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Titre: Edition critique de ¢Goladipika» (L’illumination de la sphére) par Paramesvara, avec
une traduction et des Résumé

Résumé: Le Goladipika (L’illumination de la spheére) est un traité composé par Paramesvara.

Il existe deux versions de ce texte: 'une a été édité avec une traduction anglaise et 'autre
n’est qu’une édition utilisant trois manuscrits. Cette thése donne une nouvelle édition de la
deuxiéme version en utilisant onze manuscrits dont un commentaire anonyme nouvellement
trouvé. Elle se compose aussi d’une traduction anglaise et de notes explicatives.
Pour D'essentiel, le Goladipika est une collection de procédures pour déterminer la position
des objets célestes. Cette these décrit les outils mathématiques qui sont utilisées dans ces
procédures, en particulier les Regles de trois, et discute de la maniére dont Parames$vara
les fonde. 11 y a une description d’une sphére armillaire au debut du Goladipika. Donc
ce doctorat examine aussi comment cet instrument a pu étre utilisé pour expliquer ces
procédures. Ce travail tente aussi de positionner le Goladipika au sein du corpus des
oeuvres Paramedvara et d’autres auteurs.

Mots clés: Inde, Kérala, spheére armillaire, histoire de I'astronomie, sanskrit

Title: Critical edition of the Goladipika (Illumination of the Sphere) by Paramesvara, with
translation and commentaries

Abstract: The Goladipika (Illumination of the Sphere) is a Sanskrit treatise by Paramesvara,

which is extant in two distinctly different versions. One of them has been edited with
an English translation and the other has only an edition using three manuscripts. This
dissertation presents a new edition of the latter version using eleven manuscripts, adding
a newly found anonymous commentary. It further consists of an English translation of the
base text and the commentary as well as explanatory notes.
The main content of the Goladipika is a collection of procedures to find the positions of
celestial objects in the sky. This dissertation highlights the mathematical tools used in
these procedures, notably Rules of Three, and discusses how the author Paramesvara could
have grounded the steps. There is a description of an armillary sphere at the beginning
of the Goladipika, and the dissertation also examines how this instrument could have been
involved in explaining the procedures. In the course of these arguments, the dissertation
also attempts to position the Goladipika among the corpus of Paramesévara’s text as well
as in relation to other authors.

Keywords: India, Kerala, armillary sphere, history of astronomy, Sanskrit
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Introduction

The Goladipika (“Ilumination of the Sphere”) is a Sanskrit treatise by Parame$vara, which
is extant in two distinctly different versions. One of them (hereafter GDI) has been edited
with an English translation (K. V. Sarma (1956-1957)) and the other (GD2) has only an edi-
tion using three manuscripts (Sastrt (1916)). This work is a new edition of GD2 with eleven
manuscripts, adding a newly found anonymous commentary. I have also translated the base text
and the commentary into English and added my explanatory notes in an attempt to highlight
the mathematical and astronomical tools used in this treatise, and position it among the corpus
of Paramesvara’s text as well as in relation to other authors.

0.1 The author Paramesvara

0.1.1 Dates of Paramesvara

Typically, Paramesvara’s date is given as c¢. 1360-1455 CE (K. V. Sarma (1972, p. 52)). His
birth date is estimated using his own words that he wrote the Drgganita in the Saka year 1353"
(1431-32 CE) and the following words by Nilakantha, a student of Parame$vara’s son, in his
commentary on the Aryabhatiya:

Then Parameévara, having well understood the reasoning of mathematics and the Sphere
already in his youth indeed from experts on the Sphere such as Rudra, Paramesvara’s son
Narayana and Madhava, having been acquainted with the practices formed from them hav-
ing disagreements with observation and of their causes, having perceived it in may treatises,
having made observations for fifty-five years, having examined eclipses, planetary conjunc-
tions and the like, and made the entire Drgganita.?

The statement suggests that Parame$vara should have started his observations by the Saka
year 1298 (1376-77 CE). Assuming that Parames$vara should have been in his late teens when he
began observing, this puts his birth date around 1360. However, Paramesvara himself says in his
commentary on MBh 5.77 that he started observing eclipses from the Saka year 1315 (1393-1394
CE). This might imply that Parame$vara was observing astronomical phenomena other than
eclipses before Saka 1315.

As we will see in section 0.1.7, Paramesvara’s grandfather was a student of Govinda, who died
on a date corresponding to October 24th 1314 CE according to popular tradition (Raja (1995,
p. 15))3. This suggests that Paramesvara’s grandfather must have been born at least before 1300
CE, and it is reasonable that his grandson would be born 60 years later.

As for the date of Paramesvara’s death, the reference by Nilakantha (born 1444 CE) to him as
“our master (asmad acarya)” in his commentary on Abh 4.11 (Pillai (1957b, p. 27)) is often quoted

1 Drgganita 2.26 (K. V. Sarma (1963, p. 26)). The Saka years are counted in expired years (by contrast to
the common era where the first year would is counted as year 1 and the second year after one year has expired is
year 2) starting from the spring equinox in 78 CE.

2paramesvaras tu rudraparamesvaratmajanarayanamadhavadibhyo golavidbhyo ganitagolayuktir api balya eva
samyag grhitva tebhya eva kriyamanaprayogasya drgvisamvadam tatkaranpam cavadharyae Sastrany apt bahuny
alocya panicapancasad varsakalam nirtksya grahanagrahayogadisu pariksya samadrgganitam karanam cakara |
(Pillai (1957b, p. 154))

3This is represented by the phrase kalindipriyatustah which is 1,612,831 in Katapayadi notation. This is the

number of days since the beginning of the Kali-yuga. However Raja (1995) does not provide any reliable source
for this information and it must be treated with caution. Moreover, he converts this date wrongly to 1295 CE.
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as an evidence that Nilakantha had learned directly from Paramesvara and that Paramesvara
must have been still alive around 1455-60 CE. However, addressing someone as one’s “master”
does not necessarily indicate a direct mentorship. Nilakantha even refers to Aryabhata (476-c.550
CE) as his master (Pillai (1957b, p. 1)). Parames$vara’s son, Damodara, was indeed Nilakantha’s
teacher, and thus Nilakantha more often calls Parames$vara his “grand-teacher (paramaguru)”
(K. V. Sarma (1977a, p. xxxii)). Thus Parame$vara’s death could have been earlier than usually
admitted. The earliest limit would be the Saka year 1365 (1443-1444 CE) when he composed the
Goladipika 1. But we must take into account that he seems to have written an auto-commentary
on this treatise in response to students finding it difficult to understand, as we will see below.

Therefore, 1 estimate that Parame$vara was born between 1360-75 CE and died between
1445-60 CE.

0.1.2 Where Paramesvara lived

Paramesvara provides abundant information on his location. In several of his works such as
GD1 1.2 (see chapter 1), he refers to his place of dwelling as the northern bank at the mouth
of a river called Nila. This is another name of the river Bharatappuz ha which flows through
central Kerala. On the north bank at its mouth with the Arabic sea is the village of Purathur
in the Malappuram district. Paramesvara himself refers to his place as the village of Aévattha,
for example in Grahanpamandana 14cd (K. V. Sarma (1965, pp. 6-7)).

Paramesvara also mentions the geographic longitude and latitude of his location occasionally,
such as in GD1 4.91:

Living in a village at a distance of eighteen yojanas west to the geographic prime meridian
and at a latitude of six hundred and forty-seven, in the Saka year thirteen hundred and
sixty-five, ...%

The geographic prime meridian (samarekha) is considered to go through the city of Ujjain (see
section 11.2). However, the line of longitude passing through modern Ujjain goes into the Arabic
sea at the latitude of Kerala, and we do not know how Parame$vara measured his longitude®.
As for the geographic latitude, the value 647 is the Sine, and the corresponding arc is 10°51’.
This falls exactly on the modern village of Purathur at the mouth of river Bharatappuzha.
Paramesvara also uses the value 647 in his examples, including GD2.

The village of Asvattha is the reference point for the geographic longitude and latitude in
Parameévara’s texts. This resembles the role of Ujjain, and invokes the question whether A$-
vattha was a place of scholarship and center of astronomy, as Ujjain is alleged to have been
such location. Parames$vara and his son Damodara probably lived in Asvattha, but we have no
information about scholars prior to Parame$vara living in the same spot, nor any evidence of
educational institutions in the village. Thus this hypothesis is very uncertain.

0.1.3 The variants in his name

In GD2 68, the author calls himself paramadi iSvara, separating the two words. This is the only
occurrence of his name in the text, including the colophons of the manuscript. The same form

4samarekhayah pascad astadasayojanantare grame |

svarakrtasattulitakse vasata $ake ‘ksasattricandramite [[4.91/ (K. V. Sarma (1956-1957, p. 68))
5Tt is very unlikely that he measured the longitude of Ujjain directly by himself, and it is possible that the
value of “18 yojanas west” had simply been handed down to him. Contrarily, he defines the prime meridian in

reference to his own location by saying that the prime meridian “is eastward 18 yojanas from a village called
Asévattha (asvatthakhyad gramad astadasayojane)” in Grahanamandana 14cd (K. V. Sarma (1965, pp. 6-7)).
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can be seen in the concluding verse of his commentary on the Suryasiddhanta (Shukla (1957,
p. 144)). Meanwhile the compounded form paramadisvara is found in the Drgganita (verse 2.46,
K. V. Sarma (1963, p. 26)) and the commentary on the Abh (opening and closing verses, Kern
(1874, pp. 1, 100))8. These are variations of the name Paramesvara and not another author. We
can identify him from his reference to other texts of his own as well as remarks on his location.

Furthermore, Nilakantha quotes Drgganita 2.46 in his commentary on Abh 4.48 right after
referring to the treatise as the “Drgganita taught by Parameévara “”. Other informations in the
text, including the reference to the location, also support the author’s identity. This indicates
that at Nilakantha’s days, people were well aware that paramesvara and paramadi iSvara were
references to the same author.

0.1.4 Works by Paramesvara

Pingree (1981, pp. 187-192) enumerates 25 extant works of Parame$vara which is based on the
identifications by K. V. Sarma (1972). Among the list we have not counted his auto-commentary
on Goladipika 1 (No.8 in Pingree’s list) as an independent work, included the “expanded version
on the second Goladipika (No.16)” in Goladipika 2 and taken the Vivahanukulya (No.24) as part
of the Acarasamgraha. This leaves 22 works in our list.

In the concluding verses of his Karmadipika, Paramesvara names 8 of his treatises ending
with dipika®. Among them, the Muhurtastakadipika, Vakyadipika and the Bhadipika have no
extant manuscripts bearing their names, and could be works that are yet to be recovered.

All of his known works are in Sanskrit, but Krsnadasa (1756-1812 CE) quotes a Malayalam
passage attributed to Paramesvara. Whether this is only a view of Paramesvara expressed in
Malayalam or really an unknown Malayalam work by Paramegvara is an open question (K. V.
Sarma (ibid., pp. 74-75)).

Commentaries on Siddhantas

The longitude of planets including the sun and moon is involved in almost every topic in Sanskrit
astronomy. It was a central theme in the so-called “standard Siddhanta (treatise)” (Plofker
(2009)) texts, comprehensive works which compute planetary longitudes from a very early epoch
(the beginning of the Kalpa or Kali-yuga).

There is no Siddhanta attributed to Parames$vara. In other words, all his original astronom-
ical works known today are focused on a specific area. However, he frequently commented on
Siddhantas, and these commentaries are essential to understand his general ideas in his more
specialized texts including GD2.

1. Commentary on Bhaskara I’s Laghubhaskariya (Lesser/Short/Easy [treatise] of
Bhaskara) Critical edition by B. Apte (1946).

The Laghubhaskariya is the last known text composed by Bhaskara I after his Mahabhaskariya
and the commentary on the Aryabhatiya, and is considered an abridged word of his former treatise
for younger readers (Shukla (1976, pp. xxx-xxxii)).

6The editor Kern calls him “Paramadicvara”.
7 paramesvaracaryapranitadrgganita (Pillai (1957b, p. 151))

8“Paramesvara made the illuminations (dzpika) of the Muhartastaka, Siddhanta, Vakya, Bha, Nyaya and the
Karma, as well as those of the Gola and Bhata.”
muhartastakasiddhantavakyabhanyayakarmanam |
dipikam golabhatayos cakarot paramesvarah [ (Kale (1945, p. 92))
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On the other hand, Paramesvara’s commentary on this treatise was probably composed rela-
tively earlier than his other works. In his commentary on Laghubhaskariya 2.16 (B. Apte (1946,
p- 22)), he computes the amount of trepidation of the solstitial points in the ecliptic for the
Saka year 1330 (1408/1409 CE)° which is more than 20 years earlier than the Siddhantadipika
or GD2. Shukla (1976, p. cv) adds that Paramesvara was still a student at this moment on the
basis of the following passage in his concluding verses:

Thus, for the benefit of novices, I, serving at the lotus-like foot of my teacher, have explained
the meaning of the Bhaskariya concisely.!”

I am not sure whether this really means that he was still a student, or whether he is only
being modest. If Paramesvara was born around 1360 CE, he is already near 50 at this point.

The glosses are short in general, using paraphrasing. But some verses are followed by ar-
ticulating Rules of Threes that ground the computations, quotations of related texts or less
frequently, examples. Commentaries on some verses in the fifth (solar eclipse) and sixth (visi-
bility and phase of the moon) chapters (B. Apte (1946, pp. 58-82)) are conspicuously detailed.

Paramesvara himself does not refer to the Laghubhaskariya very often in his later texts. I have
found no trace of it in his Bhatadipika and the Goladipikas. Nonetheless, a detailed study on this
commentary would provide us with good information on Paramesvara’s earlier theories and its
development. In addition, this commentary was read by Paramesvara’s successors; Nilakantha
mentions or quotes from it occasionally in his commentary on the Aryabhatiya (Séstﬁ (1931,
p. 63), Pillai (1957b, pp. 79,81)).

2. Bhatadipika (Illumination of [Arya]bhata[’s work]) on Aryabhata’s Aryabhatiya
Critical edition by Kern (1874).

The Aryabhatiya (composed 499 CE or later by Aryabhatall) is among the oldest extant
Sanskrit treatises on mathematical astronomy and has been influential in southern India (Pingree
(1978)). Paramesvara’s Bhatadipika was composed in 1432 CE or later.

Kern (1874) is the earliest critical edition in Parame$vara’s corpus. But at the same time, this
was also the first edition containing the entire text of the Aryabhatiya. Therefore Parameévara’s
commentary has been used to interpret the base text itself, but not much attention has been
payed to the commentator himself and his background (this tendency can be observed in the
English translation of the Aryabhatiya by Clark (1930)) before the works by K.V. Sarma.

Parame$vara’s commentary has the reputation of being brief (cf. K. V. Sarma and Shukla
(1976, p. x1)), especially compared to other famous commentators such as Bhaskara I'?, Stiryadeva'3
and Nilakantha'4. This might be one reason why studies on this commentary are relatively
scarce. Nonetheless, K. V. Sarma (1972, p. 53) has pointed out that this commentary contains
“the enunciation of some of his new findings, theories and interpretations”. I have located some

trimsadgunacandramite Sakakale
10mandabuddhihitayaivam gurupadabjaseving |
mayartho bhaskariyasya samksepena pradarsitah [/ (B. Apte (1946, p. 92))
HThis Aryabhata (476-c.550 CE) is sometimes called Aryabhata I to distinguish him from his namesake
Aryabhata II (c.950 CE). Hereafter we shall constantly address the former Aryabhata without the numbering.
12Critical edition by Shukla (1976).
13Critical edition by K. V. Sarma (1976).

14 Nilakantha only wrote commentaries on chapters 2-4. Their critical editions are Sastrt (1930), Sastr1 (1931)
and Pillai (1957b).
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important discussions which are associated with topics in GD2 and which are crucial for under-
standing some of the steps or reasonings that are omitted in GD2. Paramesvara himself links
some of his statements with Aryabhata and even quotes some verses from the Aryabhatiya.

3. Siddhantadipika (Illumination of the treatise) on Govindasvamin’s commentary
of Bhaskara I's Mahabhaskariya (Great/Extensive [treatise] of Bhaskara) Critical
edition by T. Kuppanna Sastri (1957).

The Mahabhaskariya was composed before 629 CE'® by Bhaskara I, and Govindasvamin’s
commentary was composed around 800-850 CE (T. Kuppanna Sastri (ibid., p. xlxvii)). Govin-
dasvamin holds the view that the Mahabhaskariya is a gloss on the Aryabhatiya, and Parames-
vara has the same opinion (cf. T. Kuppanna Sastri (ibid., p. xxii)). Parame$vara seems to have
composed this super-commentary in 1432 CE, as he refers to his observation of a solar eclipse
that occurred in February 1432, and his commentary on the Suryasiddhanta, estimated to be
composed in 1432-33 CE, refers to the Siddhantadipika.

Under each verse of the Mahabhaskariya, Parames$vara glosses Govindasvamin’s commentary
passage by passage, but occasionally adds his own ideas extensively. Parames$vara refers to the
Siddhantadipika in GD2 69 and hints that its content overlaps with GD2. Therefore this super-
commentary is not only important to know how Parameévara relates to Aryabhata and Bhaskara
I, but also to understand some of his original rules in GD2.

