, future, people could use topological optimizations to design better nanothermal devices

J. L. Abascal and C. Vega, A general purpose model for the condensed phases of water: Tip4p, J. Chem. Phys, vol.123, issue.23, p.234505, 2005.

F. Alcocer, V. Kumar, and P. Singh, Permeability of periodic porous media, Phys. Rev. E, vol.59, issue.1, p.711, 1999.

F. Alcocer and P. Singh, Permeability of periodic arrays of cylinders for viscoelastic flows, Phys. Fluids, vol.14, issue.7, pp.2578-2581, 2002.

B. J. Alder and T. E. Wainwright, Studies in molecular dynamics. i. general method, J. Chem. Phys, vol.31, issue.2, pp.459-466, 1959.

G. Allaire, Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation, 2007.

M. Allen and D. Tildesley, Computer Simulation of Liquids, 1989.

J. Auriault, Upscaling heterogeneous media by asymptotic expansions, J. Eng. Mech, vol.128, issue.8, pp.817-822, 2002.

J. Auriault, C. Boutin, and C. Geindreau, Homogenization of coupled phenomena in heterogenous media, vol.149, 2010.

J. Auriault and E. Sanchez-palencia, Etude du comportement macroscopique d'un milieu poreux saturé déformable, J. méc, vol.16, issue.4, pp.575-603, 1977.

I. Babu?ka, Error-bounds for finite element method, Numer. Math, vol.16, issue.4, pp.322-333, 1971.

J. Barrat and L. Bocquet, Large slip effect at a nonwetting fluid-solid interface, Phys. Rev. Lett, vol.82, issue.23, pp.4671-4674, 1999.

J. Barrat, Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface, Faraday Discuss, vol.112, pp.119-128, 1999.

M. Bazant and O. Vinogradova, Tensorial hydrodynamic slip, J. Fluid Mech, vol.613, pp.125-134, 2008.

A. Bensoussan, J. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, vol.374, 2011.

A. L. Berdichevsky and Z. Cai, Preform permeability predictions by self-consistent method and finite element simulation, Polym. Compos, vol.14, issue.2, pp.132-143, 1993.

G. A. Bird, Molecular gas dynamics, NASA STI/Recon Technical Report A, vol.76, 1976.

J. Bloch and J. Auriault, Heat transfer in nonsaturated porous media. modelling by homogenisation, Transp. Porous Media, vol.30, issue.3, pp.301-321, 1998.

P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B, vol.50, pp.17953-17979, 1994.

L. Bocquet and J. Barrat, Hydrodynamic boundary conditions, correlation functions, and kubo relations for confined fluids, Phys. Rev. E, vol.49, pp.3079-3092, 1994.

L. Bocquet and J. Barrat, On the green-kubo relationship for the liquid-solid friction coefficient, J. Chem. Phys, vol.139, issue.4, 2013.

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers, Rev. fr. autom. inform. rech. opér. , Anal. numér, vol.8, issue.R2, pp.129-151, 1974.

S. Brull, P. Charrier, and L. Mieussens, Gas-surface interaction and boundary conditions for the boltzmann equation, Kin. Rel. Mod, vol.38, issue.7, pp.219-251, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00960878

S. Calinon, Robot Programming by Demonstration: A Probabilistic Approach, 2009.

B. Cao, J. Sun, M. Chen, and Z. Guo, Molecular momentum transport at fluid-solid interfaces in mems/nems: a review, Int. J. Mol. Sci, vol.10, issue.11, pp.4638-4706, 2009.

C. Cercignani, Theory and application of the Boltzmann equation, 1975.

C. Cercignani, Rarefied gas dynamics: from basic concepts to actual calculations, vol.21, 2000.

C. Cercignani and M. Lampis, Kinetic models for gas-surface interaction, Transport Theory Stat. Phys, vol.1, issue.9, pp.101-114, 1971.

D. Chandler, Introduction to Modern Statistical Mechanics, 1987.

S. Chapman and T. Cowling, The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases, 1970.

A. Chizmeshya and E. Zaremba, Interaction of rare gas atoms with metal surface: a pseudo-potential approach, Surf. Sci, vol.220, pp.443-470, 1989.

