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Abstract

Title : Real time simulation of nonlinear structural dynamics. Application in soft

robots.

The use of soft robots in industry has considerably increased thanks to its adapt-

ability, a better interaction with humans and control techniques development. Soft

robots development, comprehending energy absorption in collisions, improving

tasks as grasping or allowing operations in con�ned places, needs new control

strategies. Computational control requires structure deformation consideration and

new methods are needed in order to simulate real time soft structures deforma-

tions. In this work we propose the use of parametric solutions in the resolution

of the nonlinear problems in structural dynamics. Parametric solutions allow the

pre-computation of a general solution, reducing the computational time. These so-

lutions can be used in real time structural dynamics computations, which can be

not affordable by classic methods.

Keywords : [Real time simulation, structural dynamics, nonlinear modeling,

inverse problems]
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Résumé

Titre : Simulation en temps réel de la dynamique des structures non linéaires.

Application à la robotique souple.

L'utilisation de robots dans l'industrie a considérablement augmenté en rai-

son de leur polyvalence, d'une meilleure interaction avec les utilisateurs et le

développement de nouvelles techniques de contrôle. Le développement de robot

à structure souple pouvant absorber des chocs, améliorer des manœuvres, pren-

dre des objets ou permettre des opérations dans des espaces con�nés nécessite de

nouvelles stratégies de contrôle. En effet, les calculs nécessaires pour le contrôle

demandent de considérer la déformation de la structure et donc de développer des

méthodes permettant de simuler en temps réel la dynamique de ces structures dé-

formables. Dans ce travail on propose l'utilisation de solutions paramétriques pour

la résolution de problèmes de structures en dynamique non linéaire. Ces solutions

paramétriques permettent le pré-calcul d'une solution générale. Celle-ci est en-

suite utilisée pour calculer le comportement dynamique en temps réel, ce qui est

impossible avec des techniques classiques.

Mots clés : [Simulation en temps réel, dynamique des structures, modélisation

non linéaire, problèmes inverses]

ESTIA-Recherche, I2M

[ ESTIA, Technopôle Izarbel, 64210 Bidart, France]

[I2M, UMR CNRS 5295, Talence, France]
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Sommaire de la thèse

Le calcul de déplacements et forces en temps réel est toujours un dé� dans le

domaine de la mécanique. Différentes applications industrielles où la dynamique

de structures est importante demandent actuellement des méthodes de calcul plus

ef�caces.

Le développement de la robotique souple ces dernières années a permis l'apparition

des nouvelles applications innovantes. Des nouveaux matériaux et des nouvelles

techniques de conception permettent la fabrication de robots souples. Cette pos-

sibilité permet une interaction avec les personnes réduisant le risque de dommage

par l'absorption de l'énergie lors des impacts ou l'adaptation aux endroits con-

�nés. Les domaines comme la médecine ou l'industrie sont deux exemples où cet

avantage est pro�table.

Le concept de laboratoires hybrides est un nouveau type de démarche où la

simulation et l'expérimentation sont couplées et réalisées en même temps. L'idée

derrière cette approche est de réduire le coût des expériences, simulant ce qui est

raisonnable ou possible, et de coupler et enrichir cette simulation par des expéri-

ences pour conserver la richesse des phénomènes. Le couplage entre simulation et

expérimentation est faite à l'aide d'actuateurs.

Le point commun entre ces applications industrielles comme la robotique et

le concept de laboratoires hybrides se trouve dans la nécessité d'utiliser des algo-

rithmes de calcul rapide, précis et adaptable aux possibles changements structurels.

Les déplacements et les forces sont requis en temps réel pour surveiller et contrôler

les structures. Les méthodes classiques ne sont pas adaptées aux nouvelles deman-

des, d'où la motivation d'approfondir le développement de nouveaux algorithmes.

La problématique principale à affronter est le calcul en temps réel des forces

et des déplacements de structures dans des scénarios changeants. Deux dé�s peu-

vent être extraits de cette problématique : des calculs rapides qui permettent de

suivre les structures en temps réel et des algorithmes capables de s'adapter aux

changements dans les systèmes structurels.
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Pour aborder la problématique de l'adaptabilité aux changements du système,

une méthode de réduction de modèles est appliquée. Cette méthode, la Proper

Generalized Decomposition (PGD), est très ef�cace dans l'obtention de solutions

paramétriques en forme séparée, en étant très peu affectée par la dif�culté de la

multidimensionalité. Le principal avantage de cette méthode est la possibilité de

construire l'approximation de la solution sans explorer tout le domaine paramétrique

grâce à l'implantation d'un algorithme d'enrichissement itératif. Les solutions en

forme séparée permettent des réponses rapides face aux changements des systèmes

analysés. Les caractéristiques comme le module de Young ou l'amortissement

peuvent être considérés comme paramètres, et les solutions prenant en compte ces

paramètres peuvent être pré-calculés pour leur utilisation en temps réel. La con-

dition pour que la PGD réussisse est la séparabilité paramétrique du problème.

Pour cette raison, le problème est abordé dans l'espace fréquentiel, qui permet

d'écrire l'équation de la dynamique de façon à ce que le paramètrefréquencesoit

en forme séparée, contrairement à sa version équivalente dans l'espace temporel,

où le paramètre temps n'est pas séparable. La Théorie de Fourier peut être ap-

pliquée pour transformer la solution dans l'espace temporel ou fréquentiel selon la

convenance.

Pour aborder la deuxième problématique, le calcul en temps réel, la théorie de

la réponse impulsionnelle est considérée. La réponse impulsionnelle est la fonction

équivalente dans l'espace temporel à la fonction de transfert, qui est dé�nie dans

l'espace fréquentiel. Cette théorie nous dit qu'un système peut être caractérisé par

une réponse impulsionnelle, c'est-à-dire, si on connaît la réponse du système à une

entrée unitaire on peut calculer la solution pour n'importe quelle entrée. Comme

les réponses sont calculées par superposition, uniquement des systèmes linéaires

invariants sont considérés. En outre, cette méthode permet de découpler en espace

les calculs par degré de liberté, ce qui permet, par la suite, de réduire le temps de

calcul et de faciliter le choix de l'intervalle de temps à utiliser.

Le calcul de déplacements et de forces est traité de facon séparée dans ce tra-

vail. Les deux variables sont obtenues à l'aide de la théorie de la réponse im-

pulsionnelle, mais l'obtention de ces réponses est différente dans chaque cas. Par

cohérence avec la bibliographie, le problème du calcul de déplacements dans ce

travail est appelé problème direct et le problème du calcul de forces est appelé

problème inverse.

Le calcul de déplacements en temps réel est abordé à l'aide de l'obtention de

la réponse impulsionnelle directe (DIR par ses sigles en anglais). Pour obtenir

11



la DIR, la fonction de transfert est obtenue dans un premier temps par l'équation

de la dynamique dans l'espace fréquentiel. Dans un deuxième temps, la Théorie

de Fourier est appliquée pour transformer la fonction de transfert dans l'espace

temporel. Pour calculer les forces en temps réel, la théorie de la réponse impul-

sionnelle est aussi appliquée en utilisant la réponse impulsionnelle inverse (IIR par

ses sigles en anglais). Par dé�nition des propriétés dans l'intégrale de convolution,

une fonction est l'inverse de l'autre, donc un problème inverse doit être résolu.

Le problème inverse à résoudre est connu mathématiquement comme l'intégrale

de Fredholm du premier type. Ce type de problème est mal-posé, c'est-à-dire, ne

satisfait pas un des points suivants:

� La solution existe.

� La solution est unique.

� La solution dépend de façon continue des données.

De plus, l'opérateur résultant de la discrétisation temporelle de l'équation est

généralement mal conditionné. Cet opérateur est une matrice de Toeplitz avec cer-

taines caractéristiques qui doivent être prises en compte pour le calcul de l'inverse,

et donc des méthodes spéci�ques doivent être développées.

Les problèmes inverses apparaissent régulièrement dans le monde physique.

L'obtention des images par tomographie, la prospection géologique ou l'astronomie

sont trois exemples de domaines où des problèmes inverses apparaissent. Deux

sous-problèmes peuvent être différenciés dans les problèmes inverses: l'identi�cation

de systèmes et les problèmes de déconvolution. Dans le premier cas, on connaît

les entrées et sorties d'un système et on essaie de trouver le modèle représentatif.

Dans le deuxième cas, la sortie et le noyau sont connus, et on essaie de calculer

l'entrée.

Plusieurs méthodes sont appliquées pour résoudre ces deux problématiques,

bien que conceptuellement différentes, elles peuvent être traitées numériquement

d'une façon similaire. La régularisation de Tikhonov est une famille de méthodes

qu'utilise la méthode de moindres carrées pour approximer la solution en ajoutant

un paramètre de régularisation qui permet de contrôler le mauvais conditionnement

de l'opérateur. Cette méthode, bien que très ef�cace, connaît certains problèmes

lors de la manipulation de grands systèmes de matrices. Les méthodes itératives,

comme la méthode de Landweber, sont mieux adaptées quand de grandes matri-

ces interviennent. En utilisant un algorithme récursif pour approximer la solution,
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l'inversion de matrices est évitée, et les variations entre itérations sont contrôlées

au moyen d'un paramètre appelé paramètre de relaxation. Le point commun entre

les deux méthodes précédentes vient de l'ajout du paramètre de régularisation ou

de relaxation. Ce paramètre doit être testé à posteriori. C'est pourquoi certaines

résolutions du problème doivent être réalisées pour trouver la bonne valeur de ce

paramètre. La Troncation de la Décomposition par Valeur Singuliers (TSVD) est

basée sur la décomposition de l'opérateur par un produit de trois matrices. Cette

technique permet de tronquer la décomposition en éliminant les termes qui peuvent

affecter la bonne solution. D'autres méthodes utilisent une approche statistique

en ajoutant certaines connaissances sur la distribution probabiliste des données du

problème. Les �ltres de Wiener et de Kalman sont deux approches les plus utilisées

pour leur simplicité d'implantation et leur ef�cacité.

Dans ce travail on utilise une approche de minimisation de moindres carres.

Avec la méthode PGD, on construit une approximation de la solution par une

procédure d'enrichissement où les premiers termes sont associés à une valeur plus

élevée d'énergie. La troncation de l'enrichissement évite d'ajouter des termes qui

pourraient contaminer la solution. Pour obtenir une meilleure approximation de la

solution, certaines forces et déplacements sont créés synthétiquement au moyen de

la DIR obtenue par le problème direct, et introduites dans la minimisation.

Pour la validation de la méthode une plaque de deux dimensions a servi de

référence pour le calcul de la DIR et l'IIR en forme paramétrique. Le module

de Young a été considéré comme paramètre, ainsi que la fréquence. Les résultats

montrent que l'estimation de la force appliquée peut être faite de façon très précise.

La résolution de problèmes non linéaires est possible aussi en appliquant la

théorie de la réponse impulsionnelle. Bien que la théorie impulsionnelle est générale-

ment limitée aux systèmes linéaires invariants, il est possible de l'utiliser dans cer-

tains cas non linéaires. En effet, certains problèmes non linéaires peuvent être

divisés en deux comportements : un comportement linéaire et un comportement

non linéaire. Les réponses impulsionnelles peuvent être calculées dans un premier

temps (phaseof�ine) dans la subdivision avec un comportement linéaire. Dans

ce travail, toutes les forces qui interviennent sur la structure, autant internes que

externes, sont considérées dans les calculs des réponses impulsionnelles. La par-

tie non linéaire est résolue dans un deuxième temps en temps réel (phaseonline).

Cette approche du problème permet de minimiser les calculs de la phaseonline,

permettant des plus rapides itérations pour résoudre les non linéarités.
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Introduction

Real time control and monitoring structural dynamics has been an issue for the

last decades. While the industry usually requires fast and accurate solutions, the

solution of the equation of motion is computationally expensive. New numerical

methods and technological development have reduced to some extent the existing

problems, while new industrial demands continuously arise.

Soft robots [91] or hybrid laboratories [6] [23] are two examples of new indus-

trial applications whose requirements are still a challenge. Hybrid laboratories are

a new generation of laboratories where experiments are carried out coupled with

real time simulations, saving the construction cost of the simulated part. The main

idea is to compute the simulation in the part of the structure whose behaviour is

well-established, and make the experiment in the part of the structure whose be-

haviour is complex or widely unknown. A coupling device, called actuator, is in

charge of putting in communication the experiment and the simulation, transform-

ing displacements in forces, andvice versa, forces into displacements. Soft robots

require in many applications the control of the forces to achieve a certain space

con�guration, which involves the solution of nonlinear dynamic problems in real

time.

Those are two examples of the challenges in structural dynamics nowadays:

real time control and monitoring of forces and displacements, considering nonlin-

ear behaviour. These requirements lead to the search of a resolution method that

should allow fast computation, adaptability to changes in the system and integra-

tion of nonlinearities.

Time requirements in many industrial applications are in the order of a kHz,

while the accuracy, depending on the application �eld, can vary from micrometers

in robotics to millimeters in civil engineering applications. Classical methods, al-

though their wide applicability, are not always suitable for real time computation.

Time integration schemes may not be fast enough, and modal methods require com-

plete solutions if some parameters of the analysis change. In this scenario, transfer
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functions and impulse responses, while generally constrained to linear problems,

can provide a fast scheme for the computation of both forces and displacements.

Transfer functions are widely used in structural dynamics taking advantage of the

Fourier space. Their application offers a simple and fast procedure to obtain the

displacements when an external force is applied, and relevant information can be

extracted from the obtained frequency spectrum. Its equivalence in the time do-

main is called impulse response, and allows processing the data stream as it is col-

lected, thus offering a framework for fast computation, and avoiding a continuous

transformation of the data stream to the Fourier's domain.

The adaptability to changes in the characteristics of the analysed structure is an

interesting issue for the industry. Parametric or pre-computed solutions are a pow-

erful tool when some features of the structure may change, or some optimization

is searched among some structural parameters con�guration. When a parametric

solution is computed, changes in the structure only require a parametrization of the

general solution. There exists some model order reduction techniques asProper

Orthogonal Decomposition(POD) [17] orReduced Basis Method(RBM) [18] that

produces good results solving parametric models.Proper Generalized Decomposi-

tion (PGD) is another model order reduction technique which has some advantages

compared to the aforementioned [28].

The resolution of the equation of motion to monitor physical magnitudes in

real time has been successfully applied in thermal problems [16]. In structural

dynamics, the application of the PGD method to compute a parametric solution

is also useful: a generalized transfer function (GTF) and a generalized impulse re-

sponse (GIR) can be computed considering additional parameters, e.g. the Young's

modulus, the damping factor or some boundary conditions. The GIR can be ap-

plied to real time monitoring of displacements or optimization problems, as the

parametrization of the generalized solution is computationally inexpensive.

A more complicated scenario is the monitoring of the forces. The GIR allows

to compute the displacements caused by an external applied force. The generalized

inverse impulse response (GIIR) is the GIR counterpart: it allows the computation

of the external applied force from measured displacements. Its calculation involves

the solution of an inverse problem.

Inverse problems appear commonly in many �elds of physics and engineering

problems, where the problem is modelled by akernelor a black box that relates

inputs and outputs. In these problems, the output is available, and the input or the

kernelare to be computed. When the relation is constructed by the convolution
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integral, the problem of inferring the input or thekernel is called deconvolution.

Among the different existing methods to solve the deconvolution problems, one

can �nd the Truncated Singular Values Decomposition, Tikhonov regularization

methods, Landweber iterative methods. Statistical approaches for the solution of

more general inverse problems, based on �ltering theory (e.g. Kalman �lters), are

also possible.

Impulse response theory is usually applied on linear invariant systems, but un-

der certain conditions this kind of problems can be split in a linear behaviour part

and a nonlinear behaviour part. Then, classic linear analysis can be applied on the

linear part as anof�ine work, and the nonlinear computations can be done in the

onlinephase.

