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À Bouba et Zeïde.

Perdu. A quelques pas de la maison,
cependant, à guère plus que trois jets
de pierre.
Là où retombe la flèche qui fût lancée
au hasard.

Yves Bonnefoy

Freedom is the freedom to say that
two plus two makes four. If that is
granted, all else follows.

George Orwell

I have developed the habit of
studying finite-dimensional random
phenomenons from an infinite
dimensional point of view.

Kiyosi Itô





CONTRIBUTIONS TO FUNCTIONAL INEQUALITIES AND

LIMIT THEOREMS ON CONFIGURATIONS SPACE

Abstract. We present functional inequalities and limit theorems for point processes.
We prove a modified logarithmic Sobolev inequalities, a Stein inequality and an exact
fourth moment theorem for a large class of point processes including mixed binomial
processes and Poisson point processes. The proofs of these inequalities are inspired by
the Malliavin-Stein approach and the Γ-calculus of Bakry-Emery. The implementation
of these techniques requires a development of a stochastic analysis for point processes.
As point processes are essentially discrete, we design a theory to study non-diffusive
random objects. For Poisson point processes, we extend the Stein inequality to study
stable convergence with respect to limits that are conditionally Gaussian. Applications
to Poisson approximations of Gaussian processes and random geometry are given. We
discuss transport inequalities for mixed binomial processes and their consequences in
terms of concentration of measure.

On a generic metric measured space, we present a refinement of the notion of
concentration of measure that takes into account the parallel enlargement of distinct
sets. We link this notion of improved concentration with the eigenvalues of the metric
Laplacian and with a version of the Ricci curvature based on multi-marginal optimal
transport.

Keywords. LIMIT THEOREMS; FUNCTIONAL INEQUALITIES; STOCHASTIC ANALYSIS;
OPTIMAL TRANSPORT; POINT PROCESSES; MALLIAVIN CALCULUS; Γ-CALCULUS.



INÉGALITÉS FONCTIONNELLES ET THÉORÈMES LIMITES

SUR LES ESPACES DE CONFIGURATIONS

Résumé. Nous présentons des inégalités fonctionnelles pour les processus ponctuels.
Nous prouvons une inégalité de Sobolev logarithmique modifiée, une inégalité de
Stein et un théorème du moment quatrième sans terme de reste pour une classe de
processus ponctuels qui contient les processus binomiaux et les processus de Poisson.
Les preuves reposent sur des techniques inspirées de l’approche de Malliavin-Stein et
du calcul avec l’opérateur carré du champ de Bakry-Émery. Pour mettre en œuvre ces
techniques nous développons une analyse stochastique pour les processus ponctuels.
Plus généralement, nous mettons au point une théorie d’analyse stochastique sans hy-
pothèse de diffusion. Dans le cadre des processus de Poisson ponctuels, l’inégalité de
Stein est généralisée pour étudier la convergence stable vers des limites condition-
nellement gaussiennes. Nous appliquons ces résultats pour approcher des processus
Gaussiens par des processus de Poisson composés et pour étudier des graphes aléa-
toires. Nous discutons d’inégalités de transport et de leur conséquence en terme de
concentration de la mesure pour les processus binomiaux dont la taille de l’échantillon
est aléatoire.

Sur un espace métrique mesuré quelconque, nous présentons un développement
de la concentration de la mesure qui prend en compte l’agrandissement parallèle d’en-
sembles disjoints. Cette concentration améliorée donne un contrôle de toutes les va-
leurs propres du Laplacien métrique. Nous discutons des liens de cette nouvelle no-
tion avec une version de la courbure de Ricci qui fait intervenir le transport à plusieurs
marginales.

Mots clefs. THÉORÈMES LIMITES ; INÉGALITÉS FONCTIONNELLES ; ANALYSE STOCHAS-
TIQUE ; TRANSPORT OPTIMAL ; PROCESSUS PONCTUELS ; CALCUL DE MALLIAVIN ; OPÉ-
RATEUR CARRÉ DU CHAMP.
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PRÉAMBULE

Cette thèse réunit la majorité des résultats obtenus sous la direction de N. GOZ-
LAN et G. PECCATI durant les trois dernières années. De manière informelle, j’ai cher-
ché à comprendre les propriétés structurelles de certains objets aléatoires. En mathé-
matiques, les objets aléatoires ont été introduits pour décrire certains phénomènes
dont nous avons une trop faible compréhension pour en avoir un suivi détaillé. Par
exemple, si je joue à pile ou face, pour peu que la pièce ne soit pas truquée, il me
sera impossible de prédire le résultat du prochain jet. Par contre je sais que, après “un
grand nombre” de lancers, il devrait y avoir “a peu près” autant de piles que de faces.
Un des problèmes fondamentaux en probabilités est de donner un sens précis à cette
intuition. On peut lire à ce sujet le traité de L. BACHELIER (1901) [11].

De manière moins anecdotique, le mouvement brownien décrit la trajectoire de pe-
tites particules qui flottent à l’intérieur d’une graine de pollen (observé par R. BROWN
en 1827). La petite particule est heurtée dans tous les sens par les molécules du fluide
de pollen, donnant lieu à un mouvement saccadé impossible à suivre en détail. L’ap-
proximation continue (c’est-à-dire quand on fait tendre le temps entre chaque choc
vers 0, ou de manière équivalente quand on fait tendre le nombre de molécules dans
le pollen vers l’infini) de ce mouvement saccadé est le mouvement brownien. Il s’agit
du prototype de déplacement pour la physique des milieux continus mais une étude
classique (déterministe) de ces propriétés est impossible : on ne peut pas suivre la
trajectoire de la particule. Une étude probabiliste du mouvement brownien, dont la
première a été conduite par L. BACHELIER (1900) [10], permet de dégager d’excel-
lentes propriétés structurelles du mouvement brownien. A cet égard, on cite égale-
ment les travaux précurseurs de N. WIENER (1930) [149] ainsi que de K. ITÔ (1944)
[69] et (1951) [67]. En fait, le mouvement brownien (et ses généralisations, les mesures
aléatoires gaussiennes) constitue une des briques fondamentales du calcul des pro-
babilités moderne et l’école française dite “de Strasbourg” sous l’impulsion de P.-A.
MEYER a eu une influence majeure sur le développement du calcul par rapport au
mouvement brownien. A ce sujet, on pourra consulter, entre autres, les volumes du
Séminaire de probabilités [99].

Le pendant discret ou discontinu du mouvement brownien est le processus de Pois-
son. Il a été introduit à différentes époques par différentes personnes de manière indé-
pendante pour modéliser des phénomènes variés (télécommunication, radioactivité,
cosmologie). L’exemple historique provient de S.-D. POISSON (1837) [130] et concerne
l’évolution du nombre d’actes criminels au cours du temps. Par exemple, on veut mo-
déliser le nombre d’individus qui seront condamnés durant l’année à Paris. On peut
supposer que les condamnations passées n’influent pas sur les condamnations futures
(on parle d’indépendance entre les condamnations). De plus, on suppose que le temps
entre chaque condamnation suit une loi exponentielle (il est peu probable que deux
condamnations se suivent de manière très proche mais après un certain temps il est
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quasiment certain qu’il y aura une nouvelle condamnation). Sous ces seules deux hy-
pothèses, [130] montre que le nombre de condamnations à chaque instant suit une loi
explicite qui ne dépend que d’un paramètre : le nombre moyen de condamnations.
Cette loi porte le nom de loi de Poisson et le processus obtenu quand on fait varier le
temps tout au long de l’année s’appelle le processus de Poisson. C’est un processus qui
à un temps associe un nombre entier et n’augmente que par saut de taille 1 (on peut
montrer sous les hypothèses du modèle qu’on ne peut pas avoir deux condamnations
exactement en même temps).

Le mouvement brownien et le processus de Poisson présentés précédemment sont
des processus dits temporels : à un temps t, l’un associe un nombre réel aléatoire et
l’autre un nombre entier aléatoire. Il est assez naturel de considérer les versions dites
spatiales de ces objets aléatoires : au lieu d’être indexés par un temps t les processus
sont indexés par une position x. On parle aussi de champ aléatoire. Le passage de la
version temporelle à la version spatiale nécessite un saut conceptuel : on perd l’inter-
prétation dynamique du processus ; ce n’est plus une particule qui se déplace ou une
quantité qui évolue mais plutôt un champ statique défini en tout point dont l’intensité
(aléatoire) varie avec la position. Typiquement, un champ brownien servira à repré-
senter des champs invariants par rotation tandis qu’un processus de Poisson spatial
servira à compter le nombre d’évènements indépendants arrivés en chaque point de
l’espace (par exemple, les chutes de météorites sur la Lune). La définition formelle de
ces objets spatiaux nécessite une attention particulière. En effet, la seule définition rai-
sonnable d’un champ de Poisson spatial η, satisfait ηx = 0 pour toute position x. De
même, la seule définition du champ Brownien spatial (plus couramment appelé dans
le jargon champ libre gaussien) G, vérifie Gx = ∞ pour toute position x.

La description de nos deux processus temporels comme des éléments aléatoires de
l’espace des fonctions de la demie droite (qui représente le temps) vers les nombres
réels (pour le mouvement brownien on peut même choisir cet élément dans l’espace
des fonctions continues) est suffisante pour leur étude et en ce sens satisfaisante. Cette
description comme une fonction aléatoire cesse d’être satisfaisante lorsque l’on passe
aux processus spatiaux. Comme je l’ai expliqué, en tant que fonctions de l’espace, η
est constamment nul et que G est constamment infini ; en tant que fonctions ces deux
objets ne présentent aucun intérêt.

C’est à ce niveau que le saut conceptuel intervient. On doit regarder G et η non
pas comme des fonctions (éventuellement très compliquées) de l’espace des positions
(typiquement représenté par R2 ou R3 qui sont des espaces vectoriels de dimension
respective 2 et 3 et donc en particulier finie) mais comme des fonctions (linéaires, donc
très simples) d’un certain “gros” espace H qui contient lui même des fonctions (qui
satisfont elles même certaines propriétés de régularité). L’espace H est choisi de ma-
nière à ce que G et η ont les propriétés que l’on attend d’eux (et ce n’est pas nécessai-
rement le même H pour G et pour η). Cette construction présente un premier avan-
tage : il suffit de faire varier H parmi tous les ensembles acceptables et on obtient
une grande famille de processus. En fait, on peut construire des champs browniens
et de Poisson avec comme espace de paramètre (presque) n’importe quel ensemble (et
plus seulement les temps ou les positions). Un second avantage, qui est plus de l’ordre
de l’esthétisme intellectuel : cette construction permet d’étudier avec le même forma-
lisme les processus temporels et les processus spatiaux. On cherche ensuite à établir
de propriétés générales, c’est-à-dire qui ne dépendent pas du H choisis.

N. WIENER (1938) [150] a adopté ce point de vue et a montré que le mouvement
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brownien et le processus de Poisson (et leur généralisation en terme de mesure aléa-
toires) sont au cœur de la compréhension de nombreux phénomènes physiques. Com-
binés au travaux de N. WIENER & A. WINTNER (1943) [151], cela a permis de com-
mencer le développement d’une vraie théorie de l’analyse par rapport àG et η. Ce sont
avec les travaux de K. ITÔ (1951) [67] et (1956) [68] que cette analyse a pris ses lettres
de noblesse : Itô montrent que les fonctions de G et de η (sous certaines hypothèses
de régularité) admettent une décomposition suivant des fréquences (comme pour les
modes de Fourier).

Dans cette thèse je me suis intéressé aux inégalités fonctionnelles et aux théorèmes
limites relativement à G et η et surtout par rapport à des processus ponctuels (qui
sont des généralisations du processus de Poisson et que l’on va présenter plus loin).
Pour faciliter la compréhension, prenons le cas le plus simple. Pour cela on prend G
le champ brownien qui est paramétré par un ensemble qui ne contient qu’un seul élé-
ment. Dans ce cas on peut voir le champ comme non dépendent d’un paramètre et le
considérer comme un seul nombre réel aléatoire. Dans ce cas, l’objet obtenu est bien
connu il s’agit d’une variable aléatoire gaussienne qui prend ses valeurs suivants la fa-
meuse courbe de Gauss en forme de cloche. On peut positionner un point sur la droite
réelle à distance G de l’origine. On obtient alors une position aléatoire sur les réels
et on dit qu’elle est distribuée selon la loi de G que l’on note γ. Étant donné n’importe
quel intervalle, la probabilité que cette position aléatoire soit dans cet intervalle est
égale à l’aire sous la courbe en cloche délimitée par cet intervalle. Bien sûr on pour-
rait considérer d’autres lois qui correspondent à d’autres nombres aléatoires. De façon
simplifiée, pour tout intervalle la loi d’un nombre aléatoire donne la probabilité que
ce nombre appartienne à l’intervalle en question. Il est important de noté que deux
objets aléatoires peuvent avoir la même loi sans pour autant qu’ils soient égaux. Par
exemple, du à la symétrie de la courbe en cloche γ par rapport à l’axe des abscisses G
et −G ont la même loi mais sont différents.

La loi γ en forme de cloche a une très bonne propriété. Regardons le mouvement
brownien d’une petite particule à l’intérieur du fluide de pollen et considérons uni-
quement les déplacements le long d’un axe fixe (disons gauche droite pour l’observa-
teur, identifié à la droite réelle). Ajoutons un potentiel qui va empêcher la particule
de trop s’éloigner de son point de départ, l’évolution résultante est appelée dynamique
d’Ornstein-Uhlenbeck. La loi γ est invariante pour cette dynamique : si la position ini-
tiale de la particule le long de l’axe est distribuée suivant γ, alors la position de la
particule à tout temps est encore distribuée suivant γ. De plus on peut vérifier que la
loi gaussienne est la seule loi invariante. On en déduit le corollaire immédiat : le seul
équilibre possible pour la dynamique d’Orstein-Uhlenbeck est la loi gaussienne. De
là, on peut se demander pour quelles loi initiales µ l’équilibre γ sera atteint. Si on note
{P ∗

t , t ≥ 0} la dynamique d’Ornstein-Uhlenbeck, c’est à dire que étant donnée une loi
initiale µ le symbole P ∗

t µ représente la loi de la particule dans le fluide au temps t, on
a vu que P ∗

t γ = γ pour tout temps t et on se demande étant donné une loi initiale µ
combien la loi P ∗

t µ est proche de γ. Pour cela on a besoin de considérer une façon de
mesurer à quel point la loi µ est proche de γ. On se contentera de n’importe quelle
fonction F qui prend en entrée une loi et qui donne en sortie un nombre réel positif
tel que F (µ) = 0 si et seulement si µ = γ. Il existe de nombreuses fonctions F qui
satisfont cette contrainte :

(i) L’entropie relativement à γ, notée H(µ|γ) qui peut être vue comme la différence
d’énergie entre le système à l’état µ et l’énergie minimale du système à l’état
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d’équilibre γ.

(ii) La distance de Wasserstein relativement à γ, W2(µ|γ) qui peut être vue comme la
distance moyenne parcourue quand on déplace µ vers γ de manière optimale.

L’inégalité de Sobolev logarithmique prouvée par L. GROSS (1975) [61] nous dit que
quelque soit la mesure µ, H(µ|γ) ≤ 1

2
I(µ|γ). Ici I(µ|γ) est l’information relative à γ que

l’on peut penser comme la dérivée de l’entropie. Ainsi on peut voir, l’inégalité de Sobo-
lev logarithmique comme une inégalité différentielle qui donne de la convergence ex-
ponentielle vers l’équilibre de la dynamique de Ornstein-Uhlenbeck pour toute condi-
tion initiale (d’énergie finie), de manière symbolique on écrit : H(P ∗

t µ|γ) ≤ e−2t H(µ|γ).
D’autres inégalités fonctionnelles existent pour la gaussienne ; la plupart se déduisent
directement de l’inégalité de Sobolev logarithmique. Comme par exemple certaines in-
égalités de transport (voir F. OTTO & C. VILLANI (2000) [118]). L’inégalité de Sobolev
logarithmique comme les inégalités de transport que l’on en déduit sont intrinsèque-
ment continues. N. GOZLAN, C. ROBERTO, P.-M. SAMSON & P. TETALI (2017) [58]
ont introduit des inégalités de transport dites “généralisées” qui sont a priori mieux
adaptés pour les objets discrets.

Les théorèmes limites eux cherchent à comprendre combien la distribution d’une
statistique est éloignée d’une distribution cible (typiquement la gaussienne γ). Une
statistique est une valeur réelle aléatoire qui résume les propriétés d’un objet plus
complexe. Par exemple on peut regarder la statistique qui à un mouvement brownien
associe son aire sous la courbe jusqu’au temps 1. Dans ce cas la statistique est linéaire
et le calcul exact de sa distribution ne présente aucune difficulté. La compréhension
de statistiques non linéaires dans le cas gaussien et Poissonnien a été grandement fa-
cilité par l’introduction par I. NOURDIN & G. PECCATI (2009) [112] de la méthode de
Malliavin-Stein. Cette méthode exploite les propriétés de symétrie de Pt afin d’obtenir
des bornes explicites sur la distance de la distribution d’un statistique à γ. G. PECCATI,
J. L. SOLÉ, M. S. TAQQU & F. UTZET (2010) [121] et C. DÖBLER & G. PECCATI (2018)
[40] ont ensuite adapté cette méthode au cadre de Poisson.

Dans cette thèse je me suis donc intéressé à des résultats similaires pour proces-
sus ponctuels. Un processus ponctuel peut être vu comme une manière (aléatoire) de
repartir une population suivant des classes. Un processus ponctuel peut donc être vu
comme une famille dénombrable de points aléatoire Xi, Xi représentant la classe de
l’individu i. Le cardinal de cette famille noté N est lui aussi aléatoire. En général, on
préfère noter le processus ponctuel comme une mesure aléatoire µ =

∑N
i=1 δXi

. Comme
les processus de Poisson, les processus ponctuels sont des objets de nature discrète
(c’est-à-dire avec des sauts, pas continus, non-diffusifs).

J’ai obtenu les résultats suivants.

• J’ai proposé une méthode systématique pour obtenir des inégalités fonction-
nelles et des théorèmes limites pour certains objets non-diffusifs sous une hy-
pothèse de décomposition en fréquence.

• J’ai montré que les processus ponctuels satisfont les hypothèses du cadre d’étude
précèdent, en particulier j’ai construit la décomposition en fréquence.

• J’ai utilisé mon résultat pour unifier l’analyse des processus de Poisson, de l’hy-
percube et des processus ponctuels.
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• J’ai étudié des inégalités de transport (classiques et généralisées) pour certains
processus ponctuels par des méthodes directes.

• J’ai généralisé les théorèmes limites pour les processus de Poisson afin de consi-
dérer des limites gaussiennes dont la variance est aléatoire.

Dans un domaine plus géométrique je me suis aussi intéressé à la manière dont
certaines quantités géométriques canoniques (les valeurs propres de l’opérateur de
Laplace-Beltrami) contrôlent la vitesse à laquelle des ensembles disjoints grossissent.
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GENERAL INTRODUCTION

1.1. PRELIMINARIES AND NOTATIONS

All random variables will be defined on a sufficiently big probability space (Ω,W ,P)
and the symbol E will be systematically used to denote the expectation, i. e. integration
with respect to P, and Var the variance. Unless otherwise specified, relations involving
random variables are always understood in an almost-sure sense. Given a symmetric
positive d× d matrix C, the symbol N(0, C) will designate the law of a centered Gaus-
sian vector with covariance C. The symbols R, R+, N and N>0 will always designate
the set of real numbers, non-negative real numbers, non-negative integers and positive
integers respectively. For q ∈ N>0, we write [q] = {1, . . . , q} and [0] = ∅.

1.1.1. Norms and differential calculus. For x, y ∈ Rd, we write ⟨x, y⟩ℓ2 for the stan-
dard scalar product of x and y and, for p ∈ [1,∞], we write |x|ℓp for (

∑
|xi|p)1/p (or

max |xi| if p = ∞). We will always regard the space of p-linear functionals of Rd as
the linear space Rdp . In particular, given two matrices A and B of size d× d, we write
⟨A,B⟩ℓ2 for tr(ATB), |A|ℓ2 for ⟨A,A⟩ℓ21/2, |A|ℓ∞ for max |aij| and |A|ℓ1 for

∑
|aij|. For a

matrix A, we also let

(1.1.1.1) |A|op = sup
|x|ℓ2=1

|Ax|ℓ2 .

For k ∈ N∪ {∞}, the space of k times continuously differentiable functions from Rd to
R is denoted C k(Rd). For ϕ ∈ C k(Rd), we will write ∇kϕ for the k-th derivative that we
identify with a k-form over Rd. In particular, for all x ∈ Rd, ∇kϕ(x) is a k-tensor whose
coordinates (in the canonical basis) are written {∂ki1,...,ikϕ(x), i1, . . . , ik ∈ [d]}. We will
write ∇ = ∇1 and ∂ = ∂1. We let

(1.1.1.2) |∇kϕ|ℓp,∞ = sup
x∈Rd

|∇kϕ(x)|ℓp = sup
x∈Rd

( ∑
i1,...,ik≤d

|∂ki1,...,ikϕ(x)|
p

)1/p

.

1.1.2. Reminders about topology and measure theory. Let Z be a measurable space
with its σ-algebra Z. Given a measure ν and a non-negative (or ν-integrable) function
f , we write ν(f) or

´
Z
f(x)ν(dx) to designate the Lebesgue integral of f with respect to

ν. For p and q ∈ N>0, p ≥ q, if ν is a measure on the product space Zq and f : Zp → R+,
we write
(1.1.2.1)ˆ
f(x)ν(dx[L]) =

ˆ
f(x1, . . . , xp)ν

(∏
j∈J

dxj

)
, for x = (x1, . . . , xp)xi ∈ Z, ∀i ∈ [p] \ J.
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In other words, this means that we integrate only with respect to coordinates in L. For
p ∈ [1,∞], the space of (equivalence classes of ν-almost everywhere equal) measur-
able functions f such that ν(|f |p) < ∞ (or esssup(|f |) < ∞ when p = ∞) is denoted
by L p(Z,Z, ν) and is equipped with its standard Banach structure. We will commonly
abbreviate this notation to L p(Z) or L p(Z) or L p(ν). We will use the shorthand nota-
tion L 0(Z) for the space of Z-measurable functions. We will write F = (F1, . . . , Fd) ∈
L 2(Ω) rather than the shorter but cumbersome notation F ∈ (L 2(Ω))

d. We will also
use this notation for the other functional spaces we will introduce later. We will always
made clear the size of the vector by writing explicitly its components in a way that no
confusion is possible. We also write Zν for the collection of measurable sets A such
that ν(A) < ∞. The measure ν is σ-finite if Z can be written as a countable union of
elements of Zν . The space of probability measures on Z is denoted by P(Z), the space
of finite non-negative measures is denoted by Mb(Z), the space of non-negative mea-
sures is denoted by M+(Z) and the space of signed measures is denoted by M (Z). We
also consider MN(Z), the set of measures ξ such that ξ(B) ∈ N for all B ∈ Z, and the
set MN̄(Z) of countable sums of elements of MN(Z). An element ν ∈ MN̄(Z) is called a
point measure (over Z), and ν is called a proper point measure if there exists n ∈ N ∪ {∞}
and (x1, . . . , xn) ∈ Zn such that

(1.1.2.2) ν =
n∑

k=1

δxk
.

For n = 0, the previous sum has to be understood as the 0 measure. Note that without
any topological assumption on Z, it is possible to construct point measures that are
not proper. A signed measure ν is called a compound point measure if there exists n ∈
N ∪ {∞}, (x1, . . . , xn) ∈ Zn and (y1, . . . , yn) ∈ Rn such that

(1.1.2.3) ν =
n∑

k=1

ykδxk
.

All the measure spaces M (Z), M+(Z), Mb(Z), MN̄(Z) and MN(Z) are equipped
with the σ-algebra generated by the projection maps

(1.1.2.4) ν ↦→ ν(B), B ∈ Z.

A random measure is a random object taking value in one of those spaces. A random
point measure is usually referred to as a point process and it is proper if it is almost surely
proper. Given a random measure µ, its expectation is a (non-random) measure ν called
the intensity measure, verifying

(1.1.2.5) Eµ(A) = ν(A), for all A ∈ Z.

For two measures ν1 and ν2 and q ∈ N, we write ν1 ⊗ ν2 for the tensor product of ν1
and ν2, and we simply write νq for the tensor product of ν iterated q times.

1.1.3. Probabilistic approximations in a nutshell. Assume Z is a topological space
with its collection of open sets τ . Unless otherwise specified, we will always assume
that the topological space Z is made measurable by equipping it with its collection of
Borel sets Z, that is, the σ-algebra generated by τ . The space of real-valued bounded
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continuous functions on Z is denoted by Cb(Z). We say that the space Z is Polish if
it is separable, that is it contains a dense sequence, and completely metrizable, that
is: there exists a distance d on Z that generates the same topology as τ , and such that
(Z, d) is complete. Assume Z is a Polish space. The spaces Cb(Z) and Mb(Z) are in
separating duality and the weak-∗ topology associated with this duality is called the
narrow topology. In other words, it is the sequential topology such that µn

narrow−−−−→
n→∞

µ if

and only if µn(f) → µ(f) for all f ∈ Cb(Z). Given a sequence of Z-valued random vari-
ables (Fn) we say that the sequence converges in law to a random variable F ; and we
write Fn

law−−−→
n→∞

F , if law(Fn)
narrow−−−−→
n→∞

law(F ). The space Mb(Z) with the narrow topol-
ogy is Polish [24, Chapter 5]. Consequently, the space of laws of Z-valued random
variables with the topology of the convergence in law is Polish.

We let d be a distance that completely metrizes the topology of Z. We now intro-
duce different notions of distance on the space P(Z), that is regarded as the set of all
laws of Z-valued random variables. We say that a function ϕ : Z → R is Lipschitz if

(1.1.3.1) Lip(ϕ) := sup
x,y

|ϕ(x)− ϕ(y)|
d(x, y)

<∞.

The space of Lipschitz functions is denoted by Lip(Z). Note that, if Z = Rd with the
ℓ2-topology and ϕ ∈ C 1(Rd) ∩ Lip(Rd), we have that |∇ϕ|op = Lip(ϕ). In particular,
by comparison of norms we have that |∇ϕ|ℓ2,∞ ≤

√
dLip(ϕ). The space of bounded

Lipschitz functions on the metric space Z is denoted by W 1,∞(Z) and it is a Banach
space for the norm

(1.1.3.2) |ϕ|W 1,∞(Z) = |ϕ|∞ + Lip(ϕ),

where |ϕ|∞ is the supremum norm of ϕ. The Monge-Kantorovich-Rubinstein distance
between the laws of two Z-valued random variables X and Y is defined by

(1.1.3.3) d1(law(X), law(Y )) = inf Ed(X̃, Ỹ ).

where the infimum is running over all random vectors (X̃, Ỹ ) such that law(X̃) =
law(X) and law(Ỹ ) = law(Y ). Due to the Kantorovich duality [55, Thm 2.1], if X and
Y are such that Ed(X, z0) + Ed(Y, z0) < ∞ for some z0 ∈ Z, d1(law(X), law(Y )) can be
rewritten as

(1.1.3.4) d1(law(X), law(Y )) = sup
{
Eϕ(X)− Eϕ(Y ), ϕ ∈ W 1,∞(Rd), |∇ϕ|∞ ≤ 1

}
.

The Monge-Kantorovich-Rubinstein distance induces a topology on the space of prob-
ability measures that corresponds to the convergence in law together with the con-
vergence of the first moment [146, Thm 6.9]. In general, we will want to compute
the Monge-Kantorovich-Rubinstein between the law of a vector of real-valued square-
integrable random variables and a N(0, C). To that extent, we will often refer to the
following bound that (see [111, Thm 4.4.1]).

Theorem 1.1.3.1. Let F = (F1, . . . , Fd) ∈ L 2(Ω) and C be a symmetric positive d × d
matrix, then

(1.1.3.5) d1(law(F ),N(0, C)) ≤ sup
F1

|E⟨C,∇2ϕ(F )⟩ℓ2 − E⟨F,∇ϕ(F )⟩ℓ2|,

where F1 is the collection of functions ϕ ∈ C 2(R) such that |∇2ϕ|op ≤ |C−1|op|C|
1/2
op .
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In the non-diffusive setting, the Monge-Kantorovich-Rubinstein distance is not really
practicable and we will often use the following distance:
(1.1.3.6)
d2(law(X), law(Y )) = sup

{
Eϕ(X)− Eϕ(Y ), ϕ ∈ C 2(Rd), Lip(ϕ) ≤ 1, |∇2ϕ|op ≤ 1

}
.

This distance was introduced by [127]. They observed that it induces a topology
stronger than the topology of the convergence in law and they also proved [127, Lemma
2.17] that

Theorem 1.1.3.2. Let F = (F1, . . . , Fd) ∈ L 2(Ω) and C be a symmetric positive d × d
matrix, then

(1.1.3.7) d2(law(F ),N(0, C)) ≤ sup
F2

|E⟨C,∇2ϕ(F )⟩ℓ2 − E⟨F,∇ϕ(F )⟩ℓ2|,

where F2 is the collection of functions ϕ ∈ C 3(R) such that |∇2ϕ|op ≤ |C−1|op|C|
1/2
op and

|∇3ϕ|op ≤
√
2π
4
|C−3/2|op|C|

1/2
op

The commonly used Kolmogorov distance between the distributions of two real-
valued random variables X and Y is defined by

(1.1.3.8) Kol(X, Y ) = sup
t∈R

|P(X ≤ t)− P(Y ≤ t)|.

1.1.4. Tensor notations. We let H be an Hilbert space of (equivalence classes of) func-
tions over some space Z. Given f and g ∈ H we write f ⊗ g for the tensor product of f
and g, that is for z and z′ ∈ Z, f ⊗ g(z, z′) = f(z)g(z′). We fix q ∈ N>0. We write H ⊗q

for the Hilbert space obtained by completion of the space of functions of the form

(1.1.4.1) f1 ⊗ · · · ⊗ fq, f1, . . . , fq ∈ H ,

under the scalar product

(1.1.4.2) ⟨f1 ⊗ · · · ⊗ fq, g1 ⊗ · · · ⊗ gq⟩H ⊗q =

q∑
i=1

⟨fi, gi⟩H .

In particular, if H = L 2(Z,Z, ν) for some measured space (Z,Z, ν), we find that
H ⊗q = L 2(Zq,Z⊗q, νq). Given a permutation σ ∈ Σq and f ∈ H ⊗q, we write f ◦ σ for
the function f whose entries are permuted by σ, namely

(1.1.4.3) f ◦ σ(z1, . . . , zq) = f(zσ(1), . . . , zσ(q)), z1, . . . , zq ∈ Z.

We say that an element f ∈ H ⊗q is symmetric and we write f ∈ H ⊙q if it invariant
under the permutations, that is f ◦ σ = f for all σ ∈ Σq. Similarly f ∈ H ⊗q is said to
be anti-symmetric and we write H ⊘q if f ◦σ = |σ|f where |σ| ∈ {−1, 1} is the signature
of the permutation. We have the orthogonal decomposition

(1.1.4.4) H ⊗q = H ⊙q ⊕ H ⊘q.

Given f ∈ H ⊗q, we write f⊙ for its symmetrization, that is its projection on H ⊙q and
f⊘ for its anti-symmetrization, that is its projection on H ⊘q. We also write f ⊙ g for
(f ⊗ g)⊙ and similarly with ⊘ and f⊗q for f ⊗· · ·⊗f repeated q times and similarly for
f⊙q and f⊘q We also write H ⊗0 = H ⊙0 = H ⊘0 = R. For p ∈ N, we write L p(Ω)⊗H
for the Banach space (Hilbert space for p = 2) of H -valued random variables u such
that |u|H ∈ L p(Ω).
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1.2. WHAT IS THIS THESIS ABOUT?

This thesis discusses the development and the intertwining of two fields of mathe-
matics: functional inequalities and limit theorems, with a particular focus on (but not
limited to) the setting of configuration spaces.

1.2.1. Functional inequalities. Functional inequalities can be seen as an analytic and
synthetic manifestation of structural properties in mathematics. As such, they are
prevalent in many areas of current research. For instance, the logarithmic Sobolev in-
equality of L. GROSS (1975) [61] compares for a function p, say a smooth probability
density on R, its entropy H(p|γ) relatively to the normal law γ = N(0, 1) defined by

(1.2.1.1) H(p|γ) = γ(p log p),

with its information I(p|γ) (again relatively to the normal law γ) defined by

(1.2.1.2) I(p|γ) = γ

(
(p′)2

p

)
=

ˆ
ρ(u)2p(u)γ(du),

where ρ(u) = d
du

log p(u) is the score function of p. Namely, the logarithmic Sobolev
inequality states that, for all such densities p,

(1.2.1.3) H(p|γ) ≤ 1

2
I(p|γ).

In information theory, this inequality is a consequence of an inequality of A. J. STAM
(1959) [140] quantifying an uncertainty principle for the information (relatively to the
Lebesgue measure though) and an exponential functional of the entropy (also with
respect to the Lebesgue measure). In the theory of dynamical systems, the logarithmic
Sobolev inequality is an instance of a regularizing property known as hypercontractivity
as well as a control on the speed of convergence to the equilibrium of the Ornstein-
Uhlenbeck dynamic on the line

(1.2.1.4) dXt = dWt −Xtdt,

where W is a Brownian motion. Equivalently, the logarithmic Sobolev inequality ac-
counts for the same properties for the solutions of the associated Fokker-Planck equa-
tion

(1.2.1.5) ∂tu = ∂2xxu− x∂xu.

For differential geometers, the logarithmic Sobolev inequality shows that the weighted
Riemannian manifold (R, | · |, γ) has the same geometry as a sphere of big dimension
and in fact the logarithmic Sobolev inequality plays a pivotal role in controlling the be-
haviour of the Hamilton-Ricci flow in Perelman’s proof of Poincaré conjecture (see G.
PERELMAN (2002) [128] notably sections 3 & 5). The logarithmic Sobolev inequality
also has consequences in terms of concentration of measure via the Herbst argument
presented in the book of M. LEDOUX (2001) [85, Chapter 5] that gives back the well-
known fact that there exists c > 0 such that:

(1.2.1.6) γ(A)(1− γ(A+ [−r, r])) ≤ e−cr2 ,
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for all Borel sets A ⊂ R, where A+ [−r, r] = {u+ t, u ∈ A, t ∈ [−r, r]}.
Remark that, by a change of variables and the chain rule, the logarithmic Sobolev

inequality (1.2.1.2) is equivalent to

(1.2.1.7) H(F 2) ≤ 2E|DF |2, F ∈ DomD,

where DomD is the space of F ∈ L 2(Ω) of the form F = f(N) with N ∼ N(0, 1) and
f Lipschitz such that f ′(N) ∈ L 2(Ω), the operator D is defined by DF = f ′(N) and
H(F 2) = E(F 2 logF 2)− (EF 2) log(EF 2). Hence, we can either say that the metric mea-
sured space (R, | · |,N(0, 1)) supports a logarithmic Sobolev inequality or that the prob-
ability space (Ω, σ(N),P) supports a logarithmic Sobolev inequality when equipped
with the operator D.

With these perspectives, the logarithmic Sobolev inequality (as many other func-
tional inequalities) can by extended in two directions:

(i) one is rather geometrical and use the formalism of metric measured space;

(ii) the other is rather probabilistic and exploits the idea of integration parts via the
Γ-calculus of D. BAKRY & M. ÉMERY (1985) [12].

Remark that generalizing the notion of entropy is a standard task. Given a probability
measure ν on a measured space (E,E, λ), we define its entropy relatively to λ by

(1.2.1.8) H(ν|λ) = λ(p log p),

if ν is absolutely continuous with respect to λ, with Radon-Nikodym derivative p; and
we set H(ν|λ) = ∞ otherwise. In the setting of a metric measured space (E, d, λ), we
can extend the notion of length of the gradient by

(1.2.1.9) |∇ϕ|(x) = lim sup
y→x

|ϕ(x)− ϕ(y)|
d(x, y)

.

We can use this generalized notion of derivative to generalize the notion of informa-
tion (relative to λ) by

(1.2.1.10) I(ν|λ) = λ

(
|∇p|2

p

)
,

where p is the density of ν with respect to λ, and we set I(ν|λ) = ∞ if ν is not absolutely
continuous with respect to λ. We say that the metric measured space (E, d, λ) supports
a logarithmic Sobolev inequality (with constant c > 0) if for all probability measure ν

(1.2.1.11) H(ν|λ) ≤ c

2
I(ν|λ).

For probability spaces, the generalization is slightly more intricate and we do not ex-
plain it here in full generality. Let us simply point out some facts for the case of the
Gaussian measure on the line. For every F = f(N) where N ∼ N(0, 1) with f ∈ C 2(R)
such that f ′′(N) ∈ L 2(Ω), we let

(1.2.1.12) LF = D2F −XDF.
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The attentive reader would have recognized in the definition of L the probabilistic
equivalent of the differential operator appearing on the right-hand side of the Fokker-
Planck equation (1.2.1.5). The following facts are rather straightforward:

ELF = 0;(1.2.1.13)

|DF |2 = 1

2
LF 2 − FLF.(1.2.1.14)

Consequently, we find that

(1.2.1.15) E|DF |2 = −EFLF.

In view of this integration by parts formula, in order to generalize the logarithmic
Sobolev inequality (1.2.1.7) to a more general probability space (Ω,W,P), we need ei-
ther to define a derivative operatorD or to find a substitute for the differential operator
L. These generalizations are given in Chapter 2 when W is the σ-algebra generated by
a random element typically enjoying some independence properties.

We will refer the study of a random object via an associated derivative operator D
as the one mentioned before as the Malliavin calculus and we will refer a similar study
carried via the operator L as the Bakry-Emery calculus or the Γ-calculus. The Malliavin
calculus and the Bakry-Emery calculus intertwines beautifully and yields striking re-
sults from the point of view of functional inequalities as well as limit theorems.

1.2.2. Limit theorems. Limit theorems are concerned with the asymptotic behaviour
of a sequence of random variables. The most well-known result in that field is the
central limit theorem due to A. DE MOIVRE (1733) [104] (see also the recent reprint of his
work [105]) for the case of Bernoulli random variables and P.-S. DE LAPLACE (1812)
[77] (reedited in the two volumes [78, 79]) for the general case. This theorem says
that the distribution of the empirical mean Sn of n centered and normalized indepen-
dent random variables is well approximated by N(0, 1/n). This qualitative result has
been extended in various directions, in particular with regard to how we measure the
distance between the distribution of Sn and the one of the Gaussian. For instance, the
two independent results of A. C. BERRY (1941) [15] and C.-G. ESSEEN (1942) [45] show
that the Kolmogorov distance between the law of

√
nSn and N(0, 1) is of order n−1/2.

More recently, S. ARTSTEIN, K. M. BALL, F. BARTHE & A. NAOR (2004) [7] and A.
BARRON & O. JOHNSON (2004) [14] (also independently) generalized this result when
the Kolmogorov distance is replaced by the entropic distance (that is, the difference of
the entropies relatively to the Lebesgue measure). Conditions are also known in order
to allow dependencies in the random variables in consideration. Such conditions are
often referred under the name of Lyapunov conditions (see [16, Thm 27.3]). In any case,
the philosophical meaning of the central limit theorem is that if e is a random object
with a lot of intrinsic independence and f is linear, then we can more or less precisely
measure how far the distribution of f(e) is from N(Ef(e),Var(f(e))). Note that in that
case, we will only require to know the mean and variance of f(e). Obtaining results
similar to the central limit theorem for non-linear functionals has been a prominent
problem in the modern theory of limit theorems. The main difficulty is to understand
a good notion of non-linearity. While linearity is an ubiquitous phenomenon in all
areas of mathematics, defining what non-linear means is quite difficult and has to be
handle case by case. The simplest form we can hope for is the one of polynomials. To
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that extent, the striking characterization of D. NUALART & G. PECCATI (2005) [116],
referred as the fourth moment theorem, says that if we consider a family P = (Pn) of
homogeneous Gaussian polynomials of degree d

(1.2.2.1) Pn =
∑

i1<···<id

an(i1, . . . , id)Xi1 . . . Xid ,

where (Xi) is a sequence of independent and normally distributed random variables,
then, Pn

law−−−→
n→∞

N(0, 1) if and only if EP 2
n → 1 and EP 4

n → 3. Remark that the fourth

moment of a N(0, 1) is 3.
In fact, this result was not only showed for homogeneous Gaussian polynomials,

but also for Gaussian multiple stochastic integrals and more details will be given about
them in Chapter 2. This result is quite natural as the stochastic integrals can be re-
garded as a probabilistic analogous of orthogonal polynomials in the theory of smooth
functions. Stochastic integrals behaves particularly well and are intrinsically inter-
twined with the Malliavin calculus. The work of D. NUALART & S. ORTIZ-LATORRE
(2008) [114] has shown that the derivation of the fourth moment theorem can be done
solely with Malliavin calculus based techniques. Whence, trying to generalize such
results for other random objects with some independence appears quite appealing.
Thus, we could construct a unified approach in order to deal both with functional in-
equalities and limit theorems based on the study of the operator D. The Malliavin
calculus is available in three cases: Gaussian processes [115, Chapter 2]; Poisson point
processes [80] and independent random variables on the cube [38]. In these three
cases, from the operator D, we can obtain functional inequalities and limit theorems.
Apart from those three cases, such construction has remained quite elusive and we do
not know any other form of satisfactory results concerning functional inequalities and
limit theorems via Malliavin calculus.

Regarding the Bakry-Emery calculus, the breakthrough contribution of M. LEDOUX
(2012) [84] showed that the techniques of D. NUALART & S. ORTIZ-LATORRE (2008)
[114] can be understood in the context of the Bakry-Emery calculus. E. AZMOODEH,
S. CAMPESE & G. POLY (2014) [9] used this perspective, in order to extend the fourth
moment theorem for Gaussian polynomials to more general random polynomials but
the theory of stochastic integrals or Malliavin calculus in their extended setting is, to
my knowledge, not known.

1.2.3. Configuration spaces. In this dissertation, we will apply the techniques de-
scribed above to derive functional inequalities and limit theorems especially on config-
urations spaces. A configuration can be thought of as a way of partitioning a countable
population into (possibly) uncountable many classes. Each individual i ∈ N is sorted
in one (and only one class) but one class can contain several individuals. If we denote
by Z the space of all possible classes, a configuration C can intuitively be thought as a
random set (with multiplicities) of Z. It is convenient to represent this random set as
the random measure on Z given by

(1.2.3.1) µ =
∑
X∈C

m(X,C)δX ,

where we write m(X,C) for the multiplicity of X in C, and the sum over the empty
set or when |C| = 0 is understood as the zero measure. Note that configurations gen-
eralize the concept of discrete random variables as every discrete random variable is
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represented by a configuration over a sole class. The formal definition of a configura-
tion involves the notion of point process that is a random element of MN̄(Z). Point pro-
cesses appear in many different fields of mathematics. In stochastic geometry, point
processes over a metric space give random points of this space from which we can
construct random geometrical objects. In matrix theory, the spectral measure (that is,
a sum of Dirac masses at the eigenvalues) is a point process. In number theory, the
function that counts all prime numbers smaller than a fixed integer can also be seen
as a point process. Despite their pervasive nature, no general study of point processes
from the point of view of the Malliavin calculus or the Bakry-Emery calculus has been
proposed apart for the canonical example of the Poisson point process. Following the
previously introduced intuition, if the random measure has a lot of independence then
a Malliavin calculus and a Bakry-Emery calculus should be accessible and functional
inequalities and limit theorems could be deduced from them. The easiest stronger
form of independence for the example of point process given in (1.2.3.1) is when the
Xi’s are independent and identically distributed and independent of µ(Z). We show
that this case, known as the mixed binomial, indeed supports a Malliavin calculus and
a Bakry-Emery calculus.

1.3. LAY SUMMARY OF THE ORIGINAL RESULTS

This dissertation collects various results I obtained during the last three years in
the field of stochastic analysis applied to functional inequalities and limit theorems. I
was particularly interested in the geometry induced by the Malliavin calculus and the
use of geometric methods for functional inequalities and limit theorems. This section
briefly summarizes the original results obtained and how they were obtained.

1.3.1. Functional inequalities without diffusion. Developed in Section 2.4.
The field of functional inequalities makes use of a large array of probabilistic, ge-

ometric and analytical methods. For instance, the Bakry-Emery theory, based on a
systematic study of a semi-group from the point view of the convexity of the entropy
along the semi-group itself, yielded striking results in these three fields. For details on
the theory we recommend the seminal paper of D. BAKRY & M. ÉMERY (1985) [12],
the lecture notes of M. LEDOUX (2000) [86] and the comprehensive monograph of D.
BAKRY, I. GENTIL & M. LEDOUX (2014) [13]. A crucial assumption is that the semi-
group is diffusive. For a probabilist, this means essentially that we look at a stochastic
process (possibly on a infinite-dimensional space) driven by a Brownian motion. This
assumption is rather restrictive and the problem of studying non-diffusive infinite-
dimensional semi-groups did not receive, to our knowledge, a lot of attention. The
exception is the Poisson point process that is the canonical example of a discrete prob-
abilistic object. To that extent, let us mention the two references by G. PECCATI & M.
REITZNER (2016) [122] and G. LAST & M. PENROSE (2018) [82]. We propose to study
such discrete random objects in a abstract and systematic way, under the additional
assumption that they support stochastic integrals. We stress that this assumption does
not seem as restrictive as it is in the diffusive setting and we provide two examples
(outside the Poisson setting) where our analysis applies. Also note that G. PECCATI &
M. S. TAQQU (2011) [124] have carried out an analysis for random measures support-
ing stochastic integrals, but they were more interested in the combinatorial properties
of such objects and were not concerned about functional inequalities nor limit theo-
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rems. The key idea in our analysis is to use the Malliavin gradient that is provided
by the stochastic integrals (those abstract constructions are recalled in Section 2.3) to
quantify the lack of diffusiveness of the semi-group. Namely, we will ask that the
Malliavin derivativeD takes values in a space of function over some measurable space
(Z,Z) and that D is representable as follows

(1.3.1.1) Dzf(e) = Cz(f(Tze)− f(e)), z ∈ Z,

where f is a measurable function, e is the random object supporting stochastic inte-
grals, Tz is an injective maps and Cz is a random variable (see Section 2.4.2 for details).
We show that, under that representability assumption, random variables always sat-
isfy:

(i) a modified logarithmic Sobolev inequality;

(ii) a non-exact fourth moment theorem.

The latter says that the law of a stochastic integrals F is close to the one of a centered
Gaussian if and only if EF 4 is close to 3(EF 2)

2 and that a polynomial reminder involv-
ing the Malliavin derivative of the functional is close to 0. The modified logarithmic
Sobolev inequality is just an adaptation of the celebrated logarithmic Sobolev inequal-
ity of L. GROSS (1975) [61] that bounds the entropy of a random variable. We can also
compute explicitly the carré du champ of Bakry-Emery in terms of the square of the
Malliavin gradient plus a randomized term. In the diffusive case, the randomized case
never appears, and being able to explicitly compute and control this extra term is at
the core of our argument for the non-exact fourth moment theorem. This was already
observed in a Poisson setting by C. DÖBLER & G. PECCATI (2018) [40].

1.3.2. Stochastic analysis for point processes. Developed in Section 2.7.
Point processes can be thought of as the generalization of the notion of discrete ran-

dom variables. Not only do they count a total population but the population can be
partitioned into several (possibly uncountably many) classes. These random objects
intersect many fields such as computational geometry, stochastic geometry, mathemat-
ical biology, renewal theory. The formalism of random measures gives a particularly
nice framework to study point processes. This was already the perspective adopted
by K. ITÔ (1956) [68] in his seminal paper on stochastic analysis for Poisson point
processes, that form the most well-known example of point processes. Apart from
Poisson point processes, the subject of stochastic analysis for generic point processes
has received very little attention. Based on the abstract consideration of Section 2.4, we
show that it is possible to develop a stochastic calculus à la Itô for a class of point pro-
cesses much larger than Poisson point processes (for instance, it includes all Poisson
point processes and all mixed binomial processes). Indeed for a functional F = f(µ)
of a point process µ on a measurable space (Z,Z), a very natural discrete analogue of
the derivation exists via the difference operator given, for every z ∈ Z, by

(1.3.2.1) D+
z F = f(µ+ δz)− f(µ), for all z ∈ Z.

This form looks very similar to (1.3.1.1) and we show that, under some compatibility
conditions for the underlying point process µ, the abstract framework of Section 2.4
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applies. In particular, we construct stochastic integrals with respect to such point pro-
cesses. We show that every mixed binomial process and every Poisson point process
with σ-finite intensity measure satisfies those compatibility conditions. We show that,
under the compatibility condition, the fourth moment theorem with remainder turns
to an exact fourth moment theorem, that is: the law of a stochastic integral F is close to
a Gaussian law if EF 4 is close to 3(EF 2)

2, when the correlations of stochastic integrals
satisfy some algebraic condition.

1.3.3. Stable approximations of Poisson functionals. Developed in Chapter 3.
For Gaussian functionals, I. NOURDIN & D. NUALART (2010) [109] observed that

the quantitative method proposed above to measure the distance between the law
of the functional and a Gaussian law can be applied to the estimation of the distance
from the law of a conditionally Gaussian random variable. They also considered stable
convergence, that is a qualitative refinement of the convergence in law. We obtained
similar results in a Poisson setting. The main difficulty is to control the remainder.
In the diffusive Gaussian setting, thanks to the chain rule, the rest can be controlled
via a iteration of the chain rule obtained by F. FAÀ DI BRUNO (1855) [46]. Due to the
absence of a chain rule, we cannot derive a workable expression for the remainder but
by a careful use of the Cauchy-Schwarz inequality (or the Hölder inequality), we can
bound this remainder by geometrically meaningful quantities. In particular, the quar-
tic remainder that appears in the non-exact fourth moment theorem of Section 2.4 will
appear again. Using this result, I was able to study finely the asymptotic behaviour
of models arising from the theory of stochastic processes (in particular, Volterra pro-
cesses with respect to an independently scattered random measure). In this case, I can
also obtain a stable version of the fourth moment theorem on the Poisson space of C.
DÖBLER & G. PECCATI (2018) [40].

1.3.4. Transport inequalities for random point measures. Based on a ongoing work
with N. GOZLAN & G. PECCATI. Developed in Chapter 4. Transport inequalities form
a cornerstone in functional inequalities. They generally compare a cost of displacing
a probability distribution ν1 to a distribution ν2 to a information theoretical quantity
(such as the relative entropy) that measures how far ν1 is to ν2 in terms of fluctua-
tions. The interaction between the geometric displacement and the relative informa-
tion is particularly well adapted for obtaining concentration of measure results, as
noticed by K. MARTON (1986) [93], and motivates the study of such transport-entropy
inequalities. In a diffusive setting, following the work of S. G. BOBKOV, I. GENTIL &
M. LEDOUX (2001) [20], such inequalities can be derived from the logarithmic Sobolev
inequality (2.2.2.22). For discrete models, such as point processes, there is no general
theory. M. REITZNER (2013) [132] showed that binomial process and Poisson point
processes with finite intensity measure satisfy concentration of measure with respect
to Talagrand convex distance. This result encouraged us to conduct further investiga-
tions about transport-entropy inequalities on the Poisson space. For the time being,
we can prove new transport-entropy inequalities for mixed binomial processes with
respect to various costs. From them, we can recover the result of [132] as well as one of
the results of M. ERBAR & M. HUESMANN (2015) [44], that is a Talagrand inequality
on the configurations spaces.
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1.3.5. Multiple sets exponential concentration, higher order eigenvalues and multi-
-marginal optimal transport. Based on the paper N. Gozlan & R. Herry [53], to appear in
Potential analysis, and an ongoing work with N. GOZLAN & P.-M. SAMSON. Developed
in Chapter 5.

On a compact Riemannian manifold, it is well-known [85, Theorem 3.1] that the
first eigenvalue of the Laplace-Beltrami operator gives exponential concentration of
measure. This means that the volume of a set grows at an exponential rate given by
the square root of the eigenvalue as the set enlarges. More precisely, denoting by vol
the Riemannian volume and λ1 the first eigenvalue, we have that, for a Borel set A
with vol(A) ≥ 1/2:

(1.3.5.1) vol(Ar) ≥ 1− e−
r
3

√
λ1 ,

where Ar is the set of points x of the manifold such that there exists y ∈ A such that x
and y are at distance less than r. Such a phenomenon known as concentration of measure
has been extensively used in many fields, such as geometry of metric measured spaces
(see the book of M. GROMOV (2007) [60, Section 31⁄2]) and probability theory (see the
monograph of M. TALAGRAND (1995) [145]), and initiated an independent field of
research (see M. LEDOUX (2001) [85]). Concentration inequalities are connected to
many other functional inequalities such as the Poincaré inequality (S. BOBKOV & M.
LEDOUX (1997) [19]), the logarithmic Sobolev inequality (S. G. BOBKOV & F. GÖTZE
(1999) [17]), the Talagrand inequality (M. TALAGRAND (1995) [145]) or to the criteria
of Bakry-Emery (D. BAKRY, I. GENTIL & M. LEDOUX (2014) [13, Section 4.6]) or Lott-
Sturm-Villani (F. OTTO & C. VILLANI (2000) [118]) and thus, concentration inequal-
ities often serve as a guideline in formulating new inequalities as in the recent work
of N. GOZLAN, C. ROBERTO, P.-M. SAMSON & P. TETALI (2017) [58] or in obtaining
equivalent formulation of them, as E. MILMAN (2009) [102], who obtained equivalence
between concentration of measure and isoperimetry under a curvature assumption.

Together with N. GOZLAN, we introduced in [53] a notion of improved concen-
tration of measure that accounts for the parallel enlargement of k distinct sets and
showed that λk, the k-th eigenvalue of the Laplacian, gives exponential improved con-
centration. Namely, given Borel sets A1, . . . , Ak satisfying the geometrical conditions
that µ(Ai) ≥ 1/(k + 1) for all i and such that their enlargements do not overlap, we
proved, in particular, that

(1.3.5.2) vol(Ar) ≥ 1− 1

k + 1
exp

(
−cmin

(
r2λk, r

√
λk

))
,

where A = ∪iAi and c > 0 is some universal constant. This bound generalizes a fa-
mous result obtained by M. GROMOV & V. D. A. MILMAN (1983) [59]. The method
of proof works in a general framework that encompasses compact Riemannian man-
ifolds but graphs as well: the one of metric measured spaces. Our result is reminis-
cent of a result of F. R. K. CHUNG, A. GRIGOR’YAN & S.-T. YAU (1996) [34]. It is an
open question to know whether, as for classical concentration of measure, multiple
sets concentration of measure can be obtained from certain functional inequalities. We
will discuss a partial result we obtained in that direction, jointly with N. GOZLAN &
P.-M. SAMSON, by using the notion of displacement convexity along the Wasserstein
barycenters introduced by M. AGUEH & G. CARLIER (2011) [1] generalizing notions
of curvature based on optimal transport developed independently by K.-T. STURM
(2006) [141] & [142] and J. LOTT & C. VILLANI (2009) [90].
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FUNCTIONAL INEQUALITIES AND LIMIT THEOREMS FOR

PROBABILISTIC MODELS

2.1. MOTIVATIONS AND CONTEXT

This part of the thesis is about stochastic analysis and its use for deriving functional
inequalities and limit theorems. Roughly speaking, stochastic analysis is a collection
of probabilistic tools for analyzing some specific infinite-dimensional spaces of func-
tionals of a probabilistic object e, living on a measurable space (E,E). This object e can
be, for instance:

(G) a Gaussian field on some space H that lives on RH ;

(IID) an independent and identically distributed sequence of random variables, that
lives on the space of sequences;

(MC) a Markov chain, that lives on the space of sequences;

(PP) a Poisson point process or a binomial process, that live on the space of point
measures;

(X) an exchangeable sequence, that also lives on the space of sequences.