A. Chizmeshya and E. Zaremba, The interaction of rare gas atoms with metal surfaces: a scattering theory approach, Surf. Sci, vol.268, pp.432-456, 1992.

F. G. Collins and E. Knox, Parameters of nocilla gas/surface interaction model from measured accommodation coefficients, AIAA J, vol.32, issue.4, pp.765-773, 1994.

S. K. Dadzie and J. G. Méolans, Anisotropic scattering kernel: Generalized and modified maxwell boundary conditions, J. Math. Phys, vol.45, issue.5, pp.1804-1819, 2004.

S. K. Dadzie and J. G. Méolans, Temperature jump and slip velocity calculations from an anisotropic scattering kernel, Physica A, vol.358, issue.2-4, pp.328-346, 2005.

M. P. De-lara-castells, M. Bartolomei, A. O. Mitrushchenkov, and H. Stoll, Transferability and accuracy by combining dispersionless density functional and incremental post-hartree-fock theories: noble gases adsorption on coronene/graphene/graphite surfaces, J. Chem. Phys, vol.143, p.194701, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01232150

M. P. De-lara-castells, H. Stoll, B. Civalleri, M. Causà, E. Voloshina et al.,

M. Mitrushchenkov and . Pi, Communication: a combined periodic density functional and incremental wave-function-based approach for the dispersion-accounting time-resolved dynamics of 4 he nanodroplets on surfaces: 4 he/graphene, J. Chem. Phys, vol.141, issue.15, p.151102, 2014.

M. P. De-lara-castells, H. Stoll, and A. O. Mitrushchenkov, Assessing the performance of dispersionless and dispersion-accounting methods: helium interaction with cluster models of the tio 2 (110) surface, J. Phys. Chem. A, vol.118, issue.33, pp.6367-6384, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01071556

F. , D. Sala, and A. Görling, Efficient localized hartree-fock methods as effective exactexchange kohn-sham methods for molecules, J. Chem. Phys, vol.115, issue.13, pp.5718-5732, 2001.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the em algorithm, J. Royal Stat. Soc. Series B, pp.1-38, 1977.

K. Doll, P. Pyykkö, and H. Stoll, Closed-shell interaction in silver and gold chlorides, J. Chem. Phys, vol.109, 1998.

R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-wilson, B. Civalleri et al., Crystal14: A program for the ab initio investigation of crystalline solids, Int. J. Quantum Chem, vol.114, issue.19, pp.1287-1317, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01404047

R. Dovesi, V. R. Saunderds, C. Roetti, R. Orlando, C. M. Zicovich-wilson et al., CRYSTAL14 User's Manual, 2014.

J. C. Eijkel, A. Van-den, and . Berg, Nanofluidics: what is it and what can we expect from it? Microfluid, Nanofluid, vol.1, issue.3, pp.249-267, 2005.

D. Evans and G. Morriss, Statistical mechanics of nonequilibrium liquids, 2008.

K. Falk, F. Sedlmeier, L. Joly, R. R. Netz, and L. Bocquet, Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction, Nano Lett, vol.10, issue.10, pp.4067-4073, 2010.

K. Falk, F. Sedlmeier, L. Joly, R. R. Netz, and L. Bocquet, Ultralow liquid/solid friction in carbon nanotubes: Comprehensive theory for alcohols, alkanes, omcts, and water, Langmuir, vol.40, issue.28, pp.14261-14272, 2012.

D. Figgen, G. Rauhut, M. Dolg, and H. Stoll, Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration dirac-hartree-fock data, Chem. Phys, vol.311, issue.1-2, pp.227-244, 2005.

D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2002.

A. L. Garcia and B. J. Alder, Generation of the chapman-enskog distribution, J. Comput. Phys, vol.140, issue.1, pp.66-70, 1998.

A. M. Gardner, R. J. Plowright, M. J. Watkins, T. G. Wright, and W. Breckenridge, Theoretical study of the x ? 2+ states of the neutral cm-rg complexes (cm= coinage metal, cu, ag, and au and rg= rare gas, he-rn), J. Chem. Phys, vol.132, issue.18, p.184301, 2010.