The objective of this work is to take advantage of separated representations to

improve the computational cost in structural dynamics applications. The combi-

nation of both generalized direct and inverse impulse responses is an interesting

option for real time control and monitoring of structures. In this work is provided

a method to compute displacements and forces in real time. This is possible by

means of both GIR and GIIR, where the coupling between impulse response theory

and generalized solutions allow a model order reduction of the structural system,

and, in consequence, the reduction of the time computation cost. In this work, it

is also provided an application of the method in some nonlinear contexts, where

impulse responses can be applied to simulate nonlinear behaviours.

The document is organized as follows: Chapter 1 provides the state of the art of

inverse problems, and more speci�cally a particular case that is the deconvolution

problem. Chapter 2 deals with the solution of the dynamic problem in a parametric

form. The proposed solution for the monitoring of displacements is a GIR built

in parametric form that allows the computation of displacements in real time and

fast solutions to face changes in the structural parameters. Chapter 3 addresses the

problem of monitoring forces by the GIIR, where the theoretical approach is similar

than in the Chapter 2, but an inverse problem must be solved. The PGD is proposed

then to solve the deconvolution problem. Chapter 4 shows some applications of the

GIR in nonlinear problems. Finally, conclusions are drawn in the last chapter.
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Chapter 1

State of the art in inverse

problems. The problem of

deconvolution

In physics, an inverse problem appears when determining the input or the inter-

nal characteristics of a physical system from external measurements. This kind of

problems appears in many physical systems where the output depends on the prop-

erties of the system and an input. Trying to infer the external applied force from

measured displacements, or the structure of the soil from known electromagnetic

inputs and outputs are two examples of inverse problems. The main characteristic

of inverse problems is that the small errors introduced in the measurements can

affect considerably the solution. In most of the problems, the analytic solution is

not available, and the direct resolution of the problem can lead to a solution that

is far from the exact one. By de�nition, inverse problems suffer of lack of infor-

mation making impossible the reconstruction of the input, and numerical methods

must be considered to �nd an approximation of the solution. Even if perfect mea-

sures (i.e. noiseless) could be done, one would still need to perform computations

in in�nite precision to avoid noise ampli�cation. Therefore, approaches based on

each problem characteristics must be considered. From the mathematical analysis

to the numerical solution of the problem, numerous authors have contributed to the

analysis of inverse problems.

The mathematical standard form for inverse problems in many physical sys-

tems can be formulated as the Fredholm integral equation of the �rst kind, which
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Figure 1.1: Graphic representation of the effect on the object space of small per-

turbations in the image space [49]

is written as [44]:

u(x) =
Z b

a
h(x; y)f (y)dy; (1.1)

whereh(x; y) is called thekernel, andf (y) andu(x) are the input and the output

functions respectively. The functionf (y) is to be determined,h(x; y) is known in

the intervala � x; y � b andu(x) is known in the intervala � x � b. Consider

a physical system, e.g. a tomograph, which can be modelled and considered the

kernel. The obtained images will be then the outputsu(x), which will be probably

obtained with a certain amount of errors due to the precision of the machine, de-

fects, noise, etc. One wants to �nd the inputf (y), i.e. the function that represents

the body organ, with the best possible accuracy.

A general idea of the inverse problems can be obtained from the consideration

of the mapping between the input spaceSi and the output spaceSo: small perturba-

tions in the object space lead to small perturbations in the image space. However,

in the inverse mapping small perturbations in the image space can lead to big per-

turbations in the object space [49], leading to solutions far from expected. This

feature is shown graphically in �gure 1.1. Therefore, computation off (y) could

lead to an erroneous representation of the body organ.

A classi�cation can be made in the inverse problems �eld [35]. When the

known variables are the input and the output the problem is classi�ed as a system

identi�cation problem. When the known variables are thekerneland the output,

the problem is classi�ed as a deconvolution problem (the wordunfoldingcan be

also found in some textbooks). The previous de�nitions are summarized in table
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System design Convolution System identif. Deconvolution

Input : Known Known Known Unknown

Kernel: To be designed Known Unknown Known

Output : Prede�ned Unknown Known Known

Table 1.1: Direct and Inverse Problems classi�cation [35]

1.1, extracted from [35].

The use of system identi�cation methods started to be important since 1960s.

The augment of data collection and measurement techniques allowed new possi-

bilities for physicians. New techniques were developed taking pro�t of the data to

obtain models for unknown systems. These models considers the system as black

boxes that relates inputs and outputs. The identi�cation of this black box is the

objective of the system identi�cation techniques [57]. [86, 87] are two examples

where system identi�cation techniques are used to estimate unknown parameters of

the models. The exact composition and materials of the earth layers is not usually

accessible, or there not exist a model on a complex physic process. System identi-

�cation techniques use the collected data, inputs and outputs, to try to identify the

hidden physical system or the unknown parameters of the model.

Deconvolution problems appear in physical systems where thekernelis known

and the problem can be modelled by the convolution theorem. Wave or heat equa-

tions allow to model with accuracy dynamics or heat transfer in structures, and are

usually applied to compute displacements and temperatures.

Both system identi�cation and deconvolution share numerical methods for res-

olution procedures. When thekernel is a convolution operator, the properties of

the integral allow to interchange the kernel and the input roles, which makes no

difference between both �elds. In this work, despite this equivalence, the inverse

problem will be referred as a deconvolution problem. The reason can be found

on the structure of this thesis: a direct problem will be �rst solved by using the

convolution operator, so for the sake of simplicity, is called deconvolution to the

computation of the inverse problem which is treated subsequently, even if it is the

kernel what will be computed.

The convolution operation appears in many physical systems. It is a special

case of the Fredholm equation of the �rst kind where thekernel is a convolution
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Figure 1.2: Graphical de�nition of the geomagnetic prospecting problem

operator. The integral in this case can be written as:

u(t) =
Z t

0
h(t � � )f (� )d�; (1.2)

where the time parametert 2 I t is introduced and a range of[0; T] is considered.

For the range[�1 ; 0] the input is zero, so it is the output, and causality holds. This

equation is also known as Volterra equation of the �rst kind.

One of the most known problems in the community, used as an example of

deconvolution problems, is the geomagnetic prospecting problem [44]. Consider

that a deposit is situated under the surface of the earth in a plane stratum at a known

distanceh from the surface, as shown in �gure 1.2.

This deposit emits a magnetic signal whose intensity determines its volume,

then its economic value. Measures of the vertical componentJ (x) of the magnetic

�eld intensity at the surfaceS(x; 0) are available. The �eld is created by a mass

whose distributionI (x) is required. The value ofJ (x) in the surfaceS due to an

in�nitesimal partds of the mass is:

sin�I (s)ds

(
p

h2 + ( x � s)2)2
=

hI (s)ds

(h2 + ( x � s)2)
3
2

: (1.3)

The deposit occupies a space fromx1 to x2, then the total contribution is:

Js(x) =
Z x2

x1

I (s)ds

(h2 + ( x � s)2)
3
2

: (1.4)

ObtainingI (s) from (1.4) is a deconvolution problem. Many other physical
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systems require the resolution of the deconvolution problem, among them one can

�nd astronomy [73], biology [71] or tomography [74].

Deconvolution is a non well-posed problem in the sense of Hadamard de�nition

[41]. Hadamard de�ned the term well-posed problem when it ful�ls the following

conditions:

� The solution exists.

� The solution is unique.

� The solution depends continuously on the data.

When a problem does not ful�ll at least one of the conditions, the problem is

called ill-posed problem. Inverse problems are generally ill-posed problems, and

consequently, the deconvolution problem is generally ill-posed. Furthermore, it is

usually ill-conditioned, which means that small variations in the data produce big

variations in the solution, so special theoretical and numerical approaches must be

applied to solve the problem. The convolution problems are usually described as:

~u(t) =
Z t

0
h(t � � )f (� )d�; (1.5)

where~u(t) = u(t) + e. This means that an error has been added to the output, and

it is generally unknown. These errors come principally from measurement errors

and truncation (identi�ed as noise in signal treatment). The introduction of these

errors can cause unacceptable deviations in the solution, even if they are negligible

from a physical point of view.

The theory about the Fredholm equations of the �rst kind states that the inte-

gration of f with h is a smoothing operation, what means that high frequencies

are damped. In fact, the convolution off andh maximizes the differentiability of

the functionsf andh [36], in other words, the functionu is smoother thanf . By

following this property, the deconvolution operation will undo the smoothing trans-

formation. If in the convolution operation the high frequencies are damped, in the

deconvolution the high frequencies are expected to be augmented. Thus, the rela-

tion between the errors and the high frequencies is a key point in the deconvolution

procedure.
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1.1 Discrete convolution and deconvolution. Properties of

the Toeplitz matrix

The integral of convolution (1.2) can be written in discrete form as:

u(k) =
k� 1X

i =0

h(k � i )f (i ) (1.6)

The equivalent version in matrix form is:

u = Hf ; (1.7)

whereH is the Toeplitz matrix of the impulse responseh, where the entries of the

matrix have been added until a time stepn, and the corresponding values in the

range of time[�1 ; 0] are set to zero. The Toeplitz matrix takes the form:

H =

2

6
6
6
6
6
6
6
4

h(1) 0 ::: 0 0

h(2) h(1) ::: 0 0
...

...
...

...
...

h(n � 1) h(n � 2) ::: h(1) 0

h(n) h(n � 1) ::: h(2) h(1)

3

7
7
7
7
7
7
7
5

: (1.8)

This Toeplitz matrix is an � n matrix, where only2n � 1 elements are dif-

ferent and there are placed with a characteristic form: each element ofh occupies

one diagonal of the matrix. This feature makes Toeplitz matrices ill-conditioned,

but the repetitive structure makes possible to derive appropriate methods to im-

prove the resolution of the problems involving Toeplitz matrices. One of the main

characteristics is the persymmetry, which means that they are symmetric across the

anti-diagonal.

The previous Toeplitz matrix is a special case of the more general Toeplitz

matrix de�nition [63]:

H =

2

6
6
6
6
6
6
6
4

h(1) h(� 1) ::: h(� n � 1) h(� n)

h(2) h(1) ::: h(� n � 2) h(� n � 1)
...

...
...

...
...

h(n � 1) h(n � 2) ::: h(1) h(� 1)

h(n) h(n � 1) ::: h(2) h(1)

3

7
7
7
7
7
7
7
5

: (1.9)

A Toeplitz matrix is then symmetric whenh(j ) = h(� j ) for all j .
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The direct resolutionf = H � 1u by inverting the Toeplitz matrixH is usually

precluded because it is usually ill-conditioned [43]. The relative error of the so-

lution u is related to the condition number ofH . How large a condition number

is acceptable depends on the resolution accuracy or the tolerance associated to the

problem.

Let us consider the discrete form of the deconvolution problem to obtainf ,

which can be easily deduced from equation (1.6):

f (k) =
u(k)
h(1)

�
P k� 1

i =1 u(i + 1) h(k � i + 1)
h(1)

: (1.10)

It can be observed the importance of the errors in measuredu. Errors in the in-

putu are inherent to discrete calculus, and they are reintroduced in the subsequent

computations, leading to an unstable resolution. The equation (1.10) shows that

the importance of the errors in the solution grows proportionally to the factorial of

the number of computationsk.

1.2 Numerical solution methods

The existence of inherent errors in the inverse problems can be considered as a

lack of information, and this lack of information can lead to a lack of uniqueness

of the solution. The lack of information can never be avoided, so the approaches

are based on the addition of information to the problem: statistical knowledge of

the noise, cost function energy control, etc.

Different techniques exist in the literature to solve the lack of information,

which try in some way to add information or constraint in the resolution process to

reduce the subspace of possible solutions. Ivanov, Tikhonov and Phillips [50] pro-

posed a minimization problem, which is actually known as regularization method.

Iterative variants of the regularization methods, where the solution is sought in

an iterative procedure until a certain prescribed error is achieved, also exist [47].

The Truncated Singular Value Decompositioncan also be used to deal with the

ill-conditioning of the Toeplitz matrices [63]. Another kind of approaches comes

from the statistical analysis of the problem by introducing the theory of probabili-

ties to cover the lack of information [48]. There has been also attempts to solve the

deconvolution problem in real time, where some methods can be found in [54][55].
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Fourier based analysis

The resolution of the problem in the frequency domain is based in the Fourier's

theory [8]. With the development of the Fast Fourier Transform, the computational

cost of the transformation between the time domain and the frequency domain was

considerably reduced. Consequently, a wide family of methods and applications

has emerged in the last decades taking pro�t of its bene�ts. Signal processing,

seismography, tomography, etc. are some of the �elds where it is applied [21].

The resolution of the problem in the frequency domain eliminates the bad con-

ditioning which arises when inverting the Toeplitz matrix form ofH . The equa-

tions are transformed to the frequency domain, where the convolution becomes a

multiplication [49]:

û = ĥ f̂ ; (1.11)

where the symbol(̂ ) denotes that the function lives in the frequency domain, so

û; ĥ and f̂ 2 C. To obtainf̂ , a simple division is made, which means that the

deconvolution in the frequency domain is transformed into a division between the

functionsû andĥ as follows:

f̂ =
û

ĥ
: (1.12)

The existence of a solution depends on the r.h.s. of the equation: it must be

well-de�ned, which is not always the case. Consider the case whenĥ is zero or

near zero for one or more values of! : then the solution in frequency will have

singularities and the inverse Fourier transform may not exist.

Fourier analysis gives a useful view about the deconvolution problem. Remem-

ber that the acquired data is usually obtained in discrete form, and the analytic

solution is not available. Errors in the data is unavoidable as the precision of the

machines is not in�nite. If no errors were added to the output data, the deconvo-

lution would give back the exact searched functionf , but usually is not the case.

Consider then the equation (1.12) and add the noise errorsû � in the acquired data:

f̂ =
û + û �

ĥ
=

û

ĥ
+

û �

ĥ
: (1.13)

Physically motivated transfer functions tend usually to zero when the frequency

tends to in�nity. On the other hand, transfer functions related to noise usually show

a nearly �at spectrum (e.g. white noise has equal intensity at all frequencies). The

division of the high frequency zone of the data spectrum by the high frequency
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zone of the transfer function spectrum will amplify the effect of the noise, and will

dramatically affect the solution.

Truncated SVD

The singular value decomposition is a factorization technique for matrices. Over

the �eld of real numbers, the SVD decomposition is de�ned as:

H = UDV T ; (1.14)

whereU is the matrix of the left-singular vectors,D is a pseudo-diagonal matrix

containing the singular values� andV is a matrix that contains the right-singular

vectors. The singular vectors are stored by columns inU andV , so their columns

are orthonormal:

U T U = V T V = I ; (1.15)

whereI is the identity matrix. The decomposition can be also written as:

H =
nX

i =1

� i � i � i ; (1.16)

wheren is the rank ofH .

Then, the right and left singular vectors are stored in matricesU andV :

U = ( � 1; : : : ; � n ); V = ( � 1; : : : ; � n ); (1.17)

and the right and singular vectors are orthogonal following:

� T
i � j = � T

i � j = � ij : (1.18)

The singular values reveal some important properties ofH :

� The singular values ofH decay with a certain slope until it reaches the ma-

chine precision times� 1, where the slope tends to be horizontal.

� The previous statement means that the condition number is related to the

machine precision.

� There is no gap in the singular values spectrum, and it usually follows a

harmonic or a geometric progression.
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� The number of sign changes of the singular vectors is inversely proportional

to the value of the corresponding singular value.

The number of non-zero singular values is the rank ofH , and the condition

number ofH can be computed from:

cond(H ) =
� 1

� n
; (1.19)

where� 1 is the largest singular value and� n is the minimum non-zero singular

value.

The SVD permits to stablish an important relation between the matrixH and

the singular values and singular vectors:

H � i = � i � i ; (1.20)

where theL 2 norm ofH � i is:

jjH � i jj = � i : (1.21)

These properties can be exploited to analyse the problem of deconvolution.

