribed marginals and covariances, In: Probabilistic Engineering Mechanics, vol.1, issue.2, pp.105-112, 1986.

Z. Lu, S. Song, Z. Yue, and J. Wang, Reliability sensitivity method by line sampling, Structural Safety 30, vol.6, pp.517-532, 2008.

H. O. Madsen, Omission sensitivity factors, Structural Safety 5.1, pp.35-45, 1988.

H. O. Madsen, S. Krenk, and N. C. Lind, Methods of Structural Safety, 1986.

C. V. Mai and B. Sudret, Computing derivative-based global sensitivity measures using polynomial chaos expansions, Reliability Engineering and System Safety, vol.134, pp.241-250, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01154395

A. Marrel, B. Iooss, B. Laurent, and O. Roustant, Calculations of Sobol indices for the Gaussian process metamodel, Reliability Engineering and System Safety, vol.94, pp.742-751, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00239494

J. R. Martins, A short course on Multidisciplinary Design Optimization, Class Notes for AEROSP 588, 2012.

C. Mattrand and J. Bourinet, The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads, Reliability Engineering and System Safety, vol.123, pp.171-182, 2014.

V. Maume-deschamps and I. Niang, Estimation of quantile oriented sensitivity indices, Statistics and Probability Letters, vol.134, pp.122-127, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01448360

J. C. Mcdowell, The edge of space: Revisiting the Karman Line, Acta Astronautica, vol.151, pp.668-677, 2018.

R. E. Melchers, Importance sampling in structural systems, Structural Reliability Analysis and Prediction, vol.6, pp.3-10, 1989.

R. E. Melchers and M. Ahammed, A fast approximate method for parameter sensitivity estimation in Monte Carlo structural reliability, Computers & Structures, vol.82, pp.55-61, 2004.
DOI : 10.1016/j.compstruc.2003.08.003

N. Metropolis and S. Ulam, The Monte Carlo Method, Journal of the American Statistical Association 44, vol.247, pp.335-341, 1949.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller, Equation of state calculations by fast computing machines, The Journal of Chemical Physics, vol.21, pp.1087-1092, 1953.
DOI : 10.1063/1.1699114

M. A. Meyer and J. M. Booker, Eliciting and Analyzing Expert Judgment: A Practical Guide, ASA-SIAM Series on Statistics and Applied Probability. SIAM, 2001.

A. Meynaoui, A. Marrel, and B. Laurent-bonneau, Méthodologie basée sur les mesures de dépendance HSIC pour l'analyse de sensibilité de second niveau, Actes des 50ème Journées de Statistique, 2018.

H. Millwater and Y. Wieland, Probabilistic Sensitivity-Based Ranking of Damage Tolerance Analysis Elements, Journal of Aircraft, vol.47, pp.161-171, 2010.

H. R. Millwater, Universal properties of kernel functions for probabilistic sensitivity analysis, In: Probabilistic Engineering Mechanics, vol.24, pp.89-99, 2009.

H. R. Millwater and Y. Feng, Probabilistic sensitivity analysis with respect to bounds of truncated distributions, Journal of Mechanical Design, vol.133, pp.1-10, 2011.

H. R. Millwater, A. Bates, and E. Vazquez, Probabilistic sensitivity methods for correlated normal variables, International Journal of Reliability and Safety, vol.5, pp.1-20, 2011.
DOI : 10.1504/ijrs.2011.037344

H. R. Millwater, G. Singh, and M. Cortina, Development of a localized probabilistic sensitivity method to determine random variable regional importance, Reliability Engineering and System Safety, vol.107, pp.3-15, 2012.

J. Morio, Importance sampling: how to approach the optimal density?, In: European Journal of Physics, vol.31, pp.41-48, 2010.
DOI : 10.1088/0143-0807/31/2/l01

J. Morio, Global and local sensitivity analysis methods for a physical system, European Journal of Physics, vol.32, pp.1577-1583, 2011.
DOI : 10.1088/0143-0807/32/6/011

, Influence of input PDF parameters of a model on a failure probability estimation, Simulation Modelling Practice and Theory 19, vol.10, pp.2244-2255, 2011.

, Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position, Reliability Engineering and System Safety 96.1, vol.27, pp.76-89, 2011.

J. Morio and M. Balesdent, Estimation of a launch vehicle stage fallout zone with parametric and non-parametric importance sampling algorithms in presence of uncertain input distributions, Aerospace Science and Technology, vol.52, pp.95-101, 2015.

