C. J. Nolan, P. Damm, and M. Prentki, Type 2 diabetes across generations: from pathophysiology to prevention and management, Lancet, vol.378, pp.169-181, 2011.

M. S. Patel and M. Srinivasan, Metabolic programming in the immediate postnatal life, Ann Nutr Metab, vol.58, pp.18-28, 2011.

O. J. Rando and R. A. Simmons, I'm eating for two: parental dietary effects on offspring metabolism, Cell, vol.161, pp.93-105, 2015.

C. N. Hales, D. J. Barker, and P. M. Clark, Fetal and infant growth and impaired glucose tolerance at age 64, BMJ, vol.303, pp.1019-1022, 1991.

A. C. Ravelli, J. H. Van-der-meulen, and R. P. Michels, Glucose tolerance in adults after prenatal exposure to famine, Lancet, vol.351, pp.173-177, 1998.

M. S. Martin-gronert and S. E. Ozanne, Experimental IUGR and later diabetes

, J Intern Med, vol.261, pp.437-452, 2007.

J. Petrik, B. Reusens, and E. Arany, A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II, Endocrinology, vol.140, pp.4861-4873, 1999.

A. Snoeck, C. Remacle, B. Reusens, and J. J. Hoet, Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas, Biol Neonate, vol.57, pp.107-118, 1990.

C. Remacle, O. Dumortier, and V. Bol, Intrauterine programming of the endocrine pancreas, Diabetes Obes Metab, vol.9, pp.196-209, 2007.

S. Dahri, A. Snoeck, B. Reusens-billen, C. Remacle, and J. J. Hoet, Islet function in offspring of mothers on low-protein diet during gestation, Diabetes, 1991.

O. Dumortier, B. Blondeau, B. Duvillié, B. Reusens, B. Bréant et al., Different mechanisms operating during different critical time-windows reduce rat fetal beta cell mass due to a maternal low-protein or low-energy diet, Diabetologia, vol.50, pp.2495-2503, 2007.

O. Dumortier, C. Hinault, N. Gautier, S. Patouraux, V. Casamento et al., Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375, Diabetes, vol.63, pp.3416-3427, 2014.

S. Merezak, B. Reusens, and A. Renard, Effect of maternal low-protein diet and taurine on the vulnerability of adult Wistar rat islets to cytokines, Diabetologia, vol.47, pp.669-675, 2004.

C. J. Petry, M. W. Dorling, D. B. Pawlak, S. E. Ozanne, and C. N. Hales, Diabetes in old male offspring of rat dams fed a reduced protein diet, Int J Exp Diabetes Res, vol.2, pp.139-143, 2001.

S. E. Ozanne, G. S. Olsen, and L. L. Hansen, Early growth restriction leads to down regulation of protein kinase C zeta and insulin resistance in skeletal muscle, J Endocrinol, vol.177, pp.235-241, 2003.

B. Cannon and J. Nedergaard, Brown adipose tissue: function and physiological significance, Physiol Rev, vol.84, pp.277-359, 2004.

A. Frontini and S. Cinti, Distribution and development of brown adipocytes in the murine and human adipose organ, Cell Metab, vol.11, pp.253-256, 2010.

J. I. Odegaard, M. W. Lee, and Y. Sogawa, Perinatal licensing of thermogenesis by IL-33 and ST2, Cell, vol.166, pp.841-854, 2016.

M. E. Symonds, Brown adipose tissue growth and development, Scientifica (Cairo), vol.2013, p.305763, 2013.

D. Sellayah and D. Sikder, Orexin restores aging-related brown adipose tissue dysfunction in male mice, Endocrinology, vol.155, pp.485-501, 2014.

A. Bartelt, O. T. Bruns, and R. Reimer, Brown adipose tissue activity controls triglyceride clearance, Nat Med, vol.17, pp.200-205, 2011.

J. Nedergaard and B. Cannon, The changed metabolic world with human brown adipose tissue: therapeutic visions, Cell Metab, vol.11, pp.268-272, 2010.

K. I. Stanford, R. J. Middelbeek, and K. L. Townsend, Brown adipose tissue regulates glucose homeostasis and insulin sensitivity, J Clin Invest, vol.123, pp.215-223, 2013.

M. Chondronikola, E. Volpi, and E. Børsheim, Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans, Diabetes, vol.63, pp.4089-4099, 2014.

M. J. Hanssen, J. Hoeks, and B. Brans, Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus, Nat Med, vol.21, pp.863-865, 2015.

M. J. Hanssen, A. A. Van-der-lans, and B. Brans, Short-term cold acclimation recruits brown adipose tissue in obese humans, Diabetes, vol.65, pp.1179-1189, 2016.

F. Bieswal, S. M. Hay, and C. Mckinnon, Prenatal protein restriction does not affect the proliferation and differentiation of rat preadipocytes, J Nutr, vol.134, pp.1493-1499, 2004.

B. Cannon and J. Nedergaard, Nonshivering thermogenesis and its adequate measurement in metabolic studies, J Exp Biol, vol.214, pp.242-253, 2011.

W. Glider, Using mammal study skins to investigate the relationship between surface area to volume ratio and mass of two size classes of mammals. Proceedings of the Association for, Biology Laboratory Education, vol.32, pp.346-353, 2011.

N. J. Rothwell and M. J. Stock, Surgical removal of brown fat results in rapid and complete compensation by other depots, Am J Physiol, vol.257, pp.253-258, 1989.

C. Jousse, Y. Muranishi, and L. Parry, Perinatal protein malnutrition affects mitochondrial function in adult and results in a resistance to high fat diet-induced obesity, PLoS One, vol.9, p.104896, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01365546

D. F. Pisani, G. E. Beranger, and A. Corinus, The K+ channel TASK1 modulates b-adrenergic response in brown adipose tissue through the mineralocorticoid receptor pathway, BAT and Metabolic Disease Programming Diabetes, vol.30, pp.909-922, 2016.

A. S. Al-goblan, M. A. Al-alfi, and M. Z. Khan, Mechanism linking diabetes mellitus and obesity. Diabetes, metabolic syndrome and obesity : targets and therapy, vol.7, pp.587-591, 2014.

S. N. Bhupathiraju and F. B. Hu, Epidemiology of Obesity and Diabetes and Their Cardiovascular Complications, Circulation research, vol.118, pp.1723-1735, 2016.

B. Cannon and J. Nedergaard, Brown adipose tissue: function and physiological significance, Physiological reviews, vol.84, pp.277-359, 2004.

K. L. Townsend and Y. H. Tseng, Brown fat fuel utilization and thermogenesis, Trends in endocrinology and metabolism: TEM, vol.25, pp.168-177, 2014.

T. J. Schulz and Y. H. Tseng, Brown adipose tissue: development, metabolism and beyond, Biochem J, vol.453, pp.167-178, 2013.

O. Dumortier, E. Roger, D. F. Pisani, V. Casamento, N. Gautier et al., Age-Dependent Control of Energy Homeostasis by Brown Adipose Tissue in Progeny Subjected to Maternal Diet-Induced Fetal Programming, Diabetes, vol.66, pp.627-639, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01594882

R. N. Pradhan, M. Zachara, and B. Deplancke, Obesity reviews : an official journal of the International Association for the Study of, Obesity, vol.18, pp.65-81, 2017.

A. M. Cypess, S. Lehman, G. Williams, I. Tal, D. Rodman et al., Identification and importance of brown adipose tissue in adult humans, The New England journal of medicine, vol.360, pp.1509-1517, 2009.

M. Saito, Y. Okamatsu-ogura, M. Matsushita, K. Watanabe, T. Yoneshiro et al., High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity, Diabetes, vol.58, pp.1526-1531, 2009.

W. D. Van-marken-lichtenbelt, J. W. Vanhommerig, N. M. Smulders, J. M. Drossaerts, G. J. Kemerink et al., Cold-activated brown adipose tissue in healthy men, The New England journal of medicine, vol.360, pp.1500-1508, 2009.

K. A. Virtanen, M. E. Lidell, J. Orava, M. Heglind, R. Westergren et al., Functional brown adipose tissue in healthy adults, The New England journal of medicine, vol.360, pp.1518-1525, 2009.

D. P. Bartel, Metazoan MicroRNAs, Cell, vol.173, pp.20-51, 2018.

L. F. Gebert and I. J. Macrae, Regulation of microRNA function in animals, Nature reviews. Molecular cell biology, 2018.

H. J. Kim, H. Cho, R. Alexander, H. C. Patterson, M. Gu et al., MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes, Diabetes, vol.63, pp.4045-4056, 2014.

M. A. Mori, T. Thomou, J. Boucher, K. Y. Lee, S. Lallukka et al., Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy, The Journal of clinical investigation, vol.124, pp.3339-3351, 2014.
DOI : 10.1172/jci73468

URL : http://www.jci.org/articles/view/73468/files/pdf

M. Oliverio, E. Schmidt, J. Mauer, C. Baitzel, N. Hansmeier et al., Dicer1-miR-328-Bace1 signalling controls brown adipose tissue differentiation and function, Nature cell biology, vol.18, pp.328-336, 2016.
DOI : 10.1038/ncb3316

E. D. Roger, O. Pisani, D. F. Gautier, N. Amri, E. Z. Van-obberghen et al., Increased expression of miRNAs and of Argonaute-2 is associated to brown adipose tissue activation Under Submission at Molecular Metabolism 18, Molecular endocrinology, vol.23, pp.925-931, 2009.

Z. P. Huang and D. Z. Wang, ) miR-22 in cardiac remodeling and disease, Trends in cardiovascular medicine, vol.24, pp.267-272, 2014.
DOI : 10.1016/j.tcm.2014.07.005

URL : http://europepmc.org/articles/pmc4171194?pdf=render

G. P. Diniz, Z. P. Huang, J. Liu, J. Chen, J. Ding et al., Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy, Clinical science, vol.131, pp.2885-2900, 2017.
DOI : 10.1042/cs20171368

D. F. Pisani, G. E. Beranger, A. Corinus, M. Giroud, R. A. Ghandour et al., The K+ channel TASK1 modulates beta-adrenergic response in brown adipose tissue through the mineralocorticoid receptor pathway, FASEB J, vol.30, pp.909-922, 2016.

M. Karbiener, C. Neuhold, P. Opriessnig, A. Prokesch, J. G. Bogner-strauss et al., MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2, RNA Biol, vol.8, pp.850-860, 2011.
DOI : 10.4161/rna.8.5.16153

M. Lundh, K. Plucinska, M. S. Isidor, P. S. Petersen, and B. Emanuelli, Bidirectional manipulation of gene expression in adipocytes using CRISPRa and siRNA, Molecular metabolism, vol.6, pp.1313-1320, 2017.
DOI : 10.1016/j.molmet.2017.07.001

URL : https://doi.org/10.1016/j.molmet.2017.07.001

M. Giroud, M. Karbiener, D. F. Pisani, R. A. Ghandour, G. E. Beranger et al., PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein, Cell metabolism, vol.15, pp.395-404, 2012.

B. B. Brandao, B. A. Guerra, and M. A. Mori, Shortcuts to a functional adipose tissue: The role of small non-coding RNAs, Redox biology, vol.12, pp.82-102, 2017.

L. Sun, H. Xie, M. A. Mori, R. Alexander, B. Yuan et al., Mir193b-365 is essential for brown fat differentiation, Nature cell biology, vol.13, pp.958-965, 2011.
DOI : 10.1038/ncb2286

URL : http://europepmc.org/articles/pmc3149720?pdf=render

P. Gurha, C. Abreu-goodger, T. Wang, M. O. Ramirez, A. L. Drumond et al., Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction, Circulation, vol.125, pp.2751-2761, 2012.
DOI : 10.1161/circulationaha.111.044354

URL : https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.111.044354

Z. P. Huang, J. Chen, H. Y. Seok, Z. Zhang, M. Kataoka et al., MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress, Circulation research, vol.112, pp.1234-1243, 2013.
DOI : 10.1161/circresaha.112.300682

URL : https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.112.300682

K. Kaur, S. Vig, R. Srivastava, A. Mishra, V. P. Singh et al., Elevated Hepatic miR-22-3p Expression Impairs Gluconeogenesis by Silencing the WntResponsive Transcription Factor Tcf7, Diabetes, vol.64, pp.3659-3669, 2015.
DOI : 10.2337/db14-1924

URL : http://hw-f5-diabetes.highwire.org/content/64/11/3659.full.pdf

J. Long, S. S. Badal, Y. Wang, B. H. Chang, A. Rodriguez et al., MicroRNA-22 is a master regulator of bone morphogenetic protein-7/6 homeostasis in the kidney, The Journal of biological chemistry, vol.288, pp.36202-36214, 2013.

Y. Zhang, S. Zhao, D. Wu, X. Liu, M. Shi et al., MicroRNA-22 Promotes Renal Tubulointerstitial Fibrosis by Targeting PTEN and Suppressing Autophagy in Diabetic Nephropathy, Journal of diabetes research, p.4728645, 2018.
DOI : 10.1155/2018/4728645

URL : http://downloads.hindawi.com/journals/jdr/2018/4728645.pdf

A. Cependant and . Vu, du pouvoir circulant de certains miARNs, l'inhibition ou l'augmentation de leur expression dans un tissu spécifique pourrait potentiellement impacter des signaux destinés à d'autres tissus de l'organisme, c'est pourquoi

, pour le traitement de l'hépatite C, des études fondamentales, pré-cliniques et cliniques sont

M. Ahmadian, M. J. Abbott, T. Tang, C. S. Hudak, Y. Kim et al., Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype, Cell metabolism, vol.13, pp.739-748, 2011.
DOI : 10.1016/j.cmet.2011.05.002

URL : https://doi.org/10.1016/j.cmet.2011.05.002

C. E. Aiken, J. L. Tarry-adkins, and S. E. Ozanne, Transgenerational Developmental Programming of Ovarian Reserve, Scientific reports, vol.5, p.16175, 2015.
DOI : 10.1038/srep16175

URL : https://www.nature.com/articles/srep16175.pdf

A. , E. U. Gregg, B. Blandino-rosano, M. Cras-meneur, C. Bernal-mizrachi et al., Natural history of beta-cell adaptation and failure in type 2 diabetes, Molecular aspects of medicine, vol.42, pp.19-41, 2015.