Consider then the problem of the equation (1.7):

Hf = u: (1.22)

By using (1.20), the termsu andf can be expanded as:

f =
nX

i =1

(� T
i f )� i ; u =

nX

i =1

(� T
i u)� i ; (1.23)

and substituting (1.23) in (1.20), is straight to write the equation:

Hf = � i

nX

i =1

(� T
i u)� i : (1.24)

Finally, the approximated solution can be written as a decomposition in singu-

lar values and singular right and left vectors as:

f =
nX

i =1

� T
i u
� i

� i : (1.25)

This decomposition allows to compute an approximation of the solution by

truncating the sum. The truncation can be made by controlling the singular values
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and the corresponding left and right eigenvectors. In fact, the solution is governed

by the relation between� T
i u and the singular values. The Discrete Picard Con-

dition [64] states that the quantityj� T
i uj decays faster than the singular values� i

until they arrive to the level of the machine precision. In this point, the round noise

starts to govern over the SVD components, and the information obtained in the

decomposition is no longer useful. It is evident that the terms� T
i u and the sin-

gular values must be monitored to avoid the introduction of spurious terms on the

approximation of the solution. If the quantity� T
i u does not decay faster than the

singular values, there is not any function square integrablef that is a solution of

the problem such that:

Z 1

�1
jf (t)j2dt < 1 ; (1.26)

and any effort solving the problem should be avoided.

Therefore, useful information can be extracted from the SVD decomposition

of matrix H . The �rst singular values and singular vectors still carry the most

important information: the effort must be then in the separation of the valuable

information and the spurious information, by applying a truncation:

~f =
NX

i =1

� T
i u
� i

� i ; (1.27)

whereN < n . This approximation is known as Truncated Singular Values De-

composition. The election of the truncation numberN is quite simple: a SVD

decomposition must be done on matrixH , and the quantities� T
i u must be com-

puted. The numberN corresponds to the change of the slope of the quantities

� T
i u. There exists methods that reduce the computational cost of the previous

method [65].

The main problem in the TSVD method is the computational cost: the decom-

position of large matrices can be unaffordable for the actual computational power.

Regularization method

At the same time, Ivanov and Tikhonov published similar techniques to solve the

Fredholm equation of the �rst kind [44][49], and their theories can be also applied

to the deconvolution problem. These methods are known as Tikhonov regulariza-

tion method or just regularization method. Those techniques use a least squares

approximation with a prescribed energy weighted by a parameter� to resolve the
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problem. As the solution is not unique, a least squares technique is applied to �nd

a unique solution, which will be the best approximation to the solution in the con-

strained problem. In the discrete form of the regularization method,f is sought in

order to minimize the functional� :

�( f ) = jjHf � ujj2; (1.28)

with a prescribed energy forf :

E 2(f ) = jj f jj2 � E 2: (1.29)

The boundE 2 of f must be in the order of the knownu. A bound foru is

not usually a simple guess. Consider a structural dynamic problem, where the

structure characteristics are known. In most of the engineering problems, an order

of magnitude of the displacements is usually known, so an order of magnitude of

the displacements is also guessed. This added information is what can in some way

substitute the lack of information.

This problem can be solved by applying the method of Lagrange multipliers,

where the condition is introduced in the same functional of the problem as:


 = jjHf � ujj2
2 + � 2jj f jj2

2: (1.30)

where� is an arbitrary positive real number. The main problem of the method

is the estimation of the parameter� . Great values of this parameter will lead to

a solution which may differ signi�cantly from the real solution, while very small

values will lead to the ill-conditioned problem, where the solution exists but can

be far from what expected. Several methods exist on the research of the optimal

value of� [61][62][60]. In the middle of the extreme values, there exists in�nite

possible solution for the problem.

The election of the regularization parameter is still a challenge for the research

[67]. The different possible solutions are related to the information one has about

the problem. The distribution of the error, or the assumptions that can be made

about the correlation with the solution leads to different methods. The discrepancy

principle searches the regularization parameter� as a function of the error norm,

which must be known or assumed known. The cross validation method consid-

ers that the noise is uncorrelated with the solution, and therefore some previous

information is needed. One of the most known methods is the L-curve criterion

[34][66], which consists in computing the regularized solution for several different
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values of the parameter� > 0. The plot of thef � versus the norm of the residual

is a curve in a more or lessL shape, where a minimum can be found along the

curve. [34][66] recommend using the corresponding value to the minimum of the

plot, which is a good choice in the balance between the solutions in�uenced by the

ill-conditioning of the problem and the solutions in�uenced by the noise.

The SVD decomposition can be used to better understand the properties of the

regularization method. The approximation of the solution can be written as:

f � =
nX

i =1

� 2
i

� 2
i + � 2

� T
i u
� i

� i : (1.31)

The elements in the quotientQi = � 2
i

� 2
i + � 2 are called Tikhonov �lter factors, and

they satisfy the condition0 � Qi � 1. Comparing (1.31) with (1.25), is directly

deduced that the quotientsQi control the behaviour of the SVD solution�
T
i u
� i

� i .

For a �xed value of the regularization parameter� between the maximum� 1 and

minimum� n values of the singular values� i , the quotient tends to 1 when� i � � ;

by the other hand, when� i � � the quotient tends to zero. That means that the

larger singular values and vectors have more contribution to the solution than the

smaller ones, expecting that the useful information is kept in the computation of

the solution and the noise contribution is damped. From this statement is deduced

that for values of� near� i , both TSVD and Tikhonov solutions should be very

close.

The numerical resolution of equation (1.28) is not suited for numerical compu-

tations. It is usually done by two different formulations: the normal equations for

the least squares problem:

(H T H + � 2I )f = H T u; (1.32)

and extended matrix version for the least squares problem:

min

�
�
�
�

�
�
�
�

"
H

� I

#

f �

"
u

0

# �
�
�
�

�
�
�
�
2
; (1.33)

whereI is the identity matrix.

Another interesting method can be applied whenH is symmetric and positive

de�nite that allow to work with a smaller system of equations:

(H + � I )f = u; � � 0: (1.34)
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A Cholesky decomposition can be applied onH , and then the solution can be

computed as:

f =
nX

i =1

 i u
� i + �

 i ; (1.35)

where i and� i are the components of the eigenvalue decomposition:

H =
nX

i =1

 T
i � i  i : (1.36)

The equation presented in (1.28) it is not the best option for deconvolution

problems. For a better approximation of the solution is recommended to introduce

in the formulation the �rst or second derivative. Therefore the minimization is

done on theL 2 norm of the derivative weighted by the regularization parameter.

When using the �rst or second derivatives, the corresponding matricesS1 andS2,

respectively, have a form:

S1 = n� 1

8
>>>>>>><

>>>>>>>:

� 1 1 0 : : : 0

0 � 1 1 : : : 0
...

...
...

...
...

0 : : : � 1 1 0

0 : : : 0 � 1 1

9
>>>>>>>=

>>>>>>>;

(1.37)

S2 = n� 2

8
>>>>>>><

>>>>>>>:

1 � 2 1 0 : : : 0

0 1 2 1 : : : 0
...

...
...

...
...

...

0 : : : 1 � 2 1 0

0 : : : 0 1 � 2 1

9
>>>>>>>=

>>>>>>>;

; (1.38)

which are not square:S1 dimension is(n � 1) � n andS2 dimension is(n � 2) � n.

Nevertheless, the introduction of these matrices in the minimization equation:

min( jjHf � ujj2
2 + � 2jjSf jj2

2); (1.39)

leads to a matrices productST
1 S1 andST

2 S2 which result is a square matrix.

Iterative methods

Several iterative methods have been developed in order to solve inverse problems.

Landweber method [52] is possibly the reference on the subject, but many others

can also be found in the literature as Richardson method [45].
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Landweber method is an iterative method to solve the Fredholm equation of the

�rst kind, and hence for the deconvolution problem, based on the transformation

of the integral equation in a �xed point iteration method. The main advantage in

this method is that any matrix inversion is avoided, therefore it is suitable for large

or sparse systems. On the other hand, ana priori parameter controls the variation

of the subsequent iterations, and bad choices could enlarge the time computation.

The iterative Landweber equation takes the form:

f k = f k� 1 + �H T (u � Hf k� 1); (1.40)

where� is the relaxation parameter andk de�nes the iteration step. The relaxation

parameter must satisfy:

0 < � <
2

jjH t H jj2
: (1.41)

An interesting analysis of the method can be made from the SVD decomposi-

tion. The iterative equation can be written as:

uk =
nX

i =1

(1 � (1 � �� 2
i )k )

� T
i u
� i

� i : (1.42)

Looking at (1.42) can be veri�ed that the iteration numberk is the equivalent

in Landweber to the regularization parameter in Tikhonov's method. In the �rst

iterations the largest components have more weight in the equation than the smaller

ones, which are incorporated to the iteration scheme with the increase ofk. The

convergence of the method can also be deduced from (1.42): the increase of the

number of iterations adds practically the half of the small �lter factors(1 � (1 �

�� 2
i )k ).

In the family of Landweber methods can be found theConjugate Gradient

method. Hestenes and Stiefel [68] proposed a method for the resolution in an

iterative scheme to the inverse problem associated with a least squares problem,

which comprehends the following equations:

ak =
jjH T r (k� 1) jj2

2

jjHs (k� 1) jj2
2

f k = f k� 1 + aksk� 1

r k = r k� 1 � akHsk� 1

uk =
jjH T r (k) jj2

2

jjH T r (k� 1) jj2
2
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sk = H T r k + uksk� 1: (1.43)

In the group of equations (1.43) the two vectorsr ands are de�ned by:

r 0 = u � Hf 0 ; s0 = H T r 0: (1.44)

This algorithm can be applied both in the formulation described in (1.33) and

in the standard formHf = u. For the �rst formulation a good pre-conditioner is

suitable to be used, and an adequate special conditioner is still a challenge for the

researchers. By the other hand, the second approach is interesting as it preserves

the original form of the equation, and the regularization is provided by the iteration

numberk. The convergence of the CG method is faster than in the Landweber

method, but is not exempt of troubles: some conditions are more suitable to be

ful�lled before applied the method to improve the success of the regularization,

but they not guaranty the desired result:

� The singular values should decay gradually to zero

� The slope should tend to vertical shape

� The quantitiesQ, as de�ned in 1.2, should decay faster than the singular

values.

Methods based on statistical information

As explained before, the deconvolution problem lacks of information to reconstruct

the original requested function. There is a family of methods that address the

problem from a statistical point of view [72], where the lack of information is in

some way substituted by a statistical knowledge of the variables of the problem.

The Bayesian approach to resolve inverse problems relies on conditional prob-

abilities [81]. Considering the problem modelled byHF = U + � , � de�nes an

additive noise with continuous probability distribution,F andU are random val-

ues andf andu are samples. Using Bayes formula, aposterior distributioncan be

de�ned as:

pF jU (f ju) � pF (f )pUjF (ujf ); (1.45)

where theprobability density functionpF is de�ned by:
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pF (f ) � 0 for all f 2 R;

Z 1

�1
pF (f )df = 1 ; (1.46)

and wherepF jU (f ju) is the conditional probability. The densitypUjF (ujf ) is called

likelihood distribution and is related to data mis�t. For a givenu, the density

pF jU(f ju) speci�es the probability of the measuredu to be caused byf . The ob-

jective of statistical inversion is to compute the posterior distributionpF jU (f ju)

which is the solution of the inverse problem. The dif�culties to compute the den-

sity functions can be approached by two methods:

� Maximum a posterioriestimation, which implies an optimization problem:

arg maxpUjF (ujf ): (1.47)

� The conditional mean estimate, which impliesn-dimensional space integra-

tions:

Z
xpUjF (ujf ): (1.48)

The Wiener �lter is one of the simplest examples of Bayesian methods. By

considering Gaussian processes, the following assumptions are made:

� The probability distribution of the noise is approached by a Gaussian distri-

bution.

� Vectoru is also considered to be a Gaussian vector.

� Noise and vectoru are considered independent variables, so the cross-variance

matrix is zero.

Kalman �lter is one of the most applied methods in the Bayesian framework,

concretely in theMaximum a posteriorimethods [82]. The method is based on

estimations of the unknown variables by inferring probability information from

measures. It is a two steps algorithm, where �rst the estimation of the variable

is computed, and when the next time step values arrive, it updates the prediction.

Kalman �lter is optimal in the sense that if the noise has a Gaussian distribution,
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the �lter minimizes the mean square error of the estimated parameters. If the noise

is not Gaussian, Kalman �lter is the best linear estimator. When the noise is not

considered to be Gaussian some other approaches are possible [76]. The Kalman

�lter is related to a recursive weighted least squares method [83].

Let us consider the dynamics equation, which is explained in detail in 2.1. The

transformation into a state-space representation, the following substitution is made

[72]:

� 1(t) = u(t);

� 2(t) = _u(t): (1.49)

Considering the derivatives of the state vector and substituting in the dynamics

equation (2.3) one arrives to a linear state-space model or Kalman �lter model:

_� (t) = A� (t) + Bf (t);

u(t) = M� (t) + Nf (t): (1.50)

The Kalman �lter estimates the state of� in the linear process de�ned by:

� k+1 = A� k + Bf k + � k ;

uk+1 = M k � k + � k ; (1.51)

where the subscriptk the corresponding time step oftk = k� t, and� k and� k are

prior estimate error and the measurement error respectively. These two equations

summarize the concept of the algorithm: �rst an estimate is given and then it is

corrected.

1.3 Numerical methods for Toeplitz matrices

Some special algorithms have been developed by taking in account the special

structure of the Toeplitz matrix that is detailed in 1.1. One of the most known

are the Levinson algorithms, which are developed for standard Toeplitz matrices as

Levinson-Trench-Zohar [70] and symmetric Toeplitz as Levinson's algorithm [69].
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This algorithm improves the methods based on Tikhonov's regularization, which

can be computationally complex for large matrices.

Consider the case of an upper triangular Toeplitz matrixH and a matrixL with

dimensionsp� n wherep � n and zeros under the diagonal, which is representative

of the scheme detailed in 1.2. Consideringn = 4 the matrix is written as:

"
H

�L

#

=

2

6
6
6
6
6
6
6
6
6
6
6
4

h1 h2 h3 h4

0 h1 h2 h3

0 0 h1 h2

0 0 0 h1

l1 l2 l3 l4
0 l1 l2 l3
0 0 l1 l2

3

7
7
7
7
7
7
7
7
7
7
7
5

: (1.52)

The previous matrix can be converted into a diagonal matrix by applyingn

Givens transformations [77]. The algorithm starts by applying a rotation to rows1

andn + 1 , to eliminate the elementl1. As this operation changes all the elements

in both two rows, a superscript indicates the number of operations that an element

has been submitted to. The same operation is applied to the row pairs(j; n + j )

wherej = 2 ; : : : ; p. Notice that, regarding the Toeplitz matrix structure, new rows

are versions of rows 1 andn + 1 . The following matrixT2 is obtained:

H 2 =

2

6
6
6
6
6
6
6
6
6
6
6
4

h1
1 h1

2 h1
3 h1

4

0 h1
1 h1

2 h1
3

0 0 h1
1 h1

2

0 0 0 h1
1

0 l12 l13 l14
0 0 l12 l13
0 0 0 l12

3

7
7
7
7
7
7
7
7
7
7
7
5

; (1.53)

where the �rst diagonal of the submatrixL has been eliminated. Applying the same
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operations to all rows except the �rst one, the following structure is obtained:

H 2 =

2

6
6
6
6
6
6
6
6
6
6
6
4

h2
1 h2

2 h2
3 h2

4

0 h2
1 h2

2 h2
3

0 0 h2
1 h2

2

0 0 0 h2
1

0 0 l23 l24
0 0 0 l23
0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
7
5

: (1.54)

The procedure is repeated until an upper diagonal matrix is obtained. Then

steps of the algorithm involve around8n2 operations.