I. Golubev, A bicalorimeter for determining the thermal conductivity of gases and liquids at high pressures and different temperatures, Teploenergetika, issue.12, pp.78-82, 1963.

M. A. Gonzalez and J. L. , The shear viscosity of rigid water models, J. Chem. Phys, vol.132, 2010.

H. Grad, Principles of the kinetic theory of gases, Thermodynamik der

/. Gase, . Thermodynamics, and . Gases, , pp.205-294, 1958.

R. Grenier, Q. To, M. P. De-lara-castells, and C. Léonard, Argon interaction with gold surfaces: ab initio-assisted determination of pair Ar-Au potentials for molecular dynamics simulations, J. Phys. Chem. A, vol.119, pp.6897-6908, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01236658

M. Nacer, I. Graur, and P. Perrier, Mass flow measurement through rectangular microchannel from hydrodynamic to near free molecular regimes, vol.4, pp.49-54, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01442448

M. Nacer, I. Graur, P. Perrier, J. G. Méolans, and M. Wuest, Gas flow through microtubes with different internal surface coatings, J. Vac. Sci. Technol. A, vol.32, p.21601, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01441861

J. Hansen and I. Mcdonald, Theory of simple liquids, 2006.

J. G. Harris and K. H. Yung, Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model, J. Phys. Chem, vol.99, issue.31, pp.12021-12024, 1995.

T. Hastie, R. Tibshirani, and J. Friedman, The em algorithm. The elements of statistical learning, pp.236-243, 2001.

H. Helmholtz and G. V. Piotrowski, Ueber die reibung tropfbarer flüssigkeiten. Sitz.-Ber

. Der-k, Akad. d. Wiss. in Wien. Math. nat. Kl, pp.607-658, 1860.

M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical methods, vol.751, 2013.

J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin et al., Fast mass transport through sub-2-nanometer carbon nanotubes, Science, issue.5776, pp.1034-1037, 2006.

K. Hooman, Heat and fluid flow in a rectangular microchannel filled with a porous medium, Int. J. Heat Mass Transf, vol.51, pp.5804-5810, 2008.

K. Hooman, Slip flow forced convection in a microporous duct of rectangular cross-section

, Appl. Therm. Eng, vol.29, pp.1012-1019, 2009.

M. , H. Gorji, and P. Jenny, A gas-surface interaction kernel for diatomic rarefied gas flows based on the cercignani-lampis-lord model, Phys. Fluids, vol.26, issue.12, p.122004, 2014.

Z. E. Hughes, S. M. Tomasio, and T. R. Walsh, Efficient simulations of the aqueous bio-interface of graphitic nanostructures with a polarisable model, Nanoscale, vol.6, p.5438, 2014.

G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature, vol.414, issue.6860, p.188, 2001.

R. Joven, R. Das, A. Ahmed, P. Roozbehjavan, and B. Minaie, Thermal properties of carbon fiber-epoxy composites with different fabric weaves, SAMPE, 2012.

S. K. Kannam, B. Todd, J. S. Hansen, and P. J. Daivis, How fast does water flow in carbon nanotubes?, J. Chem. Phys, vol.138, issue.9, p.94701, 2013.

S. K. Kannam, B. D. Todd, J. S. Hansen, and P. J. Daivis, Slip flow in graphene nanochannels, J. Chem. Phys, vol.135, issue.14, 2011.

P. Kapitza, Heat transfer and superfluidity of helium ii, Phys. Rev, vol.60, issue.4, p.354, 1941.

G. Karniadakis, A. Beskok, and N. Aluru, Microflows and nanoflows: fundamentals and simulation, vol.29, 2006.

L. Klinkenberg, The permeability of porous media to liquids and gases. In Drilling and production practice, 1941.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmentedwave method, Phys. Rev. B, vol.59, pp.1758-1775, 1999.

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, p.11169, 1996.

R. Kubo, Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn, vol.12, issue.6, pp.570-586, 1957.

S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Stat, vol.22, issue.1, pp.79-86, 1951.

F. Kuwahara, A. Nakayama, and H. Koyama, A numerical study of thermal dispersion in porous media, J. Heat. Transf, vol.118, issue.3, pp.756-761, 1996.