N. Alsuhaymi, H. Habeeballah, M. J. Stebbing, and E. Badoer, High Fat Diet Decreases Neuronal Activation in the Brain Induced by Resistin and Leptin, Frontiers in physiology, vol.8, p.867, 2017.

T. Arora and F. Backhed, The gut microbiota and metabolic disease: current understanding and future perspectives, Journal of internal medicine, vol.280, pp.339-349, 2016.

C. Attane, C. Foussal, S. Le-gonidec, A. Benani, D. Daviaud et al., Apelin treatment increases complete Fatty Acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle of insulin-resistant mice, Diabetes, vol.61, pp.310-320, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00723095

B. ,

E. S. Bachman, H. Dhillon, C. Y. Zhang, S. Cinti, A. C. Bianco et al., betaAR signaling required for diet-induced thermogenesis and obesity resistance, Science, vol.297, pp.843-845, 2002.

F. Backhed, H. Ding, T. Wang, L. V. Hooper, G. Y. Koh et al., , 2004.

, The gut microbiota as an environmental factor that regulates fat storage, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.15718-15723

I. Baik, A. Ascherio, E. B. Rimm, E. Giovannucci, D. Spiegelman et al., , 2000.

, Adiposity and mortality in men, American journal of epidemiology, vol.152, pp.264-271

B. Balkau, L. Mhamdi, J. M. Oppert, J. Nolan, A. Golay et al., Physical activity and insulin sensitivity: the RISC study, Diabetes, vol.57, pp.2613-2618, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00292181

D. J. Barker, Fetal origins of coronary heart disease, Bmj, vol.311, pp.171-174, 1995.

D. J. Barker, Maternal nutrition, fetal nutrition, and disease in later life, Nutrition, vol.13, pp.807-813, 1997.

D. J. Barker, O. , and C. , Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales, Lancet, vol.1, pp.1077-1081, 1986.

D. J. Barker, P. D. Winter, C. Osmond, B. Margetts, and S. J. Simmonds, Weight in infancy and death from ischaemic heart disease, Lancet, vol.2, pp.577-580, 1989.

D. Barneda, J. Planas-iglesias, M. L. Gaspar, D. Mohammadyani, S. Prasannan et al., The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix, vol.4, p.7485, 2015.

N. Baroukh, M. A. Ravier, M. K. Loder, E. V. Hill, A. Bounacer et al., MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines, The Journal of biological chemistry, vol.282, pp.19575-19588, 2007.

V. Barquissau, D. Beuzelin, D. F. Pisani, G. E. Beranger, A. Mairal et al., White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways, Molecular metabolism, vol.5, pp.352-365, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02134884

R. Barres and J. R. Zierath, The role of diet and exercise in the transgenerational epigenetic landscape of T2DM, Nature reviews. Endocrinology, vol.12, pp.441-451, 2016.

A. Barski, S. Cuddapah, K. Cui, T. Y. Roh, D. E. Schones et al., , 2007.

, High-resolution profiling of histone methylations in the human genome, Cell, vol.129, pp.823-837

A. Bartelt, O. T. Bruns, R. Reimer, H. Hohenberg, H. Ittrich et al., Brown adipose tissue activity controls triglyceride clearance, Nature medicine, vol.17, pp.200-205, 2011.

A. Bartelt and J. Heeren, Adipose tissue browning and metabolic health, Nature reviews. Endocrinology, vol.10, pp.24-36, 2014.

A. Bartelt, M. Merkel, and J. Heeren, A new, powerful player in lipoprotein metabolism: brown adipose tissue, Journal of molecular medicine, vol.90, pp.887-893, 2012.

T. J. Bartness, C. H. Vaughan, and C. K. Song, Sympathetic and sensory innervation of brown adipose tissue, International journal of obesity, vol.34, pp.36-42, 2010.

N. Barzilai, L. She, B. Q. Liu, P. Vuguin, P. Cohen et al., Surgical removal of visceral fat reverses hepatic insulin resistance, Diabetes, vol.48, pp.94-98, 1999.

P. Baskaran, V. Krishnan, J. Ren, and B. Thyagarajan, Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms, British journal of pharmacology, vol.173, pp.2369-2389, 2016.

S. Baskerville and D. P. Bartel, Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes, Rna, vol.11, pp.241-247, 2005.

P. Bateson, D. Barker, T. Clutton-brock, D. Deb, B. D'udine et al., Developmental plasticity and human health, Nature, vol.430, pp.419-421, 2004.

P. Bateson, P. Gluckman, and M. Hanson, The biology of developmental plasticity and the Predictive Adaptive Response hypothesis, The Journal of physiology, vol.592, pp.2357-2368, 2014.

T. Bengtsson, B. Cannon, and J. Nedergaard, Differential adrenergic regulation of the gene expression of the beta-adrenoceptor subtypes beta1, beta2 and beta3 in brown adipocytes, The Biochemical journal, vol.347, pp.643-651, 2000.

N. Bennis-taleb, C. Remacle, J. J. Hoet, and B. Reusens, A low-protein isocaloric diet during gestation affects brain development and alters permanently cerebral cortex blood vessels in rat offspring, The Journal of nutrition, vol.129, pp.1613-1619, 1999.

D. C. Benyshek, C. S. Johnston, and J. F. Martin, Glucose metabolism is altered in the adequately-nourished grand-offspring (F3 generation) of rats malnourished during gestation and perinatal life, Diabetologia, vol.49, pp.1117-1119, 2006.

G. E. Beranger, M. Karbiener, V. Barquissau, D. F. Pisani, M. Scheideler et al., In vitro brown and "brite"/"beige" adipogenesis: human cellular models and molecular aspects, Biochimica et biophysica acta, vol.1831, pp.905-914, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00758262

L. M. Berends, L. Dearden, Y. C. Tung, P. Voshol, D. S. Fernandez-twinn et al., Programming of central and peripheral insulin resistance by low birthweight and postnatal catch-up growth in male mice, Diabetologia, vol.61, pp.2225-2234, 2018.

L. M. Berends, D. S. Fernandez-twinn, M. S. Martin-gronert, R. L. Cripps, and S. E. Ozanne, Catch-up growth following intra-uterine growth-restriction programmes an insulin-resistant phenotype in adipose tissue, International journal of obesity, vol.37, pp.1051-1057, 2013.

J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, 2012.

R. N. Bergman, Orchestration of glucose homeostasis: from a small acorn to the California oak, Diabetes, vol.56, pp.1489-1501, 2007.

M. J. Betz and S. Enerback, Human Brown Adipose Tissue: What We Have Learned So Far, Diabetes, vol.64, pp.2352-2360, 2015.

G. A. Bewick, J. V. Gardiner, W. S. Dhillo, A. S. Kent, N. E. White et al., Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.19, pp.1680-1682, 2005.

A. Bianchi, J. L. Evans, A. J. Iverson, A. C. Nordlund, T. D. Watts et al., Identification of an isozymic form of acetyl-CoA carboxylase, The Journal of biological chemistry, vol.265, pp.1502-1509, 1990.

F. Bieswal, M. T. Ahn, B. Reusens, P. Holvoet, M. Raes et al., The importance of catch-up growth after early malnutrition for the programming of obesity in male rat, Obesity, vol.14, pp.1330-1343, 2006.

N. Billon, P. Iannarelli, M. C. Monteiro, C. Glavieux-pardanaud, W. D. Richardson et al., The generation of adipocytes by the neural crest, Development, vol.134, pp.2283-2292, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00282739

T. Block and A. El-osta, Epigenetic programming, early life nutrition and the risk of metabolic disease, Atherosclerosis, vol.266, pp.31-40, 2017.

D. P. Blondin, S. M. Labbe, C. Noll, M. Kunach, S. Phoenix et al., Selective Impairment of Glucose but Not Fatty Acid or Oxidative Metabolism in Brown Adipose Tissue of Subjects With Type 2 Diabetes, Diabetes, vol.64, pp.2388-2397, 2015.

M. Bluher and C. S. Mantzoros, From leptin to other adipokines in health and disease: facts and expectations at the beginning of the 21st century, Metabolism: clinical and experimental, vol.64, pp.131-145, 2015.

K. Bodis and M. Roden, Energy metabolism of white adipose tissue and insulin resistance in humans, European journal of clinical investigation, p.13017, 2018.

V. V. Bol, A. I. Delattre, B. Reusens, M. Raes, R. et al., Forced catch-up growth after fetal protein restriction alters the adipose tissue gene expression program leading to obesity in adult mice, American journal of physiology. Regulatory, integrative and comparative physiology, vol.297, pp.291-299, 2009.

A. Bonnefond and P. Froguel, Rare and common genetic events in type 2 diabetes: what should biologists know?, Cell metabolism, vol.21, pp.357-368, 2015.
DOI : 10.1016/j.cmet.2014.12.020

URL : https://doi.org/10.1016/j.cmet.2014.12.020

J. Bork-jensen, C. Scheele, D. V. Christophersen, E. Nilsson, M. Friedrichsen et al., Glucose tolerance is associated with differential expression of microRNAs in skeletal muscle: results from studies of twins with and without type 2 diabetes, Diabetologia, vol.58, pp.363-373, 2015.

S. Boujendar, B. Reusens, S. Merezak, M. T. Ahn, E. Arany et al., Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets, Diabetologia, vol.45, pp.856-866, 2002.

A. Bouloumie, V. Planat, J. C. Devedjian, P. Valet, J. S. Saulnier-blache et al., , 1994.

, Alpha 2-adrenergic stimulation promotes preadipocyte proliferation. Involvement of mitogen-activated protein kinases, The Journal of biological chemistry, vol.269, pp.30254-30259

E. Brakenhielm, R. Cao, B. Gao, B. Angelin, B. Cannon et al., Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice, Circulation research, vol.94, pp.1579-1588, 2004.

B. B. Brandao, B. A. Guerra, and M. A. Mori, Shortcuts to a functional adipose tissue: The role of small noncoding RNAs, Redox biology, vol.12, pp.82-102, 2017.

D. L. Brasaemle, Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis, Journal of lipid research, vol.48, pp.2547-2559, 2007.

D. L. Brasaemle, V. Subramanian, A. Garcia, A. Marcinkiewicz, and A. Rothenberg, Perilipin A and the control of triacylglycerol metabolism, Molecular and cellular biochemistry, vol.326, pp.15-21, 2009.

M. S. Bray, R. J. Loos, J. M. Mccaffery, C. Ling, P. W. Franks et al., NIH working group report-using genomic information to guide weight management: From universal to precision treatment, Obesity, vol.24, pp.14-22, 2016.
DOI : 10.1002/oby.21381

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/oby.21381

P. D. Brewer, E. N. Habtemichael, I. Romenskaia, C. C. Mastick, and A. C. Coster, Insulin-regulated Glut4 translocation: membrane protein trafficking with six distinctive steps, The Journal of biological chemistry, vol.289, pp.17280-17298, 2014.
DOI : 10.1074/jbc.m114.555714

URL : http://europepmc.org/articles/pmc4067164?pdf=render

M. N. Brito, N. A. Brito, D. J. Baro, C. K. Song, and T. J. Bartness, Differential activation of the sympathetic innervation of adipose tissues by melanocortin receptor stimulation, Endocrinology, vol.148, pp.5339-5347, 2007.

E. P. Broeders, E. B. Nascimento, B. Havekes, B. Brans, K. H. Roumans et al., The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity, vol.22, pp.418-426, 2015.

L. D. Brown, A. S. Green, S. W. Limesand, and P. J. Rozance, Maternal amino acid supplementation for intrauterine growth restriction, Frontiers in bioscience, vol.3, pp.428-444, 2011.

N. F. Brown, J. K. Hill, V. Esser, J. L. Kirkland, B. E. Corkey et al., Mouse white adipocytes and 3T3-L1 cells display an anomalous pattern of carnitine palmitoyltransferase (CPT) I isoform expression during differentiation. Inter-tissue and inter-species expression of CPT I and CPT II enzymes, The Biochemical journal, vol.327, pp.225-231, 1997.

C. R. Bruce, A. J. Hoy, N. Turner, M. J. Watt, T. L. Allen et al., Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance, Diabetes, vol.58, pp.550-558, 2009.

L. Brunkwall and M. Orho-melander, The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities, Diabetologia, vol.60, pp.943-951, 2017.

H. Budak, R. Bulut, M. Kantar, A. , and B. , MicroRNA nomenclature and the need for a revised naming prescription, Briefings in functional genomics, vol.15, pp.65-71, 2016.

A. E. Bunner, P. C. Chandrasekera, and N. D. Barnard, Knockout mouse models of insulin signaling: Relevance past and future, World journal of diabetes, vol.5, pp.146-159, 2014.

C. ,

M. Calderon-dominguez, J. F. Mir, R. Fucho, M. Weber, D. Serra et al., Fatty acid metabolism and the basis of brown adipose tissue function, Adipocyte, vol.5, pp.98-118, 2016.