If the matrix H is not upper diagonal, a more complex algorithm, developed

by Bojanczyk [78] and [79], can be applied in order to obtain the matrixR of the

QR factorization:

"
H

�L

#

= QR: (1.55)

Considering generalL matrices, a partition is done as:

"
H

�L

#

=

2

6
6
6
6
4

h0 uT

v �H

� 0

0 �I

3

7
7
7
7
5

=

2

6
6
6
6
4

�H �u

�vT hm� n

�I 0

0 �

3

7
7
7
7
5

: (1.56)

where �H is a submatrix taking from the beginning or from the end the range of

elements[m � 1; n � 1], I is the identity matrix, and the vectorsu; v; �u and�v must

be taken in order to ful�llH . Matrix R must be also be partitioned as:

R =

"
r11 zT

0 Rb

#

=

"
Rt �z

0 rmn

#

: (1.57)

By applying:

"
H

�L

#T "
H

�L

#

= ( QR)T QR; (1.58)

and remembering the orthogonalityQT Q = I , the nonzero blocks ofR can be

computed from the following deduced relations:

r 2 = h2
0 + vT v + � 2;
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zT =
h0uT + vT �H

11
;

RT
b Rb = RT

t Rt + uuT � �v�vT � zzT : (1.59)

The �rst row of R can be computed by taking the �rst two equations, and the

submatrixRb can be then computed as it depends onRt . Once the �rst row ofRt

is computed, the �rst row ofRb is calculated: a Givens rotationG1a is applied on

the �rst row of Rt anduT to eliminate the �rst element ofu:

G1a

"
Rt

uT

#

=

"
�Rt

(u1)T

#

; (1.60)

whereu1(1) = 0 .

Matrix �Rt is the same asRt but the �rst row has been changed. Determining

now a second Givens rotationG1b to eliminate the �rst element ofz, one arrives

to:

G1b

"
�vt

zT

#

=

"
v̂T

(z1)T

#

; (1.61)

and �nally a hyperbolic rotationH 1 is applied to the �rst row of�R andv̂ to elimi-

nate the �rst element of̂vT :

H 1

"
�Rt

v̂T

#

=

"
R1

t

(�v1)T

#

; (1.62)

where�v1(1) = 0 . Notice that the �rst row ofRb has been computed, and therefore

the second row ofR. Applying now the algorithm to the second row ofR1
t to

eliminate the second element ofz1, Givens rotations are again applied:

G2a

"
R1

t

(u1)T

#

=

"
�R1

t

(u2)T

#

; (1.63)

and

G2b

"
�v1t

(z1)T

#

=

"
(v̂1)T

(z2)T

#

; (1.64)
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wherez2(1) = 0 , and then the hyperbolic rotationH 2 is applied in order to elimi-

nate the �rst element of�v2:

H 2

"
( �R)1

t

(v̂1)T

#

=

"
R2

t

(�v2)T

#

: (1.65)

The �rst three rows of matrixR have been computed at this step, and the pro-

cedure can be continued to achieve the complete triangularization. The Tikhonov

regularization must be computed by applying:

RT Ru� = H T f: (1.66)

As � is chosen to stabilize the condition number of the least square minimiza-

tion, the solution of (1.66) is stable. IfH is symmetric and positive de�nite then

the Franklin's method [80] can be used by solving the system:

(H + �I )u = f; (1.67)

which can be solved by applying Levinson's recursion [70].
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Chapter 2

Monitoring of displacements

Structural dynamics appears in various different �elds as civil engineering, indus-

trial mechanics, robotics, aeronautics, etc. The particularities of each domain and

the �nal application de�ne the hypothesis, methods, accuracy and several other

parameters to consider. Frequency analysis advantages are different from time in-

tegration methods ones; the accuracy in medical applications maybe different than

in seismic analysis, etc.

Civil engineering structural dynamics appears mainly in bridges and buildings

design phase. Wind, seisms and vehicles are the principal dynamic loads to con-

sider during the design phase (which must comprehend the construction and the

service phase). In the last years, dynamic effects are also being considered in real

time: control devices are being placed in high buildings to reduce seismic effects

[12], which leads to consider real time computations of the dynamics of the struc-

ture in order to compute the counter-effects to the seismic actions.

Industrial mechanics dynamic issues are related to undesired vibrations in ma-

chines and damage detection [1]. Undesired vibrations waste energy or may be

harmful, and also industries spend lots of money reducing the vibration in trans-

port vehicles for their clients comfort. Vibrations can also be induced to �nd or

reveal structural problems [2].

Aeronautic structures are designed by considering high external forces due to

the service efforts: great changes in velocities, temperatures and pressures. The

analysis of the structure state during the fabrication and service is exhaustive, and

among other techniques, vibration based methods are widely used thanks to a low

cost application [3][4].

Hybrid laboratories are a new type of laboratories where experiments and sim-

ulations are carried out together [5] [6] [7]. Some physical complex process are
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dif�cult to simulate, therefore the experiment must be done in the real physical

scenario. At the same time, maybe this complex process affects only a small part

of the structure, while the behaviour of the rest of the structure is known and easily

represented by simulation. The idea behind hybrid laboratories is to build only the

part of the structure that will suffer the complex physical process and simulate the

behaviour of the rest of the structure. The bene�t of the method is the savings in

the construction cost of the simulated part.

Robotics is one of the engineering �elds that has more increased the number of

publications and investment in the last decade. The appearance of new materials

and technologies as sensors or actuators has made possible new applications in

numerous �elds, as industry or medicine [91][13], requiring new methods to deal

with the arising problems and challenges.

The common point of all the previous �elds is the importance of the dynamics,

it is, the appearance of inertial and damping forces which play an important role

in the computation of strains and stresses. In fact, strains and stresses values can

be quite different between a static or a dynamic point of view, even when applying

forces of the same magnitude when the frequency of the force is near the natural

frequency of the structure.

The knowledge of strains and stresses is the main information in structural

dynamics. There are always design values that can not be exceeded, and designers

must know their relevant information, e.g. maximum possible values. For that end,

a comprehensive analysis of the structure is done by carrying out one or more of

the methods explained in section 2.1.

A slightly more complicated is the computation of displacements (or strains

or stresses) in real time. Real time resolution of structural dynamics problems

requires fast and accurate computation, while the speed of computation and the

accuracy are usually inversely proportional. Here is where model order reduction

techniques appear to reduce the computation cost trying to lose the minimum possi-

ble information. The key in model order reduction is the treatment of information:

the applied method must be capable of extract the relevant information.

In structural dynamics is widely known the concept of modal analysis 2.1.3,

a method to solve the dynamics equation and also used as model order reduction

technique. The method uses the projection of the system ofn equations into a new

basis to transform it in a set of uncoupled equations. The solution of each equa-

tion gives a mode of vibration, and the general solution is decomposed as the sum

of each equation solution. Each mode of vibration has associated an energy, and
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usually the energy of the modes decrease with the frequency, so high frequency

modes are related to less energy. Modal analysis is used as a MOR technique when

the sum of the general solution is truncated in a modeN << n . In many struc-

tural cases, a small number of modes can represent suf�ciently the dynamics of

the structure. This is how modal analysis has been used as a model order reduc-

tion technique for decades, by just considering a few modes to compute the whole

dynamic solution, it is, extracting the relevant information. Other model order re-

duction techniques are available, very close in some aspects to modal analysis, e.g.

Proper Orthogonal Decomposition or Reduced Basis Method.

Some kinds of problems needs the evaluation of several possibilities or com-

binations to �nd the best solution. When the involved parameters exceed a certain

number, the classic solutions as Monte-Carlo simulations are unaffordable. The

exploration of high dimensional spaces can lead to a number of computations that,

with the actual computer power, could take months. Consider a problem with a

number of dimensions or variables� = ( � 1; : : : ; � n ) and a numberm of discretiza-

tion nodes for each dimension. The number of numerical simulations will bemn .

It is evident that the problem can be unaffordable with just a few considered param-

eters. In this scenario theProper Generalized Decomposition(PGD) is a suitable

method to face the curse of dimensionality. The method splits the high dimen-

sional problem into several low dimension problems, whose computational cost is

acceptable [28].

In this Chapter a method to compute the GIR is provided. The GIR allows to

monitor the displacements in real time. Classic methods in structural dynamics

are revisited in order to enlighten the reasons for what the harmonic analysis has

been chosen as the approach for the parametric resolution of the dynamic problem,

and some MOR techniques are explained to give a general view of the approach in

multi-dimensional problems.

2.1 Structural dynamics

2.1.1 Model problem

Consider a linear viscoelastic body occupying an open bounded domain� 
 �

Rd� 3, which will be used as an example for the application of the methods ex-

plained in this section. The boundary is divided in two subdomains Neumann� N

and Dirichlet� D such that� 
 = � N [ � D . Assuming small perturbations the-

ory, the computation of the displacementsu in the time intervalt 2 I t follows the
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equation:

8
><

>:

� •u � r � = 0 in 
 � I t ;

� � n = t on � N � I t ;

u = 0 on � D � I t ;

where� is the mass density of the material,� is the stress,n is the outward unit

normal to the boundary� 
 and t is the surface traction. The constitutive low

follows the Kelvin-Voigt linear visco-elastic model:

� = D : (� + � _� ); (2.1)

whereD is the fourth-order Hooke elasticity tensor and the parameter� controls

the viscous behaviour. The relation between strains and displacements is given by

the Green-Cauchy strain tensor:

� =
1
2

(r u + r t u): (2.2)

The discretization of the previous equations and relations by the �nite element

method [11] leads to the matrix version of the equation of motion:

M •u(t) + C _u(t) + Ku (t) = f (t); (2.3)

where the termsM ,C andK 2 RNd � Nd represent the inertial, damping and elas-

tic forces respectively, andNd is the number of considered degrees of freedom.

f (t) 2 RNd � N t represents the external applied force, whereN t is the number of

considered time steps. The external applied force will be conveniently written in a

separated form as:

f (t) = P sf (t); (2.4)

whereP s collects the spatial distribution of the force andf (t) modulates the force

in time.

Several methods exist in the literature to solve the dynamic problem: the basis

of actual techniques can be found in four methods: time integration methods, fre-

quency based methods, modal method and impulse response method. The previous

methods are detailed in this section given a light overview of the advantages and

disadvantages.
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2.1.2 Time integration methods

Time integration methods approximate the unknown functionu in equation (2.3)

in order to compute the next time step values. Among several approximations, one

of the most used is Newmark� method, which considers an approximation of the

unknown functionu by a polynomial of degreep. By using a truncation of a Taylor

series approximation at a degreep = 2 for the derivatives of the unknown function

u [10], the next equations can be written:

un+1 = _un+1 +
1
2

� 2� t2•u n+1 ; (2.5)

_un+1 = •u n+1 + � 1� t •u n+1 ; (2.6)

whereu, _u and •u are displacements, velocity and acceleration respectively, and

the subscriptn indicates the actual time step.

Assuming that the values ofu, _uand•u are known for the previous time steps,

•u n+1 is obtained from:

•u n+1 = � A � 1f fn+1 + C �_un+1 + K�u n+1 g; (2.7)

where

A = M + � 1� tC +
1
2

� 2� t2K ; (2.8)

and

�u n+1 = un + � t _un +
1
2

(1 � � 2)� t2•u n ;

�_un+1 = _un + � t •u n +
1
2

(1 � � 1)� t •u n : (2.9)

Once•u n+1 is obtained,un+1 and _un+1 can be obtained from (2.5) and (2.6),

and this process is repeated for the next time steps.

These equations produce an explicit algorithm that allows to compute displace-

ments, velocity and accelerations for any structure. The main problem of this kind

of schemes is the maximum allowed time step to be considered in the calculus. The

time step is related to the speed of the elastic wave propagation and the size of the

mesh. The time step should not be greater than a critical time step following:

� t �
2

p
3

h
C

; (2.10)
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whereh is the smallest size of the mesh elements andC is the speed of the elastic

wave, which is related to the Young's modulusE and the density of the material� :

C =

s
E
�

: (2.11)

Fine meshes will require small time steps, and consequently the simulation for

a �xed time length will be slower.

There also exist the so called implicit methods, which allows greater values for

the time step by paying the price of solving a more complicated system of equations

where some iterations must be done each time step.

One of the most advantages of the method is the applicability to nonlinear prob-

lems. Structural matricesM , C andK can be actualized each time step consid-

ering the nonlinearities involved in the problem as nonlinear structural behaviour,

contact, coupled problems, etc.

2.1.3 Modal method

Modal method is based on the mathematical treatment of the system matrices to

reduce the resolution computational cost. By applying the properties of the eigen-

vectors decomposition the system equations can be uncoupled, it is, the matrix

operators become diagonal after projecting in the eigenvectors conformed space

[9]. Let us take the undamped version of equation (2.3) and consider a harmonic

solution of the free vibration problem (no external force is applied) as

u = û sin (!t + � ): (2.12)

The second derivative is:

•u = � ! 2û sin (!t + � ) = � ! 2û : (2.13)

Substituting in equation (2.3), the following equation is obtained:

[K � ! 2M ]û = 0 ; (2.14)

which is an eigenvalue problem. By using the orthogonal property of the eigen-

vectors, equations can be uncoupled pre-multiplying and post-multiplying by the

eigenvectors:

M g = � T
n M � n ;
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K g = � T
n K � n ; (2.15)

which are known as normal-coordinate generalized mass and stiffness for moden.

The resulting matricesM g andK g have a diagonal structure:

M g =

2

6
6
6
6
4

m1

m2
...

mn

3

7
7
7
7
5

; (2.16)

K g =

2

6
6
6
6
4

k1

k2
...

kn

3

7
7
7
7
5

: (2.17)

The orthogonality properties of the transformation are de�ned by:

� m M � n = 0 m 6= n; (2.18)

� m K � n = 0 m 6= n: (2.19)

When the method is applied on forced damped problems, the transformation

must be also applied on the damping matrix and the force term. If the damping

matrix C is proportional toM andK it will be also diagonal under the transfor-

mation; if it is not proportional, a quadratic problem must be solved [14]. For the

sake of simplicity, consider thatC is proportional. Applying the transformation on

the damping matrix and the force term:

Cg = � T
n C� n ;

fg = � T
n f : (2.20)

The uncoupled system is written now as:

M g•ug(t) + Cg _ug(t) + K gug(t) = gg(t); (2.21)

whereug are the normal-coordinate displacements. The uncoupled system can now

be solved by applying any time step method, for example the Newmark method
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explained in (2.1.2). Notice that as the matrix operators are now diagonal, the

resolution is faster than in the original system (the inversion of the operatorA in

(2.7) is faster because of the diagonal structure of the matrix). On the other hand,

linear behaviour must be assumed in order to keep coherence with the projection

in the eigenvectors space.

Finally, displacements can be transformed back to their original coordinates by

undoing the transformation:

u(t) = � T
n ug(t): (2.22)

2.1.4 Harmonic Analysis

Harmonic analysis or frequency analysis is one of the most used methods in struc-

tural dynamics. The knowledge about the spectral response of the structure is a

key point in structural design, and it is built from the harmonic analysis. Based

on Fourier's Theory, time domain equations can be transformed into frequency

domain equations and vice versa. The relation between the two domains follows:

ŷ(! ) =
Z 1

�1
y(t)exp(� i!t )dt;

y(t) =
1

2�

Z 1

�1
ŷ(! )exp(� i!t )d!: (2.23)

Notice that, in this work, the imaginary unit is written by using non italic type

i, and should be distinguished from the italic typei used as an index.

This relation permits a fast and easy transformation of the equations taking

pro�t of the bene�ts in each domain. The computation of the frequency spectrum

reveals information that can be hidden in time domain analysis, as the appearance

of natural frequencies or nonlinear behaviours [15]. In most physical systems, as

electronics, acoustics or structural dynamics, the concept of transfer function is

widely used. The transfer function is the response of the system to a unit input. In

frequency analysis, it gives the amplitude as a function of the frequency of the in-

put. The version of the transfer function in the time domain is the impulse response.