J. Morio, M. Balesdent, D. Jacquemart, and C. Vergé, A survey of rare event simulation methods for static input-output models, Simulation Modelling Practice and Theory, vol.49, pp.297-304, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01081888

M. D. Morris, Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics 33, vol.2, pp.161-174, 1991.
DOI : 10.1080/00401706.1991.10484804

, Design of Experiments: An Introduction Based on Linear Models. Texts in Statistical Science, 2017.

V. Moutoussamy, Contributions to structural reliability analysis: accounting for monotonicity constraints in numerical models, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01272065

M. Munoz-zuniga, Méthodes stochastiques pour l'estimation contrôlée de faibles probabilités sur des modèles physiques complexes -Application au domaine nucléaire". (in English), 2011.

A. Murangira, M. M. Zuniga, and T. Perdrizet, Sensitivity analysis for failure probability estimation of a floating wind turbine under wind and wave loading, Journées de la conception robuste et fiable 2015 -GST Mécanique et Incertain, 2015.

J. B. Nagel, Bayesian techniques for inverse uncertainty quantification, 2017.

J. B. Nagel and B. Sudret, A unified framework for multilevel uncertainty quantification in Bayesian inverse problems, Probabilistic Engineering Mechanics, vol.43, pp.68-84, 2016.
DOI : 10.1016/j.probengmech.2015.09.007

URL : https://hal.archives-ouvertes.fr/hal-01432159

, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis (NASA/SP-2009-569). Tech. rep. National Aeronautics and Space Administration, NASA, 2009.

A. Nataf, Détermination des distributions dont les marges sont données, Comptes Rendus de l'Académie des Sciences, vol.225, pp.42-43, 1962.

J. C. Neddermeyer, Computationally Efficient Nonparametric Importance Sampling, Journal of the American Statistical Association, vol.104, pp.788-802, 2009.

, Non-parametric partial importance sampling for financial derivative pricing, Quantitative Finance 11, vol.8, pp.1193-1206, 2010.

R. B. Nelsen, An introduction to Copulas, 2006.

E. Nikolaidis, D. M. Ghiocel, and S. Singhal, Engineering Design Reliability Handbook, 2004.

W. L. Oberkampf and C. J. Roy, Verification and Validation in Scientific Computing, 2010.

A. O'hagan, C. E. Buck, A. Daneshkhah, J. R. Eiser, P. H. Garthwaite et al., Uncertain Judgements: Eliciting Experts' Probabilities, Statistics in Practice, 2006.

A. B. Owen, Sobol' indices and Shapley value, SIAM/ASA Journal of Uncertainty Quantification, vol.2, pp.245-251, 2014.

A. B. Owen and C. Prieur, On Shapley value for measuring importance of dependent inputs, SIAM/ASA Journal of Uncertainty Quantification, vol.5, pp.986-1002, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01379188

E. Paloheimo and M. Hannus, Structural design based on weighted fractiles, Journal of the Structural Division, vol.100, pp.1367-1378, 1974.

C. Papadimitriou, J. L. Beck, and L. S. Katafygiotis, Updating robust reliability using structural test data, Probabilistic Engineering Mechanics 16, pp.103-113, 2001.

I. Papaioannou, W. Betz, K. Zwirglmaier, and D. Straub, MCMC algorithms for Subset Simulation, Probabilistic Engineering Mechanics 41, pp.89-103, 2015.

C. K. Park and K. Ahn, A new approach for measuring uncertainty importance and distributional sensitivity in probabilistic safety assessment, Reliability Engineering and System Safety, vol.46, pp.253-261, 1994.

A. Pasanisi, E. De-rocquigny, N. Bousquet, and E. Parent, Some useful features of the Bayesian setting while dealing with uncertainties in industrial practice, Proc. of the 20th European Safety and Reliability Conference, 2009.

A. Pasanisi, M. Keller, and E. Parent, Estimation of a quantity of interest in uncertainty analysis: Some help from Bayesian decision theory, Reliability Engineering and System Safety, vol.100, pp.93-101, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01568806

M. E. Paté-cornell, Uncertainties in risk analysis: six levels of treatment, Reliability Engineering and System Safety, vol.54, pp.95-111, 1996.

E. Patelli, H. Pradlwarter, and G. Schuëller, Global sensitivity of structural variability by random sampling, Computer Physics Communications, vol.181, pp.2072-2081, 2010.

M. Pendola, Fiabilité des structures en contexte d'incertitudes statistiques et d'écarts de modélisation". (in French), 2000.