F. Kuwahara, T. Yamane, and A. Nakayama, Large eddy simulation of turbulent flow in porous media, Int. Commun. Heat Mass Transf, vol.33, issue.4, pp.411-418, 2006.

K. Lee, ´. E. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Higher-accuracy van der waals density functional, Phys. Rev. B, vol.82, issue.8, p.81101, 2010.

C. Léonard, V. Brites, T. Pham, Q. To, and G. Lauriat, Influence of the pairwise potential on the tangential momentum accommodation coefficient: a multi-scale study applied to the argon on pt(111) system, Eur. Phys. J. B, vol.86, issue.4, pp.1-11, 2013.

T. Liang, Q. Li, and W. Ye, A physical-based gas-surface interaction model for rarefied gas flow simulation, J. Comput. Phys, vol.352, pp.105-122, 2017.

M. Liao, R. Grenier, Q. To, M. P. De-lara-castells, and C. Léonard, Helium and argon interactions with gold surfaces: ab initio-assisted determination of the he-au pairwise potential. application to accommodation coefficients determination, J. Phys. Chem. C, vol.122, issue.26, pp.14606-14614, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01811474

M. Liao, Q. To, C. Léonard, and V. Monchiet, Non-parametric wall model and methods of identifying boundary conditions for moments in gas flow equations, Phys. Fluids, vol.30, issue.3, p.32008, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01742162

M. Liao, Q. D. To, C. Léonard, V. Monchiet, and V. H. Vo, Strain-induced friction anisotropy between graphene and molecular liquids, J. Chem. Phys, vol.146, issue.1, p.14707, 2017.

P. J. Linstrom and M. W. , NIST Chemistry WebBook, NIST Standard Reference Database, issue.69, 2017.

J. Liu, Y. Sano, and A. Nakayama, A simple mathematical model for determining the equivalent permeability of fractured porous media, Int. Commun Heat Mass Transf, vol.36, issue.3, pp.220-224, 2009.

D. A. Lockerby and J. M. Reese, On the modelling of isothermal gas flows at the microscale, J. Fluid Mech, vol.604, pp.235-261, 2008.

R. Lord, Some extensions to the cercignani-lampis gas-surface scattering kernel, Phys. Fluids A, vol.3, issue.4, pp.706-710, 1991.

M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, Nanoscale hydrodynamics: enhanced flow in carbon nanotubes, Nature, vol.438, issue.7064, pp.44-44, 2005.

M. G. Martin and J. I. Siepmann, Transferable potentials for phase equilibria. 1. unitedatom description of n-alkanes, J. Phys. Chem. B, vol.102, issue.14, pp.2569-2577, 1998.

J. Maxwell, On stresses in rarified gases arising from inequalities of temperature, Philos. T R. Soc. A, vol.170, pp.231-256, 1879.

A. Heßelmann, Improved supermolecular second order Möller-plesset intermolecular interaction energies using time-dependent density functional response theory, J. Chem. Phys, vol.128, p.144112, 2008.

V. Monchiet, Fft based iterative schemes for composites conductors with non-overlapping fibers and kapitza interface resistance, J. Mech. Mater. Struct, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01665956

V. Monchiet, G. Bonnet, and G. Lauriat, A fft-based method to compute the permeability induced by a stokes slip flow through a porous medium, Comptes rendus. Mécanique, vol.337, issue.4, pp.192-197, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00687819

T. G. Myers, Why are slip lengths so large in carbon nanotubes?, Microfluid. Nanofluid, vol.10, pp.1141-1145, 2011.

C. Neto, D. R. Evans, E. Bonaccurso, H. Butt, and V. S. Craig, Boundary slip in newtonian liquids: a review of experimental studies, Rep. Prog. Phys, vol.68, issue.12, p.2859, 2005.

K. Pernal, R. Podeszwa, K. Patkowski, and K. Szalewicz, Dispersionless density functional theory, Phys. Rev. Lett, vol.103, p.263201, 2009.

K. A. Peterson and C. Puzzarini, Systematically convergent basis sets for transition metals. ii. pseudopotential-based correlation consistent basis sets for the group 11 (cu, ag, au) and 12 (zn, cd, hg) elements, Theor. Chem. Acc, vol.114, issue.4-5, pp.283-296, 2005.