The impulse response is, then, the response of the system for a unit impulse. While

transfer functions are very used in the phase design, and in some real time appli-

cations, impulse response framework is better adapted to real time computations

when displacements are required in time domain.
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Transfer function

The transfer function can be computed from the frequency analysis of the dynamic

problem. Consider a solution of the forced damped dynamics equation (2.3) as:

u = U e� i!t ; (2.24)

whereU collects the nodal coef�cients ande� i!t modulates the function over the

time (this expression can be related to the sinus and cosine functions by the Euler

identity e� i!t = cos(!t ) + i sin (!t ). Consider also that the data is obtained at a

frequencyf s = 1 Hz, in a time intervalI t = [0 ; t f ]. The corresponding sampling in

the frequency domain is related to the sample in the time domain by the relations:

f max =
1

� t
f s =

2Nw � 1
t f

; (2.25)

from which the number of harmonicsN ! can be obtained. The force term can be

written now as a linear combination ofN ! harmonics as:

f (t) = P sf (t); (2.26)

where the vectorP s 2 CN � N ! recovers the nodal coordinates and the Fourier

coef�cients and the functionf (t) = expi!t modulates in time the amplitude of the

force.

Differentiating twice the equation (2.24), is obtained:

_u(t) = i ! U e� i!t ;

•u (t) = � ! 2U e� i!t : (2.27)

Considering then, that the force can be expressed as a sum of sinusoidal forces,

and introducing (2.1.4), (2.1.4) and (2.27) in (2.3), the dynamics equation in fre-

quency domain is obtained:

(� ! 2M + i ! C + K ) h(! ) = P sf (! ): (2.28)

Applying a unit force on the structure, a� (! ) in frequency domain, the transfer

functionĥ is obtained.

ĥ(! ) = ( � ! 2M + i ! C + K ) � 1P s: (2.29)
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Transfer function allows to compute the displacements operating in the Fourier's

space when an external forcef (t) is applied on the structure. By using the Fourier's

Theory relations, the forcesf (t) can be transformed into the frequency domain.

Once the force is transformed to the frequency domain, displacements spectrum

can be computed by doing:

û(! ) = ĥ(! )f̂ (! ); (2.30)

where the structure of̂u is:

û =

2

6
6
4

û1(! ) = f̂ (! )ĥ1(! )
...

ûNd (! ) = f̂ (! )ĥNd (! )

3

7
7
5 : (2.31)

An important issue among the transfer function characteristics is the possibility

of compute the displacements just in some nodes of interest, avoiding the compu-

tation in the whole spatial domain. In fact, the computation of the displacements

in a nodej 2 [1; : : : ; Nd] only implies the multiplication of the corresponding row

in û. Another important characteristic of the frequency analysis come out from

(2.29): the equations are uncoupled in frequency. It avoids the computation of the

solution for all ! in I ! = [1 ; N ! ], but just in those frequencies contained in the

force. This result is absolutely in concordance with the resolution of the PDE of

the dynamics equation, which states that the forced solution of the equation vi-

brates at the frequency of the force. It is important to remark that the solution is

only concerned with the stationary part of the solution.

If displacements are needed in time domain, Fourier equations (2.23) can be

applied onû(! ) to directly obtainu(t). Notice that for real time applications, two

Fourier transformations (direct and inverse) and the resolution of the equations are

needed. This operation can be summarized in the following equation, where the

symbolF denotes the Fourier Transform and the symbolF � 1 denotes the Inverse

Fourier Transform:

u(t) = F � 1�
F (h) � F (f )

�
: (2.32)

Impulse response

There is also the possibility to operate directly in the time domain if one wants to

avoid the transformation and anti-transformation operations. By applying Fourier's
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Theory, the transfer function̂h(! ) is transformed into the impulse responseh(t),

and the computation of the displacements is done by applying the integral of con-

volution:

u(t) =
Z t

0
f (t � � )h(� )d�; (2.33)

whereu(t) is:

u =

2

6
6
4

u1(t) =
Rt

0 f (t � � )h1(� )d�
...

uNd (t) =
Rt

0 f (t � � )hNd (� )d�

3

7
7
5 : (2.34)

Some advantages of the use of the impulse response theory are the following

ones:

� For real time applications, this is a useful application because the convolu-

tion operation can be done with a minimum cost, and the computation of

displacements in the whole domain is avoided.

� If the data is obtained in time domain, as it usual in most laboratories,

Fourier's transformation and anti-transformation computational cost is avoided.

� The time step to adopt in the impulse response is not limited by the used

mesh size in the �nite element discretization, as in time integration schemes.

The election of the time step is usually related to the physic characteristics

of the problem, as natural frequencies or the force frequency range, which

are usually quite less limiting than for time integration schemes.

2.1.5 Example

A simple example of application for the aforementioned structural dynamic meth-

ods is shown here: displacements on the edge of the bar are computing applying the

harmonic method, the impulse response theory, modal superposition and Newmark

method.

Figure 2.1: 1D Free-�xed Bar
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Young's modulus [10 100] Pa

Density 1 N=m3

Damping ratio [10 50] %

Table 2.1: 1D Free-�xed Bar

Figure 2.2: External applied force

Consider the free-�xed one dimensional bar shown in the �gure 2.1, which is

discretized in 11 elements then containing 12 degrees of freedom. The bar is �xed

on the left side. The mass density has been considered as1N=m3; two different

values of the Young's modulus have been considered being 1 and 10 Pa. The

Kelvin-Voigt time constant� is set in order to obtain a damping factor� of 10%

and50%following the relations:

� =
1
2

�! 0 with ! 0 =
p

� 0; (2.35)

where! 0 is the smallest eigenvalue coming from the resolution of the eigenvalue

problem de�ned in (2.14). The physical properties are summarized in the table

2.1. Both two Young's modulus and damping factors are considered in order to

compare the results with the parametric method proposed in section 2.5.

An external forcef = sin (! ext t) with ! ext = 2 :5 Hz is applied on the free

edge of the bar, where the frequency value has been selected far from the natural

frequencies of the bar. Those are 0.31 Hz for the value of 10 Pa and 1 Hz for the

value of 100 Pa. The force is shown in �gure 2.2.

For the computation of the displacements by the harmonic method, a frequency

range of[0; 25]Hz with a � ! = 1mHz has been considered. The corresponding

time vector has a range of[0; 1000]s with a time step� t = 20ms. The same

discretization has been used to compute the impulse response. The transfer func-

tion and the impulse response corresponding to the computation of the impulse
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Figure 2.3: Transfer function at the edge of the bar. Logarithmic scale

response method are shown in �gures 2.3 and 2.4 respectively.

For the application of the Newmark method, a time step� t = 1 � 1e � 4 has

been used, and the parameter values were� 1 = 0 :25 and � 2 = 0 :5. Also the

Newmark method has been used to compute the displacements in the uncoupled

system coming from the modal superposition method. The parameters values were

kept at� 1 = 0 :25and� 2 = 0 :5 and the time step was increased to� t = .

Finally, in �gure 2.5 a comparison of the obtained displacements for the four

different methods is shown (see �gure 2.6). The transient phase of the displace-

ments is well captured by modal superposition, impulse response and Newmark

methods. On the other hand, the solution computed in the frequency domain only

concerns the steady state solution as expected. Figure 2.7.
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Figure 2.4: Impulse response at the edge of the bar

Figure 2.5: Displacements at the edge of the bar
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Figure 2.6: Detail of the displacements at the edge of the bar

Figure 2.7: Stationary displacements at the edge of the bar
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2.2 Model order reduction techniques

The computational cost of the dynamics equation solution is directly related to the

number of degrees of freedom. For certain applications it can reach millions of

degrees of freedom, what makes unaffordable any classic approach for the prob-

lem. In those cases there is the necessity of the reduction of the computational

complexity of the model. A light difference can be made among MOR techniques

by looking at the goal of the methods: while some methods are interested in re-

ducing the computational cost of the resolution of one instance, other methods are

interested in reducing the computational cost of the resolution for every instance.

This difference makes that the �rst case looks for a reduced basis in a smaller di-

mension, while the second case looks for an approximation of the solution in the

whole parametric domain.

Some of the most used methods in model order reduction are thePOD (Proper

Orthogonal Decomposition)and theRBM (Reduced Basis Method). POD and

RBMalgorithms start generating a certain number of snapshots to explore the space

of the solution in order to �nd a reduced basis of a smaller space. These methods

are classi�ed asa posteriorimethods, as they need to explore the solution space in

order to �nd a reduced one. In opposite to that,PGD is classi�ed as ana priori

method, where the reduced basis is built without sampling the original solution's

space. The strategy followed by thePGD algorithm is to apply an iterative pro-

cess to build the basis of a reduced space, enriching the solution until a prescribed

error is achieved. Thanks to the suitable procedure, it is specially suited for multi-

parameter problems, as it avoids the exploration of the multi-parameter nature of

the space where the solution lives.

2.2.1 Proper orthogonal decomposition

ThePOD is one of the most used model order reduction techniques, widely used

in different domains [85][84]. The strategy of thePOD consists in the sampling

of the full model, collecting the so calledsnapshots. From them, a reduced basis

is extracted in order to build a subspace where the full model can be projected,

expecting that:

Sred � Sfull (2.36)

whereSred is the size of the reduced space andSfull is the size of the full model.

The size of the reduced space can be chosen by truncation, and the error of the
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approximation will depend on this truncation.

PODmethod searches a solution in the form:

u(x; t ) =
NX

n=1

an (t)� n (x); (2.37)

wherean are time dependent coef�cients and� are basis elements.

To build the POD functions, �rst data is collected in matrixU with sizeNn �

N t , whereNn is the space discretization size andN t is the number of time steps:

U =

2

6
4

j j j

u1 u2 ::: ut

j j j

3

7
5 : (2.38)

A correlation in the data is searched in order to �nd relations which allow to

express the problem in a reduced space. The following eigenvalues problem must

be solved:

CA = � A ; (2.39)

whereC is the correlation matrix andA collects the coef�cients. The basis can be

computed as follows:

� n (x) =
1

N t � n

N tX

k=1

ak
nuk (x): (2.40)

Notice that the previous equation produces normalized functions. Theenergy

corresponding to each function� n is given by� n , so usually a truncation is done

by regarding the sorted eigenvalues.

2.2.2 Reduced Basis Method

The RBM is a similar technique to thePOD, but in an enrichment process idea

[19]. The elements of the reduced space are obtained in an iterative algorithm.

Each element is searched in order to maximize the best-approximation error of

the reduced space. The reduced basis is computed in anof�ine phase. In the

onlinephase, the extension of the basis is computed in the reduced space, where is

expected to be computationally inexpensive.

57



A fundamental hypothesis is made by assuming that an approximation of the

solution for the parameterp:

up �
nX

i =1

� i ei 8p 2 (p� ; p+ ) (2.41)

is possible in the reduced space of sizem:

up �
mX

i =1

� i (p)ei ; (2.42)

wherem � n.

To build the basisB = ( e1; :::; em ), �rst a learning phase is made. It is, several

snapshots or resolutions of the problem for different values of the parameterp

are computed. Then, by truncation of the eigenvectors and Galerkin projection a

reduced basis is built. Based on the error of the approximation, the basis can be

expanded. The computation of a new term is done for a concrete parameter value.

This value is found where the error indicator is maximized.

Finally, in theonlinephase, a reduced system of sizemmust be solved.

Both POD andRBM, even if they are able to reduce the size of the problem,

they cannot built an approximation of the solution in the parametric space, but the

basis that represents the solution in the parametric domain.

2.2.3 Proper Generalized Decomposition

The basis of thePGD algorithm is the construction of the solution as a separated

representation. Separated representations are quite common in many problems.

One of the possible solutions for some ordinary or partial differential equations of

second order as heat or wave equations is to follow the method of separation of

variables, where the solution is sought as a product of time functions and space

functions asu(x; t ) = X (x)T(t). Also POD gives a solution in a separated rep-

resentation as shown in 2.2.1. The separated representation gives a simple form

of solution, where particular solutions are just a parametrization of a general so-

lution. The computation of this evaluation of the general solution is inexpensive,

and presents an interesting tool for certain applications as optimization or real time

computations.

PGD is ana priori method, it is, the approximation of the solution is built

without exploring the whole parametric domain. By an enrichment process, the
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approximation of the solution is built in a separated form, adding terms to the solu-

tion until a required error is reached. The terms of the approximation are computed

by solving aPDE, but in a wise process that transforms the multi-domain problem

into different 1D problems. The price to pay is the introduction of a nonlinearity

into the equations, which is solved by an alternating direction scheme. The PGD

solution takes the form:

u(p1; : : : ; pq) =
nX

i =1

� 1(p1) : : : � q(pq); (2.43)

whereqparameters are considered and the functions� q living on spacesVq depend

each one on a parameterpq. The tensor product de�nes a multidimensional space

built from: V1
 ; : : : ; 
V q, where the symbol
 denotes the tensor product.

The algorithm of the PGD is presented in section 2.3 by means of an exam-

ple in a structural dynamics problem, but the method has been applied in several

other physical �elds. The interested reader is referenced to [25] [30] [29] for more

detailed information.

2.3 Generalized transfer function

The goal of this section is to compute the GIR which allows to compute in real

time the displacements caused by an unknown external force, for any value in the

considered range for some preselected parameters. In section 2.1.4, the computa-

tion of the transfer function and the impulse response is shown. By applying the

PGD method, a parametric form of the transfer function and the impulse response

can be computed.

Generalized solutions are suitable to be computed by the PGD method when

more than a few parameters are considered in the problem. The best framework for

the application of the PGD method in structural dynamics is the harmonic analysis,

as it is shown in 2.1.4 the solution is already separated in frequency. Hence, by

applying the PGD method to obtain a parametric solution of the harmonic equation

the GTF can be obtained. Finally, to obtain the GIR, it rests to apply the inverse

Fourier Transform.

As an illustrative example, the dynamic problem 2.1.5 is solved by comput-

ing the transfer function applying the PGD method considering three parameters:

space, frequency and Young's modulus. This parametric function is what is called

GTF. Frequency parameter, as show in 2.1.4 can be transformed to time domain by
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using Fourier's Theory. Applying a unit force for each considered frequency in the

range[! min ; : : : ; ! max ], the transfer function is computed in separated form, and,

by applying (2.23), the impulse response is also obtained in separated form.

The solution in the PGD framework is sought assuming that an approximation

can be computed in separated form as:

h(!; E ) =
nX

i =1

X i Wi (! ) Ei (E ); (2.44)

whereX is a vector that collects the nodal generalized space functions,W is a

function which depends on the frequency! 2 I ! andE is a function which depends

on the Young's modulusE 2 I E .

Recover (2.28) and remember thatM , C andK come from space �nite element

discretization; now the space problem can be extended to the other two considered

dimensions, frequency and Young's modulus. The frequency parameter appears

explicitly in the formulation, and the dependence on the Young's parameter will

be written asK (E). The weighted residual form of the equation with a Galerkin

projection can be written as:

Z

I !

Z

I E

qH Ah � qH f d! dE = 0 ; (2.45)

whereA is:

A = � ! 2M + i ! C + K (E): (2.46)

By integrating over the parametric domains one arrives to:

Bh = f ; (2.47)

where termB is now a tensor operator that reads:

B = M s 
 M ! 
 M E + Cs 
 C ! 
 CE + K s 
 K ! 
 K E ; (2.48)

where the subscripts indicate the parametric dependence, and the force term is

written as:

f = P s 
 f ! 
 f E : (2.49)
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The PGD algorithm is applied to look for a solutionĥ in separated form where

the �rst n � 1 terms are known and the termsR, S y T belong to the iterationp

and are unknown:

ĥ(!; k )n;p =
n� 1X

i =1

X i Wi (! )E i (k) + R ST: (2.50)

The test function is written as:

h � = R � ST + R S� T + R ST � : (2.51)

Assuming knownS and T, and substituting (2.51) and (2.50) in (2.45), the

algorithm computes the functionR :

Z

W � E
(R � ST)( � ! 2M + i ! C + K )(R ST) =

�
Z

W � E
(R � ST)( � ! 2M + i ! C + K )(

n� 1X

i =1

X i Wi (! )E i (k))+

Z

W � E
(R � ST)f : (2.52)

If the terms of the equation are expanded, the following equations can be writ-

ten:

Z

W � E
(R � ST)( � ! 2M )(R ST) +

Z

W � E
(R � ST)(i ! C)(R ST)+

Z

W � E
(R � ST)(K )(R ST) =

�
Z

W � E
(R � ST)( � ! 2M )(

n� 1X

i =1

X i Wi (! )E i (k))

�
Z

W � E
(R � ST)(i ! C)(

n� 1X

i =1

X i Wi (! )E i (k))

�
Z

W � E
(R � ST)(K )(

n� 1X

i =1

X i Wi (! )E i (k)) +
Z

W � E
(R � ST)f ; (2.53)

where the integrals over! andk are known and can be computed (see Appendix

1), obtaining:
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� R � MR l1! l1k + R � iCR l2! l1k + R � KR l3! l3k =

+ R � M
n� 1X

i =1

X i r1i! r1ik � R � iC
n� 1X

i =1

X i r2i! r1ik

� R � K
n� 1X

i =1

X i r3i! r3ik + R � Fx � ! � k : (2.54)

From (2.54),R can be obtained.