4. Karmadipika (Illumination of the method) on Bhaskara I's Mahabhaskariya Crit-
ical edition by Kale (1945).

In this work, Parameévara comments directly on the Mahabhaskariya. He mentions the
Siddhantadipika in his conclusion and therefore we know that the Karmadipika was composed
after it. Paramesvara keeps his glosses very short. Unlike his previous super-commentary, he
hardly goes beyond the content of the base text. There are no quotations and no examples are
provided, apart from those given in the Mahabhaskariya itself.

5. Commentary on the Suryasiddhanta (Treatise of the sun) Critical edition by Shukla
(1957).

The Suryasiddhanta, ascribed to the mythical character Maya, was stabilized around the 9th
century. Parameévara’s commentary was probably composed around 1432-33 AD, according to
one of his examples in his text 6.

The commentaries are short in general, and Parame$vara does not go often into details.
According to the editor Shukla (ibid., pp. 67-68), Parames$vara points out some difference in
the astronomical constants with those used by Bhaskara I, notes some variant readings and
suggests some corrections to the longitudes of planets at the beginning of the Kali-yuga. On the
other hand, Paramesvara does not add any significant remarks on the computational rules that
contradict those in GD2'7.

15Bhaskara I uses a date corresponding to 629 CE as an example in his commentary on Abh 1.9 (Shukla (1976,
p. 34)), which suggests that the commentary was also composed around that period. On the other hand, he
frequently quotes the Mahabhaskariya in the commentary which indicates that the Mahabhaskariya was composed
earlier.

16Tn an example under Suryasiddhanta 3.11cd-12ab (Shukla (1957, p. 44)), Paramesvara takes 4533 as the
years elapsed since the beginning of the Kali-yuga, which corresponds to 1432-33 AD.

TFor example, the computation of the Sine of sight-motion (drggatijya). See section 21.6.1
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Texts on eclipses

Paramegsvara has composed three texts that are fully dedicated to Eclipses (both lunar and solar).
Their major goal is to find the possibility of eclipses and compute their duration. Meanwhile
the three texts differ from each other in their styles and details; the Grahanamandana is an
extensive set of computational procedures, the Grahananyayadipika omits some rules but adds
more grounding and the Grahanastaka is an extremely short text which provides a minimum set
of approximate rules.

6. Grahanamandana (Ornament of eclipses) Critical edition and translation by K. V.
Sarma (1965).

Parameévara uses a date corresponding to July 15th 1411 as the epoch'®, and he probably
composed the treatise itself around this period.

This treatise gives a set of computations for solar and lunar eclipses. Parame$vara mentions
in verse 4 (K. V. Sarma (ibid., pp. 2-3)) that he composes this treatise because previous methods
do not agree with the results of eclipses, and in his conclusions (K. V. Sarma (ibid., pp. 32-35))
he justifies adding new corrections that are not included in previous texts. 20 years later in his
Drgganita, he gives additional corrections to be applied to his Grahapamandana (K. V. Sarma
(1963, p. 26), K. V. Sarma (1965, pp. 36-37)), which shows how meticulous he is on this topic.

7. Grahananyayadipika (Illumination on the methods for eclipses) Critical edition
and translation by K. V. Sarma (1966).

Paramesvara refers to the Grahanamandana at the beginning of this treatise. As the word
nyaya (literally “rule”, “method” and also the name of a philosophical system which developed
logics and methodology), this work supplies groundings for computational rules. For instance, the
Grahanamandana only gives the conditions when a certain equation is to be added or subtracted,
but the Grahananyayadipika also mentions why it is so'. The Grahananyayadipika can be read
as an independent treatise without the Grahanamandana, but it does not contain some topics
such as the corrections applied to the celestial longitude on account of the terrestrial longitude
, equation of the center and the ascensional difference.

8. Grahanastaka (Octad on eclipses) Critical edition and translation by K. V. Sarma
(1958-1959).

As the name suggests, this is a very short text in eight verses (excluding the opening and
concluding stanzas). Some corrections are omitted, and as Parame$vara himself mentions in the
opening, this is a crude / approximate calculation for eclipses (sthuloparagaganita).

Treatises on other astronomical topics

9. Drgganita (Observation and computation) Critical edition by K. V. Sarma (1963).
As aforementioned, the Drgganita was composed in 1431-32 CE. This treatise focuses on
finding the days elapsed since the beginning of the Kali-yuga and computing the longitude of
planets, which are major topics that GD2 does not cover. One striking feature is that their are
two parts in the texts where much of the second part is a restatement of the first part in an easier

18This is 1,648,157 days since the beginning of the Kali-yuga, which we find in verse 5 (K. V. Sarma (1965,
pp. 2-3)).

Y9 Compare Grahanamandana 73cd-76ab (K. V. Sarma (ibid., pp. 26-27)) and Grahananyayadipika 65-71 (K. V.
Sarma (1966, pp. 20-23)) on deflections (valana, K. V. Sarma translates “deviations”) due to geographic latitude
and to the “course” of the moon.
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language, notably using the Katapayadi instead of word-numerals for stating numbers. There are
manuscripts that only contain either one of the two parts, indicating that they could have been
read as separate texts. Parames$vara mentions at the first verse in the second part that he will
give a clearer version of the Drgganita for “the benefit of studies during childhood”2°. Therefore
we can see Parames$vara’s attitude in this text to present the same topic in different ways for
different readers.

The Drgganita is probably the best known work by Paramesvara today, due to its reputation
to have introduced a new set of parameters in order to make “the results of computation accord
with observation (K. V. Sarma (1972, p. 9))”. However, we must be cautious with this statement
for two reasons. One is that it makes us focus too much on the numbers and disregard the
computational rules. The second is that all we know about Paramesvara’s observations is his
records of eclipses, but eclipses are not the topic of Drgganita.

10. Goladipika 1 (Illumination of the Sphere) Paramesvara has also written an auto-
commentary on this work. We will discuss its content in section 0.2.8.

11. Goladipika 2 This treatise is the main subject of our work.

12. Candracchayaganita (Computation of the moon’s shadow) No critical edition.

K. V. Sarma (ibid., p. 115) attributes this text which is extant in only one manuscript to
Paramesvara. We have examined the manuscript?' but could not find the authorship of this text.
Moreover, the title of this text given at the beginning is Himarasmicchayaganita (himarasmi is
a synonym of candra, moon). Sarma does not explain how he identified this text, and its status
is dubious at the moment.

13. Vakyakarana (Making [astronomical] sentences) No critical edition.

Only one manuscript?? is available for this text. There are 69 verses in total. As already
quoted above, Paramesvara mentions his name and his teacher Rudra in this text.

This treatise is different from the Vakyakarana of anonymous authorship which is edited by
T. S. Kuppanna Sastri and K. V. Sarma (1962), but deals with the same topic: a set of rules
for composing Vakyas (literally “sentence”) which are versified mnemonic tables which give the
periodically recurring positions of celestial objects.

Commentaries on other mathematical and astronomical treatises

14. Commentary on Manjula’s Laghumanasa (Easy thinking) Critical edition by B.
Apte (1952). Also used in the English translation and commentary on the Laghumanasa by
Shukla (1990).

The Laghumanasa is a treatise of 60 verses that is categorized today in the genre of karanas
(literally “making”), texts that use a recent epoch for the ease of computation (Plofker (2009,
pp. 105-106)). The epoch in the Laghumanasa corresponds to 932 CE. Paramesvara uses a date
corresponding to March 17th 1409 CE (see Shukla (1990, p. 30)) which suggests that he wrote
his commentary around this date.

2 spastikartum drgganitam vaksye ... balabhyasahitam (K. V. Sarma (1963, p. 14))
21475 T of KOML. This comes right before the folios of GD2 in 475 J.
227.166 A of KOML. This is a notebook written in year 1039 of the Kollam Era (1863-64 CE), and C.133 A

which is likely the original manuscript (K. V. Sarma (1972, p. 164), Pingree (1981, p. 189)) was lost when we
investigated the manuscripts in September 2014.
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In general, the commentaries by Parame$vara expand the concise verses and explains the
rules in detail. Parameévara interprets that the concluding remark??® claims the correctness of
the work because it “follows other treatises and agrees with observations (dastrantaranusaritvad
drstisamyac ca)”.

15. Parames$vari on Bhaskara II’s Lilavati (Beautiful) No critical edition of the com-
mentary.

The Lilavati is the first part of the Siddhantasiromani (composed 1149-50 CE) by Bhaskara
II. Parames$vara does not make reference to the other three parts, namely the Bijaganita, the
Grahaganitadhyaya and the Goladhyaya. The last two deal with several topics that overlap with
GD2, and we can even find resemblance in some of the rules by Bhaskara II and Paramesvara
(cf. section 11.3). The fact that Paramesvara has left a commentary on the Lilavati suggests the
possibility that he also had access to the other parts of the Siddhantasiromani which could have
influenced him.

This commentary is also interesting because this is the only base text that deals exclusively
with mathematics. Its content is yet to be studied. At the moment, we know that Paramesvara

comments extensively on each verse and occasionally inserts verses of his own?*.

16. Commentary on the Vyatipatastaka (Octad on the Vyatipata) No critical edition.

A wyatipata is a moment when the sun and moon have the same declination while their
change in declination are in different directions (i.e. if one is moving northward, the other must
be moving southward). Although it is an astrological concept, it involves the computation of the
moon’s latitude and is thus discussed in astronomical treatises, sometimes in a whole chapter??.
The Vyatipatastaka is likely to be a treatise of such kind, but the original text is lost. Not much
is known about Paramesvara’s commentary and there is just a brief discussion by K. V. Sarma
(1972).

Treatises on astrology

17. Acarasamgraha (Summary of good conducts) Critical edition by Amma (1981).
This treatise deals with various types of divinations, especially those related to timings
(muhurta). Parames$vara refers to Govinda, the teacher of his grandfather, and implies that
the Acarasamgraha summarizes his teachings.
The edition counts 367 verses in 34 sections marked by Paramesvara himself. There are
several manuscripts that only contain the section Vivahanukulya (Suitableness of marriage).
K. V. Sarma (1972) and Pingree (1981) treat it as an individual work.

18. Sadvargaphala (Result from the six categories) No critical edition.

This work only remains in one paper manuscript?®. It is a list of divinatory results from six
categories in astrology: lunar mansions (naksatra), days of the week (vara), lunar days (tithi)
half lunar days (karana), time division according to the sun and moon’s longitudes (yoga) and

23«“Those who will imitate it (this treatise) or find fault with it shall earn a bad reputation.”, translation by
Shukla (1990, p. 192)

241 would like to thank Takao Hayashi for providing me with information on the manuscripts.

25For example, chapter 11 of the Suryasiddhanta (Shukla (1957, pp. 102-108)). See also discussions under GD2
163-164 (section 10.6) on the true declination.

267,166 B of KOML. This is in the same notebook as the Vakyakarana, and was probably copied from C.133
which is now lost.
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zodiacal signs (rasi). However the name of the author is not given in the text. We do not know
why K. V. Sarma (1972, p. 172) identified this text as Paramesvara’s work.

19. Jatakapaddhati (Manual on nativity) Edition by Menon (1926).

This treatise gives a set of computational rules that may be used for making horoscopes in 44
verses. According to K. V. Sarma (1972, pp. 119-120), there is only one commentary in Sanskrit
by an anonymous commentator, but there are 7 commentaries in Malayalam which suggests that
Parameg$vara’s text was very popular in the vernacular tradition of astrologers.

Commentaries on astrological treatises

20. Balaprabodhini (Awakening of the young) on Sripati’s Jatakakarmapaddhati
(Manual on methods of nativity) No critical edition.

The Jatakakarmapaddhati by Sripati was edited and translated into English under the title
Sripatipaddhati by Sastri (1937). Parame$vara calls the work Jatakapaddhati in the concluding
verse of his commentary (Pingree (1981, p. 192)), which is the same as his own treatise (see 19.
above). However we do not know the relation between his commentary Balaprabodhini and his
treatise Jatakapaddhati; whether one was influenced by the other or not.

It is noteworthy that Parameévara refers to Sripati in GDI 3.62 in the context of cosmology
(see introduction in chapter 3). His statements on cosmography in GDI might be affected by
Sripati’s treatise on astronomy, the Siddhantasekhara. However we could not find any prominent
influence of Sﬁpati in GD2.

21. Parames$vari on Prthuyasas’ Prasnasatpanicasika (Fifty-six [verses] on astrolog-
ical inquiries) No critical edition.

Prthuyasas (fl. c. 575 CE) is the son of Varahamihira, and his Prasnasatparicasika was
very popular and survives in numerous manuscripts, chiefly from northern India (Pingree (ibid.,
pp. 212-221)). Only three of them are in KOML, all of which include the commentary by
Paramesvara. They are yet to be examined.

22. Commentary on Govinda’s Muhurtaratna (Jewel of the Muhurta) Neither the
Muhurtaratna nor the commentary has been published.

Govinda (1236-1314 CE) is the teacher of Paramesvara’s grandfather. K. V. Sarma (1972,
p. 49) says that the Muhurtaratna “has been very popular”, but all we know today is that there
are nine extant manuscripts’.

0.1.5 Mutual relation and order of texts

In the following we shall focus on treatises and commentaries on astronomy and investigate the
order of their composition.
Parameévara has given the date?® of the work in only two treatises:

Drgganita 1431-32 CE
Goladipika 1 1443-44 CE

27 According to Pingree (1971, p. 143). Excluding recent transcriptions.

28Dates in the texts themselves are given in days or years since the beginning of the Kali-yuga or in Saka years,
but we will convert them to dates in the Julian calendar of the common era.



Sho Hirose - These de doctorat - 2017

The texts below make reference to a date which suggests the period of the text itself:

Commentary on the Laghubhaskariya Uses 1408-09 CE in one of its examples
Commentary on the Laghumanasa Epoch is March 17th 1409 CE
Grahanamandana Epoch is July 15th 1411 CE

Siddhantadipika Last eclipse mentioned is on February 2nd 1432

Commentary on the Suryasiddhanta Uses 1432-33 CE in one of its examples
Some texts refer to or quote from other titles, which is useful for determining their order:

Grahanamandana The commentary on the Laghubhaskariya
Drgganita The Grahanamandana

Bhatadipika The Siddhantadipika and commentaries on the Laghubhaskariya, the Laghuma-
nasa and the Lilavati

Commentary on the Suryasiddhanta The commentary on the Laghubhaskariya, the Siddhanta-
dipika, the commentary on the Lilavati and other texts, in this order?’

Grahananyayadipika Works beginning with the Grahanamandana® and the Siddhantadipika
Goladipika 2 The Siddhantadipika
Karmadipika The Siddhanta-, [Grahana|nyaya-, Gola- and Bhata- dipikas

In addition, we have found the following in relation to the contents of the Goladipika 2:

o Govindasvamin’s commentary on MBh 5.4 quotes Abh 4.14 with the reading “at its quarter
(taccaturamse)” and Paramesvara’s Siddhantadipika follows it. But in his own commentary
on Abh 4.14, Paramesvara refers to a variant reading “at a fifteenth (pancadasamse)”. He
quotes Abh 4.14 with this variant as GD2 38 (section 4.1). This suggests that the order of
composition was the Siddhantadipika, then the Bhatadipika, and finally the Goladipika 2.

e Statements in GD2 51 and 53 on the order of rising signs in polar regions are wrong. GD1
3.54 on the same topic is correct (4.7). This suggests that GD2 was composed before GD1.

From these evidences, we propose the order of texts as given in table 0.1. Dates that can be
inferred from evidence within the texts are given next to the title. Horizontal lines indicate that
we are confident about the order of the texts above and below.

The commentary on the Suryasiddhanta refers to another text with a “subject on the mo-
tion of planets (grahagativisaya)” after Lilavati. The Bhatadipika the Karmadipika, or a yet

29 «By whom the Laghubhaskariya, after that the Mahabhaskariya with the commentary, later the Lilavati
and some other subject on the motion of planets were commented upon, ...”
vyakhyatam bhaskariyam laghu tadanu mahabhaskariyam sabhasyam [
pascal lilavaty ca grahagativisayam kificid anyac ca yena [/ (Shukla (1957, p. 1))
Shukla (ibid., introduction, p. 69) claims that this list also includes his commentary on the Mahabhaskariya
(Karmadipika), but we do not think so.

30«But the steps of methods there (= Grahananyayadipika) have been explained before in those beginning
with the [Grahapa)mandana.”
karmakramas tu tatra pran mandanadau pradarsitah [/1// (K. V. Sarma (1966, p. 1))

10
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Table 0.1: Deduced order of texts (“c.” stands for “commentary on”)

Date (CE) | Title

1408-09 c. Laghubhaskariya
1409 c. Laghumanasa
1411 Grahanamandana

1431-32 Drgganita
1432 Siddhantadipika

1432-33 c. Lilavaty

Bhatadipika

1432-33 c. Suryasiddhanta

Grahananyayadipika

Goladipika 2

Karmadipika
1443-44 Goladipika 1

unknown treatise would correspond to this, but we think that it is most likely the Bhatadipika.
The Goladipika 2 must have been composed after Bhatadipika, and the Karmadipika after one
Goladipika', which we assume is the Goladipika 2. If the commentary on the Suryasiddhanta
had been composed after the Karmadipika, given that this commentary seems to be composed
around 1432-33 CE, we will have to assume that Parames$vara composed 6 texts beginning with
the Siddhantadipika in one year, which is an unprecedented pace. Therefore I assume that
it was composed after the Bhatadipika. The Grahananyayadipika was composed between the
Siddhantadipika and the Karmadipika. It refers to other works that deal with similar meth-
ods (i.e. methods on eclipses), which could be either the Bhatadipika, the commentary on the
Suryasiddhanta, the Goladipika 1 or the Grahanastaka. But we have no clue for the date of
Grahanastaka, and neither for the Candracchayaganita and the Vakyakarana.

