S. Kim, S. Park, I. Hwang, Y. Lee, and Y. Cho, High Fat Stores in Ectopic Compartments in Men with Newly Diagnosed Type 2 Diabetes: an Anthropometric Determinant of Carotid Atherosclerosis and Insulin Resistance, Int. J. Obes, vol.34, pp.105-110, 2010.

J. Gómez-ambrosi, Body Adiposity and Type 2 Diabetes: Increased Risk With a High Body Fat Percentage Even Having a Normal BMI, Obesity, vol.19, pp.1439-1444, 2011.

P. L. Wander, Change in Visceral Adiposity Independently Predicts a Greater Risk of Developing Type 2 Diabetes over 10 Years in Japanese Americans, Diabetes Care, vol.36, pp.289-293, 2013.

T. S. Han and M. E. Lean, A Clinical Perspective of Obesity, Metabolic Syndrome and Cardiovascular Disease, JRSM Cardiovasc. Dis, vol.5, pp.1-13, 2016.

B. Klop, J. W. Elte, and M. C. Cabezas, Dyslipidemia in Obesity: Mechanisms and Potential Targets, Nutrients, vol.5, pp.1218-1240, 2013.

L. F. Van-gaal, I. L. Mertens, and C. E. De-block, Mechanisms linking obesity with cardiovascular disease, Nature, vol.444, pp.875-880, 2006.

K. C. Zalesin, B. A. Franklin, W. M. Miller, E. D. Peterson, and P. A. Mccullough, Impact of Obesity on Cardiovascular Disease, Med. Clin. North Am, vol.95, pp.919-937, 2011.

S. Mandal and H. N. , Respiratory Complications of Obesity, Clin. Med. (Northfield. Il), vol.12, pp.75-83, 2012.

S. H. Kim, The relationship between Overweight and Otitis Media with Effusion in Children, Int. J. Obes, vol.35, pp.279-282, 2011.

Y. Chuang, Midlife Adiposity Predicts Earlier Onset of Alzheimer's Dementia, Neuropathology and Presymptomatic Cerebral Amyloid Accumulation, Mol. Psychiatry, vol.21, pp.910-915, 2016.

A. M. Tolppanen, Midlife and Late-Life Body Mass Index and Late-Life Dementia: Results from a Prospective Population-Based Cohort, J, vol.38, pp.201-209, 2014.

G. A. Eknoyan and . Quetelet, The Average Man and Indices of Obesity, vol.23, pp.47-51, 2008.

G. Eknoyan, A History of Obesity, or How What Was Good Became Ugly and Then Bad, Adv. Chronic Kidney Dis, vol.13, pp.421-427, 2006.

T. Venner, Via Recta ad Vitam Longam, 1620.

D. Haslam, Obesity?: a Medical History, Obes. Rev, vol.8, pp.31-36, 2007.

G. A. Bray, Medical Consequences of Obesity, vol.89, pp.2583-2589, 2014.

&. Geneva and . Switzerland, Preventing chronic diseases: A vital investment. World Health gain in children and adults?: a systematic review and meta-analysis 1 -3, Am J Clin Nutr, vol.98, pp.1084-102, 2013.

A. Hruby and F. B. Hu, The Epidemiology of Obesity: A Big Picture, Pharmacoeconomics, vol.33, pp.673-689, 2016.

K. A. Koh, J. S. Hoy, J. J. Connell, and P. Montgomery, The Hunger -Obesity Paradox?: Obesity in the Homeless, J Urban Heal, vol.89, pp.952-964, 2012.

A. Drewnowski, C. D. Rehm, and D. Solet, Disparities in Obesity Rates?: Analysis by ZIP Code Area, Soc Sci Med, vol.65, pp.2458-2463, 2007.

J. Waalen, The Genetics of Human Pbesity, Transl Res, vol.164, pp.293-301, 2014.

Q. Xia and S. F. Grant, The Genetics of Human Obesity, Ann N Y Acad Sci, vol.1281, pp.178-190, 2013.

T. M. Frayling, A Common Variant in the FTO Gene is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity, Science, vol.316, pp.889-894, 2007.

S. F. Grant, Association Analysis of the FTO Gene with Obesity in Children of Caucasian and African Ancestry Reveals a Common Tagging SNP, PLoS One, vol.3, pp.1-6, 2008.

K. A. Fawcett and I. Barroso, The Genetics of Obesity?: FTO Leads the Way, Trends Genet, vol.26, pp.266-274, 2010.

A. Scuteri, Genome-Wide Association Scan Shows Genetic Variants in the FTO Gene Are Associated with Obesity-Related Traits, PLoS Genet, vol.3, pp.1200-1210, 2007.

I. Khan, Implication of Gut Microbiota in Human Health, CNS Neurol Disord Drug Targets, vol.13, pp.1325-1358, 2014.

D. N. Frank, Molecular-Phylogenetic Characterization of Microbial Community Imbalances in Human Inflammatory Bowel Diseases, 2007.

M. H. Hattori and T. D. Aylor, The Human Intestinal Microbiome: A New Frontier of Human Biology, pp.1-12, 2009.

F. Bäckhed, The Gut Microbiota as an Environmental Factor that Regulates Fat Storage, Proc Natl Acad Sci U S A, vol.101, pp.15718-15741, 2004.

P. J. Turnbaugh, An Obesity-Associated Gut Microbiome With Increased Capacity for Energy Harvest, Nature, vol.444, pp.1027-1031, 2006.

S. F. Clarke, The Gut Microbiota and its Relationship to Diet and Obesity: New Insights, Gut Microbes, vol.3, pp.186-202, 2012.

P. Kovatcheva-datchary and T. Arora, Nutrition, the Gut Microbiome and the Metabolic Syndrome. Best Pract. Res. Clin. Gastroenterol, vol.27, pp.59-72, 2013.

R. Caesar, H. Nygren, M. Ore?ic, and F. Bäckhed, Interaction Between Dietary Lipids and Gut Microbiota Regulates Hepatic Cholesterol Metabolism, vol.57, 2016.

S. Rautava, R. Luoto, S. Salminen, and E. Isolauri, Microbial Contact During Rregnancy, Intestinal Colonization and Human Disease, Nat. Rev. Gastroenterol. Hepatol, vol.9, pp.565-576, 2012.

K. P. Scott, J. Antoine, T. Midtvedt, S. Hemert, and . Van, Manipulating the Gut Microbiota 92. Elliott, B. P. & Brown, I. Reducing Salt Intake in Populations, 2006.

F. J. He and G. A. Macgregor, A comprehensive review on salt and health and current experience of worldwide salt reduction programmes, J. Hum. Hypertens, vol.23, pp.363-384, 2009.

P. Strazzullo and F. P. Cappuccio, Salt Intake, Stroke, and Cardiovascular Disease: MetaAnalysis of Prospective Studies, BMJ, vol.339, 2009.

E. R. Liman, Y. V. Zhang, and C. Montell, Peripheral coding of taste, Neuron, vol.81, pp.984-1000, 2014.

O. Kretz, P. Barbry, R. Bock, and B. Lindemann, Differential Expression of RNA and Protein of the Three Pore-forming Subunits of the Amiloride-sensitive Epithelial Sodium Channel in Taste Buds of the Rat, J Histochem Cytochem, vol.47, pp.51-64, 1999.

C. Canessa, Amiloride-sensitive Epithelial Na+ Channel is Made of Three Homologous Subunits, Nature, vol.367, pp.463-470, 1994.