Note that, in these examples, the spaceE does not always come with a natural distance
or even with a natural topology. In what follows, the σ-algebra generated by e is
denoted by the symbol W. Tools of stochastic analysis are typically used in order to
study infinite-dimensional spaces of the form L p(W) for some p ≥ 1. The starting
point of our approach towards stochastic analysis is to define three operators, that
we will denote L, D and δ in all this thesis, that play the role of the Laplace-Beltrami
operator, the Riemannian gradient and the divergence (that is the adjoint of gradient)
in the geometric study of compact Riemannian manifolds.

In the setting of Gaussian fields and point processes, the keystone of stochastic
analysis is based on the existence of multiple stochastic integrals first developed by K.
ITÔ (1951) [67] for functionals of a Gaussian random field (Section 2.8 contains an his-
torical and bibliographical survey of the development of the theory so in the rest of
this chapter we will keep the bibliographical references light). Multiple stochastic in-
tegrals can be regarded as a family of isometric linear mappings Iq : H ◦q → L 2(W)
(q ∈ N), where H ◦q is a Hilbert space that will be defined in Section 2.3. The stochastic
integrals give an orthogonal decomposition, that is, denoting by Cq the range of Iq,
we have the Hilbert space decomposition L 2(W) = ⊕q∈NCq. This means that such
mappings give an orthogonal decomposition (rather referred, in this dissertation, as a
chaotic decomposition by analogy with the Gaussian case) of L 2(W) and a representa-
tion of every F ∈ L 2(W) in terms of a family of elements hq ∈ H ◦q (q ∈ N). Hence, we
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will define the operator D as acting on such random variables via their representation
in terms of the family {hq; ; q ∈ N}. The resulting object, denoted by DF , will be a
H -valued random variable. The two other operators δ and L can be constructed from
D.

These operators thus generalize tools from Riemannian geometry to our infinite-
dimensional non-geometric setting and give us a solid groundwork in order to re-
cover inequalities that generalize well-known geometrical inequalities from the fi-
nite-dimensional case. We will also see that we can derive some new inequalities
that are intrinsically infinite-dimensional. In order to conveniently mirror the Rie-
mannian setting, it is common to assume that we work with a diffusion, stating es-
sentially that L acts as a second-order differential operator without constant term.
In that case, we can recover, in the framework of stochastic analysis, the celebrated
logarithmic Sobolev inequality of L. GROSS (1975) [61]. This inequality generalizes the
one presented on R in Section 1.2 and compares the entropy of a functional F , that
is H(F ) = E(F logF ) − (EF ) log(EF ), and its energy, that is E(F ) = E|DF |2. In the
diffusion setting, the derivation of the logarithmic Sobolev inequality relies on an in-
terpolation argument initiated by the groundbreaking work of D. BAKRY & M. ÉMERY
(1985) [12]. M. LEDOUX (2012) [84] has shown that these techniques can also be used to
derive the Stein inequality, that bounds the Monge-Kantorovich-Rubinstein distance of
the law of a (sufficiently smooth) random variable F to the one of a Gaussian random
variable by the variance of the Stein kernel S(F ) that is expressed in terms of D and
L. The Stein inequality gives back the celebrated fourth moment theorem of D. NU-
ALART & G. PECCATI (2005) [116], stating that the law of Gaussian multiple stochastic
integral F is close to the normal law if EF 4 is close to 3(EF 2)

2. Let us also mention
that M. LEDOUX, I. NOURDIN & G. PECCATI (2015) [87] used the notion of Stein ker-
nel, initially developed to study limit theorems in a infinite-dimensional framework,
to improve the finite-dimensional logarithmic Sobolev inequality: a result that we will
not investigate further in this dissertation but that illustrates the flexibility of such
methods.

When working with diffusions, we can also construct from the operator D an in-
trinsic distance on Ω by

(2.1.0.1) d(ω, ω′) = sup{F (ω)− F (ω′), such that |DF | ≤ 1}, ω, ω′ ∈ Ω.

Then, it can be shown (see L. AMBROSIO, N. GIGLI & G. SAVARÉ (2015) [4] for de-
tails) that the metric measured space (Ω,W, d,P) is similar, from the point of view of
functional inequalities, to the metric measured space (R, | · |,N(0, 1)). In particular, let
us mention the Talagrand inequality that compares the quadratic Wasserstein transport
distance (with respect to to the intrinsic distance) between two probabilities absolutely
continuous with respect to P and there relative entropy to P (that is the entropy of there
density). This inequality initially proved on R endowed with the Gaussian law by M.
TALAGRAND (1996) [144] also holds in this setting.

The Bakry-Emery theory, on which all these results are built, is based on the for-
malism of the Γ-calculus. For suitable functional F and G, the expression of the carré
du champ Γ is given by

(2.1.0.2) 2Γ(F,G) = L(FG)− FLG−GLF.

When D satisfies a chain rule, then L is a diffusion and Γ(F,G) = ⟨DF,DG⟩H (The-
orem 2.3.3.3). This fact is particularly convenient: we can use interchangeably nice
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properties of D (such as the chain rule) or of Γ (such as the fact that Γ(F, F ) is explic-
itly computable when F is a multiple stochastic integral).

The diffusion assumption is critical, and non-trivial counter-examples can be pro-
duced for most facts mentioned above outside the diffusive setting. Studying func-
tional inequalities in a non-diffusive setting is particularly difficult in general as, to my
knowledge, without topological assumption, there exists no analytical equation, such
as the chain rule for diffusions, that accounts for not being a diffusion. Nonetheless,
these non-diffusive objects are essentially discrete and we can expect that the three
operators D, δ and L are simpler to define in this case. In thus respect, let us allude
to the difference operator df(x) = f(x + 1) − f(x) that is well- and easily-defined for
all real functions f . This difference operator is the discrete counterpart of the classi-
cal derivative that is more difficult to define but nicer to work with due to the chain
rule. In the framework of non-diffusive stochastic analysis, we propose a definition
of representability for the operator D, that essentially states that a formula analogous
to the one for the difference operator d is available for D. Under the assumption of
representability, we can show several results of interest that are new at this level of
generality:

(i) an explicit representation of the carré du champ under minimal hypothesis (The-
orem 2.4.2.4);

(ii) a modified logarithmic Sobolev inequality (Theorem 2.4.4.1);

(iii) a modified Stein inequality (Theorem 2.4.4.2);

(iv) a fourth moment theorem with quartic remainder (Theorem 2.4.4.3).

The latter states that the law of a multiple integral F is close to a Gaussian if EF 4 is
close to 3(F 2)

2 and a quartic remainder involvingDF is close to 0. Under an additional
assumption we can turn this non-exact fourth moment theorem to an exact fourth
moment theorem (Theorem 2.4.4.6), that is not involving the quartic remainder. Let us
note that for those models the relation Γ(F, F ) = |DF |2 never holds.

The framework of representable structures is very flexible and provides an unified
scheme in order to recover functional inequalities and quantitative limit theorems that
were partially known for different classical probabilistic models. We develop a theory
of stochastic analysis for functionals of point processes. We show that, under some
regularity and compatibility assumptions, our stochastic analysis for point processes
enters the framework of representable structure (Theorem 2.7.2.5). Two examples of
interest are covered by this framework: mixed binomial processes and Poisson point
processes. For Poisson point processes, the exact fourth moment theorem applies,
while for binomial processes of fixed size there is a remainder. In the general case, for
mixed binomial process, whether or not the fourth moment theorem with remainder
becomes exact depends only on the law of the size of the binomial process under study.
We can also study the hypercube with a non-symmetric probability (Theorem 2.6.1).
Concerning existing results in the literature we recover:

(i) The fourth moment theorem with remainder on Rademacher chaoses, that was
known from the work of C. DÖBLER & K. KROKOWSKI (2017) [38] (Theorem 2.6.1).

(ii) The modified logarithmic Sobolev inequality for Poisson point processes of L.
WU (2000) [152] and the exact fourth moment theorem for Poisson functionals of
C. DÖBLER & G. PECCATI (2018) [40] (Theorem 2.7.3.3).
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Regarding new results, we obtain:

(i) A modified logarithmic Sobolev inequality, a Stein inequality and a fourth mo-
ment theorem with remainder for functionals of a mixed binomial process (The-
orem 2.7.3.1).

(ii) A modified logarithmic Sobolev inequality on the hypercube (Theorem 2.6.2).

The strategy of proof for all the previous theorems is to construct the three operators
D, δ and L associated with these random objects and show that they satisfy our as-
sumptions and we are confident that we will be able to study other examples with
our method in the future. Also, from Theorem 2.4.2.4, we obtain a representation of
the carré du champ for all of those models with the sole assumption that the carré du
champ exists. This was not known in any of those models.

The rest of the chapter is divided as follows. In Sections 2.2 and 2.3, we intro-
duce the abstract framework of Itô structures and we show that, in a diffusion set-
ting, the logarithmic Sobolev inequality (Theorem 2.2.2.1), the Stein inequality (Theo-
rem 2.2.3.1) and the exact fourth moment theorem (Theorems 2.2.3.2 and 2.3.3.5) can
be recovered. We do not prove the Talagrand inequality, as defining properly the in-
trinsic distance is rather technical and of no interest for the rest of this dissertation.
All of the results of these two sections are well-known but, for completeness, we give
proofs that are sufficiently detailed in order to follow the reasoning. In Section 2.4,
we develop a non-diffusive framework in order to obtain modified versions of the
inequalities presented in the diffusive setting. The essential notion is the one of Malli-
avin derivative representable by a transitive action as defined in Section 2.4.2. With
this notion a modified logarithmic Sobolev inequality (Theorem 2.4.4.1), a modified
Stein inequality (Theorem 2.4.4.2), a fourth moment theorem with quartic remainder
(Theorem 2.4.4.3), and an exact fourth moment theorem under an additional assump-
tion (Theorem 2.4.4.6) are obtained. In Section 2.5, we construct the first (for the order
of this thesis as well as for the chronological order) example of diffusive Itô structure,
involving functionals of a Gaussian field. This structure can be thought of as the in-
finite tensorization of the space R with the Gaussian measure so it is of no surprise
that we recover the celebrated logarithmic Sobolev inequality. Section 2.6 gives a toy
model of non-diffusive Itô structure by studying unfair coin tosses on the infinite-
dimensional cube (also referred as Rademacher space by some authors). Due to the
simplicity of the model, all proofs are straightforward. We purposely chose the point
of view of random measures (that might appear unnecessarily heavy) in order to bet-
ter anticipate the subsequent Section 2.7 on point processes. Finally, in Section 2.7, we
construct a stochastic analysis for functionals of point processes. This construction is
applied to the two examples of Poisson point processes and mixed binomial processes
in Section 2.7.3. Most of the results of Sections 2.4 and 2.7 are, to my knowledge, new.
For non-original results, along the text, we usually cite either the seminal paper or a
comprehensive reference where this result can be found (sometimes in a slightly less
general framework). The bibliographical discussion of Section 2.8 closes this chapter.

2.2. FUNCTIONAL INEQUALITIES IN A DIFFUSIVE SETTING

Outline. We introduce the notion of chaotic decomposition for the space L 2(W),
where W is a σ-algebra that we will regard as the σ-algebra generated by a random
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object e. This decomposition allows us to define the Ornstein-Uhlenbeck semi-group P
that is a Markov semi-group, its generator L, the associated Dirichlet energy E , and the
carré du champ Γ. In this section, we introduce and we mostly work under a diffu-
sion assumption that essentially states that the generator is a second-order differential
operator. We discuss two inequalities presented in the introduction: the logarithmic
Sobolev inequality and the Stein inequality. These inequalities are formulated only in
terms of L and Γ and we will see in Section 2.3 that, for diffusions, they are equivalent
to inequalities involving D. For the logarithmic Sobolev inequality Theorem 2.2.2.1,
we need to assume that the carré du champ and the semi-group interact in a partic-
ular way. This is known as the Bakry-Emery criterion and we will see in Section 2.3
that this criterion is always satisfied for our diffusive probabilistic models. On the
other hand, the Stein inequality Theorem 2.2.3.1 is true in a diffusive setting without
any further assumptions. Under an additional assumption on the chaoses, we recover
in Theorem 2.2.3.2 the fourth moment theorem that states that the law of a functional
F living in a fixed chaos is close (for the Monge-Kantorovich-Rubinstein distance) to
a Gaussian law if EF 4 is close to 3(EF 2)

2. All these results are known (see [12, 84, 9,
30]).

2.2.1. Chaotic decomposition and spectral theory. Let (Cq)q∈N be a family of orthogo-
nal sub-Hilbert spaces of L 2(W) such that C0 is the linear space of constant functions.
We say that this family is a chaotic decomposition if

(2.2.1.1) L 2(W) =
⨁
q∈N

Cq.

Remark 1. The definition of a chaotic decomposition is simply the one of an orthog-
onal decomposition. Keeping in mind the probabilistic interpretation of L 2(W) and
anticipating Section 2.3, we choose to call it a chaotic decomposition at this level of
generality in order to have a unique denomination for such decomposition in the en-
tire document.

The space Cq is referred as the Wiener chaos of order q or simply chaos and an element
F ∈ L 2(W) is said to have finite chaotic decomposition if it lives in a finite sum of Cq.
The linear space of such random variables is denoted by C . The chaotic decomposition
assumption means that C is dense in L 2(W). In a more explicit way, this means that,
if for F ∈ L 2(W) we write, for all q ∈ N, JqF for the projection of F onto Cq, then JqF
and Jq′F are uncorrelated for q ̸= q′ and we have the formula

(2.2.1.2) F =
∑
q∈N

JqF = EF +
∑

q∈N>0

JqF,

where the sum is in a L 2(W)-sense.
We define the family of linear operators P = {Pt, t ≥ 0} by:

(2.2.1.3) PtF =
∑
q∈N

e−qt JqF, t ≥ 0.

We recall (see, for instance [13, Section 1.2.1]) that a Markov semi-group over L 2(W) is
a family Q = {Qt, t ≥ 0} such that:
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(i) For every t ≥ 0, Qt is a bounded linear operator on L 2(W).

(ii) The operator P0 is the identity of L 2(W).

(iii) For every t ≥ 0, Pt1 = 1.

(iv) For every t ≥ 0 and non-negative F ∈ L 2(W), PtF ≥ 0.

(v) For every s and t ≥ 0, PtPs = Pt+s.

We recall that Markov semi-groups satisfy a Jensen inequality. This fact is very well-
known for integration with respect to measures (see, for instance [47, Lemma 1 page
76]) but we could not find any reference to a proof of this inequality at our level of
generality. Despite the proof is the same as for measures, we give a proof for com-
pleteness.

Lemma 2.2.1.1 (Jensen inequality). Let F = (F1, . . . , Fd) ∈ L 2(W). Let ψ : Rd → R be
convex such that ψ(F ) ∈ L 2(W). Then,

(2.2.1.4) ψ(PtF ) ≤ Ptψ(F ), for all t ≥ 0.

Proof. Let t ≥ 0 and let x = PtF ∈ Rd. Without loss of generality, we can assume that
the domain of ψ is Rd. Since ψ is convex, there exists y ∈ Rd such that

(2.2.1.5) ⟨y, x′ − x⟩ℓ2 + ψ(x) ≤ ψ(x′), for all x′ ∈ Rd.

In technical terms, y is a sub-gradient of ψ at x. Hence, since P preserves the positivity,
is linear and has total mass 1

(2.2.1.6) Ptψ(F ) ≥ ⟨y, PtF − x⟩ℓ2 + ψ(x) = ψ(PtF ), t ≥ 0.

This concludes the proof.

From the property of the exponential function, it is clear that the family P defined
in (2.2.1.3) forms a Markov semi-group on L 2(W) whose generator in L 2(W) is the
unbounded operator L : L 2(W) → L 2(W) given by

(2.2.1.7) LF = lim
t→0+

1

t
(Pt − 1)F = −

∑
q∈N

qJqF.

The domain of L is

(2.2.1.8) DomL =

{
F ∈ L 2(W), such that

∑
q∈N

q2E
(
(JqF )

2) <∞

}
.

We call P (resp. L) the Ornstein-Uhlenbeck semi-group (resp. Ornstein-Uhlenbeck genera-
tor) associated with the chaos decomposition ⊕Cq. The following theorem summarizes
the properties of L and P . Along the document, we will invoke these properties with-
out always referring explicitly to this theorem.
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Theorem 2.2.1.2. The operator L is a densely defined unbounded closed self-adjoint operator
with domain DomL given in (2.2.1.8). When equipped with the inner product

(2.2.1.9) ⟨F,G⟩DomL = EFG+ ELFLG,

the space DomL is Hilbert. The space C of random variables with finite chaotic decomposition
is dense in DomL. The spectrum of L is only pure-point and given by −N and for q ∈ N,

(2.2.1.10) ker(L+ q) = Cq.

The Ornstein-Uhlenbeck semi-group and its generator satisfy an invariance property:

ELF = 0, for F ∈ DomL;(2.2.1.11)
EPtF = EF, for t ≥ 0, F ∈ L 2(W).(2.2.1.12)

The generator commutes with the action of the semi group:

(2.2.1.13) PtF ∈ DomL and LPtF = PtLF, for all t ≥ 0, F ∈ DomL.

Proof. Since DomL contains C , the space DomL is dense in L 2(W). Let (Fn)n∈N ⊂
DomL, F ∈ L 2(W) and G ∈ L 2(W). Assume that the sequence (Fn) converges to
F in L 2(W) and that (LFn) converges to G ∈ L 2(W). Then, for all q ∈ N, (JqFn)
converges to JqF in L 2(W) and so

(2.2.1.14) LFn
L 2(W)−−−−→
n→∞

= −
∑
q∈N

qJqF = G.

Since, by assumption,G ∈ L 2(W), this shows that F ∈ DomL and LF = G and so L is
closed. From the orthogonality of the chaotic decomposition, we find for F ∈ L 2(W)
and G ∈ DomL,

(2.2.1.15) EFLG = E
∑
q∈N

(−qJqF )JqG = EGLF.

This shows that L is symmetric and, by the Cauchy-Schwarz inequality, this shows
that DomL∗ ⊂ DomL (where L∗ is the adjoint of L). Thus, L is in fact self-adjoint. It
is clear that ⟨·, ·⟩DomL is an inner product. The space DomL is Hilbert with respect to
this inner product since L is closed and densely defined. Let F be an element of the
orthogonal of C in DomL. By definition of the orthogonality

(2.2.1.16) (1 + q2)E(JqF )2 = 0, for all q ∈ N.

This shows that F = 0 and, thus, the orthogonal of C contains only 0 and we obtain
the density of C in DomL. By the fact that ⊕Cq is an orthogonal decomposition and
that C0 contains the constant functions, we have that

J0F = EF ;(2.2.1.17)
EJqF = 0, for all q ∈ N>0.(2.2.1.18)

This yields the announced invariance property. The commutation property is a conse-
quence of the trivial identity

(2.2.1.19) q e−tq = e−tq q, for all q ∈ N, t ≥ 0.

This completes the proof.
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We give the construction of the pseudo-inverse that will be used later. For every
function ψ : − N → R, we define the (possibly) unbounded operator

(2.2.1.20) ψ(L)F =
∑

ψ(−q)JqF,

with domain

(2.2.1.21) Domψ(L) =

{
F ∈ L 2(W), such that

∑
q∈N

ψ(−q)2µ
(
(JqF )

2) <∞

}
.

It follows that, the operator L−1 is defined on the class of centered F ∈ L 2(W) by

(2.2.1.22) L−1F = −
∑

q∈N>0

q−1JqF.

For F ∈ L 2(W) centered, we have that L−1F ∈ DomL and LL−1F = F . Also with
this notation Pt = etL.

Very generally, we obtain a spectral gap inequality.

Theorem 2.2.1.3 (Spectral gap inequality). Assume that L 2(W) has a chaotic decomposi-
tion.

− EFL−1F ≤ Var(F ), for allF ∈ L 2(W), EF = 0;(2.2.1.23)
Var(F ) ≤ −EFLF, for allF ∈ DomL.(2.2.1.24)

Remark 2. Anticipating (2.2.2.15), this inequality is equivalent to a Poincaré inequality
in the sense of [13, Def 4.2.1]. Anticipating (2.3.2.18), on the Gaussian and Poisson
spaces the spectral gap inequality is thus equivalent to the Poincaré inequality on these
spaces (see resp. [108, Exercice 2.11.1] and [80, Cor 1]).

Proof. We prove only the second inequality, the first being proved in the same way. Let
F ∈ DomL. By isometry, we find that

Var(F ) =
∑

q∈N>0

E(JqF )2;(2.2.1.25)

− EFLF =
∑

q∈N>0

qE(JqF )2.(2.2.1.26)

Since the summation is over q ≥ 1, this proves the claim.

2.2.2. Bakry-Emery condition and the logarithmic Sobolev inequality. We now give
the definition of the carré du champ operator Γ. We adopt the point of view of Dirichlet
forms as it yields a carré du champ that has a linear domain. We follow N. BOULEAU
& F. HIRSCH (1991) [23, Chapter I Section 2] and L. AMBROSIO, N. GIGLI & G. SAVARÉ
(2015) [4, Section 2]. We define the energy associated with the chaotic decomposition
⊕Cq as the unbounded bilinear form on L 2(W)× L 2(W) defined by

(2.2.2.1) E(F,G) =
∑
q∈N

qEJqFJqG, F,G ∈ L 2(W).
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The domain of E is given by

(2.2.2.2) Dom E =

{
F ∈ L 2(W), such that

∑
q∈N

qE
(
(JqF )

2) <∞

}
.

The space Dom E is Hilbert for the scalar product given by

(2.2.2.3) ⟨F,G⟩Dom E = EFG+ E(F,G), F,G ∈ Dom E .

Since Dom E contains C , the space Dom E is dense in L 2(W). We write E(F ) =
E(F, F ). Observe that, for every t ≥ 0, the space Dom E is stable under the action
of Pt and that

(2.2.2.4) E(PtF ) ≤ e−2tE(F ), for all F ∈ Dom E .

Note that DomL ⊊ Dom E and that

(2.2.2.5) E(F,G) = −EFLG, for all F,G ∈ DomL.

Thus, E can be seen as an extension of the bilinear form

(2.2.2.6) L 2(W)× L 2(W) ∋ (F,G) ↦→ −EFLG.

Since

(2.2.2.7) E(F ) = lim
t→0

1

t
EF (F − PtF ),

and that P is a Markov semi-group, [23, I Prop 3.2.1] ensures that the energy E is a
Dirichlet form. In particular, in view of [23, I Prop 3.3.1, I Rmk 2.2.4], we have that
Dom E is stable by composition with Lipschitz functions. That is F ∈ Dom E and
ϕ is Lipschitz then ϕ(F ) ∈ Dom E . It is a consequence of [23, I Cor 3.3.2] that the
space A = Dom E ∩L ∞(W) is an algebra with respect to the pointwise multiplication
of functions. In view of the growth property of Lipschitz functions, A is also stable
by composition with Lipschitz functions and, since the elements of C 1(R) are locally
Lipschitz, A is in particular stable by composition with C k(R) functions for any k ∈
N ∪ {∞}. Hence, for every F ∈ A , we define the functional carré du champ of F as the
linear form Γ(F ) on A , defined by

(2.2.2.8) Γ(F )[Φ] = E(F, FΦ)− 1

2
E(F 2,Φ), for all Φ ∈ A .

From [23, I Prop 4.1.1],

(2.2.2.9) 0 ≤ Γ(F )[Φ] ≤ |Φ|L ∞(W)E(F ), for all F,Φ ∈ A .

That allows us to extend the linear form Γ(F ) for every F ∈ Dom E . For F ∈ Dom E ,
we write that F ∈ DomΓ if the linear form Γ(F ) can be represented by a measure
absolutely continuous with respect to P whose density is denoted by Γ(F ). In other
words, F ∈ DomΓ if and only if there exists a non-negative Γ(F ) ∈ L 1(W) such that

(2.2.2.10) Γ(F )[Φ] = EΓ(F )Φ, for all Φ ∈ A .
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The space DomΓ is a closed sub-linear space of Dom E . In particular, it is Hilbert for
the induced topology. By polarization, we extend the definition of Γ to a symmetric
bilinear continuous mapping called carré du champ by

(2.2.2.11) Γ(F,G) =
1

4
(Γ(F +G)− Γ(F −G)) ∈ L 1(W), for all F,G ∈ DomΓ.

Since L is invariant and 1 ∈ DomL, we have that

(2.2.2.12) E(F, 1) = 0, for all F ∈ Dom E .
Hence, we have that

(2.2.2.13) E(F,G) = EΓ(F,G), for all F,G ∈ DomΓ.

Observe that if F ∈ DomL is such that F 2 ∈ DomL then F ∈ DomΓ and

(2.2.2.14) Γ(F ) =
1

2
LF 2 − FLF.

Note that, for F ∈ DomΓ ∩ DomL, we have that

(2.2.2.15) EΓ(F ) = −EFLF = E(F ).
We say that the semi-group satisfies the Bakry-Emery condition [4, Cor 2.3-(vi)] if:

(i) The space DomΓ is dense in L 2(W).

(ii) For every t ≥ 0 and F ∈ DomΓ, PtF ∈ DomΓ and:

(2.2.2.16) Γ(PtF ) ≤ e−2t PtΓ(F ).

To obtain more precise results under the Bakry-Emery condition a classical as-
sumption is that L is a diffusion. We say that the Ornstein-Uhlenbeck generator L
is a diffusion if the associated Dirichlet form E is strongly local in the sense that

(2.2.2.17) E(F,G) = 0, for all F,G ∈ Dom E , such that FG = 0.

Remark that, since P is a probability measure and that E(1) = 0 this definition is indeed
equivalent to the classical definition of strong locality by [23, I Cor 5.1.4]. In that case,
the carré du champ Γ satisfies a chain rule [23, I Cor 7.1.2]:

(2.2.2.18) Γ(ϕ(F ), G) = ϕ′(F )Γ(F,G), for all F,G ∈ DomΓ, ϕ ∈ Lip(R).

Remark that, by the Rademacher theorem, the derivative of the Lipschitz function ϕ
is defined up to a negligible set. It is part of the corollary that, on this negligible set,
the two sides of the expression can be taken to be 0. If L is a diffusion and satisfies
a Bakry-Emery condition then by [4, Cor 2.3], we have that DomΓ = Dom E and
by [23, I Cor 6.1.4] L satisfies a chain rule: for every ϕ ∈ C 2(R) and bounded first
and second derivatives, for every F ∈ DomL such that Γ(F ) ∈ L 2(W), we have that
ϕ(F ) ∈ DomL and

(2.2.2.19) Lϕ(F ) = ϕ′(F )LF + ϕ′′(F )Γ(F ).

Remark that, in the previous expression, we have that F ∈ DomL ⊂ Dom E = DomΓ
so that Γ(F ) is well-defined.

In the diffusion setting, under the Bakry-Emery criterion, we obtain the stronger
logarithmic Sobolev inequality (see [13, Section 5.7]). Consider the convex function
ϕ(x) = x log x for x ≥ 0 (with ϕ(0) = 0). Recall that the entropy functional is defined
for a non-negative random variable F as H(F ) = Eϕ(F )− ϕ(EF ).
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Theorem 2.2.2.1 (Logarithmic Sobolev inequality). Assume that L 2(W) has a chaotic
decomposition and that L is diffusive and satisfies the Bakry-Emery criterion, then for all F ∈
Dom E ,

(2.2.2.20) H(F 2) ≤ 2E(F ) = 2EΓ(F ).

Proof. See [31, Thm 2.1]. We fix G ∈ A with G ≥ 0, ϵ > 0 and we let Gϵ = G + ϵ. By
construction, we have that limt→∞ PtGϵ = J0Gϵ = EGϵ. Writing P∞Gϵ = EGϵ, we have
that

H(Gϵ) = Eϕ(Gϵ)− ϕ(EGϵ) = −E
ˆ ∞

0

d

dt
ϕ(PtGϵ)dt

= −
ˆ ∞

0

Eϕ′(PtGϵ)LPtGϵ.

(2.2.2.21)

Note that ϕ′(x) = 1 + log x is Lipschitz on (ϵ, |Gϵ|L ∞(W)). By the fact that A is sta-
ble under the composition with Lipschitz function and the fact that Pt preserves the
positivity, the random variable ϕ′(PtGϵ) ∈ A . Consequently, we obtain that

(2.2.2.22) H(Gϵ) =

ˆ ∞

0

EΓ(ϕ′(PtGϵ), PtGϵ).

By the chain rule for Γ (2.2.2.18) we have that

(2.2.2.23) Γ(ϕ′(PtGϵ), PtGϵ) = ϕ′′(PtGϵ)Γ(PtGϵ).

In the diffusion setting, by [13, Eq 5.5.1], the Bakry-Emery relation (2.2.2.16) is equiva-
lent to

(2.2.2.24)
√
Γ(PtH) ≤ e−t Pt

√
(Γ(H)), H ∈ DomΓ.

Consequently,

(2.2.2.25) ϕ′′(PtGϵ)Γ(PtGϵ) ≤ e−2t

(
Pt

√
Γ(Gϵ)

)2
PtGϵ

.

The function ψ : (u, v) ↦→ u2v−1 is convex. By Jensen’s inequality for Pt, we have that

(2.2.2.26) ψ(Pt

√
Γ(Gϵ), PtGϵ) ≤ Ptψ(

√
Γ(Gϵ), Gϵ).

By invariance, we arrive at

(2.2.2.27) H(Gϵ) ≤
ˆ ∞

0

e−2t EPt
Γ(Gϵ)

Gϵ

=
1

2
E
Γ(Gϵ)

Gϵ

.

From the strong locality property of E , we have that for all H ∈ DomΓ, Γ(H) = 0 on
{H = 0}. Hence, we can let ϵ → 0 in (2.2.2.27) and replace Gϵ by G. Since A is an
algebra, F 2 ∈ A and by (2.2.2.27) with G = F 2, by the chain rule for Γ (2.2.2.18), we
find that

(2.2.2.28) H(F 2) ≤ 1

2
E
Γ(F 2)

F 2
= 2EΓ(F ) = 2E(F ).

Thus, we proved the claim for F ∈ A . The quadratic form E is continuous on Dom E
and H is continuous for the L 2(W)-topology and hence for the topology of Dom E
that is finer. The claim concerned continuous functionals on Dom E and is proved on
a dense subset of Dom E . We conclude by density.
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2.2.3. Polynomial chaoses and the fourth moment theorem. We now turn to func-
tional inequalities involving the law of random variables. These theorems are inter-
esting from the point of view of limit theorems as they give quantitative estimates.
We still work under the diffusion assumption and we recall that in this case Dom E =
DomΓ. Whenever F = (F1, . . . , Fd1) ∈ DomΓ and G = (G1, . . . , Gd2) ∈ DomΓ, we will
write Γ(F,G) for the random symmetric matrix whose coefficient (i, j) ∈ [d1] × [d2] is
given by

(2.2.3.1)
1

2
(Γ(Fi, Gj) + Γ(Fj, Gi)).

We introduce the Stein kernel for a centered random vector F = (F1, . . . , Fd1) ∈ L 2(W)
and G = (G1, . . . , Gd2) ∈ Dom E

(2.2.3.2) S(F,G) = −Γ(L−1F,G).

Remark that since L−1F ∈ DomL ⊂ Dom E , no further assumptions are needed on F .
For such F and G, by (2.2.2.15), we have the following integration by parts

(2.2.3.3) EF TG = ELL−1F TG = ES(F,G).

As usual, we write S(F ) = S(F, F ).

Theorem 2.2.3.1 (Stein inequality). Suppose L 2(W) has a chaotic decomposition and that
the associated Ornstein-Uhlenbeck generator L is diffusive, then for all F = (F1, . . . , Fd) ∈
DomΓ with EF = 0 such that S(F ) ∈ L 2(W), we have that, with C = EF TF

(2.2.3.4) d1(law(F ),N(0, C)) ≤
√
d|C−1|op|C|

1/2
op

√
E|S(F )− C|2ℓ2 ,

where d1 is the Monge-Kantorovich-Rubinstein distance on R.

Proof. The proof is adapted from the Gaussian case [111, Thm 6.1.1]. First, we assume
that F ∈ A . Let ϕ ∈ C 2(R). By the integration by parts (2.2.3.3) and the chain rule for
Γ (2.2.2.18) (that are justified since F ∈ A and ϕ is C 2(R)), we have that

E⟨F,∇ϕ(F )⟩ℓ2 =
d∑

i=1

EΓ(L−1Fi, ∂iϕ(F ))

=
∑
ij

E∂ijϕ(F )Γ(L−1Fi, Fj)

= E⟨∇2ϕ(F ), S(F )⟩ℓ2 .

(2.2.3.5)

By Theorem 1.1.3.1 and the Cauchy-Schwarz inequality, this proves the bound for F ∈
A . To conclude in the case F ∈ DomΓ, we use that A is dense in DomΓ and that both
side of the bound are continuous with respect to the topology of DomΓ.

We would like to bound the quantity E|S(F )− EF 2|2ℓ2 in a more explicit way. Since
by the integration by parts (2.2.3.3), ES(F ) = EF TF , in the setting of the previous
theorem, E|S(F )− EF 2|2ℓ2 is the covariance matrix of S(F ). In the case d = 1 and
in a Gaussian setting, M. LEDOUX (2012) [84] observed that, if F ∈ Cq for a given
q, then the expression of Var(S(F )) simplifies. At our level of generality, this can be
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done under an additional assumption introduced by E. AZMOODEH, S. CAMPESE &
G. POLY (2014) [9]. We say that the chaotic decomposition has polynomial chaoses if for
all p and q ∈ N, F ∈ Cp and G ∈ Cq such that FG ∈ L 2(W), we have that

(2.2.3.6) FG ∈
⨁
r≤p+q

Cr.

When F is a vector of random variables each living in a fixed chaos, under the poly-
nomial chaoses assumption and the diffusion assumption the covariance of the Stein
kernel simplifies as follows. The non-quantitative version of the following theorem
appeared in [30]. For short given F ∈ L 4(W), we write M(F ) = EF 4 − 3(EF 2)

2.

Theorem 2.2.3.2 (Fourth moment theorem). Assume L 2(W) has a polynomial chaotic
structure with diffusive Ornstein-Uhlenbeck generator L. Let (p1, . . . , pd) ∈ Nd. There exists
c > 0, such that for all F = (F1, . . . , Fd) with Fi ∈ Cpi ∩ L 4(W), we have that

E|S(F )− EF TF |2HS ≤ c

d∑
i

M(Fi) + c
d∑

i,j=1
pj<pi

(
EF 4

i

) 1
2M(Fj)

1
2

+ c
d∑

i,j=1
i ̸=j

pi=pj

(
M(Fi)

1
2M(Fj)

1
2 +

[
EJ2piF 2

j J2piF
2
i − 2(EFiFj)

2]
+

)
.

(2.2.3.7)

Remark 3. Remark that, at this level of generality, we cannot recover the celebrated
quantitative fourth moment theorem that generalizes the fourth moment theorem for
vectors of multiple Gaussian integrals [111, Thm 6.2.6]. However, in dimension 1 or
if the components of the vector all live in a different chaos, we obtain an exact fourth
moment theorem: the law of the vector is close to the normal law each for each of its
component F , M(F ) is close to 0. See Theorem 2.3.3.5 for an another statement.

Proof. The proof follows along the lines of the proof of [9, Thm 3.2]. Before proving
the theorem let us state and prove several lemmas. The first claim is

Lemma 2.2.3.3. For all p ∈ N, there exists cp > 0 such that,

(2.2.3.8) VarS(G) ≤ cp

(
EG4 − 3

(
EG2

)2)
, G ∈ Cp ∩ L 4(W).

Let G ∈ Cp ∩L 4(W). Since G is a stochastic integral, by the assumption of polyno-
mial chaoses, polynomials in G have finite chaotic decomposition and, thus, belongs
to DomL ⊂ Dom E = DomΓ. This justifies the computations we carry below. Since
LG = −pG, by the chain rule (2.2.2.18), we find that

(2.2.3.9) EG4 = −1

p
EG3LG =

1

p
EΓ(G3, G) =

3

p
EG2Γ(G).

Observe that

(2.2.3.10) Γ(G) =

(
1

2
L+ p

)
G2 = pEG2 +

2p∑
q=1

(
p− q

2

)
JqG

2.
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By orthogonality of the chaotic decomposition, we obtain that

(2.2.3.11) EG2Γ(G) = p(EG)2 +
2p∑
q=1

(
p− q

2

)
E
[(
JqG

2
)2]

.

Finally, we have that

(2.2.3.12) EG4 − 3
(
EG2

)2
=

3

p

2p∑
q=1

(
p− q

2

)
E
[(
JqG

2
)2]

.

By the definition of L and Γ, we find that

(2.2.3.13) Var(pS(G)) = E
(
Γ(G)− pEG2

)2
=

2p∑
q=1

(
p− q

2

)2
E
[(
JqG

2
)2]

.

Combining the two previous expressions yields

(2.2.3.14) Var(S(G)) ≤
p− 1

2

3p

(
EG4 − 3

(
EG2

)2)
.

This concludes the proof of Lemma 2.2.3.3.
We now prove the following:

Lemma 2.2.3.4. Let q and p ∈ N, F ∈ Cp ∩ L 4(W) and G ∈ Cq ∩ L 4(W), we have that

(2.2.3.15) Var(Γ(F,G)) ≤ p+ q − 1

4

(
E
[
F 2
(
qG2 − Γ(G)

)]
− 2q(EFG)2

)
.

Since F and G have finite chaotic decomposition, the following computations are jus-
tified by the chain rule (2.2.2.18) and the integration by parts (2.2.2.15):

(2.2.3.16) EF 2G2 = −1

q
EF 2GLG =

1

q
EΓ(F 2G,G) =

2

q
EFGΓ(F,G) +

1

q
EF 2Γ(G).

By definition of Γ, we have that

(2.2.3.17) Γ(F,G) = qEFG+
1

2

p+q∑
k=1

(p+ q − k)Jk(FG).

Consequently we obtain that,

(2.2.3.18) EFGΓ(F,G) = q(EFG)2 +
1

2

p+q∑
k=1

(p+ q − k)E
[
(JkFG)

2] .
Using the previous relations, we find that

Var(Γ(F,G)) =
p+q∑
k=1

(
p+ q − k

2

)2

E
[
(JkFG)

2]
≤ p+ q − 1

2

(
EFGΓ(F,G)− q(EFG)2

)
=
p+ q − 1

2

(
q

2
EF 2G2 − 1

2
EF 2Γ(G)− q(EFG)2

)
.

(2.2.3.19)
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This concludes the proof of Lemma 2.2.3.4.
Now we prove the theorem. Let C = EF TF . Observe that

(2.2.3.20) E|S(F )− C|2ℓ2 =
1

4

d∑
i,j=1

(
1

pi
+

1

pj

)
Var Γ(Fi, Fj).

We will prove the theorem by bounding each of the terms appearing in the sum. Let i
and j ∈ [d] such that pi ̸= pj and we can assume that pi > pj . By orthogonality of the
stochastic integrals, we have that EFiFj = 0. By Lemma 2.2.3.4, we find that

(2.2.3.21) Var(Γ(Fi, Fj)) ≤
p+ q − 1

4
EF 2

j (piF
2
i − Γ(Fi)).

Since

(2.2.3.22) piF
2
i − Γ(Fi) =

2pi∑
k=1

k

2
JkF

2
i ,

we find that

Var(Γ(Fi, Fj)) ≤
pi + pj − 1

4
p2i

2pj∑
k=1

E
[
JkF

2
j JkF

2
i

]
≤ p+ q − 1

4
q2EF 2

j

2pi−1∑
k=1

JkF
2
j

≤ pi + pj − 1

2
p2i

√
EF 4

i

√2pi−1∑
k=1

(
pi −

k

2

)2

E
[(
JkF 2

j

)2]
=
pi + pj − 1

2
p2i

√
EF 4

i

√
Var(piS(Fj))

≤ c
√

EF 4
i

√
EF 4

j − 3
(
EF 2

j

)2
.

(2.2.3.23)

The last inequality is true by Lemma 2.2.3.3.
Now we take i and j ∈ [d] such that pi = pj . By Lemma 2.2.3.4, we find that

(2.2.3.24) Var(Γ(Fi, Fj)) =
2pj − 1

4
(EF 2

i (piF
2
j − Γ(Fj))− 2pi(EFiFj)

2).

Writing the chaotic decomposition, we find that

Var(Γ(Fi, Fj)) =

2pi−1∑
k=1

k

2
E
[
JkF

2JkG
2
]
+ pi

(
EJ2piF 2J2piG

2 − 2(EFG)2
)

≤ pi

√2pi−1∑
k=1

EJkF 2
i

√2pi−1∑
k=1

EJkF 2
j + q

[
EJ2piF 2J2piG

2 − 2(EFG)2
]
+
.

(2.2.3.25)

Since

(2.2.3.26)
2pi−1∑
k=1

EJkF 2
i ≤ cVar(piΓ(Fi)),
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we conclude, by Lemma 2.2.3.3, that
(2.2.3.27)

Var(Γ(Fi, Fj)) ≤ c

√
EF 4

i − 3(EF 2
i )

2
√

EF 4
j − 3

(
EF 2

j

)2
+ c
[
EJ2piF 2J2piG

2 − 2(EFG)2
]
+
.

This concludes the proof.

2.3. FOCK SPACE STRUCTURE AND MALLIAVIN CALCULUS

Outline. In the previous section, we recovered workable conditions for obtaining
functional inequalities and quantitative limit theorems in a diffusive setting. We would
like to improve them in three ways:

(i) we would like to check the Bakry-Emery condition (2.2.2.16);

(ii) in a diffusive setting, we would like to improve the non-exact fourth moment
theorem Theorem 2.2.3.2 to recover the exact fourth moment theorem on the
Gaussian space;

(iii) we would like to extend those results to the non-diffusive framework.

These three tasks can be accomplished through the introduction of a Fock space struc-
ture and Malliavin operators. As we will see, this structure arises in all the examples
of probabilistic models we will study. The idea behind the Fock space formalism is to
represent each chaos Cq (q ∈ N) of the chaotic decomposition of L 2(W) with a Hilbert
space H ◦q and a multiple stochastic integral mapping Iq : H ◦q → Cq. Provided some
compatibility conditions on the family {H ◦q, q ∈ N}, we can look at ⊕H ◦q as a graded
structure of Hilbert spaces and then we define the Malliavin derivative DF as the re-
sulting object obtained when shifting the representation of F in this graded structure;
and we define δ as the adjoint of D. The operator D is then an unbounded operator
and for every F ∈ DomD, the object DF is a H = H ◦1-valued square-integrable
random variable. The two Malliavin operators D and δ are linked to the Ornstein-Uh-
lenbeck generator: as we will see in Theorem 2.3.2.5, we have that L = −δD. We will
obtain the following commutation relation between the operator D and the Ornstein-
Uhlenbeck semi-group, namely:

(2.3.0.1) DPtF = e−t PtDF, for all F ∈ DomD, t ≥ 0.

In particular, the bilinear map

(2.3.0.2) Γ0 : DomD × DomD ∋ (F,G) ↦→ ⟨DF,DG⟩H ,

satisfies a relation similar to the Bakry-Emery condition (2.2.2.16). Thus, if Γ = Γ0 then
the operator L also satisfies the Bakry-Emery relation. The equality Γ = Γ0 is not true
in general (we will see it when computing explicitly the carré du champ for discrete
models in Section 2.4), and anticipating (2.3.2.4), one can already observe that, we have

(2.3.0.3) DomD = DomΓ0 = Dom E ,
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while the equality DomΓ = Dom E under a Bakry-Emery condition is, to my knowl-
edge, known in general only for diffusions (see [4, Cor 2.3]). IfD is a derivation, essen-
tially meaning that it acts as the usual derivative, then we show that L is a diffusion
and that the carré du champ is the square of the gradient (Theorem 2.3.3.3). Also we
show that if D is a derivation, we obtain an abstract product formula (Lemma 2.3.3.4)
that can be used to improve the fourth moment theorem with remainder to a fourth
moment theorem without remainder (Theorem 2.3.3.5). The question of using the
Malliavin derivative outside of the diffusive setting will be discussed in Section 2.4.2.

2.3.1. Abstract Fock space. We fix a measured space (Z,Z, ν). We let H = L 2(ν).
Recall that, for q ∈ N, we denote the space of symmetric functions of L 2(νq) by H ⊙q.
The space H ⊙q is endowed with the scalar product

(2.3.1.1) ⟨h, h̃⟩H ⊙q = q!νq(hh̃), for all h, h̃ ∈ H ⊙q.

Let {H ◦q, q ∈ N} be a family of sets such that for all q ∈ N, H ◦q is a sub-Hilbert
space of H ⊙q (we take H ◦0 = R). Of course, for every q ∈ N>0, the space H ◦q is
equipped with the topology induced by H ⊙q but, a priori, it can be equipped with an
inner product ⟨·, ·⟩H ◦q that is equivalent but different from the one of H ⊙q. See the
examples below. We say that this family is a compatible with a Fock space structure if it is
compatible with the restriction, that is, for all q ∈ N,

(2.3.1.2) h(z, ·) ∈ H ◦q, for ν-almost every z ∈ Z.

Note that this implies the stronger property that, for all q and p ∈ N and h ∈ H ◦(p+q),

(2.3.1.3) h(z1, . . . , zp, ·) ∈ H ◦q, for νp-almost every (z1, . . . , zp) ∈ Zp.

A Fock space is any space of the form H ◦ = ⊕q∈NH ◦q, where {H ◦q, q ∈ N} is compat-
ible with a Fock space structure.

Before investigating further the Malliavin operators, we give several examples of
Fock space that we will encounter in this document. Note that, the last two definitions
are new and are well-adapted to the study of point processes.

Example 2.3.1.1 (The bosonic Fock space). We present the historical example of Fock
space taken from [48], in the context of quantum mechanics. Given a measured space
(Z,Z, ν). The associated bosonic Fock space corresponds to the choice of H ◦q = H ⊙q

(as Hilbert spaces), for all q ∈ N. When H = L 2(ν), we will use the symbol H ⊙ to
designate the bosonic Fock space over H , that is H ⊙ = ⊕qH ⊙q.

Example 2.3.1.2 (The mixed bosonic Fock space). Let (λq) be a sequence of positive
real numbers and (Z,Z, ν) be a measured space. The associated mixed bosonic Fock
space corresponds to the choice of H ◦q = H ⊙q (as sets) and ⟨·, ·⟩H ◦q = λq⟨·, ·⟩H ⊙q , for
all q ∈ N.

Example 2.3.1.3 (The vanishing Fock space). As before, we take a measured space
(Z,Z, ν) and H = L 2(ν). We take H ◦q be the sub-Hilbert space (equipped with
⟨·, ·⟩H ⊙q ) of functions h ∈ H ⊙q vanishing on the diagonal. By this, mean that

(2.3.1.4) h(x1, . . . , xq) = 0, ∀x = (x1, . . . , xq) ∈ Zq, such that ∃i, j ∈ [q], xi = xj.

The vanishing Fock space associated with H is H ◦ = ⊕qH ◦q.
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Let H ◦ be a Fock space. If the space L 2(W) admits a chaotic decomposition ⊕Cq

(defined in Section 2.2), we say that H ◦ is the Fock space associated with the chaotic
decomposition, or that L 2(W) supports the Fock space H ◦, if the graded structure ⊕Cq

is isomorphic to the graded structure H ◦. By this, we mean that, for all q ∈ N, there
exists linear bijective maps Iq : H ◦q → Cq such that

(2.3.1.5) EIq(hq)Iq′(h̃q′) = 1q=q′q!ν
q(hqh̃q′), q, q′ ∈ N>0, hq ∈ H ◦q, h̃q′ ∈ H ◦q′ ,

and we require that I0 is the identity map from R to R. For q ∈ N, the map Iq is called
the multiple stochastic integral map of order q. We will say that F is a stochastic integral if
there exist q ∈ N and h ∈ H ◦q such that F = Iq(h). If L 2(W) supports a Fock space
and has polynomial chaoses, we say that L 2(W) has an Itô structure. For p and q ∈ N
and hp+q ∈ H ◦(p+q), the symbol Iq(hp+q) is used to designate the H ◦p-valued random
variable u such that

(2.3.1.6) uz1,...,zp = Iq(h(z1, . . . , zp, ·)).

We denote by L 2(W)◦H ◦p the space of all such random variables u. Remark that this
space is a priori smaller than L 2(W)⊗ H ◦p.

2.3.2. Malliavin calculus. In the following, we fix a Fock space H ◦ = ⊕H ◦q and we
assume that L 2(W) supports the Fock space H ◦. From the Fock space structure every
element F ∈ L 2(W) can be represented by a sequence (h0, h1, . . . ) ∈ H ◦. Namely, the
representation (2.2.1.2) becomes

(2.3.2.1) F =
∑
q∈N

Iq(hq),

for a unique element h = (h0, h1, . . . ) ∈ H ◦.
A very natural operation is to shift that sequence that is to look at the operation

(2.3.2.2) (h0, h1, . . . ) ↦→ (h1, h2, . . . ).

This operation can be translated at the level of L 2(W) and yields the formalism of
Malliavin gradient. For all p ∈ N, we define the unbounded operator Dp : L 2(W) →
L 2(W) ◦ H ◦p called the Malliavin derivative of order p via

(2.3.2.3) DpF =
∑
q≥p

p!

(q − p)!
Iq−p(hq),

with

(2.3.2.4) DomDp =

{
F ∈ L 2(W), such that

∑
q≥p

(
p!

(q − p)!

)2

|hq|2H ⊙q <∞

}
.

We also consider the unbounded operator δp : L 2(W) ◦ H ◦p → L 2(W) with
(2.3.2.5)
Dom δp =

{
u ∈ L 2(W) ◦ H p, such that, ∀F ∈ DomDp, |E⟨u,DpF ⟩H ⊙q | ≤ c(EF 2)

1/2
}
,
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and for u ∈ Dom δp, the value of δpu is characterized by the following duality relation:

(2.3.2.6) EδpuF = E⟨u,DpF ⟩H ⊙q , for all F ∈ DomDp.

We write D for D1 and δ for δ1. With our notation, we also have that D0 and δ0 both
are the identity operator of L 2(W). For F ∈ DomDp, the quantity DpF is a random
element of H ◦p and for z1, . . . , zp ∈ Z, we write

(2.3.2.7) Dp
z1...zp

F ∈ L 2(W),

for the random element obtained by evaluating the function DpF at (z1, . . . , zp).
The following three theorems summarize the main properties of Dp and δp.

Theorem 2.3.2.1. Let p ∈ N. We have that Dp+1 = DDp = DpD and δp+1 = δδp = δpδ.
The operator Dp is closed and densely defined; δp is its adjoint and is also closed and densely
defined. Moreover, imDp has full range in L 2(W) ◦ H ◦p and ker δp = {0}.

Remark 4. Our definition of δp does not coincide with the classical definition of the
divergence operator in a Gaussian setting (see [115, Chapter 1] or [111, Chapter 2]).
Indeed, in this case the authors work with the bosonic Fock space and they define the
operators Dp in the same way that we do but they define D as a map from L 2(W)
to L 2(W) ⊗ H ⊙p and consider δp as the adjoint of Dp with this extended range. We
choose to work with our definition rather than the usual one since it provides us nicer
properties for the operators Dp and δp. The counterpart being that Dom δp is much
smaller. This is not a drawback in our case as we are not really interested in the
properties of δ. By analogy with a case that might be more familiar to the reader,
every smooth vector field u on a Riemannian manifold M can be written uniquely as
u = ∇F + u0 where F is a smooth function, ∇ is the Riemannian gradient and u0 is a
smooth vector field with vanishing divergence. Our choice would consist, in this case,
to only look at the subspace V0 of vector fields for which u0 = 0. In that case, clearly,
∇ : C ∞(M) → V0 is surjective. If we want to study the geometry of vector fields, this
restriction is impairing. However, if, as in our case, we are jut interested in properties
of functions F and their gradients this definition is rather convenient.

Proof. Observe that Dp simply corresponds to iterating p times the shift operation and,
thus, we verify thatDp is indeedD iterated p times. As DomDp contains C it is densely
defined. The proof that Dp is closed is the same as the proof that L is closed: this
consists in considering a sequence (Fn) ⊂ DomDp that converges to some F ∈ L 2(W)
and such that (DpFn) converges to some G ∈ L 2(W) and by writing explicitly the
chaotic decomposition of Fn and DpFn. Since Dp is densely defined, it admits a closed
adjoint; by definition, δp is such an adjoint. Since Dp is closed its adjoint δp is densely
defined. Let u =

∑
q∈N Iq(gq+p) ∈ L 2(W) ◦ H p. We let hq = (q − p)!q!−1gq if q ≥ p and

hq = 0 otherwise. Then F =
∑

q∈N Iq(hq) ∈ DomDp and DpF = u. This shows that
imDp = L 2(W) ◦ H ◦p. Since D and δ are adjoint of each other, we have that ker δp is
the orthogonal of imDp, that is {0}.

Theorem 2.3.2.2. Let p ∈ N and F ∈ DomDp. Then for all q ≤ p, the kernels hq ∈ H ◦q in
the representation (2.3.2.1) are given by hq = q!−1EDqF .
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Proof. Immediate from the definition of Dp and the fact that for q ≤ p, DomDp ⊂
DomDq.

Theorem 2.3.2.3. The linear space DomDp is a Hilbert space for the inner product

(2.3.2.8) ⟨F,G⟩DomDp =

p∑
j=0

E⟨DjF,DjG⟩H ⊙j .

The space C is dense in DomDp for every p ∈ N. In particular, q ≤ p, DomDp is dense in
DomDq. The linear space Dom δp is a Hilbert space for the inner product

(2.3.2.9) ⟨u, v⟩Dom δp = Eδpuδpv.

Proof. It is clear that ⟨·, ·⟩DomDp defines an inner product and ⟨·, ·⟩Dom δp defines an inner
product since ker δp = {0}. The fact that the spaces are complete for the induced
topology comes from the fact that those operators are closed and densely defined. The
fact that C is dense in every DomDp comes from the density of C in L 2(W) and the
fact that Dp is closed.