0.1.6 ParamesSvara and observation

Paramesvara is well known for his astronomical observations, which we have seen above in
Nilakantha’s testimonies. I would like to discuss two aspects of how observations are involved
in Parame$vara’s works on astronomy: (1) Efforts on integrating observation and computation,
and (2) keeping observational records.

Observation in Indian astronomy has been a controversial topic (see Plotker (2009, pp. 113-
120) for a general discussion). Opinions range from one extreme that every Sanskrit astronomical
text was strictly based on observation (Billard (1971)) to the other that no serious observation
was done in ancient India (Pingree (1978, p. 629)). The reason why discussions tend to be over-
heated is because it inevitably involves the problem of origins, and also to some degree because
of the value judgment that astronomy without observation is inferior. These are often done in
comparison with Greek astronomy; see reflections by Pingree (1992). In this work, we will only
focus on Paramesévara, and discuss not whether he observed or how accurate his observations
were, but what he states about observations (drk).

It is debatable whether the Sanskrit term drk is the exact equivalent of the English term “obser-
vation”, or “astronomical observation” in a modern sense. Hereafter we have interpreted drk in
a narrow sense: To see the sky directly or indirectly (with instruments like gnomons) to acquire

31The Karmadipika refers to the [dipikas] “of the Gola and Bhata (golabhatayos)” in the dual. This means
that there is only one Goladipika.

11
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the position of celestial objects. In GD2, the derivative darsana appears in GD2 199, and there
are many occurrences of the verb drs. On the other hand, drk itself only appears in compounds
used as technical terms such as drgurtta (circle of sight) which may not necessarily be linked
with observation itself. We do not rule out the possibility that further studies on Paramesvara’s
texts will change our understanding, or that other authors use drk with a different nuance.

At the beginning of his Drgganita (Observation and computation), Parame$vara claims that
his aim is to make computation agree with observation (K. V. Sarma (1963)). K. V. Sarma
(1972, p. 9) calls the set of parameters introduced in this treatise the “ Drk system” which revises
the previous system. K. V. Sarma mentions that “no new methodology is enunciated here”, but
we may raise the question whether Paramesvara has only modified astronomical constants as a
result of his observations, and not the computational rules themselves.

Direct evidence of Paramesvara’s observations comes from his versified records of eclipses in
the Siddhantadipika under MBh 5.77 (T. Kuppanna Sastri (1957, pp. 329-331)). There are 8 solar
eclipses and 5 lunar eclipses (including one that was expected but not observed) that occurred
between 1398 and 1432 CE in this list, with additional information such as his locations or
totality of the eclipses (Montelle (2011, pp. 279-283)). Paramesvara himself mentions that he
observed more than he included in the list. He also writes extensively on computations of eclipses
and has left three treatises on this subject (see page 6). Many topics in GD2 are also related to
eclipses. We will investigate how he treats observation in GD2 later.

Another important piece of information included in Paramesvara’s list of eclipse observations
is that he records the “foot-shadow (padabha)” when some of the eclipses occurred. This indicates
a shadow of a gnomon with a given height for measuring the altitude of the illuminating body at
a given moment. S. R. Sarma (2008, p. 246) points out that the shadows in Paramesvara’s lists
are those of a gnomon with 6 “feet (pada)”. Usually, the gnomon in Sanskrit astronomical texts,
including GD2, have a height of 12 angulas (literally “fingers” or “digits”). On the other hand,
Islamic texts refer to gnomons in “feet (gadam)” besides “digits (isba‘)”, and their astrolabes
typically have shadow squares (scales for finding the altitude of a celestial object) in both units
at their back (S. R. Sarma (ibid., p. 186)). Thus S. R. Sarma (ibid., p. 246) concludes that
Parameg$vara could be using an astrolabe, and that his knowledge of the instrument is likely based
on a tradition different from those prevailing in western and northern India, because Sanskrit
astrolabes usually have shadow squares for gnomons of 7 angulas and 12 angulas. This raises the
question whether some characteristics in the works of Parames$vara, including his emphasis on
observations, are the result of influence from Arabic or Persian sources.

0.1.7 Pedagogical lineage
History of Indian astronomy and “schools”

Studies on the history of Indian astronomy are also often studies on “schools”. The word “school”
has been associated with the Sanskrit term paksa (literally “wing, side”) to indicate groups of
astronomers, but historians use the term in different nuances.

The 19th century scholar Colebrooke uses “school”, “sect” and “system” as synonyms (Cole-
brooke (1817, p. viii)). Thus he gives a foretaste of the multitude of meanings “school” takes
today in the literature of astronomy in South Asia . However, he uses three terms to indicate
only three groups (either people or their doctrines) that count the day from sunrise (audayaka),
from midnight (ardharatrika) or from noon (madhyandina).

T. S. Kuppanna Sastri (1969) argues that it “is possible to classify early Hindu astronomers
and astronomical works into specific schools on the strength of certain peculiarities of each.”
He gives, for example, the division of the caturyuga into four equal parts, number of cycles of
planetary motions in a given period and the computational rule for the equation of the center

12
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as peculiarities in the “school of Aryabhata”. In his arguments, “school” is no more an actor’s
category

Pingree (1978) focuses on the parameters for categorizing “schools”. This usage of “school” is
popular today. For example, Plofker (2009, pp. 69-70) states: “different schools or paksas, which
are distinguished from one another mostly by the values of the parameters they use for the main
divisions of time and the cycles of the heavens.”

Under this definition, Pingree (1981, p. 613) asserts that Parame$vara is in the “school of the
Surya (Saurapaksa)” because his Drgganita uses parameters that are close to the Suryasiddhanta.
But in the case of Parames$vara, there is yet another “school” to be discussed - the “Kerala school”.

The “Kerala school”

Paramesvara is often seen as a member of the “Kerala school”. This term came to be well known
after the book titled “A History of the Kerala School of Hindu Astronomy” by K. V. Sarma
(1972). However, K.V. Sarma rarely uses the term “school” in the content of this book and
refers to “Kerala astronomy” or “Kerala astronomers” instead. This refers to any astronomer or
their work in the region of Kerala. We may interpret that “school” in this case is defined by a
geographical location.

However, the expression “Kerala school” tends to be used in a narrower sense — a “‘chain of
teachers’ originating with Madhava in the late fourteenth century and continuing at least into the
beginning of the seventeenth” (Plofker (2009, p. 217)). In this sense, it is also called the “Madhava
school™2. This “school” has been noticed especially for their mathematical achievements. Whish
(1834) made an early discovery on the usage of power series by astronomers or mathematicians
in Kerala. Later studies showed that these scholars often refer to Madhava (Gupta (1973)), and
hence Madhava came to be acknowledged as the founder of this knowledge.

Not much is known about Madhava himself, and few of his own works are extant®3. On the
other hand, Parameévara, who has been acknowledged as the student of Madhava by Nilakantha,
and as such his only known student, has become an important “link” in the chain of scholars.
Whether the mathematical and astronomical achievements of Parameévara are really linked with
Madhava and with his pedagogical descendants like Nilakantha or not needs to be carefully
examined. In our study, we shall focus chiefly on the computational rules in GD2 and see
whether they echo with those of other authors.

Paramesvara’s own remarks

As quoted above, Nilakantha mentions three names as the teachers of Parame$vara when he
was young: Rudra, Narayana and Madhava. But Parameévara himself only refers to Rudra. He
states in the opening verse of his Vakyakarana:

This student of the honorable Rudra, Paramesvara, composes the Vakyakarana to establish
the parts of an [astronomical] sentence (vakya). >*

32Gee Plofker (2009, pp. 217-253) for more details on scholars identified in this group and their works.
33S8ee K. V. Sarma (1972, pp. 51-52) for more information on Madhava and his works.

34 pajyapadasya rudrasya Sisyo 'yam paramesvarah |
karoti vakyakaranam vakyavayavasiddhaye || (Vakyakarana 1, from manuscript T.166 A of KOML)

13
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Paramesvara also refers to himself as a student of Rudra in the opening of his commentary
on the Suryasiddhanta (Shukla (1957, p. 1)) and in the conclusion of his Siddhantadipika (T.
Kuppanna Sastri (1957, p. 395))3°.

Another scholar that Paramesvara refers to is Govinda (1236-1314 CE, also called Govindab-
hatta or Govinda bhattatiri), who was a teacher of his grandfather. The following is Parames-
vara’s remark in Acarasamgraha 279:

What was said by the teacher of my father’s father, a brahman named Govinda who is
celebrated in the world, reached me through the chain of teachers, and it stands here as the
Acara[samgrahal.?¢

K. V. Sarma (1974) reports that an old palmleaf document records a line of tradition be-
ginning with Govinda, followed by Paramesvara’s grandfather, Paramesvara, Paramesvara’s son
Damodara, his student Nilakantha, his student Jyesthadeva, and his student Acyuta. If we can
rely on this manuscript, this means that Govinda and Paramesvara’s grandfather were considered
more important in the lineage of scholars than Rudra, let alone Madhava who we will discuss in
the next section.

Madhava and Paramesvara

Paramesvara is believed to have studied under Madhava. No other student of Madhava is known,
and therefore the lineage of the “Kerala school = Madhava school” cannot be constructed without
Paramesvara. However, the only evidence of their master-disciple relationship comes from the
above mentioned statement of Nilakantha. Paramesvara himself has left no remark.

K. V. Sarma (1966, pp. 26-27) claims that the penultimate verse of the Grahananyayadipika
refers to Madhava as golavid (expert on the Sphere). His translation is as follows:

There is another method (to compute the solar eclipse) without finding the parallax at new
moon etc. This has been explained (by me) in the Siddhantadipika, as given by (Madhava)
‘the Golavid’ (lit. ‘expert in sperics’).?”

Siddhantadipika is a super-commentary on the Mahabhaskariya by Paramesvara. Sarma
points that the method referred to is given in the commentaries to MBh 5.68-71 (T. Kuppanna
Sastri (1957, pp. 314-317)). However, what Parame$vara states there is different. MBh 5.68-70
itself claims that the parallax of the moon and related elements are necessary in lunar eclipse
computations, too. This is an unnecessary statement (they are only relevant in solar eclipses)
and Paramesvara attempts to save Bhaskara I by saying that he is giving the opinion of some
other astronomers (T. Kuppanna Sastri (ibid., p. civ)).

35 Another case where he might be referring to Rudra is in the concluding verse of his commentary on the
Lilavati, according to Pingree (1981, p. 190). However, I have only examined three manuscripts (5783, 10614 B,
T.295 of the KOML), all of which had corrupt readings of this passage.

38 pituh pitur me gurur agrajanma
govindanamo bhuvi visruto yah |
tenodito yo gurupanktito mam
praptah sa acara iha pratisthah [[279// (Amma (1981, p. 54))

3T upayantaram apy asti parvalambadibhir vina |
siddhantadipikayam tal likhitam golavitsmrtam [/84]]
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In that case, those other than some experts on the essence of the Sphere desire the parallax
even in the case of a lunar eclipse.?®
... The experts on the Sphere state that this is all inapplicable.?”

Paramesvara refers to “experts” in the plural, which may be interpreted as an honorific
expression to address a single person. But furthermore he adds “some (kecit)”, which gives
an indefinite sense. Therefore I argue that the golavid in the Siddhantadipika is more likely
a reference to multiple astronomers including Bhaskara I and not Madhava alone. In addition,
there are four occurrences of the word golavid in GD2, but all of them indicate people working on
the field of spheres collectively and not a single person’. To conclude, it is highly questionable
whether the word golavid in the Grahananyayadipika is a reference to Madhava.

Therefore, the only unambiguous link between Paramesvara and Madhava is the short remark
by Nilakantha. Our study on GD2 will further show that Paramesvara uses several computational
rules that are not found in previous authors and even differ from those attributed to Madhava.
This shows that Parames$vara does not seem to acknowledge Madhava, at least explicitly, as his
teacher.

0.2 The treatise: Goladipika (GD2)

0.2.1 Overview and previous studies

The Goladipika (literally “illumination of the Sphere”, hereafter GD2), as the author calls the
treatise in its final verse (GD2 302), is a fully versified treatise in 302 stanzas. As its name
suggests, it deals with spheres in a broad sense in astronomy.

As discussed in section 0.1.5, GD2 was composed after 1432 CE, and probably before 1443
CE. There are eleven extant manuscripts as listed later in section 0.3.1.

T. Ganapati Sastr1 edited the text as a “ Goladipika” in the Trivandrum Sanskrit Series (Sastrt
(1916)). Sastrt was not an expert on astronomy and did not discuss the contents of the texts
apart from saying that “it has neither commentary or illustrations”. He states that he published
the treatise “in the hope that it might be of some use to students of Hindu Astronomy”. He only
used three manuscripts, and the edition is heavily influenced by their corruptions. The verse
numbers in our critical edition follow the numbers alloted by Sastri. However, many verses have
been left unnumbered*! which has caused some problems (for example in GD2 244; see section
18.13).

As we will see in section 0.2.8, Paramesvara has composed another treatise with the same
name. This Goladipika (hereafter GDI) was published by K. V. Sarma (1956-1957) where it
was stated for the first time that Parames$vara composed two Goladipikas. Sarma also remarks
that “there is a unique manuscript” in London; this is the Indian Office Sanskrit 3530 (I) which
we have used in our critical edition. He knew that the text was GDI and that it contained
quotations from other treatises, but did not indicate the commentaries. Later, K. V. Sarma
(1972, p. 53) stated that “there are three works on spherics, being the Goladipikas I-1117, which

38tatra kecid golatattvavidbhyo 'nye candragrahane ’pi lambanam icchanti | (T. Kuppanna Sastri (1957, p. 314))
39etat sakalam anupapannam iti golavida ahuh [ (T. Kuppanna Sastri (ibid., p. 315))

40The golavid in GD2 35 and GD2 65 represent people who share the same view on cosmography as Parames-
vara. The cosmography dealt with in these verses are general and very unlikely to be opinions that are attributed
to a single astronomer. GD2 246 is an example where Paramesvara challenges the reader by saying “if you are an
expert on the Sphere”. Lastly in GD2 302, Parames$vara links the reader with “experts” again, saying “may the
reader be enumerated among the experts on the Sphere”.

41 Apparently, Sastri has skipped the number when there is no space after the last line of the verse.
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led to some misunderstanding. Pingree (1981, p. 191) calls it “an expanded version of the second
Goladipika” and counts it as an individual work.

The content of GD2 has not yet been studied in detail, and the current work provides an
extensive research on its topics for the first time.

0.2.2 Authorship

Evidence of Parameévara’s authorship on this text comes directly from GD2 68 where his name
is given (chapter 5). The six examples use the value 647 as the Sine of geographic latitude,
which is also the location of Paramesvara. In addition, parallels between other texts attributed to
Parameévara, notably the commentary on the Aryabhatiya and the super-commentary Siddhanta-
dipika on the Mahabhaskariya can be found in almost every part of the treatise, which also
support the identity of the author.

0.2.3 Structure and style

As a whole, the 302 verses in GD2 are continuous. GD2 68-69 summarize the previous contents
and mentions what will be presented in the following, thereby indicating a transition in the topic
(see chapter 5). Non-versified short preambles precede the six examples (GD2 209, 212, 231, 232,
245 and 246) and two sets of procedures (GD2 210-211, 213-217). There are no other statements
that divide the text, and no chapters are specified by Paramesvara.

GD2 244 has an extra half-verse while GD2 247 only has a half-verse. These two verses
could be a sign of corruption. The total number of verses, 302, suggest the possibility that two
extra verses have slipped in. In every manuscript with verse numbers written, the last verse is
numbered 300. Each of these manuscripts have overlaps or omissions of numbers in different
places. The fact that they nonetheless end up in 300 suggests that the verses was expected
to be exactly this number. In addition, some astronomical treatises are composed in multiples
of hundred verses. The Suryasiddhanta has exactly 500 verses which is probably not by pure
chance. Parame$vara composed his Grahanamandana initially in 89 verses but later added 11
stanzas to make this number 100 (K. V. Sarma (1965, pp. xvii-xvii)). But contradictorily, the
case of Grahanamandana could actually support that 302 is the right number of verses in GD2;
Parameg$vara himself remarks in the last verse of the Grahanamandana that there are 100 verses,
but this does not count the opening and concluding stanzas. Therefore, it could also be the case
that he composed GD2 in exactly 300 verses without counting both ends. Therefore the strange
numbering in the manuscripts might indicate that scholarly descendants of Paramesvara knew
that this Goladipika had 300 verses but misunderstood how to enumerate them.

Concerning the meter, almost all verses are in Giti. Apart from the 6 examples (GD2 209,
212, 231, 232, 245 and 246) and 3 quoted verses (GD2 37, 38, 44), only 5 verses (GD2 56, 84,
132, 137, 172) are in a different meter (all 5 are Arya verses).

Every number in GD2 is described in word numerals (Bhutasamkhya). See appendix A.1 for
an exhaustive list.

0.2.4 Contents

There are no chapters or any other explicit sectioning in GD2, but we have divided the verses
in our commentary to make it easier to read. Some of our divisions are made on the basis of
Paramesvara’s wordings, some according to the different procedures contained in the verses, and
few others are arbitrary.