T. Pham, Q. To, G. Lauriat, and C. Léonard, Tensorial slip theory for gas flows and comparison with molecular dynamics simulations using an anisotropic gas-wall collision mechanism, Phys. Rev. E, vol.87, p.53012, 2013.

T. T. Pham, Q. D. To, G. Lauriat, C. Léonard, and V. Van-hoang, Effects of surface morphology and anisotropy on the tangential-momentum accommodation coefficient between Pt(100) and Ar, Phys. Rev. E, vol.86, p.51201, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00749278

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys, vol.117, issue.1, pp.1-19, 1995.

S. Plimpton, P. Crozier, and A. Thompson, Lammps-large-scale atomic/molecular massively parallel simulator, vol.18, p.43, 2007.

R. Podeszwa, K. Pernal, K. Patkowski, and K. Szalewicz, Extension of the hartree-fock plus dispersion method by first-order correlation effects, J. Phys. Chem. Lett, vol.1, pp.550-555, 2010.

R. Podeszwa and K. Szalewicz, Density functional theory overcomes the failure of predicting intermolecular interaction energies, J. Chem. Phys, vol.136, p.161102, 2012.

D. Rapaport, The Art of Molecular Dynamics Simulation, 2004.

C. E. Rasmussen and C. K. Williams, Gaussian processes for machine learning, vol.38, pp.715-719, 2006.

M. Rube?, J. Kysilka, P. Nachtigall, and O. Bludsk, Bludsk`y. Dft/cc investigation of physical adsorption on a graphite (0001) surface, Phys. Chem. Chem. Phys, vol.12, issue.24, pp.6438-6444, 2010.

J. Ryckaert, G. Ciccotti, and H. J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys, vol.23, issue.3, pp.327-341, 1977.

E. Sanchez-palencia, Homogenization of second order equations. Non-Homogeneous Media and Vibration Theory, pp.45-83, 1980.

E. Sanchez-palencia, General introduction to asymptotic methods, Homogenization techniques for composite media, pp.121-136, 1987.

A. Sangani and A. Acrivos, Slow flow past periodic arrays of cylinders with application to heat transfer, Int. J. Multiphase Flow, vol.8, issue.3, pp.193-206, 1982.

A. Sangani and A. Acrivos, Slow flow through a periodic array of spheres, Int. J. Multiphase Flow, vol.8, issue.4, pp.343-360, 1982.

Y. Sano, F. Kuwahara, M. Mobedi, and A. Nakayama, Effects of thermal dispersion on heat transfer in cross-flow tubular heat exchangers, Heat Mass Transf, vol.48, issue.1, pp.183-189, 2012.

R. B. Schoch, J. Han, and P. Renaud, Transport phenomena in nanofluidics, Rev. Mod. Phys, vol.80, issue.3, p.839, 2008.

E. Secchi, S. Marbach, A. Nigues, D. Stein, A. Siria et al., Massive radiusdependent flow slippage in carbon nanotubes, Nature, vol.537, pp.210-213, 2016.

F. Sharipov, Application of the cercignani-lampis scattering kernel to calculations of rarefied gas flows. ii. slip and jump coefficients, Eur. J. Mech. B Fluids, vol.22, issue.2, pp.133-143, 2003.

F. Sharipov, Application of the cercignani-lampis scattering kernel to calculations of rarefied gas flows. iii. poiseuille flow and thermal creep through a long tube, Eur. J. Mech. B Fluids, vol.22, issue.2, pp.145-154, 2003.

H. W. Sheng, M. J. Kramer, A. Cadien, T. Fujita, and M. W. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Phys. Rev. B, vol.83, p.134118, 2011.

N. Shenogina, R. Godawat, P. Keblinski, and S. Garde, How wetting and adhesion affect thermal conductance of a range of hydrophobic to hydrophilic aqueous interfaces, Phys. Rev. Lett, vol.102, issue.15, p.156101, 2009.

H. Shokouhmand, A. M. Isfahani, and E. Shirani, Friction and heat transfer coefficient in micro and nano channels filled with porous media for wide range of knudsen number, Int. Commun. Heat Mass Transf, vol.37, issue.7, pp.890-894, 2010.