N. Campbell, , 1995.

B. Cannon and J. Nedergaard, Brown adipose tissue: function and physiological significance, Physiological reviews, vol.84, pp.277-359, 2004.

N. Cano, Bench-to-bedside review: glucose production from the kidney, Critical care, vol.6, pp.317-321, 2002.

J. Cantley, The control of insulin secretion by adipokines: current evidence for adipocyte-beta cell endocrine signalling in metabolic homeostasis, Mammalian genome : official journal of the International Mammalian Genome Society, vol.25, pp.442-454, 2014.

W. Cao, K. W. Daniel, J. Robidoux, P. Puigserver, A. V. Medvedev et al., p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene, Molecular and cellular biology, vol.24, pp.3057-3067, 2004.

G. Y. Carmen and S. M. Victor, Signalling mechanisms regulating lipolysis, Cellular signalling, vol.18, pp.401-408, 2006.

A. Caron, S. M. Labbe, S. Carter, M. C. Roy, R. Lecomte et al., Loss of UCP2 impairs cold-induced non-shivering thermogenesis by promoting a shift toward glucose utilization in brown adipose tissue, Biochimie, vol.134, pp.118-126, 2017.

B. R. Carone, L. Fauquier, N. Habib, J. M. Shea, C. E. Hart et al., Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals, Cell, vol.143, pp.1084-1096, 2010.

C. Catalanotto, C. Cogoni, and G. Zardo, MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions, International journal of molecular sciences, vol.17, 2016.

M. Cedikova, M. Kripnerova, J. Dvorakova, P. Pitule, M. Grundmanova et al., Mitochondria in White, Brown, and Beige Adipocytes, p.6067349, 2016.

P. C. Chen, Y. N. Kryukova, and S. L. Shyng, Leptin regulates KATP channel trafficking in pancreatic betacells by a signaling mechanism involving AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA), The Journal of biological chemistry, vol.288, pp.34098-34109, 2013.

Y. Chen, R. Pan, and A. Pfeifer, Regulation of brown and beige fat by microRNAs, Pharmacology & therapeutics, vol.170, pp.1-7, 2017.

Y. Chen, F. Siegel, S. Kipschull, B. Haas, H. Frohlich et al., miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit, Nature communications, vol.4, p.1769, 2013.

N. Chevalier and P. Fenichel, Endocrine disruptors: new players in the pathophysiology of type 2 diabetes?, Diabetes & metabolism, vol.41, pp.107-115, 2015.

S. S. Choe, J. Y. Huh, I. J. Hwang, J. I. Kim, and J. B. Kim, Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders, Frontiers in endocrinology, vol.7, p.30, 2016.

M. M. Chong, G. Zhang, S. Cheloufi, T. A. Neubert, G. J. Hannon et al., Canonical and alternate functions of the microRNA biogenesis machinery, Genes & development, vol.24, pp.1951-1960, 2010.

E. T. Chouchani, L. Kazak, M. P. Jedrychowski, G. Z. Lu, B. K. Erickson et al., Corrigendum: Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1, Nature, vol.536, p.360, 2016.

S. Cinti, The adipose organ, Prostaglandins, leukotrienes, and essential fatty acids, vol.73, pp.9-15, 2005.

C. Clemmensen, T. D. Muller, S. C. Woods, H. R. Berthoud, R. J. Seeley et al., Gut-Brain Cross-Talk in Metabolic Control, Cell, vol.168, pp.758-774, 2017.

J. N. Clore, J. Stillman, and H. Sugerman, Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes, Diabetes, vol.49, pp.969-974, 2000.

S. Collins, K. W. Daniel, E. M. Rohlfs, V. Ramkumar, I. L. Taylor et al., Impaired expression and functional activity of the beta 3-and beta 1-adrenergic receptors in adipose tissue of congenitally obese (C57BL/6J ob/ob) mice, Molecular endocrinology, vol.8, pp.518-527, 1994.

D. L. Conwell, L. S. Lee, D. Yadav, D. S. Longnecker, F. H. Miller et al., American Pancreatic Association Practice Guidelines in Chronic Pancreatitis: evidencebased report on diagnostic guidelines, Pancreas, vol.43, pp.1143-1162, 2014.

R. Coppari, M. Ichinose, C. E. Lee, A. E. Pullen, C. D. Kenny et al., The hypothalamic arcuate nucleus: a key site for mediating leptin's effects on glucose homeostasis and locomotor activity, Cell metabolism, vol.1, pp.63-72, 2005.

B. Coupe, I. Grit, P. Hulin, G. Randuineau, and P. Parnet, Postnatal growth after intrauterine growth restriction alters central leptin signal and energy homeostasis, PloS one, vol.7, p.30616, 2012.

B. Cousin, S. Cinti, M. Morroni, S. Raimbault, D. Ricquier et al., Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization, Journal of cell science, vol.103, pp.931-942, 1992.

A. M. Cypess, C. R. Haft, M. R. Laughlin, and H. H. Hu, Brown fat in humans: consensus points and experimental guidelines, Cell metabolism, vol.20, pp.408-415, 2014.

A. M. Cypess, S. Lehman, G. Williams, I. Tal, D. Rodman et al., Identification and importance of brown adipose tissue in adult humans, The New England journal of medicine, vol.360, pp.1509-1517, 2009.

A. M. Cypess, L. S. Weiner, C. Roberts-toler, E. F. Elia, S. H. Kessler et al., Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist, Cell metabolism, vol.21, pp.33-38, 2015.

M. P. Czech, Insulin action and resistance in obesity and type 2 diabetes, Nature medicine, vol.23, pp.804-814, 2017.

D. ,

D. Dabelea, The predisposition to obesity and diabetes in offspring of diabetic mothers, Diabetes care, vol.30, issue.2, pp.169-174, 2007.

S. Dahri, A. Snoeck, B. Reusens-billen, C. Remacle, and J. J. Hoet, Islet function in offspring of mothers on low-protein diet during gestation, Diabetes, vol.40, issue.2, pp.115-120, 1991.

C. Davegardh, S. Garcia-calzon, K. Bacos, L. , and C. , DNA methylation in the pathogenesis of type 2 diabetes in humans, 2018.

T. De-castro-barbosa, L. R. Ingerslev, P. S. Alm, S. Versteyhe, J. Massart et al., High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring, Molecular metabolism, vol.5, pp.184-197, 2016.

L. A. De-jesus, S. D. Carvalho, M. O. Ribeiro, M. Schneider, S. W. Kim et al., The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue, The Journal of clinical investigation, vol.108, pp.1379-1385, 2001.

J. M. De-jong, O. Larsson, B. Cannon, and J. Nedergaard, A stringent validation of mouse adipose tissue identity markers, American journal of physiology. Endocrinology and metabolism, vol.308, pp.1085-1105, 2015.

N. De, L. Young, P. W. Lau, N. C. Meisner, D. V. Morrissey et al., Highly complementary target RNAs promote release of guide RNAs from human Argonaute2, Molecular cell, vol.50, pp.344-355, 2013.

V. De-tata, Age-related impairment of pancreatic Beta-cell function: pathophysiological and cellular mechanisms, Frontiers in endocrinology, vol.5, p.138, 2014.

D. Vadder, F. Kovatcheva-datchary, P. Zitoun, C. Duchampt, A. Backhed et al., , 2016.

, Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis, Cell metabolism, vol.24, pp.151-157

A. De-vos, H. Heimberg, E. Quartier, P. Huypens, L. Bouwens et al., Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression, The Journal of clinical investigation, vol.96, pp.2489-2495, 1995.

S. U. Devaskar, C. , and A. , Intrauterine Growth Restriction: Hungry for an Answer, Physiology, vol.31, pp.131-146, 2016.

G. P. Diniz, Z. P. Huang, J. Liu, J. Chen, J. Ding et al., Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy, Clinical science, vol.131, pp.2885-2900, 2017.

K. O. Doh, Y. W. Kim, S. Y. Park, S. K. Lee, J. S. Park et al., Interrelation between long-chain fatty acid oxidation rate and carnitine palmitoyltransferase 1 activity with different isoforms in rat tissues, Life sciences, vol.77, pp.435-443, 2005.

I. Donkin and R. Barres, Sperm epigenetics and influence of environmental factors. Molecular metabolism, 2018.

I. Donkin, S. Versteyhe, L. R. Ingerslev, K. Qian, M. Mechta et al., Obesity and Bariatric Surgery Drive Epigenetic Variation of Spermatozoa in Humans, Cell metabolism, vol.23, pp.369-378, 2016.

C. Druet, N. Stettler, S. Sharp, R. K. Simmons, C. Cooper et al., Prediction of childhood obesity by infancy weight gain: an individual-level meta-analysis, Paediatric and perinatal epidemiology, vol.26, pp.19-26, 2012.

I. Duivenvoorden, B. Teusink, P. C. Rensen, J. A. Romijn, L. M. Havekes et al., Apolipoprotein C3 deficiency results in diet-induced obesity and aggravated insulin resistance in mice, Diabetes, vol.54, pp.664-671, 2005.

O. Dumortier, B. Blondeau, B. Duvillie, B. Reusens, B. Breant et al., Different mechanisms operating during different critical time-windows reduce rat fetal beta cell mass due to a maternal low-protein or lowenergy diet, Diabetologia, vol.50, pp.2495-2503, 2007.

O. Dumortier, C. Hinault, N. Gautier, S. Patouraux, V. Casamento et al., Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375, Diabetes, vol.63, pp.3416-3427, 2014.

O. Dumortier, C. Hinault, and E. Van-obberghen, MicroRNAs and metabolism crosstalk in energy homeostasis, Cell metabolism, vol.18, pp.312-324, 2013.

O. Dumortier, E. Roger, D. F. Pisani, V. Casamento, N. Gautier et al., Age-Dependent Control of Energy Homeostasis by Brown Adipose Tissue in Progeny Subjected to Maternal Diet-Induced Fetal Programming, Diabetes, vol.66, pp.627-639, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01594882

G. A. Dunn and T. L. Bale, Maternal high-fat diet effects on third-generation female body size via the paternal lineage, Endocrinology, vol.152, pp.2228-2236, 2011.

D. E. Duque-guimaraes and S. E. Ozanne, Nutritional programming of insulin resistance: causes and consequences, Trends in endocrinology and metabolism: TEM, vol.24, pp.525-535, 2013.

E. ,

S. W. Eichhorn, H. Guo, S. E. Mcgeary, R. A. Rodriguez-mias, C. Shin et al., mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues, Molecular cell, vol.56, pp.104-115, 2014.

A. El-ouaamari, N. Baroukh, G. A. Martens, P. Lebrun, D. Pipeleers et al., miR-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells, Diabetes, vol.57, pp.2708-2717, 2008.

A. El-ouaamari, E. Dirice, N. Gedeon, J. Hu, J. Y. Zhou et al., SerpinB1 Promotes Pancreatic beta Cell Proliferation, vol.23, pp.194-205, 2016.

J. M. Ellis, J. L. Frahm, L. O. Li, C. , and R. A. , Acyl-coenzyme A synthetases in metabolic control, Current opinion in lipidology, vol.21, pp.212-217, 2010.

J. Elmen, M. Lindow, S. Schutz, M. Lawrence, A. Petri et al., LNA-mediated microRNA silencing in non-human primates, Nature, vol.452, pp.896-899, 2008.

S. Enerback, A. Jacobsson, E. M. Simpson, C. Guerra, H. Yamashita et al., , 1997.

, Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese, Nature, vol.387, pp.90-94

S. Fabbiano, N. Suarez-zamorano, C. Chevalier, V. Lazarevic, S. Kieser et al., Functional Gut Microbiota Remodeling Contributes to the Caloric RestrictionInduced Metabolic Improvements, Cell metabolism, 2018.

S. S. Fajans, G. I. Bell, and K. S. Polonsky, Molecular mechanisms and clinical pathophysiology of maturityonset diabetes of the young, The New England journal of medicine, vol.345, pp.971-980, 2001.

A. Fedorenko, P. V. Lishko, and Y. Kirichok, Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria, Cell, vol.151, pp.400-413, 2012.

H. M. Feldmann, V. Golozoubova, B. Cannon, and J. Nedergaard, UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality, Cell metabolism, vol.9, pp.203-209, 2009.

J. Feng, W. Xing, and L. Xie, Regulatory Roles of MicroRNAs in Diabetes, International journal of molecular sciences, vol.17, 2016.

D. Ferland-mccollough, D. S. Fernandez-twinn, I. G. Cannell, H. David, M. Warner et al., Programming of adipose tissue miR-483-3p and GDF-3 expression by maternal diet in type 2 diabetes, Cell death and differentiation, vol.19, pp.1003-1012, 2012.

D. S. Fernandez-twinn, M. Constancia, and S. E. Ozanne, Intergenerational epigenetic inheritance in models of developmental programming of adult disease, Seminars in cell & developmental biology, vol.43, pp.85-95, 2015.

D. S. Fernandez-twinn, A. Wayman, S. Ekizoglou, M. S. Martin, C. N. Hales et al., Maternal protein restriction leads to hyperinsulinemia and reduced insulin-signaling protein expression in 21-mo-old female rat offspring, American journal of physiology. Regulatory, integrative and comparative physiology, vol.288, pp.368-373, 2005.

R. Figueroa-colon, R. B. Arani, M. I. Goran, and R. L. Weinsier, Paternal body fat is a longitudinal predictor of changes in body fat in premenarcheal girls, The American journal of clinical nutrition, vol.71, pp.829-834, 2000.