By duality, we obtain the following representation of stochastic integrals as iterated
divergences.

Proposition 2.3.2.4. We have that H ◦p ⊂ Dom δp and δph = Ip(h) for h ∈ H ◦p.

Proof. Let h ∈ H ◦p. Let G =
∑

q∈N Iq(gq) ∈ DomDp, then

(2.3.2.10) E⟨h,DpG⟩H ⊙p = p!⟨h, gp⟩H ⊙p .

So, by the Cauchy-Schwarz inequality, h ∈ Dom δp. By duality, we have that

(2.3.2.11) EδphG = E⟨h,DpG⟩H ⊙p = p!⟨h, gp⟩H ⊙p = EIp(h)G.

In other words, δph = Ip(h).

2.3.2.1. Combining D and L. Comparing (2.2.1.8), (2.2.2.2) and (2.3.2.4), we see that

(2.3.2.12) DomL = DomD2; and DomD = Dom E .

The next series of statements links L and E more precisely with the operators D and δ.
For short, we write

(2.3.2.13) Γ0(F,G) = ⟨DF,DG⟩H , for all F,G ∈ DomD.

Remark that, since DomD is a linear space, Γ0 is a bilinear form. The first theorem is a
representation of L.

Theorem 2.3.2.5. The self-adjoint operator L coincides with −δD. Namely, F ∈ DomL if
and only if F ∈ DomD and DF ∈ Dom δ and in that case LF = −δD.
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Proof. Since D and δ are closed and densely-defined and adjoint of each other. The
operator L̃ = −δD is self-adjoint closed and densely defined. Observe that

(2.3.2.14) Dom L̃ = {F ∈ DomD, such that DF ∈ Dom δ} .

For F ∈ Dom L̃, we have, by Proposition 2.3.2.4,

(2.3.2.15) L̃F = δ

(∑
q∈N

qIq−1(hq)

)
= LF.

This shows that L is an extension of L̃. As both L and L̃ are self-adjoint, this implies
that L = L̃.

From this representation, we deduce various integration by parts formulae that are
summarized in the following theorem.

Theorem 2.3.2.6 (Integration by parts). The following relations hold:

EΓ0(F,G) = E(F,G), for all F,G ∈ DomD;(2.3.2.16)
EΓ0(F,G) = −EGLF, for all F ∈ DomL, G ∈ DomD;(2.3.2.17)
EΓ0(F,G) = EΓ(F,G), for all F,G ∈ DomΓ.(2.3.2.18)

Proof. In view of Theorem 2.3.2.5, we obtain (2.3.2.17). Since Dom E = DomΓ, the
relation (2.3.2.16) is deduced from (2.3.2.17). In view of (2.2.2.13), the relation (2.3.2.18)
is also a consequence of (2.3.2.16).

By direct computations on the chaotic decomposition, we obtain, the following
commutation relations.

Theorem 2.3.2.7. For F ∈ DomD,

(2.3.2.19) e−t PtDF = DPtF.

For F ∈ DomD3,

(2.3.2.20) DLF = LDF −DF.

In particular, we see that the Γ0 satisfies a Bakry-Emery type condition

(2.3.2.21) Γ0(PtF ) = e−2t PtΓ0(F ).

However, it is a priori not clear how to compare Γ0 and Γ. An important part of the
rest of this chapter is about partially solving this question.

2.3.2.2. More properties of δ. We now present several lemmas regarding the operator δ.
We start with an approximation for Dom δ.

Lemma 2.3.2.8. Let V be the image by D of DomL. Then, V is dense in Dom δ.
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Proof. Let u be an element of the orthogonal of V in Dom δ. Then, by duality, for all
v = DF ∈ V (F ∈ DomL), we have that

(2.3.2.22) 0 = Eδuδv = −EδuLF.

Since for all q ∈ N, Cq ⊂ DomL, we see that necessarily δu = 0. Since δ is injective, we
infer that u = 0. This proves that the orthogonal of V in L 2(W)◦H is {0} and, hence,
the announced density.

Lemma 2.3.2.9. Let F and G ∈ DomL. Then,

(2.3.2.23) ELFLG = E⟨D2F,D2G⟩H ⊙2 + E⟨DF,DG⟩H .

Consequently, for u and v ∈ Dom δ,

(2.3.2.24) Eδuδv = E⟨u, v⟩H + E⟨Du,Dv⟩H ⊙2 .

Proof. We assume first thatF andG ∈ DomD3. By integration by parts Theorem 2.3.2.6
and the commutation (2.3.2.20), we have that

ELFLG = −E⟨DF,DLG⟩H = −E⟨DF,LDG⟩H + E⟨DF,DG⟩H
= E⟨D2F,D2G⟩H ⊙2 + E⟨DF,DG⟩H .

(2.3.2.25)

The previous relation is between continuous bilinear forms of DomL and hold on the
dense subset DomD3 of DomL = DomD2. Hence, it holds on all DomL.

By Lemma 2.3.2.8, we prove the second relation on the subset V dense in Dom δ.
Let let u and v ∈ V and let F and G ∈ DomL such that u = DF and v = DG. Since
by Theorem 2.3.2.5, L = −δD, by the previous relation, we have that

Eδuδv = ELFLG
= E⟨DF,DG⟩H + E⟨D2F,D2G⟩H ⊙2

= E⟨u, v⟩H + E⟨Du,Dv⟩H ⊙2 .

(2.3.2.26)

This proves the claim.

2.3.3. Derivation and diffusion. Recall that we have set A = Dom E ∩ L ∞(W) and
that A is an algebra stable by composition with Lipschitz functions. We say that the
Malliavin gradient D is a derivation if:

(2.3.3.1) D(FG) = FDG+GDF, for all F,G ∈ A .

The fact that D is a derivation is equivalent to the following chain rule.

Theorem 2.3.3.1. The operator D is a derivation if and only if for all ϕ ∈ C1(R):

(2.3.3.2) Dϕ(F ) =
d∑

i=1

∂iϕ(F )DFi, F = (F1, . . . , Fd) ∈ A .
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Proof. By selecting ϕ(x, y) = xy in (2.3.3.2), we see that the chain rule is sufficient for
D to be a derivation. Let us show that this is also necessary. Since D is a derivation,
by [25, III Cor of Prop 10.4.2], for all multivariate polynomials P ,

(2.3.3.3) DP (F ) =
d∑

i=1

∂iP (F )DFi, F = (F1, . . . , Fd) ∈ A .

Observe that, since A is an algebra, in the previous formula P (F ) ∈ A . We let M =

maxi=1,...,d |Fi|L ∞(W) and we let K = [−2M, 2M ]d. Without loss of generality, we can
assume that ϕ is compactly supported in K. By the Stone-Weierstrass approximation
theorem, we can find a sequence (pn) that converges uniformly on K to ϕ such that
(p′n) converges uniformly on K to ϕ′. Consequently, we have that

(2.3.3.4) pn(F )
L 2(W)−−−−→
n→∞

ϕ(F ); and p′n(F )
L 2(W)−−−−→
n→∞

ϕ′(F ).

Since D is a closed operator, this proves the claim.

By duality we also obtain the following Leibniz rule for the divergence.

Theorem 2.3.3.2. Let u ∈ Dom δ and F ∈ A such that Fu ∈ Dom δ, we have

(2.3.3.5) δ(Fu) = Fδu− ⟨u,DF ⟩H .

Proof. For short, we write ⟨·, ·⟩ = ⟨·, ·⟩H . Let G ∈ A . Then,

(2.3.3.6) EGδ(Fu) = E⟨DG,Fu⟩ = E⟨FDG, u⟩.

SinceD is a derivation over A and F andG ∈ A , we have that FDG = D(FG)−GDF .
This shows that, for all G ∈ A ,

(2.3.3.7) EGδ(Fu) = EGFδu− EG⟨DF, u⟩.

By density of A in DomD and definition of δ, this proves the claim.

We have the following theorem connecting D and L in a diffusive case.

Theorem 2.3.3.3. The Malliavin gradient D is a derivation if and only if the Ornstein-Uh-
lenbeck generator L is a diffusion and

(2.3.3.8) Γ0(F,G) = Γ(F,G), for all F,G ∈ DomΓ.

Proof. Assume D is derivation. By (2.3.2.18), we have that

(2.3.3.9) Γ(F )[Φ] = E⟨DF,D(FΦ)⟩ − 1

2
E⟨DF 2, DΦ⟩ = EΦ|DF |2, for allF,Φ ∈ A .

By density of A in Dom E we find that DomΓ = Dom E and that (2.3.3.8) holds. Let F
and G ∈ Dom E such that FG = 0. Then D(FG) = FDG +GDF = 0. Hence, we find
that 1F ̸=0DG = 1G ̸=0DF = 0. By (2.3.2.18), we have that

(2.3.3.10) E(F,G) = E⟨DF,DG⟩ = E1F=01G=0⟨DF,DG⟩ = 0.

This shows that L is a diffusion.
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Conversely, assume that L is a diffusion and that (2.3.3.8) holds. Let F and G ∈ A .
By Lemma 2.3.2.8, to show that D is a derivation, it is sufficient to show that

(2.3.3.11) E⟨D(FG), DH⟩ = EF ⟨DG,DH⟩+ EG⟨DF,DH⟩, for all H ∈ DomL.

By (2.3.3.8), we have that this expression is equivalent to

(2.3.3.12) E(FG,H) = EFΓ(G,H) + EGΓ(F,H).

This expression holds true by the chain rule (2.2.2.18). This concludes the proof.

The following lemma provides an abstract product formula when D is a deriva-
tion. Recall that we say that L 2(W) supports the mixed bosonic Fock space (Exam-
ple 2.3.1.2), when the Fock space H ◦ = ⊕H ⊙q (as sets) and there exists positive con-
stants (λq) such that ⟨·, ·⟩H ◦q = λq = ⟨·, ·⟩H ⊙q . The (λq) will be referred as the bosonic
constants. In a more explicit way, this means that for every h ∈ H ⊙q and h̃ ∈ H ⊙p (q
and p ∈ N) the quantities Iq(h) and Ip(h̃) are well-defined and

(2.3.3.13) EIq(h)Ip(h̃) = 1p=qλq⟨h, h̃⟩H ⊙q = 1p=qλqq!ν
q(hh̃).

Lemma 2.3.3.4. Assume the Malliavin derivative is a derivation then L 2(W) supports the
mixed bosonic Fock space (meaning that H ◦q = H ⊙q as sets, for all q ∈ N), L 2(W) has
polynomial chaoses and for all q and p ∈ N, h ∈ H ◦p and h̃ ∈ H ◦q such that Ip(h)Iq(h̃) ∈
L 2(W), we have that

(2.3.3.14) Jp+q(Ip(h)Iq(h̃)) = Ip+q(h⊙ h̃).

Proof. The proof is the same as the one of Lemma 2.4.2.1 that is a similar statement in
a non-diffusive setting. We do not reproduce it here.

The product formula will help us controlling the remainder that appeared in The-
orem 2.2.3.2. The same behaviour will be observed in a non-diffusive setting (see The-
orem 2.4.4.6). Recall that for F ∈ L 4(W), we write M(F ) = EF 4 − 3(EF 2)

2. Given
c > 0, we also write Mc(F ) = EF 4 − c(EF 2)

2.

Theorem 2.3.3.5. Assume L 2(W) supports a Fock and that D is a derivation. Let (λq) be the
bosonic constant associated with L 2(W) (they exist by Lemma 2.3.3.4). Let (p1, . . . , pd) ∈ Nd.
For all q ∈ N, we let cq = 1+2λ2q

λ2
q

. There exists c > 0, such that for all F = (F1, . . . , Fd) with
Fi ∈ Cpi ∩ L 4(W), we have that

E|S(F )− EF TF |2HS ≤ c

d∑
i

M(Fi) + c

d∑
i,j=1
pj<pi

(
EF 4

i

) 1
2M(Fj)

1
2

+ c
d∑

i,j=1
i ̸=j

pi=pj

(
M(Fi)

1
2M(Fj)

1
2 +Mcpi

(Fi)
1
2Mcpi

(Fj)
1
2 +

λ2pi − λ2pi
λpi

EFiEFj

)
.

(2.3.3.15)

Remark 5. This theorem is useful if and only if cq ≥ 3, that is λ2q ≥ λ2q . We however
state it in full generality in order for the reader to observe the mechanic preventing a
fourth moment theorem to be recovered.
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Proof. See [41, Lem 2.3] Let q ∈ N, h and h̃ ∈ H ◦q. We write F = Iq(h) and G = Iq(h̃).
In view of Theorem 2.2.3.2, it is enough to show that

(2.3.3.16) |EJ2qF 2J2qG
2 − 2(EFG)2| ≤ cMcq(Fi)

1
2Mcq(Fj)

1
2 +

λq − λ2q
λq

EFiEFj.

By Lemma 2.3.3.4,

(2.3.3.17) EF 4 = (EF 2)
2
+

2q−1∑
k=1

E
[(
JkF

2
)2]

+ λ2q|h⊙ h̃|2H ⊙2q .

It is an algebraic fact of tensor calculus [113, Lem 2.2(2)] that

(2.3.3.18) |h⊙ h̃|2H ⊙2q = 2⟨h, h̃⟩2H ⊙q +

q−1∑
r=1

q!2
(
q

r

)
⟨h⊗r h̃, h̃⊗r h⟩H ⊗2(q−r) ,

where the exact expression of h⊗r h̃ ∈ H ⊗2(q−r) is irrelevant (see [111, Appendix B.4]).
In particular, we infer that
(2.3.3.19)

EF 4 =

(
1 + 2

λ2q
λ2q

)
(EF 2)

2
+

2q−1∑
k=1

E
[(
JkF

2
)2]

+ λ2q

q−1∑
l=1

q!2
(
q

l

)
|h⊗r h|2H ⊗2(q−l) .

By Lemma 2.3.3.4 and (2.3.3.18), we find that
(2.3.3.20)

EJ2qF 2J2qG
2− 2(EFG)2 = 2(λ2q −λ2q)⟨h, h̃⟩2H ⊙q +λ2q

q−1∑
r=1

q!2
(
q

r

)
⟨h⊗r h̃, h̃⊗r h⟩H ⊗2(q−r) .

Applying the Cauchy-Schwarz inequality several times and some algebraic identities
similar to the one in the proof of [41, Lem 2.3], we find that

q−1∑
r=1

q!2
(
q

r

)
⟨h⊗r h̃, h̃⊗r h⟩H ⊗2(q−r)

≤

√ q−1∑
r=1

(q!)2
(
q

r

)2

|h⊗r h|H ⊗2(q−r)

√ q−1∑
r=1

(q!)2
(
q

r

)2

|h̃⊗r h̃|H ⊗2(q−r)

(2.3.3.21)

Combining the previous expression with (2.3.3.19) yields

|EJ2qF 2J2qG
2 − 2(EFG)2| ≤ (λ2q − λ2q)⟨h, h̃⟩2H ⊙q

+

√
EF 4 −

(
1 + 2

λ2q
λq

)
(EF 2)2

√
EG4 −

(
1 + 2

λ2q
λq

)
(EG2)2.

(2.3.3.22)

This concludes the proof.
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2.4. FUNCTIONAL INEQUALITIES AND LIMIT THEOREMS WITHOUT DIFFUSION

Outline. We recall that, we want to study W = σ(e), where e is a random object of
interest living on a measurable space (E,E). In this section, we assume that L 2(W)
has a chaotic decomposition with Ornstein-Uhlenbeck generator L but we will drop
the assumption that L is a diffusion. However, getting practical results under the
only assumption that L is not diffusive seems unreachable and we will introduce and
study a particular class of such non-diffusive L. We recall that, by definition, every
W-random variable F has a representative f such that F = f(e). The representative is
unique up to law(e)-negligible sets. In the rest of the section, whenever F and G ∈
L 2(W), the symbols f and g will designate one of their respective representatives.
In Section 2.4.1, we will suggest a class of non-diffusive generators from which we
expect positive results. These will be generators for which the carré du champ has the
following representation

(2.4.0.1) Γ(F,G) =

ˆ
(f(y)− f(e))(g(y)− g(e))q(e, dy), for all F,G ∈ DomΓ,

where q = {q(x,A), x ∈ E, A ∈ E} is a collection of measures satisfying some con-
ditions, ensuring that this representation does not depend on the choice of f and g.
We will call such generators pure-jump type generators. However we were not able
to develop a technology in order to obtain functional inequalities and limit theorems
in the setting of those operators in full generality. For that reason, in Section 2.4.2,
we will study a particular class of pure-jump generators for which the measure q can
be computed explicitly. We will assume the existence of a Fock space structure and
we will consider a condition on the Malliavin derivative in order to quantify the non-
diffusiveness. Recall that for F ∈ DomF ,DF is a random element of H ⊂ L 2(Z,Z, ν)
where ν is a σ-finite measure on the measurable space (Z,Z). Roughly speaking, we
will require that for all z ∈ Z, there exists a random variable Cz, and a map Tz satisfy-
ing some conditions such that

(2.4.0.2) DzF = Cz(f(Tze)− f(e)), for all F ∈ DomD, z ∈ Z.

Under this sole condition, we obtain a representation of the carré du champ Γ and
the Ornstein-Uhlenbeck generator L in Theorems 2.4.2.3 and 2.4.2.4. In particular, we
always have that DomΓ = Dom E and 2Γ(F ) = Γ0(F ) + T (F ) where T (F ) is an ex-
plicit term that can be thought as a randomized derivative. In this setting, we can
show a pseudo-chain rule Lemma 2.4.3.1, a modified logarithmic Sobolev inequality
Theorem 2.4.4.1 and a modified Stein inequality Theorem 2.4.4.2. As in the diffusive
case, under an additional polynomial chaoses assumption, we deduce a fourth mo-
ment theorem with quartic remainder Theorem 2.4.4.3. In Sections 2.6 and 2.7, we
will see, that this framework is particularly well-adapted to study point processes.
We give conditions on the covariance of multiple stochastic integrals, in order for this
fourth moment theorem with remainder to simplify to an exact fourth moment the-
orem Theorem 2.4.4.6, that is the theorem is as good (up to numerical constants) as
the fourth moment theorem for diffusions (Theorem 2.2.3.2). The proof of this exact
fourth moment theorem is based on an abstract product formula for stochastic inte-
grals (Lemma 2.4.2.1) of independent interest. These results are new at this level of
generality and give a unified framework to understand several recent results on limit
theorems in a discrete setting ([40, 38, 41]). We will study in Section 2.7.3 the two
important cases of Poisson point processes and mixed binomial processes.
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2.4.1. Pure-jump generators. This short section is only aimed at providing the reader
with an intuition concerning a possibly “nice” form of the generator L. Unfortunately,
contrary to the diffusive setting, we are not yet able to obtain positive results in the set-
ting presented here that solely concerns the operator L and this is why we present the
more advanced technology of transitive operators based on the Malliavin derivative
in Section 2.4.3. An absolutely continuous kernel on E is a collection of non-negative
real numbers q = {q(x,A)} for x ∈ E and A ∈ E such that: for all A ∈ E, the map
x ↦→ q(x,A) is measurable, and, for all x ∈ E, q(x, ·) is a non-negative measure on
(E,E) absolutely continuous with respect to the law of e. We say that the semi-group
is of pure-jump type if, there exists a kernel q on E such that:

(2.4.1.1) Γ(F,G) =
1

2

ˆ
(f(y)− f(e))(g(y)− g(e))q(e, dy), for all F,G ∈ DomΓ.

Remark that the assumption of absolute continuity makes this definition independent
of the choice of the representative. The symmetry of the semigroup implies that the
measure J(dxdy) = q(x, dy)law(e)(dx) is symmetric.

Remark 6. By defining the covariant derivative as the unbounded operator ∇x : L 2(ν) →
L 2(q(x, dy)) with (∇xf)(y) = f(y) − f(x) and the connection ∇ : L 2(ν) → L 2(J) as
∇f = f⊖f , that is ∇f(x, y) = f(y)−f(x). We think of L 2(J) as a vector bundle and ∇
as a connection (hence the name). We have that F ∈ DomΓ if and only if f ∈ Dom∇e,
and

Γ(F,G) = ∇ef · ∇eg, for all F,G ∈ DomΓ;(2.4.1.2)
EΓ(F,G) = ∇f · ∇g, for all F,G ∈ Dom E .(2.4.1.3)

With ∇∗ the adjoint of ∇, we find that

(2.4.1.4) LF = −∇∗∇f(e).

This expression has to be compared with the one obtained in Theorem 2.3.2.5, stating
that in the setting of Malliavin operators L = −δD. Thus, we see that we have two
competing geometrical structures: the flat structure provided by the Malliavin calculus
directly on L 2(W), and the curved structure provided by the connection on L 2(E). It is
not yet clear how to use the operator ∇ and in particular how it interacts with stochas-
tic integrals or the Ornstein-Uhlenbeck semi-group. For instance, we can obtained a
modified Stein inequality similar to the one we will obtain in Theorem 2.4.4.2 in the
setting of pure-jump operators but the remainder is not tractable as it is expressed in
terms of ∇. Better understanding the operator ∇ is of independent interest and this
work will be completed elsewhere.

2.4.2. Transitive operators. In this section, we fix a measured space (Z,Z, ν), we let
H = L 2(ν) and we assume that L 2(W) has an abstract Fock space H ◦ = ⊕q∈NH ◦q.
For F ∈ DomD and z ∈ Z, we write ∂zf for a representative of DzF . We say that the
Malliavin derivativeD is representable with a transitive action if there exists a measurable
mapping T : Z×E → E and a measurable mapping c : E → R, such that, for all z ∈ Z,
the map Tz is injective, the map cz is bounded and never takes the value 0 and

(2.4.2.1) ∂zf(e) = cz(e)(f(Tze)− f(e)), for all F = f(e) ∈ DomD, z ∈ Z,
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where we write Tzx for T (z, x) and cz(e) for c(z, e). The map T is called the action map or
the transitive action and cz the mixing map. We also need to assume that this formula is
independent of the choice of the representatives f and ∂zf (this will be easily checked
on examples).

Remark 7. We could take Tz and cz with an extra randomness in which case we would
ask that almost surely, for all z ∈ Z, the random map Tz is injective, cz is bounded and
never vanishes and

(2.4.2.2) ∂zf(e) = E[cz(e)(f(Tze)− f(e))|e],

where we write Tzx for the random variable T (z, x) and cz(e) for the random variable
c(z, e). Most of the definitions and theorems would adapt straightforwardly. However,
since we do not know applications for this possible generalization, we choose to keep
the definitions as simple as possible.

For the rest of the section, we assume that D is representable with action map T and
mixing map c. For z ∈ Z, we set Cz = cz(e) and C̃z = cz(T

−1
z e)1{e∈imTz}. We say

moreover that the Malliavin derivative is pure if Cz = 1 for all z ∈ Z. We define the
map D+ by

(2.4.2.3) D+
z F = f(Tze)− f(e), for all z ∈ Z, F ∈ L 0(W).

Then, we obtain that for all F ∈ DomD, DF = CD+F . Conversely, a W-random
variable F belongs to DomD if and only if D+F ∈ L 2(W) ⊗ H and in that case
DF = CD+F . Note that, D+ is everywhere defined, while D has, in general, a smaller
domain. We also define,

(2.4.2.4) D−
z F = (f(e)− f(T−1

z e))1{e∈imTz}, for all z ∈ Z, F ∈ L 0(W).

Observe that the operator D+ and D− are not derivations but satisfy the combinatorial
properties

D+
z (FG) = FD+

z G+GD+
z F +D+FD+

z G(2.4.2.5)
D−

z (FG) = FD−
z G+GD−

z F −D−
z FD

−
z G.(2.4.2.6)

In particular, this indicates that Malliavin gradients representable with transitive ac-
tion are unlikely to be derivations. In particular, if the action is pure, then D = D+

and D is not a derivation, unless in the trivial case where Tz is the identity map for all
z ∈ Z. Note that we can of course iterate the definition of D+ and D−. Given l ∈ N
and z1, . . . , zl ∈ Z, we write

(2.4.2.7) D+l
z1,...,zl

F = D+
z1
. . . D+

zl
F,

with the convention thatD+0 = 1. It is immediate to check that, with f a representative
of F ,

(2.4.2.8) D+l
z1,...,zl

F =
∑

{j1,...,jk}=J⊂[l]

(
(−1)l−|J |f

(
Tzj1 ◦ · · · ◦ Tzjke

))
.

Recall that the mixed bosonic Fock space (associated to H = L 2(ν)) is given by H ◦ =
⊕qH ◦q with, for all q ∈ N, H ◦q = L 2

σ (ν
q) (as sets) such that there exists a sequence of
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positive constants (λq) such that ⟨·, ·⟩H ◦q = ⟨·, ·⟩H ⊙q , and that we call the sequence (λq)
the bosonic constants. In a more explicit way, this means that for every h ∈ H ⊙q and
h̃ ∈ H ⊙p (q and p ∈ N) the quantities Iq(h) and Ip(h̃) are well-defined and

(2.4.2.9) EIq(h)Ip(h̃) = 1p=qλq⟨h, h̃⟩H ⊙q = 1p=qλqq!ν
q(hh̃).

We have the following lemma giving an abstract product formula when the Malliavin
derivative is pure (compare to [39] and Lemma 2.3.3.4).

Lemma 2.4.2.1. Assume that the Malliavin derivative is pure. Then L 2(W) supports the
mixed bosonic Fock space, has polynomial chaoses and for F = Ip(hp) and G = Iq(hq), where
p and q ∈ N and hp ∈ H ⊙p and hq ∈ H ⊙q such that FG ∈ L 2(W) we have that

(2.4.2.10) Jp+q(Ip(hp)Iq(hq)) = Ip+q(hq ⊙ hp).

Proof. By assumption, we have that for F ∈ DomD, DF = D+F . We start by proving
that L 2(W) has polynomial chaoses. From Theorem 2.3.2.2, we know that

(2.4.2.11) FG =
∞∑
k=0

Ik(h̃k),

where

(2.4.2.12) h̃k(z1, . . . , zk) =
1

k!
EDk

z1,...,zk
(FG), k ∈ N.

Hence, the property of polynomial chaoses will follow from the claim:

(2.4.2.13) FG ∈ DomDm andDm(FG) = 0, for all m > p+ q.

We prove the claim by induction on p + q. If p + q = 2 then p = q = 1. Since F and
G ∈ C1, we find that both D+2F = D2F and D+2G = D2G vanish. By (2.4.2.5), we find
that D+3(FG) = 0. This shows that FG ∈ DomD3 and D3(FG) = 0. This proves the
claim for p + q = 2. We assume that p + q > 2 and we let m > p + q. By (2.4.2.5), we
also have that

D+m
z1...zm

FG = pD+(m−1)
z1...zm−1

(Ip−1(hp(zm, ·))Iq(hq))
+ qD+(m−1)

z1...zm−1
(Iq−1(hq(zm, ·))Ip(hp))

+ qpD+(m−1)
z1...zm−1

(Iq−1(hq(zm, ·))Ip−1(hp(zm, ·))).
(2.4.2.14)

By the induction hypothesis, all the terms in the right-hand side vanish and this proves
the claim (2.4.2.13). Let us prove at once that L 2(W) supports the mixed bosonic Fock
space and that Jp+q(FG) = Ip+q(hp ⊙ hq). Let us prove by induction on p+ q that

(2.4.2.15) Dp+q(FG) = (p+ q)!hp ⊙ hq.

Regarding the previous expression, by assumption, FG ∈ L 2(W) and, since we proved
that the chaoses are polynomials, we know that FG ∈ C and hence FG ∈ DomDp+q.
If p+ q = 2 then p = q = 1, by (2.4.2.5), we have that D2F and D2G vanish and that
(2.4.2.16)

D2
z1,z2

(FG) = Dz1FDz2G+Dz1GDz2F = hp(z1)hq(z2) + hp(z2)hq(z1) = 2hp ⊙ hq.
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Now if p+ q > 2, we obtain that

Dp+q
z1...zp+q

FG = pD(p+q−1)
z1...zp+q−1

(Ip−1(hp(zp+q, ·))Iq(hq))
+ qD(p+q−1)

z1...zp+q−1
(Iq−1(hq(zp+q, ·))Ip(hp))

+ qpD(p+q−1)
z1...zp+q−1

(Iq−1(hq(zp+q, ·))Ip−1(hp(zp+q, ·))).
(2.4.2.17)

By the fact that the chaoses are polynomial the last line vanishes, and, by the induction
hypothesis, we find that

Dp+q
z1...zp+q

FG = p(p− 1 + q)!(hp(zp+q, ·)⊙ hq)(z1, . . . , zp+q−1)

+ q(q − 1 + p)!(hq(zp+q, ·)⊙ hp)(z1, . . . , zp+q−1).
(2.4.2.18)

In view of [40, Eq 6.3], this proves the claim (2.4.2.15). Let us conclude the proof. By
Theorem 2.3.2.2, (2.4.2.15) shows that for all p and q ∈ N,

(2.4.2.19) H ◦p ⊙ H ◦q ⊂ H ◦(p+q).

This proves by an immediate induction that H ◦r ⊃ H ⊙r for all r ∈ N. This shows
that L 2(W) supports the mixed bosonic Fock space. Also (2.4.2.10) is a consequence
of Theorem 2.3.2.2 and (2.4.2.15). The proof is completed.

A random measure η measurable with respect to W is the Campbell measure associ-
ated with the transitive action T if, for all non-negative bi-measurable functions

(2.4.2.20) h : Z × E ∋ (z, e) ↦→ hz(e) ∈ R+,

we have that

(2.4.2.21) E
ˆ
hz(e)η(dz) = E

ˆ
hz(Tze)ν(dz).

Note that, if it exists, the intensity of a Campbell measure η is given by ν, that is for all
A ∈ Z,

(2.4.2.22) Eη(A) = ν(A).

It is classical, that if h is as before without the positivity constraint and

(2.4.2.23) E
ˆ

|hz(e)|ν(dz) <∞,

then, we can extend (2.4.2.21) to this h. We present the following lemma.

Lemma 2.4.2.2. Assume that the transitive action T admits the Campbell measure η. Almost
surely η(dz)-almost everywhere e ∈ imTz.

Proof. Let A ∈ Z, z ∈ Z and hz(x) = 1A1{x∈imTz} for x ∈ Z. By definition, we have that

(2.4.2.24) hz(Tze) = 1A1{Tze∈imTz} = 1A, for all z ∈ Z.

Applying (2.4.2.21), we thus find

(2.4.2.25) Eη(A) = ν(A) = E
ˆ
A

1{e∈imTz}η(dz).

Hence, the desired conclusion.
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Finally, we arrive at the following representation of δ and hence L for transitive ac-
tions.

Theorem 2.4.2.3. Assume that the Malliavin gradient D is representable by the transitive
map T , mixing map C and admits the Campbell measure η. For u ∈ Dom δ such that u ∈
L 1(W⊗ E,P⊗ ν), we have that

(2.4.2.26) δu =

ˆ
cz(T

−1
z e)hz(T

−1
z e)η(dz)−

ˆ
cz(e)hz(e)ν(dz),

where h is a representative of u. Let

(2.4.2.27) Dom0 L = {F ∈ DomL, such that DF ∈ L 1(W⊗ E,P⊗ ν)}.

For all F ∈ Dom0 L, we have that

(2.4.2.28) LF =

ˆ
C2

zD
+
z Fν(dz)−

ˆ
C̃2

zD
−
z Fη(dz).

In particular, for pure actions, for such F :

(2.4.2.29) LF =

ˆ
D+

z Fν(dz)−
ˆ
D−

z Fη(dz).

Proof. Recall that we defined the algebra A = Dom E ∩ L ∞(W). We start by proving
(2.4.2.26). Observe that if u ∈ L 1(W⊗ Z,P⊗ ν) by (2.4.2.21),

(2.4.2.30) E
ˆ

|(1−D−
z )uz|η(dz) <∞.

The formula is proved by duality. Let u be as in the theorem and F ∈ A , then we have

(2.4.2.31) E⟨u,DF ⟩H = E
ˆ
cz(e)hz(e)(f(Tze)− f(e))ν(dz).

Since F is bounded, by (2.4.2.21), we find that

(2.4.2.32) E
ˆ
cz(e)hz(e)f(Tze)ν(dz) = E

ˆ
cz(T

−1
z e)hz(T

−1
z e)η(dz).

This proves (2.4.2.26) by density of A in DomD. To prove (2.4.2.28), we simply write
L = −δD and apply (2.4.2.26).

Finally, we arrive at the announced representation of the carré du champ.

Theorem 2.4.2.4. Let the assumptions of Theorem 2.4.2.3 prevail. Then, DomΓ = DomD
and
(2.4.2.33)

Γ(F,G) =
1

2

ˆ
CzD

+
z FD

+
z Gν(dz) +

1

2

ˆ
C̃zD

−
z FD

−
z Gη(dz), for all F,G ∈ DomD.
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Proof. First of all remark that that by (2.4.2.21), the right-hand side of (2.4.2.33) is well-
defined whenever F and G ∈ DomD. We write T (F,G) for the right-hand side of
(2.4.2.33) and T (F ) when F = G. By polarization it is enough to show the theorem for
F = G in (2.4.2.33) and by density of A in Dom E , we can restrict the proof to the case
F ∈ A . Let F ∈ A . From Theorem 2.4.2.3, we easily compute that

(2.4.2.34) E(F ) = ET (F ).

Let Φ ∈ A . In view of (2.4.2.5) and (2.4.2.6), we find that

E(F, FΦ) = EΦT (F ) + EFT (Φ, F )

+
1

2
E
ˆ
Cz(D

+
z F )

2
D+

z Φν(dz)−
1

2
E
ˆ
C̃z(D

−
z F )

2
D−

z Φη(dz).
(2.4.2.35)

Since Φ is, by assumption, bounded, it admits a (law(e)-almost everywhere) bounded
representative and thus D+

z Φ and D−
z Φ are also bounded. Thus we can apply (2.4.2.21)

to the last term of the right-hand side of the previous expression and we see that the
last line vanishes. We can obtain a similar expression for E(Φ, F 2) and we obtain that

(2.4.2.36) E(F, FΦ)− 1

2
E(F 2,Φ) = EΦT (F ), ∀Φ ∈ A .

Hence Γ(F ) = T (F ). This completes the proof.

In view of the previous theorem and (2.4.2.21), the following integration by parts
holds:

(2.4.2.37) E(F,G) = EΓ0(F,G) = EΓ(F,G) for all F,G ∈ DomD.

However, the equality Γ0 = Γ does not hold in general.

2.4.3. Difference operators. We say that the Malliavin derivative D is a difference op-
erator if, for all F ∈ DomD, ϕ such that ϕ(F ) ∈ DomD and z ∈ Z, we have that

(2.4.3.1) Dzϕ(F ) = ϕ(F +DzF )− ϕ(F ).

We now observe that transitive operators act as difference operators and, hence enjoy
an ersatz of the chain rule. Indeed, let D have a transitive action, with the notations of
the previous section, we have that, for all F ∈ L 2(W), ϕ such that ϕ(F ) ∈ DomD and
z ∈ Z,

(2.4.3.2) Dzϕ(F ) = Cz(ϕ(F +D+
z F )− ϕ(F )).

We have the following pseudo chain rule.

Lemma 2.4.3.1. Assume the Malliavin gradient is representable by a transitive action and let
the previous notations prevail. Let F = (F1, . . . , Fd) and G ∈ DomD such that

(2.4.3.3) DGDFiDFj ∈ L 1(W⊗ E,P⊗ ν), i, j ∈ [d].
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Let ϕ ∈ C 1(Rd) such that ϕ(F ) ∈ DomD. Then,

Γ0(ϕ(F ), G) = ⟨∇ϕ(F ),Γ0(F,G)⟩ℓ2 +R+
ϕ (F,G);(2.4.3.4)

Γ(ϕ(F ), G) = ⟨∇ϕ(F ),Γ(F,G)⟩ℓ2 +Rϕ(F,G),(2.4.3.5)

where

Rϕ(F,G) =
1

2

(
R+

ϕ (F,G)−R−
ϕ (F,G)

)
;

R+
ϕ (F,G) =

d∑
i,j=1

ˆ
C2

zD
+
z GD

+
z FiD

+
z FjR

+
ij(z)ν(dz);

R−
ϕ (F,G) =

ˆ
C̃2

zD
−
z GD

−
z FiD

−
z FjR

−
ij(z)η(dz),

with

R+
ij(z) =

ˆ 1

0

ˆ 1

0

α∂ijϕ(F + αβD+
z F )dαdβ;

R−
ij(z) =

ˆ 1

0

ˆ 1

0

α∂ijϕ(F − αβD−
z F )dαdβ.

Moreover, if D is a difference operator, the formula (2.4.3.4) holds with D+ = D and C = 1.

Proof. We give the proof only for d = 1, the generalization to higher dimension being
straightforward. By the fundamental theorem of calculus, we have

(2.4.3.6) ϕ(x+ h)− ϕ(x) = h

ˆ 1

0

ϕ′(x+ αh)dα.

Therefore, applying this formula once more, we find that

(2.4.3.7) ϕ(x+ h)− ϕ(x)− hϕ′(x) = h2
ˆ 1

0

ˆ 1

0

αϕ′′(x+ αβh)dαdβ.

Applying the previous relation to x = F , h = D+
z F and x = F , h = −D−

z F , we have
that

D+
z ϕ(F ) = ϕ′(F )D+

z F + (D+
z F )

2
ˆ 1

0

ˆ 1

0

αϕ
′′
(F + αβD+

z F )dαdβ;(2.4.3.8)

D−
z ϕ(F ) = ϕ′(F )D−

z F − (D−
z F )

2
ˆ 1

0

ˆ 1

0

αϕ
′′
(F − αβD−

z F )dαdβ.(2.4.3.9)

Multiplying the two previous equation by D+
z G (resp. D−

z G), and integrating against
ν (resp. η), proves the claim for the case of transitive actions. The generalization to
difference operators is immediate.
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2.4.4. Non-diffusive inequalities. We will use the previous formalism to deduce func-
tional inequalities and quantitative limit theorems. Recall that the spectral gap in-
equality Theorem 2.2.1.3 was obtained from the chaotic decomposition only and thus
also holds here. We obtain the following modified logarithmic Sobolev inequality
(see [152, Thm 1.1]). Consider the convex function ϕ(x) = x log x for x ≥ 0. Re-
call that the entropy functional is defined for a positive random variable as H(F ) =
Eϕ(F )− ϕ(EF ).

Theorem 2.4.4.1 (Modified logarithmic Sobolev inequality). Assume that L 2(W) has a
chaotic decomposition and a Fock space. If the Malliavin gradient D has a transitive action,
then, for all F ∈ DomD with F > 0, we have

(2.4.4.1) H(F ) ≤ E
ˆ
C2

z (D
+
z ϕ(F )− ϕ′(F )D+

z F )ν(dz).

Moreover, if D is a difference operator the conclusion of the theorem holds with D+ = D and
C = 1.

Proof. The proof follows the lines of [31, Thm 5.1]. Since, by Theorem 2.4.2.4, DomΓ =
Dom E , the computations carried out at the beginning of the proof of Theorem 2.2.2.1
are valid and we can start from (2.2.2.22), that is:

(2.4.4.2) H(F ) =

ˆ ∞

0

EΓ0(ϕ
′(PtF ), PtF ).

Since D has a transitive action, we obtain that, for all t ≥ 0,

Γ0(ϕ
′(PtF ), PtF ) =

ˆ
C2

z (ϕ
′(PtF +D+

z PtF )− ϕ′(PtF ))D
+
z PtFν(dz)

=

ˆ
C2

zψ(PtF, e
−t PtDzF )ν(dz),

(2.4.4.3)

where ψ(u, v) = v(ϕ′(u+ v)− ϕ′(u)) is convex. By Jensen’s inequality, we find that

(2.4.4.4) Γ0(ϕ
′(PtF ), PtF ) ≤ Pt

ˆ
C2

zψ(F, e
−tD+

z F )ν(dz), ∀t ≥ 0.

Observe that

(2.4.4.5)
ˆ ∞

0

e−t ϕ′(F + e−t tD+
z F )dt =

D+
z ϕ(F )

D+
z F

.

By invariance of the semi-group, this yields the desired conclusion for transitive ac-
tions by integrating (2.4.4.4) with respect to E. Again, the generalization to difference
operator is easily obtained.

We now turn to inequalities involving the law of random variables. Namely, we
want to establish a Stein inequality in this non-diffusive setting. As we will see, we
obtain a result similar to Theorem 2.2.3.1 up to a remainder term. Recall that we
work with the symmetrized matrix-valued carré du champ, that is whenever F =
(F1, . . . , Fd1) ∈ DomΓ and G = (G1, . . . , Gd2) ∈ DomΓ, we write Γ(F,G) for the ran-
dom symmetric matrix whose coefficient (i, j) ∈ [d1]× [d2] is given by

(2.4.4.6)
1

2
(Γ(Fi, Gj) + Γ(Fj, Gi)).
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We adopt a similar convention for Γ0. We define for F = (F1, . . . , Fd1) ∈ L 2(W)
centered and G = (G1, . . . , Gd2) ∈ DomD:

(2.4.4.7) S0(F,G) = −Γ0(L
−1F,G).

In the setting of transitive actions, recall that we have defined the Stein kernel, for such
F and G, by

(2.4.4.8) S(F,G) = −Γ(L−1F,G).

Remark that since L−1F ∈ DomD2 ⊂ DomD, no further assumptions are needed on
F . For such F and G, we have the following integration by parts

(2.4.4.9) EF TG = ES0(F,G) = ES(F,G).

As usual, we write S(F ) = S(F, F ) and S0(F ) = S0(F, F ). In the setting of transitive
actions, we write,

(2.4.4.10) ϵ(F ) =
d∑

i,j,k=1

E
ˆ
C2

z |D+
z L

−1Fi||D+
z Fj||D+

z Fk|ν(dz), F ∈ L 0(W).

If D is a difference operator, we use the same notation with C = 1 and D+ = D.
Remark that this quantity is well-defined, though potentially infinite, for all random
variables F . We recall that d2 designates a distance introduced in Section 1.1 and
that d2 induces a topology stronger than the one of the convergence in law. We ob-
tain the following Stein inequality in a discrete setting. To my knowledge, this is the
first quantitative bounds measuring the distance between the law of a functional of
a generic non-diffusive probabilistic object and a multivariate Gaussian law in any
dimension. The only two other references, we are aware of, where convergence of
multivariate functionals in a non-diffusive setting is considered are [41] for the Pois-
son space and G. ZHENG (2017) [153] for the Rademacher space and the authors do
not provide bounds for general functionals.

Theorem 2.4.4.2 (Stein inequality). Suppose that L 2(W) has a chaotic decomposition and a
Fock space. Assume that the Malliavin derivative D is a difference operator or has a transitive
action, then there exists c > 0, such that, for all F ∈ DomD such that EF = 0 and S(F ) ∈
L 2(W), with C = EF TF ,
(2.4.4.11)

d2(law(F ),N(0, C)) ≤ c
√
d(|C−1|op|C|

1
2
op

√
E|S0(F )− σ2|2ℓ2 + |C− 3

2 |op|C|
1
2
opϵ(F )).

If D has a transitive action, then
(2.4.4.12)

d2(law(F ),N(0, C)) ≤ c
√
d(|C−1|op|C|

1
2
op

√
E|S(F )− σ2|2ℓ2 + |C− 3

2 |op|C|
1
2
opϵ(F )).

Proof. The proof is very similar to Theorem 2.3.3.5. As the content is essentially new at
this level of generality, we give a complete proof. We start by proving the claim for S0.
Assume F ∈ A . Let ϕ ∈ C 2(R). By the integration by parts (2.4.4.9) and the pseudo-
chain rule Lemma 2.4.3.1 (these operations are justified in view of the properties of
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A ), we have that

E⟨F,∇ϕ(F )⟩ℓ2 =
d∑

i=1

EΓ(L−1Fi, ∂iϕ(F ))

= ⟨∇2ϕ(F ), S0(F )⟩ℓ2 +
d∑

i=1

R+
∂iϕ

(F,L−1Fi).

(2.4.4.13)

It follows that

E⟨F,∇ϕ(F )⟩ℓ2 − E⟨C,∇2ϕ(F )⟩ℓ2 = E⟨∇2ϕ(F ), (S0(F )− C)⟩ℓ2 +
d∑

i=1

R+
∂iϕ

(F,L−1Fi).

(2.4.4.14)

Observe that, by the Cauchy-Schwarz inequality, on the one hand we have that

(2.4.4.15) |E⟨∇2ϕ(F ), S0(F )− C⟩ℓ2| ≤ |∇2ϕ|ℓ2,∞E|S0(F )− C|ℓ2 ,

and on the other hand we have that

(2.4.4.16)

⏐⏐⏐⏐⏐
d∑

i=1

R+
∂iϕ

(F,L−1Fi)

⏐⏐⏐⏐⏐ ≤
d∑

i,j,k=1

|∂ijkϕ|∞
ˆ

|D+
z L

−1Fi||D+
z Fj||D+

z Fk|ν(dz).

We use Theorem 1.1.3.2 to conclude.
In the case of transitive actions, if we work with S rather than S0, the quantity R+

has to be replaced with R. Let η the Campbell measure associated to the action, by
(2.4.2.21), we obtain that

(2.4.4.17)

⏐⏐⏐⏐⏐E
d∑

i=1

R∂iϕ(F,L
−1F )

⏐⏐⏐⏐⏐ ≤ |∇3ϕ|ℓ2,∞ϵ(F ).

Then, we conclude as before.

The main interest of working with S rather than with S0 is that it behaves well with
respect to the stochastic decomposition and hence we can hope for a simplification of
the E|S(F )− C|2ℓ2 as in Theorem 2.2.3.2. We say that L 2(W) has a transitive discrete Itô
structure if it has an Itô structure (that is, chaotic decomposition with Fock space and
polynomial chaoses) and if the associated Malliavin derivative is representable by a
transitive action, and we say that it has a pure Itô structure if, moreover, the Malliavin
derivative is pure. For short, let us write

(2.4.4.18) ∆(F ) = E
ˆ
C2

z

(
D+

z F
)4
ν(dz), F ∈ L 0(W).

The quantity ∆(F ) is well-defined (though potentially infinite) for all random vari-
ables F . Also recall that for F ∈ L 4(W), we write M(F ) = EF 4 − 3(EF 2)

2 and we
write M̃(F ) = M(F ) + ∆(F ). Generally, we can obtain the following fourth moment
theorem with remainder (compare to Theorem 2.2.3.2). This theorem, was essentially
obtained, in a Poisson setting, in [41] via exchangeable pairs techniques rather than
the Stein method.
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Theorem 2.4.4.3. Assume L 2(W) has a transitive discrete Itô structure. Let (p1, . . . , pd) ∈
Nd

>0. There exists c > 0, such that for all F = (F1, . . . , Fd) with Fi ∈ Cpi ∩ L 4(W), we have
that

E|S(F )− EF TF |2HS ≤ c

d∑
i

M̃(Fi) + c

d∑
i,j=1
pj<pi

(
EF 4

i

) 1
2 M̃(Fj)

1
2

+ c

d∑
i,j=1
i ̸=j

pi=pj

(
M̃(Fi)

1
2 M̃(Fj)

1
2 +

[
EJ2piF 2

j J2piF
2
i − 2(EFiFj)

2]
+

)
.

(2.4.4.19)

(2.4.4.20) ϵ(F ) ≤

(
d∑

i=1

(
EF 2

i

pi

))( d∑
i=1

∆(Fi)
1
4

)2

Remark 8. Observe that, contrary to Theorem 2.2.3.2 (diffusive fourth moment theo-
rem), even in dimension 1, the convergence of the fourth moment alone does not allow
to recover convergence in law to a Gaussian. We also have to ensure that the quartic re-
mainder expressed by the quantity involving ∆ vanishes. The fact that ∆(F ) vanishes
when F is a stochastic integral and M(F ) = 0 depends on the covariance structure of
stochastic integrals, that is it depends on the bosonic constants (see Theorem 2.4.4.6).

Proof. By the Cauchy-Schwarz inequality,

(2.4.4.21) ϵ(F ) ≤
d∑

i=1

(
1

pi
ES(Fi)

)2
(

d∑
j=1

(
E
ˆ
C2

z (D
+
z Fj)

4
ν(dz)

)1/4
)2

.

As before we have that

(2.4.4.22) E|S(F )− EF TF |2ℓ2 =
d∑

i,j=1

(
1

pi
+

1

pj

)
Var(Γ(Fi, Fj)).

On the account of the two previous relations, we will prove the theorem by bounding
the quantity Var(Γ(Fi, Fj)) for all i and j ∈ [d]. Let us first prove the following lemma
(compare to Lemma 2.2.3.3 obtained in a diffusive setting). Note that obtaining such
lemma is at the heart of the proof of the proof of the fourth moment theorem on the
Poisson space (see, for instance [40, Lemmas 3.1 & 3.2]).

Lemma 2.4.4.4. For all p ∈ N and G ∈ Cp ∩ L 4(W), we have that

(2.4.4.23) Var(S(G)) ≤ c
(
EG4 − 3

(
EG2

)2
+∆(G)

)
.

Proof. Let p ∈ N and G ∈ Cp ∩ L 4(W). Since polynomials in G will have finite chaotic
decomposition all the following are justified. By integration by parts (2.2.2.15) and the
fact that LG = −pG, we have that

(2.4.4.24) EG4 = −1

p
EG3LG =

1

p
EΓ(G3, G).
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Using (2.4.3.2) with ϕ(x) = x3 and using the binomial formula, we see that

2EΓ(G3, G) = E
ˆ
C2

z

((
D+

z G
)4

+ 3G2
(
D+

z G
)2

+ 3G
(
D+

z G
)3)

ν(dz)

+ E
ˆ
C̃2

z

((
D−

z G
)4

+ 3G2
(
D−

z G
)2 − 3G

(
D−

z G
)3)

η(dz).

(2.4.4.25)

Applying (2.4.2.21) to the last term in the second integral makes that the last term of
each integral will sum up to

(2.4.4.26) −3E
ˆ
C2

z

(
D+

z G
)4
ν(dz).

Thus, we find

(2.4.4.27) EΓ(G3, G) = 3EG2Γ(G)− 1

2
E
ˆ
C2

z

(
D+

z G
)4
ν(dz).

Observe that

(2.4.4.28) Γ(G) =

(
1

2
L+ p

)
G2 = pEG2 +

2p∑
q=1

(
p− q

2

)
JqG

2.

By orthogonality of the chaotic decomposition, we obtain that

(2.4.4.29) EG2Γ(G) = p
(
EG2

)2
+

2p∑
q=1

(
p− q

2

)
E
[(
JqG

2
)2]

.

By definition of L and Γ, we find that

(2.4.4.30) Var(pS(G)) = E
(
Γ(G)− pEG2

)2
=

2p∑
q=1

(
p− q

2

)2
E
[(
JqG

2
)2]

.

Finally, we have that

Var(pS(G)) ≤
(
p− 1

2

)
(EG2Γ(G)− p(EG2)

2
)

=

(
p− 1

2

)(
p

3
EG4 − p(EG2)

2
+

1

6
∆(G)

)
.

(2.4.4.31)

This concludes the proof of Lemma 2.4.4.4.

The following lemma is the discrete counterpart of Lemma 2.2.3.4.

Lemma 2.4.4.5. Let q and p ∈ N, F ∈ Cp ∩ L 4(W) and G ∈ Cq ∩ L 4(W), we have that
(2.4.4.32)

Var(Γ(F,G)) ≤ c

(
E
[
F 2
(
qG2 − Γ(G)

)]
− 2q(EFG)2 + E

ˆ
C2

z (D
+
z F )

2
(D+

z G)
2
ν(dz)

)
,

with c = p+q−1
4

.
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Proof. We assume moreover that F and G ∈ A . As in the diffusive case, we write

(2.4.4.33) EF 2G2 =
1

q
EΓ(F 2G,G) =

1

q
EF 2Γ(G) +

1

q
EGΓ(F 2, G).

The second inequality follows from the following observation (already made in the
proof of Theorem 2.4.2.4) that the Dirichlet energy acts as a derivation. Indeed, by
(2.4.2.5) and (2.4.2.6)

EΓ(AB,C) = EAΓ(B,C) + EBΓ(A,C)

+
1

2

ˆ
C2

zD
+
z AD

+
z BD

+
z Cν(dz)−

1

2

ˆ
C̃2

zD
−
z AD

−
z BD

−
z Cη(dz).

(2.4.4.34)

And the two last terms cancel out provided we can apply (2.4.2.21) (this is the case if
A, B and C ∈ A ). A similar argument yields

EGΓ(F 2, G) = 2EFGΓ(F,G)

+
1

2
E
ˆ
G(D+

z F )
2
D+

z Gν(dz)−
1

2
E
ˆ
G(D−

z F )
2
D−

z Gη(dz)

= 2EFGΓ(F,G)− 1

2
E
ˆ

(D+
z F )

2
(D+

z G)
2
ν(dz).

(2.4.4.35)

Eventually, we proved that

(2.4.4.36) EF 2G2 =
2

q
EFGΓ(F,G) +

1

q
EF 2Γ(G)− 1

2q
E
ˆ

(D+
z F )

2
(D+

z G)
2
ν(dz).

By writing the chaotic decomposition and the previous relation, we obtain

Var(Γ(F,G)) =
p+q∑
k=1

(
p+ q − k

2

)2

E
[
(JkFG)

2]
≤ p+ q − 1

2

(
EFGΓ(F,G)− q(EFG)2

)
=
p+ q − 1

2

(
q

2
EF 2G2 − 1

2
EF 2Γ(G)− q(EFG)2 + E

ˆ
(D+

z F )
2
(D+

z G)
2

)
.

(2.4.4.37)

This proves Lemma 2.4.4.5.

It suffices to bound, by the Cauchy-Schwarz inequality,

(2.4.4.38) E
ˆ

(D+
z F )

2
(D+

z G)
2
ν(dz) ≤

√
∆(F )

√
∆(G),

and the end of the proof is the same as the one of Theorem 2.2.3.2.

The following theorem asserts that if L 2(W) has a pure Itô structure, then we can
simplify the previous expressions thanks to the product formula. Again the bosonic
constants (λq) that appear when computing the covariance of stochastic integrals will
play a role. As before, we write, for F ∈ L 4 and c ∈ R, Mc(F ) = EF 4 − c(EF 2)

2.
This is the first multivariate quantitative bound in the Monge-Kantorovich-Rubinstein
distance in a non-diffusive setting (compare to [41, Thm 1.7]).
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Theorem 2.4.4.6. Assume L 2(W) has a pure Itô structure. Let (λq) be the bosonic constants
associated with L 2(W) (that exists thanks to Lemma 2.4.2.1). Let (p1, . . . , pd) ∈ Nd

>0. There
exists c > 0, such that for all F = (F1, . . . , Fd) with Fi ∈ Cpi ∩ L 4(W), we have that, with
cq = 1 + 2λ2q

λ2
q

, for all q ∈ N

E|S(F )− EF TF |2HS ≤ c
d∑
i

M(Fi) +Mci(Fi) + c
d∑

i,j=1
pj<pi

(
EF 4

i

) 1
2
(
M(Fj) +Mcj(Fj)

) 1
2

+ c
d∑

i,j=1
i ̸=j

pi=pj

(
(M(Fi) +Mci(Fi))

1
2
(
M(Fj) +Mcj(Fj)

) 1
2

)

+ c
d∑

i,j=1
i ̸=j

pi=pj

(
Mcpi

(Fi)
1
2Mcpi

(Fj)
1
2 +

λ2pi − λ2pi
λpi

EFiEFj

)
.