J. Chandrashekar, The Cells and Peripheral Representation of Sodium Taste in Mice, Nature, vol.464, pp.297-301, 2010.

Y. Ishimaru, Transient Receptor Potential Family Members PKD1L3 and PKD2L1 Form a Candidate Sour Taste Receptor, Proc Natl Acad Sci U S A, vol.103, pp.12569-74, 2006.

N. D. Lopezjimenez, Two Members of the TRPP Family of Ion Channels , Pkd1l3 and Pkd2l1 , are Co-expressed in a Subset of Taste Receptor Cells, J Neurochem, vol.98, pp.68-77, 2006.

D. Stevens, Hyperpolarization-activated Channels HCN1 and HCN4 Mediate Responses to Sour Stimuli, Nature, vol.413, pp.631-635, 2001.

S. Ugawa, Receptor That Leaves a Sour Taste in the Mouth, Nature, vol.395, pp.555-561, 1998.

J. Chandrashekar, M. A. Hoon, N. J. Ryba, and C. S. Zuker, The Receptors and Cells for Mammalian Taste, Nature, vol.444, pp.288-94, 2006.

Y. Zhang, Coding of Sweet, Bitter, and Umami Tastes: Different Receptor Cells Sharing Similar Signaling Pathways, Cell, vol.112, pp.293-301, 2003.

Y. Treesukosol, K. R. Smith, and A. C. Spector, The Functional Role of the T1R Family of Receptors in Sweet Taste and Feeding, Physiol Behav, vol.105, pp.14-26, 2011.

J. Pin, T. Galvez, and L. Pre, Evolution , Structure , and Activation Mechanism of Family 3 / C G-protein-coupled receptors, Pharmacol Ther, vol.98, pp.325-354, 2003.

J. D. Fernstrom, Mechanisms for Sweetness, J Nutr, vol.142, pp.1134-1141, 2012.

V. J. Mayank, Phytochemistry Interaction model of Steviol Glycosides from Stevia rebaudiana (Bertoni) with Sweet Taste Receptors: A Computational Approach, Phytochemistry, vol.116, pp.12-20, 2015.

K. Masuda, A. Koizumi, K. Nakajima, T. Tanaka, and K. Abe, Characterization of the Modes of Binding between Human Sweet Taste Receptor and Low-Molecular-Weight Sweet Compounds, PLoS One, vol.7, pp.1-10, 2012.

X. Li, Human Receptors for Sweet and Umami Taste, Proc Natl Acad Sci U S A, vol.99, pp.4692-4696, 2002.

Y. Nie, S. Vigues, J. R. Hobbs, G. L. Conn, and S. D. Munger, Distinct Contributions of T1R2 and T1R3 Taste Receptor Subunits to the Detection of Sweet Stimuli, Curr Biol, vol.15, pp.1948-1952, 2005.

F. Zhang, Molecular Mechanism of the Sweet Taste Enhancers, PNAS, vol.107, pp.4752-4757, 2010.

C. Kuhn, Bitter Taste Receptors for Saccharin and Acesulfame K, J Neurosci, vol.24, pp.10260-10265, 2004.

H. Xu, Different Functional Roles of T1R Subunits in the Heteromeric Taste Receptors, Proc Natl Acad Sci U S A, vol.101, pp.14258-63, 2004.

P. Jiang, Molecular Mechanisms of Sweet Receptor Function, vol.30, pp.17-18, 2005.

G. Nelson, J. Chandrashekar, M. A. Hoon, and L. Feng, An Amino-Acid Taste Receptor, vol.5124, pp.199-202, 2002.

Ä. Os and Ä. M. Ey, Main Polyphenols in the Bitter Taste of Virgin Olive Oil . Structural Confirmation by On-Line High-Performance Liquid, pp.6021-6025, 2003.

I. Lesschaeve and A. C. Noble, Polyphenols: Factors Influencing their Sensory Properties and their Effects on Food and Beverage Preferences 1 -3, vol.81, pp.330-335, 2005.

E. Adler, A Novel Family of Mammalian Taste Receptors, Cell, vol.100, pp.693-702, 2000.

M. Behrens and W. Meyerhof, Physiology & Behavior Gustatory and Extragustatory Functions of Mammalian Taste Receptors, Physiol. Behav, vol.105, pp.4-13, 2011.

W. Meyerhof, The Molecular Receptive Ranges of Human TAS2R Bitter Taste Receptors Present address?: Department of Physiology Building 58, Medical. Chem. Senses, vol.25, pp.157-170, 2010.

S. Thalmann, M. Behrens, and W. Meyerhof, Biochemical and Biophysical Research Communications Major Haplotypes of the Human Bitter Taste Receptor TAS2R41 Encode Functional Receptors for Chloramphenicol, Biochem. Biophys. Res. Commun, vol.435, pp.267-273, 2013.

K. Taniguchi, Expression of the Sweet Receptor Protein , T1R3 , in the Human Liver and Pancreas, J Vet Med Sci, vol.66, pp.1311-1315, 2004.

M. Max, Encoding a New Candidate Taste Receptor, is Allelic to the Sweet Responsiveness Locus Sac, Nat Genet, vol.28, pp.58-63, 2001.

R. A. Elliott, S. Kapoor, and D. G. Tincello, Expression and Distribution of the Sweet Taste Receptor Isoforms T1R2 and T1R3 in Human and Rat Bladders, J Urol, vol.186, pp.2455-2462, 2011.

X. Ren, L. Zhou, R. Terwilliger, S. S. Newton, I. E. Araujo et al., Sweet Taste Signaling Functions as a Hypothalamic Glucose Sensor, Front Integr Neurosci, vol.3, pp.1-15, 2009.

S. V. Wu, Expression of Bitter Taste Receptors of the T2R Family in the Gastrointestinal Tract and Enteroendocrine STC-1 Cells, Proc Natl Acad Sci U S A, vol.99, pp.2392-2399, 2002.

A. S. Shah, Y. Ben-shahar, T. O. Moninger, J. N. Kline, and M. J. Welsh, Motile Cilia of Commun, vol.354, pp.591-597, 2007.

M. A. Kebede, T. Alquier, M. G. Latour, and V. Poitout, Lipid receptors and islet function: Therapeutic implications?, Diabetes, Obes. Metab, vol.11, pp.10-20, 2009.

S. Matsumura, GPR expression in the rat taste bud relating to fatty acid sensing, Biomed. Res, vol.28, pp.49-55, 2007.

C. Cartoni, Taste preference for fatty acids is mediated by GPR40 and GPR120, J Neurosci, vol.30, pp.8376-82, 2010.

M. M. Galindo, G protein-coupled receptors in human fat taste perception, Chem. Senses, vol.37, pp.123-139, 2012.

A. Hirasawa, T. Hara, S. Katsuma, T. Adachi, and G. Tsujimoto, Free fatty acid receptors and drug discovery, Biol. Pharm. Bull, vol.31, pp.1847-1851, 2008.

C. P. Briscoe, The Orphan G Protein-coupled Receptor GPR40 Is Activated by Medium and Long Chain Fatty Acids, J Biol Chem, vol.278, pp.11303-11311, 2003.

G. Milligan, B. Shimpukade, T. Ulven, and B. D. Hudson, Complex Pharmacology of Free Fatty Acid Receptors, Chem. Rev. acs.chemrev, pp.6-00056, 2016.

J. Wang, X. Wu, N. Simonavicius, H. Tian, and L. Ling, Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84, J. Biol. Chem, vol.281, pp.34457-34464, 2006.