S. R. Filios and A. Shalev, beta-Cell MicroRNAs: Small but Powerful, Diabetes, vol.64, pp.3631-3644, 2015.

A. W. Fischer, I. G. Shabalina, C. L. Mattsson, G. Abreu-vieira, B. Cannon et al., UCP1 inhibition in Cidea-overexpressing mice is physiologically counteracted by brown adipose tissue hyperrecruitment, American journal of physiology. Endocrinology and metabolism, vol.312, pp.72-87, 2017.

K. Fischer, H. H. Ruiz, K. Jhun, B. Finan, D. J. Oberlin et al., Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis, Nature medicine, vol.23, pp.623-630, 2017.

F. M. Fisher, S. Kleiner, N. Douris, E. C. Fox, R. J. Mepani et al., FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis, Genes & development, vol.26, pp.271-281, 2012.

J. J. Forman, A. Legesse-miller, and H. A. Coller, A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.14879-14884, 2008.

M. T. Foster and T. J. Bartness, Sympathetic but not sensory denervation stimulates white adipocyte proliferation, American journal of physiology. Regulatory, integrative and comparative physiology, vol.291, pp.1630-1637, 2006.

M. T. Foster, C. K. Song, and T. J. Bartness, Hypothalamic paraventricular nucleus lesion involvement in the sympathetic control of lipid mobilization, Obesity, vol.18, pp.682-689, 2010.

T. M. Frayling, N. J. Timpson, M. N. Weedon, E. Zeggini, R. M. Freathy et al., A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity, Science, vol.316, pp.889-894, 2007.

G. Fredrikson and P. Belfrage, Positional specificity of hormone-sensitive lipase from rat adipose tissue, The Journal of biological chemistry, vol.258, pp.14253-14256, 1983.

A. Frontini and S. Cinti, Distribution and development of brown adipocytes in the murine and human adipose organ, Cell metabolism, vol.11, pp.253-256, 2010.

O. Froy and M. Garaulet, The Circadian Clock in White and Brown Adipose Tissue: Mechanistic, Endocrine, and Clinical Aspects, Endocrine reviews, vol.39, pp.261-273, 2018.

Z. Fu, E. R. Gilbert, and D. Liu, Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes, Current diabetes reviews, vol.9, pp.25-53, 2013.

G. ,

K. T. Gagnon, L. Li, Y. Chu, B. A. Janowski, and D. R. Corey, RNAi factors are present and active in human cell nuclei, Cell reports, vol.6, pp.211-221, 2014.

M. P. Gaidhu, A. Frontini, S. Hung, K. Pistor, S. Cinti et al., Chronic AMP-kinase activation with AICAR reduces adiposity by remodeling adipocyte metabolism and increasing leptin sensitivity, Journal of lipid research, vol.52, pp.1702-1711, 2011.

S. Galvan-pena and L. A. Neill, Metabolic reprograming in macrophage polarization, Frontiers in immunology, vol.5, p.420, 2014.

A. Garofano, P. Czernichow, and B. Breant, Postnatal somatic growth and insulin contents in moderate or severe intrauterine growth retardation in the rat, Biol Neonate, vol.73, pp.89-98, 1998.

A. Garofano, P. Czernichow, and B. Breant, Effect of ageing on beta-cell mass and function in rats malnourished during the perinatal period, Diabetologia, vol.42, pp.711-718, 1999.

L. F. Gebert and I. J. Macrae, Regulation of microRNA function in animals, Nature reviews. Molecular cell biology, 2018.

I. Gerin, G. T. Bommer, C. S. Mccoin, K. M. Sousa, V. Krishnan et al., Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis, American journal of physiology. Endocrinology and metabolism, vol.299, pp.198-206, 2010.

C. Gerngross, J. Schretter, M. Klingenspor, M. Schwaiger, and T. Fromme, Active Brown Fat During, 2017.

F. Ct, Imaging Defines a Patient Group with Characteristic Traits and an Increased Probability of Brown Fat Redetection, Society of Nuclear Medicine, vol.58, pp.1104-1110

S. Gesta, Y. H. Tseng, and C. R. Kahn, Developmental origin of fat: tracking obesity to its source, Cell, vol.131, pp.242-256, 2007.

V. Gilsanz, H. H. Hu, and S. Kajimura, Relevance of brown adipose tissue in infancy and adolescence, Pediatric research, vol.73, pp.3-9, 2013.

M. Giroud, M. Karbiener, D. F. Pisani, R. A. Ghandour, G. E. Beranger et al., Let-7i-5p represses brite adipocyte function in mice and humans, Scientific reports, vol.6, p.28613, 2016.

M. Giroud, D. F. Pisani, M. Karbiener, V. Barquissau, R. A. Ghandour et al., miR-125b affects mitochondrial biogenesis and impairs brite adipocyte formation and function, Molecular metabolism, vol.5, pp.615-625, 2016.

P. Gourdy, L. Cazals, C. Thalamas, A. Sommet, F. Calvas et al., Apelin administration improves insulin sensitivity in overweight men during hyperinsulinaemic-euglycaemic clamp, Diabetes, obesity & metabolism, vol.20, pp.157-164, 2018.

S. M. Gray, R. I. Meijer, and E. J. Barrett, Insulin regulates brain function, but how does it get there?, Diabetes, vol.63, pp.3992-3997, 2014.

M. R. Greenwood and J. Hirsch, Postnatal development of adipocyte cellularity in the normal rat, Journal of lipid research, vol.15, pp.474-483, 1974.

S. Griffiths-jones, R. J. Grocock, S. Van-dongen, A. Bateman, and A. J. Enright, miRBase: microRNA sequences, targets and gene nomenclature, Nucleic acids research, vol.34, pp.140-144, 2006.

H. Guo, N. T. Ingolia, J. S. Weissman, and D. P. Bartel, Mammalian microRNAs predominantly act to decrease target mRNA levels, Nature, vol.466, pp.835-840, 2010.

P. Gurha, C. Abreu-goodger, T. Wang, M. O. Ramirez, A. L. Drumond et al., Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction, Circulation, vol.125, pp.2751-2761, 2012.

C. Gutierrez-rodelo, A. Roura-guiberna, and J. A. Olivares-reyes, , 2017.

, Gaceta medica de Mexico, vol.153, pp.214-228

T. J. Guzik, D. S. Skiba, R. M. Touyz, and D. G. Harrison, The role of infiltrating immune cells in dysfunctional adipose tissue, Cardiovascular research, vol.113, pp.1009-1023, 2017.

M. Ha and V. N. Kim, Regulation of microRNA biogenesis, Nature reviews. Molecular cell biology, vol.15, pp.509-524, 2014.

G. Haemmerle, R. Zimmermann, M. Hayn, C. Theussl, G. Waeg et al., Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis, The Journal of biological chemistry, vol.277, pp.4806-4815, 2002.

C. N. Hales and D. J. Barker, The thrifty phenotype hypothesis, Br Med Bull, vol.60, pp.5-20, 2001.

C. N. Hales and D. J. Barker, Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis, International journal of epidemiology, vol.42, pp.1215-1222, 1992.

C. N. Hales, D. J. Barker, P. M. Clark, L. J. Cox, C. Fall et al., Fetal and infant growth and impaired glucose tolerance at age 64, Bmj, vol.303, pp.1019-1022, 1991.

M. T. Hamilton, D. G. Hamilton, and T. W. Zderic, Sedentary behavior as a mediator of type 2 diabetes, Medicine and sport science, vol.60, pp.11-26, 2014.
DOI : 10.1159/000357332

URL : https://www.karger.com/Article/Pdf/357332

J. Han, J. E. Lee, J. Jin, J. S. Lim, N. Oh et al., The spatiotemporal development of adipose tissue, Development, vol.138, pp.5027-5037, 2011.

C. Handschin and B. M. Spiegelman, The role of exercise and PGC1alpha in inflammation and chronic disease, Nature, vol.454, pp.463-469, 2008.

M. K. Hankir and M. Klingenspor, Brown adipocyte glucose metabolism: a heated subject, EMBO reports, vol.19, 2018.
DOI : 10.15252/embr.201846404

T. B. Hansen, M. T. Veno, T. I. Jensen, A. Schaefer, C. K. Damgaard et al., Argonaute-associated short introns are a novel class of gene regulators, Nature communications, vol.7, p.11538, 2016.

M. A. Hanson and P. D. Gluckman, Developmental origins of health and disease -Global public health implications, Best Pract Res Clin Obstet Gynaecol, 2014.

M. A. Hanson and P. D. Gluckman, Early Developmental Conditioning of Later Health and Disease: Physiology or Pathophysiology?, Physiological reviews, vol.94, pp.1027-1076, 2014.
DOI : 10.1152/physrev.00029.2013

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187033/pdf

M. J. Hanssen, E. Broeders, R. J. Samms, M. J. Vosselman, A. A. Van-der-lans et al., Serum FGF21 levels are associated with brown adipose tissue activity in humans, p.10275, 2015.
DOI : 10.1038/srep10275

URL : https://www.nature.com/articles/srep10275.pdf

M. J. Hanssen, J. Hoeks, B. Brans, A. A. Van-der-lans, G. Schaart et al., Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus, Nature medicine, vol.21, pp.863-865, 2015.
DOI : 10.1038/nm.3891

M. J. Hanssen, A. A. Van-der-lans, B. Brans, J. Hoeks, K. M. Jardon et al., Short-term Cold Acclimation Recruits Brown Adipose Tissue in Obese Humans, Diabetes, vol.65, pp.1179-1189, 2016.
DOI : 10.2337/db15-1372

URL : http://diabetes.diabetesjournals.org/content/65/5/1179.full.pdf

M. Harms and P. Seale, Brown and beige fat: development, function and therapeutic potential, Nature medicine, vol.19, pp.1252-1263, 2013.
DOI : 10.1038/nm.3361

URL : https://www.nature.com/articles/nm.3361.pdf

E. Heard and R. A. Martienssen, Transgenerational epigenetic inheritance: myths and mechanisms, Cell, vol.157, pp.95-109, 2014.

N. M. Held, E. N. Kuipers, M. Van-weeghel, J. B. Van-klinken, S. W. Denis et al., Pyruvate dehydrogenase complex plays a central role in brown adipocyte energy expenditure and fuel utilization during short-term beta-adrenergic activation, 2018.

C. Hellerstrom and I. Swenne, Functional maturation and proliferation of fetal pancreatic beta-cells, Diabetes, vol.40, issue.2, pp.89-93, 1991.
DOI : 10.2337/diab.40.2.s89

B. M. Herrera, H. E. Lockstone, J. M. Taylor, Q. F. Wills, P. J. Kaisaki et al., MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes, BMC Med Genomics, vol.2, p.54, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00663936

S. B. Heymsfield and T. A. Wadden, Mechanisms, Pathophysiology, and Management of Obesity, The New England journal of medicine, vol.376, pp.254-266, 2017.

C. Hilton, M. J. Neville, and F. Karpe, MicroRNAs in adipose tissue: their role in adipogenesis and obesity, International journal of obesity, vol.37, pp.325-332, 2013.
DOI : 10.1038/ijo.2012.59

URL : https://www.nature.com/articles/ijo201259.pdf

C. Hinault, O. Dumortier, and E. Van-obberghen, , vol.29, pp.785-790, 2013.

J. J. Holst, F. Gribble, M. Horowitz, and C. K. Rayner, Roles of the Gut in Glucose Homeostasis, Diabetes care, vol.39, pp.884-892, 2016.

E. Hondares, R. Iglesias, A. Giralt, F. J. Gonzalez, M. Giralt et al., Thermogenic activation induces FGF21 expression and release in brown adipose tissue, The Journal of biological chemistry, vol.286, pp.12983-12990, 2011.
DOI : 10.1074/jbc.m110.215889

URL : http://europepmc.org/articles/pmc3075644?pdf=render

E. Hondares, M. Rosell, F. J. Gonzalez, M. Giralt, R. Iglesias et al., Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat, Cell metabolism, vol.11, pp.206-212, 2010.

H. R. Horvitz and J. E. Sulston, Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans, Genetics, vol.96, pp.435-454, 1980.

J. Huang, T. Imamura, and J. M. Olefsky, Insulin can regulate GLUT4 internalization by signaling to Rab5 and the motor protein dynein, Proceedings of the National Academy of Sciences of the United States of America, vol.98, pp.13084-13089, 2001.

Z. P. Huang, J. Chen, H. Y. Seok, Z. Zhang, M. Kataoka et al., MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress, Circulation research, vol.112, pp.1234-1243, 2013.

Z. P. Huang and D. Z. Wang, miR-22 in cardiac remodeling and disease, Trends in cardiovascular medicine, vol.24, pp.267-272, 2014.

C. S. Humphrey, J. R. Dykes, and D. Johnston, Effects of truncal, selective, and highly selective vagotomy on glucose tolerance and insulin secretion in patients with duodenal ulcer. Part I-Effect of vagotomy on response to oral glucose, British medical journal, vol.2, pp.112-114, 1975.

C. H. Hurst and D. J. Waxman, Activation of PPARalpha and PPARgamma by environmental phthalate monoesters, Toxicological sciences : an official journal of the Society of Toxicology, vol.74, pp.297-308, 2003.

L. J. Hutley, A. C. Herington, W. Shurety, C. Cheung, D. A. Vesey et al., Human adipose tissue endothelial cells promote preadipocyte proliferation, American journal of physiology. Endocrinology and metabolism, vol.281, pp.1037-1044, 2001.

P. Huypens, S. Sass, M. Wu, D. Dyckhoff, M. Tschop et al., Epigenetic germline inheritance of diet-induced obesity and insulin resistance, Nature genetics, vol.48, pp.497-499, 2016.