M. Pendola, P. Hornet, A. Mohamed, and M. Lemaire, Uncertainties arising in the assessment of structural reliability, Proc. of the 13th ASCE Engineering Mechanics Conference, 1999.

G. Perrin and G. Defaux, Efficient Evaluation of Reliability-Oriented Sensitivity Indices, Journal of Scientific Computing, pp.1-23, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01689366

G. Perrin, C. Soize, and N. Ouhbi, Data-driven kernel representations for sampling with an unknown block dependence structure under correlation constraints, In: Journal of Computational Statistics and Data Analysis, vol.119, pp.139-154, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01634877

F. Pianosi, K. Beven, J. Freer, J. W. Hall, J. Rougier et al., Sensitivity analysis of environmental models: A systematic review with practical workflow, Environmental Modelling & Software, vol.79, pp.214-232, 2016.

C. Prieur and S. Tarantola, Variance-based sensitivity analysis: theory and estimation algorithms, Handbook of Uncertainty Quantification, vol.35, pp.1217-1239, 2017.

C. Proppe, Estimation of failure probabilities by local approximation of the limit state function, Structural Safety, vol.30, pp.277-290, 2008.

, Markov chain methods for reliability estimation, Proc. of the 12th International Conference on Structural Safety and Reliability (ICOSSAR'17), 2017.

Z. Qiu, D. Yang, and I. Elishakoff, Probabilistic interval reliability of structural systems, International Journal of Solids and Structures, vol.45, pp.2850-2860, 2008.

N. Rachdi, Apprentissage Statistique et Computer Experiments -Approche quantitative du risque et des incertitudes en modélisation, 2011.

R. Rackwitz and B. Fiessler, Structural reliability under combined random load sequences, Computers & Structures, vol.9, pp.489-494, 1978.

H. Raguet and A. Marrel, Target and conditional sensitivity analysis with emphasis on dependence measures, pp.1-48, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01694129

S. Rahman, Stochastic sensitivity analysis by dimensional decomposition and score functions, In: Probabilistic Engineering Mechanics, vol.24, pp.278-287, 2009.

, The f -Sensitivity Index, SIAM/ASA Journal of Uncertainty Quantification, vol.4, pp.130-162, 2016.

S. G. Reid, Specification of design criteria based on probabilistic measures of design performance, Structural Safety, vol.24, pp.333-345, 2002.

C. A. Rhode, Introductory Statistical Inference with the Likelihood Function, 2014.

G. Ridolfi and E. Mooij, Space Engineering: Modeling and Optimization with Case Studies, pp.303-336, 2016.

C. P. Robert, The Bayesian Choice. Second ed. Springer Texts in Statistics, 2007.

C. P. Robert and G. Casella, , 2004.

, Monte Carlo Statistical Methods. Second ed. Springer Texts in Statistics

E. I. Robinson, J. Marzat, and T. Raïssi, Filtering and Uncertainty Propagation Methods for Model-Based Prognosis of Fatigue Crack Growth in Unidirectional Fiber-Reinforced Composites, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, pp.1-13, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01883533

A. Ronse and E. Mooij, Statistical impact prediction of decaying objects, Journal of Spacecraft and Rockets, vol.51, pp.1797-1810, 2014.

M. Rosenblatt, Remarks on a Multivariate Transformation, Annals of Mathematical Statistics, vol.23, pp.470-472, 1952.

O. Roustant, J. Fruth, B. Iooss, and S. Kuhnt, Crossed-derivative based sensitivity measures for interaction screening, Mathematics and Computers in Simulation, vol.105, pp.105-118, 2014.
DOI : 10.1016/j.matcom.2014.05.005

URL : https://hal.archives-ouvertes.fr/hal-00845446

O. Roustant, F. Barthe, and B. Iooss, Poincaté inequalities on intervals -application to sensitivity analysis, In: Electronic Journal of Statistics, vol.11, pp.3081-3119, 2017.

W. Ruan and Z. Lu, Estimation of Moment-Independent Importance Measure on Failure Probability and Its Application in Reliability Analysis, Journal of Structural Engineering ASCE, issue.8, pp.1-8, 2014.

G. Rubino and B. Tuffin, Rare Event Simulation using Monte Carlo Methods, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00787654

R. Y. Rubinstein, The score function approach for sensitivity analysis of computer simulation models, Mathematics and Computers in Simulation, vol.28, pp.351-379, 1986.

, The Cross-Entropy Method for Combinatorial and Continuous Optimization, Methodology and Computing in Applied Probability, vol.99, pp.127-190, 1997.