(2.4.4.39)

Remark 9. Contrary to the diffusive case (Theorem 2.3.3.5) the bosonic constants play
a role even in dimension d = 1.

Proof. We start from the bound obtained in Theorem 2.4.4.3. The bound on

(2.4.4.40)
[
EJ2piF 2

j J2piF
2
i − 2(EFiFj)

2]
+
, i ̸= j, pi = pj,

is obtained as in the proof of Theorem 2.3.3.5.
Hence, it is sufficient to show that

(2.4.4.41)
∆(F ) ≤ c

(
EF 4 − cq

(
EF 2

)2)
+ c
(
EF 4 − 3

(
EF 2

)2)
, for all p ∈ N, F ∈ Cp ∩ L 4(W).

Let p ∈ N and F = Ip(h) ∈ Cp ∩ L 4(W). From Lemma 2.4.2.1, we know that J2pF 2 =
I2p(h⊙ h). Hence, we conclude that

(2.4.4.42) EF 4 − EF 2 = Var(F 2) =

2p−1∑
q=1

E
[(
JqF

2
)2]

+ λ2q|h⊙ h|2H ⊙2p .

It is a algebraic fact of tensor calculus (see for instance [111, Eq 5.2.12]) that

(2.4.4.43) |h⊙ h|2H ⊙2p ≥ 2|h|4H ⊙p = 2
(
EF 2

)2
.

In particular, we find that

(2.4.4.44)
2p−1∑
q=1

E
[(
JqF

2
)2] ≤ EF 4 − cq

(
EF 2

)2
.
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From the proof of Theorem 2.4.4.3, we know that

1

2
E
ˆ

(D+
z F )

4
ν(dz) = 3EF 2Γ(F )− pEF 4

≤ p
(
3
(
EF 2

)2 − EF 4
)
+ 3

2p−1∑
q=1

(
p− q

2

)
E
[(
JqF

2
)2]

≤ p
(
3
(
EF 2

)2 − EF 4
)
+ 3

(
p− 1

2

) 2p−1∑
q=1

E
[(
JqF

2
)2]

(2.4.4.45)

Combining the two last equations, we obtain (2.4.4.41) and this concludes the proof.

2.5. AN HISTORICAL INTERLUDE

Outline. We first present the historical and canonical setting of the diffusive Itô struc-
ture yielded by isonormal Gaussian processes. This section is only present in order
for the reader to get acquainted with the abstract notions introduced in the previous
sections. None of the results presented here are original.

2.5.1. Isonormal Gaussian processes. Let (Gn)n∈N be a sequence of independent and
identically distributed (real) normal random variables. The Gauss space G is the L 2(Ω)-
closure of the linear span of the Gi’s. The space G is a separable Hilbert sub-space of
L 2(Ω) that only contains Gaussian random variables. Let H be a separable Hilbert
space. An isonormal Gaussian process over H is any isometric embedding W : H → G .
We write W for the σ-algebra generated by W and L 2(W) = L 2(Ω,W,P). The goal of
this section is to show that, with the notions introduce before, L 2(W) has a diffusive
Itô structure, thus yielding immediately all the results mentioned in Section 2.2.

Example 2.5.1.1 (Gaussian vector). If H is Rd with the scalar product induced by a
symmetric positive definite matrix A, we let X be the centered Gaussian vector with
covariance A. Then for all h ∈ H , W (h) = ⟨h,X⟩ℓ2 .

Example 2.5.1.2 (Reproducing kernel). We consider a continuous centered Gaussian
processX = (Xt)t∈[0,1] such that EX2

1 = 1. For s and t ∈ [0, 1], we writeR(s, t) = EXsXt

for the covariance function and we assume that R is continuous. We let

(2.5.1.1) Rt = R(t, ·) = [0, 1] ∋ s ↦→ R(s, t), for all t ∈ [0, 1].

By the property of the covariance kernel, the operator T : L 2(0, 1) → L 2(0, 1) defined
by

(2.5.1.2) (Tϕ)(s) =

ˆ
R(s, t)ϕ(t)dt, for all s ∈ [0, 1],

is Hilbert-Schmidt. By Mercer’s theorem [43, XI.8.50.E.58 p. 1008], it admits an or-
thogonal basis of continuous eigenfunctions (ei)i∈N associated with a sequence of non-
negative eigenvalues (λi)i∈N and we have that

(2.5.1.3) R(t, s) =
∑
i∈N

λiei(t)ei(s), t, s ∈ [0, 1],
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where the series converges uniformly. So that,

(2.5.1.4) Rt =
∑
i∈M

λiei(t)ei, t ∈ [0, 1].

We consider

(2.5.1.5) H =

{
f ∈ L 2(0, 1), such that

∑
i∈N

(f · ei)2

λi
<∞

}
,

where · is the standard scalar product on L 2(0, 1). The space H is a Hilbert space
when endowed with the scalar product

(2.5.1.6) ⟨f, g⟩H =
∑
i∈N

(f · ei)(g · ei)
λi

.

Observe that we have

(2.5.1.7) ⟨Rt, Rs⟩H = R(s, t), t, s ∈ [0, 1].

and that for h continuous

(2.5.1.8) ⟨Rt, h⟩ = h(t), t ∈ [0, 1].

We considerW an isonormal Gaussian process over H , then we have that {W (Rt); t ∈
[0, 1]} is a Gaussian process with covariance function R. This isonormal Gaussian
process is called the reproducing kernel representation of X .

Example 2.5.1.3 (Covariance kernel). Consider a centered Gaussian process X with
covariance function R(t, s) = EXtXs. We consider H the closure of the linear span of
the functions of the form Rt = 1[0,t] for t ∈ [0, 1] under the scalar product

(2.5.1.9) ⟨Rs, Rt⟩H = R(s, t), s, t ∈ [0, 1].

We let W be an isonormal Gaussian process over the Hilbert space H . Then, the pro-
cess {W (Rt); t ∈ [0, 1]} is a Gaussian process with covariance R called the covariance
representation of X . Contrary to the previous example, this method works without any
assumptions on the continuity of X or of its covariance kernel. Nonetheless, it is a
priori not clear that the Hilbert space H is contained in a space of functions (and it is,
in general, not see [129]).

Example 2.5.1.4 (Stationary Gaussian field). We consider a centered stationary real-
valued Gaussian field X = (Xx)x∈Rd with EX2

0 = 1. For x and y ∈ Rd, we consider
its covariance kernel R(x, y) = EXxXy and assume it is continuous. Recall that sta-
tionary means that there exists function R̃ such that R(x, y) = R̃(x − y). Being a co-
variance function, the function R̃ is non-negative definite and, since the process X is
real-valued, R̃ is symmetric. It is then a consequence of a theorem of S. BOCHNER
(1933) [22] that there exists a symmetric probability measure ν̄ on Rd such that

(2.5.1.10) R̃(x) =

ˆ
ei2πλ·x ν̄(dλ), x ∈ Rd.
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From the symmetry, we can find a probability measure ν on R+ × Rd−1 such that

(2.5.1.11) R̃(x) =

ˆ
cos(2πλ · x)ν(dλ), x ∈ Rd.

If we consider two independent isonormal Gaussian processes Wre and Wim over the
separable Hilbert space L 2(ν), we find that the random function

(2.5.1.12) F : Rd ∋ x ↦→ Wre(cos(2π⟨·, x⟩)) +Wim(sin(2π⟨·, x⟩)),

is a centered Gaussian field with same covariance as X . The function F is called the
spectral representation of the stationary field X .

Example 2.5.1.5 (Gaussian processes with stationary increments). We consider a cen-
tered continuous Gaussian process X = (Xt)t∈R+

with stationary increments such that
X0 = 0 and the covariance function R is continuous. Recall that the stationary incre-
ments means that:

(2.5.1.13) R(s, t) = EXsXt = E(Xs+τ −Xτ )(Xt+τ −Xτ ), for all s, t, τ ∈ R+.

A. N. KOLMOGOROV (1940) [73] (see [74, Paper 42]) gave a spectral representation of
the covariance function R in this case. Namely, we have that there exists a symmetric
measure ν̄ on R such that

(2.5.1.14)
ˆ

(u2 ∧ 1)ν̄(du) <∞,

and

(2.5.1.15) R(s, t) =

ˆ ∞

−∞
(eius −1)(e−iut −1)ν̄(du), s, t ∈ R+.

Again from the symmetry properties of ν̄ we can find a measure ν on R+ satisfying

(2.5.1.16)
ˆ
R+

(u2 ∧ 1)ν(du) <∞

and such that

(2.5.1.17) R(s, t) =

ˆ ∞

0

(cos(u(s− t))− cos(ut)− cos(us) + 1)ν(du), s, t ∈ R+.

Hence taking, as before, two independent isonormal Gaussian processes Wre and Wim

over the separable Hilbert space L 2(ν) yields to the spectral representation of the process
with stationary increments X given by

(2.5.1.18) [0, 1] ∋ t ↦→ Wre(cos(t·)− 1) +Wim(sin(t·)).

For the rest of the section, we fix a separable real Hilbert space H and an isonormal
Gaussian process W over H and {hi}i∈N is an Hilbert basis. We let W = σ(W ). The
goal of this section is to show that L 2(W) has a diffusive Itô structure. Isonormal
Gaussian processes form the canonical example of such Itô structures and we give a
rather detailed construction.
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2.5.2. Hermite chaos. Hermite polynomials play an important role in many areas of
mathematics and among the many ways of introducing them, they can be defined
recursively by

(2.5.2.1) H0 = 1 and Hq+1 = XHq −H ′
q.

From this recursion, we deduce two crucial properties of the Hermite polynomials:

(i) For q ∈ N, Hq solves the two linear differential equations

H ′′
q −XH ′

q = −qHq;(2.5.2.2)

H ′
q = qHq−1.(2.5.2.3)

(ii) For p and q ∈ N,

(2.5.2.4) HpHq =

p∧q∑
r=0

(
q

r

)(
p

r

)
r!Hp+q−2r.

Let d ∈ N and Rd[X] the space of real polynomials of degree d. The operator

(2.5.2.5) Rd[X] ∋ P ↦→ P ′′ −XP ′ ∈ Rd[X],

is symmetric positive and definite in L 2(γ), where γ is the normal law. From (2.5.2.2),
we deduce that {Hq}q≤d is complete orthogonal system of Rd[X] in L 2(γ). From (2.5.2.4),
we deduce that, with eq = q!−1/2Hq, {eq}q≤d is in fact an Hilbert basis. By approxima-
tion, the renormalized Hermite polynomials {eq}q∈N form an Hilbert basis of L 2(γ).
By a direct computation, we obtain the decomposition

(2.5.2.6) ext−t2/2 =
∑
q∈N

tq

q!
Hq(x).

From (2.5.2.3) and a Taylor expansion, we have the following binomial formula for
Hermite polynomials

(2.5.2.7) Hq(x+ y) = 2−q/2

q∑
k=0

Hk(
√
2x)Hq−k(

√
2y).

We define the associated Wiener chaos Cq as the closure of the linear span of {Hq(W (h))}
for h ∈ H and |h| = 1. Plainly, C1 = G contains only Gaussian random variables
and C0 is the space of constants. A multivariate Hermite polynomial of degree q is a
polynomial H in several variable of the form H = Hq1 ⊗ · · · ⊗ Hql with

∑
qi = q.

Thanks to (2.5.2.7), we have an alternative definition of Cq as the closure of the space of
functions of the formH(W (hi1), . . . ,W (hil)) forH a multi-variate Hermite polynomial
of degree q and i1, . . . , il ∈ N. We also have this well-known result. For h ∈ H , we
write

(2.5.2.8) E(h) = exp

(
W (h)− |h|2

2

)
∈ L 2(W).

Lemma 2.5.2.1. The system E = {E(h)}h∈H is total in L 2(W).
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Proof. Take Fm = ϕ(W (h1), . . . ,W (hm)) in the orthogonal of E . Then with h =
∑
λihi,

computing EF exp(h), we see that the Laplace transform of ϕ is 0. As a consequence
of the martingale convergence theorem, every F ∈ L 2(W) can be approximated by a
sequence of the form Fm with m → ∞. Finally, the orthogonal of E in L 2(W) is {0}
and this shows the announced density.

Theorem 2.5.2.2. We have the chaotic decomposition

(2.5.2.9) L 2(W) =
⨁
q∈N

Cq.

Proof. The fact the Cq are mutually orthogonal comes from the fact that the Hermite
polynomials form an orthogonal family of L 2(γ) and each of the W (h), h ∈ H , is
indeed Gaussian. Let C = ⊕Cq. By (2.5.2.6), the closure C contains the system E .
Thus, C is dense by Lemma 2.5.2.1.

2.5.3. Stochastic integrals and Malliavin gradient. We now introduce Itô stochastic
integrals. Roughly speaking, they provide an orthogonal basis of Cq. Thinking of Cq

as the space of multi-variate Hermite polynomials of degree q evaluated at a Gaussian
vector, it is then very natural to use multi-variate Hermite polynomials. The formal
construction is carried out below. Recall that {hi}i∈N is a Hilbert basis of H . By multi-
index, we mean a sequence of integers that have only finitely many non-zero terms.
For a multi-index q, we write |q| =

∑
qi and q! =

∏
qi!. Let q be a multi-index and hq

be the element of H ⊙|q| obtained by symmetrization of ⊗∞
i=1h

⊗qi
i . For p = |q|, we define

(2.5.3.1) Ip(hq) =
∞∏
i=1

Hqi(W (hi)).

Theorem 2.5.3.1. The map Ip can be extended to a Hilbert isomorphism Ip : H ⊙p → Cp and
the maps (Ip)p∈N give the Fock space representation for L 2(W) over the bosonic Fock space
H ⊙.

Proof. We set p ∈ N. The family {p!−
1
2hq; q ∈ NN, |q| = p} is a Hilbert basis of H ⊙p.

Since the linear space Cp contains Ip(hq), we can extend Ip by linearity. We have to
show that Ip = {Ip(p!−

1
2hq); q ∈ NN, |q| = p} is a Hilbert basis of Cp. From the product

formula (2.5.2.4), we get that

(2.5.3.2) E(Hr(N)Hr(N
′)) = r!(ENN ′)

r
1r=r′ , r, r′ ∈ N.

for N and N ′ jointly Gaussian, centered and of unit variance. This yields

(2.5.3.3) EIp
(
p−

1
2hq

)
Ip

(
p−

1
2hq′

)
= 1q=q′ , q, q′ ∈ NN, |q| = |q′| = p.

To show that Ip is total, we pick F in the orthogonal of Ip in Cp. By definition of
Cp, F = Hp(W (h)) for some h ∈ H . Writing the coordinates of h in the Hilbert basis
{hi}i∈N, we have that h = h̃+ t1h1, with h̃ =

∑
i≥2 tihi. By definition of the orthogonal

and (2.5.3.2), we have that

(2.5.3.4) 0 = EFIp(h⊗p
1 ) = t1.

By recursion, we show that h = 0.
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As a consequence of (2.5.2.4), we obtain that if p and q ∈ N, h ∈ H ⊙p and h̃ ∈ H ⊙q,
then,

(2.5.3.5) Ip(h)Iq(h̃) =

p∧q∑
r=0

(
p

r

)(
q

r

)
r!Ip+q−2r(h⊗r h̃),

where h ⊗r h̃ ∈ H ⊗p+q−2r is defined in [111, Appendix B.4] but whose explicit ex-
pression is irrelevant here. Remark that in the previous formula, we do not need to
assume that Ip(h)Iq(h̃) ∈ L 4(W). Indeed, it is automatically the case due to Meyer’s
inequalities (see [111, Thm 2.5.5]), that are a consequence of hypercontractivity. Thus,
the space L 2(W) also have polynomial chaoses. Also, as already observed in the pre-
vious proof,

(2.5.3.6) EIp(h)Iq(h̃) = q!⟨h, h̃⟩H ⊗q1p=q.

From the relation (2.5.2.3) and (2.5.3.1), we deduce that

(2.5.3.7) DIp(hq) =
∞∑
j=1

∞∏
i=1

Hj
qi
(W (hi))hj, p ∈ N, q ∈ NN, |q| = p,

where Hj
qi

= H ′
qi
1j=i + Hqi1i ̸=j . Hence, by approximation we deduce that if ϕ is

smooth with bounded derivatives and F = (F1, . . . , Fd) where Fi ∈ DomD, then
ϕ(F ) ∈ DomD and

(2.5.3.8) Dϕ(F ) =
d∑

i=1

∂iϕ(F )DFi.

Thus, the Malliavin derivative D satisfies the chain rule or, equivalently it is a deriva-
tion (see Section 2.3.3). Ultimately, we proved that L 2(W) has a diffusive Itô structure
and that it supports the bosonic Fock space (in particular we have ci = 3 for all i ∈ [d]
in Theorem 2.3.3.5).

2.6. A TOY EXAMPLE: THE HYPERCUBE

Let us explore further the concepts introduced before with a simple non-diffusive
example. Note that we purposely choose to present the stochastic analysis on the hy-
percube from the point of view of the heavier formalism of random measures. In this
way, the presentation of this section is closer to the one of Section 2.7 about stochas-
tic analysis for point processes and helps us to put the two approaches in a common
framework. We consider a sequence (pk)k∈N of real number in (0, 1) and a family of
independent random variables e = (ek)k∈N such that, for k ∈ N,

(2.6.1) ek =

⎧⎪⎨⎪⎩e
+
k =

(
1−pk
pk

)1/2
, with probability pk;

e−k = −
(

pk
1−pk

)1/2
, with probability 1− pk.

Note that, for all k ∈ N, Eek = 0 and Ee2k = 1. The law of e can be regarded as a
normalized version of the probability measure on the cube {−1,+1}∞ given by

(2.6.2) m =
⨂
k∈N

(pkδ1 + (1− pk)δ−1).
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We let W = σ(e) and we will show that L 2(W) has a transitive discrete Itô structure.
We will make this statement more precise soon but we first prepare some notation. We
consider the normalized hypercube:

(2.6.3) E =×
k

{e−k , e
+
k }.

Let k ∈ N. For x ∈ E, we write Tkx for the vector x whose k-th coordinate is shifted
(that is, (Tkx)k = e−k if xk = e+k and conversely) and whose other coordinates are
left unchanged, and we also write ck(x) = −(pk(1− pk))

1/2sign(xk). Note that, for all
k ∈ N, the map Tk : E → E is a bijection and is its own inverse. We also consider the
two random measures µ and η on N defined by

µ =
∑
k∈N

ekδk;(2.6.4)

η =
∑
k∈N

e2kδk.(2.6.5)

The measure µ is signed with vanishing expectation, while η is non-negative with
expectation given by ν, the counting measure on N. For q ∈ N, the factorial measure of
µ is the measure on Nq defined by

(2.6.6) µ(q) =

̸=∑
k1,...,kq

ek1 . . . ekqδk1...kq ,

where the superscript ̸= indicates that the summation is over q-tuples of pairwise dif-
ferent indices. We write H = l2(N) = L 2(N, 2N, ν) where ν is the counting measure.
For q ∈ N, we let H ◦q be the sub Hilbert space of functions h ∈ H ⊙q that vanish on
the diagonal, that is hi1...iq = 0, whenever there exists l and l′ distinct elements of [q]
such that il = il′ . It is clear that H ◦ = ⊕q∈NH ◦q is an abstract Fock space in the sense
of Section 2.3. In fact, H ◦ is the vanishing Fock space associated with H presented
in Example 2.3.1.3. We let

(2.6.7) Iq(h) = µ(q)(h) =

̸=∑
k1...kq

hk1...kqek1 . . . ekq , q ∈ N, h ∈ H ◦q.

With this notation we can state the main result of this section.

Theorem 2.6.1. The space L 2(W) has a transitive discrete Itô structure with a Fock space
based on H ◦, stochastic integral maps given by (Iq)q∈N and a Malliavin derivative D with
transitive action map T and with mixing map c, that is, for all k ∈ N and F ∈ DomD with
representative f , we have that

(2.6.8) DkF = −(pk(1− pk))
1/2sign(ek)(f(Tke)− f(e)).

The Campbell measure associated with this action is given by η, as defined in (2.6.5).

Remark 10. As N is, as usual, endowed with the its discrete σ-algebra the representa-
tive is in fact unique and so the definition of the derivative obviously does not depend
on the representative.
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In view of the analysis of Section 2.4.3, we obtain as corollaries the following two
results. We start with a modified logarithmic Sobolev inequality for the weighted
hypercube. As the logarithmic Sobolev inequality is rather geometrical, we state our
inequality on {−1,+1}∞ rather than E. The inequality seems new, and when all the pk
are taken equal this we recover an inequality of S. G. BOBKOV & M. LEDOUX (1998)
[18]. Let us first introduce some notations. For f : {−1,+1}∞ → R and k ∈ N, we write
dkf(x) = f(−x) − f(x). Recall that we have defined the measure m in (2.6.2). We let
ϕ(x) = x log x (x ∈ R+), and if f ≥ 0 we write,

(2.6.9) Entm(f) = m(ϕ(f))− ϕ(m(f)).

Finally, we have that.

Theorem 2.6.2. Let f : {−1,+1}∞ → R+ and let m be the measure defined in (2.6.2). Then,

(2.6.10) Entm(f) ≤
∑
k∈N

pk(1− pk)m(dkϕ(f)− ϕ′(f)dkf).

In particular, we have that

(2.6.11) Entm(f) ≤
∑
k∈N

pk(1− pk)m

(
|dkf |2

f

)
.

Remark 11. When there exists p ∈ (0, 1) such that pk = p for all k ∈ N, (2.6.11) was
derived in [18, Theorem 1].

Proof. Let S : {−1, 1}∞ → E be the bijection that pairs, for all k ∈ N, 1 and e+k . There
exists a function g : E → R+ such that f = g ◦S. Let G = g(e). Since for k ∈ N, we have
that C2

k = pk(1− pk), by Theorem 2.6.1, we can invoke Theorem 2.4.4.1 that asserts that

(2.6.12)
Entm(f) = H(G) ≤

∑
k∈N

pk(1− pk)E [ϕ(g(Tke))− ϕ(g(e))− ϕ′(g(e))(g(Tke)− g(e))] .

In view of the independence of e and since S−1 maps law(e) to m, we obtain (2.6.10).
The inequality (2.6.11) is a consequence of the following observation (see [152]). Let
ψ(u, v) = ϕ(u+ v)−ϕ(u)−ϕ′(u)v for u > 0 and u+ v > 0, then (2.6.10) can be rewritten
as

(2.6.13) Entm(f) =
∑
k∈N

pk(1− pk)ψ(f, dkf).

Also we have that ψ(u, v) ≤ uv−2. This shows (2.6.11) and concludes the proof.

We now turn to the fourth moment theorem. Remark that the fourth moment the-
orem with remainder on the cube was obtained by [38] for univariate functionals. The
multivariate version was developed in [153] via exchangeable pair techniques and the
author of [153] does not provide explicitly a quantitative bound but a priori a bound
similar to ours could be deduced from his work. Note that the method proof are dif-
ferent.
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Theorem 2.6.3. Let (p1, . . . , pd) ∈ Nd
>0. There exists c > 0, such that for all F = (F1, . . . , Fd)

with Fi ∈ Cpi ∩ L 4(W), we have that, with C = EF TF Then,

d1(law(F ),N(0, C)) ≤ c

d∑
i=1

√(EF 4 − 3(EF 2)2 +
∑
k∈N

pk(1− pk)E(D+
k F )

4

)

+

(
d∑

i=1

Cii

pi

)⎛⎝ d∑
i=1

(∑
k∈N

pk(1− pk)E(D+
k F )

4

) 1
4

⎞⎠2

.

(2.6.14)

Remark 12. The authors of [38] showed that the quartic remainders cannot be re-
moved and related it to the influence of boolean functions.

Proof. Direct application of Theorem 2.4.4.3 that we can use thanks to Theorem 2.6.1.

Most of the rest of the section is devoted to the proof of Theorem 2.6.1.

Proof of Theorem 2.6.1. We start by proving the part about stochastic integrals. First of
all, for p and q ∈ N, g ∈ H ◦p and h ∈ H ◦q, we have that

(2.6.15) Ip(g)Iq(h) =

̸=∑
j1...jp

̸=∑
k1...kq

gj1...jphk1...kqej1 . . . ejpek1 . . . ekq .

Since (ek)k∈N is a sequence of centered independent random variables, we see that the
quantity EIp(g)Iq(h) does not vanish if and only if the indices of e appearing in the first
integral are exactly the same as in the second integral. This can happen if and only if
p = q and in this case,

(2.6.16) EIp(g)Ip(h) = q!

̸=∑
j1...jp

gj1...jphj1...jpEe2j1 . . .Ee
2
jp .

Since Ee2k = 1, for all k ∈ N, this shows the isometry. We now define the chaotic de-
composition from the stochastic integrals, namely we set Cq as the set of all L 2(W)
random variables of the form Iq(h) for some h ∈ H ◦q. From the previous computa-
tions, we know that the chaos are orthogonal. Let us prove that they form a complete
family. For all q ∈ N, Cq contains the random variables of the form ei1 . . . eiq for all
i1, . . . , iq ∈ N pairwise different. We take F in the orthogonal of ⊕qCq. We have that

(2.6.17) 0 = EFe1 = E(E[F |e1]e1) = (p1(1− p1))
1/2(f(e+1 )− f(e−1 )),

where f is the representative of E[F |e1]. Since C0 contains the constant functions, we
also find that

(2.6.18) 0 = EF = p1f(e
+
1 ) + (1− p1)f(e

−
1 ).

Eventually, we find that E[F |e1] = 0. Observe that for all k ∈ N, Fek+1 is orthogonal
to e1 . . . ek. Proceeding recursively, we obtain that E[F |e1, . . . , ek] = 0 for all k ∈ N.
Thus, F = 0. Therefore, L 2(W) indeed has the announced Fock space structure. Let
us show the associated Malliavin derivative has transitive action map given by Tk and
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mixing map ck. Let h ∈ H ◦q. We fix F = hkk1...kq−1ekek1 . . . ekq with representative f .
We let ẽk be the shift of ek. Observe that

(2.6.19) −sign(ek)(pk(1− pk))
1/2(ẽk − ek) = 1.

This implies that

(2.6.20) ck(e)(f(Tke)− f(e)) = hkk1...kq−1ek1 . . . ekq−1 .

So we immediately see that if Iq(h) has representative f , then

(2.6.21) ck(e)(f(Tke)− f(e)) = qIq(h(k, ·)) = DkIq(h).

This shows the announced representation of the Malliavin derivative D. This family is
clearly dense in every Sobolev space. We show that the Campbell measure associated
to the action map is indeed η. Let (uk)k∈N be a family of functions from E to R. By
definition of η, we have that

(2.6.22) E
∑
k∈N

uk(e)η(k) =
∑
k∈N

E
[
pkuk(e

+
k )

1− pk
pk

+ (1− pk)uk(e
−
k )

pk
1− pk

]
,

where with a slight abuse of notation we write e+k for the vector obtained from ewhere
the k-th coordinate is given by the number e+k (and respectively for e−k ). Finally,

(2.6.23) E
∑
k∈N

uk(e)ηk = E
∑
k∈N

uk(Tke).

We now show that this structure enjoys the property of polynomial chaos. Let F =∑
q∈N Iq(hq) ∈ L 2(W). Fix q ∈ N and k1, . . . , kq ∈ N pairwise different. If F ∈ DomDq,

by Theorem 2.3.2.2 and by duality, we find that

(2.6.24) hq(k1, . . . , kq) = E

[
q∏

i=1

ekiF

]
.

By density of DomDq in L 2(W), this relation still holds even for F ∈ L 2(W). Let
g ∈ H ◦p and h ∈ H ◦q, we write

(2.6.25) Ip(g)Iq(h) =
∞∑
r=0

Ir(hr).

From the previous identity

(2.6.26) hr(k1, . . . , kr) = E

[
Ip(g)Iq(h)

r∏
i=1

eki

]
.

The integral Ip(g) is a linear combination of products of p distinct elements of (ek) and
similarly for Iq(h) in a way that if r > p + q, there is necessarily one element of the
product that does not appear in either of the two integrals. Hence, by independence
and the fact that ek is centered we find hr = 0. The proof is concluded.
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Remark 13. By Tychonoff’s theorem the space {−1,+1}∞ is compact. Moreover it is
a topological group for the pointwise multiplication known as the Cantor group. The
Haar measure of this group is given by

(2.6.27)
1

2

⨂
k∈N

(δ1 + δ−1).

For l ∈ N and i1, . . . , il ∈ N pairwise disjoint, the mapping,

(2.6.28) hii,...,ik : {−1,+1}∞ ∋ e ↦→ ei1 . . . eil ,

are the characters of this group. Hence, when pk = 1
2
, for all k ∈ N, the chaotic repre-

sentation is a consequence of the Peter-Weyl theorem.

Remark 14. The definition of stochastic integrals makes sense for functions that are
not necessarily vanishing on the diagonal. If we pick h and h̃ ∈ H ⊙2 such that, for all
k and j ∈ N, hkj = 1k=j=1 and h̃kj = 1k=j=2, we have that

(2.6.29) EI2(h)I2(h̃) = Ee21e22 = 1 ̸= 0 = ν(hh̃).

Hence, the isometry property does not hold. This explains why we work with vanish-
ing Fock space H ◦ rather than the bosonic Fock space H ⊙.

For the reader’s convenience, we also give the explicit representation of the Orn-
stein-Uhlenbeck generator L and the carré du champ obtained from Theorem 2.4.2.3.
Note that, with the notations of Section 2.4.3, we have C̃k = −Ck and CkD

+
k F =

C̃kD
−
k F = Dkf , so that

(2.6.30) LF =
∑
k∈N

CkDkF (e
2
k + 1).

Observe that we have the two relations:

e2k − 1 =
1− 2pk

(pk(1− pk))
1/2
ek;(2.6.31)

sign(ek) = 2(pk(1− pk))
1/2ek + 2pk − 1.(2.6.32)

Combining these two relations, we obtain

−Ck(e
2
k + 1) = (2(pk(1− pk))

1/2ek − (1− 2pk))((1− 2pk)ek + 2(pk(1− pk))
1/2)

= 4pk(1− pk)ek − (1− 2pk)
2ek + 2(pk(1− pk))

1/2(1− 2pk)(e
2
k − 1)

=
[
4pk(1− pk)− (1− 2pk)

2 + 2(1− pk)
2] ek = ek.

(2.6.33)

Eventually, we obtain the following closed forms:

LF = −
∑
k∈N

DkFek = −µ(DF );(2.6.34)

Γ(F,G) =
1

2

∑
k∈N

DkFDkG(1 + e2k) =
1

2
(ν + η)(DFDG).(2.6.35)

(Note that the form for Γ is obtained directly from Theorem 2.4.2.3 and does not rely
on the computations carried out for L.)
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2.7. STOCHASTIC ANALYSIS FOR POINT PROCESSES

Outline. In this section, we introduce, for all q ∈ N, χ(q) the factorial measure of order
q of the point measure χ. If µ is a point process, µ(q) is still a point process. A suffi-
ciently integrable random variable of the form µ(q)(h) is called a U -statistics of order q.
Under mild assumptions, we prove (Lemma 2.7.2.1) that the linear span of U -statistics
of all order is dense in L 2(W), where W = σ(µ). We then study from an abstract and
systematic point of view the combinatorial properties of the moments of U -statistics
in terms of the factorial moment measure ν(q) = Eµ(q). Hence, we define stochastic in-
tegrals Iq : L 2(ν(q)) → L 2(W) as an alternating sums of integrals with respect to the
factorial measures and the factorial moment measures as it is traditional for Poisson
point processes. Those stochastic integrals can be seen as the orthonormalisation of the
U -statistics and we show that they satisfy an Itô isometry (Lemma 2.7.2.3). We then
discuss the possibility to obtain a Fock space decomposition of the space L 2(W). The
main difficulty is that a priori L 2(ν(q)) ̸= L 2(νq). If it is the case, the family of Hilbert
spaces H ◦q = L 2

σ (ν(q)) gives us the Fock space H ◦ = ⊕qH ◦q. In Theorem 2.7.2.5,
provided the former space is indeed a Fock space and provided mild regularity as-
sumptions on µ, we show that L 2(W) has a pure discrete Itô structure. Examples
are then given in the two classical frameworks of Poisson point processes and mixed
binomial processes in Section 2.7.3. The construction we described is well-known for
Poisson point processes, our contributions consists in adapting this construction to the
setting of generic point processes.

2.7.1. Some preliminaries.

2.7.1.1. Exponential approximation. Let us state and prove the following result on ap-
proximation of functionals of random measures. It is well-known for Poisson point
processes [82, Lem 18.4] but the argument works for generic random measures and is
given here. The proof relies on a functional version of the monotone class theorem [35,
Thm I.21] that we reproduce here without a proof.

Theorem 2.7.1.1. Let W be a linear space of bounded random variables that contains 1, that
is stable with respect to uniform convergence and stable with respect to the bounded mono-
tone convergence, that is: for all increasing uniformly bounded sequence of positive random
variables (Fn) the almost sure limit F = limn Fn belongs to W . Let G ⊂ W be stable under
multiplication. Then, the space W contains all the bounded functions measurable with respect
to the σ-algebra generated by G .

We will use the following lemma at several places. We first introduce some notations.
For a measure ν, we say that a real-valued measurable function u has ν-bounded support
if {|u| > 0} ∈ Zν . Given a random measure µ, we define its Laplace functional,

(2.7.1.1) Lµ(u) = L(u) = E e−µ(u) .

Remark that this quantity is well-defined for all measurable u ≥ 0, and that in that case
L(u) ∈ [0, 1] and it is well-defined, though possibly infinite, for all u ∈ L 1(ν), where
ν = Eµ is the intensity measure of µ. We say that µ is locally exponentially integrable if,
for every B ∈ Zν , we have that E eµ(B) <∞.
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Lemma 2.7.1.2. Let µ be a random measure with σ-finite intensity measure ν. We define the
set G as the linear span of random variables of the form e−µ(u) with u non-negative bounded
with ν-bounded support. Let W = σ(µ), then G is dense in L 2(W).

Proof. First of all, since, u ≥ 0 with ν-bounded support, it is clear that e−µ(u) is square
integrable. Let W be the bounded functions of the closure of G in L 2(W). If (Fn) ⊂ W
converges uniformly to some F ∈ L 2(W), then, by dominated convergence (Fn) also
converges in L 2(W). Thus, W is stable under uniform convergence. Similarly, by the
monotone convergence theorem, the space W is stable with respect to the bounded
monotone convergence. Clearly, W contains the constant and G is stable by multipli-
cation. By the previous theorem, the space W contains all the bounded random vari-
ables measurable with respect to the σ-algebra G = σ(G ). Let us show that G = W.
This will conclude the proof as in this case, we will have W ⊃ L ∞(W) and L ∞(W) is
clearly dense in L 2(W). Let A ∈ Zν . By definition of G , for all t > 0, t−1(1 − e−tµ(A))
is G-measurable. By taking the limit, as t → 0, we find that µ(A) is G-measurable. Let
A ∈ Z, since ν is σ-finite, we can find an increasing sequence of elements of Zν whose
union is A. Therefore, µ(A) is G-measurable. As W is generated by random variables
of the form µ(A) for A ∈ Z, we obtain that G = W. This concludes the proof.

2.7.1.2. Factorial measure. From this approximation theorem a very natural candidate
for the chaos of L 2(W) is the space of random variables of the form µq(h) for some
h sufficiently integrable. As we will see the choice of the tensor product is combina-
torially not wise in case of point processes and has to be replaced with the factorial
product that we introduce below. In the following, the random measure µ is a point
process, that is a random element of MN̄(Z). An element χ ∈ MN̄(Z) is proper if it can
be written

(2.7.1.2) χ =
l∑

k=1

δxk
, with l ∈ N̄, (xk)k=l

k=1 ⊂ Z l.

We say that the point process µ is proper if it is almost surely proper, that is if µ can be
written

(2.7.1.3) µ =
N∑
k=1

δXk
,

for some random elements N ∈ N̄ and Xk ∈ Z. We say that µ is distributionally proper
if there exists a proper point process µ′ such that µ and µ′ have the same distribution.
We start by defining a deterministic operation on the elements of MN̄(Z) that plays the
role of the tensor product.

For χ ∈ MN̄(Z), we define the factorial measures that are defined recursively by
χ(1) = χ and for q ∈ N and A ∈ Zq measurable

(2.7.1.4) χ(q+1)(A) = χ(q) ⊗ χ(A)−
q∑

k=1

χ(q)(Ak),

where

(2.7.1.5) Ak = {(x1, . . . , xq) ∈ Zq, such that (x1, . . . , xq, xk) ∈ A}.
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This equation has a unique solution and the mapping χ ↦→ χ(q) is measurable [82,
Prop A.18]. Also if χ =

∑n
k=1 δxk

is a proper point measure, then we have the closed
expression

(2.7.1.6) χ(q) =

̸=∑
k1,...,kq≤n

δ(xk1
,...,xkq )

,

where we use the superscript ̸= to indicate that the summation is taken over pairwise
distinct indices. On the other hand, if χ2 does not charge the diagonal then χ(q) = χq.

Lemma 2.7.1.3. Let q ∈ N. Let χ and ξ ∈ MN̄(Z). Then, for every f : Zq → [0,∞],

(2.7.1.7) (χ+ ξ)(q)(f) =
∑
L⊂[q]

ˆ
Zq

f(z)χ(|L|)(dzL)ξ
(q−|L|)(dz[q]\L),

where both sides of this identity can assume the value ∞. If f has an arbitrary sign, the
previous equality is still valid, provided both side of the equality are finite, when f is replaced
by |f |.

Proof. We start by assuming that χ and ξ are proper. Thus, we let I , J ⊂ N and (xi)i∈I ⊂
ZI , (yj)j∈J ⊂ ZJ such that

(2.7.1.8) χ =
∑
i∈I

δxi
and ξ =

∑
j∈J

δyj .

Without loss of generality, we can assume that I = [m] and J = [m+ l] \ [l] for some m
and l ∈ N. Let K = [m + l] and (zk)k∈K ⊂ ZK such that zk = xk if k ∈ I and zk = yk if
k ∈ J . By definition of the factorial power, we have that

(2.7.1.9) (χ+ ξ)(q) =

̸=∑
k1,...,kq≤m+l

δ(zk1 ,...,zkq ).

For k1, . . . , kq distinct elements of [m + l], we let L be the set of those l ∈ [q] such that
kl ∈ I . By construction, (kl)l∈L is a family of distinct elements of I and (kl)l ̸∈L is a
family of distinct elements of J . Reciprocally, a family of distinct elements in Ip and
a family of distinct elements in Jq−p for 0 ≤ p ≤ q completely determines a family of
distinct element in Kq. This proves the claim for χ and ξ proper.

In general, we can write, by definition of MN̄(Z),

(2.7.1.10) χ =
∞∑
k=0

χk and ξ =
∞∑
k=0

ξk,

where for all k ∈ N, χk and ξk ∈ MN(Z). Letting

(2.7.1.11) χn =
n∑

k=0

χk and ξn =
n∑

k=0

ξk,

The measure χn and ξn are proper and the claim is proved for such measures. More-
over, we have that χn ↑ χ and ξn ↑ ξ so that by [82, Proposition A.18], we have that for
all k ∈ N, χ(k)

n ↑ χ(k), ξ(k)n ↑ ξ(k) and (χn + ξn)
(k) ↑ (χ+ ξ)(k). We thus conclude in the

general case.
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We also have the following lemma.

Lemma 2.7.1.4. Let χ ∈ MN̄(Z). For all q > χ(Z), we have that χ(q) = 0.

Proof. If χ is a proper point measure it is immediate. We prove it in the general case.
By definition, there exists proper point measures χk =

∑Nk

i=1 δXk
i
∈ MN(Z) such that

(2.7.1.12) χ =
∞∑
k=1

χk.

We define χn =
∑n

k=1 χk. Then χn ↑ χ and on {χ(Z) < q}, we have that {χn(Z) < q}
and then it is clear from (2.7.1.6) that χ(q)

n = 0. Now we can use [82, Prop A.18], to
obtain that χ(q)

n ↑ χ(q) and conclude.

The order of the measure q is defined as

(2.7.1.13) |χ| = inf
{
q ∈ N, such that χ(q) = 0

}
− 1.

Note that from the recursive definition of the factorial measure (2.7.1.4), we see that
for all q > |χ|, we have that χ(q) = 0 and from the previous lemma, we have that
|χ| ≤ χ(Z). Also the order of χ might be infinite and the only measure of order 0 is the
null measure.

2.7.2. U -statistics and stochastic integrals. We now turn to the case where µ is a ran-
dom element of MN̄(Z). We define the factorial moment measure as ν(q) = Eµ(q). Since
µ(1) = µ, we have that ν(1) = ν = Eµ, the intensity measure of µ. We will need to
further assume that for all k ∈ N, the measure ν(k) is σ-finite and we denote (An

k)n∈N an
increasing family of elements of Zν(k) whose union is Zk. We also assume that µ is lo-
cally exponentially integrable and distributionally proper. The quantity |µ|, that is the
order of µ is a N̄ valued random variable and we denote |µ|∞ its essential supremum.

A U -statistics of order k is any random variable of the form µ(k)(h) ∈ L 2(W) for
h ∈ L 1(ν(k)). Remark that, a priori, we only have µ(k)(h) ∈ L 1(W) and we will carry
out some moment computations in order to obtain workable condition on h to ensure
µ(k)(h) ∈ L 2(W). However, we can already state the following result. We write Uk

for the linear span of U -statistics up to order k and for consistency we write U0 for the
space of constants.

Lemma 2.7.2.1. The linear space
∑

k≤|µ|∞
Uk is dense in L 2(W).

Proof. We let u be non-negative and have a ν-bounded support and we let B = {u >
0}. Assume first that µ is proper. By the previous lemma, we have that

e−µ(u) =
∏

X∈µ∩B

e−u(X) =
∑

J⊂[µ(B)]

∏
j∈J

(e−u(Xi) −1)

=
∞∑
k=0

1

k!
µ(k)

(
(e−u−1)

⊗k
)
.

(2.7.2.1)

Note that by Lemma 2.7.1.4, we have in fact that

(2.7.2.2) e−µ(u) =

|µ|∞∑
k=0

1

k!
µ(k)

(
(e−u −1)

⊗k
)
.
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Thus, with hk = k!−1(e−u −1)
⊗k the random variable e−µ(u) is the almost sure limit, as

n→ ∞, of the series given by

(2.7.2.3) Sn =

n∧|µ|∞∑
k=0

µ(k)(hk).

We will show at once that, for all k ∈ N, the random variable µ(k)(hk) is a U -statistics
of order k and that the limit can be taken in L 2(W). Note that, for all n ∈ N,

(2.7.2.4) |Sn| ≤
µ(B)∑
k=0

1

k!
|µ(k)((e−u −1)

⊗k
)| ≤

µ(B)∑
k=0

1

k!
µ(k)(Bk).

It is easy to check that

(2.7.2.5) µ(k)(Bk) =
µ(B)!

(µ(B)− k)!
.

Hence, we find that

(2.7.2.6) |Sn| ≤ 2µ(B).

By the assumption of local exponential integrability the right-hand side belongs to
L 2(W). This shows that µ(k)(hk) is a U -statistics and, by Lebesgue dominated conver-
gence theorem, we can take the limit in L 2(W). This concludes the proof for proper
point processes.

If µ is only distributionally proper, we consider µ′ a proper point process with same
law as µ. We let W′ = σ(µ′) and U ′

k the space of u-statistics with respect to µ′ of order
k. Let F = f(µ) in the orthogonal of

∑∞
k≤|µ| Uk. Then, F ′ = f(µ′) is in the orthogonal

of
∑∞

k≤|µ| U
′
k . This proves that f = 0, law(µ′) almost-everywhere and hence law(µ)

almost-everywhere. Hence F = 0. This concludes the proof in the general case.

2.7.2.1. Moments computation and isometry. From this result, the family of spaces (Uk)
forms a natural candidate for the chaotic decomposition of L 2(W). As we will see in
the following moment computations, these spaces are not orthogonal. These compu-
tations are essentially combinatorial and are adapted from [82, Chapter 12] where they
are done in a Poisson setting.

Let p and q ∈ N. A sub-partition of [q] is a family of disjoint subsets of [q]. Given σ a
sub-partition of [q], we say that J ∈ σ is a block of the sub-partition and we say that σ is
a partition if the union of the blocks is [q] itself. The number of blocks of the partition
(that is the cardinality of σ) is denoted |σ| and the cardinality of the union of the blocks
is denoted ||σ||. Remark that a sub-partition σ is a partition of [q] if and only if ||σ|| = q.
Given J ⊂ [p+q], we write J1 = J∩[p], J2 = J∩([p+q]\[p]) and J c = [p+q]\J . We let Π
(resp. Π∗) be the set of partitions (resp. sub-partitions) σ of [p+q] such that for all J ∈ σ,
|J1| ≤ 1 and |J2| ≤ 1. We also denote Π2 (resp. Π∗

2) the set of those partitions (resp. sub-
partitions) such that each block contains exactly 2 elements. Observe that if p ̸= q, Π2 is
empty. Given a sub-partition σ of [p+ q] and a functions h : Zp+q → R, we write hσ for
the function Zp+q+|σ|−||σ|| → R obtained by identifying the arguments whose numbers
belong to the same blocks of σ. Namely, let σ be a sub-partition of [p+ q] whose blocks
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are given by {I1, . . . , Il}. The vector z = (z1, . . . , zp+q−|σ|+||σ||) ∈ Zp+q−|σ|+||σ|| is mapped
to the vector z′ = (zi1 , zi2 , zi3 , . . . , zip+q), where

(2.7.2.7) il = inf{i ∈ [p+ q], such that (i, l) ∈ σ} ∧ l.

As usual, we take inf ∅ = ∞. Then, we define hσ(z) = h(z′).

Example 2.7.2.1. If p+ q = 5 and σ = {{1, 3}, {2, 5}} then

(2.7.2.8) hσ(x, y, z) = h(x, y, x, z, y).

We state a lemma that expresses the tensor product of the factorial measures of µ.

Lemma 2.7.2.2. Let the previous notation prevail and let hp ∈ L 1(ν(p)) and hq ∈ L 1(ν(q)).
Let h = hp ⊗ hq and assume that hσ ∈ L 1(ν(p+q+|σ|−||σ||)) for all σ ∈ Π∗

2. Then, if µ is proper,
we have that

(2.7.2.9) µ(p)(hp)µ
(q)(hq) =

∑
σ∈Π∗

2

µ(p+q+|σ|−||σ||)(hσ).

If µ is only distributionally proper, we have that,

(2.7.2.10) Eµ(p)(hp)µ
(q)(hq) =

∑
σ∈Π∗

2

ν(p+q+|σ|−||σ||)(hσ).

Proof. By the formula (2.7.1.6) for the factorial measure of a proper point measure, we
obtain that

(2.7.2.11) µ(p)(hp)µ
(q)(hq) =

∗∑
i1,...,ip+q≤N

h(Xi1 , . . . , Xip+q),

where the superscript ∗ indicates that the indices ik and il are distinct whenever k ̸= l
and ik and il both belong to [q] or both belong to [p+ q]\ [q]. Given a set of such indices
(i1, . . . , ip+q), we associate the sub-partition σ such that for j ∈ [q] and l ∈ [p+ q] \ [q]

(2.7.2.12) {j, l} ∈ σ ⇐⇒ ij = il.

This proves the first part of the claim. The second part is immediately obtained by
taking expectation, if µ is proper. If µ is only distributionally proper, as the second part
of the claim concerns only the distribution of µ, we can work with a proper version of
µ to conclude.

We now introduce the fundamental objects of this section: the stochastic integrals
that can be thought as the orthogonalization of the U -statistics. For every q ≤ |µ|∞, we
would like to define the stochastic integral of a kernel h as

(2.7.2.13) Iq(h) =
∑
J⊂[q]

(−1)q−|J |
ˆ
h(x)µ(|J |)(dxJ)ν(q−|J |)(dx[q]\J).

Compare this definition with the one we gave on the cube in Section 2.6. Note that, by
Fubini theorem and the definition of ν(k), a sufficient (but cumbersome) condition for
the previous quantity to be well-defined is that h ∈ L 1(ν(k) ⊗ ν(q−k)) for all k ∈ [q]. We
say that kernels verifying such a criterion are stochastically integrable.
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Lemma 2.7.2.3. Let p and q ∈ N. Let hp ∈ L 2(ν(p)) and hq ∈ L 2(ν(q)) be stochastically
integrable. Then,

(2.7.2.14) EIp(hp)Iq(hq) = 1p=q

∑
σ∈Σp

ν(p)(hphq ◦ σ),

where Σp is the set of permutations of [p] and h ◦ σ is the function obtained by permuting the
argument according to σ.

Proof. From Lemma 2.7.2.2, we find that

(2.7.2.15) EIp(hp)Iq(hq) =
∑

J⊂[p+q]

(−1)|J
c|

∑
σ∈Π∗

2, σ⊂J

ν(p+q+|σ|−||σ||)(hσ),

where the notation σ ⊂ J means that for all I ∈ σ, I ⊂ J . If σ is a partition then∑
σ⊂J (−1)p+q−|J | = 1 and the sum vanishes otherwise. Recall that for a partition of

[p + q], we have that ||σ|| = p + q. Hence, inverting the order of summation we find
that

(2.7.2.16) EIp(hp)Iq(hq) =
∑
σ∈Π2

ν(|σ|)(hσ).

As already noticed if p ̸= q then Π2 is empty and the sum vanishes. If p = q then the
blocks of σ ∈ Π2 are pairs (l, k) with l ∈ [p] and k ∈ [2p] \ [p] each of them appearing
only once. To such σ we can associate a permutation of [p] (still denoted σ) such that
σ(l) = k− p. It is clear that this identification is one-to-one so that we identify Π2 with
Σp the set or permutations of [p]. Finally, we find that

(2.7.2.17) EIp(hp)Iq(hq) = 1p=q

∑
σ∈Σp

ν(p)(hphq ◦ σ).

The proof is complete.

2.7.2.2. Fock space representation. Let H ◦q be the symmetric functions of L 2(ν(q)) and
H ◦0 = R. We will now extend the mapping Iq on H ◦q. We let Hq be the set of
bounded elements h ∈ H ◦q such that for all k ∈ [q], ν(k) ⊗ ν(q−k)(h ̸= 0) < ∞. Plainly,
the elements of Hq are stochastically integrable. We recall that for all k ∈ N, the family
(An

k)n∈N denote an increasing family of elements of Zν(k) whose union is Zk. For h ∈
H ◦q, letting

(2.7.2.18) hn = h1|h|≤n

∏
k∈[q]

(1Ak
n
⊙ 1Aq−k

n
),

shows that Hq is dense in H ◦q. By density, we can extend the stochastic integrals to
H ◦q.

Lemma 2.7.2.4. There exists a linear isometry Iq : H ◦q → L 2(W) such that for all h ∈ H ◦q

and stochastically integrable the formula (2.7.2.13) holds.

Proof. The formula (2.7.2.13) define a linear isometry on the dense subset Hq of H ◦q.
We can extend this mapping by density.
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We say that the factorial moments of µ are compatible with a Fock space structure when,
for all q ∈ N, L 2

σ (ν(q)) is a sub-Hilbert space of L 2
σ (ν

q) (as explained in Section 2.3,
we recall the topologies on the two spaces are the same but the inner products can
a priori be different on each space, that is the inner products can differ by positive
constants), and when it is compatible with the restriction in the sense of Section 2.3. In
other words, writing H ◦q for L 2

σ (ν(q)) (q ∈ N) and considering H ◦ = ⊕q≤|µ|∞H ◦q, we
require that H ◦ is an abstract Fock space. The following theorem is the main result
of this section and extend the famous Wiener-Itô decomposition for functionals of a
Poisson point process to other point processes.

Theorem 2.7.2.5. Let µ be a locally exponentially integrable and distributionally proper point
process whose factorial moment measures {ν(q); q ∈ N} are σ-finite and compatible with a
Fock space structure. Let W = σ(µ). Then L 2(W) has a Fock space structure based on
H ◦ = ⊕qH ◦q, where H ◦q = L 2

σ (ν(q)), for all q ∈ N. The stochastic integral maps are given
by the family of maps {Iq; q ∈ N} constructed in Lemma 2.7.2.4. We consider the transitive
action such that, for all z ∈ Z, the map Tz acts on MN̄(Z) by Tzχ = χ+δz and we assume that
the Campbell measure η defined in (2.4.2.21) exists and has σ-finite second moment measure.
Then, the Malliavin derivative is representable by the transitive action T and the space L 2(W)
has a pure discrete Itô structure. Also, for all F ∈ L 2(W),

(2.7.2.19) F = EF +
∑

q∈N>0

Iq(hq),

where

(2.7.2.20) hq(z1, . . . , zq) =
1

q!
ED+q

z1...zq
F.

Remark 15. In the theory of point processes, it is customary to define the reduced Camp-
bell measure associated with a point process µ as the measure C on Z ×MN̄(Z) defined
by

(2.7.2.21) C(A×B) = E
ˆ
A

1B(µ− δx)µ(dx).

The Campbell measure η associated with the transitive action Tz in the sense of Sec-
tion 2.4.2 exists if and only if there exists a probability measure Π ∈ P(MN̄(Z)), such
that C = ν ⊗Π and, in this case, the law of η is given by Π. This justifies our terminol-
ogy.

Proof. The fact that the mappings {Iq; q ∈ N} are the stochastic integral maps associ-
ated with the Fock space structure H ◦ comes from Lemmas 2.7.2.1 and 2.7.2.4 and the
assumption on the compatibility of the moment measures with a Fock space structure.
Let q ∈ N. Pick h ∈ Hq, then by Lemma 2.7.1.3, we have that

(2.7.2.22) D+
z Iq(h) = qIq−1(h(z, ·)) = DzIq(h), z ∈ Z,

where the operator D+
z is associated with the transitive action Tz according to the no-

tations of Section 2.4.2, that is for F = f(µ), we have D+
z F = f(µ + δz) − f(µ), and

D is the Malliavin derivative associated with the Fock space structure according to
the notations of Section 2.3. Let h ∈ H ◦q and let (hn) ⊂ Hq converging to h defined
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by (2.7.2.18). It is clear that hn(z, ·) ↑ h(z, ·). Since by assumption h(z, ·) ∈ H ◦(q−1), by

monotone convergence, we find that hn(z, ·)
H ◦(q−1)

−−−−−→
n→∞

h(z,·). Hence, by continuity of Iq,

(2.7.2.23) D+
z Iq(hn)

L 2(W)−−−−→
n→∞

qIq−1(h(z, ·)) = DzIq(h).