J. Shu, J. B. Teo, and W. K. Chan, Fluid velocity slip and temperature jump at a solid surface, Appl. Mech. Rev, vol.69, issue.2, p.20801, 2017.

E. Skjetne and J. Auriault, Homogenization of wall-slip gas flow through porous media, Transport Porous Med, vol.36, issue.3, pp.293-306, 1999.

M. Smoluchowski-von-smolan, Uber wärmeleitung in verdünnten gasen, Annalen der Physik, vol.300, issue.1, pp.101-130, 1898.

P. Spijker, A. J. Markvoort, S. V. Nedea, and P. A. Hilbers, Computation of accommodation coefficients and the use of velocity correlation profiles in molecular dynamics simulations, Phys. Rev. E, vol.81, issue.1, p.11203, 2010.

H. Struchtrup, Failures of the burnett and super-burnett equations in steady state processes, Continuum Mech. Therm, vol.17, issue.1, pp.43-50, 2005.

H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory, 2005.

H. Struchtrup, Maxwell boundary condition and velocity dependent accommodation coefficient, Phys. Fluids, vol.25, issue.11, p.112001, 2013.

H. Struchtrup and M. Torrilhon, Regularization of grad's 13 moment equations: derivation and linear analysis, Phys. Fluids, vol.15, issue.9, pp.2668-2680, 2003.

S. J. Stuart, A. B. Tutein, and J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys, vol.112, issue.14, pp.6472-6486, 2000.

H. G. Sung, Gaussian mixture regression and classification, 2004.

E. T. Swartz and R. O. Pohl, Thermal boundary resistance, Rev. Mod. Phys, vol.61, issue.3, p.605, 1989.

K. T. Tang and J. P. Toennies, An improved simple-model for the van der waals potential based on universal damping functions for the dispersion coefficients, J. Chem. Phys, vol.80, pp.3726-3741, 1984.

K. T. Tang and J. P. Toennies, Recalculation of physisorption potentials of rare gases on noble metals, Surf. Sci. Lett, vol.279, pp.203-206, 1992.

J. A. Thomas and A. J. Mcgaughey, Reassessing fast water transport through carbon nanotubes, Nano Lett, vol.8, issue.9, pp.2788-2793, 2008.

L. B. Thomas and E. B. Schofield, Thermal accommodation coefficient of helium on a bare tungsten surface, J. Chem. Phys, vol.23, issue.5, pp.861-866, 1955.

P. Thompson and S. Troian, A general boundary condition for liquid flow at solid surfaces, Nature, vol.389, issue.6649, pp.360-361, 1997.

Q. D. To, C. Léonard, and G. Lauriat, Free-path distribution and knudsen-layer modeling for gaseous flows in the transition regime, Physical Review E, vol.91, issue.2, p.23015, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01136333

Q. To, T. Pham, V. Brites, C. Léonard, and G. Lauriat, Multiscale study of gas slip flows in nanochannels, J. Heat Transfer, vol.137, p.91002, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00826032

Q. To, V. Vu, G. Lauriat, and C. Léonard, Boundary conditions for gas flow problems from anisotropic scattering kernels, J. Math. Phys, vol.56, issue.10, p.103101, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01236663

Q. D. To, V. H. Vu, G. Lauriat, and C. Léonard, Velocity slip and temperature jump for gas flows past anisotropic surfaces: Analytical derivation and numerical simulation, ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting, pp.1-01, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01341903

V. To, V. Monchiet, and Q. D. To, An fft method for the computation of thermal diffusivity of porous periodic media, Acta Mech, pp.1-19, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01665951

M. Torrilhon, Modeling nonequilibrium gas flow based on moment equations, Annu. Rev. Fluid Mech, vol.48, pp.429-458, 2016.

M. Torrilhon and H. Struchtrup, Boundary conditions for regularized 13-momentequations for micro-channel-flows, J. Comput. Phys, vol.227, issue.3, pp.1982-2011, 2008.

W. M. Trott, J. N. Castañeda, J. R. Torczynski, M. A. Gallis, and D. J. Rader, An experimental assembly for precise measurement of thermal accommodation coefficients, Rev. Sci. Instrum, vol.82, p.35120, 2011.