R. Y. Rubinstein and D. P. Kroese, The Cross-Entropy Method. A unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning. Information Science and Statistics, 2004.

A. Saltelli, Making best use of model evaluations to compute sensitivity indices, Computer Physics Communications, vol.145, pp.280-297, 2002.

A. Saltelli, T. H. Andres, and T. Homma, Sensitivity analysis of model output: An investigation of new techniques, Computational Statistics and Data Analysis, vol.15, pp.211-238, 1993.

A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, 2004.

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni et al., Global Sensitivity Analysis. The Primer, 2008.

S. Sankararaman, Uncertainty Quantification and Integration in Engineering Systems, 2012.

S. Sankararaman and S. Mahadevan, Distribution type uncertainty due to sparse and imprecise data, Mechanical Systems and Signal Processing, vol.37, pp.182-198, 2013.
DOI : 10.1016/j.ymssp.2012.07.008

, Separating the contributions of variability and parameter uncertainty in probability distributions, Reliability Engineering and System Safety, vol.112, pp.187-199, 2013.

G. Saporta, Probabilités, analyse des données et statistique, 2006.

R. Schöbi, Surrogate models for uncertainty quantification in the context of imprecise probability modelling, 2017.

R. Schöbi and B. Sudret, Global sensitivity analysis in the context of imprecise probabilities (p-boxes) using sparse polynomial chaos expansions, Proc. of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), pp.1-26, 2015.

R. Schöbi, B. Sudret, and S. Marelli, Rare Event Estimation Using Polynomial-Chaos Kriging, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, pp.1-12, 2017.

G. I. Schuëller and R. Stix, A critical appraisal of methods to determine failure probabilities, Structural Safety, vol.4, pp.293-309, 1987.

D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization. Second ed. Wiley series in Probability and Statistics, 2015.

L. S. Shapley, A value for n-person games, Contributions to the Theory of Games, vol.II, pp.307-317, 1953.

S. Shekhar, H. Xiong, and X. Zhou, Encyclopedia of GIS, 2017.

M. Shinozuka, Basic Analysis of Structural Safety, Journal of Structural Engineering, vol.109, pp.721-740, 1983.

B. W. Silverman, Density Estimation for Statistics and Data Analysis, 1986.

I. M. Sobol, Sensitivity estimates for nonlinear mathematical models, Mathematical Modelling and Computational Experiments, vol.1, pp.407-414, 1993.

, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and Computers in Simulation, vol.55, pp.271-280, 2001.

I. M. Sobol and A. Gershman, On an alternative global sensitivity estimators, Proc. of the Sensitivity Analysis on Model Output (SAMO) Conference, 1995.

I. M. Sobol and S. Kucherenko, Derivative based global sensitivity measures and their link with global sensitivity indices, Mathematics and Computers in Simulation, vol.79, pp.3009-3017, 2009.

C. Soize, Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering, Interdisciplinary Applied Mathematics, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01498996

C. Soize and R. Ghanem, Data-driven probability concentration and sampling on manifold, Journal of Computational Physics, vol.321, pp.242-258, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01283842

, Probabilistic learning on manifold for optimization under uncertainties, Proc. of the 2nd ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering, 2017.

E. Song, B. L. Nelson, and J. Staum, Shapley effects for global sensitivity analysis: theory and computation, SIAM/ASA Journal of Uncertainty Quantification, vol.4, pp.1060-1083, 2016.

S. Song, Z. Lu, W. Zhang, and Z. Ye, Reliability and sensitivity analysis of transonic flutter using Improved Line Sampling technique, Chinese Journal of Aeronautics, vol.22, pp.513-519, 2009.

S. Song, Z. Lu, and H. Qiao, Subset simulation for structural reliability sensitivity analysis, Reliability Engineering and System Safety 94, vol.2, pp.658-665, 2009.

, Reliability sensitivity by method of moments, Applied Mathematical Modelling, vol.34, pp.2860-2871, 2010.

S. Song, Z. Lu, and Z. Song, Reliability sensitivity analysis involving correlated random variables by Directional Sampling, Proc. of the 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 2011.

R. C. Spear and G. M. Hornberger, Eutrophication in Peel Inlet. II. Identification of critical uncertainties via generalized sensitivity analysis, Water Research, vol.14, pp.43-49, 1980.

D. Straub, Reliability updating with equality information, Probabilistic Engineering Mechanics, vol.26, pp.254-258, 2011.

D. Straub and I. Papaioannou, Bayesian Updating with Structural Reliability Methods". In: Journal of Engineering Mechanics ASCE, vol.314, pp.538-556, 2015.