A. J. Brown, The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids, J. Biol. Chem, vol.278, pp.11312-11319, 2003.

K. A. Kles and E. B. Chang, Short-chain fatty acids impact on intestinal adaptation, inflammation, carcinoma, and failure, Gastroenterology, vol.130, pp.100-105, 2006.

N. N. Tandon, R. H. Lipsky, W. H. Burgess, and G. A. Jamieson, Isolation and characterization of platelet glycoprotein IV (CD36), J. Biol. Chem, vol.264, pp.7570-7575, 1989.

Y. Li, The Expression of Monocyte Chemotactic Protein (MCP-1) in Human Vascular Endothelium in Vitro and in Vivo, Mol Cell Biochem, vol.126, pp.61-69, 1993.

N. A. Abumrad, M. R. El-maghrabi, E. Z. Amri, E. Lopez, and P. Grimaldi, Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36, J. Biol. Chem, vol.268, pp.17665-17668, 1993.

F. Van-nieuwenhoven, Putative Membrane Fatty Acid Translocase and Cytoplasmic Fatty Acid-binding Protein are Co-expressed in Rat Heart and Skeletal Muscles, Biochem Biophys Res Commun, vol.207, pp.747-52, 1995.

M. H. Ozdener, CD36-and GPR120-Mediated Ca2+ Signaling in Human Taste Bud Cells Mediates Differential Responses to Fatty Acids and Is Altered in Obese Mice, Gastroenterology, vol.146, pp.995-1005, 2014.

R. L. Silverstein, M. Baird, S. K. Lo, and L. M. Yesner, Sense and antisense cDNA transfection of CD36 (glycoprotein IV) in melanoma cells: Role of CD36 as a thrombospondin receptor, J. Biol. Chem, vol.267, pp.16607-16612, 1992.

A. S. Asch, Analysis of CD36 Binding Domains: Ligand Specificity Controlled by Dephosphorylation of an Ectodomain, Source Sci. New Ser. Plant Cell Plant Physiol. Nat

, Proc. Natl. Acad. Sci. U.S.A. T. I. Bonner al. Nucleic Acids Res. Mol. Cell. Biol, vol.262, pp.1436-1440, 1993.

J. Savill, N. Hogg, Y. Ren, and C. Haslett, Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis, J. Clin. Invest, vol.90, pp.1513-1522, 1992.

Y. Ren, R. L. Silverstein, J. Allen, and J. Savill, CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis, J. Exp. Med, vol.181, pp.1857-62, 1995.

P. Oquendo, E. Hundt, J. Lawler, and B. Seed, CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes, Cell, vol.58, pp.95-101, 1989.

D. Calvo, D. Gómez-coronado, Y. Suárez, M. A. Lasunción, and M. A. Vega, Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL, J. Lipid Res, vol.39, pp.777-88, 1998.

S. L. Acton, P. E. Scherer, H. F. Lodish, and M. Krieger, Expression cloning of SR-BI, a CD36-related class B scavenger receptor, J. Biol. Chem, vol.269, pp.21003-21009, 1994.

G. Endemann, CD36 is a receptor for oxidized low density lipoprotein, J. Biol. Chem, vol.268, pp.11811-11817, 1993.

E. A. Podrez, Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36, J. Biol. Chem, vol.277, pp.38503-38516, 2002.

K. Li, Thrombospondin-1 Induces Apoptosis in Primary Leukemia and Cell Lines Mediated by CD36 and Caspase-3, Int J Mol Med, vol.12, pp.995-1001, 2003.

C. Stewart, CD36 Ligands Promote Sterile Inflammation through Assembly of a Tolllike Receptor 4 and 6 Heterodimer, Nat Immunol, vol.11, pp.155-61, 2010.

E. Fernández-ruiz, A. L. Armesilla, F. Sánchez-madrid, and M. A. Vega, Gene encoding the collagen type I and thrombospondin receptor CD36 is located on chromosome 7q11, Genomics, vol.2, pp.759-61, 1993.

A. L. Armesilla and M. A. Vega, Structural organization of the gene for human CD36 glycoprotein, J. Biol. Chem, vol.269, pp.18985-18991, 1994.

R. M. Fearon, Dev. Psychopathol, vol.27, pp.1251-1265, 2015.

R. S. Holmes, Comparative Studies of Vertebrate Platelet Glycoprotein 4 (CD36), Biomolecules, vol.2, pp.389-414, 2012.

D. E. Greenwalt, K. W. Watt, O. Y. So, N. Jiwani, and . Iv, an integral membrane protein of mammary epithelial cells, is related to platelet and endothelial cell CD36 (GP IV), Biochemistry, vol.29, pp.7054-7063, 1990.

S. J. Hoosdally, E. J. Andress, C. Wooding, C. A. Martin, and K. J. Linton, The human scavenger receptor CD36. Glycosylation status and its role in trafficking and function, J. Biol. Chem, vol.284, pp.16277-16288, 2009.

O. Kuda, Sulfo-N -succinimidyl Oleate ( SSO ) Inhibits Fatty Acid Uptake and Signaling for Intracellular Calcium via Binding CD36 Lysine 164, J Biol Chem, vol.288, pp.15547-15555, 2013.

J. T. Rasmussen, L. Berglund, M. S. Rasmussen, and T. E. Petersen, Assignment of disulfide bridges in bovine CD36, Eur. J. Biochem, vol.257, pp.488-494, 1998.

N. Tao, S. J. Wagner, and D. M. Lublin, CD36 is palmitoylated on both N-and C-terminal cytoplasmic tails, J. Biol. Chem, vol.271, pp.22315-22320, 1996.

J. Smith, X. Su, R. El-maghrabi, P. D. Stahl, and N. A. Abumrad, Opposite regulation of CD36 ubiquitination by fatty acids and insulin: Effects on fatty acid uptake, J. Biol. Chem, vol.283, pp.13578-13585, 2008.

M. Pepino, O. Kuda, D. Samovski, and N. Abumrad, Structure-Function of CD36 and Importance of Fatty Acid Signal Transduction in Fat Metabolism, Annu Rev Nutr, vol.34, pp.281-303, 2014.

F. Laugerette, CD36 Involvement in Orosensory Detection of Dietary Lipids, Spontaneous Fat Preference, and Digestive Secretions, J Clin Invest, vol.115, pp.3177-3184, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02073578

T. Fukuwatari, Expression of the putative membrane fatty acid transporter (FAT) in taste buds of the circumvallate papillae in rats, FEBS Lett, vol.414, pp.461-465, 1997.

M. Febbraio, D. P. Hajjar, and R. L. Silverstein, CD36: a Class B Ccavenger Receptor Involved in Angiogenesis, Atherosclerosis, Inflammation, and Lipid Metabolism, J Clin Invest, vol.108, pp.785-791, 2001.

P. Simons, J. Kummer, J. Luiken, and L. Boon, Apical CD36 Immunolocalization in Human and Porcine Taste Buds from Circumvallate and Foliate Papillae, Acta Histochem, vol.113, pp.839-882, 2011.

A. Sclafani, K. Ackroff, and N. A. Abumrad, CD36 Gene Deletion Reduces Fat Preference and Intake but Not Post-oral Fat Conditioning in Mice, Am J Physiol Regul Integr Comp Physiol, vol.293, pp.1823-1832, 2007.

M. Chevrot, Obesity Alters The Gustatory Perception of Lipids in the Mouse: Plausible Involvement of Lingual CD36, J Lipid Res, vol.54, pp.2485-94, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00844033

E. Corpeleijn, Direct Association of a Promoter Polymorphism in the CD36/FAT Fatty Acid Transporter Gene with Type 2 diabetes Mellitus and Insulin Resistance, Diabet Med, vol.23, pp.907-918, 2006.