1 GD2 1 Invocation.
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GD2 2-17 An introduction on various names of circles, their mutual positions and their
meaning. The circles are largely divided into two groups, the stellar sphere and the celestial
sphere. Descriptions in this section can also be read as an introduction to the armillary
sphere.

GD2 18-36 This part deals with miscellaneous topics on cosmography, especially those con-
cerning the motion of celestial objects. Paramesvara takes views that are mainly from the
Puranas and either refutes them or reconciles them with his own opinions.

GD2 37-67 Arguments on cosmography continue. In these verses Paramesvara discusses the
different locations of different entities and defines the “days” from their viewpoints. Some
have very long timescales.

GD2 68-69 These two verses give the authorship of the treatise and also summarize the
previous and upcoming contents.

GD2 70-88 Segments and arcs with variable lengths produced in the stellar sphere and celes-
tial sphere are introduced. All of them depend on only two factors, the geographic latitude
and the celestial longitude of the sun.

GD2 89-102 Rules on the time it takes for given longitudes or signs in the ecliptic to rise
above the horizon. Effectively, it explains how to find a length of arc on the celestial equator
that corresponds to an arc in the ecliptic.

GD2 103-124 New sets of segments and arcs that are produced from yet another factor: the
time of the day. The most important among them is the great gnomon.

GD2 125-152 The rule to compute the celestial latitude and supplementary explanations.
To ground the rule, Paramesvara discusses the deviation of a planet in its set of orbits.
This involves a drawing of planetary orbits.

GD2 153-194 Discussion on celestial latitudes as seen from the observer, its relation with
the declination, and its effect on the rising or setting time of the planet. The set of
computations for finding this timing is called the visibility operation. Paramesvara explains
the two different factors in the visibility equation, then gives a unified method. In the
procedure he introduces the concept of “sight-deviation” which represents the distance of
the ecliptic from the zenith.

GD2 195-208 A set of three corrections to the longitude of a planet at the moment of
sunrise. These are the corrections for the geographic longitude of the observer, for the
sun’s equation of center and for the ascensional difference.

GD2 209-211 Example 1. We compute the sun’s longitude from its shadow when the sun
is on the prime vertical.

GD2 212-219 Example 2: This time we use its shadow at midday.

GD2 220-230 A procedure for finding the length of a shadow when the longitude of the sun
and its direction in the sky is known. This is practiced in examples 3 and 4.

GD2 231 Example 3.
GD2 232 Example 4.
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17 GD2 233-234 Supplementary remark on the previous procedure and examples, focusing on
the “without-difference” method (iterative method) used therein. Here Paramesvara (and
the commentator) seem to discuss its convergence.

18 GD2 235-244 Another procedure using a gnomon in two steps. In the first step, the lon-
gitude of the sun is computed from the length of a shadow in an intermediate direction
and the time of the day. The second step uses a “without-difference” method to find the
geographic latitude. Examples 5 and 6 can be solved with this procedure.

19 GD2 245 Example 5.
20 GD2 246-247 Example 6.

21 GD2 248-276 Rules to compute the geocentric parallax and its longitudinal and latitudinal
components. Paramesvara discusses extensively how the rules are grounded.

22 GD2 277-301 A few topics on eclipses, including the size of objects, the difference between
a solar and a lunar eclipse and the computation of the Earth’s shadow. Parame$vara does
not integrate these topics with previous subjects that are also relevant to eclipses, and the
reader would probably have had to learn from other treatises.

23 GD2 302 Concluding remark.

0.2.5 Questions running through GD2

Some of the topics listed above share some questions in common. We can also find issues and
subjects that run through the entire text and are not confined to a single section.

From our modern viewpoint, the issues can be divided into those of mathematics and those
of astronomy. The Sanskrit term that is commonly translated into “mathematics” is ganita
(literally “counted” or “reckoned”). Paramesvara’s commentary on the Aryabhafiya suggests
what he puts under this word.

Aryabhata enumerates three of his chapters, namely gapita, kalakriya (reckoning of time) and
gola (sphere), in Abh 1.1 (Kern (1874, pp. 1-2)). Paramesvara first enumerates what he considers
as ganita:

In that case, that called mathematics has many forms beginning with “heaps (samkalita”,
“mixture (misra)”, “series ($redhi)”, “knowledge of seeing (? darsadhz)”, “pulverizers
(kuttakara)*?”, “shadows (chaya)” and “figures (ksetra)”.*3

I do not know what darsadhi (or darsa and dhz) refers to, as Parame$vara uses the term
nowhere else. Otherwise, the topics mentioned do indeed have a corresponding part in the
ganita chapter. However, according to Paramesvara, mathematics (ganita) is also relevant in the
other two chapters; he comments that kalakriya stands for “the mathematics of planets consisting
of methods on subdivisions of time **” and that the gola (sphere) is “the realm where special
mathematics is performed because it is a circular figure and because it supports the making of
many figures beginning with the quadrilateral”®®. In other words, the subjects in the kalakriya

421ndeterminate analysis.

Btatra ganitam nama samkalitamisrasredhidarsadhikuttakaracchayaksetradyanekavidham | (Kern (1874, p. 2),
but I have amended ganitannama to ganitam nama, sarikalita to samkalita and $redi to Sredhi)

44 kalaparicchedopayabhitam grahaganitam kalakriyety arthah | (Kern (ibid.))

455a ca vrttaksetratvac caturasradyanekaksetrakalpanadharatvac ca ganitavisesagocara eva | (Kern (ibid.))

18



Sho Hirose - These de doctorat - 2017

chapter (which includes calendrics and computations of true planets) are themselves a type of
mathematics, while the gola is a place where a special type of mathematics is applied. Here the
word gola (sphere) is taken as an object, but I assume that the statement can be applied to some
extent to the gola as a topic.

GD2 shares many topics with the gola chapter in the Aryabhatiya. Paramesvara gives various
methods for locating a celestial object in the sphere, finding the length of a certain arc or length
et cetera, but he never refers to an entire method as mathematical. In GD2 218, he contrasts the
longitude of the sun derived from the “shadow” and from “mathematics”, where the former is a
reference to the method for finding the sun’s longitude from the length of the shadow at midday
as explained in GD2 213-217 whereas “mathematics” might refer to “mathematics of planets”,
the true planet computation as explained in the kalakriya chapter or other texts.

Meanwhile, mathematics are relevant when we focus on the steps within each method. Most
notable are the Rules of Three and the Pythagorean theorem. We may also add Sine computation
(see also appendix B) here, although we do not know for sure what Paramesvara includes in his
category of “special mathematics”.

Mathematical issues

The sphere as an object In GD2 33 he refers to the surface area and the volume of a sphere
(the Earth), which is a subject that can be found in mathematical texts. Paramesvara does not
explain how the area and volume are to be computed, but gives their approximate values. This
is an interesting case where mathematical knowledge is used in the context of cosmography.

Rules and their groundings Computational rules in GDZ2 are often followed by explanations
as to why the computation is necessary or why the computation is correct. A typical way to
answer why the rule is required is with the aid of diagrams as we will see in the next section.
Expressions that suggest the usage of armillary spheres can also be seen.

Meanwhile, the grounding of a computational rule is frequently done by bringing to light the
form of the Rule of Three in the previous procedure. The Rules of Three are often associated with
a pair of similar right triangles, and armillary spheres could have been used in the explanation,
too.

The Pythagorean theorem is also used in the rules, and in such cases the grounding is done
by showing a right triangle and listing its base, upright and hypotenuse.

Rule of Three The Rule of Three (trairasika) has been frequently used for solving astronomical
problems since its first appearance in Abh 2.26%C. The computational rules in GD2 are in line
with this general trend, but the way that Parames$vara presents them are very characteristic. He
gives both the computation and the Rule of Three behind it; typically the Rule of Three comes
after the computation in a separate verse. By “computation” or “computational rule” I refer to
statements that use expressions meaning “multiply” and “divide”, for instance:

The Sine of declination multiplied by (hata) the Radius and divided by (vihrta) the
[Sine of] co-latitude is the solar amplitude. (GD2 84ab)

The Rule of Three corresponding to this rule is:

46See S. R. Sarma (2002) for a history of the Rule of Three in India and its applications, including its usage in
mathematics outside astronomy.
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If the Radius is the hypotenuse of the upright (kotyah) that is the [Sine of] co-latitude,
what is the hypotenuse of the upright that is the [Sine of] declination? Thus the Rule of
Three should be known for attaining the solar amplitude. (GD2 87)

The expression articulates the correspondence between the pairs of values using the genitive
case in this example. Sometimes the instrumental, ablative or locative can be used instead.
Mostly, the rules are based on a pair of similar triangles. This is stressed in GD2 106 which uses
the word “proportion (anupata)”:

With the base and so forth produced in one figure, here, with proportion, another figure is
established ...

Therefore Paramesvara often adds “upright”, “base” or “hypotenuse” in the statement of the
Rule of Three which could have helped the reader locate the segments.

In the example above, Parames$vara mentions the word “Rule of Three”. In some other cases,
he uses the word “grounding (yukti)” instead (cf. GD2 188). Repeating the Rule of Three after
the computation is indeed the structure of reasoning in GD2. This feature cannot be found in
other treatises by Parame$vara, even in the Grahananyayadipika or GD1 which put emphasis on
reasoning. To be precise, both texts do have statements of Rules of Three as in GD2 87, but
they stand alone and do not have the corresponding computations.

Lastly, I would like to mention that an unusual mode of statement can be seen in GD2 119c¢d.

In this case, the grounding is because the Sine of geographic latitude is as the gnomonic
amplitude for the [Sine of] co-latitude which is as the [great] gnomon.

This statement does not use special cases to link the corresponding segments (Sine of ge-
ographic latitude : gnomonic amplitude, and Sine of co-latitude : great gnomon); one pair is
simply put in a compound and the other is only a juxtaposition of nominatives. Furthermore,
the sentence does not use the conditional to connect the two pairs. This peculiar structure might
have come from a tradition outside typical Sanskrit mathematical and astronomical texts.

Astronomical issues

There is no term in GD2 that corresponds to the modern notion of “astronomy”. Instead,
Parames$vara uses the word gola (Sphere) as a reference to the entirety of the subject that is
being dealt with in GD2. The Sanskrit word “gola” as in Goladipika can refer to all kinds of
spheres such as spheres as solid objects, celestial spheres, heavenly bodies with the form of a
sphere, or even the name of a topic in astronomy or cosmography concerning them. In this
section we shall focus on subjects that may be considered as astronomical from our viewpoint,
that is, topics concerning the location of celestial objects.

Armillary sphere The term gola can also refer to an armillary sphere which is used for
instructions. In GD2, various circles in the sky are used for locating heavenly objects. Without
knowing their names, positions and motions as given in the beginning of the text, the rest of
the treatise is incomprehensible. The wordings give the impression that an armillary sphere is
being used. A name of a specific ring in the instrument is also used to address the corresponding
celestial circle.

On the other hand, treatises often refer to an extremely complex system of “gola”, such
as the system with 51 moving circles in Brahmagupta’s Brahmasphutasiddhanta 21.49-58,67-69
(Ikeyama (2002, pp. 130-140,154-155)), which is unlikely to have been actually built in a complete
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form. Meanwhile, whenever the word gola is used in combination with yantra (instrument),
the object described is much simpler. For example, the Sisyadhiwrddhidatantra of Lalla, the
Siddhantasekhara of Sripati and the Siddhantasiromani of Bhaskara II each have chapters titled
Golabandha (binding or constructing the sphere) and Yantra, and the system described in the
former is very complex?” while the description in the Yantra chapters are brief (Ohashi (1994,
pp. 268-271)).

The word yantra does not appear in GD2, while there is only one place that explicitly refers
to a material of the instrument (“piece of wood or clay” in GD2 6). Among other texts by
Parames$vara, GD1 describes almost the same set of circles/rings as GDZ2 in its chapter 1 titled
“Method of constructing the sphere (golabandhavidhi)”. The auto-commentary on this chapter
(K. V. Sarma (1956-1957, p.11)) mentions that the rings should be made “with pieces of bamboo
and the like (vamsasalakadina)”. He uses the same expression in PAbh 4.18 (Kern (1874, p.82))
where he also presents an armillary sphere. Although there is no explicit statement on the
material of the rings in GD2, one example (GD2 212) refers to parts of the prime meridian as
“bamboo-pieces (Salaka)”, which hints that an armillary sphere made of bamboo might have been
used. However, if this text were actually a description of an instrument, information on the size
of the armillary sphere, including the ratios between each part of the instrument, are missing.
Thus it is a question to know whether what is being presented here is an actual armillary sphere,
mental object or just a description of the cosmos.

GD2 2-17 refers to rings in the armillary sphere, and they are stated as if the instrument
was under the author or readers’ eyes. Elsewhere, Paramesvara does not refer explicitly to the
armillary sphere (gola), but there are several passages that could be interpreted as traces of
the instrument being used. For instance, GD2 155 refers to a “hole (vedha)”, which suggests
a hole pierced in a ring of the armillary sphere (section 10.2). We have read and interpreted
the reasonings given by Paramesvara in the GD2 with the hypothesis that the armillary sphere
was used as a tool. This could include mental configurations of the sphere without the physical
object. Some of the groundings seem to require the projection of the configuration on a plane,
but this could also have been done by looking at the instrument from a specific position.

A typical case where the armillary sphere might be involved is GD2 75-77 which locate various
segments such as the Sine of declination in the sphere. The verses follow GD2 73-74 which give
the set of computations for finding the length of these segments. GD2 75-77 might also serve as
grounding for the rules, since they not only explain the segments themselves but also point out
the right triangles that they shape.

Paramesvara makes wrong statements concerning the rising of signs in polar regions in GD2
51 and 53. The statement is corrected in GD1 3.54, where he says that this “should be explained
completely on a sphere” (section 4.7). This shows that the armillary sphere could have been
used for examining and correcting rules.

GD2 begins with a description of the armillary sphere, and continues with various topics on
astronomy that could be explained with it. From this viewpoint, this is a treatise whose entirety
is devoted to an instrument — a category that is known to have appeared in Sanskrit literature
after the contact with Islamic astronomy (S. R. Sarma (2008, p. 21)).

Using diagrams Parames$vara gives instructions to draw diagrams in two places; one to show
the three orbits of a planet and its corrections (section 9.7) and another to explain the geocentric
parallax (section 21.4). Both cases involve multiple circles, and one of their goals is to demon-

47 Sisyadhiwrddhidatantra 15.31-32 (Chatterjee (1981, 1, p. 205)) and Siddhantasekhara 16.38-39 (Misra (1947,
p. 216)) both enumerate the same 51 rings as in Brahmasphutasiddhanta 21.68-69.
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strate the apparent position of a planet by projecting its position from another circle to a great
circle around the observer.

While the diagrams visualize how the position of a planet changes and necessitates a correc-
tion, they do not always explain how their values can be computed.

Observation The contrast between results derived from computation and those derived from
observation is a topic in the commentaries on the examples. It remains a question whether
this is important for Paramesvara too in GD2. As discussed above, his diagrams show the
difference between the position computed with equations and the position observed. For the
latter, Parame$vara uses the term saksat (literally “with the eyes”) in GD2 145 and 148 which
has a very strong nuance of actual observation. However, while there seems to be an aim at
making observation and computation agree, most of Paramesvara’s instructions in GD2 are how
to compute and not how to observe. The only object that is evidently observed is the shadow of
a gnomon.

The six examples in GD2 link observation with computation, which is done in two directions.
Examples 1, 2, 5 and 6 compute parameters such as the sun’s longitude from the observed shadow
length, and examples 3 and 4 find the expected length of the shadow from the given parameters.
Paramesvara does not explain the reason for this procedure in detail, but GD2 218cd suggests
that part of the motivation to compute the sun’s longitude from observation is to find the motion
of the solstice, or in modern notion, precession (section 13.5).

Importance of the celestial longitude The English terms longitude and latitude are con-
sidered as a pair of coordinates. But in GD2, we find that the celestial longitude is the most
important parameter of a planet, which can also be seen from the fact that the word for “planet
(graha, etc.)” can also mean its longitude. Meanwhile, the celestial latitude (ksepa) is only a de-
viation?® for which we must correct the longitude as in the visibility operation (chapter 10). The
declination is only a parameter which follows the longitude, and what we call the right ascension
is chiefly used to measure the timing of rising or setting of the body, or the time corresponding
to the motion of a given arc of longitude on the ecliptic.

Paramesvara does not discuss the celestial longitude in particular in GD2, nor is he alone
in Sanskrit astronomical literature to treat the longitude in this way. Yet this is a recurring
topic that we modern readers must keep in mind upon interpreting his words and reconstructing
the computational rules or their groundings in GD2. We discuss how GD2 treats the celestial
longitude in sections 6.2 and 9.1.

Astronomical constants and other values GD2 gives many constants and values related to
cosmology and chronology, notably those related to long time periods in GD2 55-64 (section 4.8,
table 4.1), longitudes of planetary nodes and inclinations of orbits (section 9.5, table 9.1) and the
sizes and distances of the sun and moon (section 22.1, table 22.1). However, the treatises lack
some constants that are required for the computational methods introduced in it. For example,
the apparent celestial latitude of planets cannot be computed without their distances from the
Earth. GD2 89-102 states how measures or rising times of signs can be computed, but do not give
the rising times of signs at the terrestrial equator which are given as constants in other treatises
like the Mahabhaskariya (see section 7.5). Rising times of signs are needed to compute visibility
equations (GD2 169, 177, 193). These facts show that the methods in GD2 were assumed to be
operated using other treatises or tables that contain the relevant values.