D. Straub, I. Papaioannou, and W. Betz, Bayesian analysis of rare events, Journal of Computational Physics, vol.314, pp.538-556, 2016.

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods". 230 pages. HDR (French Accreditation to Supervise Research), Reliability Engineering and System Safety 93, pp.964-979, 2007.

R. H. Sues and M. A. Cesare, System reliability and sensitivity factors via the MPPSS method, Probabilistic Engineering Mechanics, vol.20, pp.148-157, 2005.

R. Sueur, B. Iooss, and T. Delage, Sensitivity analysis using perturbed-law based indices for quantiles and application to an industrial case, Proc. of the 10th International Conference on Mathematical Methods in Reliability, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01552361

T. J. Sullivan, Texts in Applied Mathematics, Introduction to Uncertainty Quantification, vol.63, 2015.

L. P. Swiler and N. J. West, Importance Sampling: Promises and Limitations, Proc. of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2010.

A. A. Taflanidis and J. L. Beck, Stochastic Subset Optimization for reliability optimization and sensitivity analysis in system design, Computers & Structures, vol.87, pp.318-331, 2009.

X. Tang, G. Li, K. Rong, C. Phoon, and . Zhou, Impact of copula selection on geotechnical reliability under incomplete probability information, Computers and Geotechnics, vol.49, pp.264-278, 2013.

X. Tang, C. Li, K. Zhou, and . Phoon, Copula-based approaches for evaluating slope reliability under incomplete probability information, Structural Safety, vol.52, pp.90-99, 2015.

D. P. Thunissen, Propagating and Mitigating Uncertainty in the Design of Complex Multidisciplinary Systems, 2005.

S. T. Tokdar and R. E. Kass, Importance sampling: a review, Wiley Interdisciplinary Reviews: Computational Statistics 2.1, pp.54-60, 2009.

A. B. Tsybakov, Introduction to Nonparametric Estimation, Springer Series in Statistics, 2009.

M. A. Valdebenito, H. J. Pradlwarter, and G. I. Schuëller, The role of the design point for calculating failure probabilities in view of dimensionality and structural nonlinearities, Structural Safety, vol.32, pp.101-111, 2010.

M. A. Valdebenito, H. A. Jensen, H. B. Hernández, and L. Mehrez, Sensitivity estimation of failure probability applying line sampling, Reliability Engineering and System Safety, vol.171, pp.99-111, 2018.

A. W. Van-der-waart, Asymptotic statistics. Cambridge series in statistical and probabilistic mathematics, 1998.

E. Vazquez and J. Bect, A sequential Bayesian algorithm to estimate a probability of failure, Proc. of the 15th IFAC Symposium on System Identification, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00368158

C. Vergé, J. Morio, and P. Del-moral, An island particle algorithm for rare event analysis, Reliability Engineering and System Safety, vol.149, pp.63-75, 2016.

C. Walter, Moving particles: A parallel optimal multilevel splitting method with application in quantiles estimation and meta-model based algorithms, Structural Safety, vol.55, pp.10-25, 2015.

, Using Poisson processes for rare event simulation, 2016.

E. Walter, Numerical Methods and Optimization: A Consumer Guide, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01277196

G. Walz and H. Riesch-oppermann, Probabilistic fracture mechanics assessment of flaws in turbine disks including quality assurance procedures, Structural Safety, vol.28, pp.273-288, 2006.

M. P. Wand and M. C. Jones, Kernel Smoothing, 1995.

P. Wang, Z. Lu, and Z. Tang, A derivative based sensitivity measure of failure probability in the presence of epistemic and aleatory uncertainties, Computers and Mathematics with Applications, vol.65, pp.89-101, 2013.

, An application of the Kriging method in global sensitivity analysis with parameter uncertainty, Applied Mathematical Modelling, vol.37, pp.6543-6555, 2013.

, Importance measure analysis with epistemic uncertainty and its moving least squares solution, Computers and Mathematics with Applications, vol.66, pp.460-471, 2013.

Y. Wang, N. Binaud, C. Gogu, C. Bes, and J. Fu, Determination of Paris' law constants and crack length evolution via Extended and Unscented Kalman filter: An application to aircraft fuselage panels, Mechanical Systems and Signal Processing, vol.80, pp.262-281, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01950768

Y. Wang, S. Xiao, and Z. Lu, A new efficient simulation method based on Bayes' theorem and importance sampling Markov chain simulation to estimate the failure-probability-based global sensitivity measure, Aerospace Science and Technology, vol.79, pp.364-372, 2018.