J. C. Tully, Washboard model of gas-surface scattering, J. Chem. Phys, vol.92, issue.1, pp.680-686, 1990.

M. Vandamme, L. Brochard, B. Lecampion, and O. Coussy, Adsorption and strain: The co2-induced swelling of coal, J. Mech. Phys. Solids, vol.58, pp.1489-1505, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00542308

V. Vdi, Heat atlas, 2010.

G. Vidali, G. Ihm, H. Kim, and M. W. Cole, Potentials of physical adsorption, Surf. Sci. Rep, vol.12, pp.133-181, 1991.

T. Vu, G. Lauriat, and O. Manca, Forced convection of air through networks of square rods or cylinders embedded in microchannels, Microfluid. nanofluid, vol.16, issue.1-2, pp.287-304, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01083742

C. Wang, Stokes flow through a tube with annular fins, Eur. J. Mech. B/Fluids, vol.15, issue.6, pp.781-789, 1996.

C. Wang, Stokes flow through a periodically constricted tube and the resistance due to a contraction, Acta Mech, vol.148, issue.1-4, pp.55-61, 2001.

C. Wang, Flow due to a stretching boundary with partial slip-an exact solution of the navier-stokes equations, Chem. Eng. Sci, vol.57, issue.17, pp.3745-3747, 2002.

C. Wang, Stagnation flows with slip: exact solutions of the navier-stokes equations, Z. Angew. Math. Phys, vol.54, issue.1, pp.184-189, 2003.

M. Watari, Relationship between accuracy and number of velocity particles of the finite-difference lattice boltzmann method in velocity slip simulations, J. Fluid. Eng, vol.132, issue.10, p.101401, 2010.

H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., , p.20, 2018.

S. Whitaker, Diffusion and dispersion in porous media, AlChE J, vol.13, issue.3, pp.420-427, 1967.

M. Whitby, L. Cagnon, M. Thanou, and N. Quirke, Enhanced fluid flow through nanoscale carbon pipes, Nano Lett, vol.8, issue.9, pp.2632-2637, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00997664

D. E. Woon and T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. iv. calculation of static electrical response properties, J. Chem. Phys, vol.100, issue.4, pp.2975-2988, 1994.

W. Xiong, J. Z. Liu, M. Ma, Z. Xu, J. Sheridan et al., Strain engineering water transport in graphene nanochannels, Phys. Rev. E, vol.84, issue.5, p.56329, 2011.

H. Xu, W. Chu, X. Huang, W. Sun, C. Jiang et al., Co 2 adsorption-assisted ch 4 desorption on carbon modelsof coal surface: A dft study, Appl. Surf. Sci, vol.375, pp.196-206, 2016.

L. Xue, P. Keblinski, S. Phillpot, S. Choi, and J. Eastman, Two regimes of thermal resistance at a liquid-solid interface, J. Chem. Phys, vol.118, issue.1, pp.337-339, 2003.

K. Yamamoto, H. Takeuchi, and T. Hyakutake, Characteristics of reflected gas molecules at a solid surface, Phys. Fluids, vol.18, p.46103, 2006.

T. Yan, W. L. Hase, and J. C. Tully, A washboard with moment of inertia model of gas-surface scattering, J. Chem. Phys, vol.120, issue.2, pp.1031-1043, 2004.

E. Zaremba and W. Kohn, Van der Waals interaction between an atom and a solid surface, Phys. Rev. B, vol.13, pp.2270-2285, 1976.

W. Zhang, G. Meng, and X. Wei, A review on slip models for gas microflows. Microfluid, Nanofluid, vol.13, issue.6, pp.845-882, 2012.

Z. Zhang and S. C. Glotzer, Self-assembly of patchy particles, Nano Lett, vol.4, issue.8, pp.1407-1413, 2004.

A. S. Ziarani and R. Aguilera, Knudsen's permeability correction for tight porous media, Transport Porous Med, vol.91, issue.1, pp.239-260, 2012.

O. Zienkiewicz, R. Gallagher, and P. Hood, Newtonian and non-newtonian viscous incompressible flow. temperature induced flows. finite element solutions. The mathematics of finite elements and applications, vol.2, pp.235-267, 1975.