I. ,

A. Ichimura, A. Hirasawa, O. Poulain-godefroy, A. Bonnefond, T. Hara et al., Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human, Nature, vol.483, pp.350-354, 2012.

, Across the globe, Across the globe (International Diabetes Federation ), 2017.

S. I. Ikeda, Y. Tamura, S. Kakehi, H. Sanada, R. Kawamori et al., Exercise-induced increase in IL-6 level enhances GLUT4 expression and insulin sensitivity in mouse skeletal muscle, Biochemical and biophysical research communications, vol.473, pp.947-952, 2016.

J. ,

M. Janot, M. L. Cortes-dubly, S. Rodriguez, and U. Huynh-do, Bilateral uterine vessel ligation as a model of intrauterine growth restriction in mice, Reproductive biology and endocrinology : RB&E, vol.12, p.62, 2014.

S. Ji, Y. You, J. Kerner, C. L. Hoppel, T. R. Schoeb et al., Homozygous carnitine palmitoyltransferase 1b (muscle isoform) deficiency is lethal in the mouse, Molecular genetics and metabolism, vol.93, pp.314-322, 2008.

B. J. Jones, T. Tan, and S. R. Bloom, Minireview: Glucagon in stress and energy homeostasis, Endocrinology, vol.153, pp.1049-1054, 2012.

C. N. Jones, D. Pei, P. Staris, K. S. Polonsky, Y. D. Chen et al., Alterations in the glucosestimulated insulin secretory dose-response curve and in insulin clearance in nondiabetic insulin-resistant individuals, The Journal of clinical endocrinology and metabolism, vol.82, pp.1834-1838, 1997.

C. Jousse, Y. Muranishi, L. Parry, C. Montaurier, P. Even et al., Perinatal protein malnutrition affects mitochondrial function in adult and results in a resistance to high fat diet-induced obesity, PloS one, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01365546

B. B. Kahn, Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance, Cell, vol.92, pp.593-596, 1998.

B. B. Kahn and J. S. Flier, Obesity and insulin resistance, The Journal of clinical investigation, vol.106, pp.473-481, 2000.

S. Kajimura, P. Seale, K. Kubota, E. Lunsford, J. V. Frangioni et al., Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex, Nature, vol.460, pp.1154-1158, 2009.

S. Kajimura, P. Seale, T. Tomaru, H. Erdjument-bromage, M. P. Cooper et al., Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex, Genes & development, vol.22, pp.1397-1409, 2008.

U. Kampmann, L. R. Madsen, G. O. Skajaa, D. S. Iversen, N. Moeller et al., Gestational diabetes: A clinical update, World journal of diabetes, vol.6, pp.1065-1072, 2015.

V. Kamvissi-lorenz, M. Raffaelli, S. Bornstein, and G. Mingrone, Role of the Gut on Glucose Homeostasis: Lesson Learned from Metabolic Surgery, Current atherosclerosis reports, vol.19, p.9, 2017.

M. Karbiener, C. Fischer, S. Nowitsch, P. Opriessnig, C. Papak et al., microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma, Biochemical and biophysical research communications, vol.390, pp.247-251, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00457687

A. Katsarou, S. Gudbjornsdottir, A. Rawshani, D. Dabelea, E. Bonifacio et al., Type 1 diabetes mellitus, Nature reviews, 2017.

T. E. Kauppila, J. H. Kauppila, and N. G. Larsson, Mammalian Mitochondria and Aging: An Update, Cell metabolism, vol.25, pp.57-71, 2017.

K. Kaur, S. Vig, R. Srivastava, A. Mishra, V. P. Singh et al., Elevated Hepatic miR-22-3p Expression Impairs Gluconeogenesis by Silencing the Wnt-Responsive Transcription Factor Tcf7, Diabetes, vol.64, pp.3659-3669, 2015.

M. Kazantzis, V. Takahashi, J. Hinkle, S. Kota, V. Zilberfarb et al., PAZ6 cells constitute a representative model for human brown pre-adipocytes, Frontiers in endocrinology, vol.3, p.13, 2012.

S. Kersten, Physiological regulation of lipoprotein lipase, Biochimica et biophysica acta, vol.1841, pp.919-933, 2014.

V. C. Khanh, A. F. Zulkifli, C. Tokunaga, T. Yamashita, Y. Hiramatsu et al., Aging impairs beige adipocyte differentiation of mesenchymal stem cells via the reduced expression of Sirtuin 1, Biochemical and biophysical research communications, vol.500, pp.682-690, 2018.

A. T. Kharroubi and H. M. Darwish, Diabetes mellitus: The epidemic of the century, World journal of diabetes, vol.6, pp.850-867, 2015.

A. Kihara, Very long-chain fatty acids: elongation, physiology and related disorders, Journal of biochemistry, vol.152, pp.387-395, 2012.

M. Kikai, H. Yamada, N. Wakana, K. Terada, K. Yamamoto et al., Transplantation of brown adipose tissue inhibits atherosclerosis in apoE-/-mice: contribution of the activated FGF-21-adiponectin axis, Cardiovascular research, vol.114, pp.1-13, 2018.

H. J. Kim, H. Cho, R. Alexander, H. C. Patterson, M. Gu et al., MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes, Diabetes, vol.63, pp.4045-4056, 2014.

V. N. Kim, N. , and J. W. , Genomics of microRNA, Trends in genetics : TIG, vol.22, pp.165-173, 2006.

W. Kim, J. L. Fiori, Y. K. Shin, E. Okun, J. S. Kim et al., Pancreatic polypeptide inhibits somatostatin secretion, FEBS letters, vol.588, pp.3233-3239, 2014.

Y. K. Kim and V. N. Kim, Processing of intronic microRNAs, The EMBO journal, vol.26, pp.775-783, 2007.

J. Klein, M. Fasshauer, H. H. Klein, M. Benito, and C. R. Kahn, Novel adipocyte lines from brown fat: a model system for the study of differentiation, energy metabolism, and insulin action, BioEssays : news and reviews in molecular, cellular and developmental biology, vol.24, pp.382-388, 2002.

M. Klingenspor, M. Ivemeyer, H. Wiesinger, K. Haas, G. Heldmaier et al., Biogenesis of thermogenic mitochondria in brown adipose tissue of Djungarian hamsters during cold adaptation, The Biochemical journal, vol.316, pp.607-613, 1996.

L. Kong, J. Zhu, W. Han, X. Jiang, M. Xu et al., Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study, Acta diabetologica, vol.48, pp.61-69, 2011.

Y. Kontani, Y. Wang, K. Kimura, K. I. Inokuma, M. Saito et al., UCP1 deficiency increases susceptibility to diet-induced obesity with age, Aging cell, vol.4, pp.147-155, 2005.

S. Kooijman, J. K. Van-den-heuvel, and P. C. Rensen, Neuronal Control of Brown Fat Activity, Trends in endocrinology and metabolism: TEM, vol.26, pp.657-668, 2015.

P. Kovatcheva-datchary, A. Nilsson, R. Akrami, Y. S. Lee, F. De-vadder et al., Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella, Cell metabolism, vol.22, pp.971-982, 2015.

G. M. Kowalski and C. R. Bruce, The regulation of glucose metabolism: implications and considerations for the assessment of glucose homeostasis in rodents, American journal of physiology. Endocrinology and metabolism, vol.307, pp.859-871, 2014.

A. Krek, D. Grun, M. N. Poy, R. Wolf, L. Rosenberg et al., Combinatorial microRNA target predictions, Nature genetics, vol.37, pp.495-500, 2005.

S. Kreth, M. Hubner, and L. C. Hinske, MicroRNAs as Clinical Biomarkers and Therapeutic Tools in Perioperative Medicine, Anesthesia and analgesia, vol.126, pp.670-681, 2018.

N. Kubota, Y. Terauchi, K. Tobe, W. Yano, R. Suzuki et al., Insulin receptor substrate 2 plays a crucial role in beta cells and the hypothalamus, The Journal of clinical investigation, vol.114, pp.917-927, 2004.

R. N. Kulkarni, J. C. Bruning, J. N. Winnay, C. Postic, M. A. Magnuson et al., Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes, Cell, vol.96, pp.329-339, 1999.

R. N. Kulkarni, Z. L. Wang, R. M. Wang, J. D. Hurley, D. M. Smith et al., Leptin rapidly suppresses insulin release from insulinoma cells, rat and human islets and, in vivo, in mice, The Journal of clinical investigation, vol.100, pp.2729-2736, 1997.

H. Kwon, J. E. Pessin, and E. R. ;-l-l, Adipokines mediate inflammation and insulin resistance, Frontiers in endocrinology, vol.4, 2013.

H. N. Lafeber, T. P. Rolph, and C. T. Jones, Studies on the growth of the fetal guinea pig. The effects of ligation of the uterine artery on organ growth and development, Journal of developmental physiology, vol.6, pp.441-459, 1984.

M. Laplante, W. T. Festuccia, G. Soucy, Y. Gelinas, J. Lalonde et al., Involvement of adipose tissues in the early hypolipidemic action of PPARgamma agonism in the rat, American journal of physiology. Regulatory, integrative and comparative physiology, vol.292, pp.1408-1417, 2007.

A. Lass, R. Zimmermann, G. Haemmerle, M. Riederer, G. Schoiswohl et al., Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome, Cell metabolism, vol.3, pp.309-319, 2006.

C. H. Lau and Y. Suh, vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease, 2017.

J. Law, D. E. Morris, C. Izzi-engbeaya, V. Salem, C. Coello et al., Thermal Imaging Is a Noninvasive Alternative to PET/CT for Measurement of Brown Adipose Tissue Activity in Humans, Journal of nuclear medicine : official publication, vol.59, pp.516-522, 2018.

S. Lecoutre, F. Oger, C. Pourpe, L. Butruille, L. Marousez et al., Maternal obesity programs increased leptin gene expression in rat male offspring via epigenetic modifications in a depot-specific manner, Molecular metabolism, vol.6, pp.922-930, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607373

A. C. Lee, J. Katz, H. Blencowe, S. Cousens, N. Kozuki et al., National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010, The Lancet. Global health, vol.1, pp.26-36, 2013.

K. Y. Lee, Y. Yamamoto, J. Boucher, J. N. Winnay, S. Gesta et al., Shox2 is a molecular determinant of depot-specific adipocyte function, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.11409-11414, 2013.

R. C. Lee, R. L. Feinbaum, A. , and V. , The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, vol.75, pp.843-854, 1993.
URL : https://hal.archives-ouvertes.fr/in2p3-00597159

Y. H. Lee, E. P. Mottillo, and J. G. Granneman, Adipose tissue plasticity from WAT to BAT and in between, Biochimica et biophysica acta, vol.1842, pp.358-369, 2014.

Y. H. Lee, A. P. Petkova, E. P. Mottillo, and J. G. Granneman, In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding, Cell metabolism, vol.15, pp.480-491, 2012.

Y. S. Lee, J. Wollam, and J. M. Olefsky, An Integrated View of Immunometabolism, Cell, vol.172, pp.22-40, 2018.

J. Legler, T. Fletcher, E. Govarts, M. Porta, B. Blumberg et al., Obesity, diabetes, and associated costs of exposure to endocrine-disrupting chemicals in the European Union, The Journal of clinical endocrinology and metabolism, vol.100, pp.1278-1288, 2015.

S. F. Leibowitz, N. J. Hammer, C. , and K. , Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat, Physiology & behavior, vol.27, pp.1031-1040, 1981.

B. P. Leitner, S. Huang, R. J. Brychta, C. J. Duckworth, A. S. Baskin et al., Mapping of human brown adipose tissue in lean and obese young men, Proceedings of the National Academy of Sciences of the United States of America, vol.114, pp.8649-8654, 2017.

B. P. Leitner, L. S. Weiner, M. Desir, P. A. Kahn, D. J. Selen et al., , 2018.

, Kinetics of human brown adipose tissue activation and deactivation, International journal of obesity

W. H. Liao, M. Henneberg, and W. Langhans, Immunity-Based Evolutionary Interpretation of Diet-Induced Thermogenesis, Cell metabolism, vol.23, pp.971-979, 2016.

J. Liu, J. Li, W. J. Li, and C. M. Wang, The role of uncoupling proteins in diabetes mellitus, Journal of diabetes research, p.585897, 2013.

J. Liu, K. Shi, M. Chen, L. Xu, J. Hong et al., Elevated miR-155 expression induces immunosuppression via CD39(+) regulatory T-cells in sepsis patient, IJID : official publication of the International Society for Infectious Diseases, vol.40, pp.135-141, 2015.

M. Liu, A. Roth, M. Yu, R. Morris, F. Bersani et al., The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis, Genes & development, vol.27, pp.2543-2548, 2013.

X. Liu, Z. Zheng, X. Zhu, M. Meng, L. Li et al., Brown adipose tissue transplantation improves whole-body energy metabolism, Cell Res, vol.23, pp.851-854, 2013.

C. E. Lowe, S. O'rahilly, and J. J. Rochford, Adipogenesis at a glance, Journal of cell science, vol.124, pp.2681-2686, 2011.

F. L. Lueder and E. S. Ogata, Uterine artery ligation in the maternal rat alters fetal tissue glucose utilization, Pediatric research, vol.28, pp.464-468, 1990.

C. N. Lumeng, J. L. Bodzin, and A. R. Saltiel, Obesity induces a phenotypic switch in adipose tissue macrophage polarization, The Journal of clinical investigation, vol.117, pp.175-184, 2007.