For the computation ofS, the already computedR and keepingT as known

are used:

Z

W � E
(R S� T)( � ! 2M)(R ST)

+
Z

W � E
(R S� T)(i ! C)(R ST)+

Z

W � E
(R S� T)(K )(R ST) =

�
Z

W � E
(R S� T)( � ! 2M)(

n� 1X

i =1

X i Wi (! )E i (k))

�
Z

W � E
(R S� T)(i ! C)(

n� 1X

i =1

X i Wi (! )E i (k))

�
Z

W � E
(R S� T)(K )(

n� 1X

i =1

X i Wi (! )E i (k))+

Z

W � E
(R S� T)f ; (2.55)

where now the integrals overx andk can be computed (see Appendix 1):

Z

W
S� (� ! 2)Sl1x l1k +

Z

W
S� i! Sl 2x l1k +

Z

W
S� Sl3x l3k =

Z

W
S� ! 2

n� 1X

i =1

Wi (! )r1ix r1ik

�
Z

W
S� i!

n� 1X

i =1

Wi (! )r2ix r1ik
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�
Z

W
S�

n� 1X

i =1

Wi (! )r3ix r3ik +
Z

W
S� F! � x � k ; (2.56)

from whichS can be computed.

For the computation ofT, the already computedR andS are used:

Z

W � E
(R ST � )( � ! 2M)(R ST)+

Z

W � E
(R ST � )(i ! C)(R ST)+

Z

W � E
(R ST � )(K )(R ST) =

�
Z

W � E
(R ST � )( � ! 2M)(

n� 1X

i =1

X i Wi (! )E i (k))

�
Z

W � E
(R ST � )(i ! C)(

n� 1X

i =1

X i Wi (! )E i (k))

�
Z

W � E
(R ST � )(K )(

n� 1X

i =1

X i Wi (! )E i (k))+

Z

W � E
(R ST � )f : (2.57)

Computing the integrals overx and! one obtains:

�
Z

E
T � T l1x l1! +

Z

E
T � T l2x l2! +

Z

E
T � T l3x l3! =

Z

E
T �

n� 1X

i =1

E i (k)r1ix r1i!

�
Z

E
T �

n� 1X

i =1

E i (k)r2ix r2i!

�
Z

E
T � k

n� 1X

i =1

E i (k)r3ix r3i! +
Z

E
T � Fk � x � ! ; (2.58)

whereT can be easily calculated.

The algorithm is stopped when a prescribed error� is achieved:

� (n) =
kX n (x)Wn (! )En (k)k
kX 1(x)W1(! )E1(k)k

(2.59)
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2.4 Generalized impulse response

The GIR is an impulse response in parametric form. By means of thePGD algo-

rithm the GTF has been obtained in the previous section 2.3. Here, the GIR, which

is the version of the GTF in time domain, is obtained. The equivalence between

the GTF and the GIR is:

h(t; E ) = F � 1

 
nX

i =1

X i Wi (! ) Ei (E )

!

=

nX

i =1

X i F � 1 (Wi (! )) Ei (E ) =
nX

i =1

X i Wi (t) Ei (E ); (2.60)

whereF � 1 represents the inverse Fourier transform. Notice that the Fourier trans-

form is applied only on those functions which depend on the time. The cost of

transforming and anti-transforming is then independent of the number of consid-

ered parameters.

2.5 Generalized displacements

GTF and GIR can also be used to compute parametric displacements in frequency

domain or in time domain. This possibility can be useful in optimization or moni-

toring problems: the exploration of the multi-dimensional displacements is a sim-

ple parametrization of the solution. Once the GTF and the GIR are computed,

obtaining the displacements value for the considered parameters is an inexpensive

post-processing. In this section it is shown how the parametrization of the general

solution is done and some interesting aspects.

2.5.1 Generalized displacements in frequency space

Consider that the GTF is already computed for the parameters frequency and Young's

modulus as in (2.44), and the displacements caused by an external forcef̂ (! ) are

required in a parametric form. The required displacements can be obtained by

applying 2.1.4, which in parametric form is equivalent to:

û (!; E ) =
nX

i =1

X i Wi (! ) Ei (E ) � f̂ (! ) =
nX

i =1

X i

�
Wi (! ) � f̂ (! )

�
Ei (E )
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=
nX

i =1

X i �( ! )Ei (E ): (2.61)

Notice that the computation of the displacements involve only the multiplica-

tion of the force by the functions depending on! as :�( ! ) = Wi (! ) � f̂ (! ). The

computation of the parametric displacements is then independent of the considered

number of parameters.

Imagine now that one is interested on the amplitude of the displacements for

some value of the Young's modulus parameter and for a certain degree of freedom.

The corresponding index for the selected degree of freedom is denoted byj x , and

j E the corresponding index for the selected value of the Young's modulus param-

eter, while the! parameter is set free. Then, the displacements can be obtained

from:

û j x ;j E =
nX

i =1

X j x
i � i (! ) Ej E

i (E ); (2.62)

whereû stores the complex displacements associated to the preselected parameters.

For any other parameter combination, the sum in (2.62) must be computed again.

Obviously, this operation is inexpensive in comparison with the whole resolution

of the dynamic equations.

2.5.2 Generalized displacements in time domain

In a similar way, parametric displacements in time domain can be obtained. Para-

metric displacements in time domain bring some advantages over the equivalence

in time domain. Frequency analysis is only concerned with the stationary response

of the structure, thus the temporary response is missing, while the time domain

computation of displacements by using the impulse response theory the causality

is assured.

Consider the already computed GIR (2.60) from section 2:

h(t; E ) =
nX

i =1

X i Wi (t) Ei (E ): (2.63)

Consider now an external forcef (t) applied on the structure. The displace-

ments are computed by applying the convolution operation with the functions that

depend on the time:
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u(t; E ) =
nX

i =1

X i Wi (t) Ei (E ) � f (t) =
nX

i =1

X i (Wi (! ) � f (t)) Ei (E )

=
nX

i =1

X i �( t)Ei (E ); (2.64)

where the symbol� represents the convolution operation. The convolution op-

eration can be considered computationally inexpensive, and it is shown that the

parametrization of the general solution is also a trivial computation. The separated

form of the solution for the displacements in time domain is the same as in the fre-

quency domain, then the evaluation of the solution for concrete parameters is done

by following the same procedure, and by the same computational cost. These char-

acteristics make the present approach an interesting alternative in fast structural

dynamics computation.

2.6 Results

Consider the free-�xed one dimensional bar shown in �gure 2.1, used in section

2.1 with the physical properties in the table 2.1. The PGD was applied to obtain a

parametric solution following the procedure developed in section 2.3, considering

the parameters: frequency, Young's modulus and damping. The frequency space

was discretized in a range of [0 25] Hz, with an interval of 1 mHz. The Young's

modulus space was discretized in a range of [1 12] Pa with an interval of 1 MPA.

Notice that both the two values of the Young's modulus considered in 2.1.5 are

in the considered parameter range of the PGD solution. The discretization of the

damping has been done considering the Kelvin-Voigt time constant� in a range of

[0.1, 1.6] with a step of 0.1, which covers a damping ratio between3%and159%.

In the �gure 2.8 the real and imaginary parts of the 4 �rst frequency modes ob-

tained by the PGD method are shown. The �gure 2.9 shows the real and imaginary

parts of the 4 �rst Young's modulus parameter modes. The �gure 2.10 shows the

real and imaginary parts of the 4 �rst damping factor parameter modes.

In the �gure 2.11, the parametrization for different values of the Young's mod-

ulus parameter and the damping ratio is shown. Notice that this parametrization

leads to the transfer function of the structure, where the amplitude of the response
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Figure 2.8: Frequency functions

Figure 2.9: Young's modulus functions
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Figure 2.10: Damping functions

is related to the frequency. The results are shown for the node placed in the right

edge of the bar. In the �gure 2.12 the corresponding impulse responses to the

previous transfer functions are shown. Remember that the impulse responses are

obtained by applying the Inverse Fourier Transform.

Finally, the impulse responses are used to compute the displacements. The ex-

ternal applied force is the same as in 2.1, it is,f e = sin (!t ) were! = 2 :5Hz. Dis-

placements are compared with the solution obtained by applying Newmark method

in �gure 2.13.
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Figure 2.11: Transfer function for different values of Young's modulus and damp-

ing ratio

Figure 2.12: Transfer function for different values of Young's modulus and damp-

ing ratio
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Figure 2.13: Displacements obtained by the PGD method compared with a New-

mark method solution

2.7 Fractional damping

Fractional calculus is an ancient and not much studied part of mathematics. By the

end of the 17th century, differential calculus was developed and fractional deriva-

tives theory came with it. In comparison with differential calculus, fractional cal-

culus has not been much studied, despite certain famous mathematicians have writ-

ten about it. In the last decades, some natural processes have been simulated with

fractional calculus, and them have been demonstrated more precise than classical

differential calculus. In this section, fractional calculus is applied to provide a bet-

ter approximation tool for the damping term. The application of fractional calculus

provides an extra parameter to better represent the dissipation of the forces which

are comprehended on the damping term.

Leibnitz and Marquis de l'Hôpital, introducing differential calculus notation,

are widely considered as the �rst who studied fractional calculus, when they thought

about a non-integernth derivative. Other mathematicians, as Euler, Laplace or

Abel, developed theories about fractional calculus, but still nowadays there are

discrepancies when de�ning fractional derivatives. In the" Traite du Calcul Differ-

entiel et du Calcul Integral" , Lacroix showed the deduction of:

d
1
2 v

dv
1
2

=
2
p

v
p

�
: (2.65)

First application of fractional calculus was provided by Abel when he was
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working on the solution of the tautochrone curve. Abel found a solution using

integrals and derivatives of non-integer orders. By the other hand, Liouville is con-

sidered to be the �rst who gave a formal de�nition of fractional derivative concept.

Starting for a known formula:

dm

dxm eax = am eax ; (2.66)

he developed his calculus arriving to thefractional derivative of a power function:

dv

dxv f (x) =
infX

n=0

cnavean x : (2.67)

Two of the most used fractional de�nitions are shown below in Eq. (2.68) and

(2.70) . Main difference between them is the consideration of the fractional deriva-

tive of a constant (except when it is 0 value). Caputo's considers zero the fractional

derivative of a constant, while Grünvald-Letnikov consider that it depends on some

global space near the constant.

� Grünvald-Letnikov equation is:

aD �
x f (x) =

1
h�

x � a
hX

m=0

(� 1)m g�
m f (x � h); (2.68)

evaluated in the intervalx 2 [a; b]. h is the distance between two nodes of the

�nite difference discretization and the coef�cientg�
m is de�ned as follows:

g�
m =

�( � + 1)
m!�( � + 1 � m)

; (2.69)

where� is the Euler's Gamma function.

� Caputo de�ned his equation as:

C
a D �

x f (x) =
1

�( n � � )

Z x

a
(x � � )n� � +1 f (n) (� ); (2.70)

wheren � 1 < � � n andf (n) is the integer order derivative of ordern.

Caputo's formula provided a useful tool, as the derivative of a constant is

equal to zero in his formula, and it let solve several problems that previous

formulae couldn't or had dif�culties.
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2.7.1 Fractional damping as a parameter

On structural dynamics, fractional calculus can be interesting as it provides a more

complete tool than the concept of complex damping. This comes from the fact that

complex damping is a particular case of fractional damping with� =1.

Consider the model problem in section 2.1, where a Kelvin-Voigt linear visco-

elastic model was assumed. Let us now add the fractional derivative to the viscous

behaviour as:

� = D : (� + �
@� �
@t�

); (2.71)

where instead an integer differentiation of the velocity a fractional differentiation

is considered. The discretization of the equation leads to the equation (notice that

the same procedure as in 2.1 is followed):

M •u(t) + C
@� u
@t�

+ Ku (t) = f (t): (2.72)

If the force can be expressed as a harmonic term, or a sum of harmonic terms,

the transformation of the damping term to the space of the frequency leads to a

complex term:

C(i ! ) � ; (2.73)

so �nally the discrete dynamics equation with fractional damping is written as:

(� ! 2M + (i ! ) � C + K ) ĥ(! ) = P sf (! ); (2.74)

where the complex numberi can be written as:

i � = cos
�
2

� + i sin
�
2

� = � + i �: (2.75)

Despite of the complex de�nitions of the fractional derivative, the application

in the frequency domain leads to a very simple term. To better understand the

role played by the fractional parameter, a phasorial representation 2.14 gives us a

good tool to illustrate it. Analysing it with phasorial calculus, inertial force (1) and

stiffness (2) are in phase with the force (f), and complex damping is at an angle

of 90 degrees (3). Fractional damping can give a different phase angle. Varying

the modulus and the angle of the damping term can make an adjustment of the

damping effect.
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Figure 2.14: Phasorial comparison on dynamics equation

Complex stiffness and Rayleigh damping are commonly used as parameters

to consider the damping effects in structures. Complex stiffness is not depending

on the velocity nor the frequency, and obviously, could be not enough precise to

simulate some dynamic behaviours. Rayleigh damping considers the damping as a

linear combination of the stiffness and mass matrices. This consideration involves

certain problems as it means that the structure is viscous and linear. Applying

fractional calculus, is possible to correct in some way the assumption made on

considering the damping as a viscous effect, as it evaluates not the whole frequency

but some fractional part of it. Equations can then be solved by following the same

procedure detailed in 2, where the added fractional parameter does not imply longer

complications.

2.7.2 Results

Variation of alpha and damping coef�cient produces a sort of curves that can rep-

resent the behaviour of the material more properly than simple complex term. For

the evaluation, the same bar as in 2.1.5 has been chosen to evaluate and illustrate

the results. The displacements showed in the �gures belong to the edge of the bar.

In the graphic 2.15 different values for alpha and the damping coef�cient are

shown. Alpha values have been taken from 0.5 to 1, and, for each alpha value, the

value of the damping coef�cient has been varied from 16 to 26.

In the graphic 2.16, comparison is made choosing 6 damping coef�cients, and

varying alpha values from 0.5 to 1 on each graphic:

In �gure 2.17, similar behaviour of combination of alpha and damping coef-
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Figure 2.15: Comparison �xing alpha and varying the damping coef�cient

Figure 2.16: Comparison �xing the damping coef�cient and varying alpha
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Figure 2.17: Different simulation of damping effect varying alpha and damping

coef�cient values

�cient term are shown. Next �gure tries to present some different proposals to

simulate the behaviour of damping effect of a structure. In the case of a more

precise simulation is searched, a proper combination of damping and fractional

coef�cient can be proposed to de�ne the behaviour of the model:
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Chapter 3

Monitoring of forces

Monitoring and control of structures is a key point in many industrial applications.

The increase of automation process in the industry demands fast and accurate al-

gorithms capable of monitoring the dynamics of the robots or structures and posi-

tioning them in a certain con�guration.

Soft robots and soft materials operated by robots are some of the issues nowa-

days in the simulation �eld. The nonlinearities arising from these problems or the

required response ratio are a still a challenge and an object of several publications

per year.

The impulse response theorem was used in Chapter 2 to solve the computa-

tional time issue. The mathematical operation which arises from the impulse re-

sponse theory is the convolution. It is easy to implement and it's a fast operation

in terms of computational cost, as it only involves sums and multiplications. The

objective of this section is to apply the impulse theorem to compute in real time the

required forces to achieve a certain con�guration in displacements.