48The Sanskrit term ksepa (or viksepa) itself means “to hurl” or “deviation”.
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If the main purpose of GD2 was to provide groundings than to serve as a manual, we may
question why GD2 provides some constants in the first place. One possibility is that they
are also part of the reasoning and not for actual usage. For example, Parameévara gives the
circumference of the Earth (3299 yojanas) in GD2 201 from which the observer’s circumference
(the length measured on the Earth along the geographic latitude of the observer) is computed.
But Grahanamandana skips this value as well as the rule and directly gives the circumference
for an observer at A$vattha (the village where Paramedvara lived).

0.2.6 Influence of other authors

We shall compare the computational rules and other statements in GD2 with other authors under
each section in our commentary*®. The following is an overview of some important sources that
have already been suggested or that have emerged in our study.

Aryabhata and his Aryabhatiya

Aryabhata appears to be an important authority in GD2. Passages from the Aryabhatiya are
quoted three times in GD2 (GD2 38=Abh 4.14, GD2 39ab=Abh 4.12ab and GD2 44~ Abh 4.13)
in the context of debates on cosmography. All constants in the GD2 except for the four parts of
the caturyuga agree with the Aryabhatiya. Parame$vara’s commentary on the Aryabhatiya was
often helpful to interpret some difficult passages in GD2, which also suggests that Paramesvara
might have borne the Aryabhatiya in his mind when he composed those verses.

The title Goladipika itself has an echo with the fourth chapter “Golapada (quarter on the
Sphere)” of the Aryabhatiya. The order of topics in the Golapada could also have inspired
Parames$vara, since both texts deal with cosmography at an earlier stage and put the topic of
eclipses at the end.

On the other hand, rules in GD2 often go beyond the Aryabhatiya. There are corrections that
are not mentioned by Aryabhata and rules that would give much more accurate results than his.
Parames$vara never refers to Aryabhata after GD2 69 where he switches the topic and focuses to
computational rules than statements on static configurations.

We can only speculate how Parameévara related such rules with the Aryabhatiya, but his
commentary on Abh 4.36 might be a clue. At the conclusion of his remarks on Abh 4.35-36 which
deal with the visibility methods for the “course” and for the geographic latitude (see chapter
10), Paramegvara states:

The twofold correction on visibility having a crude form has been explained here by the
master [Aryabhata]. It should be known however that it is not the exact form. The sense is
that: The exact form is established from this crude form with grounding.®’

Parame$vara is aware that the Aryabhata’s are approximate, but seems to think that he
must build his own methods from them. This explains his statements on the Sine of sight-
motion (drggati) in GD2 270 where he strictly follows Aryabhata’s rule while giving it a new
explanation. By contrast, other authors such as Brahmagupta, Bhaskara IT and Nilakantha
discarded the rule (see section 21.6).

49T am deeply indebted to the notes by Chatterjee (1981) on the Sisyadhivrddhidatantra which lists the corre-
sponding verses in other treatises for each topic.

50 gecaryena sthalarapam drkphaladvayam iha pradarsitam | na tu siksmarapam iti vedyam | asmat sthularapat
suksmarupam yuktya siddhatiti bhavah | (Kern (1874, p. 94))
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Bhaskara I and his Mahabhaskariya

Paramesvara refers to the Mahabhaskariya and his super-commentary Siddhantadipika in GD2
69. Every major topic after GD2 70 (which I have listed in section 0.2.4) can also be found in the
Mahabhaskariya, and the discussions in Siddhantadipika often complement the succinct verses
in GD2. However, while such discussions were certainly inspired by Bhaskara I, Paramesvara
does not necessarily follow him. The order of the subjects in GD2 are completely different from
those in the Mahabhaskariya, and computational rules that are unique to Bhaskara I, such as
the usage of two nodes to find the deviation (see section 9.11) cannot be found.

Any similarity that we find between the Mahabhaskariya and Parames$vara’s statements can
usually be explained by saying that they both follow the Aryabhatiya. This is especially the case
concerning astronomical constants. Such attitude toward Bhaskara I may be because Parames-
vara views the Mahabhaskariya as a sort of commentary on the Aryabhatiya. This is first men-
tioned in the concluding verse of Govindasvamin’s commentary, and is followed by Paramesvara
in one of his concluding verses of the Siddhantadipika:

Master Aryabhata composed the work (tantra) on Brahma’s doctrine, then Bhaskara made
an extensive commentary (vrtti) on it. And then Govinda[svamin| [made] a commentary
(bhasya) on it. But its meaning is far from good understanding; thus an easier commentary
(vyakhya) on it was composed by me with the help of Rudra.®*

Paramesvara’s discussions are strongly inspired by Govindasvamin, and he even quotes a
passage from the commentary in GD2 47. Meanwhile, some of Paramesvara’s statements differ
from Govindasvamin. One example is the description of the Sine of sight-motion (section 21.6).

The Mahabhaskariya might not have been the only source authored by Bhaskara I used
by Paramesvara. Parames$vara’s arguments on cosmology have many parallels in Bhaskara I’s
commentary on the Aryabhatiya, which suggests the possibility that he also had access to this
work (see chapter 3).

Brahmagupta and his Brahmasphutasiddhanta

Parameévara quotes the Brahmasphutasiddhanta a few times in his commentary on the Aryab-
hatiya, and might have been influenced by Brahmagupta upon choosing one of its variant readings
(section 4.1). However, not much similarity between Brahmagupta and Paramesvara could be
found in their computational rules.

There is one case where Paramesvara’s rule resembles Brahmagupta’s. In the visibility meth-
ods, Parames$vara’s and Brahmagupta’s rules involve the Sine of a planet’s longitude whereas
those of Aryabhata and Bhaskara I use the versed Sine (section 10.10).

Another similarity can be found outside GD2, in Parame$vara’s second order interpolation
method introduced in his commentary on the Laghubhaskariya and in the Siddhantadipika (ap-
pendix B.5). This case is of particular interest because this method agrees with some of the Sine
values computed in the commentaries on the examples of GD2 (appendix B.6.1).

However, these two cases can also be explained as an influence of Bhaskara II, and it is
debatable whether Parames$vara’s methods were established based upon Brahmagupta directly.

51 gearyaryabhato ’karod vidhimatam tantram punar bhaskaro
vrttim tasya ca vistarat punar atho bhasyam ca tasyas tatha |
govindo ’‘sya ca duram ety asudhiyam arthas tv idanim iti

vyakhya tasya maya krta laghutara rudraprasadad it [/ (T. Kuppanna Sastri (1957, p. 395))
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The Suryasiddhanta

Pingree (1981, p. 613) claims that Parames$vara’s Drgganita uses parameters that are close to
the Suryasiddhanta, and puts him in the Saurapaksa, a school which derives its name from
this treatise. Identifying an author in a specific school is a difficult task, and the same author
could write different texts devoted to different schools. We shall leave the question whether the
Drgganita indeed belongs to the Saurapaksa. But when we turn to GD2, influences from the
Sturyasiddhanta are not conspicuous. Astronomical constants like the the sizes of the Sun, Moon
and Earth are different (section 22.1, table 22.1). Computational methods and their reasonings
in GD2 look very different from those in the Suryasiddhanta. For example, the explanations for
the celestial latitude (section 9.2) and the definitions of the Sine of sight-motion (section 21.6.1).

On the other hand, when it comes to topics on cosmography, GD2 does not differ very often
from the Suryasiddhanta. In the description of Mount Meru as an axis piercing the Earth (GD2
36), he might even be influenced by the treatise (section 3.7). But the similarities are not
strong enough compared to other texts to claim that the Suryasiddhanta was the main source
for Paramesvara on the subject of cosmography.

Bhaskara II and his Siddhantasiromani

Computational rules in GD2 often go beyond Aryabhata and Bhaskara I, by taking new factors
into account and adding new steps. As a result, some of them resemble the methods of Bhaskara
IT very much. Most notable is that both Parame$vara and Bhaskara II add steps for moving
from the celestial equator to the ecliptic in order to compute equations (section 10.9.1 and 11.3).
Another case is the correction applied to the celestial latitude for finding the true declination
(section 10.3). The use of Sines instead of versed Sines in visibility operations is another feature
that might come from Bhaskara IT (section 10.10). T. Kuppanna Sastri (1957, p. 338) has already
suggested that Paramesvara is making reference to Bhaskara II when he says that versed Sines
should not be used in his super-commentary on MBh 6.3.

In most of these cases, Paramesévara implies that his rules or ideas come from another source
by introducing them as opinions of “some (kecit)” (GD2 157) or “others (anye)” (GD2 204).
He never refers explicitly to Bhaskara IT or his works in GD2. Meanwhile, we know that he
commented upon the Lilavati, which is a mathematical chapter in the Siddhantasiromani by
Bhaskara II. Whether Parames$vara read the other chapters which deal with astronomy is an
open question. Our study suggests that the answer could be yes; but while Parameévara could
have been influenced by Bhaskara II, he did not openly profess to follow him.

Madhava

We have found two cases in GD2 that can be compared with computational rules in astronomy
attributed to Madhava by Nilakantha. They are the rule to compute the true declination (section
10.6.1) and the method for the Sine of sight-deviation (section 10.16.2). In both cases, there
is a distinctive difference between Madhava and Parame$vara (and as a result, also between
Nilakantha and Parameg$vara). If Nilakantha’s attribution is correct, we must conclude that
GD2 hardly shows any influence of Madhava.

0.2.7 Commentary on GD2

Previously discovered manuscripts only contained the base text of GD2, and it has long been
thought that GD2 does not have a commentary.
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However we have found that manuscript Indian Office Sanskrit 3530 of the British Library,
whose text has been previously recognized as a version of GD2 expanded with quotations, also
includes commentaries on GD2 209-246. Manuscript 13259 of KOML, which contains an uncom-
mented version of GD2, also has an excerpt of GD2 209-246 with commentaries. The two texts
agrees in general, and comes from a common source.

The commentaries are inserted after the following verses:

GD2 211 Solution of example 1 in GD2 209, following the procedure in GD2 210-211.

GD2 217 Solution of example 2 in GD2 212, following the procedure in GD2 213-217.

G D2 218 Clarifies the passage, as well as adding an example.

GD2 219 Clarifies and expands the passage.

GD2 231 Solution of example 3 in GD2 231 with a preamble to GD2 232.

GD2 232 Solution of example 4 in GD2 232.

GD2 233 Clarifies and expands the passage.

GD2 234 Some statement concerning the previous examples (7), and a preamble to GD2 235.
GD2 245 Solution of example 5 in GD2 245

GD2 246 Solution of example 6 in GD2 246. The last sentence is identical to GD2 247.

As we can see, most of the commentary is on the 6 examples. Solutions for the examples
are given by providing the intermediate values one by one. In this way, the commentaries show
the steps to be followed, but there are no details on how the computations are carried out, or
on the rules in GD2 which are to be used. Some steps are not stated, including those that are
mentioned in GD2 itself. We shall discuss the procedures under each chapter for the examples.

So far, we have no information on who could have written these commentaries. The manuscripts
containing the commentary come from an early branch in the stemma (see figure 0.12 in section
0.3.2). Therefore, it is possible that this could be an auto-commentary. GD2 247 is too short for
an independent verse, and could be the last sentence of the commentary that was accidentally
left in the copy of a manuscript when the scribe tried to copy the verses without the commentary
(section 20.2). However I consider it unlikely that the commentator was Paramesvara himself
because the numbers are written in numerals. By contrast, the auto-commentary on GDI always
uses word numerals, even in the solution of an example. The numbers in the commentary also
suggest the possibility that there were multiple commentators, since the way that fractions are
expressed are very different among the examples (appendix A.3).

0.2.8 The other Goladipika

Parames$vara has composed another treatise with the title Goladipika (hereafter GD1). The two
Goladipikas share many common topics, but their structure is different.

GD1 has 267 verses divided into four chapters. The segmentation was obviously intended by
the author himself, as can be seen from the fact that every manuscript has a colophon giving
the titles of the chapters at each end and that Paramesvara composed an auto-commentary
indicating the same division. The critical edition of GDI and its auto-commentary as well as an
English translation of the verses were published by K. V. Sarma (1956-1957).
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Chapter 1 (15 verses), called “Rule for constructing the sphere (golabandhavidhi)” is an
introduction devoted to the armillary sphere. In chapter 2 (50 verses) “Rule of planetary motion
(grahacaravidhi)” the motion of planets along the circles given in the previous chapter, as well
as the nature of the Earth, sun and moon, are explained. Chapter 3 (110 verses) “Thoughts
on the Earth and the like (bhumyadicintana)” deals with the shape and size of the Earth with
a detailed explanation of traditional cosmography in Hinduism integrated into the theory of
a spherical Earth. Finally, the untitled chapter 4 (92 verses) mentions a variety of topics in
astronomy that require computation, including the gnomon, parallax, eclipses and precession.

Table 0.2 lists the topics in each chapter as well as their correspondence with GD2. Note that
some of these corresponding verses can be completely identical while others can be very different
in appearance. We can see that most of the contents in chapters 1-3 correspond to GD2 2-67.
Subjects dealt with after GD2 70 are concentrated in chapter 4. The following topics that involve
many steps of computations and advanced knowledge do not appear in GDI: Orbits of planets
and their deviation (GD2 125-152), celestial latitude and visibility methods (GD2 153-178) and
corrections to the mean planet at sunrise (GD2 195-201). GD1 1.7cd-8ab briefly refers to the
inclined circle (viksepamandala, the path of a planet that is inclined against the ecliptic), but
there is no further explanation on the celestial latitude itself.

Meanwhile, the extensive descriptions on puranic cosmology and geography in GD1 3.62-110
have no parallel in GD2. Some instructions on drawings using the gnomon and its shadow can
be found in GD1 4.27-36, but there is no corresponding passage in GD2.

Table 0.2: Contents of GD1 and correspondence with GD2

GD1 Topic GD2

1.1 Benediction -

1.2-14 Constructing the armillary sphere 2-6, 10-15ab, 126

1.15 Geographic latitude and co-latitude 88

2.1-4 Diurnal motion 7-9

2.5-6 Geocentric parallax 249

2.7-13 Diurnal motion of planets 15c¢d-16

2.14-17 Definition of solar amplitude 75cd,84-87

2.18-19 Diurnal motion of sun in different latitudes none

2.20-28 Daily motion of planets 18-21

2.29-34ab That the Sun’s orbit is higher than the Moon 66,67

2.34cd-37 Source of moonlight 22-24, 283

2.38-45 Cause of eclipses: denying myths none

2.46-50 Spherity of planets, size of Sun and Moon 22-24,277,279

3.1-5 Stability and immobility of the Earth 25-27

3.6-18 Size of the Earth 30-35,37,70-72

3.19-24ab,30- Compromising with puranic cosmology 31,36,39,66-67

35

3.24¢d-29,36-  Defining directions, geography 34-35,38,41,43-44

42

3.43-57 Length of day and night at various latitudes 41-54

3.58-61 Very long units of time 56-65

3.62-110 Puranic cosmology and geography none

4.1-6 Defining a great gnomon and related segments 103-115

4.7-22 Computing the great gnomon 121-124,220-
230,233-234
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(continued from previous page)

GD1 Topic GD2
4.23 Example ~232
4.24-26 The twelve arigula gnomon 116-120
4.27-36 Drawings for the gnomon and shadow none
4.37-51 Computing the sun’s longitude and geographic latitude 235-244
from the shadow

4.52-53ab Midday shadow 213-217
4.53cd Prime vertical shadow 210-211
4.54-58 Earth’s shadow 286-301
4.59 Computing apparent sizes of discs 280
4.60-61 Difference between solar and lunar eclipse 281,282
4.62-78 Computing parallaxes 248-276
4.79-84 Rising time of zodiac signs 89-102
4.85-90 Motion of solstitial points 218-219
4.91-92 Conclusion -

Table 0.3: Contents of GD2 and correspondence with GD2
GD2 Topic GD1
1 Invocation -
2-17 Parts of the armillary sphere and their meaning 1.2-14, 2.1-4,7-13
18-21 Motion of the stars and planets 2.20-28
22-24 Forms of the sun and moon 2.34¢d-37,46-50
25-27 Stability and immobility of the Earth 3.1-5,20
28-36 Surface of the Earth 3.6-19,22,30-32
37-39 Mount Meru and Lanka 3.11,26-29
40-54 Day and night at various places 3.43-58
55-65 Very long timescales 3.52-61
66-67 Contradicting statements on the distances of the sun and 2.29-34ab

moon

68-69 Authorship and summary -
70-72 Geographic latitude and co-latitude 3.8-11
73-83 Computing the ascensional difference (2.15)
84-87 Sine amplitude 2.14-17
88 Another description for Latitude and co-latitude 1.15
89-102 Rising time of zodiac signs 4.79-84
103-115 The great gnomon 4.1-6
116-120 Great gnomon and the twelve arigula gnomon 4.7-22
121-124 The prime vertical gnomon 4.10-11
125-152 Orbits of planets and their deviation none
153-178 Celestial latitude and visibility methods none
195-201 Corrections to the mean planet at sunrise none
209-211 Example 1 4.53cd
212-217 Example 2 4.52-53ab
218-219 Motion of solstitial points 4.85-90
220-230 Length of shadow when the sun is in a given direction 4.7-22
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(continued from previous page)

GD2 Topic GD1
231-232 Example 3,4 ~4.23
233-234 Speed of “without-difference” method 4.21-22ab
235-244 Finding the sun and geographic latitude from the shadow 4.37-51
in an intermediate direction
245-247 Example 5,6 (4.37-51)
248-276 Parallax 2.5-6, 4.62-78
277-280 Distance and size of Sun and Moon 2.46-50
281-282 Difference between solar and lunar eclipse 4.60,61
283-301 The shadow of the Earth 4.54-59
302 Conclusion -

There are 9 known manuscripts of GDI and two of its auto-commentary (see page 36 for
the list). This suggests that the GDI and GD2 (11 extant manuscripts) were both popular,
more or less to the same extent. However, in contrast to GD2, of which we could not find any
quotations in later literature, verses from GD1 are quoted by Nilakantha in his commentary on
the Aryabhatrya (cf. Pillai (1957b, p. 27)). One would wonder whether GD1, which seems to have
been composed after GD2, had replaced it in some milieus, but this remains very speculative.
However, the difference in focus of GD2 and GDI suggests that they could have been prepared
for different readers. Notably, the first chapter on the armillary sphere in GD1 proceeds as if one
were building the instrument, but the description in GD2 ignores the order of construction, which
suggests that the reader was expected to have better access (either physical or mental) to the
armillary sphere (Hirose (2016)). Topics that are not included in GDI require good knowledge
of circles and segments within the sphere, which also supports the possibility that the GD2 was
intended for more advanced learners.