N. Bayoumy, M. El-shabrawi, and H. Hassan, Association of Cluster of Differentiation 36

, Gene Variant rs1761667 (G>A) with Metabolic Syndrome in Egyptian Adults, Saudi Med J, vol.33, pp.489-94, 2012.

E. Corpeleijn, Obesity-Related Polymorphisms and Their Associations With the Ability to Regulate Fat Oxidation in Obese Europeans: the NUGENOB Study. Obes, vol.18, pp.1369-77, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00505128

S. Bokor, Single-nucleotide polymorphism of CD36 locus and obesity in European adolescents. Obes, vol.18, pp.1398-403, 2010.

M. Heni, Variants in the CD36 Gene Locus Determine Whole-Body Adiposity, Independent Effect on Insulin Sensitivity. Obes. (Silver Spring), vol.19, pp.1004-1013, 2011.

K. L. Keller, Common Variants in the CD36 Gene are Associated With Oral Fat Perception, Fat Preferences, and Obesity in African Americans, Obes. (Silver Spring), vol.20, pp.1066-1073, 2012.

H. Choquet, Lack of Association of CD36 SNPs With Early Onset Obesity: A MetaAnalysis in 9, European Subjects. Obes. (Silver Spring), vol.19, pp.833-839, 2011.

M. Y. Pepino, L. Love-gregory, S. Klein, and N. Abumrad, The Fatty Acid Translocase Gene CD36 and Lingual Lipase Influence Oral Sensitivity to Fat in Obese Subjects, J Lipid Res, vol.53, pp.561-566, 2012.

K. L. Keller, Common variants in the CD36 gene are associated with oral fat perception, fat preferences, and obesity in African Americans, Obes. (Silver Spring), vol.20, pp.1066-1073, 2012.

M. Melis, G. Sollai, P. Muroni, R. Crnjar, and I. T. Barbarossa, Associations between Orosensory Perception of Oleic Acid, the Common Single Nucleotide Polymorphisms (rs1761667 and rs1527483) in the CD36 Gene, and 6-n-Propylthiouracil (PROP) Tasting, Nutrients, vol.20, pp.2068-2084, 2015.

H. Ong, Y. Tan, and Y. Say, Physiology & Behavior Fatty acid translocase gene CD36 rs1527483 variant in fl uences oral fat perception in Malaysian subjects, Physiol. Behav, vol.168, pp.128-137, 2017.

J. E. Stewart and R. S. Keast, Recent fat intake modulates fat taste sensitivity in lean and overweight subjects, Int J Obes, vol.36, pp.834-842, 2012.

A. Chalé-rush, J. R. Burgess, and R. D. Mattes, Multiple routes of chemosensitivity to free fatty acids in humans, Am J Physiol Gastrointest Liver Physiol, vol.292, pp.1206-1212, 2007.

L. Bartoshuk, V. Duffy, M. Ij, . Ptc/prop, and . Tasting, Anatomy, Psychophysics, and Sex Effects, vol.56, pp.1165-1171, 1994.

S. Kumar, G. Stecher, and K. Tamura, Molecular Evolutionary Genetics Analysis Version 7 . 0 for Bigger Datasets Brief communication, Mol Biol Evol, vol.33, pp.1870-1874, 2016.

M. A. White, Development and Validation of the Food-Craving Inventory, Obes Res, vol.10, pp.107-114, 2002.

J. Fernandez-real, Circulating interleukin 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women, J Clin Endocrinol Metab, vol.86, pp.1154-1163, 2001.

P. Aukrust, Tumor Necrosis Factor (TNF) System Levels in Human Immunodeficiency Virus-Infected Patients During Highly Active Antiretroviral Therapy: Persistent TNF Activation is Associated with Virologic and Immunologic Treatment Failure, J Infect Dis, vol.179, pp.74-82, 1999.

T. Gilbertson and N. Khan, Cell Signaling Mechanisms of Oro-Gustatory Detection of Dietary Fat: Advances and Challenges, Prog Lipid Res, vol.53, pp.82-92, 2014.

M. S. Lavrador, P. T. Abbes, M. Arlete, M. Schimith, J. A. Aguiar et al., Cardiovascular Risks in Adolescents with Different Degrees of Obesity, Arq Bras Cardiol, vol.96, pp.205-211, 2011.

E. E. Aller, I. Abete, A. Astrup, M. J. Alfredo, and M. Van-baak, A. Starches, sugars and obesity, Nutrients, vol.3, pp.341-369, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00509048

I. L. Ruel, Effect of Obesity on HDL and LDL Particle Sizes in Carriers of the Null P207L or Defective D9N Mutation in the Lipoprotein Lipase Gene: the Québec LipD Study, Int J Obes Relat Metab Disord, vol.27, pp.631-637, 2003.

X. Jiang, S. Srinivasan, L. Webber, W. Wattigney, and G. Berenson, Association of Fasting Insulin Level with Serum Lipid and Lipoprotein Levels in Children, Adolescents, and Young Adults: the Bogalusa Heart Study, Arch Intern Med, vol.155, pp.190-196, 1995.

J. M. Lee, M. J. Okumura, M. M. Davis, W. H. Herman, and J. G. Gurney, Prevalence and Determinants of Insulin Resistance Among U.S. Adolescents: a Population-Based Study, Diabetes Care, vol.29, pp.2427-2459, 2006.

B. Klop, J. Elte, and M. Cabezas, Dyslipidemia in Obesity: Mechanisms and Potential Targets, Nutrients, vol.5, pp.1218-1258, 2013.

K. Eder, N. Baffy, A. Falus, and A. Fulop, The Major Inflammatory Mediator Interleukin-6 and Obesity, Inflamm Res, vol.58, pp.727-763, 2009.

L. Roytblat, Raised Interleukin-6 Levels in Obese Patients, Obes Res, vol.8, pp.673-678, 2000.

T. Tzanavari, P. Giannogonas, K. Karalis, . Tnf-alpha, and . Obesity, Curr Dir Autoimmun, vol.11, pp.145-56, 2010.

M. Shanik, Insulin Resistance and Hyperinsulinemia: Is Hyperinsulinemia the Cart or the Horse?, Diabetes Care, vol.31, pp.262-270, 2008.

J. Hermos, Association of Elevated Alanine Aminotransferase with BMI and Diabetes in Older Veteran Outpatients, Diabetes Res Clin Pr, vol.80, pp.153-161, 2008.

M. Ahn, Association Between Serum Alanine Aminotransferase Level and Obesity Indices in Korean Adolescents, Korean J Pediatr, vol.58, pp.165-71, 2015.

X. Fan, S. Chen, Q. Tang, and J. Luo, Relationship Between Alanine Aminotransferase and Overweight or Obesity in Children, Zhongguo Dang Dai Er Ke Za Zhi, vol.13, pp.951-955, 2011.

R. Schindhelm, Alanine Aminotransferase as a Marker of Non-alcoholic Fatty Liver Disease in Relation to Type 2 Diabetes Mellitus and Cardiovascular Disease, Diabetes Metab Res Rev, vol.22, pp.437-480, 2006.

C. Ruhl and J. Everhart, Determinants of The Association of Overweight With Elevated Serum Alanine Aminotransferase Activity in The United States, Gastroenterology, vol.124, pp.71-80, 2003.