In addition, in Chapter 2 the impulse response was computed in parametric

form. The parametric form brings enormous possibilities for real time applications,

optimization, etc. To keep these advantages in the inverse problem, the GIIR is

computed using the GIR and keeping the parametric structure. The formulation

of the impulse response theory is used and the PGD, the model order reduction

technique explained in section 2.2.3 is applied in order to obtain the GIIR.

The advantage of using the GIR is double: the pre-computed solution allows

optimization of the forces, material selection, etc. for different displacements com-

positions, and allows to compute in real time the required force to control the dis-

placements under desired values.

While the problem of computing the displacements from known forces can be
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well established by the discretization of the dynamics equation, the inverse problem

has theoretical and practical issues that complicate the resolution. The resolution

in the frequency domain can compromise the real time requirements as it demands

direct and inverse transformation of the data, and despite of the computational

speed of the Fast Fourier Transform in some applications could not be fast enough.

The resolution of the problem in the time domain leads to the resolution of the

convolution problem, which is usually an ill-posed problem and numerically ill-

conditioned.

Inverse problems are widely studied, as they arise in many physical problems:

most of the physical processes are modelled by a function which links inputs (heat

sources, forces, etc.) with outputs (temperature, displacements, etc.). The obtain-

ing of the input when the output is known in the integral of convolution results an

inverse problem called deconvolution, and it usually needs numerical treatment to

be solved. There is also the possibility of obtaining the function when both the

input and the output are known. This is the main interest in system identi�cation

�eld, which is also classi�ed as an inverse problem.

In this section a method to solve the problem of real time deconvolution is

presented. The inverse of the impulse response is computed in anof�ine phase, and

the computation of the force is done in theonlinephase by applying the convolution

operation.

While the computation of the GIIR is also an inverse problem, the special struc-

ture of the PGD allows to avoid some inconveniences of the numerical methods

which arise in the resolution of the inverse problem. These methods involve some

parameters that are unknown and dif�cult to �nd, and they can affect considerably

the solution, as the regularization parameter in the Tikhonov method or the relax-

ation parameter in the Landweber method. Avoiding the use of these parameters

can be related to the Truncated Singular Values Decomposition.

3.1 Formulation of the problem

Let us consider the impulse response obtained following 2.1.4, and take from it the

function at a single degree of freedom, i.e. the centre of the bar used in section 2.1.

Let us also recover the de�nition of the convolution integral (1.2) to compute the

displacements in the centre of the bar when an external force is applied at the edge
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of the bar, reading:

uc(t) =
Z t

0
f (t � � )hc(� )d�; (3.1)

where the subscript(:)c denotes the node placed in the centre of the bar.

Obtainingf from (3.1) is a deconvolution problem which has been exhaus-

tively explained in 1, and where speci�c numerical methods need to be applied.

Obtainingf from (3.1) in real time means the resolution of an inverse problem per

time step, which is unaffordable for most of the classic methods.

The approach used in this thesis is to avoid the real time deconvolution by

transferring it to anof�ine phase, and kept a convolution operation for theonline

phase. For that, the formulation is slightly rewritten. Instead of computingf in real

time, what is computed is the inverse of the impulse response in anof�ine phase, in

a way that, once it is computed, the computation of the forces in theonlinephase

is done by a convolution operator as:

f (t) =
Z t

0
uc(t � � )gc(� )d�; (3.2)

whereg is the inverse impulse response. It is evident to deduce from this equation

the relation betweenh andg: one function is the inverse of the other in the sense

of the convolution operation. The inverse property is de�ned in the convolution

theorem by:

� (t) =
Z t

0
hk (t � � )gk (� )d�; (3.3)

wherek = 1 ; : : : ; Nd, and beingNd the number of degrees of freedom follow-

ing the notation in 2.1. The position in the integral of the functionsg andh is

interchangeable by the properties of the integral of convolution.

The reader may imagine the possibility of obtaining the inverse impulse re-

sponse in the frequency domain rather in time domain. Then, the equation (3.3)

whereg is de�ned is transformed to the frequency domain, obtaining:

� (! ) = ĥ(! )ĝ(! ): (3.4)

Recovering the de�nition of the transfer function̂h, ĝ is de�ned then as:

ĝ(! ) = � ! 2M + i ! C + K ; (3.5)
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which is a not bounded function, asĝ(! ) ! 1 . Therefore, the inverse impulse

response de�ned asF � 1(ĝ) does not exist, as Fourier inverse transform is not

de�ned for not bounded functions.

By the other hand, this method allows to compute the force in real time by

paying the cost of direct/inverse transformations per time step. Measured displace-

ments in time domain must be transformed to the frequency domain, then the force

must be computed and �nally it must be transformed back to the time domain. This

is possible as longer as the force vector is bounded, which is common in structural

dynamics. This operation can be summarized in the following equation:

f (t)p = F � 1

 
F (up)
F (h)

!

; (3.6)

wherep denotes the current time step.

3.2 Generalized inverse impulse response

In Chapter 2, where the GIR was presented based in the impulse theory, the ob-

jective was to compute the displacements in real time, when a external forced is

applied in the structure. It was computationally inexpensive by using the convolu-

tion operation. In this Chapter, the objective is the opposite one: to compute the

force that is causing some known displacements, or, in another point of view, which

force must be applied to obtain a certain con�guration in displacements. The gen-

eral idea of the approach is to keep the advantages of the impulse response theory

while avoiding the deconvolution in real time. For that, the GIIR is pre-computed,

and used in real time to obtain the required force by convolution. This two-steps

method is detailed as:

� Compute �rst the GIIR from the equation:

� (t) =
Z t

0
h(t � � )g(� )d�; (3.7)

� Compute then in real time the required force by applying

f (t) =
Z t

0
u(t � � )g(� )d�: (3.8)

To compute the GIIRg the GIRh must be obviously known. The approach

followed in this work is to compute the GIRh, and then use it to compute the GIIR

g.
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3.2.1 Dual problem. Flexibility method

In the monitoring problem the GIR was obtained. A physical model and its equa-

tions, discretized by the �nite element method or the stiffness method, and the

harmonic analysis where used to that end. To obtain the GIIR two approaches can

be followed: formulate the problem in the dual version, called �exibility method,

or compute it from the GIR solving the arising inverse problem.

In the direct problem, one can take pro�t of the impulse response theory to

compute the displacements without cost. In the inverse problem, in this section the

same idea is applied: a convolution operation to compute the force in real time.

Therefore, if the convolution operation comes from the stiffness method, where

displacements are computed from external forces, formulating the dual problem

one will expect to obtain a convolution to compute the required forces.

The �exibility method is nearly reduced to academic lessons in static compu-

tation of structures. The laboriousness to automatize the formulation has reduced

the use and research of this method. However, some works have been published

on the development of the method, by extending the formulation to the structural

dynamics �eld [37][39], but to the knowledge of the author, no transfer function or

impulse response has been computed yet by applying those methods.

Following a standard formulation [40], the matrix form of the problem can be

written as:

Af = u; (3.9)

whereA is known as the �exibility matrix, with a similar role as the stiffness

matrix in the stiffness method.

Consider the bar in section 2.1, which is discretized by using the classic beam

theory: two elements are considered, with lumped mass in the edges. The �exibil-

ity matrix is then:

A =

"
L 3

3EI
5L 3

6EI
5L 3

6EI
8L 3

3EI

#

: (3.10)

If dynamic forces are considered, the force term can be written as:

f =

"
� m•u2

� m•u3 + F �

#

: (3.11)

The previous arrangement considers that the acting forces on the nodes are the

inertial ones and the external applied force in the edge. Rearranging the equations
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Figure 3.1: Comparison between Transfer Function and Inverse Transfer Function

in order to place the unknowns on the right hand side of the equations and the

known variables on the left hand side of the equation one arrives to:

"
A11m2! 2 � 1 A12

A21m2! 2 A22

# "
u2

F

#

=

"
� A12m3! 2

A22m3! 2 + 1

#

u3; (3.12)

which in fact are the same equations than the direct stiffness method, isolating as

unknown the displacements at point3 instead of the forces. Solving for a unit

displacement at node3 for each frequency the inverse transfer function is obtained.

This transfer function relates displacements on node3 with the force applied in the

edge.

The �gure 3.1 reveals the relation between the inverse transfer function and the

transfer function computed by the harmonic method for the same bar.

The obtained transfer function is the inverse of the transfer function as ex-

pected. One would want now to compute the corresponding impulse response,

which is obtained by applying the inverse Fourier Transform. Here appears one

of the reasons because a deconvolution problem must be solved: Fourier's inverse

transform can not be applied because the obtained function is not bounded; on the

contrary, it tends to in�nity: g ! 1 when ! ! 1 . Rembeber that Fourier's

theory is applied on integrable functionsf satisfying:

Z 1

�1
jf (x)jdx < 1 : (3.13)

3.2.2 Training

The GIIR is computed from the de�nition of the inverse of a function in the convo-

lution theory. This de�nition was presented in (3.3). The approach for the compu-
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tation of the GIIR is to minimize the least squares problem to �nd the best approx-

imation ofg:

� =
LX

l=1

(h � g � � )2: (3.14)

A training set is proposed in order to improve the information under the least

squares minimization. As the GIR is available, parametric displacements can be

computed. A set of displacements are computed by following:

ul = f l � h; (3.15)

where the forces are created synthetically as:

f i = sin (wi t) wi = [ ! min ; : : : ; ! max ]: (3.16)

The function to minimize is then:

� =
LX

l=1

(ul � g � f l )2 + �S (g); (3.17)

where" � " denotes the convolution operator applied component to component.

Considering a numberm of training sets, eachu ` is computed applying equation

(1.2) for different synthetic forcesp` for ` = 1 ; : : : ; m. The matrix form of the

solution to the Tikhonov's regularization reads:

g = ( U T U ) � 1U T p; (3.18)

whereU is built fromu l (t), which contains the functionsX i , Ei and the functions

� i which are the Toeplitz matrix built from� i , D comes from the regularization

condition imposed overg(t) andp is the vector coming frompl (t).

3.2.3 Avoiding regularization with the separated representation

The separated construction of the solution implemented in the PGD algorithm al-

lows to avoid the use of the regularization as proved in section 3.3. In fact, the bad

conditioning of the Toeplitz matrix inversion can appear in the PGD algorithm, but

the convergence can be achieved during the enrichment process. The approach can

be related to the Truncated Singular Values Decomposition detailed in section 1.2.
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This method expresses an approximated solution as a decomposition in singular

values and singular right and left vectors as:

~f =
nX

i =1

� T
i u
� i

� i : (3.19)

High singular values are associated with high frequencies, which are the most

numerically affected by noise. A precise truncation can eliminate the spurious in-

formation provided for singular vectors associated to high frequencies. Notice that

no regularization parameter is used in the TSVD. The PGD enrichment process

computes �rst the modes associated with moreenergy, so an appropriate stop cri-

terion can avoid the introduction of spurious modes. Farther research must be done

in order to relate PGD and TSVD solutions.

3.2.4 Computation of the generalized inverse impulse response

To obtain the GIIR from equation (3.17), a training set of forces and displacements

must be known in advance. Ifm training sets are computed, the minimization

problem in separated form reads:

�( g) =
mX

`=1

  
nX

i =1

X i (Wi (t) � p` (t)) Ei (E )

!

� g(t; E ) � p` (t)

! 2

: (3.20)

The displacements have been introduced in the parametric form, which has

been computed by doing:

u ` (t; E ) = p` (t) � h(t; E ) =
nX

i =1

X i (x) (Wi (t) � p` (t)) Ei (E ): (3.21)

If one is interested in the computation of the displacements in some nodes, for

example, those points where the displacements will be measured, a subset of points

can be extracted fromX and collected in� . The corresponding subset ofg is noted

as�g. The resulting minimization equation is written as:

mX

`=1

 
nX

i =1

� i � i;` Ei

! T  
nX

i =1

� i � i;` Ei

!

� �g =
mX

`=1

 
nX

i =1

� i � i;` Ei

! T

p` ; (3.22)

where:

� i;` = Wi (t) � p` (t): (3.23)
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Introducing the notation:

� i;` (t) = � i;` (t)p` (t); (3.24)

it results:

mX

`=1

 
nX

i =1

� i � i;` Ei

! T  
nX

i =1

� i � i;` Ei

!

�g =
mX

`=1

nX

i =1

� i � i;` Ei ; (3.25)

where� and� are the Toeplitz matrices of� and� respectively. The �nal number

of operators is equal ton2 � m.

Now the PGD algorithm is applied to �nd a separated solution of�g in the form:

�g(t; E ) =
rX

k=1

ak (x)� k (t)� k (E ); (3.26)

wherea, �( t) and� (E ) meaning is equivalent to� , W andE in h. The computa-

tion of �g can be done by following the same procedure as in 3, but for the sake of

clarity a detailed process is also presented in Appendix 2.

3.3 Results

Consider the structure in the �gure 3.2, which consists in a square plate of size

1� 1 with a circular hole of radius 0.5m. The structure has been discretized with a

mesh containing 124 elements and 78 nodes. As boundary conditions, the structure

is �xed in the bottom of the surface and the forces are applied on the left side. The

mass density is� = 1kg=m3, and the stiffness is considered as a parameter with

possible values in the rangeE 2 I E = [10; 200]Pa with an interval of discretization

of � E = 10Pa. The structural parameters are detailed in table 3.3. The Kelvin-

Voigt time constant� is set in order to obtain a damping factor� of 10%.

Young's modulus 100 Pa

Density 1N=m3

Damping ratio 10%

In theof�ine phase, both GIR and GIIR are computed. The computation of the

GIR is done by considering the frequency and the stiffness as parameters in the
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Figure 3.2: 2D plane stress structure

PGD algorithm. The frequency is discretized by considering a range! 2 I ! =

[0; 500]Hz, with an interval of 10mHz. This discretization leads to a time step

� t = 1ms and a time length of 100s after the Inverse Fourier Transform. 15 PGD

modes have been considered and a tolerance of7:9 � 10� 3 has been achieved.

For the computation of the GIIR a training set of 10 forcesf = cos(! tr t) has

been considered. This set of forces covers a range of frequencies! tr 2 I ! =

[1; 50]Hz, which pretends to represent the range of frequencies that could be ap-

plied on the structure. A time window of 350 milliseconds has been considered for

the computation. The PGD solution of the GIIR results in a parametric solution

containing 80 modes and an achieved tolerance of 0.22.

Figures 3.3, 3.4 and 3.5 show the space, frequency and Young's modulus modes

of the DIR. Figures 3.6 and 3.7 show the frequency and Young's modulus modes

of the GIIR.

In the online phase displacements and forces can be computed. Three forces

classi�ed as low, medium and high frequency (respect to the training frequency

range) are randomly created as a combination of simple sinusoidal signals. The am-

plitude of the conforming signals are randomly selected from a range of[0:1; 2N,

and the frequencies are randomly selected from a range of frequencies[1; 5]Hz for

Force 1,[3; 25]Hz for Force 2and[4; 50]Hz for Force 3. The �nal selected spectrum
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Figure 3.3: First 4 space modes of the generalized transfer function

Figure 3.4: First 4 frequency modes of the generalized transfer function in loga-

rithmic scale
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Figure 3.5: First 4 Young modulus modes of the generalized transfer function

Figure 3.6: First 4 time modes of the GIIR
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Figure 3.7: First 4 Young modulus modes of the GIIR

is detailed in table 3.1 and the three forces are shown in �gure 3.8.

Previous to the computation of the displacements, a value of the stiffness pa-

rameter corresponding to 100Pa is chosen. Once both GIR and GIIR are parametrized,

the corresponding impulse response and inverse impulse response at the pointP are

obtained. They are shown in �gures 3.9 and 3.10.