L. H. Lumey, A. D. Stein, H. S. Kahn, K. M. Van-der-pal-de-bruin, G. J. Blauw et al., Cohort profile: the Dutch Hunger Winter families study, International journal of epidemiology, vol.36, pp.1196-1204, 2007.

L. Luo and M. Liu, Adipose tissue in control of metabolism, The Journal of endocrinology, vol.231, pp.77-99, 2016.

M. D. Lynes and Y. H. Tseng, The Thermogenic Circuit: Regulators of Thermogenic Competency and Differentiation, Genes & diseases, vol.2, pp.164-172, 2015.

M. , U. D. Saari, T. Raiko, J. Kudomi, N. Maurer et al., Postprandial Oxidative Metabolism of Human Brown Fat Indicates Thermogenesis, Cell metabolism, vol.28, pp.207-216, 2018.

I. Magnusson, D. L. Rothman, L. D. Katz, R. G. Shulman, and G. I. Shulman, Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study, The Journal of clinical investigation, vol.90, pp.1323-1327, 1992.

S. Majid, A. A. Dar, S. Saini, S. Yamamura, H. Hirata et al., MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer, Cancer, vol.116, pp.5637-5649, 2010.

K. L. Marlatt and E. Ravussin, Brown Adipose Tissue: an Update on Recent Findings, Current obesity reports, vol.6, pp.389-396, 2017.

M. S. Martin-gronert and S. E. Ozanne, Experimental IUGR and later diabetes, Journal of internal medicine, vol.261, pp.437-452, 2007.

M. S. Martin-gronert and S. E. Ozanne, Metabolic programming of insulin action and secretion, Diabetes, obesity & metabolism, vol.14, pp.29-39, 2012.

R. Martinez-de-mena, T. S. Scanlan, and M. J. Obregon, The T3 receptor beta1 isoform regulates UCP1 and D2 deiodinase in rat brown adipocytes, vol.151, pp.5074-5083, 2010.

W. Marz, M. Nauck, M. M. Hoffmann, D. Nagel, B. O. Boehm et al., G(-30)A polymorphism in the pancreatic promoter of the glucokinase gene associated with angiographic coronary artery disease and type 2 diabetes mellitus, Circulation, vol.109, pp.2844-2849, 2004.

C. L. Mattsson, R. I. Csikasz, E. Chernogubova, D. L. Yamamoto, H. T. Hogberg et al., beta(1)-Adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold-acclimated beta(3)-adrenergic receptor-knockout mice via nonshivering thermogenesis, American journal of physiology. Endocrinology and metabolism, vol.301, pp.1108-1118, 2011.

S. Mayeur, S. Lancel, N. Theys, M. A. Lukaszewski, S. Duban-deweer et al., Maternal calorie restriction modulates placental mitochondrial biogenesis and bioenergetic efficiency: putative involvement in fetoplacental growth defects in rats, American journal of physiology. Endocrinology and metabolism, vol.304, pp.14-22, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01000954

L. J. Mcculloch, M. Van-de-bunt, M. Braun, K. N. Frayn, A. Clark et al., GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: implications for understanding genetic association signals at this locus, Molecular genetics and metabolism, vol.104, pp.648-653, 2011.

J. D. Mcgarry, K. F. Woeltje, M. Kuwajima, and D. W. Foster, Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase, Diabetes/metabolism reviews, vol.5, pp.271-284, 1989.

H. A. Meijer, Y. W. Kong, W. T. Lu, A. Wilczynska, R. V. Spriggs et al., Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation, Science, vol.340, pp.82-85, 2013.

S. Modica and C. Wolfrum, Bone morphogenic proteins signaling in adipogenesis and energy homeostasis, Biochimica et biophysica acta, vol.1831, pp.915-923, 2013.

A. M. Monteys, R. M. Spengler, J. Wan, L. Tecedor, K. A. Lennox et al., Structure and activity of putative intronic miRNA promoters, Rna, vol.16, pp.495-505, 2010.

M. Mori, H. Nakagami, G. Rodriguez-araujo, K. Nimura, and Y. Kaneda, Essential role for miR-196a in brown adipogenesis of white fat progenitor cells, PLoS Biol, vol.10, 2012.

M. A. Mori, P. Raghavan, T. Thomou, J. Boucher, S. Robida-stubbs et al., Role of microRNA processing in adipose tissue in stress defense and longevity, Cell metabolism, vol.16, pp.336-347, 2012.

M. A. Mori, T. Thomou, J. Boucher, K. Y. Lee, S. Lallukka et al., Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy, The Journal of clinical investigation, vol.124, pp.3339-3351, 2014.

S. F. Morrison and C. J. Madden, Central nervous system regulation of brown adipose tissue, Comprehensive Physiology, vol.4, pp.1677-1713, 2014.

E. P. Mottillo, P. Balasubramanian, Y. H. Lee, C. Weng, E. E. Kershaw et al., Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation, Journal of lipid research, vol.55, pp.2276-2286, 2014.

E. P. Mottillo, A. E. Bloch, T. Leff, and J. G. Granneman, Lipolytic products activate peroxisome proliferatoractivated receptor (PPAR) alpha and delta in brown adipocytes to match fatty acid oxidation with supply, The Journal of biological chemistry, vol.287, pp.25038-25048, 2012.

R. Mudhasani, A. N. Imbalzano, and S. N. Jones, An essential role for Dicer in adipocyte differentiation, Journal of cellular biochemistry, vol.110, pp.812-816, 2010.

R. Mudhasani, V. Puri, K. Hoover, M. P. Czech, A. N. Imbalzano et al., Dicer is required for the formation of white but not brown adipose tissue, Journal of cellular physiology, vol.226, pp.1399-1406, 2011.

M. P. Murphy, Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications, Antioxidants & redox signaling, vol.16, pp.476-495, 2012.

E. Mutel, A. Gautier-stein, A. Abdul-wahed, M. Amigo-correig, C. Zitoun et al., Control of blood glucose in the absence of hepatic glucose production during prolonged fasting in mice: induction of renal and intestinal gluconeogenesis by glucagon, Diabetes, vol.60, pp.3121-3131, 2011.

N. ,

D. Nam, B. Guo, S. Chatterjee, M. H. Chen, D. Nelson et al., The adipocyte clock controls brown adipogenesis through the TGF-beta and BMP signaling pathways, Journal of cell science, vol.128, pp.1835-1847, 2015.

J. Nedergaard, S. Alexson, and B. Cannon, Cold adaptation in the rat: increased brown fat peroxisomal beta-oxidation relative to maximal mitochondrial oxidative capacity, The American journal of physiology, vol.239, pp.208-216, 1980.

J. Nedergaard, T. Bengtsson, and B. Cannon, Unexpected evidence for active brown adipose tissue in adult humans, American journal of physiology. Endocrinology and metabolism, vol.293, pp.444-452, 2007.

K. D. Nguyen, Y. Qiu, X. Cui, Y. P. Goh, J. Mwangi et al., Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis, Nature, vol.480, pp.104-108, 2011.

D. G. Nicholls, V. S. Bernson, and G. M. Heaton, The identification of the component in the inner membrane of brown adipose tissue mitochondria responsible for regulating energy dissipation, Experientia. Supplementum, vol.32, pp.89-93, 1978.

K. Nishi, A. Nishi, T. Nagasawa, and K. Ui-tei, Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus, Rna, vol.19, pp.17-35, 2013.

R. C. Nordlie, J. D. Foster, and A. J. Lange, Regulation of glucose production by the liver, Annual review of nutrition, vol.19, pp.379-406, 1999.

. O-,

H. Ohno, K. Shinoda, B. M. Spiegelman, and S. Kajimura, PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein, Cell metabolism, vol.15, pp.395-404, 2012.

M. Oliverio, E. Schmidt, J. Mauer, C. Baitzel, N. Hansmeier et al., Dicer1-miR-328-Bace1 signalling controls brown adipose tissue differentiation and function, Nature cell biology, vol.18, pp.328-336, 2016.

E. A. Orellana and A. L. Kasinski, MicroRNAs in Cancer: A Historical Perspective on the Path from Discovery to Therapy, Cancers, vol.7, pp.1388-1405, 2015.

J. Osuga, S. Ishibashi, T. Oka, H. Yagyu, R. Tozawa et al., Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity, Proceedings of the National Academy of Sciences of the United States of America, vol.97, pp.787-792, 2000.

V. Ouellet, A. Routhier-labadie, W. Bellemare, L. Lakhal-chaieb, E. Turcotte et al., Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans, The Journal of clinical endocrinology and metabolism, vol.96, pp.192-199, 2011.

S. E. Ozanne and C. N. Hales, The long-term consequences of intra-uterine protein malnutrition for glucose metabolism, The Proceedings of the Nutrition Society, vol.58, pp.615-619, 1999.

S. E. Ozanne, G. D. Smith, J. Tikerpae, and C. N. Hales, Altered regulation of hepatic glucose output in the male offspring of protein-malnourished rat dams, The American journal of physiology, vol.270, pp.559-564, 1996.

S. E. Ozanne, C. L. Wang, N. Coleman, and G. D. Smith, Altered muscle insulin sensitivity in the male offspring of protein-malnourished rats, The American journal of physiology, vol.271, pp.1128-1134, 1996.

F. Ozsolak, L. L. Poling, Z. Wang, H. Liu, X. S. Liu et al., Chromatin structure analyses identify miRNA promoters, Genes & development, vol.22, pp.3172-3183, 2008.

P. ,

M. Palou, J. Konieczna, J. M. Torrens, J. Sanchez, T. Priego et al., Impaired insulin and leptin sensitivity in the offspring of moderate caloric-restricted dams during gestation is early programmed, The Journal of nutritional biochemistry, vol.23, pp.1627-1639, 2012.

S. J. Pandol, The Exocrine Pancreas, 2010.

J. H. Park, W. Hur, and S. B. Lee, Intricate Transcriptional Networks of Classical Brown and Beige Fat Cells, Frontiers in endocrinology, vol.6, p.124, 2015.

J. H. Park, D. A. Stoffers, R. D. Nicholls, and R. A. Simmons, Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1, The Journal of clinical investigation, vol.118, pp.2316-2324, 2008.

M. S. Park, H. D. Phan, F. Busch, S. H. Hinckley, J. A. Brackbill et al., Human Argonaute3 has slicer activity, Nucleic acids research, vol.45, pp.11867-11877, 2017.

M. E. Patti, Intergenerational programming of metabolic disease: evidence from human populations and experimental animal models. Cellular and molecular life sciences : CMLS 70, pp.1597-1608, 2013.

A. Penhoat, L. Fayard, A. Stefanutti, G. Mithieux, and F. Rajas, Intestinal gluconeogenesis is crucial to maintain a physiological fasting glycemia in the absence of hepatic glucose production in mice, Metabolism: clinical and experimental, vol.63, pp.104-111, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01859366

P. Peraldi and B. Spiegelman, TNF-alpha and insulin resistance: summary and future prospects, Molecular and cellular biochemistry, vol.182, pp.169-175, 1998.

J. Petrik, B. Reusens, E. Arany, C. Remacle, C. Coelho et al., A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II, Endocrinology, vol.140, pp.4861-4873, 1999.

N. Petrovic, T. B. Walden, I. G. Shabalina, J. A. Timmons, B. Cannon et al., Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes, The Journal of biological chemistry, vol.285, pp.7153-7164, 2010.

C. J. Petry, M. W. Dorling, D. B. Pawlak, S. E. Ozanne, and C. N. Hales, Diabetes in old male offspring of rat dams fed a reduced protein diet, Int J Exp Diabetes Res, vol.2, pp.139-143, 2001.

L. S. Phillips, R. E. Ratner, J. B. Buse, and S. E. Kahn, We can change the natural history of type 2 diabetes, Diabetes care, vol.37, pp.2668-2676, 2014.

S. E. Pinney, L. J. Santos, Y. Han, D. A. Stoffers, and R. A. Simmons, Exendin-4 increases histone acetylase activity and reverses epigenetic modifications that silence Pdx1 in the intrauterine growth retarded rat, Diabetologia, vol.54, pp.2606-2614, 2011.

R. F. Place, L. C. Li, D. Pookot, E. J. Noonan, and R. Dahiya, MicroRNA-373 induces expression of genes with complementary promoter sequences, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.1608-1613, 2008.

C. M. Poissonnet, A. R. Burdi, and S. M. Garn, The chronology of adipose tissue appearance and distribution in the human fetus, Early human development, vol.10, pp.1-11, 1984.

M. Pollak, The effects of metformin on gut microbiota and the immune system as research frontiers, Diabetologia, vol.60, pp.1662-1667, 2017.

S. P. Poulos, D. B. Hausman, and G. J. Hausman, The development and endocrine functions of adipose tissue, Molecular and cellular endocrinology, vol.323, pp.20-34, 2010.

R. N. Pradhan, M. Zachara, and B. Deplancke, Obesity reviews : an official journal of the International Association for the Study of, Obesity, vol.18, pp.65-81, 2017.

R. B. Prasad and L. Groop, Genetics of type 2 diabetes-pitfalls and possibilities, Genes, vol.6, pp.87-123, 2015.

N. L. Price and C. Fernandez-hernando, miRNA regulation of white and brown adipose tissue differentiation and function, Biochimica et biophysica acta, vol.1861, pp.2104-2110, 2016.

R. H. Purcell, B. Sun, L. L. Pass, M. L. Power, T. H. Moran et al., Maternal stress and highfat diet effect on maternal behavior, milk composition, and pup ingestive behavior, Physiology & behavior, vol.104, pp.474-479, 2011.