M. Chevrot, Obesity Interferes with the Orosensory Detection of Long-Chain Fatty Acids in Humans 1 -3, Am J Clin Nutr, vol.99, pp.975-983, 2014.

J. E. Stewart, R. V. Seimon, R. S. Keast, P. M. Clifton, and C. Feinle-bisset, Marked Differences in Gustatory and Gastrointestinal Sensitivity to Oleic Acid Between Lean and Obese Men, Am J Clin Nutr, vol.93, pp.703-711, 2011.

J. Overberg, T. Hummel, H. Krude, and S. Wiegand, Differences in Taste Sensitivity between Obese and Non-Obese Children and Adolescents, Arch Dis Child, vol.97, pp.1048-52, 2012.

D. Park, Differences in Taste Detection Thresholds between Normal-Weight and Obese Young Adults, Acta Otolaryngol, vol.135, pp.478-83, 2015.

K. Scott, S. Melhorn, and S. Rr, Effects of Chronic Social Stress on Obesity. Curr Obes Rep, vol.1, pp.16-25, 2012.

M. Bose and B. Oliván, Stress and Obesity: the Role of the Hypothalamic-PituitaryAdrenal Axis in Metabolic Disease, Curr Opin Endocrinol Diabetes Obes, vol.16, pp.340-346, 2009.

C. Segovia, I. Hutchinson, D. Laing, and A. Jinks, A Quantitative Study of Fungiform Papillae and Taste Pore Density in Adults and Children, Brain Res Dev Brain Res, vol.138, pp.135-181, 2002.

J. E. Stewart, C. Feinle-bisset, and R. S. Keast, Fatty Acid Detection During Food Consumption and Digestion: Associations with Ingestive Behavior and Obesity, Prog. Lipid Res, vol.50, pp.225-233, 2011.

I. Brennan, Effects of Acute Dietary Restriction on Gut Motor, Hormone and Energy Intake Responses to Duodenal Fat in Obese Men, Int J Obes, vol.35, pp.448-56, 2011.

B. Tepper, Variation in the Bitter-Taste Receptor Gene TAS2R38, and Adiposity in a Genetically Isolated Population in Southern Italy, Obes. (Silver Spring), vol.16, pp.2289-95, 2008.

H. Sauer, Changes in Gustatory Function and Taste Preference Following Weight Loss, J Pediatr, vol.182, pp.120-126, 2017.

M. Sandell, Genetic Variation in the hTAS2R38 Taste Receptor and Food Consumption Among Finnish Adults, Genes Nutr, vol.9, pp.1-8, 2014.

R. Mounayar, Salivary Markers of Taste Sensitivity to Oleic Acid: a, Combined Proteomics and Metabolomics Approach. Metabolomics, vol.10, pp.688-696, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01211077

S. Ebba, The Examination of Fatty Acid Taste with Edible Strips, Physiol Behav, vol.106, pp.579-586, 2012.

A. Boghdady, Association Between Rs1761667 Polymorphism of CD36 Gene and Risk of Coronary Atherosclerosis in Egyptian Population, Cardiovasc. Diagn. Ther, vol.6, pp.120-130, 2016.

Y. Zhang, CD36 Genotype Associated with Ischemic Stroke in Chinese Han, Int. J. Clin. Exp. Med, vol.8, pp.16149-16157, 2015.

E. C. Temple, I. Hutchinson, D. G. Laing, and A. L. Jinks, Taste Development: Differential Growth Rates of Tongue Regions in Humans, Brain Res. Dev. Brain Res, vol.135, pp.65-70, 2002.

M. Pioltine, Genetic Variation in CD36 Is Associated with Decreased Fat and Sugar Intake in Obese Children and Adolescents, J Nutr. Nutr, vol.9, pp.300-305, 2016.

S. Bokor, Single-nucleotide Polymorphism of CD36 Locus and Obesity in European Adolescents, Obesity, vol.18, pp.1398-1403, 2009.

C. Ranasinghe, Relationship Between Body Mass Index (BMI) and Body Fat Percentage, Estimated by Bioelectrical Impedance, in a Group of Sri Lankan Adults: a Cross Sectional Study, BMC Public Health, vol.797, pp.1-8, 2013.

F. Laugerette, CD36 Involvement in Orosensory Detection of Dietary Lipids, Spontaneous Fat Preference, and Digestive Secretions, J Clin Invest, vol.115, pp.3177-3184, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02073578

L. Love-gregory, Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile, Hum Mol Genet, vol.20, pp.193-201, 2011.

D. N. Cooper, Functional Intronic Polymorphisms: Buried Treasure Awaiting Discovery Within our Genes, Hum Genomics, vol.4, pp.284-288, 2010.

A. Sclafani, GPR40 and GPR120 Fatty Acid Sensors are Critical for Postoral but not Oral Mediation of Fat Preferences in the Mouse, Am J Physiol Regul Integr Comp Physiol, vol.305, pp.1490-1497, 2016.

A. Chao, C. Grilo, M. White, and R. Sinha, Food Cravings, Food Intake, and Weight Status in a Community-based Sample, Eat Behav, vol.15, pp.478-482, 2015.

C. M. Phillips, High Dietary Saturated Fat Intake Accentuates Obesity Risk Associated with the Fat Mass and Obesity -Associated Gene in Adults 1 -3, J Nutr, vol.142, pp.824-831, 2012.

M. B. Schulze, J. E. Manson, W. C. Willett, and F. B. Hu, Processed meat intake and incidence of Type 2 diabetes in younger and middle-aged women, Diabetologia, vol.46, pp.1465-1473, 2003.

Y. Wang and M. A. Beydoun, Meat consumption is associated with obesity and central obesity among US adults, Int J Obes, vol.33, pp.621-628, 2010.

C. Martin, Change in Food Cravings, Food Preferences, and Appetite During a Lowcarbohydrate and Low-fat, Diet. Obes. (Silver Spring), vol.19, 1963.

P. Batra, Relationship of Cravings with Weight Loss and Hunger. Results from a 6 Month Worksite Weight Loss Intervention, Appetite, vol.69, pp.1-7, 2013.

D. Small, M. Jones-gotman, and A. Dagher, Feeding-Induced Dopamine Release in Dorsal Striatum Correlates With Meal Pleasantness Ratings in Healthy Human Volunteers, Neuroimage, vol.19, pp.1709-1724, 2003.

E. Stice, S. Spoor, J. Ng, and D. Zald, Relation of Obesity to Consummatory and Anticipatory Food Reward, Physiol Behav, vol.97, pp.551-60, 2009.

G. Wang, Brain Dopamine and Obesity. Lancet, vol.357, pp.354-361, 2001.

N. Volkow, Low Dopamine Striatal D2 Receptors are Associated with Prefrontal Metabolism in Obese Subjects: Possible Contributing Factors, Neuroimage, vol.42, pp.1537-1580, 2008.

E. Stice, S. Spoor, C. Bohon, M. Veldhuizen, and D. Small, Relation of Reward from Food Intake and Anticipated Food Intake to Obesity: a Functional Magnetic Resonance Imaging Study, J Abnorm Psychol, vol.117, pp.924-959, 2008.

Y. Rothemund, Differential Activation of the Dorsal Striatum by High-Calorie Visual Food Stimuli in Obese Individuals, Neuroimage, vol.37, pp.410-431, 2007.

M. H. Ozdener, CD36-and GPR120-mediated Ca 2+ signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice, Gastroenterology, vol.146, pp.995-1005, 2015.