Order of the Goladipikas

K. V. Sarma (1956-1957) was the first to reflect on the two versions of the Goladipika. He does
not mention whether one is a revision of the other, but he seems to think that GD2 was composed
later, as he writes “In the Goladipika published in the Trivandrum Sanskrit Series (=GD2), ...
some topics like cosmogony are left out; others, like the conception of the yuga-s and calculation
of the latitudes of planets, are newly introduced” (K. V. Sarma (ibid., p. 3)). Probably this is
the reason why he numbered them GD1 and GD2 in his survey (K. V. Sarma (1972))°?. Pingree
(1981, p. 191) comments that GD2 refers to GD1°, but this is not correct.

We follow the numberings of GD1 and GD2 since they are already widely used. However, as
discussed previously in section 0.1.5, what we call GD1 seems to have been composed after GD2.

0.2.9 Concluding remarks

What can we say about Paramesvara in relation to other authors, and what can we say about
GD2 in relation to other texts by Paramesvara?

52Meanwhile he first numbered the texts in reverse order (K. V. Sarma (1963), K. V. Sarma (1965) and K. V.
Sarma (1966)), possibly due to the order the editions in which were published

53« A Goladipika in 302 verses in which Paramesvara refers to his first Goladipika and his Karmadipika on the
Mahabhaskarwya” (page 191) However, GD2 69 refers to the Siddhantadipika, Parame$vara’s super-commentary
to the Mahabhaskariya, but not to the Karmadipika which is his direct commentary on the treatise.
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Our study on GD2 shows that Paramesvara connects himself with his predecessors in two
ways. His attitude toward Aryabhata, and to some extent toward Bhaskara I (who is viewed
as a commentator of Aryabhata), is different from his treatment of other authors. Even when
he finds that the rules in the Aryabhatiya or the Mahabhaskariya are inaccurate and must be
replaced, Parames$vara still acknowledges their work and keeps some of their elements in his
reasonings: A typical case is his explanation of the two visibility methods (GD2 165-177) before
giving the unified method (GD2 178-194). In other words, the Aryabhatiya is the foundation on
which Paramesvara must build his theories. It is at the point when he constructs his rules that he
makes use of other authors. Paramesvara does acknowledge such influence, but he keeps distance
by merely calling them “others” or the like. We assume that Bhaskara II is a representative of
this case.

Given this difference in Paramesvara’s usage of previous authors and the resulting stratum in
his work, it is impossible to categorize Paramesvara in a single “school” - whether it be a “school”
of people that share the same idea, or use the same parameter. As for the “Kerala school”, we
have found evidence in GD2 that denies influence of Madhava, and as Parame$vara himself does
not refer to him, we must reconsider the position of Paramesvara in this pedagogical lineage.

As for the nature of GD2 itself, my feeling is that it puts emphasis on grounding the rules
rather than giving a handy set of methods that can be used right away. This is in contrast to
other treatises that only include the rules, such as the Grahanamandana. Yet, this does not mean
that GD2 was for an elementary reader. A comparison with GD1 shows that the contents of GD2
are advanced, and that it requires some expertise on the armillary sphere or the configuration of
celestial circle that it represents.

0.3 Manuscripts of Goladipika 2

0.3.1 Description of manuscripts used in the critical edition

We have used 11 manuscripts labeled K;-Kg and I;-I3 for editing the verses of GD2. One of
them, I, contained commentaries, and another one K5 had extra folios (which we label K")
with commentaries. Thus for editing the commentary we have used I; and K;

Every extant manuscript is in palm leaves with Malayalam script. We have acquired digital
copies for all of them, and examined each of them directly at least once.

K; MS. No. 475 J (Catalog No. 5054 in Pillai (1957a)) of the Kerala University Oriental
Research Institute and Manuscripts Library (ORI & MSS)®%. 16 unnumbered folios, 30cm x
5cm. 8-10 lines per page and about 70 letters per line.

The bundle 475 includes: (A) Aryabhatiya of Aryabhata, (B) Mahabhaskariya of Bhaskara
I, (C) Laghubhaskariya of Bhaskara I, (D) Siddhantadarpana of Nilakantha Somayajin, (E)
Tantrasarigraha of Nilakantha Somayajin, (unlabeled) Candracchayaganita of Nilakantha So-
mayajin, (F) Lilavatr of Bhaskara 11, (G) Paricabodha, (H) Laghumanasa of Munjala, (I) Can-
dracchayaganita of Paramesvara, (J) Goladipika 2 of Paramesévara, (K) Grahanastaka of Parames-
vara.

The colophon of 475A gives the date of transcription as 1,699,817 days after the beginning
of the Kali Yuga, which amounts to December 23rd, 15525°. There is a passage after 475F that

54 Address: Oriental Research Institute and Manuscript Library, University of Kerala, Kariavattom, Thiru-
vananthapuram - 695 581, Kerala, India. Website: http://www.keralauniversity.ac.in/departments/ori/

55The material of the folios and the handwriting are almost consistent throughout the whole bundle, which
suggest that most or all of the folios were written by the same scribe. It might have taken a considerable time to
write the entire bundle, but we assume that its period is not very far off from the date written here.
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Figure 0.1: Manuscript 475 J (K;), folio 4 verso

says “this manuscript is written and owned by Nilakantha of Vatasrenya®®”. Vatasrenya was also

where Paramesvara lived.

K, MS. No. 5867 A (Catalog No. 5058 in Pillai (1957a)) of ORI & MSS. 45 folios numbered
101 to 145 (in the letter-numeral system beginning with na-nna-nya®7), 18cm x 4cm. 7 lines
per page and about 30 letters per line. Formerly property of a Brahman, Haridasan Tuppan
Namboodirippadu Ponnorkkod Mana.

The bundle 5867 includes: (A) Goladipika 2 of Paramesvara, (B) Golasara of Nilakantha
Somayajin, (C) Siddhantadarpana of Nilakantha Somayajin.

Figure 0.2: Manuscript 5867 A (Ks), folio 120 recto

K3 MS. No. 8327 A (Catalog No. 5059 in Pillai (ibid.)) of ORI & MSS. 27 folios numbered 2
to 28 (in na-nna-nya letter numerals; folio 1 missing), 17cm x 4em. Badly damaged. 9-11 lines
per page and about 35 letters per line. Formerly property of Chirakkal palace Library.

The bundle 8327 includes: (A) Goladipika 2 of Paramesvara, (B) and (C) Horasaroccaya of
Acyuta with Malayalam commentary.

K, MS. No. 10583 A (Catalog No. 24883 in Bhaskaran et al. (1988)) of ORI & MSS. 15 folios
numbered 1 to 15 (in Grantha Malayalam numerals®®), 17cm x 3.5cm. 8-10 lines per page and
about 60 letters per line. Formerly property of Edappally palace Library.

The bundle 10583 includes: (A) Goladipika 2 of Paramesvara, (B) Golasara of Nilakantha
Somayajin, (C) Siddhantadarpana of Nilakantha Somayajin.

K5 MS. No. 13259 A (Catalog No. 1840 in Pillai (1957a)) of ORI & MSS. 49 folios numbered
4 to 57 (in na-nna-nya letter numerals; folios 1-3, 14, 15, 43-45 completely missing), 20cm X

56 yatasrenyakhyena nilakanthena likhitam idam pustakam sviyam ca

57See Griinendahl (2001, p. 94) for the full list of numerals and Bendall (1896) for additional information on
this system.

58See Griinendahl (2001, p. 93) for a full list.
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Figure 0.4: Manuscript 10583 A (Ky), folio 14 recto

3.5cm. Many folios are only left in fragments and every folio is badly damaged. 6 lines per page
and about 30 letters per line. Origin unidentified. Wrongly identified as “Bhasya [commentary]
by Bhaskaracarya of the Aryabhatiya” in the catalogue.

Considering the frequent lacunae and discontinuity, this bundle appears to be a copy of a
manuscript which was already damaged or fragments of manuscripts. For example, the text is
cut abruptly in the middle of GD2 109 at folio 19 recto. 19 verso is blank. Folio 20 recto starts
from the middle of GD2 103. Thus there is an overlap.

The bundle 13259 includes the Goladipika 2 of Paramesvara, a fragment of an identified text
on the nodes and latitude of the moon, a commentary on Goladipika 2 (Ki), an unidentified
text on astral science throughout folios 80 to 109, and (B) Aryabhatiya of Aryabhata.

Figure 0.5: Manuscript 13259 A (K3), folio 11 verso

K;r Additional folios in MS. No. 13259 A containing verses 209 to 247 with commentaries.
Readings of the verses are sometimes different from those in K5, and therefore we shall treat Ks
and K7 as different samples. 19 folios numbered 59 to 80 (folios 76-78 missing).

32



Sho Hirose - These de doctorat - 2017

Kg MS. No. 17945 B (Catalog No. 24884 in Bhaskaran et al. (1988)) of ORI & MSS. 15 folios
numbered 1 to 15 (in Grantha Malayalam numerals), 4.5cm x 35cm. Formerly property of a
Brahman, Tharayil Kuzhikkattillam Agnisarman Bhattathiri.

The bundle 17945 includes: (A) Sesasamuccaya (tantrism), (B) Goladipika 2 of Parame$vara,
(C) Pancaksaramantravidhi (mantras), (D) Talaprastara (musicology). Kg is the only manuscript
in our list that comes from such a variegated codex.

=

St o) ¢ gr, % 2 ) BEDE 6 1o o) mweh 0y () Rs BT F gl & 6 113 s () 1D (€0 &EPS, T Dk H2D0Y 3 B (100 1ol 1 (S B3\ eyal) (D (2§ § (0 115 6) o &% -
3 h,@qwanwn@«uqme‘wrﬁ:@gmmm@m-ﬁmma@qGMq@nmmgqu(%aacS!«ﬂam&mq@;gﬂ@\mﬂ@-@mmn@&u@%@imeﬂ;ﬁ o b3
- RILPJCHNUOOB0OQOE o\ G o &hE M) S EHH s May A6 1 0@) P O8I S04 T Sy TR B Fowe e <o @ By gD is D

~ gD IR o oo o DD Gy o © 8 8 @) LIID.AN® 0@ I® G D aa o eI E O A OIR 0 6) BB D@ > %) B G 18 0h BS & 0,
T S 1@ YO oS Ve a1 e - ﬂ‘ﬂ@yﬁbng:z_glgmm@n-\a\g)v\@“,&mmu'\mﬂmguﬁ\m @ @‘ga@w:\gumewjﬁsmame -
3 O H I @ODonchomd O I M ed i Ao e@e 3 (oD @S e 0 EO@nhon W el 1031 0@ 3l @ 6 o e meded b -
TR n @ ) 6w a0 ) o1 @Y S 8Saciomanel cni@) 1 I B @1 VOO I 1 0@®IS G 0 & L 10620 1@ OB

D0 EW) BED S0 0@ © 0 D D16 8 084 B)) oD S » 8 4 B) © 0SB T B WD T 0110 @@ KDH) ©© @ o 0D G K & & 1
) €3 060) @) 0.0 ) 0w @Y \mgng)'n-urm;m-mgg.@@mu;mqmmm_s_gﬁ@qm)a@gm;d,\@mmm%_fxm.@ﬁ& et
e = - v P e R Y e e e AL T e Gaens

e

- ' oo

>

Figure 0.6: Manuscript 17945 B (Kg), folio 2 recto

K, MS. No. C.224 F (Catalog No. 5060 in Pillai (1957a)) of ORI & MSS. 11 folios numbered
54 to 64 (in na-nna-nya letter numerals), 33cm x 4cm. 10-13 lines per page and about 80 letters
per line. Formerly property of Edappally palace Library.

The folios are fairly well preserved and the letters are neatly inscribed, but the text includes
numerous scribal errors that have been both inherited and newly caused.

The bundle C.224 includes: (A) Aryabhatiya of Aryabhata with commentary of Siiryadeva
Yajvan, (B) Laghubhaskariya of Bhaskara I, (C) Tantrasarnigraha of Nilakantha Somayajin, (D)
Mahabhaskariya of Bhaskara I, (E) Suryasiddhanta, (F) Goladipika 2 of Paramesvara, (G)
Siddhantasekhara of Sripati. K. V. Sarma (1976, p. xvii) gives detailed information on this
manuscript. According to him, a colophon in (C) gives the date of transcription as Kollam era
928, which corresponds to 1752-53 CE.
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Figure 0.7: Manuscript C.224 F (K7), folio 64 verso

Kg MS. No. C.1024 D (Catalog No. 5061 in Pillai (1957a)) of ORI & MSS. 38 folios numbered
1 to 38 (in Grantha Malayalam numerals), 32 x 4cm. 8 lines per page and about 30 letters per
line. Formerly property of the Raja of Cirakkal.

The bundle C.1024 includes: (A) Aryabhatiya of Aryabhata, (B) Suryasiddhanta, (C) Suryasid-
dhanta, (D) Goladipika 2 of Paramesvara, (E) Golasara of Nilakantha Somayajin, (F) Siddhan-
tadarpana of Nilakantha Somayajin.

I; Indian Office Sanskrit 3530 (Catalog No. 6297 in Eggeling (1887)) of the British Library®®.
56 folios numbered 1 to 56 (in Grantha Malayalam numerals), 19 x 4 cm. 7-8 lines per page
and about 40 letters per line. A slit of paper included in the bundle reads “Found in Silmory”

59 Address: The Asian & African Studies Reading Room, The British Library, 96 Euston Road, London, NW1
2DB, United Kingdom. Website: http://www.bl.uk/reshelp/inrrooms/stp/rrbysubj/aasrr/aasrr.html
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Figure 0.8: Manuscript C.1024 D (Kg), folio 17 recto

in English, but we could not find the corresponding location. The catalog dates this manuscript
to the 18th century.
This is the only text in the bundle, but 37 blank folios are included after the Goladipika 2.

Figure 0.9: Manuscript Indian Office Sanskrit 3530 (I;), folio 33 recto

I; includes many quotations from other astronomical texts. The full list is as follows (in order
of verse number in GD2 and quotations following that verse or half-verse):

1 SSe 15.1-6, BSS 21.1
4ab Abh 4.1

6 Abh 4.2

890 5Se 15.52

13 Abh 4.18-19

21 Abh 3.15, 13 and 14
23 SSe 10.1-13

25 Abh 4.7, 6, and 8, BSS 21.2, PS 13.1, BSS 21.2cd, SSe 15.7-19
26 SSe 15.20-23

30 Abh 4.11

36 SSe 15.24-26

608abc followed by 8b, probably due to dittography. 8cd follows the quotation.

34



Sho Hirose - These de doctorat - 2017

e 3761 SSe 15.27-72, 2.69-70
« 301 BrS 5.1-15, SSe 17.15, SSi.G 11.10

In addition, the manuscript gives commentaries on the examples (section 0.2.7).

I, Indian Office Burnell 107b (Catalog No. 6298 in Eggeling (1887)) of the British Library. 13
folios numbered 1 to 13 (in Grantha Malayalam numerals that have not yet been inked), 37 x 4
cm. 9-10 lines per page and about 70 letters per line. Acquired by Arthur Coke Burnell in the
1860s, but it is uncertain whether the manuscript was newly copied for him. The initial writings
are blackened but numerous corrections have been inscribed later without blackening. Perfectly
preserved.

The bundle Burnell 107b includes: (A) Suryasiddhanta with commentary of Paramesvara, (B)
Goladipika 2 of Parame$vara, (C) Aryabhatiya of Aryabhata with commentary of Parameévara,
(D) Aryabhatiya.

Figure 0.10: Manuscript Indian Office Burnell 107b (I), folio 9 recto

I; Indian Office Burnell 17¢ (Catalog No. 6299 in Eggeling (ibid.)) of the British Library. 23
folios numbered 1 to 23 (in Grantha Malayalam numerals), 22 x 4 cm. 8-9 lines per page and
about 50 letters per line. The entire volume was “written for Burnell (Eggeling (ibid., p. 774))”,
in the 1870s. Well preserved without fragmentation.