Q. ,

L. Qiang, L. Wang, N. Kon, W. Zhao, S. Lee et al.,

, Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma, Cell, vol.150, pp.620-632

R. ,

J. Raffort, C. Hinault, O. Dumortier, and E. Van-obberghen, Circulating microRNAs and diabetes: potential applications in medical practice, Diabetologia, vol.58, pp.1978-1992, 2015.

K. Rahmouni, D. A. Morgan, G. M. Morgan, X. Liu, C. D. Sigmund et al., , 2004.

, Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin, The Journal of clinical investigation, vol.114, pp.652-658

O. J. Rando and R. A. Simmons, I'm Eating for Two: Parental Dietary Effects on Offspring Metabolism, Cell, vol.161, pp.93-105, 2015.

M. Rassoulzadegan, V. Grandjean, P. Gounon, S. Vincent, I. Gillot et al., RNA-mediated nonmendelian inheritance of an epigenetic change in the mouse, Nature, vol.441, pp.469-474, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02130317

M. Ratnadiwakara, M. Mohenska, and M. L. Anko, Splicing factors as regulators of miRNA biogenesislinks to human disease, Seminars in cell & developmental biology, vol.79, pp.113-122, 2018.

A. C. Ravelli, J. H. Van-der-meulen, R. P. Michels, C. Osmond, D. J. Barker et al., Glucose tolerance in adults after prenatal exposure to famine, Lancet, vol.351, pp.173-177, 1998.

I. Ray, S. K. Mahata, and R. K. De, Obesity: An Immunometabolic Perspective, Frontiers in endocrinology, vol.7, p.157, 2016.

B. J. Reinhart, F. J. Slack, M. Basson, A. E. Pasquinelli, J. C. Bettinger et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature, vol.403, pp.901-906, 2000.

C. Remacle, O. Dumortier, V. Bol, K. Goosse, P. Romanus et al., Intrauterine programming of the endocrine pancreas, Diabetes, obesity & metabolism, vol.9, issue.2, pp.196-209, 2007.

C. M. Reynolds, C. Gray, M. Li, S. A. Segovia, and M. H. Vickers, Early Life Nutrition and Energy Balance Disorders in Offspring in Later Life, Nutrients, vol.7, pp.8090-8111, 2015.

R. A. Rizza, P. E. Cryer, and J. E. Gerich, Role of glucagon, catecholamines, and growth hormone in human glucose counterregulation. Effects of somatostatin and combined alpha-and beta-adrenergic blockade on plasma glucose recovery and glucose flux rates after insulin-induced hypoglycemia, The Journal of clinical investigation, vol.64, pp.62-71, 1979.

M. S. Rodeheffer, K. Birsoy, and J. M. Friedman, Identification of white adipocyte progenitor cells in vivo, Cell, vol.135, pp.240-249, 2008.

J. T. Rodgers, C. Lerin, W. Haas, S. P. Gygi, B. M. Spiegelman et al., Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1, Nature, vol.434, pp.113-118, 2005.

R. Rodriguez-diaz, R. Dando, M. C. Jacques-silva, A. Fachado, J. Molina et al., Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans, Nature medicine, vol.17, pp.888-892, 2011.

A. Rodriguez, S. Griffiths-jones, J. L. Ashurst, and A. Bradley, Identification of mammalian microRNA host genes and transcription units, Genome research, vol.14, pp.1902-1910, 2004.

E. Roh, D. K. Song, and M. S. Kim, Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism, Experimental & molecular medicine, vol.48, p.216, 2016.

A. Romo, R. Carceller, and J. Tobajas, Intrauterine growth retardation (IUGR): epidemiology and etiology, Pediatric endocrinology reviews : PER, vol.6, pp.332-336, 2009.

M. Rosell, M. Kaforou, A. Frontini, A. Okolo, Y. W. Chan et al., Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice, American journal of physiology. Endocrinology and metabolism, vol.306, pp.945-964, 2014.

E. D. Rosen, C. H. Hsu, X. Wang, S. Sakai, M. W. Freeman et al., , 2002.

, C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway, vol.16, pp.22-26

E. D. Rosen and O. A. Macdougald, Adipocyte differentiation from the inside out, Nature reviews. Molecular cell biology, vol.7, pp.885-896, 2006.

M. Rosenwald, A. Perdikari, T. Rulicke, and C. Wolfrum, Bi-directional interconversion of brite and white adipocytes, Nature cell biology, vol.15, pp.659-667, 2013.

N. J. Rothwell and M. J. Stock, A role for insulin in the diet-induced thermogenesis of cafeteria-fed rats, Metabolism: clinical and experimental, vol.30, pp.673-678, 1981.

S. Ruegger and H. Grosshans, MicroRNA turnover: when, how, and why, Trends Biochem Sci, vol.37, pp.436-446, 2012.

R. Rupaimoole and F. J. Slack, MicroRNA therapeutics: towards a new era for the management of cancer and other diseases, Nature reviews. Drug discovery, vol.16, pp.203-222, 2017.

J. Ruzzin, R. Petersen, E. Meugnier, L. Madsen, E. J. Lock et al., Persistent organic pollutant exposure leads to insulin resistance syndrome, Environmental health perspectives, vol.118, pp.465-471, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01982018

J. W. Ryder, M. Gilbert, and J. R. Zierath, Skeletal muscle and insulin sensitivity: pathophysiological alterations, Frontiers in bioscience : a journal and virtual library, vol.6, pp.154-163, 2001.

V. M. Ssales, A. C. Ferguson-smith, P. , and M. E. , Epigenetic Mechanisms of Transmission of Metabolic Disease across Generations, Cell metabolism, vol.25, pp.559-571, 2017.

V. T. Samuel and G. I. Shulman, Mechanisms for insulin resistance: common threads and missing links, Cell, vol.148, pp.852-871, 2012.

I. Sandovici, N. H. Smith, M. D. Nitert, M. Ackers-johnson, S. Uribe-lewis et al., Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.5449-5454, 2011.

R. C. Scarpulla, Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network, Biochimica et biophysica acta, vol.1813, pp.1269-1278, 2011.

P. E. Scherer, S. Williams, M. Fogliano, G. Baldini, and H. F. Lodish, A novel serum protein similar to C1q, produced exclusively in adipocytes, The Journal of biological chemistry, vol.270, pp.26746-26749, 1995.

M. Schilperoort, A. D. Van-dam, G. Hoeke, I. G. Shabalina, A. Okolo et al., The GPR120 agonist TUG-891 promotes metabolic health by stimulating mitochondrial respiration in brown fat, EMBO molecular medicine, p.10, 2018.

T. S. Schmidt, J. Raes, and P. Bork, The Human Gut Microbiome: From Association to Modulation, Cell, vol.172, pp.1198-1215, 2018.

R. Schreiber, C. Diwoky, G. Schoiswohl, U. Feiler, N. Wongsiriroj et al., Cold-Induced Thermogenesis Depends on ATGL-Mediated Lipolysis in Cardiac Muscle, but Not Brown Adipose Tissue, Cell metabolism, vol.26, pp.753-763, 2017.

M. W. Schwartz, S. C. Woods, D. Porte, . Jr, R. J. Seeley et al., Central nervous system control of food intake, Nature, vol.404, pp.661-671, 2000.

H. Scotney, M. E. Symonds, J. Law, H. Budge, D. Sharkey et al., Glucocorticoids modulate human brown adipose tissue thermogenesis in vivo, Metabolism: clinical and experimental, vol.70, pp.125-132, 2017.

P. Seale, B. Bjork, W. Yang, S. Kajimura, S. Chin et al., PRDM16 controls a brown fat/skeletal muscle switch, Nature, vol.454, pp.961-967, 2008.

P. Seale, S. Kajimura, W. Yang, S. Chin, L. M. Rohas et al., Transcriptional control of brown fat determination by PRDM16, Cell metabolism, vol.6, pp.38-54, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00409781

G. Sebastiani, A. Po, E. Miele, G. Ventriglia, E. Ceccarelli et al., MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion, Acta diabetologica, vol.52, pp.523-530, 2015.

D. Sharma, S. Shastri, and P. Sharma, Intrauterine Growth Restriction: Antenatal and Postnatal Aspects, Clinical medicine insights. Pediatrics, vol.10, pp.67-83, 2016.

L. Z. Sharp, K. Shinoda, H. Ohno, D. W. Scheel, E. Tomoda et al., Human BAT possesses molecular signatures that resemble beige/brite cells, PloS one, vol.7, p.49452, 2012.

P. R. Shepherd, N. J. Crowther, M. Desai, C. N. Hales, and S. E. Ozanne, Altered adipocyte properties in the offspring of protein malnourished rats, The British journal of nutrition, vol.78, pp.121-129, 1997.

T. Shimizu, Y. , and K. , Acute cold exposure-induced down-regulation of CIDEA, cell death-inducing DNA fragmentation factor-alpha-like effector A, in rat interscapular brown adipose tissue by sympathetically activated beta3-adrenoreceptors, Biochemical and biophysical research communications, vol.387, pp.294-299, 2009.

H. Shin, Y. Ma, T. Chanturiya, Q. Cao, Y. Wang et al., Lipolysis in Brown Adipocytes Is Not Essential for Cold-Induced Thermogenesis in Mice, Cell metabolism, vol.26, pp.764-777, 2017.

A. Shiohama, T. Sasaki, S. Noda, S. Minoshima, and N. Shimizu, Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region, Biochemical and biophysical research communications, vol.304, pp.184-190, 2003.

J. Shirakawa, D. F. De-jesus, and R. N. Kulkarni, Exploring inter-organ crosstalk to uncover mechanisms that regulate beta-cell function and mass, European journal of clinical nutrition, vol.71, pp.896-903, 2017.

B. L. Silverman, T. A. Rizzo, N. H. Cho, and B. E. Metzger, Long-term effects of the intrauterine environment. The Northwestern University Diabetes in Pregnancy Center, Diabetes care, vol.21, issue.2, pp.142-149, 1998.

R. A. Simmons, L. J. Templeton, and S. J. Gertz, Intrauterine growth retardation leads to the development of type 2 diabetes in the rat, Diabetes, vol.50, pp.2279-2286, 2001.

R. Sladek, G. Rocheleau, J. Rung, C. Dina, L. Shen et al., A genome-wide association study identifies novel risk loci for type 2 diabetes, Nature, vol.445, pp.881-885, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00173692

J. L. Slater-jefferies, K. A. Lillycrop, P. A. Townsend, C. Torrens, S. P. Hoile et al., Feeding a protein-restricted diet during pregnancy induces altered epigenetic regulation of peroxisomal proliferator-activated receptor-alpha in the heart of the offspring, Journal of developmental origins of health and disease, vol.2, pp.250-255, 2011.

A. Snoeck, C. Remacle, B. Reusens, and J. J. Hoet, Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas, Biol Neonate, vol.57, pp.107-118, 1990.

W. J. Song, P. Mondal, A. Wolfe, L. C. Alonso, R. Stamateris et al., Glucagon regulates hepatic kisspeptin to impair insulin secretion, Cell metabolism, vol.19, pp.667-681, 2014.

M. Soty, A. Gautier-stein, F. Rajas, and G. Mithieux, Gut-Brain Glucose Signaling in Energy Homeostasis, Cell metabolism, vol.25, pp.1231-1242, 2017.

K. L. Spalding, E. Arner, P. O. Westermark, S. Bernard, B. A. Buchholz et al., Dynamics of fat cell turnover in humans, Nature, vol.453, pp.783-787, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00372715

J. E. Sprague and A. M. Arbelaez, Glucose counterregulatory responses to hypoglycemia, Pediatric endocrinology reviews : PER, vol.9, pp.463-473, 2011.

K. I. Stanford, R. J. Middelbeek, K. L. Townsend, D. An, E. B. Nygaard et al., Brown adipose tissue regulates glucose homeostasis and insulin sensitivity, The Journal of clinical investigation, vol.123, pp.215-223, 2013.

R. Stegemann and D. A. Buchner, Transgenerational inheritance of metabolic disease, Seminars in cell & developmental biology, vol.43, pp.131-140, 2015.

Y. Su, H. Wu, A. Pavlosky, L. L. Zou, X. Deng et al., Regulatory non-coding RNA: new instruments in the orchestration of cell death, Cell death & disease, vol.7, p.2333, 2016.

K. Sun, C. M. Kusminski, K. Luby-phelps, S. B. Spurgin, Y. A. An et al., Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure, Molecular metabolism, vol.3, pp.474-483, 2014.

K. Sun, I. Wernstedt-asterholm, C. M. Kusminski, A. C. Bueno, Z. V. Wang et al., Dichotomous effects of VEGF-A on adipose tissue dysfunction, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.5874-5879, 2012.

L. Sun and M. Trajkovski, MiR-27 orchestrates the transcriptional regulation of brown adipogenesis, Metabolism: clinical and experimental, vol.63, pp.272-282, 2014.

L. Sun, H. Xie, M. A. Mori, R. Alexander, B. Yuan et al., , 2011.

, Mir193b-365 is essential for brown fat differentiation, Nature cell biology, vol.13, pp.958-965

E. G. Sustarsic, T. Ma, M. D. Lynes, M. Larsen, I. Karavaeva et al., Cardiolipin Synthesis in Brown and Beige Fat Mitochondria Is Essential for Systemic Energy Homeostasis, Cell metabolism, vol.28, pp.159-174, 2018.

V. S. Susulic, R. C. Frederich, J. Lawitts, E. Tozzo, B. B. Kahn et al., Targeted disruption of the beta 3-adrenergic receptor gene, The Journal of biological chemistry, vol.270, pp.29483-29492, 1995.

A. M. Swanson and A. L. David, Animal models of fetal growth restriction: Considerations for translational medicine, Placenta, vol.36, pp.623-630, 2015.