Z. Wang and J. Song, Cross-entropy-based adaptive importance sampling using von Mises-Fisher mixture for high dimensional reliability analysis, Structural Safety 59, pp.42-52, 2016.

L. Wasserman, All of Statistics: A Concise Course in Statistical Inference. Springer Texts in Statistics, 2004.

P. Wei, Z. Lu, W. Hao, J. Feng, and B. Wang, Efficient sampling methods for global reliability sensitivity analysis, Computer Physics Communications, vol.183, pp.1728-1743, 2012.

P. Wei, Z. Lu, and X. Yuan, Monte Carlo simulation for moment-independent sensitivity analysis, Reliability Engineering and System Safety, vol.110, pp.60-67, 2013.

P. Wei, Z. Lu, and J. Song, Regional and parametric sensitivity analysis of Sobol' indices, Reliability Engineering and System Safety, vol.137, pp.87-100, 2015.

P. Wei, Z. Lu, and S. Song, Variable importance analysis: a comprehensive review, Reliability Engineering and System Safety, vol.142, pp.399-432, 2015.

P. Wei, J. Song, and Z. Lu, Global reliability sensitivity analysis of motion mechanisms, Proceedings of the Institution of Mechanical Engineers, vol.230, pp.265-277, 2016.

Y. K. Wen and H. Chen, On fast integration for time-variant structural reliability, pp.156-162, 1987.

Y. Wu, Adapative Importance Sampling (AIS)-Based System Reliability Sensitivity Analysis Method, Probabilistic Structural Mechanics: Advances in Structural Reliability Methods, vol.32, pp.1717-1723, 1994.

S. Xiao, Z. Lu, and L. Xu, A new effective screening design for structural sensitivity analysis of failure probability with the epistemic uncertainty, Reliability Engineering and System Safety, vol.156, pp.1-14, 2016.

D. Yoo, I. Lee, and H. Cho, Probabilistic sensitivity analysis for novel second-order reliability method (SORM) using generalized chi-squared distribution, Structural and Multidisciplinary Optimization, vol.50, pp.787-797, 2014.

W. Yun, Z. Lu, X. Jiang, and S. Liu, An efficient method for estimating global sensitivity indices, International Journal for Numerical Methods in Engineering, vol.108, pp.1275-1289, 2016.

W. Yun, Z. Lu, and X. Jiang, A modified importance sampling method for structural reliability and its global reliability sensitivity analysis, Structural and Multidisciplinary Optimization, vol.57, pp.1625-1641, 2018.

V. ?ani´c?ani´c and K. ?iha, Sensitivity to correlation in multivariate models, Computer Assisted Mechanics and Engineering Sciences, vol.5, issue.1, pp.75-84, 1998.

, Sensitivity to correlations in structural problems, Transactions of FAMENA 25, vol.2, pp.1-26, 2001.

P. Zhang, Nonparametric Importance Sampling, Journal of the American Statistical Association, vol.91, pp.1245-1253, 1996.

X. Zhang and M. D. Pandey, Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction method, Structural Safety 43, pp.28-40, 2013.

Y. Zhang and A. Der-kiureghian, Two improved algorithms for reliability analysis, Reliability and Optimization of Structural Systems: Proceedings of the 6th IFIP WG 7.5 Conference, pp.297-304, 1994.

Y. Zhang, Y. Liu, and X. Yang, Parametric sensitivity analysis for importance measure on failure probability and its efficient Kriging solution, Mathematical Problems in Engineering, pp.1-13, 2015.

Y. Zhao, P. Li, and Z. Lu, Efficient evaluation of structural reliability under imperfect knowledge about probability distributions, Reliability Engineering and System Safety, vol.175, pp.160-170, 2018.

E. Zio, The Monte Carlo simulation method for system reliability and risk analysis. Springer Series in Reliability Engineering, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00777141

E. Zio and N. Pedroni, Monte Carlo simulation-based sensitivity analysis of the model of a thermal-hydraulic passive system, Reliability Engineering and System Safety, vol.107, pp.90-106, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00658555

, Report No. 2013-03. Tech. rep. Foundation for an Industrial Safety Culture, Probabilistic Engineering Mechanics, vol.26, pp.405-412, 2011.