On the other hand, considering fn a representative of Iq(hn) and f a representative of
Iq(h), for B ∈ Zν , we have, by (2.4.2.21)

(2.7.2.24) E
ˆ
B

|fn(µ+ δz)− f(µ+ δz)|ν(dz) = Eη(B)|fn(µ)− f(µ)|.

Since ν = Eν and ν(2) = Eµ(2) are assumed to be σ-finite we have that Eη(B)2 <∞ and
by the Cauchy-Schwarz inequality, we obtain that the right-hand side of the previous
equation vanishes as n → ∞. In particular this implies that for all B ∈ Zν and for ν
almost every z ∈ B,

(2.7.2.25) D+
z Iq(hn)1B

L 1(W)−−−−→
n→∞

D+
z Iq(h)1B.

Combining this relation with (2.7.2.23) and using that the L 1(W) topology is coarser
than the one of L 2(W) and that this topology is separated, we find that for all B ∈ Zν

for almost every z ∈ B,

(2.7.2.26) 1BD
+
z Iq(h) = 1BDzIq(h).

As ν is σ-finite, this shows that for ν-almost every z ∈ Z, D+
z Iq(h) = DzIq(h). This

proves the announced representation of the Malliavin derivative D. The representa-
tion of the kernels comes from Theorem 2.3.2.2. The fact that L 2(W) has polynomial
chaoses comes from Lemma 2.4.2.1. This concludes the proof.

In the setting of the previous theorem we can readily obtain our modified logarith-
mic Sobolev inequality Theorem 2.4.4.1; our Stein inequality Theorem 2.4.4.2; and our
exact fourth moment theorem Theorem 2.4.4.6. In the following section we explicit
those results for Poisson point processes and mixed binomials processes.

2.7.3. Binomial processes and Poisson processes.

2.7.3.1. Binomial process. We consider the proper point process

(2.7.3.1) µ =
N∑
i=1

δXi
,

where (Xi) is a sequence of independent and identically distributed random variables
with common law p on Z and N is a N-valued random variable independent of (Xi).
The random measure µ is called a binomial process with sampling distribution p and sample
size N or simply mixed binomial process. We let

(2.7.3.2) λq = q!E
(
N

q

)
= E(N(N − 1) . . . (N − q + 1))+,
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where we used the convention that
(
n
q

)
= 0 for q > n. We assume λq <∞ for all q ∈ N.

Since q!
(
N
q

)
counts the number of ordered q-tuples of distinct elements in [N ] and that

N and the point are independent, we find that the factorial moment measure is given
by ν(q) = Eµ(q) = λqp

q = λqλ
−q
1 νq.

Remark 16. It is a well-known fact that when N follows a Poisson law with mean λ
then λq = λq and we recover that for Poisson point processes η with finite intensity ν,
Eη(q) = νq.

Theorem 2.7.3.1. Let the previous notations prevail. Then, µ satisfies the assumptions of The-
orem 2.7.2.5.

Proof. First of all, by the finiteness of the λq (q ∈ N), the random variable µ(Z) = N
is exponentially integrable. In particular µ is locally exponentially integrable. Let
q ∈ N. The measure ν(q) is finite and in particular it is σ-finite. Moreover, since the
ν(q) = λqλ

−q
1 νq, it is clear that the factorial moment measures are compatible with a

Fock space structure. In fact, we are in the setting of the mixed bosonic Fock space
where the bosonic constants are given for all q ∈ N by λqλ

−q
1 . Let us compute the

Campbell measure associated to the action Tzχ = χ + δz. Let A ∈ Z and B ⊂ MN̄(Z)
measurable. We consider the reduced Campbell C and by independence we can write

C(A×B) = E
ˆ
A

1B(µ− δx)µ(dx)

=
∞∑
k=0

P(N = k)
k∑

i=1

E1{Xi∈A}1B

(∑
j ̸=i

δXj

)

= p(A)
∑
k∈N

P(N = k)kP

(
k−1∑
j=1

δXj
∈ B

)
.

(2.7.3.3)

Thus C = ν ⊗ Π where Π is the probability measure given by

(2.7.3.4) Π(B) =
1

λ1

∑
k∈N

P(N = k)kP

(
k−1∑
j=1

δXj
∈ B

)
.

We let η ∼ Π, then η is the Campbell measure of the action Tz. Let A ∈ Z. We have that

Eη(2)(A) =
1

λ1

∑
k∈N

kP(N = k)E
̸=∑

i,j≤k−1

1A(Xi, Xj)

= 3
λ2
λ21
p2(A) <∞.

(2.7.3.5)

Hence, the second factorial moment of η is finite and a fortiori σ-finite. This concludes
the proof.

In the remainder of the section, we study U -statistics by writing their chaotic de-
composition with respect to multiple stochastic integrals. When the size of the sam-
pling N is deterministic, we link this chaotic decomposition with the Hoeffding de-
composition. Since the binomial process has a finite intensity measure ν, we have that
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L 2(ν) ⊂ L 1(ν) and the representation (2.7.2.13) always hold. The stochastic integrals
were defined as an alternating sum of U -statistics. This definition can be inverted. Let
h ∈ L 2

σ (p
q). From Lemma 2.7.1.3, we deduce that

(2.7.3.6) Dz1,...,zkµ
(q)(h) =

q!

(q − k)!
µ(q−k)(h).

Hence by Theorem 2.3.2.2, we find that

(2.7.3.7) µ(q)(h) =

q∑
k=0

Ik(hk),

where

(2.7.3.8) hk(z1, . . . , zk) =

(
q

k

)
λq−k

ˆ
h(z1, . . . , zk, y1, . . . , yq−k)p

q−k(dy).

Finally, we obtain that

(2.7.3.9) µ(q)(h) =

q∑
k=0

(
q

k

) k∑
l=0

(
k

l

)
(−1)k−l (µ(l) ⊗ λk−lp

k−l ⊗ λq−kp
q−k
)
(h).

When N = q is deterministic, this expression becomes

(2.7.3.10) µ(q)(h) =

q∑
k=0

(
q

k

) k∑
l=0

(
k

l

)
(−1)k−l q!

k!

q!

(q − k − l)!

(
µ(l) ⊗ pq−l

)
(h).

Since h is symmetric and (Xi) is independent and identically distributed, with F =
h(X1, . . . , Xq), we find that

(2.7.3.11)
1

l!
µ(l) ⊗ pq−l(h) =

∑
L⊂[q],|L|=l

E[F |FL], l ∈ [q],

where for J ⊂ [q], we define FJ = σ(Xj, j ∈ J). Simplifying the expression of the
binomial coefficients yields

F =
1

q!
µ(q)(h) =

q∑
k=0

(
q

k

) k∑
l=0

(−1)k−l

(
q

k − l

) ∑
L⊂[q],|L|=l

E[F |XL]

=
∑
K⊂[q]

∑
L⊂K

(−1)|K|−|L|E[F |FL].

(2.7.3.12)

The previous expression is nothing but an orthogonal decomposition used by W. HO-
EFFDING (1961) [65] to obtain sufficient conditions for the asymptotic normality of
general U -statistics. We do not know yet if such conditions can be recovered from
our Theorem 2.4.4.3. Also note that in this case the bosonic constants are given by λ̃q =

n!
(n−q)!

n−q and we can easily check that λ̃2q ≤ q̃2 and we cannot use Theorem 2.4.4.6.
Note that, PoissonU -statistics were considered by M. REITZNER & M. SCHULTE (2013)
[133] using Stein’s inequality for Poisson point processes established by G. PECCATI,
J. L. SOLÉ, M. S. TAQQU & F. UTZET (2010) [121]. This inequality corresponds to Theo-
rem 2.4.4.2 in our generalized setting and holds for every binomial processes. It seems
natural to conjecture that the analysis of [133] will also apply in this case. We are
currently investigating this question.
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2.7.3.2. Poisson process. The Poisson processes form a family of point processes with a
non-empty intersection with mixed binomial processes. We say that η is a Poisson point
process with intensity measure ν if it is a random variable with value in MN̄(Z) such that
for all A1, . . . , Al pairwise disjoint elements of Zν the random vector (η(A1), . . . , η(Al))
is a vector of independent Poisson random variables with mean (ν(A1), . . . , ν(Al)). If
such a process exists, its law will be denoted Πν . Existence of Poisson point processes
with arbitrary reference measure is not known. We list some examples below.

Example 2.7.3.1 (Poisson random variable). Let Z = {0}. Every measure on Z can be
represented its total mass. Let λ > 0. Then η = Nδ0, where N is a Poisson random
variable of mean λ is a Poisson point process with intensity λδ0.

Example 2.7.3.2 (Finite intensity measure). Let ν be a measure on Z such that ν(Z) =
λ <∞. We letN be a Poisson random variable with EN = λ and (Xn)n∈N be a sequence
of independent and identically distributed random variables distributed according to
ν
λ

and independent of N . We set

(2.7.3.13) η(f) =
N∑
i=1

f(Xi), f ∈ L 0(Z).

In other words, we have

(2.7.3.14) η =
N∑
i=1

δXi
.

Then η is a Poisson point process with intensity measure ν.

Example 2.7.3.3 (s-finite intensity measure). We say that ν is s-finite if ν =
∑

n∈N νn,
where the νn’s are finite measures. Let ηn be independent Poisson point processes with
respective intensity measure νn. We let

(2.7.3.15) η =
∑
n∈N

ηn.

Then, η is a Poisson point process with intensity measure ν. Observe that every σ-finite
is a s-finite measure.

We have the important Mecke theorem.

Theorem 2.7.3.2 ([82, Theorems 4.1 & 4.4]). Let ν be a s-finite measure and η be a point
process. The following are equivalent:

(i) η is a Poisson point process with intensity measure ν;

(ii) for all q ∈ N and for all measurable ϕ : MN̄(Z)× Zq → [0,∞], we have that

(2.7.3.16) E
ˆ
ϕ(η, z1, . . . , zq)η

(q)(dz) = E
ˆ
ϕ

(
η +

q∑
j=1

δzj , z1, . . . , zq

)
νq(dz).

(iii) for all measurable ϕ : MN̄(Z)× Z → [0,∞], we have that

(2.7.3.17) E
ˆ
ϕ(η, z)η(dz) = E

ˆ
ϕ (η + δz, z1) ν(dz).
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Remark 17. Even though, we can construct Poisson point processes for intensity mea-
sures more general than σ-finite, the construction of stochastic integrals via the ap-
proximation argument of Section 2.7 relies critically on the σ-finiteness of the intensity
measure and of the factorial moment measures.

Remark 18. The Mecke theorem implies that the Poisson point process is the only
point process with s-finite intensity measure that is its own Campbell measure. This
is why we denote a Poisson point process by the symbol η rather than µ.

Idea of proof. In the case of finite intensity measure, we have the mixed binomial rep-
resentation of η and we compute the reduced Campbell measure as in the previous
section. Then the proof reduces to the well-known fact that, if N is a Poisson random
variable with mean λ > 0, then ENf(N) = λEf(N + 1). The general case is done by
adding independent Poisson point processes of finite intensity measure.

Theorem 2.7.3.3. Let η be a Poisson point process with σ-finite intensity measure ν. Then, η
satisfies the assumptions of Theorem 2.7.2.5. Moreover, with W = σ(η), L 2(W) supports the
bosonic Fock space and in particular the bosonic constants are all equal to 1.

Remark 19. Observe that when the intensity measure is finite we also are in the setting
of the previous section on binomial processes. So that this theorem is non-trivial only
for ν(Z) = ∞.

Proof. It is a well-known fact [82, Cor 3.7] of the theory of Poisson processes that ev-
ery Poisson point process with s-finite intensity measure is distributionally proper.
As a consequence of Theorem 2.7.3.2 we obtain that Eη(q) = νq and that η is its own
Campbell measure. This proves that the factorial moment measure of any order is
σ-finite, that the L 2(W) supports the bosonic Fock space and that the Campbell mea-
sure has a σ-finite second factorial moment measure. Hence it is easy to see that any
Poisson point process with σ-finite intensity measure enters the framework of our The-
orem 2.7.2.5.

2.8. BIBLIOGRAPHICAL AND HISTORICAL COMMENTS

2.8.1. Chaotic decomposition and stochastic integrals. The notion of chaotic decom-
position was originally discussed in the seminal paper of N. WIENER (1938) [150] on
homogeneous chaoses. At that time, Wiener only considered decompositions with re-
spect to time-indexed processes such as Brownian motions or Poisson processes on the
half-line. Moreover, the proposed decomposition was not orthogonal. The orthogo-
nality condition comes from the work of K. ITÔ (1951) [67] in a Gaussian setting and
also from the work of K. ITÔ (1956) [68] for Poisson point processes. In his two works,
Itô worked in a context of random measures (though, I do not know if he was the
first to consider it), invented the concept of multiple stochastic integrals that is still
used nowadays and already pointed out the link between Gaussian chaoses and Her-
mite polynomials. The fact that Poisson chaoses can be related to polynomials comes
from an observation of H. OGURA (1972) [117] on Charlier polynomials. Concerning
Charlier polynomials and Poisson integrals, see also D. SURGAILIS (1984) [143]. In Sec-
tion 2.5, our presentation of Gaussian processes from the point of view of isonormal
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Gaussian processes (more general than Gaussian random measures) is due to the fun-
damental contribution of R. M. DUDLEY (1967) [42]. During the preparation of this
work, I constantly used the two recent references by D. NUALART (2009) [115, Chapter
1] and I. NOURDIN & G. PECCATI (2012) [111, Chapter 2]. For the toy model of Sec-
tion 2.6, I consulted the recent reference of C. DÖBLER & K. KROKOWSKI (2017) [38].
For the construction I gave concerning point processes in Section 2.7, I was inspired
by the work G. LAST & M. D. PENROSE (2011) [83] that carries a similar construc-
tion for Poisson point processes. I also used the subsequent contribution of G. LAST
(2016) [80] and the recent monograph [82]. Observe that for a binomial process with
deterministic sampling size n, W. HOEFFDING (1961) [65] gave a celebrated orthogo-
nal decomposition for a U -statistics. As we explained, this decomposition is linked to
stochastic integrals for binomial processes. To my knowledge, this decomposition was
never put in the framework of stochastic integrals. G.-C. ROTA & T. C. WALLSTROM
(1997) [136] initiated a systematic study of stochastic integrals from the combinatorial
aspect was initiatied. This analysis was exploited in the comprehensive monograph
of G. PECCATI & M. S. TAQQU (2011) [124].

2.8.2. Malliavin calculus and Fock space. Malliavin calculus was developed by P.
MALLIAVIN (1978) [92] only with respect to a Brownian motion. Malliavin’s goal was
to give an alternative proof of a celebrated theorem of L. HÖRMANDER (1967) [66]
about the regularizing property of some second-order differential operator. Those op-
erators are the generators of a solution of an explicit stochastic differential equation
and Malliavin used his calculus to study solutions to these equations. Reading Malli-
avin original paper is quite demanding and we recommend the lecture notes of M.
HAIRER (2016) [62] for a self-contained presentation of the subject. However, the con-
cept of Fock space was formally introduced much earlier in the work of V. FOCK (1932)
[48] following the seminal work of P. DIRAC (1927) [37] on second quantization. In
this theory, each H ⊙q represents a system with q bosons, so the Malliavin derivative
is called the creation operator while its adjoint is called the annihilation operator and
the Ornstein-Uhlenbeck generator the number operator.

The idea of constructing a Markov semi-group out of a chaotic decomposition (or
rather a Fock space) is also very classical in quantum field theory and goes back (at
least) to the seminal paper of E. NELSON (1973) [106] where he constructed the free
Markov field over the Gaussian space, that corresponds, in our terminology, to the
Ornstein-Uhlenbeck semi-group in a Gaussian setting. Namely, given any Markov
dynamic pt on the Hilbert space H , we can “lift” this dynamic to H ⊙ by

(2.8.2.1) p⊙q
t (h1 ⊙ · · · ⊙ hq) = pth1 ⊙ · · · ⊙ pthq, q ∈ N, h1, . . . , hq ∈ H , t ≥ 0.

and, hence, to L 2(W) by

(2.8.2.2) PtF =
∑
q∈N

Iq(p
⊙q
t hq), t ≥, F =

∑
q∈N

Iq(hq) ∈ L 2(W).

The choice of the free dynamic, that is a straight line evolution ptf = e−t f , yields
the Ornstein-Uhlenbeck semi-group. It follows that, in a sense, physicists knew the
Malliavin derivative and the Ornstein-Uhlenbeck semi-group much before probabilist
and for them the Ornstein-Uhlenbeck is completely trivial! In the same paper E. NEL-
SON (1973) [106] also proved the hypercontractivity of this semi-group. The influential
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work of L. GROSS (1975) [61] showed that hypercontractivity is equivalent to a loga-
rithmic Sobolev inequality and Gross proved this inequality for the Gaussian measure
via the central limit theorem.

2.8.3. Logarithmic Sobolev inequality, hypercontractivity and Bakry-Emery. Study-
ing logarithmic Sobolev inequalities for other processes motivated the key study of
hypercontractive diffusions by D. BAKRY & M. ÉMERY (1985) [12] where they intro-
duced (for every semi-group not just the ones associated to chaotic decomposition) the
criterion we presented in Section 2.2 (as well as other equivalent formulations) and al-
ready proved the equivalence of their criterion with logarithmic Sobolev inequality.
The work of Bakry-Emery gave birth to a far reaching chapter of modern probability
and for the diffusion setting we only quote the monograph by D. BAKRY, I. GENTIL &
M. LEDOUX (2014) [13]. The proof of the logarithmic Sobolev inequality by convexity
we present is a bit different from the original one and we learned it from D. CHAFAÏ
(2004) [31]. For more details on logarithmic Sobolev inequalities, one can also read the
collective work (in french) of C. ANÉ ET AL. (2000) [6]. Outside of the diffusion setting
not much is known in general and in fact the Bakry-Emery criterion is not equivalent
to a logarithmic Sobolev inequality. In fact, several notions of logarithmic Sobolev in-
equality coexist in a discrete setting (in a diffusive setting they are equivalent thank
to the chain rule). S. G. BOBKOV & P. TETALI (2006) [21] gave a detailed study of
such logarithmic Sobolev inequalities in a discrete setting. However, many authors
have considered modified logarithmic Sobolev inequalities. By the good properties of
the logarithmic Sobolev inequality with respect to tensorization (that is, if µ satisfies
the logarithmic Sobolev inequality then µ⊗n satisfies a logarithmic Sobolev inequality
with the same constant), this was used combined with the central limit theorem in the
original article of Gross [61] to prove the logarithmic Sobolev inequality for the Gaus-
sian. The same idea was used by S. G. BOBKOV & M. LEDOUX (1998) [18] to prove a
modified logarithmic Sobolev inequality for the Poisson measure on the integers. This
inequality was generalized and improved for Poisson point processes by L. WU (2000)
[152] via martingale techniques. Our inequality of Theorem 2.4.4.1 is new at this level
of generality but is essentially the same as the one obtained by Wu put in our more
general setting. The proof by convexity follows the one of Theorem 13 in S. BOURGUIN
& G. PECCATI (2016) [27] that itself follows the already mentioned work of D. CHAFAÏ
(2004) [31].

2.8.4. The Malliavin-Stein approach. The idea to use Malliavin calculus to obtain the
fourth moment theorem for Gaussian stochastic integrals of D. NUALART & G. PEC-
CATI (2005) [116] comes from the work of D. NUALART & S. ORTIZ-LATORRE (2008)
[114]. The combination of the Malliavin calculus with the Stein bound Theorem 1.1.3.1
was introduced by I. NOURDIN & G. PECCATI (2009) [112]. These techniques known
as Malliavin-Stein techniques are referenced in a Gaussian setting in the monograph
by I. NOURDIN & G. PECCATI (2012) [111] and the webpage of I. Nourdin [107] gives
a comprehensive list of works in that direction in and outside the Gaussian setting.
The idea to use the Γ-calculus to derive the Stein inequality in an abstract diffusive
setting is due to M. LEDOUX (2012) [84] and the notion of polynomial chaoses comes
from the subsequent work of E. AZMOODEH, S. CAMPESE & G. POLY (2014) [9] that
most of our presentation follows. For discrete models, only little is known and no
general theory exists. For Poisson point processes, the theory of Malliavin-Stein was
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initiated by G. PECCATI, J. L. SOLÉ, M. S. TAQQU & F. UTZET (2010) [121] and fol-
lowed by many important contributions. Note that they already already obtained our
Stein inequality Theorem 2.4.4.2 in dimension 1 for Γ0 in a Poisson setting but did not
link it to the chaotic decomposition as the technology of Γ-calculus on the Poisson
space was not yet available. Eventually, this technology was developed by C. DÖBLER
& G. PECCATI (2018) [40] and that leads to an exact fourth moment theorem on the
Poisson space as we presented in Theorem 2.4.4.6 in a more general setting. For other
discrete models only fourth moment theorems with remainder can be obtained such
as the ones obtained for the twisted hypercube or Rademacher space by C. DÖBLER &
K. KROKOWSKI (2017) [38].
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STABLE LIMIT THEOREMS ON THE POISSON SPACE

3.1. INTRODUCTION

We have seen that, for limit theorems for functionals of Poisson point processes,
we can first derive a Stein inequality with remainder (Theorem 2.4.4.2) and then some
algebraic manipulations on tensor products turn the fourth moment theorem with
a quartic remainder (Theorem 2.4.4.3) into an exact fourth moment theorem (Theo-
rem 2.4.4.6): the law of a functional F living in a fixed Poisson chaos is close to a nor-
mal law if EF 4 is close to 3(EF 2)

2. In other words, the non-diffusive Poisson fourth
moment theorem is as good as the fourth moment theorem in the diffusive Gaussian
setting. In a Gaussian framework, I. NOURDIN & D. NUALART (2010) [109] have ex-
tended the argument for the Stein inequality to measure the distance between the law
of a Poisson functional (not necessarily living in fixed chaos), and the law of a random
variable of the form SN where S is measurable with respect to the underlying Pois-
son process and N is an normal random variable independent of the Poisson point
process. It is therefore very natural to ask if the same analysis can be carried out in a
Poisson framework: this will be done in the coming chapter from the point of view of
quantitative estimates and of stable convergence.

The definition and study of stable convergence is one of the celebrated contribution
of A. RÉNYI (1958) [134] and (1963) [135]; it is a refinement of the notion of convergence
in law. Stable convergence is tailored for studying conditional limits of sequences of
random variables. Thus, stable limits are, typically, mixtures, that is: objects of the
form SN , where N is an independent random element (possibly constructed on an ex-
tended probability space) and S is a random variable. In a semi-martingales setting, J.
JACOD & A. N. SHIRYAEV (2003) [70] obtained archetypal stable convergence results
involving such mixtures. More recently, results by I. NOURDIN & D. NUALART (2010)
[109], D. HARNETT & D. NUALART (2013) [63] and I. NOURDIN, D. NUALART & G.
PECCATI (2016) [110] gave sufficient conditions and quantitative bounds for the stable
convergence of functionals of an isonormal Gaussian processes to a Gaussian mixture,
that is, a mixture as above, where N is taken to be a Gaussian random variable. The
typical application of such results is the study of the asymptotic behaviour of function-
als of a fractional Brownian motion. The three references [109, 63, 110] made a perva-
sive use of the Malliavin techniques to prove such limit theorems. This approach was
initiated by D. NUALART & G. PECCATI (2005) [116] to prove central limit theorems
for iterated Itô integrals. The contribution of D. Nualart & G. Peccati is a milestone in
the theory of limit theorems and has led to an independent field of research, known as
the Malliavin-Stein approach (see the webpage of I. Nourdin [107] for a comprehensive
list of contributions on the subject).

Following the trendsetting work of G. PECCATI, J. L. SOLÉ, M. S. TAQQU & F.
UTZET (2010) [121], the Malliavin-Stein approach was extended, beyond the scope
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of Gaussian fields, to Poisson point processes. Despite being a very active field of
research, the considered limit distributions have been until now prevalently Gaus-
sian [76, 75, 81, 133, 122, 127, 138, 40, 41, 26] or, sometimes, Poisson [120] or Gamma [125,
40], and, to the best of our knowledge, Gaussian mixtures were never considered as
limit distributions. The aim of this chapter is to tackle this problem, by proving an
array of new quantitative and stable limit theorems on the Poisson space, with a tar-
get distribution given by a Gaussian mixture. We rely on a standard interpolation
technique, known as smart path, Malliavin calculus for Poisson point processes as pre-
sented in Section 2.7, and the recently found representation of the carré du champ
of D. BAKRY & M. ÉMERY (1985) [12] on the Poisson space, due to C. DÖBLER & G.
PECCATI (2018) [40] that is extended by our Theorem 2.4.2.4. Our approach allows us
to deal with any target distribution of the form SN , where S is a matrix valued ran-
dom variable (measurable with respect to the underlying Poisson point process) and
N is a Gaussian vector independent of the underlying Poisson point process, provided
mild regularity assumptions on S and on the functional under study (Theorems 3.3.1.4
and 3.3.1.5). Various applications are obtained such as:

• a stable fourth moment theorem on the Poisson space (Proposition 3.4.1.1);

• a first attack at the difficult problem of finding sufficient conditions for the limit
of a U -statistic of order 2 to be a Gaussian mixture in terms of the contractions of
the kernel (Proposition 3.4.2.2);

• the characterization of the stable asymptotic behaviour of quadratic functionals
of the Poisson approximation of Gaussian processes with stationary increments
(Theorem 3.5.2.3).

The chapter is organized as follows. Each section starts with its own short intro-
duction that presents its structure in detail and that recalls, if necessary, the context
and the definition of the main objects under study. Theorems 3.3.1.4 and 3.3.1.5, that
contain bounds and stable limit theorems for Poisson functionals, are the main results
of the chapter and are presented in Section 3.3. A detailed comparison of these results
with the aforementioned works on the Gaussian space of [109, 63, 110] follows in Sec-
tion 3.3.2. A special attention to stochastic integrals is paid in Section 3.4. From our
main results and these generic computations, we deduce, in Sections 3.4.1 and 3.4.2:

• Proposition 3.4.1.1, that is a stable version of the recently proved fourth moment
theorem on the Poisson space of [40, 41].

• Proposition 3.4.2.2, that is a criterion for conditionally normal limit for order 2
U -statistics.

In Section 3.5, given a Gaussian process with stationary increments, we introduce a
class of compound Poisson processes obtained from the spectral representation of the
Gaussian process. Applying Theorems 3.3.1.4 and 3.3.1.5, we prove Theorem 3.5.2.3,
completely characterizing the asymptotic behaviour of a quadratic functional of a such
compound Poisson process.

3.2. PRELIMINARIES

3.2.1. Reminders on stochastic analysis for Poisson point processes. We first recall
some results about stochastic analysis for Poisson point processes that we obtained
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in Sections 2.4 and 2.7. Recall that random variables are defined on a probability space
(Ω,A,P). We fix some measurable space (Z,Z ). Recall that MN̄(Z) is the space of
countable sums of N-valued measures on Z, and that MN̄(Z) can be endowed with the
σ-algebra generated by the cylindrical mappings

(3.2.1.1) ξ ∈ MN̄(Z) ↦→ ξ(B) ∈ N ∪ {∞}, B ∈ Z .

Let ν be a σ-finite measure on (Z,Z ). A random variable η = ην with values in MN̄(Z)
is a Poisson random measure with intensity ν, if the following two properties are satis-
fied:

(P.1) for all B1, . . . , Bn ∈ Z pairwise disjoint, η(B1), . . . , η(Bn) are independent;

(P.2) for B ∈ Z with ν(B) <∞, η(B) ∼ Poisson(ν(B)).

We recall that such random variable exists. We let W = σ(η). Also, for all q ∈ N, we
have defined η(q) the factorial power of η and that Eη(q) = νq. We write H = L 2(ν).
Recall that we use H ⊙q to denote the (νq-almost everywhere) symmetric functions in
L 2(νq). We also have defined the multiple stochastic integrals

(3.2.1.2) Iq : H ⊙q → L 2(W), q ∈ N,

such that

(3.2.1.3) EIq(h)Ip(h̃) = 1q=pq!ν
q(hh̃), q, p ∈ N, h ∈ H ⊙q, h̃ ∈ H ⊙p.

The spaces Cq = im Iq yield a chaotic decomposition of L 2(W), and every F ∈ L 2(W)
can be written as

(3.2.1.4) F =
∑
q∈N

JqF =
∑
q∈N

Iq(hq), hq ∈ H ⊙q, ∀q ∈ N,

where Jq is the projection onto Cq for all q ∈ N. This decomposition gives rise to the
two unbounded Malliavin operators:

(3.2.1.5)

⎧⎪⎪⎨⎪⎪⎩
DomL =

{
F ∈ L 2(W), such that

∑
q∈N q

2E
(
(JqF )

2) <∞
}
,

L : DomL→ L 2(W),

LF = −
∑

q∈N qJqF, F ∈ DomL;

(3.2.1.6)

⎧⎪⎪⎨⎪⎪⎩
DomD =

{
F ∈ L 2(W), such that

∑
q∈N q|hq|2H ⊙q <∞

}
,

D : DomD → L 2(W)⊗ H ,

DzF =
∑

q∈N qIq−1(hq(z, ·)), F ∈ DomD, z ∈ Z.

By Theorems 2.7.2.5 and 2.7.3.3, we know that, for F ∈ DomD, DF = D+F , where

(3.2.1.7) D+
z F = f(η + δz)− f(η), F = f(η) ∈ L 0(W), z ∈ Z.

We also have that

(3.2.1.8) D−
z F = (f(η)− f(η − δz))1η(z)>0, F = f(η) ∈ L 0(W), z ∈ Z.
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By the Mecke formula Theorem 2.7.3.2, the Campbell measure of the Poisson point
process η is η itself, and by Theorem 2.4.2.4, the carré du champ is given by DomΓ =
DomD and

(3.2.1.9) 2Γ(F,G) =

ˆ
D+

z FD
+
z Gν(dz) +

ˆ
D−

z FD
−
z Gη(dz), F,G ∈ DomD.

The carré du champ Γ satisfies the pseudo-chain rule as stated in Lemma 2.4.3.1. Recall
also that A = DomD∩L ∞(W) is an algebra stable by composition with Lipschitz and
smooth functions.

We now give the following product formulae that we will us when carrying out
explicit computations. Let f ∈ L 2

σ (ν
p) and g ∈ L 2

σ (ν
q) such that Ip(f)Iq(g) ∈ L 2(W).

By Lemma 2.4.2.1, there exists hr ∈ L 2
σ (ν

r) such that

(3.2.1.10) Ip(f)Iq(g) =

p+q∑
r=0

Ir(hr).

For f ∈ L 2
σ (ν

p) and g ∈ L 2
σ (ν

q), we define the star contraction of order (l, r), r ∈
{0, . . . , p ∧ q} and l ∈ {0, . . . , r} by

(3.2.1.11) f ⋆lr g(x1, . . . , xp+q−r−l) =

ˆ
f(y[l], x[p−l])g(y[l], x[r−l], x[p−l+1,p+q−r−l])ν

l(dy[l]).

Then by [80, Proposition 5] for f ∈ L 2
σ (ν

p) and g ∈ L 2
σ (ν

q) such that f ⋆lr g ∈
L 2(νp+q−r−l),

(3.2.1.12) Ip(f)Iq(g) =

p∧q∑
r=0

r∑
l=0

r!

(
p

r

)(
q

r

)(
r

l

)
Ip+q−r−l(f ⋆

l
r g).

3.2.2. Extended Malliavin operators. As we will consider stable convergence and
mixtures that involve random variables independent of W, we will extend the defini-
tion ofD+ andD− in that direction. Whenever F ∈ L 0(W) and a is independent of W,
we write D±(aF ) = aD±F . We extend D, L and Γ accordingly. Recall that whenever
F = (F1, . . . , Fd1) ∈ DomD and G = (G1, . . . , Gd2) ∈ DomD, one will write Γ(F,G) to
indicate the d1 × d2 symmetric random matrix whose coefficient of index (i, j) is given
by

(3.2.2.1)
1

2
(Γ(Fi, Gj) + Γ(Fj, Gi)).

For F = (F1, . . . , Fd) ∈ DomD, we defined the matrix-valued Stein kernel of F as the
following d× d random symmetric matrix

(3.2.2.2) S(F ) = −Γ(L−1F, F ),

and recall that, in view of the hypothesis on F , S(F ) ∈ L 1(W) and

(3.2.2.3) EFF T = ES(F ).
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3.2.3. Stable convergence. We conclude this section by defining the notion of stable
convergence that we will study in this chapter. (See [70, Chap VIII Section 5c].) A
sequence of random variables (Fn) ⊂ L 2(Ω,A,P) is said to converge stably towards
F∞ ∈ L 2(Ω,A,P) whenever for all bounded random variables Z, measurable with
respect to W,

(3.2.3.1) (Fn, Z)
law−−−→

n→∞
(F∞, Z).

This convergence is denoted by

(3.2.3.2) Fn
stably−−−→
n→∞

F∞.

Of course, stable convergence implies convergence in law but the reverse implication
does not hold. In practice, we simply need to check the previous convergence for a
smaller class of bounded random variables such that the P-completion of the gener-
ated σ-algebra coincides with W. We let G be the linear span of the random vectors of
the form (e−η(v1), . . . , e−η(vd)) for some vi : Z → [0,∞] with ν(v > 0) < ∞ for all i ∈ [d].
From the proof of Lemma 2.7.1.2, we know that σ(G ) = W and we have that

Proposition 3.2.3.1. Let (Fn)n∈N ⊂ L 2(W). Then, the following are equivalent:

Fn
stably−−−→
n→∞

F∞;(3.2.3.3)

(Fn, G)
law−−−→

n→∞
(F∞, G), ∀G ∈ G .(3.2.3.4)

3.3. MAIN ABSTRACT RESULTS

Outline. The main results of the section are Theorems 3.3.1.4 and 3.3.1.5 and are pre-
sented in Section 3.3.1. Theorem 3.3.1.5 gives sufficient conditions for the stable con-
vergence of a sequence of Poisson functionals to a random variable of the type ΣN for
a matrix-valued Σ ∈ L 2(P) and N ∼ N(0, idRd) independent of W. Informally, we
refer to a random variable of the form ΣN as a Gaussian mixture. Theorem 3.3.1.4 is a
quantitative version of the previous theorem and provides bounds on the distance d2
between the distribution of a Poisson functional and that of a random variable of the
type ΣN for a matrix-valued Σ ∈ L 2(P) and N ∼ N(0, idRd) independent of W. The
proof of Theorem 3.3.1.4 is rather technical and is based on Lemmas 3.3.1.2 and 3.3.1.3,
that we prove in Section 3.3.3. We compare our theorems to existing theorems on the
Gaussian space in Section 3.3.2.

3.3.1. Main results. For F ∈ L 0(W), taking values in R, we defined

(3.3.1.1) ∆(F ) =

ˆ
(D+

z F )
4
ν(dz).

This quantity is well-defined, though possibly infinite. The polynomial remainder
∆(F ) can be regarded as an equivalent, at our level, of the quantities appearing in
the Lyapunov condition associated with the classical central theorem (see, e.g. [16,
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Theorem 27.3]). This remainder already appeared in the discrete setting (see Theo-
rem 2.4.4.3). If moreover EF = 0, we also define

(3.3.1.2) γ2(F ) =

ˆ
(D+

z L
−1F )

2
ν(dz).

Observe that, since L−1F ∈ DomD, by Theorem 2.7.3.2, Eγ2(F ) = EΓ(L−1F ) < ∞.
The quantity γ2(F ) plays a role in controlling remainders when dealing with infinite
chaotic decompositions.

The next statement is a stable convergence result for Poisson functionals and moti-
vates other results of this chapter.

Proposition 3.3.1.1. Let (Fn = (Fn,1, . . . , Fn,d)) ⊂ DomD, Σ = (Σij)
d
i,j=1 ∈ L 2(Ω), N be

a standard d-dimensional Gaussian independent of η. Let C = ΣΣT . Assume that

−Γ(L−1Fn,i, Fn,j)
L 1(W)−−−−→
n→∞

Cij, i, j ∈ [d].(3.3.1.3)

and that either one of the following conditions (3.3.1.4) or (3.3.1.5) is satisfied:

γ2(Fn,i) −−−→
n→∞

0, i ∈ [d],(3.3.1.4a)

sup
n

∆(Fn,i) <∞, i ∈ [d];(3.3.1.4b)

or

∆(Fn,i) −−−→
n→∞

0, i ∈ [d],(3.3.1.5a)

sup
n
γ2(Fn) <∞, i ∈ [d].(3.3.1.5b)

Then, (Fn) converges stably to ΣN .

Proof. Following [109, 63], we will use the characteristic function method. Let G ∈ G .
From Proposition 3.2.3.1 it is sufficient to show that,

(3.3.1.6) (Fn, G)
law−−−→

n→∞
(F∞, G),

where F∞ is a random vector satisfying

(3.3.1.7) E[ei⟨λ,F∞⟩ℓ2 |η] = exp

(
−1

2
|Σλ|ℓ2

)
, λ ∈ Rd.

Let us define for all n ∈ N,

(3.3.1.8) ϕn(λ) = E(ei⟨λ,Fn⟩ℓ2 G), λ ∈ Rd.

Since by assumption,

(3.3.1.9) EF T
n Fn = ES(Fn) −−−→

n→∞
EΣΣT ,

the sequence (Fn, G)n∈N is bounded in L 2(W), and, by the Markov inequality, such a
sequence is tight. It is a well-known fact [71, Lemma 5.2 & Theorem 5.3], that up to
passing to a sub-sequence, we obtain that there exists a random vector F∞ such that

(3.3.1.10) (Fn, G)
law−−−→

n→∞
(F∞, G),
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and such that

(3.3.1.11) ϕn(λ) −−−→
n→∞

ϕ∞(λ) := E(ei⟨λ,F∞⟩ℓ2 G), λ ∈ R.

Let j ∈ [d]. Recall [71, Lemma 4.11], that is a sequence of random variables converges
in law and is uniformly integrable, then the sequence of mean also converge. Since
(Fn)n∈N is bounded in L 2(W), it is also uniformly integrable, and, by [71, Lemma
4.11], we find that

(3.3.1.12) ∂jϕn(λ) = iE(Fn,j e
i⟨λ,Fn⟩ℓ2 G) −−−→

n→∞
iE(F∞,j e

i⟨λ,F∞⟩ℓ2 G) = ∂jϕ∞(λ).

On the other hand by integration by parts (3.2.2.3), we obtain that

(3.3.1.13) ∂jϕn(λ) = iEΓ(L−1Fn,j, e
i⟨λ,Fn⟩ℓ2 G).

Combining (2.4.2.5) and (2.4.2.6) and Theorem 2.7.3.2 then using the pseudo chain rule
Lemma 2.4.3.1 yields

∂jϕn(λ) = iEGΓ(L−1Fn,j, e
i⟨λ,Fn⟩ℓ2 ) + iE ei⟨λ,Fn⟩ℓ2 Γ(L−1Fn,j, G)

= −
d∑

k=1

λkEG ei⟨λ,Fn⟩ℓ2 Γ(L−1Fn,j, Fn,k)

+Rτλ(Fn, L
−1Fn,j) + iE ei⟨λ,Fn⟩ℓ2 Γ(L−1Fn,j, G),

(3.3.1.14)

where τλ(x) = ei⟨λ,x⟩ℓ2 for x ∈ Rd. We fix j and k ∈ [d], and we write Sn = −Γ(L−1Fn,j, Fn,k)
(n ∈ N). Let λ ∈ Rd. By (3.3.1.3), we have that

(3.3.1.15) EG ei⟨λ,Fn⟩ℓ2 Sn −−−→
n→∞

EG ei⟨λ,F∞⟩ℓ2 Cij.

By the properties of the set G , the Cauchy-Schwarz inequality or by Hölder’s inequal-
ity and Theorem 2.7.3.2, we have that

E|Γ(L−1Fn,j, G)| ≤ cγ2(Fn,j)
1
2 ;(3.3.1.16)

E|Γ(L−1Fn,j, G)| ≤ c∆(Fn,j)
1
4 ;(3.3.1.17)

|Rτλ(Fn, L
−1Fn,j) ≤ λ2

(
d∑

i=1

γ2(Fj)
1
2

)2 d∑
k,l=1

(
∆(Fk)

1
2∆(Fl)

1
2

) 1
2
.(3.3.1.18)

Therefore, combining (3.3.1.15) with either (3.3.1.4) or (3.3.1.5), we find that

(3.3.1.19) ∂jϕ∞(λ) = −
d∑

k=1

λkE(ei⟨λ,F∞⟩ℓ2 CkjG), λ ∈ Rd, j ∈ [d].

In view of the density of G in L ∞(W), this yields the differential equation

(3.3.1.20)
∂

∂λj
E[ei⟨λ,F∞⟩ℓ2 |η] = −

d∑
k=1

λkCkjE[ei⟨λ,F∞⟩ℓ2 |η], λ ∈ Rd, j ∈ [d].

The unique solution to this differential system is (3.3.1.7).
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The condition (3.3.1.3) involves L 1(W) convergence. Such convergence is, in gen-
eral, established by proving a convergence in L 2(W). However, we do not expect,
in general, convergence in L 2(W). We subsequently develop more refined version
of Proposition 3.3.1.1 that allows to deal with weaker form of convergence (such as
the convergence in law). We start by proving a quantitative counterpart to Proposi-
tion 3.3.1.1. Note also that, in this case, we work with the symmetric random matrix
S(F ) rather than its non-symmetric version (see the discussion in Section 3.3.2). Stat-
ing our results requires some further notations. We identify the real matrices of size
d×dwith vectors of Rd2 . For a square-integrable random variable F , with values in Rd,
we introduce quantities related to ∆(F ) and γ2(F ), that we used in Proposition 3.3.1.1.
We let

(3.3.1.21) rn(F ) = E
ˆ

|D+
z F |nℓ1ν(dz),

and

(3.3.1.22) γ2(F ) = r2(L−1F ).

For every multivariate square-integrableF with EF = 0, we have thatL−1F ∈ DomL ⊂
DomD. Therefore, by the Cauchy-Schwarz inequality D+L−1FD+L−1F ∈ L 1(P ⊗ ν)
and γ2(F ) <∞. The quantity rn(F ) is always well-defined, although possibly infinite.
It is finite if D+F ∈ L n(W). Given F = (F1, . . . , Fd) ∈ DomD, Σ = (Σij) ∈ DomD,
and G = (G1, . . . , Gd) ∈ DomD, we introduce the following quantities that appear in
Theorems 3.3.1.4 and 3.3.1.5.

ϵ4(F,Σ) = r4(F )
(
r4/3(ΣΣT ) + r8/3(F )

1/2
+ r8/3(Σ)

1/2
)
;(3.3.1.23)

ϵ∞(F,Σ) = γ2(F )
(
r2(ΣΣT ) + r4(Σ)

1/2
+ r4(F )

1/2
)
;(3.3.1.24)

c0 = (2
1
3 + 2−

2
3 )

(
2
√
d+ E|F |ℓ2 +

√
E|Σ|2ℓ2

) 2
3

;(3.3.1.25)

τ(ϵ) = max

⎛⎝c0(√
2π

4

√
dϵ

) 1
3

, 12
√
dϵ

⎞⎠ , ∀ϵ ≥ 0.(3.3.1.26)

Most of our analysis relies on the following central lemma from which we deduce
several important bounds. Let us point out that we did not try to optimize the bounds,
favoring instead clarity and conciseness.

Lemma 3.3.1.2. Let F = (F1, . . . , Fd) ∈ DomD, Σ = (Σij) ∈ DomD, let N be a standard
d-dimensional Gaussian vector independent of η, and let G ∈ DomD. Then, for all ϕ ∈
C 3(Rd), the following bound holds

|Eϕ(G+ F )− Eϕ(G+ ΣN)| ≤ |∇2ϕ|ℓ∞,∞(2E|S(F )− ΣΣT |ℓ1

+ E
ˆ

|D+
z L

−1F |ℓ1 |D+
z G|ℓ1ν(dz))

+ 5|∇3ϕ|ℓ∞,∞E
ˆ

|D+
z L

−1F |ℓ1
(
|D+

z (ΣΣ
T )|ℓ1 + |D+

z Σ|2ℓ1 + |D+
z F |2ℓ1 + |D+

z G|2ℓ1
)
ν(dz)

(3.3.1.27)
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Moreover, the two following bounds are also valid

|Eϕ(F +G)− Eϕ(ΣN +G)| ≤ |∇2ϕ|ℓ∞,∞E|S(F )− ΣΣT |

+ |∇2ϕ|ℓ∞,∞r
4(F )

1/4
r4/3(G)

+ |∇3ϕ|ℓ∞,∞r
4(F )

1/4
(
r4/3(ΣΣT ) + r8/3(F )

1/2
+ r8/3(Σ)

1/2
+ r8/3(G)

1/2
)
;

(3.3.1.28)

|Eϕ(F +G)− Eϕ(ΣN +G)| ≤ |∇2ϕ|ℓ∞,∞E|S(F )− ΣΣT |

+ γ2(F )
1/2
(
|∇2ϕ|ℓ∞,∞r

2(G) + |∇3ϕ|ℓ∞,∞

(
r2(ΣΣT ) + r4(F )

1/2
+ r4(Σ)

1/2
+ r4(G)

1/2
))

.

(3.3.1.29)

The next lemma appears implicitly in the proof of [110, Theorem 3.4] in the case
d = 1. We state it here for d ∈ N and give an outline of the proof (for completeness) in
Section 3.3.3.

Lemma 3.3.1.3. Let F = (F1, . . . , Fd) ∈ DomD, Σ = (Σij) ∈ DomD and N be a standard
d-dimensional Gaussian independent of η. Assume that for a, b > 0, and all ϕ ∈ C 3(Rd) with
bounded derivatives,

(3.3.1.30) |Eϕ(F )− Eϕ(ΣN)| ≤ a|∇2ϕ|ℓ∞,∞ + b|∇3ϕ|ℓ∞,∞.

Then,

(3.3.1.31) d2(F,ΣN) ≤ τ(a+ b),

where τ is defined in (3.3.1.26).

The following statement is one of the main results of the chapter. Recall the defini-
tion of ϵ4, ϵ∞ and τ in (3.3.1.23), (3.3.1.24) and (3.3.1.26).

Theorem 3.3.1.4. Let F = (F1, . . . , Fd) ∈ DomD, Σ = (Σij) ∈ DomD, N be a standard
d-dimensional Gaussian independent of η. Let ϵ ∈ {ϵ4(F,Σ), ϵ∞(F,Σ)}. Then,

(3.3.1.32) d2(F,ΣN) ≤ τ
(
E|S(F )− ΣΣT |+ ϵ

)
.

Proof. For simplicity, we do not specify the dependence in F and Σ in ϵ4 or ϵ∞. The
bounds (3.3.1.32) are direct consequences of Lemma 3.3.1.3, andLemma 3.3.1.2 in the
case G = 0 and. Indeed, when ϵ = ϵ∞, combining (3.3.1.28) and (3.3.1.31) produces
(3.3.1.32). When ϵ = ϵ4, combining Lemma 3.3.1.2 and (3.3.1.31) produces (3.3.1.32).
This concludes the proof.

As announced, we now establish the qualitative result similar to Proposition 3.3.1.1
with a weakened version of (3.3.1.3).

Theorem 3.3.1.5. Let (Fn) ⊂ DomD (possibly vector-valued), Σ = (Σij) ∈ L 0(Ω), N be
a standard d-dimensional Gaussian independent of η. Let τ denotes either the topology of the
convergence in law or the topology of the convergence stable. Assume that

(3.3.1.33) S(Fn)
τ−−−→

n→∞
ΣΣT ,
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and that there exists n0 ∈ N such that S(Fn) ≥ 0 for all n ≥ n0. Assume, moreover, that
either one of the following conditions (3.3.1.34) or (3.3.1.35) is satisfied:

γ2(Fn) −−−→
n→∞

0,(3.3.1.34a)

sup
n≥n0

r4(Fn) + r2(S(Fn)) + r4(S
1
2 (Fn)) <∞;(3.3.1.34b)

or

r4(Fn) −−−→
n→∞

0,

(3.3.1.35a)

sup
n≥n0

r2(Fn) + r4(Fn) + r2(S
1
2 (Fn)) + r4(S

1
2 (Fn)) + r1(S(Fn)) + r2(S(Fn)) <∞.

(3.3.1.35b)

Then, (Fn) converges to ΣN for the topology τ .

Proof. Note that, when dealing with (3.3.1.35), we need to check that sup r8/3(Fn) +
r8/3(Σ) + r4/3(ΣΣT ) < ∞, under (3.3.1.35b). This is a consequence of the following
classical interpolation result: for p, q ≥ 0 and θ ∈ (0, 1) such that θ

p
+ 1−θ

q
= 1, then,

(3.3.1.36) |ϕ|1 ≤ |ϕ|θp|ϕ|1−θ
q ,

where ϕ is any measurable function and | · |l means the L p-norm with respect to any
measure. Applying this inequality with θ = 1/2, p = 3/2 and q = 3/4, we obtain that

(3.3.1.37) r4/3(ΣΣT ) ≤ r2
(
ΣΣT

)1/4
r1
(
ΣΣT

)1/2
; and r8/3(Σ) ≤ r4(Σ)

1/8
r2(Σ)

1/4
.

Let us prove the stable convergence. Let ϕ be smooth with bounded derivatives and
G ∈ G . We apply the triangle inequality to obtain
(3.3.1.38)
|Eϕ(G+F )−Eϕ(G+ΣN)| ≤ |Eϕ(G+F )−Eϕ(G+S

1
2 (F )N)|+|Eϕ(G+S

1
2 (Fn))−Eϕ(G+ΣN)|.

By either (3.3.1.35) or (3.3.1.34) and Lemma 3.3.1.2 we find that the first term on the
right-hand side vanishes as n → ∞. By assumption of stable convergence, the first
term on the right-hand side also vanishes. Let a, b ∈ Rd. Without loss of generality, we
assume that ai ̸= 0, for all i ∈ [d]. We take ϕ(x) = eia·x andG = ( b1

a1
e−η(v1), . . . , bd

ad
e−η(vd))

where vi ≥ 0 and ν(vi > 0) <∞ for all i ∈ [d]. Hence, we have proved that,

(3.3.1.39) ei(a·Fn+b·G̃) → ei(a·ΣN+b·G̃), for all G̃ ∈ G .

This gives the stable convergence by Proposition 3.2.3.1. The proof for the topology of
the convergence in law is the same as for the stable convergence but with G = 0. This
concludes the proof.

3.3.2. Comparison with the results on Gaussian spaces. In Theorems 3.3.1.4 and 3.3.1.5,
when S(F ) is close to ΣΣT and ϵ4 or ϵ∞ is small then the distribution of the functional
F = (F1, . . . , Fd) will be close to that of the Gaussian mixture ΣN . The comparison of
S(F ) and ΣΣT is similar to the Gaussian cases: the quantity −⟨DF,DL−1F ⟩ whereD is
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the Malliavin derivative and L−1 the pseudo-inverse of the Ornstein-Uhlenbeck gen-
erator on the Gaussian space controls the asymptotic variance of the functional F . In
this respect, let us refer to [111, Theorem 5.3.1] for deterministic variance and to [109,
Theorem 3.1], to [63, Theorem 3.2] and to [110, Theorem 5.1] for random asymptotic
variances. Let us point out some differences of our results with the Gaussian results
of [109, 63, 110].

First, on the Gaussian spaces, the authors of [109, 63, 110] work with iterated Sko-
rokhod integrals of any order q ∈ N. That is, given u such that F = δqu, they give
analytical conditions on u and F for the stable convergence. In the particular case
of q = 1, we can find our condition on the random covariance S(F ). Indeed, since
L = −δD, we can always choose u = −DL−1F in their theorems (note that other
choices are possible). Let us point out that, due to the lack of diffusiveness on the
Poisson space, it does not seem possible to reach a result involving iterated Kabanov
integrals, via our method of proof, that is, via integration by parts.

Second, we obtain two different bounds involving respectively r4(F ) and γ2(F )
to control the remainders while on the Gaussian space [109, 63, 110] obtain only one
bound involving two terms as, e.g. the one appearing in [110, Corollary 3.2]. The
reader can easily verify that applying the Cauchy-Schwarz inequality or the Hölder
inequality on one of their bounds (for instance, in [110, Equation 3.1]) can lead to
two bounds similar to our estimates. In our case, due to the lack of diffusiveness, we
obtain extra terms with respect to [110, Corollary 3.2]. We gather all of those terms
in the synthetic quantities r4(F ) and γ2(F ). Aggregating all the terms in one quantity
helps us to to interpret the estimates. The bound involving ϵ∞ and γ2(F ) is useful
whenever one deals with sequences of random variables Fn =

∑
q∈N Iq(fn,q) such that

EIq(fn,q)2 = o(EF 2
n). In that case, with Gn = Fn/(EF 2

n),there exists a sequence of
integers kn converging to ∞ such that

(3.3.2.1) Eγ2(Gn) ≤
1

kn
.

However, for variables of finite chaotic decomposition (or with a dominant term of
finite order), γ2(Fn) and S(Fn) are typically of the same order and we, therefore, need
ϵ4 and r4(F ). Note that bounds involving polynomial quantities such as r4(F ) =´
|D+

z F |4 are quite common in the Poisson setting see, among others, [121, Equation
3.4], [123, Equation 23], or [40, Equation 1.8].

Thirdly, the authors of [109, 63, 110] obtained results involving the convergence in
L 1(W) of the Stein matrix S(F ). In our case, when the limiting covariance is non-
negative, we can replace this condition by a weaker form of convergence such as the
stable convergence. Note that, a priori, the quantitative results of [110] can be mod-
ified in order to obtain a result similar to Theorem 3.3.1.5. In fact, using the triangle
inequality and selecting u = DL−1F in [110, Theorem 3.4], we obtain the following re-
sult, that is the equivalent of our Theorem 3.3.1.5 in the setting of isonormal Gaussian
processes.

Theorem 3.3.2.1. We work in the setting of an isonormal Gaussian processes over a separable
Hilbert space H = L 2(ν) as described in Section 2.5. Let (Fn) ∈ DomD assume that there
exists Σ ∈ L 0(Ω) such that

(3.3.2.2) S(Fn)
law−−−→

n→∞
Σ2;
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and that either one of the following holds

|DL−1Fn|H
L 2(W)−−−−→
n→∞

0;(3.3.2.3a)

sup
n∈N

E|DS(Fn)|2H <∞,(3.3.2.3b)

or

E
ˆ

(DzFn)
4ν(dz) −−−→

n→∞
0;(3.3.2.4a)

sup
n∈N

E
ˆ

(DzS(Fn))
4
3ν(dz) <∞.(3.3.2.4b)

Then, Fn
law−−−→

n→∞
ΣN .