The bundle Burnell 17c¢ includes: (A) Suryasiddhanta (B) Suryasiddhanta, (C) Goladipika 2
of Parame$vara, (D) Goladipika 1 of Paramesvara, (E) Golasara of Nilakantha Somayajin, (F)
Siddhantadarpana of Nilakantha Somayajin. This is almost identical with Kg; the difference is
that K3 has the Aryabhatiya at the beginning and does not contain Goladipika 1. This suggests
that the two bundles are closely related, but it is unlikely that one is the direct descendant of
the other.

Figure 0.11: Manuscript Indian Office Burnell 17¢ (I3), folio 8 recto

61 G@D2 37 is repeated again after the quotations. The second occurrence, labeled Ii*' in the critical edition,
reads differently from the first one.
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Sastri SastrT’s critical edition (Sastr1 (1916)). Sastri mentions that he used three manuscripts
“obtained from the Raja of Idappalli”, but gives no more information on their background. He
labels them ka, kha and ga. We identify ka and kha as K4 and K7 that come from the Edappally
palace Library. However, Sastr1 seems to have made a confusion between the two. In his critical
apparatus, ka follows the variants of K4 and kha that of K7 until verse 126, and later on they are
exchanged. There are also many variants that are not given. Sastrl remarks that ke “contains
fewer mistakes than the other two manuscripts”, and judging from his reading, here he is referring
to K;. Therefore many of the corruptions in K7, including those unique to this manuscript®?,
are left in his edition. The remaining ga cannot be identified with any other extant manuscript
(see Kg below). Its variants suggest that it is a descendant of Q*, in the same group with ka
(K7).

(Kg9) MS. No. L.1313 A (Catalog No. 5063 in Pillai (1957a)) of ORI& MSS. A loaned
manuscript that included both versions of the Goladipika, but its location could not be traced
when we requested for its information at ORI& MSS in August 2013. It could be one of the
manuscripts used by Sastr1 which he labeled ga.

Manuscripts of GD1 There are nine known manuscripts of GD1, which we shall list below
so as not to be confused with those of GD2.

o MS. No. 762 E (Catalog No. 5062 in Pillai (ibid.)) of ORI & MSS: Manuscript “B” in the
edition of K. V. Sarma (1956-1957). 762 F is Parames$vara’s auto-commentary.

o MS. No. 5864 A (Catalog No. 5055 in Pillai (1957a)) of ORI & MSS: Manuscript “C” in

Sarma’s edition.

o MS. No. 8358 B (Catalog No. 5056 in Pillai (ibid.)) of ORI & MSS: Manuscript “D” in
Sarma’s edition.

« MS. No. 13719 (Catalog No. 174 of Jyotisa section in Siromani (1999)) of the Maharaja
Sayajirao University of Baroda Oriental Institute: Pingree (1981, p. 191) counts this as a
manuscript of GD2.

o Indian Office Burnell 17d (Catalog No. 6300 in Eggeling (1887)) of the British Library

o MS. No. L.1313 B (Catalog No. 5057 in Pillai (1957a)) of ORI & MSS: Manuscript “E” in
Sarma’s edition. Lost.

e MS. No. T.341 of ORI & MSS: Manuscript “F” in Sarma’s edition. Lost.

e« MS. No. R.5192 of the Government Oriental Manuscripts Library, Madras: Manuscript
“A” in Sarma’s edition. We have not confirmed this manuscript.

e Manuscript “G” in Sarma’s edition, “a transcript by Sri G. Harihara Sastri, Madras”. We
have not confirmed this manuscript®.

6’2Variants in 10.d, 12.d, 43.d, 53.c, 184.b, 194.b, 218.b, 236.d, 238.d, 292.d occur only in K7 but are adopted
in Sastri’s edition.

63This is probably a copy of 13719 Baroda which was sold to the institute by the same “G. Harihara Sastri”
and contains the same variant readings.
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0.3.2 Stemma and genealogy of manuscripts

Figure 0.12 is a stemma showing the relationship between the manuscripts extant judged from
their variants, with their archetype (the hypothetical lowest common ancestor of every known
manuscript) and hyparchetypes (the hypothetical common ancestor for a subgroup)®*. There are
conspicuous sets of variants that enable us to identify their genealogy relatively easily. On the
other hand, there are traces of contamination involved. Therefore we have chosen to construct
the stemma manually (without using computer programs).

Z*

Y*

Sastr1

Figure 0.12: Stemma for manuscripts of GD2

Z* (Archetype) The stemma is constructed with the assumption that there was only one
manuscript prepared by Paramesvara which became the common ancestor. Our archetype is
probably very close to the autograph itself, as there is no significant corruption common to every
manuscript. There are only three amendments that we have made which appear in none of our
manuscripts. yatime and tatime which we have corrected to yatame and tatame in GD2 263 could
be conventional notations. tadviguna in GD2 286 is uninterpretable; Sastr1 reads taddviguna
which we have also adopted, but even this reading is problematic. The autograph could have
been very different here.

64Here we follow the terminology in West (1973).
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Y* We have identified this hyparchetype with three manuscripts (Ks, K;r and I;) as the closest
to our archetype, and evaluated the readings of its manuscripts higher than others. Y* does have
some corruptions of its own; the variant masa in place of rasi (GD2 41) and the repetition of
GD2 249-250ab are decisive upon identifying this subgroup. The most significant feature in this
subgroup is that it contains a commentary. We do not know when and by whom the commentary
was added.

X* This is a hyparchetype of W* and V* combined. There are 11 common variants among
them while there is only one betwen Y* and W* and three between Y* and V*. The omission of
samjnita in GD2 273 is most distinctive, but otherwise the variants do not stand out as clearly
as the variants in the two subgroups W* and V*, which suggests that they were divided at an
early period.

W#* K, and K4 belong to this hyparchetype. There are 43 common variants. Some of them
change the meaning of the verses significantly, such as sphuta instead of $ruti in GD2 128 and
karna instead of $anku in GD2 288. K; follows unique variants of W* in 7 places. We have put
K; under the hyparchetype V* due to its common variants, but it is likely that there is some
contamination from W* in Kj.

V* This hyparchetype combines K; with hyparchetype U*. There are 23 common variants in
V* while there are 42 within U*. K; is an oddity in this group which may be explained to some
extent by contaminations from W¥*.

U* Many conspicuous corruptions characterize this hyparchetype. The omissions of GD2 93cd,
GD2 216d-217a and GD2 264b are especially prominent. There are numerous corruptions be-
low this hyparchetype that not only distort the meaning but even break the meter. We deem
manuscripts under this hyparchetype relatively unreliable.

T* Most of the variants under this hyparchetype are simple elisions or mis-transcriptions and
are hardly useful. They are occasionally corrected by second hand in its descendants.

S* Not only are the variants in this hyparchetype numerous but also unique. For example,
dyumandala is often written dyunmandala. The variants often show some traces of efforts to
make the phrases meaningful rather than being simple mis-transcription. Such is the case for
khaga instead of kala (possibly affected by kheta nearby) in GD2 156. This is probably why
S* sometimes show correct readings where its supposed hyparchetype is wrong; for instance,
copaikyam in X* is back to capaikyam in GD2 164 and V* has smate in GD2 235 where S*
correctly gives smrte. Among the two manuscripts, Kg has very few variants of its own while I3
has been corrected frequently by a second hand. We assume that I3 has been copied from Kg
itself or another manuscript not far from it.

R* We estimate that this hyparchetype is not very far from T* as there are only 14 unique
variants. Furthermore, 8 of them are common with Kg. As Kg and K; have 60 variants in
common, there is no doubt that these two had a common ancestor, but there could have been
some contamination. The two manuscripts in this group, K3 and I3, have many variants of their
own and it is not very likely that one was a copy of the other. Iy has been frequently corrected by
a later hand. It has 19 common variants with S* which suggests that the scribe referred either
I3 (I and I3 were both copied for Burnell) or its direct parent.
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Q* This hyparchetype is discernible because Kg and K7 have 60 variants in common.

39



Sho Hirose - These de doctorat - 2017

Part 1

Critical edition
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Notes on the edition

Variants to be ignored

The text in this edition is presented in Roman alphabets with diacritic marks in the Interna-
tional Alphabet of Sanskrit Transliteration scheme (Monier-Williams, 1899, p. xxx). Sandhis
are separated whenever the borders between words are distinct (table 0.4. Words in compounds
are kept separated, and whenever a word or compound extends over two padas, its continuity is
marked with a hyphen at the end of the line.

Table 0.4: Examples of sandhis and how they are presented in this edition

Before Sandhi After Sandhi In our text
bhavet + hi bhaveddhi bhaved dhi
adau + ante adavante adav ante
bahus+ ced+sanku-  bahusceccharku- bahus cec chanku-
tasya + api tasyapi tasyapi (cannot be separated)
ca + eva caiva caiva (cannot be separated)

We have systematically ignored some of the variants which merely comes from scribal con-
ventions or typical errors and do not affect our decision. The peculiarities that we have located
in the manuscripts and listed below had already been included in a more detailed and exhaustive
list by Esposito (2012). The corpus of her list are South Indian drama manuscripts, but the vari-
ants are not necessarily associated with the genre of texts and can be applied to our examples
too.

e Doubling of consonants after r and before y.
e Nasals instead of anusvara or vice versa.
o anusvara instead of m at end of (half-)verse.

e The assimilation of a wvisarga before a sibilant. When the double sibilant is followed by
another consonant, one of the two sibilants can be dropped. We assume that this has
happened in GD2 165, where we exceptionally noted the reading of the manuscripts as-is.

o Intervocalic g (]) instead of el (1).

e drksepa instead of drkksepa. This can be explained by a more general phenomenon where
a consonant can be dropped if it is geminated and further followed by another consonant.
The case with drkksepa is very frequent and yet so obviously an error that we have decided
to systematically ignore it.

e Voiceless consonant word-endings left as they are when they should become voiced as a
result of Sandhi with the following voiced consonant. For example, every manuscript reads
bhramanat golasya instead of bhramanad golasya in GD2 208. This happens because we
only identify prepausal consonant characters for voiceless consonants (Griinendahl (2001,
p.- 92)). It is arguable whether they were actually pronounced voicelessly.

o Non-existence of avagrahas. Apart from Sastri’s edition, the manuscripts never write ava-
grahas. Therefore variants in this edition will be given without avagrahas.
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o Texts missing due to breakage in the manuscript, unless the missing part is longer than a
pada or is in a difficult place (especially when we adopt readings from few or no manuscripts).

In addition, we shall ignore some scribal errors as long as they appear only in one manuscript
and do not affect the decision. We ourselves too have difficulty in distinguishing some letters
from one another; such cases are left unnoted as long as the reading can be easily decided from
the context. The following is a list of similar sets of letters and ligatures which can be a source
of errors.

e ol (p) and a1 (v), and in some manuscripts a1 (¢), e (1) and e (kh).
o The right side of exm (vowel -au) and m (n).
e a0l (hi) and ag) (e).

o Dropping one letter in oo (vowel -a7) makes it read -e.

» (g) and w ($).
e 3(d) and & (bh).

o In some manuscripts, =0 (-a) and =z (h) .

Notations in the apparatus

When every manuscript in the same group has the same variant reading, the siglum for their
common archetype will be given in the apparatus, instead of individual manuscript. However, if
there are diversities within a group that can be explained as a result of modification from the
same variant reading of their archetype, the variant and siglum of the archetype will be followed
by those of individual manuscripts or sub-archetypes.

br. The manuscript is broken in the corresponding part or an entire folio containing the text
is missing.
e ksatra..ca | br. Ky: “The passage ksatra...ca is broken in K;”

+ A space of one aksara (letter) is broken. This will be indicated in the order it appears in the
manuscript, but due to the nature of Malayalam scripts, the missing element change its
position in an alphabetical transcription. ai+@ (pa+ta) could be any among 1o (patita),
alo® (pata) or ate® (pate).

o kotir api ca tajjiva | +++pi ca tajjv+ Ky: “For the lemma ¢0510a0 a1 @@e10n, Ks
is broken and only has afl a1 ®@2201”

om. The lemma is omitted in the manuscript. If no lemma is indicated, it means that the
whole pada is omitted.

o madhyagata | om. I3: “The passage madhyagata is omitted in I3”
e 28.d om. K4: “The pada 28.d is omitted in Ky”

lacuna The lemma itself is omitted, but some space roughly corresponding to the number of
omitted letters is left in the manuscript.
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o gacchanty..evam | lacuna Kg: “The passage gacchanty..evam is omitted with space
left in Kg”

corr. The reading has been corrected to the text in the critical edition.

o samdhya | bandhya corr. Kg: “The passage samdhya was initially bandhya in Kg, but
was corrected to samdhya”

o Suklastamyardha | Suklastamyardha T* (corr. Ky): “The passage Suklastamyardha
reads Suklastamyardha in descendants of archetype T*, but K; was corrected from

the initial reading suklastamyardha to Suklastamyardha”
COI'T.goc.mn, The correction is apparently by a second hand (secunda manu)65.

o bhavati ] bhavanti T* (corT.see.m. I2): “The passage bhavati reads bhavanti in descen-
dants of archetype T%*, but I, was corrected by a later hand from the initial reading
bhavanti to bhavati’

COrr.sec.m. t0 The reading has been corrected to the following text.

o kiyatr] kayati T* (corr.sec.m. to kiyatiIz): “The passage kiyati reads kayati in descen-
dants of archetype T*, but I, was corrected by a later hand from the initial reading
kayati to kiyati”

del. The lemma or reading has been deleted (crossed out) without replacement.

o gacchanty..evam | samyoga 21 mandalam arkading del.sec.m. K7: “In place of gaccha-
nty...evam, K7 had the reading samyoga 21 mandalam arkadina which was crossed out
by a later hand without replacement”

X/Y The manuscript can be read as either X or Y and cannot be decided from syntax.

o aikyapadam | aikyat padam/aikyalpadam Ky: “In place of aikyapadam, K4 has a read-
ing which could be either aikyat padam or aikyalpadam (The Malayalam letter @ai
could be either tp or Ip)”

Abbreviation of sources

Titles of other texts are abbreviated as follows in the apparatus.

Abh The Aryabhatiya of Aryabhata (Kern (1874))

BprS The Brhatsamhita of Varahamihira (Tripatht (1968))

BSS The Brahmasphutasiddhanta of Brahmagupta (Dvivedi (1902), Tkeyama (2002))
GD1 The Goladipika I of Parames$vara (K. V. Sarma (1956-1957))

GMBh Mahabhaskariyabhasya of Govindasvamin, his commentary on the Mahabhaskariya of
Bhaskara I (T. Kuppanna Sastri (1957))

PS The Parnicasiddhantika of Varahamihira (T. S. Kuppanna Sastri (1993))
SSe The Siddhantasekhara of Sripati (Misra (1932) and Misra (1947))

65Scripts are scratched on palm leaves and black powder with oil is applied afterwards for reading (Kumar,
Sreekumar, and Athvankar (2009)). Newly made corrections have none or less powder rubbed in the scratches
and are easily recognizable.
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Line numbers

Each verse is separated into four lines corresponding to the four padas in the meter. The lines
are marked from a to d. The exceptions are GD2 244 which has an extra half-verse and GD2 247
which is only half a verse. Numbers are allocated to lines in the prose parts (both for the base
text and commentary). None of these lines reflect the actual appearance in the manuscripts.

Commentary

Commentaries that are written in K;r and I; are inserted after the relevant verses, as they
appear in these manuscripts. Not every prose in this edition is part of a commentary; some
preambles (such as those before GD2 209 and 210) are included in every manuscript, and is
therefore considered part of the original work. Horizontal lines are inserted before and after the
commentary to distinguish it from the base text.
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Goladipika

vighne$am vagdevim

gurun dinesadikan grahan natva |
vaksye bhagolam asmai

ksonimanadikam ca laghumataye [/ 1 |/

adha-urdhvayamyasaumyagam

iha vrttam daksinottarakhyam syat |
adha-urdhvabhyam ghatikam

aksagre saumyayamyayor lagnam [/ 2 [/

tasyapy adha-urdhvabhyam

tadvat paramapame ‘pamam lagnam |
ghatikamadhye tiryag

rasanavartasya vrttam aparam syat [/ 3 [/

etad visuvatsamjnam

ghatikam api daksinottaram ca tatha |
apamandalakhyavrtte

purvabhimukho ravih sada carati || 4 [/

ghatikamadhyagavisuvad-
yamyottaravrttayor mithoyogat |
svastikayugmam yat syat
tatproto golamadhyagatadandah [| 5 [/

samavrttam api bhumim

bhagoladandasya madhyagam kuryat |
kasthena va mrda va

praninivasadi kalpayet tasyam [| 6 [/

pravahamarutpraksipto

bhagola urvim pradaksinikrtya |
aparabhimukham sastya

ghatikabhir bhramati bhayo pi [| T [/

l.a-13.d br. K3 1l.a-22b br. Ks 1.b guran] gurum S*K:Ks 2.a-b om. I3 2.d saumyayamyayor]
yamyasaumyayor K4K7 Sastrl (corr.sec.m. K4), saumyayor It 3.b paramapame ‘pamam lagnam|] param apa-
mandalamn K4 3.d vartasya] vrttasya Q* Sastri  5.d madhyagata] om. I3  6.c kasthena va] kasthena Iy
6.c mrda va] om. S¥Iy  T.a praksipto]| praksiptam W*  7.b bhagola] bhagolam W*

1. K begins with ++++++taye namah avi(gh)na+(s)tu, Ko, K4 and K7 with harih $ri ganapataye namah
avighnamastu, Ke, 11 and Ia with $ri ganapataye namah avighnamastu and Kg and I3 with harih. K3 and Ks are
broken at the beginning.