C. L. Lafortuna, F. Adorni, and F. Agosti, Factor analysis of metabolic syndrome components in severely obese girls and boys, J Endocrinol Invest, vol.32, pp.552-558, 2009.

D. Pergol, G. Silvestris, and F. , Obesity as a major risk factor for cancer, J Obes, p.291546, 2013.

M. P. Herring, M. H. Sailors, and M. S. Bray, Genetic factors in exercise adoption, adherence and obesity, Obes Rev, vol.15, pp.29-39, 2013.

R. D. Mattes, Effects of linoleic acid on sweet, sour, salty, and bitter taste thresholds and intensity ratings of adults, 2007.

, Am J Physiol Gastrointest Liver Physiol, vol.292, pp.1243-1248

G. Dramane, S. Akpona, and A. M. Simonin, Cell signaling mechanisms of gustatory perception of lipids: can the taste cells be the target of anti-obesity agents, Curr Med Chem, vol.18, pp.3417-3422, 2011.

F. Laugerette, P. Passilly-degrace, and B. Patris, CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions, J Clin Invest, vol.115, pp.3177-3184, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02073578

A. Chalé-rush, J. R. Burgess, and R. D. Mattes, Evidence for human orosensory (taste?) sensitivity to free fatty acids, Chem Senses, vol.32, pp.423-431, 2007.

J. A. Nasser, H. R. Kissileff, and C. N. Boozer, PROP taster status and oral fatty acid perception, Eat Behav, vol.2, pp.237-245, 2001.

M. M. Kamphuis, W. H. Saris, and M. S. Westerterp-plantenga, The effect of addition of linoleic acid on food intake regulation in linoleic acid tasters and linoleic acid non-tasters, 2003.

, Br J Nutr, vol.90, pp.199-206

J. E. Stewart, C. Feinle-bisset, and R. S. Keast, Fatty acid detection during food consumption and digestion: associations with ingestive behavior and obesity, Prog Lipid Res, vol.50, pp.225-233, 2011.

J. E. Stewart and R. S. Keast, Recent fat intake modulates fat taste sensitivity in lean and overweight subjects, Int J Obes (Lond), vol.36, pp.834-842, 2012.

C. Cartoni, K. Yasumatsu, and T. Ohkuri, Taste preference for fatty acids is mediated by GPR40 and GPR120, J Neurosci, vol.30, pp.8376-8382, 2010.

N. A. Abumrad, CD36 may determine our desire for dietary fats, J Clin Invest, vol.115, pp.2965-2967, 2005.

E. B. Lee and M. P. Mattson, The neuropathology of obesity: insights from human disease, Acta Neuropathol, vol.127, pp.3-28, 2014.

E. R. Pulgarón, Childhood obesity: a review of increased risk for physical and psychological comorbidities, Clin Ther, vol.35, pp.18-32, 2013.

F. Laugerette, P. Passilly-degrace, B. Patris, I. Niot, M. Febbraio et al., CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions, J Clin Invest, vol.115, pp.3177-3184, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02073578

A. Chalé-rush, J. R. Burgess, and R. D. Mattes, Evidence for human orosensory (taste?) sensitivity to free fatty acids, Chem Senses, vol.32, pp.423-431, 2007.

C. Cartoni, K. Yasumatsu, T. Ohkuri, N. Shigemura, R. Yoshida et al., Taste preference for fatty acids is mediated by GPR40 and GPR120, J Neurosci, vol.30, pp.8376-8382, 2010.

J. E. Stewart, C. Feinle-bisset, and R. S. Keast, Fatty acid detection during food consumption and digestion: Associations with ingestive behavior and obesity, Prog Lipid Res, vol.50, pp.225-233, 2011.

J. E. Stewart, C. Feinle-bisset, M. Golding, C. Delahunty, P. M. Clifton et al., Oral sensitivity to fatty acids, food consumption and BMI in human subjects, Br J Nutr, vol.104, pp.145-152, 2010.

M. Y. Pepino, L. Love-gregory, S. Klein, and N. A. Abumrad, The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects, J Lipid Res, vol.53, pp.561-566, 2012.

K. L. Keller, L. C. Liang, J. Sakimura, D. May, C. Van-belle et al., Common variants in the CD36 gene are associated with oral fat perception, fat preferences, and obesity in African Americans, Obesity (Silver Spring), vol.20, pp.1066-1073, 2012.

J. E. Stewart and R. S. Keast, Recent fat intake modulates fat taste sensitivity in lean and overweight subjects, Int J Obes (Lond), vol.36, pp.834-842, 2012.

J. E. Stewart, R. V. Seimon, B. Otto, R. S. Keast, P. M. Clifton et al., Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men, Am J Clin Nutr, vol.93, pp.703-711, 2011.

T. A. Gilbertson and N. A. Khan, Cell signaling mechanisms of oro-gustatory detection of dietary fat: Advances and challenges, Prog Lipid Res, vol.53, pp.82-92, 2014.

A. Sclafani, S. Zukerman, and K. Ackroff, GPR40 and GPR120 fatty acid sensors are critical for postoral but not oral mediation of fat preferences in the mouse, Am J Physiol Regul Integr Comp Physiol, vol.305, pp.1490-1497, 2013.

M. Chevrot, A. Bernard, D. Ancel, M. Buttet, C. Martin et al., Obesity alters the gustatory perception of lipids in the mouse: plausible involvement of lingual CD36, J Lipid Res, vol.54, pp.2485-2494, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00844033

M. Y. Pepino, S. Finkbeiner, G. K. Beauchamp, and J. A. Mennella, Obese women have lower monosodium glutamate taste sensitivity and prefer higher concentrations than do normal-weight women, Obesity (Silver Spring), vol.18, pp.959-965, 2010.

A. M. George, A. G. Jacob, and L. Fogelfeld, Lean diabetes mellitus: An emerging entity in the era of obesity, World J. Diabetes, vol.6, pp.613-620, 2015.

Y. N. Ang, B. S. Wee, B. K. Poh, and M. N. Ismail, Multifactorial Influences of Childhood Obesity, Curr. Obes. Rep, vol.2, pp.10-22, 2012.

T. A. Barnett, K. Maximova, C. M. Sabiston, A. Van-hulst, J. Brunet et al., Physical activity growth curves relate to adiposity in adolescents, Ann. Epidemiol, vol.23, pp.529-533, 2013.

A. M. Paradis, G. Godin, L. Pérusse, and M. C. Vohl, Associations between dietary patterns and obesity phenotypes, Int. J. Obes, vol.33, pp.1419-1426, 2009.

E. T. Rolls, Taste, olfactory, and food reward value processing in the brain, Prog. Neurobiol, pp.127-128, 2015.

T. A. Gilbertson and N. A. Khan, Cell signaling mechanisms of oro-gustatory detection of dietary fat: Advances and challenges, Prog. Lipid. Res, vol.53, pp.82-92, 2014.

R. L. Silverstein and M. Febbraio, CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior, Sci. Signal, vol.2, pp.1-16, 2010.

C. Cartoni, K. Yasumatsu, T. Ohkuri, N. Shigemura, R. Yoshida et al., Taste preference for fatty acids is mediated by GPR40 and GPR120, J. Neurosci, vol.30, pp.8376-8382, 2010.

D. Ancel, A. Bernard, S. Subramaniam, A. Hirasawa, G. Tsujimoto et al., The oral lipid sensor GPR120 is not indispensable for the orosensory detection of dietary lipids in the mouse, J. Lipid Res, vol.56, pp.369-378, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01099276

X. Ma, S. Bacci, W. Mlynarski, L. Gottardo, T. Soccio et al., A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians, Hum. Mol. Genet, vol.13, pp.2197-2205, 2004.