Fourthly, due to the lack of diffusiveness, our conditions in the quantitative theo-
rem Theorem 3.3.1.4 involve Σ and not just ΣΣT . This adds an extra difficulty because
in practice, we only have access to ΣΣT via the convergence of S(Fn). We do not expect
that this term can disappear in general.

Lastly, in the multidimensional case, our bound holds for every random matrix Σ
while in [110], the authors are limited to the case of a diagonal matrix. In [63], the
authors were also able to deal with generic matrices but their method relies on the so-
called method of the characteristic function that is not known to provide quantitative
bounds. Also, in [63], in place of S(F ), the authors take the possibly non-symmetric
random matrix M whose coefficient (i, j) is given by Γ(L−1Fi, Fj). In this case, for
d = 2 with F1 = Iq(f) and F2 = Ip(f) with p ̸= q then M12 = p/qM21. Thus, M
cannot be symmetric, hence an acceptable covariance matrix, unless it is diagonal. In
many cases, the result of [63] has the same limitation as the one of [110] and that our
result Theorem 3.3.1.4 does not have. Note that our result Theorem 3.3.1.5 has this
limitation has we could not work with the symmetrized Stein matrix. Remark that
for deterministic target covariance, this remark does not apply, as stochastic integrals
living in different chaoses are uncorrelated.

3.3.3. Proof of the lemmas. We start by recalling the following useful bound for the
operator L−1. Namely, from [81, Lemma 3.4], we have that, for all p ≥ 1,

(3.3.3.1) rp(L−1F ) ≤ rp(F ),

By (2.4.2.5) and (2.4.2.6), we also obtain

(3.3.3.2) D+
z F

2 = 2FD+
z F + (D+

z F )
2 and D−

z F
2 = 2FD−

z F − (D−
z F )

2
.

We now give a proof of the key lemma.

Proof of Lemma 3.3.1.2. As usual, we work first with F , G and Σ ∈ A . For short, we
write Φ2 = |∇2ϕ|ℓ∞,∞ and Φ3 = |∇3ϕ|ℓ∞,∞. Let (ut)t∈[0,1] be a smooth [0, 1]-valued path
such that u0 = 0 and u1 = 1 and define

(3.3.3.3) Ft = G+ utF + u1−tΣN.
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Let g(t) = Eϕ(Ft). Then,

(3.3.3.4) Eϕ(F +G)− Eϕ(ΣN +G) =

ˆ 1

0

ġtdt.

An explicit computation yields

(3.3.3.5) ġt = E[∇ϕ(Ft) · (u̇tF − u̇1−tΣN)].

Since A is a linear space, in view of the assumptions, Ft ∈ A . Since ∇ϕ is Lipschitz,
∇ϕ(Ft) ∈ DomD. Using the integration by part formula (3.2.2.3) and the pseudo-chain
rule Lemma 2.4.3.1, we infer that

(3.3.3.6) E[∇ϕ(Ft) · F ] = E[∇2ϕ(Ft) · Γ(L−1F, Ft)] +
∑
i

ER∂iϕ(Ft, L
−1Fi).

Owing to the bi-linearity of Γ,

(3.3.3.7) Γ(L−1F, Ft) = Γ(L−1F,G) + utΓ(L
−1F, F ) + u1−tΓ(L

−1F,ΣN).

As N is independent of η, we have that D+(ΣN) = (D+Σ)N and D−(ΣN) = (D−Σ)N .
Eventually,

E[∇ϕ(Ft) · F ] = E[∇2ϕ(Ft) · Γ(L−1F,G)] + utE[∇2ϕ(Ft) · Γ(L−1F, F )]

+ u1−t

∑
i,j,k

E[∂ijϕ(Ft)NkΓ(L
−1Fi,Σjk)] +

∑
i

ER∂iϕ(Ft, L
−1Fi).(3.3.3.8)

Recall that, by integration by parts, ENψ(N) = E∇ψ(N), for all smooth ψ. Let

(3.3.3.9) ψ(x) = ∂ijϕ(G+ utF + u1−tΣx).

Then,

(3.3.3.10) ∂kψ(x) = u1−t

∑
l

Σlk∂ijl(G+ utF + u1−tΣx).

As a consequence, by the previous Gaussian integration by parts,

(3.3.3.11) E[∂ijϕ(Ft)NkΓ(L
−1Fi,Σjk)] = u1−t

∑
l

E[∂ijlϕ(Ft)Γ(L
−1Fi,Σjk)Σlk].

Similarly, we obtain that

(3.3.3.12) E[∇ϕ(Ft) · ΣN ] = u1−tE[∇2ϕ(Ft) · ΣΣT ].

Combining (3.3.3.5), (3.3.3.8), (3.3.3.11) and (3.3.3.12), we find that

ġt = E
[
∇2ϕ(Ft) ·

(
u̇tΓ(L

−1F,G) + utu̇tΓ(L
−1F, F ) + u1−tu̇1−tΣΣ

T
)]

+ u̇tu
2
1−t

∑
ijkl

E[∂ijkϕ(Ft)Γ(L
−1Fi, Sjl)Skl] + u̇t

∑
i

ER∂iϕ(Ft, L
−1Fi).

(3.3.3.13)
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We subsequently examine carefully the two last terms appearing on the right-hand
side of (3.3.3.13). First, we focus on

∑
i ER∂iϕ(Ft, L

−1Fi). From the definition of Rϕ in
Lemma 2.4.3.1, we derive that∑

i

ER∂iϕ(Ft, L
−1Fi) =

1

2

∑
ijk

E
ˆ
D+

z L
−1FiD

+
z Ft,jD

+
z Ft,kR

+
ijk(z)ν(dz)

− 1

2

∑
ijk

E
ˆ
D−

z L
−1FiD

−
z Ft,jD

−
z Ft,kR

−
ijk(z)η(dz),

(3.3.3.14)

where

(3.3.3.15) R±
ijk(z) =

ˆ 1

0

ˆ 1

0

α∂ijkϕ(Ft ± αβD±
z Ft)dαdβ.

Note that |Rijk(z)| ≤ |∂ijkϕ|∞, and thus, by the Mecke formula,

(3.3.3.16)

⏐⏐⏐⏐⏐∑
i

ER∂iϕ(Ft, L
−1Fi)

⏐⏐⏐⏐⏐ ≤∑
ijk

|∂ijkϕ|∞
ˆ

|D+
z L

−1Fi||D+
z Ft,jD

+
z Ft,k|.

By Young’s inequality and the fact that (a+ b)2 ≤ 2(a2 + b2), we have that

|D+
z Ft,jD

+
z Ft,k| ≤ 2

(
(D+

z Gj)
2
+ (D+

z Gk)
2
+ u2t (D

+
z Fj)

2

+u2t (D
+
z Fk)

2
+ u21−t(D

+
z (ΣN)j)

2
+ u21−t(D

+
z (ΣN)k)

2
)
.

(3.3.3.17)

Therefore, we obtain that∑
i

E|R∂iϕ(Ft, L
−1Fi)| ≤

4Φ3E
ˆ

|D+
z L

−1F |ℓ1
(
|D+

z G|2ℓ2 + u2t |D+
z F |2ℓ2 + u21−t|D+

z ΣN |2ℓ2
)
ν(dz).

(3.3.3.18)

Since N is independent of η and all the other terms in the previous expression are
measurable with respect to η, by expanding the squares, we find that
(3.3.3.19)∑
i

E|R∂iϕ(Ft, L
−1Fi)| ≤ 4Φ3E

ˆ
|D+

z L
−1F |ℓ1(|D+

z G|2ℓ2 +u2t |D+
z F |2ℓ2 +u21−t|D+

z Σ|2ℓ2)ν(dz).

Now, we focus on
∑

ijkl E∂ijkϕ(Ft)Γ(L
−1Fi,Σjl)Σkl. By (2.4.2.5) and (2.4.2.6),

(3.3.3.20) Γ(L−1Fi,Σjl)Σkl = Γ(L−1Fi,ΣjlΣkl)− Γ(L−1Fi,Σjl,Σkl),

where

Γ(A,B,C) =
1

2

ˆ
D+

z AD
+
z BD

+
z Cν(dz)−

1

2

ˆ
D−

z AD
−
z BD

−
z Cη(dz).

Thus, by the Mecke formula, we deduce that
(3.3.3.21)⏐⏐⏐⏐⏐∑
ijkl

E∂ijkϕ(Ft)Γ(L
−1Fi,Σjl)Σkl

⏐⏐⏐⏐⏐ ≤ Φ3E
ˆ

|D+
z L

−1F |ℓ1(|D+
z (ΣΣ

T )|ℓ1+|D+
z ΣD

+
z Σ

T |ℓ1)ν(dz).
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Notice that, for a matrix M ,

(3.3.3.22) |M |2ℓ2 = tr(MMT ) ≤ |MMT |ℓ1 ≤ |M |2ℓ1 ,

and that by the Mecke formula and the triangular inequality,

(3.3.3.23) E|Γ(L−1F,G)|ℓ1 ≤ E
ˆ

|D+
z L

−1F |ℓ1|D+
z G|ℓ1 .

Thus, in view of (3.3.3.19), (3.3.3.21), (3.3.3.22) and (3.3.3.23) choosing ut = t2/3 in
(3.3.3.13) yields the bound

|Eϕ(G+ F )− Eϕ(G+ ΣN)| ≤ 2Φ2E|S(F )− ΣΣT |ℓ1

+ Φ2E
ˆ

|D+
z L

−1F |ℓ1|D+
z G|ℓ1ν(dz)

+ Φ3E
ˆ

|D+
z L

−1F |ℓ1|D+
z (ΣΣ

T )|ℓ1ν(dz)

+ 5Φ3E
ˆ

|D+
z L

−1F |ℓ1|D+
z Σ|2ℓ1ν(dz)

+ 4Φ3E
ˆ

|D+
z L

−1F |ℓ1|D+
z G|2ℓ2ν(dz)

+
4

3
Φ3E
ˆ

|D+
z L

−1F |ℓ1|D+
z F |2ℓ2ν(dz).

(3.3.3.24)

Indeed, the reader can immediately verify that with such a choice for u, we have that
(3.3.3.25)ˆ 1

0

u̇t = 1;

ˆ 1

0

utu̇tdt =

ˆ 1

0

u1−tu̇1−t = 2;

ˆ 1

0

u̇tu
2
1−t =

4

9

π√
3
≤ 1;

ˆ 1

0

u2t u̇t =
1

3
.

Thereby, we obtain (3.3.1.27). By applying the Cauchy-Schwarz inequality in (3.3.1.27),
we obtain immediately Lemma 3.3.1.2. To obtain (3.3.1.28), we apply Hölder’s inequal-
ity and (3.3.3.1). The proof is complete.

Finally, we conclude the section with the proof of Lemma 3.3.1.3.

Proof of Lemma 3.3.1.3. Let ϕ ∈ C 2(R) be 1-Lipschitz on Rd with |∇2ϕ|op ≤ 1. For ϵ ∈
[0, 1], we write

(3.3.3.26) ϕϵ(x) = Eϕ(
√
1− ϵx+

√
ϵN), x ∈ Rd.

By Gaussian integration by parts, we have that

(3.3.3.27) ∂jϕϵ(x) =
√
1− ϵE∂jϕϵ(x) =

√
1− ϵ

ϵ
ENjϕϵ(x).

In a way that,

(3.3.3.28) ∂ijϕϵ(x) =
ϵ√
1− ϵ

ENj∂iϕϵ(x).

Hence, we conclude that

(3.3.3.29) |∇2ϕϵ|ℓ2,∞ ≤ ϵ√
1− ϵ

√
d ≤

√
dϵ−1.
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In the same way (see [127] for details), we prove that

(3.3.3.30) |∇3ϕϵ|ℓ2,∞ ≤
√
2π

4

ϵ
3
2

√
1− ϵ

√
d ≤

√
2π

4

√
dϵ−1.

Also we have that

(3.3.3.31) |ϕ(x)− ϕϵ(x)| ≤
√
ϵ(|N |ℓ2 + |x|ℓ2).

Eventually, we obtained

|∇2ϕϵ|ℓ2,∞ ≤
√
dϵ−1;(3.3.3.32a)

|∇3ϕϵ|ℓ2,∞ ≤
√
2π

4

√
dϵ−1;(3.3.3.32b)

|Eϕ(G)− Eϕϵ(G)| ≤ ϵ
1
2

(√
d+ E|G|ℓ2

)
.(3.3.3.32c)

By independence, E|ΣN |2ℓ2 = E|Σ|2ℓ2 . Thus, by Jensen’s inequality, E|ΣN |ℓ2 ≤
√
E|Σ|2ℓ2 .

Hence, applying the triangle inequality and the bounds (3.3.1.30) and (3.3.3.32a) yields:

(3.3.3.33) |Eϕ(F )− Eϕ(ΣN)| ≤
√
2π

4

√
dϵ−1(a+ b) +

√
ϵ

(
2
√
d+ E|F |ℓ2 +

√
E|Σ|2ℓ2

)
.

The function R ∋ ϵ ↦→
√
ϵu+ϵ−1v attains its minimum at ϵ0 =

(
2 v
u

)2/3, where it takes the
value (21/3 + 2−2/3)u2/3v1/3. If ϵ0 ≤ 1, we choose ϵ = ϵ0 and we choose ϵ = 1 otherwise.
This yields the announced inequality.

3.4. STABLE LIMIT THEOREMS FOR STOCHASTIC INTEGRALS

Outline. We explicit our main bound when the functional F has finite chaotic decom-
position. These computations are useful to deduce Proposition 3.4.1.1, that is a stable
version of the fourth moment theorem of C. DÖBLER & G. PECCATI (2018) [40] and C.
DÖBLER, A. VIDOTTO & G. ZHENG (2018) [41] and Proposition 3.4.2.2 that gives suffi-
cient condition for a Poisson U -statistics of order 2 to converge to a Gaussian mixture.
The crucial result is Theorem 2.4.2.4. It shows that our definition of the carré du champ
in terms ofD+ andD− coincides with the usual representation in term of the generator
of the Ornstein-Uhlenbeck semigroup à la Bakry-Emery [13, Section 1.4.2].

3.4.1. A stable fourth-moment theorem. In a recent reference, C. DÖBLER, A. VI-
DOTTO & G. ZHENG (2018) [41] proved a multidimensional fourth-moment theorem
on the Poisson space, thus refining and generalizing the previous findings of C. DÖBLER
& G. PECCATI (2018) [40]. It is worth noting that taking G = 0 and S determinis-
tic in Lemma 3.3.1.2 yields the same bound as [40, Equation 4.2], that was also ob-
tained in Theorem 2.4.4.2 with less restrictive assumptions on the functional F : the
fact that we can achieve a statement with optimal assumptions is due to the fact that
we use Theorem 2.4.2.4. In fact, as a crucial application of Theorem 3.3.1.4, we deduce
a stable fourth-moment theorem on the Poisson space.
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Proposition 3.4.1.1 (Stable fourth-moment theorem). For n ≥ 1, let (hin) ⊂ L 2(νqi) and
let Fn = (Iq1(h

1
n), . . . , Iqd(h

d
n)). Assume F ∈ L 4(W)

d. Let σ be a deterministic d× d matrix.
If:

EFnF
T
n −−−→

n→∞
σσT ;(3.4.1.1)

E(F i
n)

4 −−−→
n→∞

3
(
σσT

ii

)2
, ∀i = 1, . . . , d.(3.4.1.2)

Then, (Fn) converges stably to σN .

Remark 20. Proposition 3.4.1.1 is very close to [26, Theorem 2.22]. However, one
condition of their theorem requires that the norms of each of the individual star-
contractions vanish. This is strictly stronger than a fourth-moment converging to 3
times the square of the second moment as, by the product formula, this condition
translates in vanishing properly chosen linear combinations of the star-contractions
(see for instance, [39]). It follows particularly that the statement of Proposition 3.4.1.1
is outside of the scope of [26].

Proof. We apply Proposition 3.3.1.1 with Σ = σ. First of all, (Iqi(f
i
n)) ⊂ DomL ⊂

DomD. Let us check that (3.3.1.5) is satisfied. Moreover, by the isometry property of
stochastic integrals,

(3.4.1.3) Eγ2(Fn,i) =
∑
i

qiqi!ν
qi(hin

2
) ≤ max qiE(Fn,i)

2, i ∈ [d].

This quantity is bounded since, by assumption,

(3.4.1.4) E|Fn|2 = trEFnF
T
n −−−→

n→∞
trσσT .

This shows (3.3.1.5b). From [40, Lemma 3.2] or Theorem 2.4.4.3, we know that when
F = Iq(f),

(3.4.1.5) E∆(F ) ≤ (4q − 3)
(
EF 4 − 3(EF 2)

2
)
.

Hence, by assumption

(3.4.1.6) ∆(Fn,i) −−−→
n→∞

0, i ∈ [d].

This shows (3.3.1.5a).
In order to conclude with Theorem 3.3.1.5, we are left to show (3.3.1.3), namely

(3.4.1.7) Γ(L−1Fn,i, Fn,j)
L 1(W)−−−−→
n→∞

cij,

where C = σTσ. But we know from Theorem 2.4.4.3, that under our assumptions,

(3.4.1.8) E|Γ(L−1Fn,i, Fn,j)− v
(n)
i,j | −−−→

n→∞
0,

where v(n) = EF T
n Fn. This concludes the proof,as we assumed that v(n) −−−→

n→∞
c.
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Remark 21. Let Σ = (Σij) ∈ DomD satisfying r3(Σ) + r8/3(Σ) + r4(ΣΣT ) < ∞. If we
assume that

S(Fn)
L 1(W)−−−−→
n→∞

ΣΣT ;(3.4.1.9)

E(F i
n)

4 −−−→
n→∞

3
(
E
(
ΣΣT

)
ii

)2
, ∀i = 1, . . . , d.(3.4.1.10)

Then, from the previous computations, Σ = σ is deterministic. This shows that the
fourth-moment theorems cannot capture phenomena with asymptotic random vari-
ances.

3.4.2. A threshold for non-normality of U -statistics of order 2: a tentative statement.
In view of the results of this chapter, and of the fact that our findings allow us to re-
trieve a stable version of the multidimensional fourth moment theorem, it is tempting
to use our general stable convergence results in order to find conditions, for a sequence
of U -statistics to converge towards a mixture of a Gaussian random variable -such a re-
sult might have applications, for instance in stochastic geometry. We will prove these
results -that seem to us very natural- in Propositions 3.4.2.1 and 3.4.2.2. However,
our subsequent discussion shows that these findings fail to capture some elementary
stable convergence results on the Poisson space. Recall that a U -statistic of order 2 is
simply a random variable of the form η(2)(f) for some f ∈ L 1

σ (ν
2) ∩ L 2

σ (ν
2) and that

from the definition of stochastic integrals (2.7.2.13), we have (see also Section 2.7.3)

(3.4.2.1) η(2)(f) = I2(f) + 2I1(f̃) + ν2(f),

where

(3.4.2.2) f̃ =

ˆ
f(z, ·)ν(dz).

We, thus, immediately see that Eη(2)(f) = ν2(f) and Var (η2(f)) = ν2(f 2) + ν(f̃ 2)
and that there are two competing terms in η(2)(f) − ν2(f). The next two statements
show that when the term I1(f̃) dominates, the U -statistics typically exhibit a Gaussian
behaviour, while when I2(f) dominates, the typical behaviour is close to those of a
Gaussian mixture. For conciseness, we write Kq = L 1

σ (ν
q) ∩ L 2

σ (ν
q) ∩ L 4

σ (ν
q), for all

q ∈ N.

Proposition 3.4.2.1. Let (fn)n∈N ⊂ K2. Let Fn = η(2)(fn) − ν2(fn). Let N be a stan-
dard univariate normal random variable independent of η. If ν2(f 2

n) = o(EF 2
n) and ν(f̃ 4

n) =

o
(
ν(f̃ 2

n)
2
)

. Then,

(3.4.2.3)
Fn√
EF 2

n

stably−−−→
n→∞

N.

Proposition 3.4.2.2. Let (fn)n∈N ⊂ K2. Let Fn = η(2)(fn)− ν2(fn). Assume that

ν(f̃ 2
n) = o(EF 2

n);(3.4.2.4)

ν2(f 4
n) = o(ν2(f 2

n)
2
);(3.4.2.5)

ν((fn ⋆
1
2 fn)

2
) = o(ν2(fn)

2
);(3.4.2.6)
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and that there exists g∞ ∈ L 2(ν2) such that

(3.4.2.7)
1

ν2(f 2
n)
fn ⋆

1
1 fn

L 2(ν)−−−→
n→∞

g∞.

Let

(3.4.2.8) C = 2(I2(g∞) + 1).

Then, C ≥ 0 (almost surely), and with Σ = C
1
2 , we have that

(3.4.2.9)
Fn√
EF 2

n

stably−−−→
n→∞

ΣN.

Remark 22. Our proposition is in principle well-adapted to a setting of geometric ran-
dom graphs, where ν is the Lebesgue measure and fn is some {0, 1}-valued kernels
such that ν(fn) → ∞. In this case, it is immediate that (3.4.2.5) always holds in that
case.

Proof of Proposition 3.4.2.1. Without loss of generality, we can assume that EF 2
n = 1, for

all n ∈ N, that is we assume that ν(f̃ 2
n) = 1. We readily apply our stable fourth moment

theorem on the Poisson space, that is our Proposition 3.4.1.1. By the assumption on
the variance, we have that

(3.4.2.10) I2(fn)
L 2(W)−−−−→
n→∞

0.

By the product formula (3.2.1.12) and the isometry property of stochastic integrals, we
have that

(3.4.2.11) EI1(f̃n)
2
= ν(f̃ 2

n) and EI1(f̃n)
4
= 3ν2(f̃n)

2
+ ν(f̃ 4

n).

We conclude by letting n → ∞ in the previous expression and invoking our stable
fourth moment theorem Proposition 3.4.1.1.

Proof of Proposition 3.4.2.2. Again without loss of generality, we assume that EF 2
n = 1

for all n ∈ N, that is we assume that ν2(f 2
n) = 1. By the condition on the variance

(3.4.2.4), we have that

(3.4.2.12) I1(f̃n)
L 2(W)−−−−→
n→∞

0.

In order to obtain the announced result it is, thus, sufficient to obtain the result for
Fn = I2(fn). From Theorem 2.4.2.4 and the product formula (3.2.1.12), we obtain

(3.4.2.13) S(Fn) =
1

2
I3(fn ⋆

0
1 fn) + I2

(
fn ⋆

1
1 fn +

1

2
f 2
n

)
+

3

2
I1(fn ⋆

1
2 fn) + ν2(f 2

n).

Let us show that under our assumptions some of the stochastic integrals appearing in
S(Fn) vanish as n → ∞. First of all, observe that, by isometry, EI2(f 2

n)
2
= 2ν(f 4

n) so
that this integral vanishes. We claim that for a kernel f

(3.4.2.14) ν3
(
(f ⋆01 f)

2
)
=

ˆ (ˆ
f(z, x)2ν(dx)

)2

ν(dz) = ν
(
(f ⋆12 f)

2
)
.
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Indeed,

(3.4.2.15) f ⋆01 f(x, y, z) = f(x, z)f(y, z),

and therefore

(3.4.2.16) ν3
(
(f ⋆01 f)

2
)
=

ˆ
f(x, z)2f(y, z)2ν(dz)ν(dx)ν(dy).

This proves the first equality by Fubini’s theorem for non-negative integrands. For the
second inequality, observe that

(3.4.2.17) f ⋆12 f(x) =

ˆ
f(z, x)2ν(dz).

Taking squares and integrating yields the second inequality and proves (3.4.2.14).
Therefore, by (3.4.2.6) and isometry, both I3(fn ⋆

0
1 fn) and I1(fn ⋆

1
2 fn) vanish. Using

the vanishing of the aforementioned integrals, (3.4.2.7) and isometry, we proved that

(3.4.2.18) S(Fn)
L 2(W)−−−−→
n→∞

I2(g∞) + 1 = C.

Since S(Fn) = 1
2
Γ(Fn) ≥ 0, this shows that C ≥ 0. In order to conclude we will

invoke Proposition 3.3.1.1. Let us show that ∆(Fn) vanishes. Since D = D+, we have
that

(3.4.2.19) (D+
z I2(fn))

4
= (I1(fn(z, ·)))2(I1(fn(z, ·)))2, z ∈ Z,

and by the isometry property of Poisson integrals, one gets for z ∈ Z:

E(D+
z Fn)

4
= 4ν2

(
(fn(z, ·)⊗ fn(z, ·))2

)
+ ν

(
fn(z, ·)4

)
+ (fn ⋆

1
2 f)(z)

2

= 5(fn ⋆
1
2 fn)(z)

2
+ ν

(
fn(z, ·)4

)
.

(3.4.2.20)

Consequently,

(3.4.2.21) E∆(I2(fn)) = 5ν2
(
(fn ⋆

1
2 fn)

2
)
+ ν2

(
f 4
n

)
,

that vanishes by (3.4.2.5) and (3.4.2.6). Similarly, we have that

(3.4.2.22) Eγ2(Fn) = ν2
(
f 2
n

)
+ 4ν

(
f̃ 2
n

)
.

The right-hand side of the previous expression is bounded by (3.3.1.3) and the fact that
we assumed ν2(f 2

n) = 1. This concludes the proof.

Remark 23. In view of the conclusion of the very natural question of what happens
“at criticality”, that is when the two terms I1(f̃) and I2(f) are of the same order. In-
deed our theorem could theoretically be applied to study the joint convergence of
(I2(fn), 2I1(f̃n)). In this case, the reader can check that the limit of the random covari-
ance would be

(3.4.2.23) M∞ =

⎛⎝´ I1(f∞(z, ·))2ν(dz) 3I1

(
f∞ ⋆11 f̃∞

)
3I1

(
f∞ ⋆11 f̃∞

)
4ν
(
f̃ 2
∞

) ⎞⎠ .

And we would have to check that M∞ is always non-negative (or to be able to deal
with negative covariance), a task that we cannot accomplish at the moment.
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Remark, that in general, we do not expect the condition (3.4.2.7) to hold. Let us
quickly explain why on the following example. We were not able to completely work
out this example. The proof in the Poisson fails for a technical detail as we explain
below. For technical reasons, we will also sometimes work in the Gaussian setting.
In the following W is a isonormal Gaussian process over the separable Hilbert space
H = L 2(ν). In order to distinguish between the Poisson and the Gaussian case we
will write ΓW and IWq for the carré du champ and the stochastic integrals with respect
to W .

3.4.3. An example. We let (An) a collection of measurable sets such that ν(An) −−−→
n→∞

∞. We let hn = 1An ⊗ 1An and fn = hn√
ν2(h2

n)
. By the classical central limit theorem, we

have that

(3.4.3.1) η(2)(fn)− ν(f 2
n)

law−−−→
n→∞

N2 − 1.

In that case, we have that

ν2(h2n) = ν(An)
2;(3.4.3.2a)

h̃n(x) = ν(An)1An = hn ⋆
1
2 hn;(3.4.3.2b)

ν(h̃2n) = ν(An)
3.(3.4.3.2c)

Thus, we see that (3.4.2.4), (3.4.2.5) and (3.4.2.6) are satisfied. However, we have that

(3.4.3.3) hn ⋆
1
1 hn = ν(An)hn.

Since (fn) converges to 0 in L 4(W), this shows that (3.4.2.7) cannot hold unless g∞ = 0.
However, with Fn = I2(fn), we have that EF 2

n = 1. If now, we work with a subse-
quence converging in law to F∞, in view of (3.4.2.13), (3.4.3.2) and (3.4.3.3), we obtain
that

(3.4.3.4) S(Fn) = I2(fn) + ν2(f 2
n) + ϵn = Fn + 1 + ϵn,

where ϵn
L 2(W)−−−−→
n→∞

0. Hence, (3.4.2.18) is replaced by

(3.4.3.5) S(Fn)
law−−−→

n→∞
(F∞ + 1).

Provided we can apply Theorem 3.3.1.5, we would have proved that F∞ satisfies

(3.4.3.6) law(F∞) = law(
√

(F∞ + 1)N),

where N ∼ N(0, 1) independent of η. Remark that we do not know if (3.4.3.6) admits
solution. In view of the computations for the proof of Proposition 3.4.2.2, to apply
Theorem 3.3.1.5 we just have to check that we can control the quantities involving
S

1
2 (Fn) in (3.3.1.35b). A task that we cannot accomplish. However, if we work rather

with Fn = IW2 (fn), we have that

(3.4.3.7) S(Fn) = Fn + 1 + ϵn,

where ϵn
L 2(W)−−−−→
n→∞

0. This shows that (3.3.2.4) is satisfied and, by Theorem 3.3.2.1, we
obtain that

(3.4.3.8) IW2 (fn) −−−→
n→∞

F∞,

where F∞ is solution of (3.4.3.6).
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3.5. QUADRATIC FUNCTIONALS OF POISSON APPROXIMATIONS OF GAUSSIAN
PROCESSES

Outline. In Section 3.5.1, motivated by the regularity properties of the sample paths
of the fractional Brownian motion (a continuous Gaussian process whose definitions
and properties are collected below), we state Lemma 3.5.1.1 that, informally speaking,
accounts for the weak regularity in law of a generic Gaussian process only in terms
of its covariance function. From this lemma we deduce, with a straightforward proof,
Theorem 3.5.1.2 that is a result on the asymptotic behaviour of quadratic functionals of
Gaussian processes that were already obtained in [126] in the case of the Brownian mo-
tion, in [110] when the underlying Gaussian process if a regular fractional Brownian
motion (see below for definitions) via a combination of Malliavin-Stein techniques and
Itô’s formula in law, and in [131] for a class of Gaussian processes satisfying some an-
alytical condition (that includes the fractional Brownian motion of any Hurst param-
eters) via demanding computations. The Corollary 3.5.1.3 is obtained by specializing
Theorem 3.5.1.2 to the fractional Brownian motion. In Section 3.5.2, we describe a nat-
ural Poisson-based counterpart of Gaussian processes with stationary increments, re-
lying on the spectral decomposition of such processes via a white noise integration. All
the needed material is recalled below. Then, we state and prove Theorem 3.5.2.3 giv-
ing conditions on the approximation such that the conclusion of Theorem 3.5.1.2 still
holds when the Gaussian process (with stationary increments) is replaced by the Pois-
son approximation introduced in Section 3.5.2. This approximation procedure breaks
the normality of some of the objects and the proof is not as straightforward as in the
Gaussian case and thus requires Theorems 3.3.1.4 and 3.3.1.5 previously developed.

3.5.1. Convergence of Gaussian functionals. Understanding the path-wise behaviour
of Gaussian processes has been one of the preeminent problems in the modern theory
of probability, and is still very relevant nowadays. In this respect, the pioneering re-
sult in this field is the well-known Kolmogorov’s continuity criterion [36, Theorem
XXIII.19]. For Gaussian processes, this result links the properties of the covariance
kernel with the path-wise Hölder-regularity of the process (or rather an equivalent
version of it). See for instance [108, Lemma 1.1].

We start by presenting a family of Gaussian processes with stationary increments
whose explicit covariance allows us to derive many properties: the fractional Brown-
ian motion. Following [115, Section 5] or [108], the fractional Brownian motion with
Hurst parameter h ∈ (0, 1) is the centered Gaussian process B indexed by R+ with
covariance

(3.5.1.1) 2EBtBs = s2h + t2h − |t− s|2h, s, t ∈ R+.

The fractional Brownian motion of Hurst parameter h = 1/2 is the standard Brown-
ian motion on R+. When h ̸= 1/2, the fractional Brownian motion B is not a semi-
martingale nor a Markov process nor has independent increments however it has sta-
tionary increments.

The aforementioned Kolmogorov criterion can be used to deduce that the fractional
Brownian motion with Hurst parameter h is almost surely α-Hölder continuous for
every α ∈ (0, h) [108, Proposition 1.6]. It is also straightforward to check that the
sample paths of the fractional Brownian motion with Hurst parameter h are almost
surely not α-Hölder continuous for all α ≥ h and, in particular, they are, almost surely
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not h-Hölder. However, from the stationary increments and the self-similarity of the
fractional Brownian motion [108, Proposition 2.2], we easily see that

(3.5.1.2)
Bs −Bt

|s− t|h
∼ N(0, 1),

where B is a fractional Brownian motion with Hurst parameter h. By this argument
and the change of variable t ↦→ e−u/n, we obtain that

n1+h

ˆ 1

0

tn−1(B1 −Bt)dt =

ˆ ∞

0

e−u
(
n
(
1− e−u/n

))h
(B1 −Be−u/n)

(
1− e−u/n

)−h

law−−−→
n→∞

Γ(1 + h)N(0, 1).

(3.5.1.3)

The limit is justified since for positive u, as n → ∞, n(1 − e−u/n) → u−1 with a de-
creasing convergence and by the monotone convergence theorem. Hence, the previ-
ous convergence can be seen as a very weak Hölder property of the sample paths of
the fractional Brownian motion. We now investigate a similar behaviour for generic
Gaussian process.

LetX = (Xt)t∈R+
be a Gaussian process with continuous covariance functionR(s, t) =

EXsXt. We introduce the following quantities:

a2n = E

[(ˆ 1

0

tn−1(X1 −Xt)dt

)2
]

=

ˆ 1

0

sn−1tn−1(R(1, 1)−R(t, 1)−R(s, 1) +R(t, s))dtds;

(3.5.1.4)

bn =

ˆ
tn−1E|X1 −Xt|2dt

=

ˆ
tn−1(R(1, 1)− 2R(t, 1) +R(t, t));

(3.5.1.5)

fn(s) =

ˆ
tn−1EXs(X1 −Xt)

=

ˆ
tn−1(R(1, s)−R(t, s))dt.

(3.5.1.6)

First of all notice the following observation.

Lemma 3.5.1.1. Assume that the sequence (anfn(s)) converges to 0 for all s ∈ [0, 1]. Then,

(3.5.1.7) a−1
n

ˆ 1

0

tn−1(X1 −Xt)dt
stably−−−→
n→∞

N,

where N is a standard Gaussian random variable independent of (Xt)t∈[0,1].

Proof. Fix n ∈ N. We let

(3.5.1.8) Gn = a−1
n

ˆ 1

0

tn−1(X1 −Xt).
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Since X is a Gaussian process with covariance kernel given by R, by definition of an in
(3.5.1.4), the random variable Gn is a standard Gaussian for every n ∈ N. Hence, the
only thing left to check is the asymptotic independence. Observe that, by definition of
fn in (3.5.1.6), for all s ∈ R+,

(3.5.1.9) EGnXs = fn(s).

By the fact that for Gaussian variables non-correlation is equivalent to independence,
by the assumption on (anfn(s)), we have that a−1

n Gn is asymptotically independent of
(Xt)t∈[0,1].

From this observation we can recover more refined results such as the ones of [126,
110, 131]. Note that for the sake of brevity, we only provide a qualitative result. We
could obtain the quantitative result from [110, Theorem 3.4].

Theorem 3.5.1.2. Let the previous notations prevail. Assume that the sequences (anfn(s))
(s ∈ [0, 1]) and (a−1

n bn) converge to 0, where a and b are defined in (3.5.1.4) and (3.5.1.5). Let

(3.5.1.10) Fn =

ˆ 1

0

tn−1(X2
1 −X2

t )dt.

Then,

(3.5.1.11) a−1
n Fn

stably−−−→
n→∞

X1N,

where N is a standard Gaussian random variable independent of X and the stable convergence
is with respect σ(X).

Proof. We write

Fn = 2X1

ˆ
tn−1(X1 −Xt)dt−

ˆ
tn−1(X1 −Xt)

2dt

= 2X1Gn −Hn,

(3.5.1.12)

where

Gn =

ˆ
tn−1(X1 −Xt)dt(3.5.1.13)

Hn =

ˆ
tn−1(X1 −Xt)

2dt.(3.5.1.14)

We compute EHn = bn so that (a−1
n Hn) converges to 0 in L 1(P). We conclude by using

Lemma 3.5.1.1.

Finally, we obtain the announced result on fractional Brownian motion. Note that [110]
could only deal with the case h ≥ 1

2
.

Corollary 3.5.1.3. Let h ∈ (0, 1) and B be the fractional Brownian motion with Hurst pa-
rameter h. Then,

(3.5.1.15)
n1+h

2

ˆ 1

0

tn−1(B2
1 −B2

t )dt
stably−−−→
n→∞

(hΓ(2h))1/2B1N,

where N is a standard Gaussian random variable independent of B.

Proof. Direct computations of an, bn and fn(s) and their asymptotic using the explicit
covariance of the fractional Brownian motion.
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3.5.2. Poisson-based approximation of continuous Gaussian processes. We consider
a centered Gaussian process X = (Xt)t∈R+

. We moreover assume that there exists a σ-
finite measure ν on R+ and two families of function (ϕre

t )t∈R+
and (ϕim

t )t∈R+
⊂ L 2(ν)

such that

(3.5.2.1) Xt = Wre(ϕ
re
t ) +Wim(ϕ

im
t ),

where Wre and Wim are two independent isonormal Gaussian processes over L 2(ν)
(that is, a ν-white noise). In view of Examples 2.5.1.4 and 2.5.1.5 this is in particular
the case if X is a stationary process or a process with stationary increments such that
X0 = 0. In particular, we have that

(3.5.2.2) R(t, s) = ν(ϕre
t ϕ

re
s + ϕim

t ϕim
s ).

We let ηλre and ηλim be two independent Poisson point processes with intensity mea-
sure λν (λ > 0). We define the Poisson approximation of the Gaussian process X

(3.5.2.3) Xλ
t = λ−1/2I

ηλre
1 (ϕre

t ) + λ−1/2I
ηλim
1 (ϕim

t ),

where Iη1 denotes the stochastic integral of order one with respect to a Poisson point
process η as defined in Section 2.7.3. As usual, the space C (0, 1) of continuous func-
tions on the unit interval is equipped with the norm of the uniform convergence. For
continuous processes, we consider the corresponding convergence in law. We will
show that Xλ is an approximation of X . The main argument is that the moments of
Xλ are compatible as λ → ∞ with Gaussian moments. It is a classical fact, see for
instance [124, Chapter 7] (see also Lemma 2.7.2.3), that Poisson and Gaussian inte-
grals satisfy some combinatorial moment formulae. The following lemma explicit this
behaviour.

Lemma 3.5.2.1. For f and g ∈ L 2(ν). We let

(3.5.2.4) F = Wre(f) +Wim(g).

and for all λ > 0,we let

(3.5.2.5) Fλ = λ−1/2I
ηλre
1 (f) + λ−1/2I

ηλim
1 (g).

Then, for all p ∈ N,

(3.5.2.6) EF p = (p− 1)(p− 3) . . . 1(ν(f 2 + g2))
p/2

1p∈2N.

Moreover, if f and g ∈ ∩p′≤pL p′(ν), for all λ > 0,

(3.5.2.7) EF p
λ =

{
EF p +O(λ−1), if p ∈ 2n;

O(λ−1/2), otherwise.

Proof. To prove the identity for F , we simply remark that F ∼ N(0, ν(f 2 + g2)) and we
use a well-known formula for Gaussian moments that we can find in any probability
textbook. For the moments of Fλ, we use [82, Theorem 12.7]. From this formula, we
deduce that

(3.5.2.8) E
(
λ−1/2I

ηλre
1 (f)

)p
= λ−p/2

∑
σ∈Π≥2

ˆ
f⊗p
σ (λν)|σ|,
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where Π≥2 is the set of all partitions of [p] whose blocks contain at least 2 elements, the
symbol |σ| designates the number of blocks in a partition, and f⊗p

σ is a function whose
explicit general definition is irrelevant here (see Section 2.7.2.1). If p is even, when σ is
a partition that contains exactly p/2 blocks of size 2, we have that

(3.5.2.9) f⊗p
σ = (f 2)

⊗p/2
.

Thus we find that

(3.5.2.10) E
(
λ−1/2I

ηλre
1 (f)

)p
=

{
EWre(f)

p +O(λ−1) if p ∈ 2n;

O(λ−1/2) otherwise.

We infer the announced formula for Fλ by using the binomial formula and the inde-
pendence of ηre and ηim.

Theorem 3.5.2.2. Let X be a Gaussian process satisfying the representation (3.5.2.1) with
a σ-finite measure ν and Xλ be its Poisson approximation defined in (3.5.2.3). Then, the
finite-dimensional distributions of Xλ converge to the ones of X , in the sense that, for all
t1, . . . , tl ∈ R+,

(3.5.2.11) (Xλ
t1
, . . . , Xλ

tl
)

stably−−−→
λ→∞

(Xt1 , . . . , Xtl).

Proof. In order to prove the convergence of the finite-dimensional law, we will invoke
the multidimensional fourth moment theorem on the Poisson space of [41] (see also
our Proposition 3.4.1.1). Indeed, let t1, . . . , tl ∈ (0, 1). Then, since Xλ admits R for
covariance function, we have that, for i and j ∈ [l]:

(3.5.2.12) EXλ
ti
Xλ

tj
= R(ti, tj) = EXtiXtJ .

By Lemma 3.5.2.1, we have that

(3.5.2.13) E(Xλ
t )

4
= EX4

t +O(λ−1).

Since, by assumption, the spectral measure ν is σ-finite, we can readily apply Proposi-
tion 3.4.1.1 to obtain the convergence of the finite-dimensional laws, as λ→ ∞.

The previous theorem somehow justifies the name of Poisson approximation that
we gave to Xλ. In view of this result, its is natural to ask if the conclusion of Theo-
rem 3.5.1.2 still holds when we replace X by Xλ, where λ → ∞ with n. The following
theorem provides an affirmative answer to this question. We need the two additional
notations:

An =

ˆ 1

0

(
4∏

i=1

ti

)n−1

ν

(
4∏

i=1

(ϕ1 − ϕti)

)
4∏

i=1

dti = ν

((ˆ 1

0

tn−1(ϕ1 − ϕt)dt

)4
)
;

(3.5.2.14)

Bn =

ˆ 1

0

sn−1tn−1ν
(
ϕ2
1(ϕ1 − ϕt)(ϕ1 − ϕs)

)
dsdt.

(3.5.2.15)
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Theorem 3.5.2.3. Let X be a continuous Gaussian process representable by (3.5.2.1) and let
Xλ be its Poisson approximation. Let (λn)n∈N ⊂ R+. We define

(3.5.2.16) Fn =

ˆ
tn−1

((
Xλn

1

)2 − (Xλn
t

)2)
dt

Let

(3.5.2.17) ϵn = a−1
n fn(1) + a−1

n bn + λ−1
n a−2

n Bn + λ−1
n a−4

n An + λ−1
n .

We take N ∼ N(0, 1) independent of X , then, there exists a positive constant c, such that

(3.5.2.18) d2(a
−1
n Fn, NX1) ≤ cϵn.

Moreover, if ϵn → 0, as n→ 0, then,

(3.5.2.19) a−1
n Fn

stably−−−→
n→∞

NX1.

Remark 24. In the Gaussian case, we need to assume that (a−1
n fn(s)) converges to 0

in order to ensure the asymptotic independence of
´
tn−1(X1 − Xt)dt and X . In the

Poisson case, as the Poisson process η and the Gaussian white noise W are chosen to
be independent, this condition can be relaxed and thus only concerns (anfn(1)).

Proof. Without loss of generality, we assume that R(1, 1) = 1. As in the proof of Theo-
rem 3.5.1.2, we write

Fn = 2Xλn
1

ˆ
tn−1(Xλn

1 −Xλn
t )dt−

ˆ
tn−1(Xλn

1 −Xλn
t )

2
dt

= 2Xλn
1 Gn −Hn,

(3.5.2.20)

where

Gn =

ˆ
tn−1(Xλn

1 −Xλn
t )dt(3.5.2.21)

Hn =

ˆ
tn−1I1(X

λn
1 −Xλn

t )
2
dt.(3.5.2.22)

Since the Poisson approximation construction preserves the covariance structure, we
still have EHn = bn, for all n ∈ N, and the quantity a−1

n Hn converges to 0 in L 1(P). We
consider the random vector

(3.5.2.23) Tn =

(
Xλn

1

a−1
n Gn

)
, n ∈ N.

It is immediate to compute that

(3.5.2.24) Γ(Xλn
t , Xλn

s ) = ν(ϕtϕs) +
1

2λn
η̂λn(ϕtϕs) = R(t, s) +

1

2λn
η̂λn(ϕtϕs), n ∈ N.

Consequently, we obtain for the Stein kernel

(3.5.2.25) S(Tn) =

(
1 a−1

n fn(1)
a−1
n fn(1) 1

)
+

ϵn
2λn

, n ∈ N,
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where
(3.5.2.26)

ϵn =

(
η̂λn(ϕ2

1) a−1
n

´ 1
0
tn−1η̂λn(ϕ1(ϕ1 − ϕt))dt

a−1
n

´ 1

0
tn−1η̂λn(ϕ1(ϕ1 − ϕt))dt a−2

n

´ 1

0
tn−1sn−1η̂λn((ϕ1 − ϕt)(ϕ1 − ϕs))dtds

)
.

In the following equation the square of the matrix has to be understood entry-wise.
Then, by Itô’s isometry, we have that

(3.5.2.27) E

[(
ϵn
λn

)2
]
= λ−1

n

(
1 a−2

n Bn

a−2
n Bn a−4

n An

)
, n ∈ N.

This shows that

(3.5.2.28) S(Tn)
L 1(W)−−−−→
n→∞

(
1 0
0 1

)
.

In order to apply Theorems 3.3.1.4 and 3.3.1.5, since the target variance is deterministic
we are left to bound r4(T ). Direct computations yield

(3.5.2.29) r4(Tn) = λ−1
n ν(ϕ4

t ) + λ−1
n a−4

n An.

That vanishes by assumptions.
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TRANSPORT INEQUALITIES ON THE CONFIGURATION

SPACE

4.1. INTRODUCTION

Until now, we recovered for some point processes, and in particular for mixed
binomial processes, quantitative limit theorems and a modified logarithmic Sobolev
inequality. In a diffusive setting, as we mentioned in Section 2.1 it is also customary to
recover an inequality by Talagrand that compares the quadratic Wasserstein distance
and the entropy (see Section 4.2.3 for details). The groundbreaking paper of F. OTTO
& C. VILLANI (2000) [118] proved by means of optimal transport that the classical
logarithmic Sobolev inequality on Rd implies the Talagrand inequality. Shortly after,
the seminal paper of S. G. BOBKOV, I. GENTIL & M. LEDOUX (2001) [20] shed a new
light on this implication by giving a new proof of this result based on some properties
of the Hamilton-Jacobi semi-group. This approach is very flexible and can be extended
to arbitrary metric spaces following the work of N. GOZLAN, C. ROBERTO & P.-M.
SAMSON (2014) [57].

On the space of configurations, it is not clear what distance to use. Given a function
ϕ, Y. MA, S. SHEN, X. WANG & L. WU (2011) [91] proposed to define the distance dϕ
by saying that a random variable F (measurable with respect to an underlying Poisson
point process) is Lipschitz if and only if

(4.1.0.1) |D+
z F | ≤ ϕ(z), for all z ∈ Z,

where D+ has been defined in an abstract way in Section 2.4.2 and concretely for Pois-
son point processes in Section 2.7. Building on the logarithmic Sobolev inequality for
functionals of a Poisson point process of L. WU (2000) [152] (see Theorem 2.4.4.1) and
an argument of S. G. BOBKOV & F. GÖTZE (1999) [17], Y. MA, S. SHEN, X. WANG &
L. WU (2011) [91] proved a transport-entropy inequality involving the linear Monge-
Kantorovich-Rubinstein distance with respect to dϕ provided that the underlying Pois-
son point process has finite intensity measure. Their motivations for studying these
inequalities is that they provide concentration of measure while being tensorizable. It
is, indeed, a very classical fact that goes back (at least) to K. MARTON (1996) [94] that
transport-entropy inequalities have consequences in terms of concentration of mea-
sure.

For Poisson point processes, M. REITZNER (2013) [132] showed, still in the finite
intensity case, that Poisson functionals enjoy another form of concentration of mea-
sure, namely a Gaussian concentration of measure with respect to a convex distance
introduced by M. TALAGRAND (1995) [145]. Finding a proof of this concentration of
measure phenomenon via transport-entropy inequalities is the one of the goals of an
ongoing work in collaboration with N. GOZLAN & G. PECCATI. The forthcoming sec-
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tion gathers the computations sufficiently matured to be presented here. So far, we
obtain two original results:

(i) Theorem 4.3.2.1 that is a Talagrand inequality for mixed binomial processes un-
der a Talagrand inequality for the sampling probability;

(ii) Corollary 4.3.3.2 that is a transport-entropy inequality à la K. MARTON (1996)
[95] for binomial processes of fixed size without assumption on the sampling
probability.

From Corollary 4.3.3.2, we recover Corollary 4.3.3.3 that is the concentration of mea-
sure result of M. REITZNER (2013) [132]. Let us mention that the result for Poisson
point processes is obtained by thinning of binomial processes as in the original pa-
per [132] but we are confident that we will obtain a transport-entropy inequality for
Poisson point processes that will imply directly the result of [132]. This not yet com-
plete result is however presented in Theorem 4.3.4.1. Let us also mention that the idea
of proof is very similar to [132]. Indeed our method of proof is to push a Talagrand or
a Marton inequality for the sampling measure via contraction, while the idea of [132]
is to push the concentration inequality of [145] for the convex distance.

4.2. PRELIMINARIES

4.2.1. Reminders on point processes. Recall that point processes have been intro-
duced in Section 2.7 and that in Section 2.7.3, we studied two canonical examples
of them: Poisson point processes and binomial processes. For the reader’s convenience,
we recall here some definitions and introduce some further notations. Let (Z,Z) be a
measurable space. A point process or random point measure is a MN̄(Z)-valued random
variable. We say that a point process η is finite if P(η(Z) < ∞) = 1 and we say that η
is proper, whenever there exists Z-valued random variables X1, X2, . . . and a N̄-valued
random variable N such that

(4.2.1.1) η =
N∑
i=1

δXi
.

By extension, we say that a probability measure Π ∈ P(MN̄(Z)) is proper if there exists
a proper point process η such that η ∼ Π. We also write Mn(Z) for the space of point
measures with total mass n.

Among the class of proper point processes, we shall be interested in the particular
class of binomial processes, that is the class of proper point processes where, in (4.2.1.1),
N is taken independently of the Xi’s and the Xi’s are chosen independent and identi-
cally distributed according to a given probability measure ν ∈ P(Z). In that case, the
resulting point process is referred to as a mixed binomial process with sampling distribu-
tion ν and size N or, for short, simply a mixed binomial process, and its law is denoted by
Bν,N . Note, that, of course, Bν,N depends on N only through its law. If N ∼ κ, where
κ ∈ P(N), we also write Bν,κ = Bν,N . The particular choice of N = n, for some n ∈ N,
yields the classical case of binomial process of size n and sampling distribution µ or simply
binomial process. Provided that EN < ∞, then η ∼ Bµ,N has a finite intensity measure
given by

(4.2.1.2) Eη(A) = (EN)µ(A), A ∈ Z .
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Another important class of proper point processes, is the class of Poisson point
processes. Given a measure ν, we say that η is a Poisson point process with intensity
measure ν if: for all pairwise disjoint measurable sets (A1, . . . , Al) the random vec-
tor (η(A1), . . . , η(Al)) is a vector of independent Poisson random variables with mean
(ν(A1), . . . , ν(Al)). If such a process exists is law will be denoted Πν . Existence of Pois-
son point process with arbitrary reference measure is a non-trivial fact. However, one
can easily check that if ν(Z) <∞ then,

(4.2.1.3) Πν = Bν̄,N ,

where ν̄ = ν
ν(Z)

andN is a Poisson random variable with mean ν(Z). When ν is σ-finite
(or more generally s-finite) a Poisson point process with reference measure ν can be
obtained by a gluing procedure [82, Theorem 3.6] and its law is proper.

4.2.2. Reminders on transportation distances. We now recall some definitions and
results about transport-entropy inequalities. Most of the content of this section is taken
from the reference [58]. LetE be a polish space. Recall thatE is endowed with its Borel
σ-algebra E and that P(E) is endowed with the σ-algebra generated by the evaluation
maps

(4.2.2.1) P(E) ∋ µ ↦→ µ(A), A ∈ E.

Given a bi-measurable cost function c : E × P(E) → [0,∞], the (generalized) transporta-
tion cost associated to c from ν1 ∈ P(E) to ν2 ∈ P(E), noted Tc(ν1|ν2), is

Tc(ν1|ν2) = inf
p

ˆ
c(x, px) dν2(x)

= inf
X1,X2

Ec(X2,Law(X1|X2)),
(4.2.2.2)

where the first infimum runs over the set of kernels p : E ∋ x ↦→ px ∈ P(E) such that´
px(A)ν2(dx) = ν1(A), for all Borel set A, and the second infimum runs over all ran-

dom variablesX1 ∼ ν1, X2 ∼ ν2. We will implicitly assume that the bi-measurability is
satisfies in the rest of the document. Note that, Tc is, in general, not symmetric with re-
spect to ν1 and ν2. Let us give three canonical examples of transportation costs that we
use pervasively throughout the paper. Consider a pseudo-distance ρ : E×E → [0,∞].
The quadratic Wasserstein cost, W2

2,ρ, associated to ρ is the transportation cost associ-
ated to the cost

(4.2.2.3) c(x, p) =

ˆ
ρ(x, y)2p(dy).

Namely,

(4.2.2.4) W2
2,ρ(ν1, ν2) = inf{Eρ(X1, X2)

2|X1 ∼ ν1, X2 ∼ ν2}.

The Marton cost, M2
ρ, associated to ρ is the transportation cost associated to the cost

(4.2.2.5) c(x, p) =

(ˆ
ρ(x, y)p(dy)

)2

.
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Namely,

(4.2.2.6) M2
ρ(ν1, ν2) = inf

{
E
(
(E [ρ(X1, X2)|X2])

2) |X1 ∼ ν1, X2 ∼ ν2
}
.

Finally the Monge-Kantorovich-Rubinstein cost, W1,ρ, associated ρ is the transportation
cost associated to the cost

(4.2.2.7) c(x, p) =

ˆ
ρ(x, y)p(dy).

Namely,

(4.2.2.8) W1,ρ(ν1, ν2) = inf{Eρ(X1, X2)|X1 ∼ ν1, X2 ∼ ν2}.

Note that W1,ρ and W2,ρ are both symmetric since ρ is symmetric, while Mρ is, in
general, not symmetric. By Jensen’s inequality, we easily check that, for all ν1 and
ν2 ∈ P(E),

(4.2.2.9) W2
1,ρ(ν1, ν2) ≤ M2

ρ(ν1, ν2) ≤ W2
2,ρ(ν1, ν2).