M. E. Symonds, P. Aldiss, M. Pope, and H. Budge, Recent advances in our understanding of brown and beige adipose tissue: the good fat that keeps you healthy, 2018.

M. E. Symonds, S. P. Sebert, M. A. Hyatt, and H. Budge, Nutritional programming of the metabolic syndrome, Nature reviews. Endocrinology, vol.5, pp.604-610, 2009.

T. ,

A. Takahashi, T. Shimazu, and Y. Maruyama, Importance of sympathetic nerves for the stimulatory effect of cold exposure on glucose utilization in brown adipose tissue, The Japanese journal of physiology, vol.42, pp.653-664, 1992.

X. Tang, S. Wen, D. Zheng, L. Tucker, L. Cao et al., , 2013.

, Acetylation of drosha on the N-terminus inhibits its degradation by ubiquitination, PloS one, vol.8, 72503.

C. M. Taniguchi, B. Emanuelli, and C. R. Kahn, Critical nodes in signalling pathways: insights into insulin action, Nature reviews. Molecular cell biology, vol.7, pp.85-96, 2006.

A. W. Tank, L. Wong, and D. , Peripheral and central effects of circulating catecholamines, Comprehensive Physiology, vol.5, pp.1-15, 2015.

T. Tchkonia, T. Thomou, Y. Zhu, I. Karagiannides, C. Pothoulakis et al., Mechanisms and metabolic implications of regional differences among fat depots, Cell metabolism, vol.17, pp.644-656, 2013.

N. Theys, T. Bouckenooghe, M. T. Ahn, C. Remacle, and B. Reusens, Maternal low-protein diet alters pancreatic islet mitochondrial function in a sex-specific manner in the adult rat, American journal of physiology. Regulatory, integrative and comparative physiology, vol.297, pp.1516-1525, 2009.

B. Thorens and P. J. Larsen, Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis, Current opinion in clinical nutrition and metabolic care, vol.7, pp.471-478, 2004.

A. Thorne, F. Lonnqvist, J. Apelman, G. Hellers, and P. Arner, A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding, International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity, vol.26, pp.193-199, 2002.

S. Tokumaru, M. Suzuki, H. Yamada, M. Nagino, and T. Takahashi, let-7 regulates Dicer expression and constitutes a negative feedback loop, Carcinogenesis, vol.29, pp.2073-2077, 2008.

P. Tontonoz and B. M. Spiegelman, Fat and beyond: the diverse biology of PPARgamma, Annual review of biochemistry, vol.77, pp.289-312, 2008.

K. L. Townsend and Y. H. Tseng, Brown fat fuel utilization and thermogenesis, Trends in endocrinology and metabolism: TEM, vol.25, pp.168-177, 2014.

M. Trajkovski, K. Ahmed, C. C. Esau, and M. Stoffel, MyomiR-133 regulates brown fat differentiation through Prdm16, Nature cell biology, vol.14, pp.1330-1335, 2012.

K. V. Tran, O. Gealekman, A. Frontini, M. C. Zingaretti, M. Morroni et al., The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells, Cell metabolism, vol.15, pp.222-229, 2012.

T. T. Tran and C. R. Kahn, Transplantation of adipose tissue and stem cells: role in metabolism and disease, Nature reviews. Endocrinology, vol.6, pp.195-213, 2010.

Y. H. Tseng, E. Kokkotou, T. J. Schulz, T. L. Huang, J. N. Winnay et al., New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure, Nature, vol.454, pp.1000-1004, 2008.

A. Tups, J. Benzler, D. Sergi, S. R. Ladyman, and L. M. Williams, Central Regulation of Glucose Homeostasis, Comprehensive Physiology, vol.7, pp.741-764, 2017.

L. Tutar, E. Tutar, A. Ozgur, and Y. Tutar, Therapeutic Targeting of microRNAs in Cancer: Future Perspectives, Drug development research, vol.76, pp.382-388, 2015.

R. H. Unger, Lipotoxic diseases. Annual review of medicine 53, pp.319-336, 2002.

. V-,

A. M. Vaiserman, Birth weight predicts aging trajectory: A hypothesis, Mechanisms of ageing and development, vol.173, pp.61-70, 2018.

A. Valinezhad-orang, R. Safaralizadeh, and M. Kazemzadeh-bavili, Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation, International journal of genomics, p.970607, 2014.

A. Vambergue, A. S. Valat, P. Dufour, M. Cazaubiel, P. Fontaine et al., Journal de gynecologie, obstetrique et biologie de la reproduction, vol.31, pp.4-7, 2002.

M. H. Van-der-ree, A. J. Van-der-meer, A. C. Van-nuenen, J. De-bruijne, S. Ottosen et al., Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma, Alimentary pharmacology & therapeutics, vol.43, pp.102-113, 2016.

W. D. Van-marken-lichtenbelt, J. W. Vanhommerig, N. M. Smulders, J. M. Drossaerts, G. J. Kemerink et al., Cold-activated brown adipose tissue in healthy men, The New England journal of medicine, vol.360, pp.1500-1508, 2009.

E. Van-obberghen, V. Baron, L. Delahaye, B. Emanuelli, N. Filippa et al., Surfing the insulin signaling web, European journal of clinical investigation, vol.31, pp.966-977, 2001.

E. Van-obberghen, P. M. Spooner, C. R. Kahn, S. S. Chernick, M. M. Garrison et al., Insulin-receptor antibodies mimic a late insulin effect, Nature, vol.280, pp.500-502, 1979.

C. H. Vaughan, E. Zarebidaki, J. C. Ehlen, and T. J. Bartness, Analysis and measurement of the sympathetic and sensory innervation of white and brown adipose tissue, Methods in enzymology, vol.537, pp.199-225, 2014.

O. R. Vaughan, F. J. Rosario, T. L. Powell, J. , and T. , Regulation of Placental Amino Acid Transport and Fetal Growth, Progress in molecular biology and translational science, vol.145, pp.217-251, 2017.

M. H. Vickers, Early life nutrition, epigenetics and programming of later life disease, Nutrients, vol.6, pp.2165-2178, 2014.

S. Vienberg, J. Geiger, S. Madsen, and L. T. Dalgaard, MicroRNAs in metabolism, Acta physiologica, vol.219, pp.346-361, 2017.

R. Vila-bedmar, M. Lorenzo, and S. Fernandez-veledo, Adenosine 5'-monophosphate-activated protein kinase-mammalian target of rapamycin cross talk regulates brown adipocyte differentiation, Endocrinology, vol.151, pp.980-992, 2010.

F. Villarroya, R. Cereijo, J. Villarroya, and M. Giralt, Brown adipose tissue as a secretory organ, Nature reviews. Endocrinology, vol.13, pp.26-35, 2017.

F. Villarroya and A. Vidal-puig, Beyond the sympathetic tone: the new brown fat activators, Cell metabolism, vol.17, pp.638-643, 2013.

K. A. Virtanen, M. E. Lidell, J. Orava, M. Heglind, R. Westergren et al., Functional brown adipose tissue in healthy adults, The New England journal of medicine, vol.360, pp.1518-1525, 2009.

T. Vo and D. B. Hardy, Molecular mechanisms underlying the fetal programming of adult disease, Journal of cell communication and signaling, vol.6, pp.139-153, 2012.

M. J. Vosselman, B. Brans, A. A. Van-der-lans, R. Wierts, M. A. Van-baak et al., Brown adipose tissue activity after a high-calorie meal in humans, The American journal of clinical nutrition, vol.98, pp.57-64, 2013.

A. Vrieze, E. Van-nood, F. Holleman, J. Salojarvi, R. S. Kootte et al., Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome, Gastroenterology, vol.143, pp.913-916, 2012.

W. ,

K. D. Wagner, N. Wagner, H. Ghanbarian, V. Grandjean, P. Gounon et al., RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse, Dev Cell, vol.14, pp.962-969, 2008.

T. B. Walden, I. R. Hansen, J. A. Timmons, B. Cannon, and J. Nedergaard, Recruited vs. nonrecruited molecular signatures of brown, American journal of physiology. Endocrinology and metabolism, vol.302, pp.19-31, 2012.

G. X. Wang, X. Y. Zhao, Z. X. Meng, M. Kern, A. Dietrich et al., The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis, Nature medicine, vol.20, pp.1436-1443, 2014.

H. Wang, Y. Bei, S. Shen, P. Huang, J. Shi et al., miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2, Journal of molecular and cellular cardiology, vol.94, pp.43-53, 2016.

W. Wang, M. Kissig, S. Rajakumari, L. Huang, H. W. Lim et al., Ebf2 is a selective marker of brown and beige adipogenic precursor cells, Proceedings of the National Academy of Sciences of the United States of America, vol.111, pp.14466-14471, 2014.

Y. Wang, R. Medvid, C. Melton, R. Jaenisch, and R. Blelloch, DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal, Nature genetics, vol.39, pp.380-385, 2007.

Y. Wang, E. B. Rimm, M. J. Stampfer, W. C. Willett, and F. B. Hu, Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men, The American journal of clinical nutrition, vol.81, pp.555-563, 2005.

M. J. Warner and S. E. Ozanne, Mechanisms involved in the developmental programming of adulthood disease, The Biochemical journal, vol.427, pp.333-347, 2010.

F. Wassermann, The development of adipose tissue, 2011.

A. J. Watkins and K. D. Sinclair, Paternal low protein diet affects adult offspring cardiovascular and metabolic function in mice, American journal of physiology. Heart and circulatory physiology, vol.306, pp.1444-1452, 2014.

J. O. Westholm and E. C. Lai, Mirtrons: microRNA biogenesis via splicing, Biochimie, vol.93, pp.1897-1904, 2011.

A. J. Whittle, S. Carobbio, L. Martins, M. Slawik, E. Hondares et al., BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions, Cell, vol.149, pp.871-885, 2012.

, Obesity and Diabetes : a time bomb, WHO, 2016.

, Obesity and Overweight, 2017.

J. S. Wigglesworth, Experimental Growth Retardation in the Foetal Rat, The Journal of pathology and bacteriology, vol.88, pp.1-13, 1964.

J. S. Wigglesworth, Animal model: uterine vessel ligation in the pregnant rat, The American journal of pathology, vol.77, pp.347-350, 1974.

B. Wightman, I. Ha, and G. Ruvkun, Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans, Cell, vol.75, pp.855-862, 1993.

S. Wilk, A. Jenke, J. Stehr, C. A. Yang, S. Bauer et al., Adiponectin modulates NK-cell function, European journal of immunology, vol.43, pp.1024-1033, 2013.

E. G. Wilmot, C. L. Edwardson, F. A. Achana, M. J. Davies, T. Gorely et al., Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis, Diabetologia, vol.55, pp.2895-2905, 2012.

S. Winther, M. S. Isidor, A. L. Basse, N. Skjoldborg, A. Cheung et al., Restricting glycolysis impairs brown adipocyte glucose and oxygen consumption, American journal of physiology. Endocrinology and metabolism, vol.314, pp.214-223, 2018.

C. Wirsén, Distribution of adrenergic nerve fibers in brown and white adipose tissue, 2011.

E. Wong, K. Backholer, E. Gearon, J. Harding, R. Freak-poli et al., Diabetes and risk of physical disability in adults: a systematic review and meta-analysis. The lancet, Diabetes & endocrinology, vol.1, pp.106-114, 2013.

S. C. Woods, E. C. Lotter, L. D. Mckay, D. Porte, and . Jr, Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons, Nature, vol.282, pp.503-505, 1979.

J. Wu, P. Bostrom, L. M. Sparks, L. Ye, J. H. Choi et al., Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human, Cell, vol.150, pp.366-376, 2012.

Z. Wu, P. Puigserver, U. Andersson, C. Zhang, G. Adelmant et al., Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1, Cell, vol.98, pp.115-124, 1999.

Z. Wu, E. D. Rosen, R. Brun, S. Hauser, G. Adelmant et al., Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity, Molecular cell, vol.3, pp.151-158, 1999.

Y. ,

B. T. Yang, T. A. Dayeh, P. A. Volkov, C. L. Kirkpatrick, S. Malmgren et al., Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes, Molecular endocrinology, vol.26, pp.1203-1212, 2012.

W. M. Yang, H. J. Jeong, S. W. Park, and W. Lee, Obesity-induced miR-15b is linked causally to the development of insulin resistance through the repression of the insulin receptor in hepatocytes, Molecular nutrition & food research, vol.59, pp.2303-2314, 2015.

L. Ye, J. Wu, P. Cohen, L. Kazak, M. J. Khandekar et al., Fat cells directly sense temperature to activate thermogenesis, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.12480-12485, 2013.

Z. ,

M. Zamora and J. A. Villena, Targeting mitochondrial biogenesis to treat insulin resistance, Current pharmaceutical design, vol.20, pp.5527-5557, 2014.

L. E. Zaragosi, B. Wdziekonski, K. L. Brigand, P. Villageois, B. Mari et al.,

, Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis, Genome Biol, vol.12, p.64

H. Zhang, M. Guan, K. L. Townsend, T. L. Huang, D. An et al., MicroRNA-455 regulates brown adipogenesis via a novel HIF1an-AMPK-PGC1alpha signaling network, EMBO reports, vol.16, pp.1378-1393, 2015.

Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold et al., Positional cloning of the mouse obese gene and its human homologue, Nature, vol.372, pp.425-432, 1994.

R. Zimmermann, J. G. Strauss, G. Haemmerle, G. Schoiswohl, R. Birner-gruenberger et al., Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase, Science, vol.306, pp.1383-1386, 2004.