M. H. Ozdener, S. Subramaniam, S. Sundaresan, O. Sery, T. Hashimoto et al., CD36-and GPR120-mediated Ca 2+ signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice, Gastroenterology, vol.146, pp.995-1005, 2014.

L. Love-gregory, R. Sherva, T. Schappe, J. S. Qi, J. Mccrea et al., Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile, Hum. Mol. Genet, vol.20, pp.193-201, 2011.

Y. Zhang, Z. Y. Ling, S. B. Deng, H. A. Du, Y. H. Yin et al., Associations between CD36 gene polymorphisms and susceptibility to coronary artery heart disease. Braz, J. Med. Biol. Res, vol.47, pp.895-903, 2014.

M. Banerjee, S. Gautam, M. Saxena, H. K. Bidb, and C. G. Agrawalc, Association of CD36 gene variants rs1761667 (G > A) and rs1527483 (C > T) with Type 2 diabetes in North Indian population, Int. J. Diabetes. Mellit, vol.2, pp.179-183, 2010.

M. Y. Pepino, L. Love-gregory, S. Klein, and N. A. Abumrad, The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects, J. Lipid Res, vol.53, pp.561-566, 2012.

I. Mrizak, O. ?erý, J. Plesnik, A. Arfa, M. Fekih et al., The A allele of cluster of differentiation 36 (CD36) SNP 1761667 associates with decreased lipid taste perception in obese Tunisian women, Br. J. Nutr, vol.113, pp.1330-1337, 2015.

A. Sayed, O. ?erý, J. Plesnik, H. Daoudi, A. Rouabah et al., CD36 AA genotype is associated with decreased lipid taste perception in young obese, but not lean, children, Int. J. Obes, vol.6, pp.920-924, 2015.

M. Melis, G. Sollai, P. Muroni, R. Crnjar, and I. T. Barbarossa, Associations between orosensory perception of oleic acid, the common single nucleotide polymorphisms (rs1761667 and rs1527483) in the CD36 gene, and 6-n-propylthiouracil (PROP) tasting, Nutrients, vol.7, pp.2068-2084, 2015.

H. Dietz, Critical periods in childhood for the development of obesity, Am. J. Clin. Nutr, vol.59, pp.955-999, 1994.

T. J. Parsons, C. Power, S. Logan, and C. D. Summerbell, Childhood predictors of adult obesity: A systematic review, Int. J. Obes. Relat. Metab. Disord, vol.23, pp.1-107, 1999.

M. R. Skilton, G. B. Marks, J. G. Ayer, F. L. Garden, S. P. Garnett et al., Weight gain in infancy and vascular risk factors in later childhood, Pediatrics, vol.131, pp.1821-1828, 2013.

I. Janssen, P. T. Katzmarzyk, S. R. Srinivasan, W. Chen, R. M. Malina et al., Utility of childhood BMI in the prediction of adulthood disease: Comparison of national and international references, Obes. Res, vol.13, pp.1106-1115, 2005.

L. Tremblay and C. M. Rinaldi, The prediction of preschool children's weight from family environment factors: Gender-linked differences, Eat. Behav, vol.11, pp.266-275, 2010.

A. Must and S. E. Anderson, Body mass index in children and adolescents: considerations for population-based applications, Int. J. Obes, vol.30, pp.590-594, 2006.

A. R. Hughes, A. Sherriff, D. A. Lawlor, A. R. Ness, and J. J. Reilly, Incidence of obesity during childhood and adolescence in a large contemporary cohort, Prev. Med, vol.52, pp.300-304, 2011.

S. Natalie, C. Suchindran, K. E. North, B. M. Popkin, and P. Gordon-larsen, Association of adolescent obesity with risk of severe obesity in adulthood, JAMA, vol.304, pp.2042-2047, 2010.

M. S. Lavrador, P. T. Abbes, M. A. Escrivão, and J. A. Taddei, Cardiovascular risks in adolescents with different degrees of obesity, Arq. Bras. Cardiol, vol.96, pp.205-211, 2011.

R. Weiss, J. Dziura, T. S. Burgert, W. V. Tamborlane, S. E. Taksali et al., Obesity and the metabolic syndrome in children and adolescents, N. Engl. J. Med, vol.350, pp.2362-2374, 2004.

I. L. Ruel, D. Gaudet, P. Perron, J. Bergeron, P. Julien et al., Québec LipD Study. Effect of obesity on HDL and LDL particle sizes in carriers of the null P207L or defective D9N mutation in the lipoprotein lipase gene: The Québec LipD Study, Int. J. Obes. Relat. Metab. Disord, vol.27, pp.631-637, 2003.

X. Jiang, S. Srinivasan, L. Webber, W. A. Wattigney, and G. S. Berenson, Association of fasting insulin level with serum lipid and lipoprotein levels in children, adolescents, and young adults: The Bogalusa Heart Study, Arch. Intern. Med, vol.155, pp.190-196, 1995.

J. M. Lee, M. J. Okumura, M. M. Davis, W. H. Herman, and J. G. Gurney, Prevalence and determinants of insulin resistance among U.S. adolescents: A population-based study. Diabetes Care, vol.29, pp.2427-2432, 2006.

J. E. Stewart, R. V. Seimon, R. S. Keast, P. M. Clifton, and C. Feinle-bisset, Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men, Am. J. Clin. Nutr, vol.93, pp.703-711, 2011.

M. Chevrot, A. Bernard, D. Ancel, M. Buttet, C. Martin et al., Obesity alters the gustatory perception of lipids in the mouse: Plausible involvement of lingual CD36, J. Lipid Res, vol.54, pp.2485-2494, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00844033

E. C. Temple, I. Hutchinson, D. G. Laing, and A. L. Jinks, Taste development: Differential growth rates of tongue regions in humans, Brain Res. Dev. Brain Res, vol.135, pp.65-70, 2002.

F. Laugerette, P. Passilly-degrace, B. Patris, I. Niot, M. Febbraio et al., CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions, J. Clin. Invest, vol.115, pp.3177-3184, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02073578

A. Ichimura, A. Hirasawa, O. Poulain-godefroy, A. Bonnefond, T. Hara et al., Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human, Nature, vol.483, pp.350-354, 2012.

J. E. Stewart and R. S. Keast, Recent fat intake modulates fat taste sensitivity in lean and overweight subjects, Int. J. Obes, vol.36, pp.834-842, 2012.

, Age (years)

, Values are mean ± SD. *p < 0.05. **p < 0.01, according to one-way ANOVA

I. Karmous, Clinical Nutrition, pp.1-8, 2017.

I. Karmous, Clinical Nutrition, pp.1-8, 2017.

M. Ng, T. Fleming, M. Robinson, B. Thomson, N. Graetz et al., Global, regional, and national prevalence of overweight and obesity in children and adults during 1980e2013: a systematic analysis for the Global Burden of Disease Study, Lancet, vol.384, pp.766-81, 2013.

J. El-ati, P. Traissac, F. Delpeuch, H. Aounallah-skhiri, C. Eymard-duvernay et al., Gender obesity inequities are huge but differ greatly according to environment and socio-economics in a North African setting: a national crosssectional study in Tunisia, PLoS One, vol.7, issue.10, p.48153, 2012.

