Skip to Main content Skip to Navigation

Production de Polyhydroxybutyrates à partir d'acides gras volatils en culture ouverte : influence du degré de limitation en phosphore sur les réponses cinétiques et les sélections microbiennes.

Abstract : The production of polyhydroxyalkanoates (PHA) is an attractive alternative for plastics produced from fossil resources. The technical constraints imposed by pure cultures (purified substrate, sterilization ...) involve a high production cost of PHA production, and the production of these bioplastics is hardly competitive. The use of non-axenic cultures would avoid the constraints of pure cultures but requires a selection step of PHA producers. From a microbial inoculum (activated sludge) and AGV (butyric and acetic acid), a strategy for limiting the growth by phosphorus to accumulate PHB was established. From fed-batch and continuous culture, we studied the selection of PHA producers and the production of PHA based on operating parameters (dilution rate) and environmental (degree of phosphorus limitation). The scientific objective was to improve knowledge on the role of phosphorus limitation according to the operating conditions of the process, first about the nature of selected strains, and then about the cellular growth and PHB accumulation. For this, an approach involving identification of microorganisms by pyrosequencing method, a kinetic characterization of selected microorganisms, a process analysis and development of a kinetic modeling were performed. The ultimate goal of the work was the optimization of PHB production processes in non-axenic culture: productivity, yield, final PHB concentration but also reliability and robustness, to define an optimal production strategy of PHA. The performance achieved during the fed-batch cultures are among the best in the literature (70% PHA) in mixed cultures without enrichment step of PHA producers. The results showed the role of phosphorus limitation on the PHB production. Thus, it has been demonstrated the importance of degree of phosphorus limitation to maintain cell growth allowing enrichment in PHA producers explaining the high content of PHA obtained. From microbial selections in chemostat culture, the analysis of macro-kinetic parameters revealed conversion kinetics of the carbon substrate in PHB, catalytic biomass and CO2, dependent on the degree of phosphorus limitation and growth rate. The limits on the degree of plasticity of the intracellular phosphorus (ranging from 3.8% to 0.045%) were identified as a function of the specific growth rate. This intracellular phosphorus content (depending on the growth rate and degree of phosphorus limitation), is the parameter governing carbon conversion. Furthermore, this role of the intracellular phosphorus was observed for all populations selected under phosphorus limitation in this study, demonstrating a universal behavior of these populations face to phosphorus limitation. In parallel, dynamic studies in batch reactor from these selected populations were used to characterize the kinetic parameters of the strains, showing a maximum PHB production rate of 0.6 and 1.2 Cmol/Cmol.h with acetic acid and butyric respectively. These hypotheses made from experimental observations allowed the establishment of a new kinetic model based on the role of intracellular phosphorus on carbon conversion. The comparison of this model with experimental results has strengthened and improved the understanding of the mechanisms of intracellular phosphorus dilution and storage PHB. This model was also used to explore a wide range of environmental conditions and predict microbial behavior of PHA producers and non-producing organisms according to the operating conditions in continuous or batch reactor. From the results observed and the established kinetic model, the performance of PHA production processes of different configurations was discussed: chemostat single or two-stage, fed-batch, chemostat plus batch... The productivities, intracellular PHB content, performances of selection and the reliability of the process are compared.
Document type :
Complete list of metadatas
Contributor : Abes Star :  Contact
Submitted on : Friday, March 29, 2019 - 10:56:07 AM
Last modification on : Tuesday, March 17, 2020 - 3:10:50 AM
Long-term archiving on: : Sunday, June 30, 2019 - 1:33:38 PM


Version validated by the jury (STAR)


  • HAL Id : tel-02083697, version 1


Laetitia Cavaille. Production de Polyhydroxybutyrates à partir d'acides gras volatils en culture ouverte : influence du degré de limitation en phosphore sur les réponses cinétiques et les sélections microbiennes.. Microbiologie et Parasitologie. INSA de Toulouse, 2015. Français. ⟨NNT : 2015ISAT0049⟩. ⟨tel-02083697⟩



Record views


Files downloads