Observe that when ρ(x, y) = 1x ̸=y, then
(4.2.2.10)

W1,ρ(ν1, ν2) = W2
2,ρ(ν1, ν2) = inf P(X1 ̸= X2) =

ˆ ⏐⏐⏐⏐1− dν2
dν1

(x)

⏐⏐⏐⏐
+

ν1(dx) = TV (ν1, ν2),

where the infimum is running over all X1 ∼ ν1 and X2 ∼ ν2 and (see [95])

(4.2.2.11) M2
ρ(ν1, ν2) =

ˆ ⏐⏐⏐⏐1− dν1
dν2

(x)

⏐⏐⏐⏐2
+

ν2(dx).

4.2.2.1. Partial transport distances. Observe that the definition in (4.2.2.2) of the trans-
portation cost associated to c can be extended to any two measures with same total
mass (possibly infinite) and for two such measures ν1 and ν2, we write Tc(ν1|ν2) for
this transport cost. We now extend this transportation cost to point measures with dif-
ferent total masses. Given a cost c : E×P(E) and a function ϕ : E → [0,∞], the partial
transportation cost between them ν1 and ν2 ∈ M (E) associated to c and ϕ, denoted by
Tc,ϕ(ν1|ν2), is defined as follows:

(4.2.2.12) Tc,ϕ(ν1|ν2) =

{
inf{Tc(ν1|ν̄2) + ν̃2(ϕ)}, if ν1(E) ≤ ν2(E);

inf{Tc(ν̄1|ν2) + ν̃1(ϕ)}, if ν2(E) ≤ ν1(E),

where the first infimum is running over all ν̄2 and ν̃2 ∈ M(E) such that ν2 = ν̄2+ν̃2 and
ν̄2(E) = ν1(E) and a similar constraint for the second infimum. This partial transport
cost consists in transporting the same amount of mass from one measure to the other
while penalizing the remaining mass with ϕ and doing so in the most efficient way.
When c is given by one of the previously introduced cost (4.2.2.3), (4.2.2.5) and (4.2.2.7)
the corresponding partial transport costs are denoted (respectively) W2,ρ,ϕ, Mρ,ϕ and
W1,ρ,ϕ. There are two extremal choices for ϕ:

(i) When ϕ = 0, the points of the measure ν1 with the smallest support are optimally
paired with points in sub-configuration of ν2 of same size of ν1; the remaining
points in ν2 play no role.
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(ii) When ϕ = ∞, if ν1 and ν2 are of same total mass, their points are paired op-
timally; otherwise the distance between is zero. In this case, the space MN(Z)
has infinitely many connected components (with respect to to the topology in-
duced by this partial transportation distance). These components are given by
the family {Mn(Z); n ∈ N ∪ {∞}}.

Let us now give another representation of this partial transport cost when ν1 and
ν2 ∈ MN(E). In the sequel, Σn will denote the set of all permutations of {1, . . . , n}. For
ξ =

∑m
i=1 δai ∈ MN(E), we define, for n ≤ m and σ ∈ Σm, the two point measures:

σnξ =
n∑

i=1

δaσ(i)
and σnξ =

m∑
i=n+1

δaσ(i)

(an empty sum is treated as 0). Then, given a cost c and a function ϕ : E → [0,∞], the
partial transportation cost associated to c and ϕ, denoted by Tc,ϕ, is defined as follows:

(4.2.2.13) Tc,ϕ(ξ1|ξ2) =

{
infσ∈Σm Tc(ξ1|σnξ2) + (σnξ2)(ϕ), if n = ξ1(E) ≤ ξ2(E) = m,

infσ∈Σm Tc(σ
nξ1|ξ2) + (σnξ1)(ϕ), if n = ξ2(E) ≤ ξ1(E) = m.

where ξ1 and ξ2 ∈ MN(E). In (4.2.2.12), we use the convention that 0 · ∞ = 0.

4.2.3. Reminders on transport-entropy inequalities. Recall that, given γ ∈ P(E)
and ν ∈ P(E) absolutely continuous with respect to γ and with Radon-Nikodym
density f , the relative entropy of ν with respect to γ is defined by

(4.2.3.1) H(ν|γ) = γ(f log f).

If ν does not have a density with respect to γ, we set H(ν|γ) = ∞. The measure
γ ∈ P(E) satisfies the transport-entropy inequality with the cost function c if for all ν1
and ν2 ∈ P(E), it holds

(4.2.3.2) Tc(ν1|ν2) ≤ H(ν1|γ) +H(ν2|γ).

Transport-entropy inequalities enjoy the following tensorization property [58, Theo-
rem 4.11].

Proposition 4.2.3.1. If γ satisfies the transport-entropy inequality (4.2.3.2) on E with cost c
such that for all x ∈ E, c(x, ·) is convex. Then for all n ≥ 1, γn satisfies the transport-entropy
inequality (4.2.3.2) with cost cn on En, where

(4.2.3.3) cn(x, p) =
n∑

i=1

c(xi, pi),

with x = (x1, . . . , xn) ∈ En and pi is the i-th marginal of p ∈ P(En).

We now introduce two particular classes of transport-entropy inequalities that are
associated with the two costs of (4.2.2.3) and (4.2.2.5). These two inequalities were
introduced in the seminal papers by M. TALAGRAND (1996) [144] and K. MARTON
(1996) [95], whence they get their names. Given a distance ρ : E×E → R+ we say that
γ satisfies a Talagrand inequality with respect to ρ and with constant C > 0 if

(4.2.3.4) W2
ρ (ν1, ν2) ≤ CH(ν1|γ) + CH(ν2|γ), ∀ν1, ν2 ∈ P(E).
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We say that γ satisfies a Marton inequality with respect to ρ and with constant C > 0 if

(4.2.3.5) M2
ρ(ν1, ν2) ≤ CH(ν1|γ) + CH(ν2|γ), ∀ν1, ν2 ∈ P(E).

We also say that γ satisfies an infimum convolution inequality (introduced by B.
MAUREY (1991) [96]) with respect to c when

(4.2.3.6) µ(exp(Qcϕ))µ(exp(−ϕ)) ≤ 1,

where

(4.2.3.7) Qcϕ(x) = inf
p∈P(E)

{p(ϕ) + c(x, p)} .

Morally, (4.2.3.2) and (4.2.3.6) are equivalent. The equivalence between (4.2.3.4) and
their infimum convolution form appeared in the work of S. G. BOBKOV & F. GÖTZE
(1999) [17]; N. GOZLAN (2007) [54] showed the complete equivalence. The equiva-
lence of (4.2.3.5) and its infimum convolution form was derived by N. GOZLAN, C.
ROBERTO, P.-M. SAMSON & P. TETALI (2017) [58], where they also gave sufficient
conditions on the cost c for the equivalence of (4.2.3.2) and (4.2.3.6).

4.2.4. Transport, entropy and concentration of measure. Transport-entropy inequal-
ities have consequences in terms of concentration of measure (and were initially intro-
duced in order to study the concentration of measure phenomenon). To state them, let
us recall some definitions from [58]. Given a cost c and a Borel set A we write

(4.2.4.1) cA(x) = inf
p(A)=1

c(x, p),

for the Talagrand convex distance associated to A and c, and

(4.2.4.2) At = {x ∈ E, cA(x) ≤ t},

for the enlargement of A with respect to this convex distance. Note that, despite the
name, it is not always a distance. Observe, however, that when c is the Monge-Kan-
torovich-Rubinstein cost (4.2.2.7) associated to a distance ρ, then cA(x) is the distance
from x to A and At is the t-enlargement of A with respect to ρ. With these notations,
we state the following concentration result.

Theorem 4.2.4.1 ([58, Theorem 5.1]). Let E be a Polish space and let c be a cost such that
P(E) ∋ p ↦→ c(x, p) is convex. Assume γ ∈ P(E) satisfies the transport-entropy inequality
(4.2.3.2) with cost c. Then,

(4.2.4.3) (1− γ(At))γ(A) ≤ e−t, ∀t ≥ 0.

Remark 25. The theorem in the original paper has the additional condition on c that
c(x, δx) = 0 for all x ∈ E. However, one of the author of [58] pointed out to us that this
condition is in fact irrelevant.
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4.3. TRANSPORT INEQUALITIES VIA CONTRACTION

4.3.1. Two ancillary results. We will need the two following results.

Proposition 4.3.1.1. Let T : X → Y be a measurable map between two polish spaces X
and Y . Suppose that γ ∈ P(X ) satisfies the transport-entropy inequality (4.2.3.2) with
some cost function c : X × P(X ) → R+. If the cost function c is convex with respect
to its second variable, then the probability measure γ̄ = T#γ satisfies the transport-entropy
inequality (4.2.3.2) with the cost function c̄ : Y × P(Y) → [0,∞] defined for all y ∈ Y and
q ∈ P(Y) by

(4.3.1.1) c̄(y, q) = inf{c(x, p);T (x) = y, T#p = q}

(with the convention inf ∅ = +∞).

Proof. Let ν̄1, ν̄2 ∈ P(Y) be such that H(ν̄1|γ̄) < ∞ and H(ν̄2|γ̄) < ∞. Let h̄1 be the
density of ν̄1 with respect to γ̄; then for all bounded continuous function f on Y

(4.3.1.2)
ˆ
f dν̄1 =

ˆ
fh̄1 dγ̄ =

ˆ
f(T )h̄1(T ) dγ =

ˆ
f(T ) dν1,

denoting dν1 = h̄1(T ) dγ. Therefore, there exists at least one probability measure ν1 on
X such that ν̄1 = T#ν1. On the other hand,

(4.3.1.3) H(ν̄1|γ̄) =
ˆ
h̄1 log h̄1 dγ̄ =

ˆ
h̄1(T ) log h̄1(T ) dγ = H(ν1|γ).

Let us consider the function T c( · | · ) defined on P(X )2 by

(4.3.1.4) T c(ν̄1|ν̄2) = inf {Tc(ν1|ν2); ν̄1 = T#ν1andν̄2 = T#ν2} .

According to what precedes, for all ν̄i, i = 1, 2, such that H(ν̄i|γ̄) < ∞, there exist νi,
i = 1, 2, on P(X ) such that ν̄i = T#νi and so

(4.3.1.5) T c(ν̄1|ν̄2) ≤ Tc(ν1|ν2) ≤ H(ν1|γ) +H(ν2|γ) = H(ν̄1|γ̄) +H(ν̄2|γ̄)

Now let us prove that

(4.3.1.6) T c(ν̄1|ν̄2) ≥ Tc̄(ν̄1|ν̄2).

Let ν̄1, ν̄2 such that H(ν̄i|γ̄) < +∞, i = 1, 2; there exist ν1, ν2 such that ν̄i = T#νi. Let
p be a kernel such that ν1 = ν2p. Equivalently, there exists a pair of random variables
(X1, X2) with Law(X2) = ν2 and Law(X1|X2 = x) = px. Consider Y1 = T (X1) and
Y2 = T (X2); for all bounded continuous functions f1, f2 on Y it holds

E[f1(Y1)f2(Y2)] = E[f1(T (X1))f2(T (X2))] = E
[ˆ

f1(T (x1)) dpX2(x1)f2(T (X2))

]
= E

[ˆ
f1(y1) d(T#pX2)(y1)f2(T (X2))

]
= E

[
E
[ˆ

f1(y1) d(T#pX2)(y1)|T (X2)

]
f2(T (X2))

]
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Consider a regular conditional probability k for Law(X2|Y2); then

E[f1(Y1)f2(Y2)] = E
[ˆ (ˆ

f1(y1) d(T#px2)(y1)

)
kY2(dx2)f2(Y2)

]
=

¨
f1(y1)f2(y2)p̄y2(dy1) ν̄2(dy2),

(4.3.1.7)

with

(4.3.1.8) p̄y2 =

ˆ
(T#px2) ky2(dx2).

This proves that ν̄2p̄ = ν1.ˆ
c(x2, px2) ν2(dx2) ≥

ˆ
c̄(T (x2), T#px2) ν2(dx2)

=

¨
c̄(T (x2), T#px2) ky2(dx2)ν̄2(dy2)

=

¨
c̄(y2, T#px2) ky2(dx2)ν̄2(dy2)

≥
ˆ
c̄

(
y2,

ˆ
T#px2 ky2

)
ν̄2(dy2)

≥ Tc̄(ν̄1|ν̄2),
where the first inequality comes from the definition of c̄, the third is a consequence of
the fact that T (x2) = y2 for ky2 almost all x2, and the fourth follows from the convexity
of c̄ (which is itself a simple consequence of the convexity of c). Therefore, taking the
infimum over p yields to Tc(ν1|ν2) ≥ Tc̄(ν̄1|ν̄2). Taking the infimum over all ν1, ν2 such
that T#νi = ν̄i finally gives (4.3.1.6) and completes the proof.

The second result is a well-known result by K. MARTON (1996) [95] about transport
inequalities for product probability measures.

Theorem 4.3.1.2. Let ν be a probability measure on Z; then for all positive integer 1 ≤ n ≤ ∞
the probability measure νn on Zn satisfies the transport entropy inequality (4.2.3.2) with a cost
c given by

(4.3.1.9) c(x, p) =
1

4

n∑
i=1

p({y ∈ Zn, such that yi ̸= xi}), x ∈ Zn, p ∈ P(Zn).

Remark 26. In probabilistic notations, the content of Theorem 4.3.1.2 can be rewritten

(4.3.1.10) M(n)
H (ν1|ν2) ≤ 4H(ν1|νn) + 4H(ν2|νn), ∀ν1, ν2 ∈ P(Zn),

where M(n)
H stands for the Marton distance with respect to the Hamming distance

ρ(x, y) = 1x ̸=y in dimension n, namely:

(4.3.1.11) M(n)
H (ν1|ν2) = inf E

[
n∑

i=1

P(Yi ̸= Xi|Xi)
2

]
,

where the infimum runs over the set of couples of random vectors (X, Y ) with X ∼ ν2
and Y ∼ ν1.

Remark 27. In view of the tensorization property Proposition 4.2.3.1, the content of The-
orem 4.3.1.2 is just that when ρ(x, y) = 1x̸=y then every probability measure ν satisfies
the Marton inequality Mρ.
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4.3.2. Talagrand inequality for mixed binomial processes. The following main re-
sult states that Talagrand inequalities can be transferred from the sampling distribu-
tion ν to the law of the binomial process Bν,κ for every distribution size κ.

Theorem 4.3.2.1. Let κ ∈ P(N) and ν ∈ P(Z). Assume ν satisfies Talagrand’s inequal-
ity (4.2.3.4) on Z for some pseudo-distance ρ : Z × Z → [0,∞] with constant C > 0.
Then, the law of the mixed binomial process Bν,κ satisfies Talagrand’s inequality (4.2.3.4)
on E = MN(Z) associated with the pseudo-distance W2,ρ,∞, where this quantity is the par-
tial transport cost defined in (4.2.2.12) from the Wasserstein transportation distance (4.2.2.4).
Namely, for all Π1 and Π2 ∈ P(MN(Z)) such that W2,ρ,∞(Π1,Π2) <∞, we have that

(4.3.2.1) TW2
2,ρ,∞

(Π1,Π2) ≤ CH(Π1|Bν,κ) + CH(Π2|Bν,κ).

Remark 28. When the cost c can assume the value ∞, the left-hand side of (4.2.3.2)
can assume the value ∞ for measures ν1 and ν2 that are both absolutely continuous
with respect to reference γ so that the right-hand side of (4.2.3.2) is finite. For instance,
on MN(Z), if n1 ̸= n2 we have that TW2

2,ρ,∞
(Bν,n1 , Bν,n2) = ∞, while the two binomial

laws are absolutely continuous with respect to the Πν with Radon-Nikodym given
by e−1 ni!1Mni (Z) (this comes from the fact that a binomial process can be obtained by
conditioning a Poisson point process to have n points), and, thus, H(Bν,n1 |Πν) < ∞.
In this case, it is reasonable to ask if a restricted transport-entropy inequality holds in
the form of

(4.3.2.2) Tc(ν1, ν2) ≤ cH(ν1|γ) + cH(ν2|γ), ∀ν1, ν2, Tc(ν1, ν2) <∞.

We stress that we do not know if these inequalities tensorize or provide concentration
of measure.

Proof. For short, we will write in this proof TW2 = TW2
2,ρ,∞

. Let Π1 and Π2 ∈ P(MN(Z))

such that TW2(Π1,Π2) < ∞. Recall that Mb(Z) is endowed with the narrow topology
and that it is a Polish for this topology. In view of [146, Cor 6.11, Rmk 6.12], the cost
W2

2,ρ,∞ is lower semi-continuous and by [146, Theorem 4.1] there exists be an optimal
coupling in TW2(Π1,Π2). We write (η1, η2) for such an optimal coupling. From the
finiteness assumption of the transport distance, we have that η1(Z) = η2(Z) = N
almost surely. We denote by p their common law. For k ∈ N, we write

(4.3.2.3) Πk = law((η1, η2)|N = k),

we consider (ηk1 , η
k
2) ∼ Πk, and we write Πk

1 (resp. Πk
2) for the law of ηk1 (resp. ηk2 ),

that is Πk
1 and Πk

2 are the marginals of Πk. Recall the following result taken from [146,
Theorem 4.6]:

Lemma 4.3.2.2. LetX and Y be two Polish spaces, let c : X×Y → R+∪{∞}. Let µ ∈ P(X)
and ν ∈ P(Y ). Assume that Tc(µ, ν) < ∞ and let π be an optimal transport plan. Let
π̃ ∈ M+(X × Y ) such that π̃ ≤ π and π̃ ̸= 0, then the probability measure

(4.3.2.4) π′ =
π̃

π̃(X × Y )
,

is an optimal transport plan between its marginals.
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In view of this lemma, we have that (ηk1 , ηk2) is the optimal coupling in TW2(Πk
1,Π

k
2). By

construction, we have that

TW2(Π1,Π2) = EW2
ρ,2,∞(η1, η2)

=
∑
k∈N

E(W2
ρ,2(η1, η2)|N = k)P(N = k)

=
∑
k∈N

EW2
ρ,2(η

k
1 , η

k
2)P(N = k)

=
∑
k∈N

TW2(Πk
1,Π

k
2)P(N = k).

(4.3.2.5)

We consider the map T : Zk → Mk(Z), T (z1, . . . , zk) =
∑k

i=1 δzi . Observe that T♯νk =
Bν,k and that
(4.3.2.6)

W2
2,ρ(ξ, χ) = inf

{
k∑

i=1

ρ(zi, z̃j)
2, such that T (z1, . . . , zk) = ξ, T (z̃1, . . . , z̃k) = χ

}
.

Since, by tensorization, νk satisfies a Talagrand inequality (4.2.3.4) on Zk with respect
to the distance

(4.3.2.7) ρk(z, z̃) =

√ k∑
i=1

ρ(zi, z̃i)
2, z, z̃ ∈ Zk,

we obtain from Proposition 4.3.1.1 that Bν,k satisfies a Talagrand inequality on Mk(Z)
with respect to W2,ρ. Hence, we proved that

(4.3.2.8) TW2(Π1,Π2) ≤
∑
k∈N

C
(
H(Πk

1|Bν,k) +H(Πk
2|Bν,k)

)
P(N = k).

Now we claim that.

(4.3.2.9) H(Π1|Bν,κ) = H(p|κ) +
∑
k∈N

H(Πk
1|Bν,k)P(N = k).

Indeed, with K ∼ κ,

(4.3.2.10)
dΠk

1

dBν,k

=
dΠ1

dBν,κ

P(N = k)

P(K = k)
.

Hence,
(4.3.2.11)

H(Πk
1|Bν,k)P(N = k) =

ˆ
dΠ1

dBν,κ

(ξ) log
dΠ1

dBν,κ

(ξ)Bν,k(dξ)P(K = k)+P(K = k) log
P(K = k)

P(N = k)
.

Summing the previous for k ∈ N yields (4.3.2.9). Using a similar equation for Π2 and
using the fact that the relative entropy is non-negative, we obtain that

(4.3.2.12) TW2(Π1,Π2) ≤ CH(Π1|Bν,κ) + CH(Π2|Bν,κ).

This concludes the proof.
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4.3.2.1. Comparison with a results of Erbar & Huesmann. On a Riemannian manifold M
with Ricci curvature bounded by K ∈ R with volume measure vol and Riemannian
distance d, M. ERBAR & M. HUESMANN (2015) [44] have shown that

(4.3.2.13) H(πt|Πvol) ≤ (1− t)H(π0|Πvol) + tH(π1|Πvol)−
K

2
t(1− t)W2

2,d,∞(π0, π1),

where πt is any W2,d,∞-geodesic from π0 to π1, where π0 and π1 ∈ P(MN̄(M)). This
means that the curvature properties of the metric measured space (M,d, vol) are trans-
ferred to the metric measured space (MN̄(M),W2,d,∞,Πvol). This result is very natural,
if we think of Πvol as the invariant measure of a system of non-interacting N Brownian
motions on M , where N has a Poisson law with mean vol(M) (possibly infinite). Note
that in the case where K > 0, the manifold is compact so that Πvol has a representation
as a mixed binomial process and taking t = 1/2 and using that the entropy is non-
negative in (4.3.2.13) immediately yields our (4.3.2.1). Let us stress that our argument
works under the sole assumption that the space Z supports a Talagrand inequality and
is quite straightforward. However, it is not clear how to adapt our proof for a Poisson
point process with infinite intensity measure.

4.3.3. Marton inequality for binomial processes. Our Theorem 4.3.2.1 states that un-
der Talagrand’s inequality for ν, the probability measure Bν,κ satisfies a transport-
entropy inequality for the cost function

(4.3.3.1) c(ξ,Π) =

ˆ
W2

2,ρ,∞(ξ, χ)Π(dχ).

In view of (4.2.2.9), it is natural to conjecture that under Marton’s inequality for ν, Bν,κ

satisfies a transport inequality with one of the following costs:

(4.3.3.2) c(ξ,Π) =
(ˆ

W2,ρ,∞(ξ, χ)Π(dχ)

)2

or c(ξ,Π) =

(ˆ
W1,ρ,∞(ξ, χ)Π(dχ)

)2

.

So far we are only able to attain this result for binomial process of a fixed size and the
weaker distance W1,ρ,0.

Theorem 4.3.3.1. Let n ∈ N and ν ∈ P(Z). Assume ν satisfies Marton’s inequality (4.2.3.5)
on Z for a distance ρ : Z × Z → [0,∞]. Then Bν,n satisfies the transport-entropy inequal-
ity (4.2.3.2) on Mn(Z) with the cost function c : Mn(Z)× P(Mn(Z)) → R+ defined, for all
ξ ∈ Mn(Z) and Π ∈ P(Mn(Z)), by

(4.3.3.3) c(ξ,Π) =

ˆ
1

ξ(x)2

(ˆ
W1,ρ,0(χ, ξ(x)δx)Π(dχ)

)2

ξ(dx).

As corollaries, we obtain that binomial processes always satisfies a transport-en-
tropy inequality and a concentration of measure inequality.

Corollary 4.3.3.2. Let ν ∈ P(Z) and n ∈ N. Then, Bν,n satisfies the transport-entropy
inequality (4.2.3.2) with the cost function c : Mn(Z) × P(Mn(Z)) → R+ defined, for all
ξ ∈ Mn(Z) and Π ∈ P(Mn(Z)), by

(4.3.3.4) c(ξ,Π) =
1

4

ˆ (ˆ [
1− χ(x)

ξ(x)

]
+

Π(dχ)

)2

ξ(dx).
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Proof. By Theorem 4.3.1.2, the probability measure ν satisfies Marton’s inequality (4.2.3.5)
with the cost ρ(x, y) = 1x ̸=y. Let χ and ξ ∈ MN(Z). Then, we have that

(4.3.3.5) W1,ρ,0(χ, ξ(x)δx) =
1

2
(ξ(x)− χ(x))+1ξ(x)≤χ(Z).

Now if χ(Z) = ξ(Z) = n the condition ξ(x) ≤ χ(Z) is always true and therefore,
by Theorem 4.3.3.1, we obtain thatBν,n satisfies the transport-entropy inequality (4.2.3.2)
with cost

(4.3.3.6) c(ξ,Π) =
1

4

ˆ (ˆ [
1− χ(x)

ξ(x)

]
+

Π(dχ)

)2

ξ(dx).

Corollary 4.3.3.3. Let η be a binomial process (of size n). Then for every measurable A ⊂
Mn(Z)

(4.3.3.7) P(η ∈ A)P(η ̸∈ At) ≤ e−t,

where At is the enlargement of A (in Mn(Z)) given in (4.2.4.2) for the choice of c given
in (4.3.3.4), that is
(4.3.3.8)

c(ξ,Π) =
1

4

ˆ (ˆ [
1− χ(x)

ξ(x)

]
+

Π(dχ)

)2

ξ(dx), ξ ∈ Mn(Z), Π ∈ P(Mn(Z)).

Let η be a Poisson point process with finite intensity measure ν. Then for every measurable
A ⊂ MN(Z)

(4.3.3.9) P(η ∈ A)P(η ̸∈ At) ≤ e−t,

where At is the enlargement of A (in MN(Z)) given in (4.2.4.2) for the choice of c given
in (4.3.3.4), that is
(4.3.3.10)

c(ξ,Π) =
1

4

ˆ (ˆ [
1− χ(x)

ξ(x)

]
+

Π(dχ)

)2

ξ(dx) ξ ∈ MN(Z), Π ∈ P(MN(Z)).

Proof. Combining Corollary 4.3.3.2 and Theorem 4.2.4.1, we obtain the announced re-
sult for binomial process. To go from binomial to Poisson, we recall the law of small
numbers

(4.3.3.11) B(λ/n)
ν,n

TV−−−→
n→∞

Πλν ,

where for t ∈ [0, 1] and the law of a proper point process B, the symbol B(t) desig-
nates the t-thinning of B, that is the law of the point process obtained by discarding
independently the point of B with probability 1− t. From the previous computations,
we see that B(λ/n)

ν,n also satisfies the concentration of measure and so does the Poisson
point process by taking the limit. The reader can refer to [132] for details.
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Proof of Theorem 4.3.3.1. Recall that we now work on Mn(Z). By assumption and the
tensorization property, the probability measure νn satisfies the transport inequality (4.2.3.2)
on Zn with the cost function c

(4.3.3.12) c(x, p) =
1

C

n∑
i=1

(ˆ
ρ(xi, y)pi(dy)

)2

, x ∈ Zn, p ∈ P(Zn).

we consider the mapping T : Zn → Mn(Z) defined by

(4.3.3.13) T (x) =
n∑

i=1

δxi
, x = (xi) ∈ Zn.

By construction of T , we have that Bν,n is the push-forward of νn by T . Apply-
ing Proposition 4.3.1.1, we obtain that Bν,n satisfies the transport-entropy inequality
with the cost function c̄ defined for all (ξ,Π) ∈ Mn(Z)× P(Mn(Z)) by

(4.3.3.14) c̄(ξ,Π) = inf {c(x, p), such that T (x) = ξ, T#p = Π} .

In other words, if ξ =
∑n

i=1 δai and (xi)
i=n
i=1 ∈ Zn, then

(4.3.3.15) c̄(ξ,Π) = inf

{
1

C

n∑
i=1

(Eρ(Yi, xi))2
}
,

where the infimum is running over all the random variables Y = (Yi)
i=n
i=1 ∈ Zn such

that
∑n

i=1 δYi
∼ Π and all sequences (xi)

i=n
i=1 ∈ Zn such that ξ =

∑n
i=1 δxi

. Also, the
constraint ξ =

∑n
i=1 δxi

determines the xi’s (up to permutation). So that we obtain that

(4.3.3.16) c̄(ξ,Π) =
1

C
inf

{
n∑

i=1

(Eρ(Yσ(i), ai))2
}
,

where the infimum runs over random variables Y = (Yi) such that
∑n

i=1 δYi
∼ Π and

σ ∈ Σn. For all a ∈ Z, such that ξ(a) > 0, we define I(a) = {i : ai = a}. Then, by
Jensen’s inequality, we obtain

n∑
i=1

(Eρ(Yσ(i), ai))2 =
∑
a∈ξ

ξ(a)

∑
i∈I(a) (Eρ(Yσ(i), ai))

2

ξ(a)

≥
∑
a∈ξ

ξ(a)

(∑
i∈I(a) Eρ(Yσ(i), a)

ξ(a)

)2

.

(4.3.3.17)

Let µ =
∑n

i=1 δYi
. Eventually, by definition of (4.2.2.12) and since ξ(a) ≤ ξ(Z) = µ(Z) =

n, we have that

(4.3.3.18) inf
σ∈Σn

∑
i∈I(a)

ρ(Yσ(i), a) = W1,ρ,0(µ, ξ(a)δa).

Combining (4.3.3.17) and (4.3.3.18), we obtain the announced cost.
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4.3.4. Marton inequality for Poisson process?. It is then very natural to conjecture
the following theorem (that we cannot prove completely yet) but we will give some
hints in this direction.

Theorem 4.3.4.1. Let ν ∈ P(Z). Then for all λ > 0, Πλν satisfies the transport-entropy in-
equality (4.2.3.2) with the cost function defined in (4.3.3.4), that is c : MN(Z)×P(MN(Z)) →
R+ defined, for all ξ ∈ MN(Z) and Π ∈ P(MN(Z)), by

(4.3.4.1) c(ξ,Π) =
1

4

ˆ (ˆ [
1− χ(x)

ξ(x)

]
+

Π(dχ)

)2

ξ(dx).

Idea of proof of Theorem 4.3.4.1. Applying Corollary 4.3.3.2 to Ẑ = Z ∪ {∞}, where ∞
is a cemetery point that is not in Z and ν̂ = tν + (1 − t)δ∞, we see that B(t)

ν,n satisfies
a transport-entropy inequality on M≤n(Z) with the cost given in (4.3.3.4), where the
superscript (t) indicates a thinning. We have that, for every A ⊂ MN(Z) measurable,

(4.3.4.2) Πn := B(λ/n)
ν,n (A) −−−→

n→∞
Πν,Nλ

(A).

So that Πλ/m
ν,n → Πλν in this relatively strong sense. It is however not clear how to pass

to the limit in the transport-entropy inequality

(4.3.4.3) Tc(P1|P2) ≤ H(P1|Πn) +H(P2|Πn).

as n→ ∞.

4.3.4.1. Comparison with a result of Reitzner. For further discussions, let us first recall
some definitions and state a theorem of M. REITZNER (2013) [132] to be compared
to Corollary 4.3.3.3. Given a point measure ξ ∈ MN(Z), we write L 2(ξ) for the Hilbert
space of functions α : Z → R such that α(x) = 0 for x ̸∈ ξ and we set

(4.3.4.4) |α|2L 2(ξ) =
∑
x∈ξ

ξ(x)α(x)2.

Note that because ξ(Z) < ∞, the previous quantity is always finite. Given another
χ ∈ MN(Z), we write ξ \ χ for the point measure given by

∑
x∈ξ (ξ(x)− χ(x))+δx. For

A ⊂ MN(Z) and ξ ∈ MN(Z), M. REITZNER (2013) [132] defines

(4.3.4.5) dA(ξ) = sup
|α|L 2(ξ)≤1

inf
χ∈A

ˆ
αd(ξ \ χ),

where the supremum runs over non-negative α only and

(4.3.4.6) Ad
t = {ξ ∈ MN(Z), dA(ξ) ≤ t}, t ≥ 0.

Then, we have:

Theorem 4.3.4.2 ([132, Theorem 1.1]). Let η be a Poisson point process on Z such that
Eη(Z) <∞. Then, for every measurable set A ⊂ MN(Z),

(4.3.4.7) P(η ∈ A)P(η ̸∈ Ad
t ) ≤ e−t2/4.
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Thanks to Corollary 4.3.3.3 and the following lemma, we obtain an immediate new
proof of this theorem.

Lemma 4.3.4.3. With the notation introduced before, let A ⊂ MN(Z) be measurable, then
Ad

4
√
t
= At, equivalently cA(ξ) = 1

4
dA(ξ)

2, for all ξ ∈ MN(Z).

Proof. The proof is quite classical and goes back to Talagrand. We give a proof for
completeness. First, we recall this well-known duality formula on Hilbert spaces: if
H is an Hilbert space with inner product ⟨·, ·⟩ and induced norm | · |, we have |x| =
sup|y|≤1⟨x, y⟩. Second, we recall this well-known fact about randomization of infimum

(4.3.4.8) inf
x∈A

f(x) = inf
X∈A

Ef(X),

where the second infimum runs on random variables concentrated in A.
Third, for two linear spaces V1 and V2, a bilinear functional Λ: V1 × V2 → R and two
convex sets C1 and C2 such that C1 is compact we have by the min-max theorem of M.
SION (1958) [139, Corollary 3.3]

(4.3.4.9) sup
C1

inf
C2

Λ = inf
C2

sup
C1

Λ.

From these three facts, we easily see that

dA(ξ) = sup
|α|L 2(ξ)≤1

inf
Π(A)=1

ˆ ˆ
αd(ξ \ ν)Π(dν)

= sup
|α|L 2(ξ)≤1

inf
Π(A)=1

ˆ
α(x)

(ˆ
(ξ \ ν)(x)
ξ(x)

Π(dv)

)
ξ(dx)

= inf
Π(A)=1

sup
|α|L 2(ξ)≤1

ˆ
α(x)

(ˆ
(ξ \ ν)(x)
ξ(x)

Π(dv)

)
ξ(dx)

=

(ˆ (ˆ (
1− ν(x)

ξ(x)

)
+

Π(dν)

)2

ξ(dx)

)1/2

= 2cA(ξ)
1/2.

Note that, since L 2(ξ) is a finite-dimensional space, the unit ball is compact.
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MULTI SET CONCENTRATION OF MEASURE AND

MULTI-MARGINAL TRANSPORT

The following is a reproduction of an article to appear in Potential analysis.

INTRODUCTION

Let (M, g) be a smooth compact connected Riemannian manifold with its normal-
ized volume measure µ and its geodesic distance d. The Laplace-Beltrami operator
∆ is then a non-positive operator whose spectrum is discrete. Let us denote by λ(k),
k = 0, 1, 2 . . ., the eigenvalues of −∆ written in increasing order. With these nota-
tions λ(0) = 0 (achieved for constant functions) and (by connectedness) λ(1) > 0 is the
so-called spectral gap of M .

The study of the spectral gap of Riemannian manifolds is, by now, a very classical
topic which has found important connections with numerous geometrical and ana-
lytical questions and properties. The spectral gap constant λ(1) is for instance related
to Poincaré type inequalities and governs the speed of convergence of the heat flow
to equilibrium. It is also related to Ricci curvature via the classical Lichnerowicz the-
orem [88] and to Cheeger isoperimetric constant via Buser’s theorem [29]. We refer
to [13, 32] and the references therein for a complete picture.

Another important property of the spectral gap constant, first observed by Gromov
and Milman [59], is that it controls exponential concentration of measure phenomenon
for the reference measure µ. The result states as follows. Define for all Borel sets
A ⊂ M , its r-enlargement Ar as the (open) set of all x ∈ E such that there exists y ∈ A
with d(x, y) < r. Then, for any A ⊂M such that µ(A) ≥ 1/2 it holds

(5.0.0.1) µ(Ar) ≥ 1− be−a
√
λ(1)r, ∀r > 0,

where a, b > 0 are some universal constants (according to [85, Theorem 3.1], one can
take b = 1 and a = 1/3). Note that this implication is very general and holds on any
metric space supporting a Poincaré inequality (see [85, Corollary 3.2]). See also [19,
137, 2, 56] for alternative derivations, generalizations or refinements of this result.

This note is devoted to a multiple sets extension of the above result. Roughly
speaking, we will see that if A1, . . . , Ak are sets which are pairwise separated in the
sense that d(Ai, Aj) := inf{d(x, y) : x ∈ Ai, y ∈ Aj} > 0 for any i ̸= j and A is
their union then the probability of Ar goes exponentially fast to 1 at a rate given by√
λ(k) as soon as r is such that the sets Ai,r, i = 1, . . . , k remain separated. More pre-

cisely, it follows from Theorem 5.1.2.1 (whose setting is actually more general) that, if
A1, . . . , Ak are such that µ(Ai) ≥ 1

k+1
and d(Ai,r, Aj,r) > 0 for all i ̸= j, then, denoting

A = A1 ∪ . . . ∪ Ak, it holds

(5.0.0.2) µ(Ar) ≥ 1− 1

k + 1
exp

(
−cmin(r2λ(k); r

√
λ(k))

)
,
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for some universal constant c. This kind of probability estimates first appeared, in a
slightly different but essentially equivalent formulation in the work of Chung, Grigor’yan
and Yau [34] (see also the related paper [49] by Friedman and Tillich). Nevertheless,
the method of proof we use to arrive at (5.0.0.2) (based on the Courant-Fischer min-
max formula for the λ(k)’s) is quite different from the one of [34] and seems more
elementary and general. This is discussed in details in Section 5.1.5.

The paper is organized as follows. In Section 5.1, we prove (5.0.0.2) in an abstract
metric space framework. This framework contains, in particular, the compact Rieman-
nian case equipped with the Laplace operator presented above. The Section 5.1.5 con-
tains a detailed discussion of our result with the one of Chung, Grigor’yan & Yau.
In Section 5.2, we recall various bounds on eigenvalues on several non-negatively
curved manifolds. Section 5.3 gives an extension of (5.0.0.2) to discrete Markov chains
on graphs. In Section 5.4, we give a functional formulation of the results of Sections 5.1
and 5.3. As a corollary of this functional formulation, we obtain a deviation inequality
as well as an estimate for difference of two Lipschitz extensions of a Lipschitz function
given on k subsets. Finally, Section 5.5 discusses open questions related to this type of
concentration of measure phenomenon.

5.1. MULTIPLE SETS EXPONENTIAL CONCENTRATION IN ABSTRACT SPACES

5.1.1. Courant-Fischer formula and generalized eigenvalues in metric spaces. Let
us recall the classical Courant-Fischer min-max formula for the k-th eigenvalue (k ∈
N) of −∆, noted λ(k), on a compact Riemannian manifold (M, g) equipped with its
(normalized) volume measure µ:

(5.1.1.1) λ(k) = inf
V⊂C∞(M)
dimV=k+1

sup
f∈V \{0}

´
|∇f |2 dµ´
f 2 dµ

,

where ∇f is the Riemannian gradient, defined through the Riemannian metric g (see
e.g [32]) and |∇f |2 = g(∇f,∇f). The formula (5.1.1.1) above does not make explicitly
reference to the differential operator ∆. It can be therefore easily generalized to a more
abstract setting, as we shall see below.

In all what follows, (E, d) is a complete, separable metric space and µ a reference
Borel probability measure on E. Following [33], for any function f : E → R and x ∈ E,
we denote by |∇f |(x) the local Lipschitz constant of f at x, defined by

(5.1.1.2) |∇f |(x) =

{
0 if x is isolated
lim supy→x

|f(x)−f(y)|
d(x,y)

otherwise.

Note that when E is a smooth Riemannian manifold, equipped with its geodesic dis-
tance d, then, the local Lipschitz constant of a differentiable function f at x coincides
with the norm of ∇f(x) in the tangent space TxE. With this notion in hand, a natural
generalization of (5.1.1.1) is as follows (we follow [100, Definition 3.1]):

(5.1.1.3) λ
(k)
d,µ := inf

V⊂H1(µ)
dimV=k+1

sup
f∈V \{0}

´
|∇f |2 dµ´
f 2 dµ

, k ≥ 0,

where H1(µ) denotes the space of functions f ∈ L2(µ) such that
´
|∇f |2 dµ < +∞. In

order to avoid heavy notations, we drop the subscript and we simply write λ(k) instead
of λ(k)d,µ within this section.
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5.1.2. Statement of the main results. To state our first main result, we need further
notations: for any k ≥ 1, we denote by ∆k the set of vectors (a1, . . . , ak) ∈ [0, 1]k

satisfying the following linear constraints

(5.1.2.1)
k∑

j=1

aj ≤ 1 and ai +
k∑

j=1

aj ≥ 1, ∀i ∈ {1, . . . , k}.

Recall the classical notation d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B} of the distance
between two sets A,B ⊂ E.

The following theorem is the main result of the paper and is proved in Section 5.1.3.

Theorem 5.1.2.1. There exists a universal constant c > 0 such that, for any k ≥ 1 and for all
sets A1, . . . , Ak ⊂ E such that mini ̸=j d(Ai, Aj) > 0 and (µ(A1), . . . , µ(Ak)) ∈ ∆k, the set
A = A1 ∪ A2 ∪ · · · ∪ Ak satisfies

(5.1.2.2) µ(Ar) ≥ 1− (1− µ(A)) exp
(
−cmin(r2λ(k); r

√
λ(k))

)
,

for all 0 < r ≤ 1
2
mini ̸=j d(Ai, Aj), where λ(k) ≥ 0 is defined by (5.1.1.3).

Note that, since (1/(k + 1), . . . , 1/(k + 1)) ∈ ∆k, Theorem 5.1.2.1 immediately implies
Inequality (5.0.0.2).

Inverting our concentration estimate, we obtain the following statement that pro-
vides a bound on the λ(k)’s.

Proposition 5.1.2.2. Let (E, d, µ) be a metric measured space and λ(k) be defined as in (5.1.1.3).
Let A1, . . . , Ak be measurable sets such that (µ(A1), . . . , µ(Ak)) ∈ ∆k, then, by letting r =
1
2
mini ̸=j d(Ai, Aj) and A0 = E \ (∪Ai)r,

(5.1.2.3) λ(k) ≤ 1

r2
ψ

(
1

c
min

i
ln
µ(Ai)

µ(A0)

)
,

where ψ(x) = max(x, x2).

Proof. Let A = ∪iAi. Inverting the formula in Theorem 5.1.2.1, we obtain

(5.1.2.4) λ(k) ≤ 1

r2
ψ

(
1

c
ln

1− µ(A)

1− µ(Ar)

)
,

where ψ(x) = max(x, x2). By definition of ∆k,

(5.1.2.5) 1− µ(A) = 1−
∑
i

µ(Ai) ≤ min
i
µ(Ai).

Therefore, letting A0 = E \Ar, we obtain the announced inequality by non-decreasing
monotonicity of ψ and ln.

The collection of sets ∆k, k ≥ 1 has the following useful stability property:

Lemma 5.1.2.3. Let I1, I2, . . . , In be a partition of {1, . . . , k}, k ≥ 1. Let a = (a1, . . . , ak) ∈
Rk and define b = (b1, . . . , bn) ∈ Rn by setting bi =

∑
j∈Ii aj , i ∈ {1, . . . , n}. If a ∈ ∆k then

b ∈ ∆n.
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Proof. The proof is obvious and left to the reader.

Thanks to this lemma it is possible to iterate Theorem 5.1.2.1 and to obtain a general
bound for µ(Ar) for all values of r > 0. This bound will depend on the way the sets
A1,r, . . . , Ak,r coalesce as r increases. This is made precise in the following definition.

Definition 5.1.1 (Coalescence graph of a family of sets). Let A1, . . . , Ak be subsets of E.
The coalescence graph of this family of sets is the family of graphs Gr = (V,Er), r > 0,
where V = {1, 2, . . . , k} and the set of edges Er is defined as follows: {i, j} ∈ Er if
d(Ai,r, Aj,r) = 0.

Corollary 5.1.2.4. Let A1, . . . , Ak be measurable subsets of E such that mini ̸=j d(Ai, Aj) >
0 and (µ(A1), . . . , µ(Ak)) ∈ ∆k. For any r > 0, let N(r) be the number of connected
components in the coalescence graph Gr associated to A1, . . . , Ak. The function (0,∞) →
{1, . . . , k} : r ↦→ N(r) is non-increasing and right-continuous. Define ri = sup{r > 0 :
N(r) ≥ k − i+ 1}, i = 1, . . . , k and r0 = 0 then it holds

(5.1.2.6) µ(Ar) ≥ 1− (1− µ(A)) exp

(
−c

k∑
i=1

ϕ
(
[r ∧ ri − ri−1]+

√
λ(k−i+1)

))
, ∀r > 0,

where ϕ(x) = min(x;x2), x ≥ 0 and c is the universal constant appearing in Theorem 5.1.2.1.

Observe that, contrary to usual concentration results, the bound given above depends
on the geometry of the set A.

5.1.3. Proofs. First, we prove Corollary 5.1.2.4. The main argument is to repeatedly
apply Theorem 5.1.2.1 until two sets or more coalesce.

Proof of Corollary 5.1.2.4. We proceed by induction over the number of components k.
For k = 1, (5.1.2.6) follows immediately from Theorem 5.1.2.1. Let k > 1 and let
us assume that (5.1.2.6) is true for any collection of subsets B1, . . . , Bl satisfying the as-
sumptions of Corollary 5.1.2.4 for all l ∈ {1, . . . , k−1}. LetA1, A2, . . . , Ak be a collection
of sets satisfying the assumptions of Corollary 5.1.2.4. According to Theorem 5.1.2.1,
it holds

(5.1.3.1) µ(Ar) ≥ 1− (1− µ(A)) exp
(
−cϕ(r

√
λ(k))

)
,

for all 0 < r ≤ 1
2
mini ̸=j d(Ai, Aj).

Let k1 = N(1
2
mini ̸=j d(Ai, Aj)) and let i1 = k − k1. Then, for all i ∈ {1, . . . , i1},

ri =
1
2
mini ̸=j d(Ai, Aj). So that, for all 0 < r ≤ ri1 , the preceding bound can be rewritten

as follows (note that only the term of index i = 1 gives a non zero contribution)

µ(Ar) ≥ 1− (1− µ(A)) exp

(
−c

i1∑
i=1

ϕ
(
[r ∧ ri − ri−1]+

√
λ(k−i+1)

))

= 1− (1− µ(A)) exp

(
−c

k∑
i=1

ϕ
(
[r ∧ ri − ri−1]+

√
λ(k−i+1)

))(5.1.3.2)

which shows that (5.1.2.6) is true for 0 < r ≤ ri1 . Now let I1, . . . , Ik1 be the connected
components of Gr1 and define, for all i ∈ {1, . . . , k1}, Bi = ∪j∈IiAj,r1 . It follows easily
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from Lemma 5.1.2.3 that (µ(B1), . . . , µ(Bk1)) ∈ ∆k1 . Since mini ̸=j d(Bi, Bj) > 0, the
induction hypothesis implies that
(5.1.3.3)

µ(Bs) ≥ 1− (1− µ(B)) exp

(
−c

k1∑
i=1

ϕ
(
[s ∧ si − si−1]+

√
λ(k1−i+1)

))
, ∀s > 0,

where B = B1 ∪ · · · ∪Bk1 = Ar1 and si = sup{s > 0 : N ′(s) ≥ k1 − i+1}, i ∈ {1, . . . , k1}
(s0 = 0) with N ′(s) the number of connected components in the graph G′

s associated
to B1, . . . , Bk1 . It is easily seen that ri1+i = ri1 + si, for all i ∈ {0, 1 . . . , k1}. Therefore,
we have that, for r > ri1 ,

µ(Ar) ≥ µ(Br−ri1
)

≥ 1− (1− µ(Ari1
)) exp

(
−c

k∑
i=i1+1

ϕ
(
[r ∧ ri − ri−1]+

√
λ(k−i+1)

))

≥ 1− (1− µ(A)) exp

(
−c

k∑
i=1

ϕ
(
[r ∧ ri − ri−1]+

√
λ(k−i+1)

))
,

where the last line is true by (5.1.3.2).

To prove Theorem 5.1.2.1, we need some preparatory lemmas. Given a subset A ⊂
E, and x ∈ E, the minimal distance from x to A is denoted by

(5.1.3.4) d(x,A) = inf
y∈A

d(x, y).

Lemma 5.1.3.1. Let A ⊂ E and ϵ > 0, then (E \ Aϵ)ϵ ⊂ E \ A.

Proof. Let x ∈ (E \ Aϵ)ϵ. Then, there exists y ∈ E \ Aϵ (in particular d(y, A) ≥ ϵ) such
that d(x, y) < ϵ. Since the function z ↦→ d(z, A) is 1-Lipschitz, one has

(5.1.3.5) d(x,A) ≥ d(y, A)− d(x, y) > 0

and so x ∈ E \ A.

Remark 29. In fact, we proved that (E \ Aϵ)ϵ ⊂ E \ Ā. The converse is, in general, not
true.

Lemma 5.1.3.2. Let A1, . . . , Ak be a family of sets such that (µ(A1), . . . , µ(Ak)) ∈ ∆k and
r := 1

2
mini ̸=j d(Ai, Aj) > 0. Let 0 < ϵ ≤ r and set A = ∪1≤i≤kAi and A0 = E \ (Aϵ). Then,

(5.1.3.6) max
i=0,...,k

µ(Ai,ϵ)

µ(Ai)
≤ 1− µ(A)

1− µ(Aϵ)
.

Proof. First, this is true for i = 0. Indeed, by definition A0 = E \ (Aϵ) and, according
to Lemma 5.1.3.1, (A0)ϵ ⊂ Ac (the equality is not always true), which proves (5.1.3.6)
in this case. Now, let us show (5.1.3.6) for the other values of i. Since ϵ ≤ r, the Aj,ϵ’s
are disjoint sets. Thence, (5.1.3.6) is equivalent to

(5.1.3.7)

(
1−

k∑
j=1

µ(Aj,ϵ)

)
µ(Ai,ϵ) ≤

(
1−

k∑
j=1

µ(Aj)

)
µ(Ai).
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This inequality is true as soon as

(5.1.3.8) (1− µ(Ai,ϵ)−mi)µ(Ai,ϵ) ≤ (1− µ(Ai)−mi)µ(Ai),

denoting mi =
∑k

j ̸=i µ(Aj). The function fi(u) = (1 − u −mi)u, u ∈ [0, 1], is decreas-
ing on the interval [(1 − mi)/2, 1]. We conclude from this that (5.1.3.6) is true for all
i ∈ {1, . . . , k}, as soon as µ(Ai) ≥ (1 − mi)/2 for all i ∈ {1, . . . , k} which amounts to
(µ(A1), . . . , µ(Ak)) ∈ ∆k.

For p > 1, we define the function χp : R+ → [0, 1] by

(5.1.3.9) χp(x) = (1− xp)p, for x ∈ [0, 1] and χp(x) = 0 for x > 1.

It is easily seen that χp(0) = 1, χ′
p(0) = χp(1) = χ′

p(1) = 0, that χp takes values in
[0, 1] and that χp is continuously differentiable on R+. We use the function χp to con-
struct smooth approximations of indicator functions on E, as explained in the next
statement.

Lemma 5.1.3.3. Let A ⊂ E and consider the function f(x) = χp(d(x,A)/ϵ), x ∈ E, where
ϵ > 0 and p > 1. For all x ∈ E, it holds

(5.1.3.10) |∇f |(x) ≤ p2ϵ−11Aϵ\A

Proof. Thanks to the chain rule for the local Lipschitz constant (see e.g. [3, Proposition
2.1]),

(5.1.3.11)
⏐⏐⏐⏐∇χp

(
d(·, A)
ϵ

)⏐⏐⏐⏐ (x) ≤ ϵ−1χ′
p

(
d(·, A)
ϵ

)
|∇d(·, A)|(x).

The function d(·, A) being Lipschitz, its local Lipschitz constant is ≤ 1 and, thereby,

(5.1.3.12) |∇f |(x) ≤ χ′
p

(
d(x,A)

ϵ

)
.

In particular, thanks to the aforementioned properties of χ, |∇f | vanishes on A (and
even on A) and on {x ∈ E : d(x,A) ≥ ϵ} = E \ Aϵ. On the other hand, a simple
calculation shows that |χ′

p| ≤ p2 which proves the claim.

Proof of Theorem 5.1.2.1. Take Borel sets A1, . . . , Ak with 1
2
mini ̸=j d(Ai, Aj) ≥ r > 0 and

(µ(A1), . . . , µ(Ak)) ∈ ∆k and consider A = A1 ∪ · · · ∪ Ak. Let us show that, for any
0 < ϵ ≤ r, it holds

(5.1.3.13)
(
1 + λ(k)ϵ2

)
(1− µ(Aϵ)) ≤ (1− µ(A)).

Let A0 = E \ (Aϵ) and set fi(x) = χp(d(x,Ai)/ϵ), x ∈ E, i ∈ {0, . . . , k}, where p > 1.
According to Lemma 5.1.3.3 and the fact that fi = 1 on Ai, we obtain

(5.1.3.14)
ˆ

|∇fi|2 dµ =
p4

ϵ2
µ(Ai,ϵ \ Ai) and

ˆ
f 2
i dµ ≥ µ(Ai).
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Since the fi’s have disjoint supports they are orthogonal in L2(µ) and, in particular,
they span a k + 1 dimensional subspace of H1(µ). Thus, by definition of λ(k),

(5.1.3.15) λ(k) ≤ sup
a∈Rk+1

´
|∇
(∑k

i=0 aifi

)
|
2

dµ

´ (∑k
i=0 aifi

)2
dµ

≤ sup
a∈Rk+1

´ (∑k
i=0 |ai||∇fi|

)2
dµ

´ (∑k
i=0 aifi

)2
dµ

,

where the second inequality comes from the following easy to check sub-linearity
property of the local Lipschitz constant:

(5.1.3.16) |∇ (af + bg) | ≤ |a||∇f |+ |b||∇g|.

Since the f ′
is and the |∇fi|′s are two orthogonal families, we conclude using (5.1.3.14),

that

(5.1.3.17)
λ(k)ϵ2

p4
≤ sup

a∈Rk+1

∑k
i=0 a

2
i (µ(Ai,ϵ)− µ(Ai))∑k
i=0 a

2
iµ(Ai)

,

which amounts to

(5.1.3.18) 1 +
λ(k)ϵ2

p4
≤ max

i=0,...,k

µ(Ai,ϵ)

µ(Ai)
.

Applying Lemma 5.1.3.2 and sending p to 1 gives (5.1.3.13). Now, if n ∈ N and 0 < ϵ
are such that nϵ ≤ r, then iterating (5.1.3.13) immediately gives

(5.1.3.19)
(
1 + λ(k)ϵ2

)n
(1− µ(Anϵ)) ≤ 1− µ(A).

Optimizing this bound over n for a fixed ε gives

(5.1.3.20) (1− µ(Ar)) ≤ (1− µ(A)) exp
(
− sup

{
⌊r/ϵ⌋ log

(
1 + λ(k)ϵ2

)
: ϵ ≤ r

})
.

Thus, letting

(5.1.3.21) Ψ(x) = sup
{
⌊t⌋ log

(
1 +

x

t2

)
: t ≥ 1

}
, x ≥ 0,

it holds

(5.1.3.22) (1− µ(Ar)) ≤ (1− µ(A)) exp
(
−Ψ

(
λ(k)r2

))
.

Using Lemma 5.1.3.4 below, we deduce that Ψ
(
λ(k)r2

)
≥ cmin(r2λ(k); r

√
λ(k)), with

c = log(5)/4, which completes the proof.