, Résumé étendu de la thèse

, Contexte Les systèmes aérospatiaux sont généralement considérés comme étant des « systèmes complexes », principalement à cause de leur nature multi-disciplinaire (due au grand nombre de composants hétérogènes qu'ils rassemblent), leur caractère unitaire (i.e., faible nombre d'unités produites) et les conditions d'opérations extrêmes auxquelles ils peuvent être confrontés durant leur vie opérationnelle. La combinaison de ces facteurs fait que les systèmes aérospatiaux sont caractérisés

. ?-«-critiques, ce qui implique que les conséquences associées à une défaillance peuvent être désastreuses, tant d'un point vue économique

. ?-«-hautement-fiables, ce qui implique que le nombre de défaillances complètes (contrairement à des défaillances partielles, potentiellement mineures) observées de ces systèmes est

, une grande précision mais qui peuvent être très coûteux à mettre en oeuvre, et l'utilisation de modèles mathématiques et physiques, qui, pour être résolus et exploités, passent bien souvent par des étapes de modélisation, simulation et/ou résolution numériques. Ces modèles ont l'avantage de pouvoir se substituer aux essais expérimentaux trop coûteux qui peuvent devenir inaccessibles sous certaines conditions extrêmes voire jamais observées (e.g., simulation d'une collision satellite-débris ou collision météorite-Terre). Ce caractère exploratoire des modèles numériques a aussi un coût non négligeable dès lors que les modèles impliquent un grand nombre de variables d, La conception et l'analyse de tels systèmes reposent sur l'utilisation à la fois de moyens expérimentaux puissants et d'

, dès le cycle de conception, qui pourraient éventuelle-ment affecter le comportement ou les performances du système dans ses véritables conditions d'opération futures et mener à la défaillance redoutée. En effet, les incertitudes proviennent de multiples sources qui doivent être identifiées, caractérisées et traitées en vue d'assurer la fiabilité du système étudié. Pour ce faire, une méthodologie générale de quantification des incertitudes est disponible et adoptée de façon quasi unanime dans de nombreuses branches de l'ingénierie confrontées à des problématiques similaires. Cette méthodologie (qui peut se décliner de plusieurs manières suivant les domaines et le but recherché, Iooss, 2006.

?. Le-modèle-numérique, est-à-dire que l'ensemble des étapes énoncées précédemment sont considérées comme nonintrusives vis-à-vis du code numérique de simulation. Dès lors, ce code pourrait être possiblement coûteux à évaluer, non-linéaire et en assez grande dimension. Toutefois, dans cette thèse, les cas étudiés sont à la fois représentatifs de certaines des difficultés rencontrées dans les codes industriels (codes non-linéaires, zones de défaillances multiples, probabilités rares) tout en restant abordables du point de vue du coût de calcul

, Dans le contexte de systèmes hautement-fiables, cette probabilité est supposée associée à un événement rare et est donc supposée très faible. Dès lors, elle devient très coûteuse à estimer par simulations de

, Ainsi, les variables de base et leur structure de dépendance sont considérées à travers l'utilisation de variables aléatoires et d'une copule formant un vecteur aléatoire de loi jointe supposée connue, à l'exception de certains paramètres de distribution de certaines lois marginales qui sont peu connus (e.g., à cause d'un manque de données) ou dont la connaissance est uniquement liée à un choix d'expert. Dès lors, l'ensemble de la démarche de quantification des incertitudes, ? la modélisation des incertitudes en entrée est réalisée dans un cadre probabiliste

C. Dans-ce, cette thèse traite du problème de l'analyse de fiabilité et de l'analyse de sensibilité de modèles numériques boîtes-noires simulant des systèmes caractérisés par des défaillances de type événements rares. Les entrées sont des variables incertaines modélisées dans un cadre probabiliste et certains paramètres de distribution sont supposés méconnus ou incertains. Dès lors, le problème principal de la thèse concerne la prise en compte d'un double niveau d'incertitudes lors des deux analyses mentionnées précédemment, Ce double niveau est formé par : ? les incertitudes phénoménologiques

, ? les incertitudes portant sur le modèle probabiliste lui-même, qui caractérisent le manque de connaissance que l'analyste peut avoir dans le choix de certains paramètres de distribution

, ont déjà soulevé l'importance cruciale de tenir compte de ce double niveau d'incertitudes dans l'analyse de fiabilité, il apparaît que ce problème est toujours d'actualité, et ce pour plusieurs raisons. Tout d'abord, de nouveaux algorithmes d'estimation de probabilités d'événements rares ont été développés au cours des dernières décennies (e.g., les techniques de type "adaptive importance sampling" ou celles de "subset sampling"). De plus, la complexité des codes de calculs s'est accrue (e.g., chaînage de codes et approches multi-disciplinaires) parallèlement à l'émergence des techniques de métamodélisation, Ce problème est d'un intérêt majeur dans le domaine de la quantification des incertitudes dans les codes numériques. Si de nombreux travaux pionniers, tels ceux de Ditlevsen (Ditlevsen, 1979a; Ditlevsen, 1979b) ou de Der Kiureghian, 1986.