The displacements are computed in real time at pointP of the structure and

shown on �gure 3.11. At the same time, the external applied forces are recovered

simply by applying:

uPf (t) =
Z t

0
f (t � � ) hPf (� ) d�; ; f (t) =

Z t

0
uPf (t � � ) gPf (� ) d�; (3.27)

wherehp is the impulse response that allows to compute the displacements in the

point p, andgp is the impulse response that computes the forcef by convolution

with the displacements in the pointp. Results recovering the applied forces by

measuring the displacements at pointP are shown in �gures 3.12. The error com-
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Figure 3.8: External applied forces on the left side of the structure
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Forces Frequency (Hz) Amplitude (N)

f 1 1.1 1.2

Force 1 f 2 0.5 2.7

f 3 1.3 4.3

f 1 0.2 8.7

Force 2 f 2 1.7 21.8

f 3 1.6 3.4

f 1 0.9 4.1

Force 3 f 2 0.3 44.9

f 3 1.1 37.2

Table 3.1: External applied forces spectrum

Figure 3.9: Impulse response at pointP for a selected value of 100 Pa

Figure 3.10: Inverse impulse response at pointP for a selected value of 100 Pa
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Figure 3.11: Displacements at pointP
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� 1 3:510� 6

� 2 6:310� 7

� 3 8:110� 7

Table 3.2: Error in the recovery of the forces

puted as (3.28) is shown in table 3.2.

� i =
jjFrecovered � Fexact jj

Fexact jj
(3.28)
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Figure 3.12: Recovered force by measuring at node 1
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Chapter 4

Nonlinear applications of the

Generalized Impulse Response

Soft robots and the manipulation of soft materials by robots are two incoming is-

sues in the industry. New uses, applications or materials are evolving very fast in

the last years. Soft robots characteristics as adaptability, �exibility or compliance

bring new opportunities to the industry which can not be achieved by usual robots.

Biomedical applications, where soft materials can avoid damages to the patience

and work in cluttered environments, or worker's safety in factories, where the in-

teraction with the hard parts of the robots can be a hazard, are two of a large list of

examples where soft materials are becoming more and more a part of the industry.

Soft robots control and monitoring is being one the most growing �elds in the

scienti�c research. The development of the use of soft robots is followed by new

methods of computation capable of understand and compute the physics behind it.

Despite nonlinear behaviours in structural dynamics have been studied for many

years, fast and accurate computations are still a challenge [91][89]. Different ap-

proaches have been carried to deal with the dynamics problem: quasi static meth-

ods [92], corotational method [90], or mass-spring methods [95] [94] are some of

the methods applied in soft robotics.

Separated representations bring a useful tool in real time applications. Pre-

computing some part of the solution in anof�ine phase can save time computing

in theonlinephase. TheProper Generalized Decompositionis ana priori model

order reduction technique which allows the computation of parametric solutions,

avoiding the curse of dimensionality [26] [27].

Impulse theory is a classic method [9] which allows to calculate the displace-
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ments in structures under dynamic loads. Once the impulse response of the struc-

ture is known, the computation of displacements is fast. They can be obtained

only in those parts where they are required, avoiding the computation in the whole

structure, and consequently, reducing the computational cost.

In this Chapter, the PGD technique is used in order to compute the necessary

GIR, which permits to evaluate the dynamics of a structure for different param-

eters at a low computational cost. Some different nonlinear behaviours are also

considered, showing the possibilities of the method.

4.1 Generalized impulse response application in nonlin-

ear problems

One of the most used methods are time integration schemes, which allow the actu-

alization of the parameters at each time step. These methods are easy to compute,

and can be applied in linear or nonlinear behaviour. In counterpart, these methods

can be time consuming or unstable [88]. Impulse response theory is applied while

the behaviour of the structure remains linear, but it can also be applied for some

nonlinear behaviours by splitting the problem in linear and nonlinear behaviour.

4.2 Nonlinear external applied force

Recover the dynamics equation:

M •u + C _u + K u = F + Q(u); (4.1)

where a nonlinear behaviour is considered by means of an external forceQ applied

on some part of the boundary.

The impulse response functions must be computed on those nodes where a

force will be applied. These forces will be both linear external applied forceF and

nonlinear external applied forcesQ(u). Once all impulse responses are computed

and stored, displacement at pointj can be calculated by computing the sum of

displacements caused by: the external applied forces plus the nonlinear forces.

Note that the impulse response allows to compute the displacements where they

are needed, and one can avoid the computation of the displacements on that nodes

out of interest, saving time and computational cost.
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Then the displacements are computed following:

uj =
Z t

0
hj

p(t � � )f p(t) +
lX

k=1

Z t

0
hj

k (t)( t � � )qk (uk ; t); (4.2)

where the upper index indicates the point where the displacements are being com-

puted and the lower index indicates the point where the force is applied.

As qk depends onuk , an iteration must be solved for each time step. If the ex-

ternal applied force concerns a few degrees of freedom, the iteration can be solved

inexpensively, and the proposed method can be considered as an option for real

time computations.

4.3 Nonlinear stiffness

A nonlinear stiffness can be considered in the form:

K (u) = K l + K n (u); (4.3)

where the nonlinear behaviour in the stiffness property can be split in two terms:

a linear stiffnessK l and a nonlinear stiffnessK n (u). The transfer functions are

computed from the linear part of the equation (4.1), and the nonlinear part is com-

puted as a nonlinear term in the right side of the equation, and evaluated during the

onlinecomputation.

4.4 Numerical examples

Consider the problem of the bridge in the �gure 4.1, where plane stress has been

considered. The discretization of the bridge contains 140 elements and 100 nodes.

The displacements and rotations are �xed at the bottom of the left pillar. The mass

is 7850kN=m3. The stiffness has been considered as a parameter and computed

in the range[100; 300]MPa, and the Kelvin-Voigt time constant� is set in order

to obtain a damping factor� of 10%. Frequency domain has been discretized in a

range of[0; : : : ; 50]Hz and an increment of10mHz. The GIR has been computed

comprehending the 100 nodes (excluding those with restricted displacements and

rotations), and used for the displacements computation.

97



Figure 4.1: Discretization elements of the 2D plane stress bridge

Young's modulus [100 300] MPa

Density 7850kN=m3

Damping ratio 10%

4.4.1 Nonlinear external applied force

A nonlinear force acting on the down part of the right pillar is considered by the

equation:

Fnl = A f sin (u � B f ); (4.4)

whereA f andB f are arbitrary constants.

An external force, as shown in �gure 4.2, is applied on the top of the structure,

and the displacements at the pointP are computed in real time. In the �gure 4.3,

a comparison between the linear displacements (without considering the nonlinear

term) and the nonlinear displacements (considering the nonlinear term) are shown

for some values of the arbitrary constantA f . Linear behaviour is shown in order

to evaluate how signi�cant are the considered nonlinearities. The linear displace-

ments are named aslinear in the �gure, PGD stands for the nonlinear behaviour

computed by applying the procedure explained in 4 andNewmarkstands to the so-

lution of the problem computed by the Newmark method. In the computation of the

Newmark method, a time step� t of 1:5 � 10� 11 has been used, and the values of

the Newmark parameters were� 1 = 0 :25and� 2 = 0 :5. Figure show good results,

even when the nonlinear behaviour completely differs from linear behaviour.
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Figure 4.2: External applied force

Figure 4.3: Displacements at pointP for different values ofA f
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Figure 4.4: Displacements at pointP for different values of the Young's modulus

4.4.2 Nonlinear stiffness

In this example, a nonlinear stiffness concerning the whole structure has been con-

sidered as:

K n (u) = 0 :2Ku ; (4.5)

where the termK n (u) is updated at each time step.

An external applied force is applied in the top of the structure. The applied

force is shown in �gure 4.2. In the �gure 4.4, the displacements for Young's mod-

ulus values[100; 200; 300; 400]MPa are shown. The impulse response method ap-

plied on this nonlinear case show good accuracy accordingly to the images.
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Conclusions

Three challenges in structural dynamics problem are addressed at the same time:

� Real time computation.

� Monitoring of forces, which leads to the resolution of ill-posed inverse prob-

lems.

� Multi-dimensional problems.

In this thesis, a method to compute displacements and forces in real time for

multidimensional problems is developed. It is also presented an application of the

method for some nonlinear problems.

The adopted solution is a separated representation solution computed by means

of an a priori model order reduction method (PGD) applying the harmonic anal-

ysis theory on the dynamics equation. This approach gives a solution the three

aforementioned challenges at the same time:

� Harmonic analysis theory brings a separated form in frequency of the dy-

namics equation, which is suitable for thea priori model order reduction

technique PGD. The application of this theory leads to the impulse theory in

time domain, and therefore, a fast computation procedure is obtained.

� The properties of the PGD algorithm allow to compute the solution of the in-

verse problem avoiding the regularization parameters of the Tikhonov family

methods or the relaxation parameters in the iterative methods, which com-

monly differs from one problem to another, and whose evaluation is dif�cult

to automatize.

� The resolution of multi-dimensional problems is also solved by the PGD

method, in which additional parameters do not compromise the computa-

tional cost.
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Impulse response theory brings two advantages when dealing with linear in-

variant systems: the information of the system is in some way condensed in the

transfer functions and uncoupled in the space domain, it is, the displacements can

be computed in some nodes avoiding the computation in the whole space, reduc-

ing the number of computational operations. Displacements caused by an external

force are then computed by multiplication between the transfer function and the

force in the frequency domain, or by convolution between the impulse response

and the force in the time domain: both operations are computationally inexpen-

sive, and suitable to be applied on real time computations.

Precomputed multi-dimensional solutions are actually a promising option to

address the curse of dimensionality, even if computational power is growing, spe-

ci�c algorithms are needed for multi-dimensional approaches rather than classic

Monte-Carlo simulations. In this �eld, PGD algorithm is well de�ned for this

kind of problems when the solution can be expressed as a separated representation.

Fourier relations between time and frequency domains allow to take pro�t of each

domain advantages. In this thesis, the frequency analysis is applied to obtain a sep-

arated form of the frequency parameter! , which will be useful for the resolution

of the multi-dimensional problem, and the time domain resolution to take pro�t of

the advantages for real time computation.

The multi-parametric resolution of the harmonic equation leads to the computa-

tion of the Generalized Transfer Function and the Generalized Impulse Response.

Both generalized solutions can be applied in optimization problems or real time

applications in structural dynamics ,e.g., the monitoring of displacements. The

computation of both functions is detailed in Chapter 2.

The monitoring of forces approach is developed in Chapter 3. The chosen ap-

proach is to use the knowledge about the direct problem to resolve the inverse prob-

lem. This inverse problem is de�ned as the computation of the required external

force to achieve a certain con�guration in displacements. The arising theoretical

and numerical dif�culties when dealing inverse problems are detailed in Chapter

1. A state of the art in inverse problems, and more speci�cally, in deconvolution

problems, is presented. Deconvolution is the inverse of the convolution opera-

tion, which appears naturally when impulse response theory is applied to solve the

dynamics equation. In this work the problem of deconvolution appears in the de�-

nition of the GIIR, as it is computed from a convolution equation. Once computed,

the GIIR allows to compute the monitoring of the forces in real time. Some results

are provided to illustrate the performance of the method.
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Finally, some nonlinear problems in structural dynamics are approached by

using pre-computed GIR. New industrial procedures or the evolving soft robots

demands new methods in simulation and computation. In this thesis is presented

the application of the GIR in computing displacements under the effect of some

different kinds of nonlinearities.

While the application of the impulse theory is restricted to linear invariant sys-

tems, some kind of nonlinearities can be linearised. In this thesis, two examples

where the nonlinear behaviour can be divided in a linear behaviour and a nonlinear

behaviour are shown. Classic impulse response theory is then applied on the linear

behaviour part of the structure and the nonlinear behaviour is solved in real time.

The results show a good performance of the method when the nonlinearities

affect a few degrees of freedom, as in the example of the nonlinear external applied

force. In this case, displacements are only needed in a part of the boundary, and

only a few impulse responses are required. The computation of the displacements

is then fast, requiring a small computational cost for the iteration phase. On the

other hand, displacements in the whole structure can be also computed by paying

the corresponding computational cost when the nonlinearity affects a huge number

of degrees of freedom.
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Appendix

Appendix 1: Computation of the integrals in the PGD algo-

rithm

One of the advantages of the PGD method is to split the multi-dimensional problem

into several 1-D problems. Here are detailed the 1-D integrals of the PGD method

applied in 2:

� Integrals in frequency! dimension:

l1! =
Z ! f

! o

S2 � ! 2 � d!

l2! =
Z ! f

! o

S2 � ! � d!

l3! =
Z ! f

! o

S2 � d!

r1i! =
Z ! f

! o

S � Wi � ! 2 � d!

r2i! =
Z ! f

! o

S � Wi � ! � d!

r3i! =
Z ! f

! o

S � Wi � d!

� ! =
Z ! f

! o

S � d!

.
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� Integrals in Young's modulusk dimension:

l1k =
Z kf

ko

T2 � dk

l3k =
Z kf

ko

T2 � k � dk

r1ik =
Z kf

ko

T � E i � dk

r3ik =
Z kf

ko

T � E i � k � dk

� k =
Z kf

ko

T � dk:

� Integrals in space dimension:

l1x = R H MR

l2x = R H CR

l3x = R H KR

r1ix = R H MX i

r2ix = R H CX i

r3ix = R H KX i

� x = R H F:

Appendix 2: PGD algorithm for the GIIR computation

The algorithm is started under the assumption that the �rstr � 1 terms of the

separated representation are computed, and the termr is to be computed:

g = g(t; E ) =
r � 1X

k=1

a(x)�( t)� (E ) + RST; (4.9)

whereR,S, andT are unknown. If equation 4.9 is introduced in 3.25:

mX

`=1

 
nX

i =1

� i � i;` Ei

! T  
nX

i =1

� i � i;` Ei

!  
r � 1X

k=1

ak � k � k + R� ST

!

=
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mX

`=1

nX

i =1

� i � `;i Ei : (4.10)

Introducing the following notation for the product of modes:

	 i;j = � T
i � j ; (4.11)

� `;i;j = V T
i;` V j;` ; (4.12)

� i;j = ET
i Ej ; (4.13)

wherei = 1 ; : : : ; n andj = 1 ; : : : ; n, and substituting in (4.10), it results:

mX

`=1

nX

i =1

nX

j =1

(	 i;j � `;i;j � i;j )

 
r � 1X

k=1

ak � k � k + RST

!

=
mX

`=1

nX

i =1

� i � `;i Ei :

(4.14)

A nonlinearity in form of the product has been introduced, and an alternating

direction scheme will be followed to solve it. Starting by setting an initial guess

for S andT, R� is computed:

mX

`=1

nX

i =1

nX

j =1

(	 i;j � `;i;j � i;j ) RST =

�
mX

`=1

nX

i =1

nX

j =1

(	 i;j � `;i;j � i;j )
r � 1X

k=1

ak � k � k +
mX

`=1

nX

i =1

� i � `;i Ei : (4.15)

Applying Galerkin projection:

(RST)T
mX

`=1

nX

i =1

nX

j =1

(	 i;j � `;i;j � i;j ) RST =

� (RST)T
mX

`=1

nX

i =1

nX

j =1

(	 i;j � `;i;j � i;j )
r � 1X

k=1

ak � k � k + ( RST)T
mX

`=1

nX

i =1

� i � `;i Ei :

(4.16)

Now the following products can be computed:

� `;i;j = ST � `;i;j S; (4.17)
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� i;j = TT � i;j T; (4.18)

� i;`;k = ST � `;i;j � k ; (4.19)

� i;`;k = TT � i;j � k ; (4.20)

� `;i = ST � `;i ; (4.21)

� i = TT Ei ; (4.22)

FunctionR can be computed from:

RT
mX

`=1

nX

i =1

nX

j =1

	 i;j R� `;i;j � i;j =

� RT
mX

`=1

nX

i =1

nX

j =1

	 i;j � i;`;k � i;`;k

r � 1X

k=1

ak (x) + RT
mX

`=1

nX

i =1

� i � `;i � i : (4.23)

The computation of functionsS andT is realized following the same procedure

as in the computation ofR.
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