Lemma 5.1.3.4. The function Ψ defined by (5.1.3.21) satisfies

(5.1.3.23) Ψ(x) ≥ log(5)

4
min(x;

√
x), ∀x ≥ 0.
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Proof. Taking t = 1, one concludes that Ψ(x) ≥ log(1 + x), for all x ≥ 0. The function
x ↦→ log(1 + x) being concave, the function x ↦→ log(1+x)

x
is non-increasing. Therefore,

log(1+x) ≥ log(5)
4
x for all x ∈ [0, 4]. Now, let us consider the case where x ≥ 4. Observe

that ⌊t⌋ ≥ t/2 for all t ≥ 1 and so, for x ≥ 4,

(5.1.3.24) Ψ(x) ≥ 1

2
sup
t≥1

{
t log

(
1 +

x

t2

)}
≥ log(5)

4

√
x,

by choosing t =
√
x/2 ≥ 1. Thereby,

(5.1.3.25) Ψ(x) ≥ log(5)

4

[
x10≤x≤4 +

√
x1x>4

]
≥ log(5)

4
min(x;

√
x),

which completes the proof.

Remark 30. The conclusion of Lemma Lemma 5.1.3.4 can be improved. Namely, it can
be shown that
(5.1.3.26)

Ψ(x) = max

⎛⎜⎝(1 + ⌊
√
x

a
⌋
)
log

⎛⎜⎝1 +
x(

1 + ⌊
√
x
a
⌋
)2
⎞⎟⎠ ;

(
⌊
√
x

a
⌋
)
log

⎛⎜⎝1 +
x(

⌊
√
x
a
⌋
)2
⎞⎟⎠
⎞⎟⎠ ,

(the second term in the maximum being treated as 0 when
√
x < a) where 0 < a < 2

is the unique point where the function (0,∞) → R : u ↦→ log(1 + u2)/u achieves its
supremum. Therefore,

(5.1.3.27) Ψ(x) ∼ log(1 + a2)

a

√
x

when x → ∞. The reader can easily check that log(1+a2)
a

≃ 0.8. In particular, it does
not seem possible to reach the constant c = 1 in Theorem 5.1.2.1 using this method of
proof.

5.1.4. Two more multi-set concentration bounds. The condition (µ(A1), . . . , µ(Ak)) ∈
∆k can be seen as the multi-set generalization of the condition, standard in concentra-
tion of measure, that the size of the enlarged set has to be bigger than 1/2. Indeed, the
reader can easily verify that ( 1

k+1
, . . . , 1

k+1
) ∈ ∆k. However, in practice, this condition

can be difficult to check. We provide two more multi-set concentration inequalities
that hold in full generality. The method of proof is the same as for Theorem 5.1.2.1 and
is based on (5.1.3.18).

Proposition 5.1.4.1. Let (E, d, µ) be a metric measured space and λ(k) be defined as in (5.1.1.3).
Let (A1, . . . , Ak) be k Borel sets,A = ∪iAi andA0 = E\Ar. Then, with a(1) = min1≤i≤k µ(Ai),
the following two bounds hold:

1− µ(Ar) ≤ (1− µ(A))
1∏k

i=1 µ(Ai)
exp

(
−cmin

(
r2λ(k), r

√
λ(k)
))

;

1− µ(Ar) ≤ (1− µ(A))
1

µ(A)µ(A)/a(1)
exp

(
−cmin

(
r2λ(k), r

√
λ(k)
))
.
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Proof. Fix N ∈ N and ϵ > 0 such that Nϵ ≤ r. For i = 1, . . . , k and n ≤ N , we define

αi(n) =
µ(Ai,nϵ)

µ(Ai,(n−1)ϵ)
;

Mn = max
1≤i≤k

αi(n) ∨
1− µ(A(n−1)ϵ)

1− µ(Anϵ)
;

Ln = {i ∈ {1, . . . , k}|Mn = αi(n)};
Ni = ♯{n ∈ {1, . . . , N}|i = inf Ln};

N0 = N −
k∑

i=1

Ni.

Roughly speaking, the number Ni (0 ≤ i ≤ k) counts the number of time where the
set Ai growths in iterating (5.1.3.18). Lemma 5.1.3.2 asserts that in the case where
(µ(A1), . . . , µ(Ak)) ∈ ∆k, then N0 = N . However, we still obtain from (5.1.3.18), for
1 ≤ i ≤ k,

(5.1.4.1)
1

µ(Ai)
≥

N∏
n=1

αi(n) ≥
(
1 + λ(k)ϵ2

)Ni
.

The first inequality is true because µ(Ai,Nϵ) ≤ 1 and a telescoping argument. The
second inequality is true because, as n ranges from 1 to N , by definition of the number
Ni and (5.1.3.18), there are, at least Ni terms appearing in the product that can be
bounded by (1 + λ(k)ϵ2). The other terms are bounded above by 1. The case of i = 0 is
handled in a similar fashion and we obtain:

1− µ(ANϵ) ≤ (1− µ(A))
(
1 + λ(k)ϵ2

)−N0

= (1− µ(A))
(
1 + λ(k)ϵ2

)−N
k∏

i=1

(
1 + λ(k)ϵ2

)Ni
.

(5.1.4.2)

The announced bounds will be obtain by bounding the product appearing in the
right-hand side and an argument similar to the end of the proof of Theorem 5.1.2.1.
From (5.1.4.1), we have that,

(5.1.4.3)
k∏

i=1

(
1 + λ(k)ϵ2

)Ni ≤ 1∏k
i=1 µ(Ai)

.

Also, from (5.1.4.1),

(5.1.4.4) µ(Ai,Nϵ) ≥
(
1 + λ(k)ϵ2

)Ni
µ(Ai).

Because Nϵ ≤ r, the sets A1,Nϵ, . . . , Ak,Nϵ are pairwise disjoint and, thereby,

(5.1.4.5) 1 ≥
∑

µ(Ai,Nϵ) ≥
k∑

i=1

(
1 + λ(k)ϵ2

)Ni
µ(Ai).

Fix θ > 0 to be chosen later. By convexity of exp,

1 + (1− µ(A))
(
1 + λ(k)ϵ2

)θ ≥ exp

((
k∑

i=1

µ(Ai)Ni + (1− µ(A))θ

)
log
(
1 + λ(k)ϵ2

))

≥ exp

((
a(1)

k∑
i=1

Ni + (1− µ(A))θ

)
log
(
1 + λ(k)ϵ2

))
.
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Finally, with p = 1− µ(A) and t = θ log(1 + λ(k)ϵ2), we obtain

(5.1.4.6)
k∏

i=1

(
1 + λ(k)ϵ2

)Ni ≤
(
e−pt +p e(1−p)t

)1/a(1)
.

We easily check that, the quantity in the right-hand side is minimal for t = log 1
1−p

at

which it takes the value (1− p)p−1 = µ(A)−µ(A)/a(1) . Thus,

(5.1.4.7)
k∏

i=1

(1 + λ(k)ϵ2)
Ni ≤ 1

µ(A)µ(A)/a(1)
.

Combining (5.1.4.3) and (5.1.4.7) with (5.1.4.2) and the same argument as for (5.1.3.21),
we obtain the two announced bounds.

From Proposition 5.1.4.1, we can derive bounds on the λ(k)’s. The proof is the same as
the one of Proposition 5.1.2.2 and is omitted.

Proposition 5.1.4.2. Let (E, d, µ) be a metric measured space and λ(k) be defined as in (5.1.1.3).
Let A1, . . . , Ak be measurable sets, then, with r = 1

2
mini ̸=j d(Ai, Aj) and A0 = E \ (∪Ai)r,

λ(k) ≤ 1

r2
ψ

(
1

c
ln

a(1)
µ(A0)

+
1

c
k ln

1

a(1)

)
;

λ(k) ≤ 1

r2
ψ

(
1

c
ln

a(1)
µ(A0)

+
1

c

µ(A)

a(1)
ln

1

µ(A)

)
,

where ψ(x) = max(x, x2) and a(1) = min1≤i≤k µ(Ai).

5.1.5. Comparison with the result of Chung-Grigor’yan-Yau. In [34], the authors
obtained the following result:

Theorem 5.1.5.1 (Chung-Grigoryan-Yau [34]). Let M be a compact connected smooth Rie-
mannian manifold equipped with its geodesic distance d and normalized Riemannian volume
µ. For any k ≥ 1 and any family of sets A0, . . . , Ak, it holds

(5.1.5.1) λ(k) ≤ 1

mini ̸=j d2(Ai, Aj)
max
i ̸=j

log (
4

µ(Ai)µ(Aj)
)
2

,

where 1 = λ(0) ≤ λ(1) ≤ · · ·λ(k) ≤ · · · denotes the discrete spectrum of −∆.

Let us translate this result in terms of concentration of measure. Let A1, . . . , Ak be sets
such that r = 1

2
min1≤i<j≤k d(Ai, Aj) > 0 and define A = A1 ∪ · · · ∪Ak and A0 =M \As,

for some 0 < s ≤ r. Then, applying (5.1.5.1) to this family of k + 1 sets gives the
following inequality

(5.1.5.2) min
(
a(2); 1− µ(As)

)
≤ 4

a(1)
exp(−

√
λ(k)s),

with a(1) and a(2) being respectively the smallest number and the second smallest num-
ber among (µ(A1), . . . , µ(Ak)) (counted with multiplicity). Note that the right hand
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side is less than or equal to a(2) if and only if s ≥ so :=
1√
λk

log
(

4
a(1)a(2)

)
, so that (5.1.5.2)

is equivalent to the following statement:

(5.1.5.3) µ(As) ≥ 1− 4

a(1)
exp(−

√
λ(k)s), ∀s ∈ [min(so, r); r].

We note that (5.1.5.3) holds for any family of sets, whereas the inequality given in The-
orem 5.1.2.1 is only true when (µ(A1), . . . , µ(Ak)) ∈ ∆k. Also due to the fact that the
constant c appearing in Theorem 5.1.2.1 is less than 1, (5.1.5.3) is asymptotically better
than ours (see also Remark 30 above). On the other hand, one sees that (5.1.5.3) is only
valid for s large enough (and its domain of validity can thus be empty when so > r)
whereas our inequality is true on the whole interval (0, r). It does not seem also pos-
sible to iterate (5.1.5.3) as we did in Corollary 5.1.2.4. Finally, observe that the method
of proof used in [34] is based on heat kernel bounds and is very different from ours.

Let us translate Theorem 5.1.5.1 in a form closer to our Proposition 5.1.2.2. Fix k
sets A1, . . . , Ak such that (µ(A1), . . . , µ(Ak)) ∈ ∆k. Let 2r = min d(Ai, Aj), where the
infimum runs on i, j = 1, . . . , k with i ̸= j. We have to choose a (k + 1)-th set. In view
of Theorem 5.1.5.1, the most optimal choice is to choose A0 = E \ (∪Ai)r. Indeed, it is
the biggest set (in the sense of inclusion) such that min d(Ai, Aj) = r where this time
the infimum runs on i, j = 0, . . . , k and i ̸= j. We let a(0) = µ(A0) and we remark that if
(µ(A1), . . . , µ(Ak)) ∈ ∆k then a(0) ≤ a(1). The bound (5.1.5.1) can be read: for all r > 0,

(5.1.5.4) λ(k) ≤ 1

r2

(
log

4

a(1)a(0)

)2

.

Therefore, to compare it to our bound, we need to solve

(5.1.5.5) ϕ−1

(
1

c
log

a(1)
a(0)

)2

≤
(
log

4

a(1)a(0)

)2

.

Because the right-hand side is always ≥ 1, taking the square root and composing with
the non-decreasing function ϕ yields

(5.1.5.6)
1

c
log

a(1)
a(0)

≤ log
4

a(1)a(0)
.

That is

(5.1.5.7) a1+c
(1) ≤ 4ca1−c

(0) .

In other words, on some range our bound is better and in some other range their
bound is better. However, if the constant c = 1 could be attained in Theorem 5.1.2.1,
this would show that our bound is always better. Note that comparing the bounds
obtained in Proposition 5.1.4.2 and the one of [34] is not so clear as, without the as-
sumption that (µ(A1), . . . , µ(Ak)) ∈ ∆k it is not necessary that a(0) ≤ a(1) and in that
case we would have to compare different sets.

5.2. EIGENVALUE ESTIMATES FOR NON-NEGATIVELY CURVED SPACES

We recall the values of the λ(k)’s that appear in Theorem 5.1.2.1 in the case of two
important models of positively curved spaces in geometry. Namely:
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(i) The n-dimensional sphere of radius
√

n−1
ρ

, Sn,ρ endowed with the natural geodesic
distance dn,ρ arising from its canonical Riemannian metric and its normalized
volume measure µn,ρ which has constant Ricci curvature equals to ρ and dimen-
sion n.

(ii) The n-dimensional Euclidean space Rn endowed with the n-dimensional Gaus-
sian measure of covariance ρ−1Id,

(5.2.0.1) γn,ρ(dx) =
ρn/2 e−ρ|x|2/2

(2π)n/2
dx.

This space has dimension ∞ and curvature bounded below by ρ in the sense
of [12].

These models arise as weighted Riemannian manifolds without boundary having a
purely discrete spectrum. In that case, it was proved in [100, Proposition 3.2] that
the λk’s of (5.1.1.3) are exactly the eigenvalues (counted with multiplicity) of a self-
adjoint operator that we give explicitly in the following. Using a comparison between
eigenvalues of [100], we obtain an estimates for eigenvalues in the case of log-concave
probability measure over the Euclidean Rn.

Example 5.2.0.1 (Spheres). On Sn,ρ, the eigenvalues of minus the Laplace-Beltrami op-
erator (see for instance [8, Chapter 3]) are of the form ρ−2(n− 1)2l(l + n− 1) for l ∈ N
and the dimension of the corresponding eigenspace Hl,n is

(5.2.0.2) dimHl,n =
2l + n− 1

l

(
l + n− 2

l − 1

)
, if l > 0 and dimHl,n = 1, if l = 0.

Consequently,

(5.2.0.3) Dl,n := dim
l⨁

l′=0

Hl′,n =

(
n+ l

l

)
+

(
n+ l − 1

l − 1

)
,

and λ(k) = ρ−2(n− 1)2l(l + n− 1) if and only if Dl−1,n < k ≤ Dl,n where λ(k) is the k-th
eigenvalues of −∆Sn,ρ and coincides with the variational definition given in (5.1.1.3).

Example 5.2.0.2 (Gaussian spaces). On the Euclidean space Rn, equipped with the
Gaussian measure γn,ρ, the corresponding weighted Laplacian is ∆γn,ρ = ∆Rn − ρx ·
∇. The eigenvalues of −∆γn,ρ are exactly of the form ρ2q and the dimension of the
associated eigenspace Hq,n is

(5.2.0.4) dimHq,n =

(
n+ q − 1

q

)
.

Consequently,

(5.2.0.5) Dq,n := dim

q⨁
q′=0

Hq′,n =

(
n+ q

q

)
,

and λ(k) = ρ−2q if and only if Dq−1,n < k ≤ Dq,n where λ(k) is the k-th eigenvalues of
−∆γn,ρ and coincides with the variational definition given in (5.1.1.3).
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Example 5.2.0.3 (Log-concave Euclidean spaces). We study the case where E = Rn, d
is the Euclidean distance and µ is a strictly log-concave probability measure. By this
we mean that µ(dx) = e−V (x) dx, where V : Rn → R such that V is C2 and satisfying
∇2V ≥ K for some K > 0. It is a consequence of [12, Proposition 4] that such a
condition on V implies that the semigroup generated by the solution of the stochastic
differential equation

(5.2.0.6) dXt =
√
2dBt −∇V (Xt)dt,

where B is a Brownian motion on Rn, satisfies the curvature-dimension CD(∞, K) of
Bakry-Emery and, therefore, holds the log-Sobolev inequality, for all f ∈ C∞

c (Rn),

(5.2.0.7) Entµ f
2 ≤ 2

K

ˆ
|∇f(x)|2µ(dx).

Such an inequality implies the super-Poincaré of [147, Theorem 2.1] that in turns im-
plies that the self-adjoint operator L = −∆+∇V ·∇ has a purely discrete spectrum. In
that case, the λ(k) of (5.1.1.3) corresponds to these eigenvalues and [100] showed that

(5.2.0.8) λ(k) ≥ λ(k)γn,ρ
,

where λ(k)γn,ρ is the eigenvalues of −∆γn,ρ of the previous example.

5.3. EXTENSION TO MARKOV CHAINS

As in the classical case (see [85, Theorem 3.3]), our continuous result admits a
generalization on finite graphs or more broadly in the setting of Markov chains on
a finite state space. We consider a finite set E and X = (Xn) be a irreducible time-
homogeneous Markov chain with state space E. We write p(x, y) = P(X1 = y|X0 = x)
and we regard p as a matrix. We assume that X admits a reversible probability mea-
sure µ onE such that p(x, y)µ(x) = p(y, x)µ(y) and µ(y) =

∑
x p(x, y)µ(x). This induces

a graph structure on E by the following procedure. Set the elements of E as the vertex
of the graph and for x, y ∈ E connect them with an edge if p(x, y) > 0. As the chain
is irreducible, this graph is connected. We equip E with the induced graph distance
d. We write L = p − I , where I stands for the identity. The operator −L is a symmet-
ric positive operator on L2(µ). We let λ(k) be the eigenvalues of this operator. Then,
our Theorem 5.1.2.1 extends as follows:

Theorem 5.3.0.1. For any k ≥ 1 and for all setsA1, . . . , Ak ⊂ E such that mini ̸=j d(Ai, Aj) ≥
1 and (µ(A1), . . . , µ(Ak)) ∈ ∆k the set B = A1 ∪ A2 ∪ · · · ∪ Ak satisfies

(5.3.0.1) µ(Bn) ≥ 1− (1− µ(B))
(
1 + λ(k)

)−n
,

for all 1 ≤ n ≤ 1
2
mini ̸=j d(Ai, Aj) where λ(k) is the k-th eigenvalue of the operator −L acting

on L2(µ).

Proof. We let Π(x, y) = p(x, y)µ(x) and

(5.3.0.2) E (f, g) =
1

2

∑
(f(y)− f(x))(g(y)− g(x))Π(x, y) = ⟨f,−Lg⟩µ.

135



For any set A, we define the discrete boundary of A as ∂A = A1 \ A ∪ (AC)1 \ AC .
Let (Xn) be the Markov chain with transition kernel p and initial distribution µ. By
reversibility of µ, (X0, X1) is an exchangeable pair of law Π whose the marginals are
given by µ. Then, for a set U , we have
(5.3.0.3)

E (1U) = E1U(X0)(1U(X0)− 1U(X1)) = P(X0 ∈ U,X1 ̸∈ U) ≤ P(X1 ∈ ∂U) = µ(∂U).

Observe that if d(U, V ) ≥ 1, U and V are disjoint andU×V ̸∈ suppΠ so that E (1U , 1V ) =
0. By Courant-Fischer’s min-max theorem

(5.3.0.4) λ(k) = min
dimV=k+1

max
f∈V

E (f, f)

µ(f 2)
.

Choose sets A1, . . . , Ak with d(Ai, Aj) ≥ 2n (i ̸= j) and (µ(A1), . . . , µ(Ak)) ∈ ∆k. Set
fi = 1Ai

. The fi’s have disjoint support and so they are orthogonal in L2(µ). By the
previous variational representation of λ(k), we have

(5.3.0.5) λ(k) ≤ sup
ai

E
(∑k

i=0 aifi

)
´ (∑k

i=0 aifi

)2
dµ

= sup
ai

∑
aiai′E (fi, fi′)∑
aiai′
´
fifi′dµ

= sup
ai

∑k
i=0 a

2
iE (fi)∑k

i=0 ai
´
f 2
i dµ

.

In other words,

(5.3.0.6) λ(k) ≤ max
i=0,...,k

µ((Ai)1) + µ((AC
i )1)− 1

µ(Ai)
≤ µ((Ai)1)− µ(Ai)

µ(Ai)
,

where the last inequality comes from the fact that, by Lemma 5.1.3.1, µ(E \ (E \ A)1) ≥
µ(A). Consider the setB = ∪k

i=1Ai and chooseA0 = E\B1. In that case, by Lemma 5.1.3.2
with ϵ = 1, we have

(5.3.0.7) max
i=0,...,k

µ((Ai)1)

µ(Ai)
≤ 1− µ(B)

1− µ(B1)
.

Thus, we proved that

(5.3.0.8) (1 + λ(k))(1− µ(B1)) ≤ (1− µ(B)).

We derive the announced result by an immediate recursion.

5.4. FUNCTIONAL FORMS OF THE MULTIPLE SETS CONCENTRATION PROPERTY

We investigate the functional form of the multi-sets concentration of measure phe-
nomenon results obtained in Sections 5.1 and 5.3.

Proposition 5.4.0.1. Let (E, d) be a metric space equipped with a Borel probability measure
µ. Let αk : R+ → R+. The following properties are equivalent:

1. For all Borel sets A1, . . . , Ak ⊂ E such that (µ(A1), . . . , µ(Ak)) ∈ ∆k, the set A =
A1 ∪ · · · ∪ Ak satisfies

(5.4.0.1) µ(Ar) ≥ 1− (1− µ(A))αk(r), ∀0 < r ≤ 1

2
min
i ̸=j

d(Ai, Aj).
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2. For all 1-Lipschitz functions f1, . . . , fk : E → R such that the sublevel sets Ai = {fi ≤
0} are such that (µ(A1), . . . , µ(Ak)) ∈ ∆k, the function f ∗ = min(f1, . . . , fk) satisfies

(5.4.0.2) µ(f ∗ < r) ≥ 1− µ(f ∗ ≤ 0)αk(r), ∀0 < r ≤ 1

2
min
i ̸=j

d(Ai, Aj).

Together with Theorem 5.1.2.1 or Theorem 5.3.0.1, one thus sees that the presence of
multiple wells can improve the concentration properties of a Lipschitz function.

Proof. It is clear that (2) implies (1) when applied to fi(x) = d(x,Ai), in which case
Ai = {fi ≤ 0} and f ∗(x) = d(x,A). The converse is also very classical. First, observe
that {f ∗ < r} = ∪k

i=1{fi < r}. Then, since fi is 1-Lipschitz, it holds Ai,r ⊂ {fi < r}
with Ai = {fi ≤ 0} and so letting A = A1 ∪ · · · ∪Ak, it holds Ar ⊂ {f ∗ < r}. Therefore,
applying (1) to this set A gives (2).

When (5.4.0.1) holds, we will say that the probability metric space (E, d, µ) satisfies the
multi-set concentration of measure property of order k with the concentration profile
αk.

In the usual setting (k = 1), the concentration of measure phenomenon implies
deviation inequalities for Lipschitz functions around their median. The next result
generalizes this well known fact to k > 1.

Proposition 5.4.0.2. Let (E, d, µ) be a probability metric space satisfying the multi-set con-
centration of measure property of order k with the concentration profile αk and f : E → R
be a 1-Lipschitz function. If I1, . . . , Ik ⊂ R are k disjoint Borel sets such that (µ(f ∈
I1), . . . , µ(f ∈ Ik)) ∈ ∆k, then it holds

(5.4.0.3) µ
(
f ∈ ∪k

i=1Ii,r
)
≥ 1− (1− µ(f ∈ ∪k

i=1Ii))αk(r), ∀0 < r ≤ 1

2
min
i ̸=j

d(Ii, Ij)

Proof. Let ν be the image of µ under the map f . Since f is 1-Lipschitz, the metric space
(R, | · |, ν) satisfies the multi-set concentration of measure property of order k with the
same concentration profile αk as µ. Details are left to the reader.

Let us conclude this section by detailling some application of potential interest in ap-
proximation theory.

Suppose that f : E → R is some 1-Lipschitz function and A1, . . . Ak are (pairwise
disjoint) subsets of E such that (µ(A1), . . . , µ(Ak)) ∈ ∆k. Let us assume that the restric-
tions f|Ai

, i ∈ {1, . . . , k} are known and that one wishes to estimate or reconstruct f
outside A = ∪k

i=1Ai. To that aim, one can consider an explicit 1-Lipschitz extension of
f|A, that is to say a 1-Lipschitz function g : E → R (constructed based on our knowl-
edge of f on A exclusively) such that f = g on A. There are several canonical ways
to perform the extension of a Lipschitz function defined on a sub domain (known as
Kirszbraun-McShane-Whitney extension [72, 98, 148]). One can consider for instance
the functions

(5.4.0.4) g+(x) = inf
y∈A

{f(y)+d(x, y)} or g−(x) = sup
y∈A

{f(y)−d(x, y)}, x ∈ E.

It is a very classical fact that functions g− and g+ are 1-Lipschitz extensions of f|A and
moreover that any extension g of f|A satisfies g− ≤ g ≤ g+ (see e.g [64]).
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The following simple result shows that, for any 1-Lipschitz extension g of f|A, the
probability of error µ(|f − g| > r) is controlled by the multi-set concentration profile
αk. In particular, in the framework of our Theorem 5.1.2.1, this probability of error is
controled by λ(k).

Proposition 5.4.0.3. Let (E, d, µ) be a probability metric space satisfying the multi-set con-
centration of measure property of order k with the concentration profile αk and f : E → R be a
1-Lipschitz function. Let A1, . . . Ak be subsets of E such that (µ(A1), . . . , µ(Ak)) ∈ ∆k; then
for any 1-Lipschitz extension g of f|A, it holds

(5.4.0.5) µ(|f − g| ≥ r) ≤ (1− µ(A))αk(r/2), ∀0 < r ≤ min
i ̸=j

d(Ai, Aj).

Proof. The function h : E → R defined by h(x) = |f − g|(x), x ∈ E, is 2-Lipschitz and
vanishes on A. Therefore, for any x ∈ E and y ∈ A, it holds h(x) ≤ h(y) + 2d(x, y) =
2d(x, y). Optimizing over y ∈ A gives that h(x) ≤ 2d(x,A). Therefore {h ≥ r} ⊂ {x :
d(x,A) ≥ r/2} =

(
Ar/2

)c and so, if 0 < r ≤ mini ̸=j d(Ai, Aj), it holds

(5.4.0.6) µ(|f − g| ≥ r) ≤ (1− µ(A))αk(r/2).

Remark 31. Let us remark that Propositions 5.4.0.1, 5.4.0.2 and 5.4.0.3 can be imme-
diately extended under the following more general (but notationally heavier) multi-
set concentration of measure assumption: there exists functions αk : R+ → R+ and
βk : Rk

+ → [0,∞] such that for all Borel sets A1, . . . , Ak ⊂ E, the set A = A1 ∪ · · · ∪ Ak

satisfies

(5.4.0.7) µ(Ar) ≥ 1− βk(µ(A1), . . . , µ(Ak))αk(r), ∀0 < r ≤ 1

2
min
i ̸=j

d(Ai, Aj).

This framework contains the preceding one, by choosing βk(a) = 1 −
∑k

i=1 ai if a =
(a1, . . . , ak) ∈ ∆k and +∞ otherwise. It also contains the concentration bounds ob-
tained in Proposition 5.1.4.1, corresponding respectively to
(5.4.0.8)

βk(a) =
1−

∑k
i=1 ai∏k

i=1 ai
, and βk(a) =

1−
∑k

i=1 ai(∑k
i=1 ai

)∑k
i=1 ai/min(a1,...,ak)

, a = (a1, . . . , ak).

5.5. OPEN QUESTIONS

We list open questions related to the multi-set concentration of measure phenomenon.

5.5.1. Gaussian multi-set concentration. Using the terminology introduced in Sec-
tion 5.4, Theorem 5.1.2.1 and the material exposed in Section 5.2 tell us that, if µ has a
density of the form e−V with respect to Lebesgue measure on Rn with a smooth func-
tion V such that HessV ≥ ρ > 0, then the probability metric space (Rn, | · |, µ) satisfies
the multi-set concentration of measure property of order k with the concentration pro-
file

(5.5.1.1) αk(r) = exp

(
−cmin(r2λ(k)γn,ρ; r

√
λ
(k)
γn,ρ)

)
, r ≥ 0,
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where λ(k)γn,ρ denotes the kth eigenvalue of the n-dimensional centered Gaussian mea-
sure with covariance matrix ρ−1Id. Since the measure µ satisfies the log-Sobolev in-
equality, it is well known that it satisfies a (classical) Gaussian concentration of mea-
sure inequality. Therefore, it is natural to conjecture that µ satisfies a multi-set concen-
tration of measure property of order k ≥ 1 with a profile of the form

(5.5.1.2) βk(r) = exp
(
−Ck,ρ,nr

2
)
, r ≥ 0,

for some constant Ck,ρ,n depending solely on its arguments. In addition, it would be
interesting to see how usual functional inequalities (Log-Sobolev, transport-entropy,
. . . ) can be modified to catch such a concentration of measure phenomenon. To that
extent, let us mention some ongoing work with N. GOZLAN & P-M. SAMSOM inves-
tigating some of those questions. It is well-known that, if (Z, d) is a geodesic metric
space (say a Riemannian manifold to fix the idea) then the space P2(Z) of probabil-
ity measures on Z with finite second-moment is also a geodesic metric space when
equipped with the quadratic Wasserstein distance Wd,2: for all ν0 and ν1 ∈ P2(Z),
there exists a family (νt)t∈[0,1] such that

(5.5.1.3) Wd,2(ν0, ν1) = Wd,2(ν0, νt) +Wd,2(νt, ν1), for all t ∈ (0, 1).

The curve (νt)t∈[0,1] is called the Wasserstein geodesic joining ν0 to ν1. Many fundamen-
tal papers about optimal transport (see in particular Y. BRENIER (1991) [28], R. J. MC-
CANN (1997) [97], F. OTTO (2001) [119]), upheld the idea that the geometry of (Z, d)
should be linked to the geometry of (P2(Z),W2,d). This point of view was formalized
in the two seminal contributions of K.-T. STURM (2006) [141] & [142] and J. LOTT &
C. VILLANI (2009) [90]. They noticed that the property of displacement convexity of
the relative entropy H(·|γ) along the Wasserstein geodesics was characterizing the ge-
ometry of the metric measured space (Z, d, γ). In particular, they proved that, if for all
ν0 and ν1 ∈ P2(Z), there exists a Wasserstein geodesic (νt) joining ν0 to ν1 such that

(5.5.1.4) H(νt|γ) ≤ (1− t)H(ν0|γ) + tH(ν1|γ)−
1

2
t(1− t)W2

2,d(ν0, ν1),

then the functional inequalities on (Z, d, γ) are (at least) as good as the ones on a
(R, | · |,N(0, 1)). In particular we can recover for those spaces a logarithmic Sobolev in-
equality and a spectral gap inequality. Also observe that (5.5.1.4) implies the Talagrand
inequality

(5.5.1.5) W2
2,d(ν0, ν1) ≤ (H(ν0|γ) +H(ν1|γ)),

and that Gaussian concentration of measure can be deduced from it (see M. TALA-
GRAND (1996) [144]). It is therefore very natural to ask if our concentration result The-
orem 5.1.2.1 could be related to an higher dimensional version of the Talagrand in-
equality (5.5.1.5) or from an higher dimensional version of (5.5.1.4). We work over Rd.
Recall (see W. GANGBO & A. ŚWIECH (1998) [52] or M. AGUEH & G. CARLIER (2011)
[1]) that given ν1, . . . , νk ∈ P2(Rd) and t1, . . . , tk ∈ [0, 1] such that

∑k
i=1 ti = 1 we define

the multidimensional transport cost

(5.5.1.6) T t(ν1, . . . , νk) = inf

{ˆ ∑
1≤i<j≤k

titj|xi − xj|2π(dx)

}
,
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where the infimum is over all the couplings π of ν1, . . . , νk. It can be shown [52] that
this infimum is achieved for a unique coupling π∗. The Wasserstein barycenters of ν =
(ν1, . . . , νk) with coefficients t = (t1, . . . , tk) is defined by

(5.5.1.7) bar(ν, t) =

(
k∑

i=1

tixi

)
♯π∗.

The curvature inequality (5.5.1.4) has the following multi-marginal equivalent

(5.5.1.8) H(bar(ν, t)|γ) ≤
k∑

i=1

tiH(νi|γ)−
1

2
T t
2(ν1, . . . , νk),

Following [1, Proposition 7] and [5, Theorem 9.4.11], the normal measure N(0, 1) satis-
fies such an inequality but other measures γ might also satisfy (5.5.1.8). The curvature
inequality implies the multi-marginal version of (5.5.1.5)

(5.5.1.9)
1

2
T t
2(ν1, . . . , νk) ≤

k∑
i=1

tiH(νi|γ).

We are currently investigating the links between (5.5.1.8) or (5.5.1.9) and the multi-set
concentration property.

5.5.2. Equivalence between multi-set concentration and lower bounds on eigen-
values in non-negative curvature. Let us quickly recall the main finding of E. Mil-
man [103, 101], that is, under non-negative curvature assumptions, a concentration of
measure estimate implies a bound on the spectral gap. Let µ be a probability measure
with a density of the form e−V on a smooth connected Riemannian manifold M with
V a smooth function such that

(5.5.2.1) Ric + HessV ≥ 0.

Assume that µ satisfies a concentration inequality of the form: for all A ⊂M such that
µ(A) ≥ 1/2

(5.5.2.2) µ(Ar) ≥ 1− α(r), r ≥ 0,

where α is a function such that α(ro) < 1/2 for at least one value ro > 0. Then, letting λ1
be the first non zero eigenvalue of the operator −∆+∇V ·∇, it holds λ1 ≥ 1

4

(
1−2α(ro)

ro

)2
.

It would be very interesting to extend Milman’s result to a multi-set concentration
setting. More precisely, if µ satisfies the curvature condition (5.5.2.1) and the multi-
set concentration of measure property of order k with a profile of the form αk(r) =
exp(−min(ar2,

√
ar)), r ≥ 0, can we find a universal function φk such that λk ≥ φk(a)?

This question already received some attention in recent works by Funano and Sh-
ioya [50, 51]. In particular, let us mention the following improvement of the Chung-
Grigor’yan-Yau inequality obtained in [50]. There exists a universal constant c > 1
such that if µ is a probability measure satisfying the non-negative curvature assump-
tion (5.5.2.1), it holds: for any family of sets A0, A1, . . . , Al with 1 ≤ l ≤ k

(5.5.2.3) λ(k) ≤ ck−l+1 1

mini ̸=j d2(Ai, Aj)
max
i ̸=j

log (
4

µ(Ai)µ(Aj)
)
2

.
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Note that the difference with (5.1.5.1) is that λ(k) is estimated by a reduced number of
sets. Using (5.5.2.3) (with l = 1) together with Milman’s result recalled above, Funano
showed that there exists some constant Ck depending only on k such that under the
curvature condition (5.5.2.1), it holds λk ≤ Ckλ0 (recovering the main result of [51]).
The constant Ck is explicit (contrary to the constant of [51]) and grows exponentially
when k → ∞. This result has been then improved by Liu [89], where a constant
Ck = O(k2) has been obtained. As observed by Funano [50], a positive answer to
the open question stated above would yield that under (5.5.2.1) the ratios λk+1/λk are
bounded from above by a universal constant.

141



BIBLIOGRAPHY

[1] M. Agueh & G. Carlier. “Barycenters in the Wasserstein space”. In: SIAM J.
Math. Anal. 43.2 (2011), pp. 904–924. ISSN: 0036-1410. URL: https://doi.
org/10.1137/100805741.

[2] S. Aida & D. Stroock. “Moment estimates derived from Poincaré and logarith-
mic Sobolev inequalities”. In: Math. Res. Lett. 1.1 (1994), pp. 75–86. ISSN: 1073-
2780.

[3] L. Ambrosio & R. Ghezzi. “Sobolev and bounded variation functions on metric
measure spaces”. In: Geometry, analysis and dynamics on sub-Riemannian mani-
folds. Vol. II. Ed. by A. Laptev. EMS Ser. Lect. Math. Eur. Math. Soc., Zürich,
2016, pp. 211–273.

[4] L. Ambrosio, N. Gigli & G. Savaré. “Bakry-Émery curvature-dimension con-
dition and Riemannian Ricci curvature bounds”. In: Ann. Probab. 43.1 (2015),
pp. 339–404. ISSN: 0091-1798. URL: https://doi.org/10.1214/14-
AOP907.

[5] L. Ambrosio, N. Gigli & G. Savaré. Gradient flows in metric spaces and in the space
of probability measures. Second. Lectures in Mathematics ETH Zürich. Birkhäuser
Verlag, Basel, 2008, pp. x+334. ISBN: 978-3-7643-8721-1.

[6] C. Ané et al. Sur les inégalités de Sobolev logarithmiques. Vol. 10. Panoramas et
Synthèses [Panoramas and Syntheses]. With a preface by Dominique Bakry and
Michel Ledoux. Société Mathématique de France, Paris, 2000, pp. xvi+217. ISBN:
2-85629-105-8.

[7] S. Artstein, K. M. Ball, F. Barthe & A. Naor. “On the rate of convergence in
the entropic central limit theorem”. In: Probab. Theory Related Fields 129.3 (2004),
pp. 381–390. ISSN: 0178-8051. DOI: 10.1007/s00440-003-0329-4. URL:
https://doi.org/10.1007/s00440-003-0329-4.

[8] K. Atkinson & W. Han. Spherical harmonics and approximations on the unit sphere:
an introduction. Vol. 2044. Lecture Notes in Mathematics. Springer, Heidelberg,
2012, pp. x+244. ISBN: 978-3-642-25982-1. DOI: 10.1007/978-3-642-25983-
8. URL: https://doi.org/10.1007/978-3-642-25983-8.

[9] E. Azmoodeh, S. Campese & G. Poly. “Fourth Moment Theorems for Markov
diffusion generators”. In: J. Funct. Anal. 266.4 (2014), pp. 2341–2359. ISSN: 0022-
1236. DOI: 10.1016/j.jfa.2013.10.014. URL: http://dx.doi.org/
10.1016/j.jfa.2013.10.014.

[10] L. Bachelier. “Théorie de la spéculation”. In: Ann. Sci. École Norm. Sup. (3) 17
(1900), pp. 21–86. ISSN: 0012-9593. URL: http://www.numdam.org/item?
id=ASENS_1900_3_17__21_0.

142

https://doi.org/10.1137/100805741
https://doi.org/10.1137/100805741
https://doi.org/10.1214/14-AOP907
https://doi.org/10.1214/14-AOP907
https://doi.org/10.1007/s00440-003-0329-4
https://doi.org/10.1007/s00440-003-0329-4
https://doi.org/10.1007/978-3-642-25983-8
https://doi.org/10.1007/978-3-642-25983-8
https://doi.org/10.1007/978-3-642-25983-8
https://doi.org/10.1016/j.jfa.2013.10.014
http://dx.doi.org/10.1016/j.jfa.2013.10.014
http://dx.doi.org/10.1016/j.jfa.2013.10.014
http://www.numdam.org/item?id=ASENS_1900_3_17__21_0
http://www.numdam.org/item?id=ASENS_1900_3_17__21_0


[11] L. Bachelier. “Théorie mathématique du jeu”. In: Ann. Sci. École Norm. Sup. (3)
18 (1901), pp. 143–209. ISSN: 0012-9593. URL: http://www.numdam.org/
item?id=ASENS_1901_3_18__143_0.

[12] D. Bakry & M. Émery. “Diffusions hypercontractives”. In: Séminaire de prob-
abilités, XIX, 1983/84. Ed. by J. Azéma & M. Yor. Vol. 1123. Lecture Notes in
Math. Springer, Berlin, 1985, pp. 177–206. DOI: 10.1007/BFb0075847. URL:
https://doi.org/10.1007/BFb0075847.

[13] D. Bakry, I. Gentil & M. Ledoux. Analysis and geometry of Markov diffusion opera-
tors. Vol. 348. Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer, Cham, 2014, pp. xx+552. ISBN:
978-3-319-00226-2; 978-3-319-00227-9. URL: https://doi.org/10.1007/
978-3-319-00227-9.

[14] A. Barron & O. Johnson. “Fisher information inequalities and the central limit
theorem”. In: Probab. Theory Related Fields 129.3 (2004), pp. 391–409. ISSN: 0178-
8051. DOI: 10.1007/s00440-004-0344-0. URL: https://doi.org/10.
1007/s00440-004-0344-0.

[15] A. C. Berry. “The accuracy of the Gaussian approximation to the sum of in-
dependent variates”. In: Trans. Amer. Math. Soc. 49 (1941), pp. 122–136. ISSN:
0002-9947. DOI: 10.2307/1990053. URL: https://doi.org/10.2307/
1990053.

[16] P. Billingsley. Probability and measure. Third. Wiley Series in Probability and
Mathematical Statistics. A Wiley-Interscience Publication. John Wiley & Sons,
Inc., New York, 1995, pp. xiv+593. ISBN: 0-471-00710-2.

[17] S. G. Bobkov & F. Götze. “Exponential integrability and transportation cost re-
lated to logarithmic Sobolev inequalities”. In: J. Funct. Anal. 163.1 (1999), pp. 1–
28. ISSN: 0022-1236. DOI: 10.1006/jfan.1998.3326. URL: https://doi.
org/10.1006/jfan.1998.3326.

[18] S. G. Bobkov & M. Ledoux. “On modified logarithmic Sobolev inequalities for
Bernoulli and Poisson measures”. In: J. Funct. Anal. 156.2 (1998), pp. 347–365.
ISSN: 0022-1236. DOI: 10.1006/jfan.1997.3187. URL: https://doi.
org/10.1006/jfan.1997.3187.

[19] S. Bobkov & M. Ledoux. “Poincaré’s inequalities and Talagrand’s concentration
phenomenon for the exponential distribution”. In: Probab. Theory Related Fields
107.3 (1997), pp. 383–400. ISSN: 0178-8051. DOI: 10.1007/s004400050090.
URL: https://doi.org/10.1007/s004400050090.

[20] S. G. Bobkov, I. Gentil & M. Ledoux. “Hypercontractivity of Hamilton-Jacobi
equations”. In: J. Math. Pures Appl. (9) 80.7 (2001), pp. 669–696. ISSN: 0021-7824.
DOI: 10.1016/S0021-7824(01)01208-9. URL: https://doi.org/10.
1016/S0021-7824(01)01208-9.

[21] S. G. Bobkov & P. Tetali. “Modified logarithmic Sobolev inequalities in discrete
settings”. In: J. Theoret. Probab. 19.2 (2006), pp. 289–336. ISSN: 0894-9840. DOI:
10.1007/s10959-006-0016-3. URL: https://doi.org/10.1007/
s10959-006-0016-3.

143

http://www.numdam.org/item?id=ASENS_1901_3_18__143_0
http://www.numdam.org/item?id=ASENS_1901_3_18__143_0
https://doi.org/10.1007/BFb0075847
https://doi.org/10.1007/BFb0075847
https://doi.org/10.1007/978-3-319-00227-9
https://doi.org/10.1007/978-3-319-00227-9
https://doi.org/10.1007/s00440-004-0344-0
https://doi.org/10.1007/s00440-004-0344-0
https://doi.org/10.1007/s00440-004-0344-0
https://doi.org/10.2307/1990053
https://doi.org/10.2307/1990053
https://doi.org/10.2307/1990053
https://doi.org/10.1006/jfan.1998.3326
https://doi.org/10.1006/jfan.1998.3326
https://doi.org/10.1006/jfan.1998.3326
https://doi.org/10.1006/jfan.1997.3187
https://doi.org/10.1006/jfan.1997.3187
https://doi.org/10.1006/jfan.1997.3187
https://doi.org/10.1007/s004400050090
https://doi.org/10.1007/s004400050090
https://doi.org/10.1016/S0021-7824(01)01208-9
https://doi.org/10.1016/S0021-7824(01)01208-9
https://doi.org/10.1016/S0021-7824(01)01208-9
https://doi.org/10.1007/s10959-006-0016-3
https://doi.org/10.1007/s10959-006-0016-3
https://doi.org/10.1007/s10959-006-0016-3


[22] S. Bochner. “Monotone Funktionen, Stieltjessche Integrale und harmonische
Analyse”. In: Math. Ann. 108.1 (1933), pp. 378–410. ISSN: 0025-5831. DOI: 10.
1007/BF01452844. URL: https://doi.org/10.1007/BF01452844.

[23] N. Bouleau & F. Hirsch. Dirichlet forms and analysis on Wiener space. Vol. 14.
De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1991,
pp. x+325. ISBN: 3-11-012919-1. DOI: 10.1515/9783110858389. URL: http:
//dx.doi.org/10.1515/9783110858389.

[24] N. Bourbaki. Intégration. Chapitre 9 Intégration sur les espaces topologiques séparés.
Eléments de mathématiques. Springer-Verlag Berlin Heidelberg, 2006, pp. vi+127.
DOI: 10.1007/978-3-540-34391-2. URL: https://doi.org/10.1007/
978-3-540-34391-2.

[25] N. Bourbaki. Éléments de mathématique. Algèbre. Chapitre 1 à 3. Springer-Verlag,
Berlin, 2007, pp. viii+216. ISBN: 978-3-540-33849-9; 978-3-540-33850-5. DOI: 10.
1007/978-3-540-33850-5.

[26] S. Bourguin & G. Peccati. “Portmanteau inequalities on the Poisson space: mixed
regimes and multidimensional clustering”. In: Electron. J. Probab. 19 (2014), no.
66, 42. ISSN: 1083-6489. DOI: 10.1214/EJP.v19-2879. URL: https://doi.
org/10.1214/EJP.v19-2879.

[27] S. Bourguin & G. Peccati. “The Malliavin-Stein method on the Poisson space”.
In: Stochastic analysis for Poisson point processes. Ed. by G. Peccati & M. Reitzner.
Vol. 7. Bocconi Springer Ser. Bocconi Univ. Press, [place of publication not iden-
tified], 2016, pp. 185–228.

[28] Y. Brenier. “Polar factorization and monotone rearrangement of vector-valued
functions”. In: Comm. Pure Appl. Math. 44.4 (1991), pp. 375–417. ISSN: 0010-3640.
DOI: 10.1002/cpa.3160440402. URL: https://doi.org/10.1002/
cpa.3160440402.

[29] P. Buser. “A note on the isoperimetric constant”. In: Ann. Sci. École Norm. Sup.
(4) 15.2 (1982), pp. 213–230. ISSN: 0012-9593. URL: http://www.numdam.
org/item?id=ASENS_1982_4_15_2_213_0.

[30] S. Campese, I. Nourdin, G. Peccati & G. Poly. “Multivariate Gaussian approx-
imations on Markov chaoses”. In: Electron. Commun. Probab. 21 (2016), Paper
No. 48, 9. ISSN: 1083-589X. DOI: 10.1214/16-ECP4615. URL: https://
doi.org/10.1214/16-ECP4615.

[31] D. Chafaï. “Entropies, convexity, and functional inequalities: on Φ-entropies
and Φ-Sobolev inequalities”. In: J. Math. Kyoto Univ. 44.2 (2004), pp. 325–363.
ISSN: 0023-608X. DOI: 10.1215/kjm/1250283556. URL: https://doi.
org/10.1215/kjm/1250283556.

[32] I. Chavel. Eigenvalues in Riemannian geometry. Vol. 115. Pure and Applied Math-
ematics. Including a chapter by Burton Randol, With an appendix by Jozef
Dodziuk. Academic Press, Inc., Orlando, FL, 1984, pp. xiv+362. ISBN: 0-12-
170640-0.

[33] J. Cheeger. “Differentiability of Lipschitz functions on metric measure spaces”.
In: Geom. Funct. Anal. 9.3 (1999), pp. 428–517. ISSN: 1016-443X. DOI: 10.1007/
s000390050094. URL: https://doi.org/10.1007/s000390050094.

144

https://doi.org/10.1007/BF01452844
https://doi.org/10.1007/BF01452844
https://doi.org/10.1007/BF01452844
https://doi.org/10.1515/9783110858389
http://dx.doi.org/10.1515/9783110858389
http://dx.doi.org/10.1515/9783110858389
https://doi.org/10.1007/978-3-540-34391-2
https://doi.org/10.1007/978-3-540-34391-2
https://doi.org/10.1007/978-3-540-34391-2
https://doi.org/10.1007/978-3-540-33850-5
https://doi.org/10.1007/978-3-540-33850-5
https://doi.org/10.1214/EJP.v19-2879
https://doi.org/10.1214/EJP.v19-2879
https://doi.org/10.1214/EJP.v19-2879
https://doi.org/10.1002/cpa.3160440402
https://doi.org/10.1002/cpa.3160440402
https://doi.org/10.1002/cpa.3160440402
http://www.numdam.org/item?id=ASENS_1982_4_15_2_213_0
http://www.numdam.org/item?id=ASENS_1982_4_15_2_213_0
https://doi.org/10.1214/16-ECP4615
https://doi.org/10.1214/16-ECP4615
https://doi.org/10.1214/16-ECP4615
https://doi.org/10.1215/kjm/1250283556
https://doi.org/10.1215/kjm/1250283556
https://doi.org/10.1215/kjm/1250283556
https://doi.org/10.1007/s000390050094
https://doi.org/10.1007/s000390050094
https://doi.org/10.1007/s000390050094


[34] F. R. K. Chung, A. Grigor’yan & S.-T. Yau. “Upper bounds for eigenvalues of
the discrete and continuous Laplace operators”. In: Adv. Math. 117.2 (1996),
pp. 165–178. ISSN: 0001-8708. DOI: 10.1006/aima.1996.0006. URL: http:
//dx.doi.org/10.1006/aima.1996.0006.

[35] C. Dellacherie & P.-A. Meyer. Probabilités et potentiel. Chapitres I à IV. Édition en-
tièrement refondue, Publications de l’Institut de Mathématique de l’Université
de Strasbourg, No. XV, Actualités Scientifiques et Industrielles, No. 1372. Her-
mann, Paris, 1975, pp. x+291.

[36] C. Dellacherie & P.-A. Meyer. Probabilités et potentiel. Chapitres XVII à XXIV, Pro-
cessus de Markov (fin), Compléments de calcul stochastique. Hermann, Paris, 1992,
pp. xi+429.

[37] P. Dirac. “The quantum theory of the emission and absorption of radiation”. In:
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineer-
ing Sciences 114.767 (1927), pp. 243–265. ISSN: 0950-1207. DOI: 10.1098/rspa.
1927.0039. eprint: http://rspa.royalsocietypublishing.org/
content/114/767/243.full.pdf. URL: http://rspa.royalsocietypublishing.
org/content/114/767/243.

[38] C. Döbler & K. Krokowski. “On the fourth moment condition for Rademacher
chaos”. In: ArXiv e-prints (June 2017). arXiv: 1706.00751 [math.PR].

[39] C. Döbler & G. Peccati. “Fourth moment theorems on the Poisson space: an-
alytic statements via product formulae”. In: ArXiv e-prints (Aug. 2018). arXiv:
1808.01836 [math.PR].

[40] C. Döbler & G. Peccati. “The fourth moment theorem on the Poisson space”. In:
Ann. Probab. 46.4 (2018), pp. 1878–1916. ISSN: 0091-1798. DOI: 10.1214/17-
AOP1215. URL: https://doi.org/10.1214/17-AOP1215.

[41] C. Döbler, A. Vidotto & G. Zheng. “Fourth moment theorems on the Poisson
space in any dimension”. In: Electron. J. Probab. 23 (2018), Paper No. 36, 27. ISSN:
1083-6489. DOI: 10.1214/18-EJP168. URL: https://doi.org/10.1214/
18-EJP168.

[42] R. M. Dudley. “The sizes of compact subsets of Hilbert space and continuity of
Gaussian processes”. In: J. Functional Analysis 1 (1967), pp. 290–330.

[43] N. Dunford & J. T. Schwartz. Linear operators. Part II. Wiley Classics Library.
Spectral theory. Selfadjoint operators in Hilbert space, With the assistance of
William G. Bade and Robert G. Bartle, Reprint of the 1963 original, A Wiley-
Interscience Publication. John Wiley & Sons, Inc., New York, 1988, i–x, 859–1923
and 1–7. ISBN: 0-471-60847-5.

[44] M. Erbar & M. Huesmann. “Curvature bounds for configuration spaces”. In:
Calc. Var. Partial Differential Equations 54.1 (2015), pp. 397–430. ISSN: 0944-2669.
DOI: 10.1007/s00526-014-0790-1. URL: https://doi.org/10.1007/
s00526-014-0790-1.

[45] C.-G. Esseen. “On the Liapounoff limit of error in the theory of probability”. In:
Ark. Mat. Astr. Fys. 28A.9 (1942), p. 19. ISSN: 0004-2080.

[46] F. Faà di Bruno. “Sullo sviluppo delle funzioni”. In: Annali di Scienze Matem-
atiche e Fisiche 6 (1855), pp. 479–480.

145

https://doi.org/10.1006/aima.1996.0006
http://dx.doi.org/10.1006/aima.1996.0006
http://dx.doi.org/10.1006/aima.1996.0006
https://doi.org/10.1098/rspa.1927.0039
https://doi.org/10.1098/rspa.1927.0039
http://rspa.royalsocietypublishing.org/content/114/767/243.full.pdf
http://rspa.royalsocietypublishing.org/content/114/767/243.full.pdf
http://rspa.royalsocietypublishing.org/content/114/767/243
http://rspa.royalsocietypublishing.org/content/114/767/243
https://arxiv.org/abs/1706.00751
https://arxiv.org/abs/1808.01836
https://doi.org/10.1214/17-AOP1215
https://doi.org/10.1214/17-AOP1215
https://doi.org/10.1214/17-AOP1215
https://doi.org/10.1214/18-EJP168
https://doi.org/10.1214/18-EJP168
https://doi.org/10.1214/18-EJP168
https://doi.org/10.1007/s00526-014-0790-1
https://doi.org/10.1007/s00526-014-0790-1
https://doi.org/10.1007/s00526-014-0790-1


[47] T. S. Ferguson. Mathematical statistics: A decision theoretic approach. Probability
and Mathematical Statistics, Vol. 1. Academic Press, New York-London, 1967,
pp. xi+396.

[48] V. Fock. “Konfiguationsraum und zweite Quantelung”. In: Z. Physik 75 (9–
10 1932), pp. 622–647. ISSN: 0001-5962. DOI: 10.1007/BF01344458. URL:
https://doi.org/10.1007/BF01344458.

[49] J. Friedman & J.-P. Tillich. “Laplacian eigenvalues and distances between sub-
sets of a manifold”. In: J. Differential Geom. 56.2 (2000), pp. 285–299. ISSN: 0022-
040X. URL: http://projecteuclid.org/euclid.jdg/1090347645.

[50] K. Funano. “Estimates of eigenvalues of the Laplacian by a reduced number
of subsets”. In: Israel J. Math. 217.1 (2017), pp. 413–433. ISSN: 0021-2172. DOI:
10.1007/s11856-017-1453-7. URL: http://dx.doi.org/10.1007/
s11856-017-1453-7.

[51] K. Funano & T. Shioya. “Concentration, Ricci curvature, and eigenvalues of
Laplacian”. In: Geom. Funct. Anal. 23.3 (2013), pp. 888–936. ISSN: 1016-443X. DOI:
10.1007/s00039-013-0215-x. URL: https://doi.org/10.1007/
s00039-013-0215-x.
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