T. Dans-cette, le focus est mis sur la prise en compte du double niveau d'incertitudes à travers l'ensemble de la méthodologie de quantification des incertitudes (i.e., les étapes A-B-C-D mentionnées plus haut), dans un contexte d'estimation de probabilité d'événement rare pour Appendix E

, subset sampling) est menée et validée à travers l'utilisation de plusieurs cas-tests. In fine, l'approche présentant les meilleurs performances vis-à-vis de plusieurs critères définis dans ce chapitre (ici, l'approche ARA est la plus performante), Une comparaison numérique du couplage de ces deux approches avec plusieurs algorithmes d'estimation de probabilités d'événements rares

. Song, En effet, partant d'une stratégie d'estimation de la probabilité de dé-faillance prédictive dans le cadre de l'approche ARA, de nouveaux estimateurs de sensibilités fiabilistes locales sont proposés afin d'évaluer la robustesse de l'estimation de la probabilité vis-à-vis du double niveau d'incertitudes. Plus spécifiquement, on suppose que, de par la structure bayésienne hiérarchique du modèle probabiliste des entrées, on souhaite tester la robustesse de la mesure de fiabilité estimée par rapport aux choix des hyper-paramètres de la densité a priori charactérisant l'incertitude épistémique sur le paramètre incertain. De par la nature du problème, des indices de sensibilités locaux à base de score functions (Rubinstein, Chapitre 6 -Analyse de sensibilité fiabiliste locale en présence d'incertitudes sur les paramètres de distribution Ce chapitre vise à étendre les résultats obtenus dans le chapitre précédent au cadre de l'analyse de sensibilité fiabiliste, 1986.

. Li, Si ces contributions sont relativement récentes, l'originalité des travaux présentés dans ce chapitre résulte dans leur couplage et leur adaptation à la contrainte du double niveau d'incertitudes ce qui en accroit les difficultés intrinsèques d'utilisation (e.g., dimension, complexité des densités à estimer). Pour finir, cette méthodologie est appliquée à deux cas-tests afin de démontrer son efficacité, Chapitre 7 -Analyse de sensibilité fiabiliste globale en présence d'incertitudes sur les paramètres de distribution Ce chapitre vise à compléter l'approche locale proposée dans le chapitre précédent par une approche globale, vol.Lemaître, 2012.

, Approche imbriquée vs. approche augmentée (NRA vs. ARA)

V. Chabridon, M. Balesdent, J. Bourinet, J. Morio, and N. Gayton, Evaluation of failure probability under parameter epistemic uncertainty: application to aerospace system reliability assessment, Aerospace Science and Technology, vol.69, pp.526-537, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01632784

V. Chabridon, N. Gayton, J. Bourinet, M. Balesdent, and J. Morio, Some Bayesian insights for statistical tolerance analysis, Actes du 23ème Congrès Français de Mécanique (CFM 2017), 2017.

, Analyse de sensibilité fiabiliste locale (local ROSA)

V. Chabridon, M. Balesdent, J. Bourinet, J. Morio, and N. Gayton, Reliabilitybased sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty, Reliability Engineering and System Safety, vol.178, pp.164-178, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01850651

V. Chabridon, M. Balesdent, J. Bourinet, J. Morio, and N. Gayton, Reliabilitybased sensitivity analysis of aerospace systems under distribution parameter uncertainty using an augmented approach, Proc. of the 12th International Conference on Structural Safety & Reliability (ICOSSAR 2017), 2017.
URL : https://hal.archives-ouvertes.fr/hal-01649666

, Analyse de sensibilité fiabiliste globale (global ROSA) Rédaction d'un chapitre d'ouvrage scientifique en cours

P. Derennes, V. Chabridon, J. Morio, M. Balesdent, F. Simatos et al., Nonparametric importance sampling techniques for sensitivity analysis and reliability assessment of a launcher stage fallout, Optimization in Space Engineering, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02292983

V. Chabridon, M. Balesdent, J. Bourinet, J. Morio, and N. Gayton, Nonparametric adaptive importance sampling strategy for reliability assessment and sensitivity analysis under distribution parameter uncertainty -Application to launch vehicle fallback zone estimation, Actes des 10èmes Journées Fiabilité des Matériaux et des Structures (JFMS 2018), 2018.