F. J. Ortega, Z. Agüera, M. Sabater, J. M. Moreno-navarrete, A. Xifra et al., Genetic variations of the bitter taste receptor TAS2R38 are associated with obesity and impact on single immune traits, Mol Nutr Food Res, vol.60, pp.1673-83, 2016.

B. J. Tepper, M. Neilland, N. V. Ullrich, Y. Koelliker, and L. M. Belzer, Greater energy intake from a buffet meal in lean, young women is associated with the 6-npropylthiouracil (PROP) non-taster phenotype, Appetite, vol.56, pp.104-114, 2011.

B. J. Tepper and N. V. Ullrich, Influence of genetic taste sensitivity to 6-n-propylthiouracil (PROP), dietary restraint and disinhibition on body mass index in middle-aged women, Physiol Behav, vol.75, pp.305-317, 2002.

B. J. Tepper, Y. Koelliker, L. Zhao, N. V. Ullrich, C. Lanzara et al., Variation in the bitter-taste receptor gene TAS2R38, and adiposity in a genetically isolated population in Southern Italy, Obesity (Silver Spring), vol.16, pp.2289-95, 2008.

K. L. Keller, Genetic influences on oral fat perception and preference, J Food Sci, vol.77, pp.143-150, 2012.

C. D. Dotson, H. L. Shaw, B. D. Mitchell, S. D. Munger, and N. I. Steinle, Variation in the gene TAS2R38 is associated with the eating behavior disinhibition in Old Order Amish women, Appetite, vol.54, pp.93-102, 2010.

J. E. Stewart, C. Feinle-bisset, and R. S. Keast, Fatty acid detection during food consumption and digestion: associations with ingestive behavior and obesity, Prog Lipid Res, vol.50, pp.225-258, 2011.

D. Liu, N. Archer, K. Duesing, G. Hannan, and R. Keast, Mechanism of fat taste perception: association with diet and obesity, Prog Lipid Res, vol.63, pp.41-50, 2016.

P. Besnard, P. Degrace, and N. A. Khan, Taste of fat: a sixth taste modality?, Physiol Rev, vol.96, pp.151-76, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01428015

M. H. Ozdener, S. Subramaniam, S. Sundaresan, O. Sery, T. Hashimoto et al., CD36-and GPR120-mediated Ca 2 signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice, Gastroenterology, vol.146, pp.995-1005, 2014.

T. A. Gilbertson and N. A. Khan, Cell signaling mechanisms of oro-gustatory detection of dietary fat: advances and challenges, Prog Lipid Res, vol.53, pp.82-92, 2014.

G. Dramane, S. Abdoul-aziz, A. Hichami, T. V?-ogtle, S. Akpona et al., STIM1 regulates calcium signaling in taste bud cells and preference for fat in mice, J Clin Invest, vol.122, pp.2267-82, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00749611

S. Subramaniam, M. H. Ozdener, S. Abdoul-azize, K. Saito, B. Malik et al., ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans, FASEB J, vol.30, pp.3489-500, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01407594

M. Y. Pepino, L. Love-gregory, S. Klein, and N. A. Abumrad, The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects, J Lipid Res, vol.53, pp.561-567, 2012.

A. Sayed, O. Serý, J. Plesnik, H. Daoudi, A. Rouabah et al., CD36 AA genotype is associated with decreased lipid taste perception in young obese, but not lean, children, Int J Obes, vol.39, pp.920-924, 2015.

H. Daoudi, J. Plesník, A. Sayed, O. Serý, A. Rouabah et al., Oral fat sensing and CD36 gene polymorphism in Algerian lean and obese teenagers, Nutrients, vol.7, pp.9096-104, 2015.

I. Mrizak, O. Serý, J. Plesnik, A. Arfa, M. Fekih et al., The A allele of cluster of differentiation 36 (CD36) SNP 1761667 associates with decreased lipid taste perception in obese Tunisian women, Br J Nutr, vol.113, pp.1330-1337, 2015.

B. J. Tepper and R. J. Nurse, PROP taster status is related to fat perception and preference, Ann N Y Acad Sci, vol.855, pp.802-806, 1998.

V. B. Duffy, A. C. Davidson, J. R. Kidd, K. K. Kidd, W. C. Speed et al., Bitter receptor gene (TAS2R38), 6-n-propylthiouracil (PROP) bitterness and alcohol intake, Alcohol Clin Exp Res, vol.28, pp.1629-1666, 2004.

K. L. Keller and S. Adise, Variation in the ability to taste bitter thiourea compounds: implications for food acceptance, dietary intake, and obesity risk in children, Annu Rev Nutr, vol.36, pp.157-82, 2016.

M. Melis, G. Sollai, P. Muroni, R. Crnjar, and I. T. Barbarossa, Associations between orosensory perception of oleic acid, the common single nucleotide polymorphisms (rs1761667 and rs1527483) in the CD36 gene, and 6-n-propylthiouracil (PROP) tasting, Nutrients, vol.7, pp.2068-84, 2015.

D. Amelie, C. Castetbon, K. Kesse, E. Urbano, C. Hercberg et al., Development of a questionnaire to assay recalled liking for salt, sweet and fat, Food Quality Prefe, vol.23, pp.110-134, 2012.

L. M. Bartoshuk, V. B. Duffy, and I. J. Miller, PTC/PROP tasting: anatomy, psychophysics, and sex effects, Physiol Behav, vol.56, pp.1165-71, 1994.

M. Chevrot, P. Passilly-degrace, D. Ancel, A. Bernard, G. Enderli et al., Obesity interferes with the orosensory detection of long-chain fatty acids in humans, Am J Clin Nutr, vol.99, pp.975-83, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00951777

M. Mounayar, R. Morzel, H. Brignot, M. Tremblay-franco, C. Canlet et al., Salivary markers of taste sensitivity to oleic acid: a combined proteomics and metabolomics approach, Metabolomics, vol.10, pp.688-96, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01211077

S. Ebba, R. A. Abarintos, D. G. Kim, M. Tiyouh, J. C. Stull et al., The examination of fatty acid taste with edible strips, Physiol Behav, vol.106, pp.579-86, 2012.

C. Burd, A. Senerat, E. Chambers, and K. L. Keller, PROP taster status interacts with the built environment to influence children's food acceptance and body weight status, Obesity (Silver Spring), vol.21, pp.786-94, 2013.

M. A. Sandell and P. A. Breslin, Variability in a taste-receptor gene determines whether we taste toxins in food, Curr Biol, vol.16, pp.792-796, 2006.

R. D. Mattes, Brief oral stimulation, but especially oral fat exposure, elevates serum triglycerides in humans, Am J Physiol Gastrointest Liver Physiol, vol.296, pp.365-71, 2009.

J. Prutkin, K. Fast, L. A. Lucchina, and L. M. Bartoshuk, PROP (6-n-propylthiouracil) genetics and trigeminal innervation of fungiform papillae, Chem Senses, vol.24, p.243, 1999.

J. E. Hayes, L. M. Bartoshuk, J. R. Kidd, and V. B. Duffy, Supertasting and PROP bitterness depends on more than the TAS2R38 gene, Chem Senses, vol.33, pp.255-65, 2008.

D. P. Bolhuis, A. Costanzo, L. P. Newman, and R. S. Keast, Salt promotes passive overconsumption of dietary fat in humans, J Nutr, vol.146, pp.838-883, 2016.

J. A. Mennella, Y. Pepino, and D. R. Reed, Genetic and environmental determinants of bitter perception and sweet preferences, Pediatrics, vol.115, pp.216-238, 2005.

I. Karmous, Clinical Nutrition, pp.1-8, 2017.