1. I adds $ripatih followed by SSe 15.1-6 and brahmaguptah followed by BSS 21.1

1 adds (between b and c¢) aryabhata followed by Abh 4.1

1 adds aryah followed by Abh 4.2

= GD1 2.2. Arya metre.

— -

4.
6.
7
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bhuprsthad upari marud
raviyojanasammitantare pravahah |
niyatagatir aparagah syad
bhuvayur adhas ca tasya bhinnagatih || 8 |/

ghatikasastyamsasya
bhramane kalo ’tra nadikety udita |
na tu divasasastibhago
golabhramanad yato ’dhiko divasah [| 9 [/

ghatikamandalaparsve
ghatikavrttanusari yad vrttam |

suryasya bhramanastham
svahoratrakhyavrttam uditam tat [/ 10 [/

tani bahuni bhavanti ca

divase divase yato 'rkagatibhedah |
naksatragola esa hi

bahye ’sya ca niscalah khagolah syat [/ 11 /]

purvaparadha-urdhvagam

uditam samamandalam khagolastham |
yamyottaradha-urdhvagam

asminn api daksinottarakhyam syat [ 12 |/

purvaparayamyodag-

gatam iha bhuparsvasamsthitam ksitijam |
tasminn udayastamayau

sarvesam bhagrahanam stah [/ 13 [/

yamye ’dhascordhvam udak

ksitijad aksamsakantare lagnam |
pragaparayos ca lagnam

vidyad unmandalam khagolastham || 14 |/

unmandalayamyodak-

svastikayata$ ca goladando yam |
unmandalordhvabhage

bhramanam golasya khagninadibhih [/ 15 [/

9.a amésasya] amsatasyals 9.c bhago] bhals 10.a ghatika| ghatika W* Sastri 10.d svahoratrakhyavrttam
svahoratrakhyam S*1a, svahoratrardhavrttam K7 Sastri  11.b divase divase] divase K1 11.b bhedah] bhedat
K7 1l.c-d ksatra..ca] br. K1 11l.c gola esa hi] golam etad W* 11.d niscalah khagolah] niscalam khagolam
W*  12.d asminn api] apitasmin K7 Sastr1 12.d ksino..syat] br. K1 13.b iha] iva S* 13.d bhagrahanam]
hi grahanam Q* Sastr1  14.a yamye] yamyo U*, yamya K7  14.b amsaka| antasaka S*Iz  14.c aparayos
ca] aparayos tu W*

8. = GD1 2.3. 1, repeats 8b after 8c. Then it adds sripatih followed by SSe 15.52, after which 8c is written
again, this time followed correctly by 8d.
9. = GD12.4.

10. Corresponds to GD1 1.6cd-7ab.
13. I; adds aryah followed by Abh 4.18-19
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unmandalad adhahstham
saumye yamye tadurdhvagam ksitijam |
tasmat saumyagate rke
dinam adhikam yamyage nisa hy adhika |/ 16 [/

krtva va pragaparam
ghatikam anyac ca tadvasat krtva |
unmandalayamyodak-
svastikanisprotadandakam kuryat || 17 |/

acalant bhani tesam

adhah kraman mandajivakujadinapah |
bhrgubudhasasinas caite

praggatayo golavegato ‘paragah [/ 18 |/

yojanasamkhya tulya

tesam divase gatau kala bhinnah |
kaksya mahaty upariga

yasmal liptah samas ca sarvasu [/ 19 |/

mandagatir indur arkih

Stghragatis tarakas tu Sighratarah |
gacchanty aparabhimukham

sarve ’py evam vadanti kila kecit || 20 [/

etan na yuktam iti hi
bruvanti gole krtasrama ganakah |
vakragavihagasya yatah
svapa$cimasagatarksasamyogah [ 21 |/

mandalam arkadinam

golakaram smytam ganakavaryaih |
tatjasam arkasya tu tac

candrasyapyam svatah prakasonam [/ 22 |/

darpanavrttakaram

mandalam icchanti ye tu te mugdhah |
Sauklyasya kramavrddhir

ghatate yasmad vidhor na tatpakse || 23 [/

salilamaye $asini raver

didhitayo murchitas tamo naisam |
ksapayanti darpanagata

mandiragam iveti caryajanavakyam [ 24 [/

16.b urdhvagam| urdhvajam W* 16.d yamyage] yamyagate Q*K; 16.d nisa hy] nisapy KoKr7 Sastri
17.a krtvava] krtva Ka 17.d kuryat] karyatlo 18.b dinapah] dinavarahli 18.c caite] caiva te K7 19.a—
b tulya tesam divase] tesam divase tulya W*I;  20.b tarakas| Sighras tarakas K¢  20.c—d gacchanty...evam]
lacuna Kg, samyoga 21 mandalam arkadina del.sec.m. K7 21.a etan] evan W¥* 22.d candra] candra
K7  23.b mugdhah] tammuddhah 13 23.c Sauklyasya] Sauklasya K1K2Kgls  23.c wvrddhir] vrddhih Ks
23.d vidhor] vidhau K¢ vidher Ky 24.d mandiragam] mandiram Q*  24.d iveti] iheti K7

21. I; adds aryabhatah followed by Abh 3.15, 13 and 14
23. ab = PS 13.36ab. cd is very close to PS 13.36¢d. 1; adds sripatih followed by SSe 10.1-4
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golakara prthivi

khe tisthati sarvada svasaktyaiva |
sthalabahulam urdhvagardham

jalabahulam adho ‘bdhayo ’tra ca dvipah [| 25 [/

bhumir anantena dhrtety

eke ‘nye diggajair iti bruvate |
adharasya ca kalpyo

‘tradharo to ‘navasthitis tesam [| 26 |/

purvabhimukham bhramati
ksoni nasti bhramah khagarksanam |
iti kila vadanti kecin
nabhimatam tad api caryabhatabudhasya || 27 [/

adha-upariparsvabhagesv

asya niyatam vasanti vasudhayah |
ditisutadevanaradyah

pranivisesas tatha saridagadyah [ 28 [/

bhumadhyagatam cakram

sarvesam praninam adhahsthanam [
bhuprsthe sarvatra

pranijaladeh sthitis tato ghatate [| 29 |/

yojanasamkhya gadita
bhuvrttasyankarandhrayamalagunah |
aryabhatena tathoktam
yojanamatro bhavec ca merur iti [[ 30 /]

bhumer yojanamanam

bahukotimitam vadanti sudhiyo 'nye |
naitad ganakabhimatam

yato 'nyatha manasiddhir aksavasat || 31 [/

samayamyodagdesa-

dvayapalabhagantaroddhrta tu tayoh |
vivaragabhumis cakra-

mésatadita syad bhuvah paridhimanam [/ 32 |/

25.a golakara] golakara K4 25.b tisthati] tistati S¥ 25.d ca] om. W¥K;y  26.d ’tradharo ’to 'navasthitis]
tratosthitis Ka  28.b vasanti] vadanti Q* 28.d om.Ks4 29.a bhu] truly 29.b adhahsthana] adhavasthana
S*  81.c ganakabhimatam] ganikabhimatam 11, ganakabhimatam Is  31.d yato] yatho S*  32.b tu tayoh]
krtayoh U*, uta bhayoh Ks  32.d tadita syad] taditasya Ks

25. I adds arya followed by Abh 4.7, 6 and 8,/bmhmagu followed by BSS 21.2, varahamihirah followed by PS
13.1 and BSS 21.2cd and $ripatih followed by SSe 15.7-19

26. I adds $ripatih followed by SSe 15.20-23

27. Sastrt adds: ‘bhattasya’ iti vrttanugunam ‘bhatakasya’ iti va. However this pada has 18 syllables and needs

no metrical correction.
30. 1) adds aryabhata followed by Abh 4.11
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yojanamitaphalasamkhya

bhuprsthe ced anekalaksamita |
bhugolantaryojana-

phalasamkhya ced anekakotimita [/ 33 |/

praninivaso hy antah

patalesv api ca bhavati medinyah |
vakyavirodha evam

vicintya sudhiyam sudhibhir iha neyah /| 34 |/

atyunnatis ca meror

na cintyate golavidbhir iha ganakaih |
yasmad dhruvasya saumye

praggaminyo bhavanti khe tarah [/ 35 [/

kecid vadanti bhumer

urdhvam cadhah pravista iti meruh |
aryabhatenatroktam

bhugolat tasya manam urdhvagatam [/ 36 [/

lankayam upari gato
golante rko dhruvah sada ksitije |
merau so ‘rkah ksitije
dhruva upari yato ‘nayoh svabhumir adhah || 37 |/

sthalajalamadhyal lanka

bhukaksyaya bhavec caturbhage |
ujjayini lankayah

panicadasamse samottaratah [ 38 |/

svarmeru sthalamadhye
narako badavamukha$ ca jalamadhye |
esa sardha tv arya
bhatena gaditatra likhyate “smabhih [/ 39 |/

sthalamadhyagamerustha

devas tadadhojalasthaga danujah |
Sasimandalamadhyasthah

pitaro manujah kugolaparsvagatah [/ 40 [/

33.a phala] palaI; Sastr1  33.b laksamita] laksanamitah It 33.d phala] pala Ko Sastri  33.d mita] mitah
I; 34.a hy antah] hantah I3 34.b patalesv api] patale pi I3 34.b bhavati] bhavanti T* (corr.sec.m. I2)
34.b medinyah] medhinyah Kg 34.d sudhiyam] sudhiyal; Sastr1 34.d iha] tha Kglo 35.b cintyate]| vidyate
Q* 35.b ganakaih] nipupaih Q*  36.b pravista] pravistam V¥  37.b rko] rkad W*  3T.c ’rkah ksitije]
rkaksitije T*I'l" (corr.sec.m. I2), rkam ksitije Ks  37.d yato] gato IT 37.d svabhamir adhah] sambhumidha
K5, svabhamir atah S*, svabhumidharah I{r 38.a madhyal] madhya Q*K4 Sastr1  38.c ujjayini| wjjayant
W*K;Kgli  39.b badavamukha] vadabamukha Sastri 39.c sardha tv arya] sardhartharya Iy 39.c—d arya
bhatena] aryabhatena K7  39.d bhatena] katena Iy  40.a madhyaga] madhya Ka

36. I adds sripatih followed by SSe 15.24-26

37. I adds sripatih followed by SSe 15.27-72, 2.69-70, then repeats this verse. The two writings are slightly
different, and only the second occurence (labled I;r) contains variant readings.

38. = Abh 4.14. Arya verse.

9. ab = Abh 4.12ab

2
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uttaragolagam arkam

pasyanty amarah sadanyagam ditijah |
mesadirasisatkam

dinam amaranam nisa tad asuranam [/ 41 |/

proktam dinam pitrnam
krsnastamyardhakalam arabhya |
Suklastamyardhantam
pasyanti yatah sadaiva te dinapam [/ 42 |/

lankadyanaksadese

trim$adghatika dinam tathaiva nisa |
aksabhavat sthalajala-

samdhau sthanani caha tatra bhatah /| 43 |/

udayo yo lankayam

so ’stamayah savitur eva siddhapure |
madhyahno yavakotyam

romakavisaye 'rdharatram iti || 44 [/

dinaratrikalayoge

sastir ghatikah syur aksayutadese |
tatrodaggole rke

dinasya vrddhir nisadhika yamye || 45 |/

paramapamena tulya
yasmin dese "valambakajya syat |
tatra yamantagate rke
nadisastya dinam tad uktam ca || 46 [/

yatra toyanidhimekhalatale

nastam eti mithunantasamsthitah |
taptahatakanibho divakaras

tatra bho ’ksaparimanam ucyatam [ 47 |/

iti tatra palajya syat

paramapamakotisammita tasmat |
pancadasa syus caradala-

ghatikah sastir dine ’py ato ghatikah || 48 [/

41.b sadanyagam] sadanyagam S*  4l.c rasi] masa Y*  41.d nisa] disa S*1a  42.b krsnastamyardha]
krsnastamyardha T*K1Ks (corr. K7, corr.sec.m. I2) 42.b kala] om.Ka 42.c Suklastamyardha] Suklastamyardha
T* (corr. K7, cort.sec.m. I2) 42.d te] om. Ky, tan K5 43.a anaksa] anaksatrals 43.c aksabhavat] aksabhava
Ku, aksabhagat I;  43.d tatra] om. K7 Sastr1  44.c madhyahno| madhyahne S*  44.d ratram] ratra V¥I;

45.a kalayoge] yogakale Ks 45.b aksayuta] aksayute Q¥ 46.b ’valambaka] valambaka Q* 47.d ucyatam]
ucyatam iti Ky 48.c pancadasa syus cara] pancadadasya dvira Q¥*

44. = GDI1 3.41 = Abh 4.13 except for iti which is originally syat. Arya verse.
47. = GD1 3.33 = GMBh 3.53. Rathoddhata verse.
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tatpurvaparadivasas

tasman nyunah kramena taddese |
capante ‘rke tu nisa

tadvat tatparsvaga nisas ca tatha /| 49 |/

rasidvayapamasama
lambajya yatra tatra capamrgau |
yato nodayam astam
karkiyamau yanti harijam anye ’stau [/ 50 [/

vrsabhanantaralagnam

stmhah korpyurdhvalagnam api kumbhah |
vinainakarkidhanusam

lagnatvam tatra vidyate naiva [ 51 |/

ekarksapamatulya
lambajya cen na yanti vrsabhadyah |
catvaro ‘stam vrscika-
dhanurepaghatas tatha na yanty udayam [/ 52 [/

mino mesah kanya
tuladharas ceti tatra lagnani |
catvary eva kramaso
nanyesam harijasamgatir yasmat /| 53 [/

mesadyah san nastam

merau yanty udayam api ca jukadyah |
drsyadrsyavibhagau

kalpyau vyatyasato ‘surasuranam [/ 54 [/

dvada$arasisu bhanos
carad iha manusam bhaved varsam |
divyam tad ahoratram
divyabdah kharasavahnibhih svadinaih [| 55 [/

divyair varsasahasrair

dvadasabhih syac caturyugam tv ekam |
divyam yugam iti kathitam

caturyugam caikam acaryaih [| 56 [/

ahiveda rasaramah

krtadasra dvindavas$ ca $atanihatah |
divyabdah santi krte

tretayam dvapare kalau kramasah || 57 [/

49.d parsvaga| parsvagata X* (corr.sec.m. I2) parsvaga S*  49.d nisas] nisas T* (corr.sec.m. I2) 51.b lagna]
om. V¥ (corr.sec.m. K1) 51.d lagnatvam] lagnam V¥ (corr.sec.m. K1) 51.d vidyate] vidyatena K1 52.b yanti]
yati S* 53.b dharas] dhanus Ks 53.c eva] evam K7 Sastri  53.d samgatir yasmat] samgatismat Ksg,
samgatisyat I3 54.a san nastam] sandastam S*  5d.c drsyadr$ya] drsyadrsya W*  54.d ’surasuranam]
surasuranam 11 55.c tad ahoratram] tahoratram T* (corr.scc.m. I2), cahoratram K7 55.d divyabdah] divyab-
daih 11 56.b dvadasabhih] dvadasabhis ca K1  5T.a rasaramah] rasarama 11 57.b krtadasra] krtadasrah
R*Kg¢ 57.b satanihatah] Satanihata 1y

56. Arya verse.
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divase caturyuganam

vidheh sahasram bhavet tatha ratrau |
srstih sthitis ca divase

lokasya vinasa eva casya nisi || 58 [/

dinam idam uditam kalpa$

caturdasa syur dine vidher manavah |
manvantare yuganam

saika syat saptatih param samdhya || 59 [/

kalpasyadav ante

manuvivaresv api ca pancadasa samdhyah |
sannam caturyuganam

panicadasamsah smrto tra samdhyeti || 60 [/

manuvivare samdhyayah

purvaparabhagayoh kramat samjna |
samdhyamsah samdhyeti ca

kalavibhagah krto budhaih kaiscit || 61 [/

pancasat sva abda
vidher gata adya eva Sesasya |
kalpyo ’smin manavah sad
gatah parasyapi bhair mitayugani || 62 [/

astavimse ’pi yuge

krtadayo ’smin gatas trayah padah |
Seso yam kalipadah

pravartate purvasurivacanam iti /| 63 |/

atiduragam dineSam

pasyati kalpe sada kamalayonih |
pralaye raver abhavad

brahmapi ravim niriksate naiva /| 64 |/

ekenaiva hi ravina

daivam pitryam ca manusam brahmam |
dinam iti caturvidham syad

golavidam tani golagamyani [/ 65 [/

suryoparimdur iti yair

uktam tesam hi samsthitir merau |
bhanam urdhvam munayah

sarvesam ca dhruvo yatas tesam || 66 [/

59.a uditam] uditah X*, udimasya Ks, uditamn K7 59.a kalpas] kalpam W*  59.c yuganam] yugam R*Kg
(corr.sec.m. I2) 59.d saika] seka T* (corr.sec.m. Kel2) 59.d samdhya] bandhya corr.scc.m. Ks 60.a kalpasyadav
ante] kalpasyabhavante Kg 60.b samdhyah] samdhya V*I; 60.d pancadasamsa] paicadasayamsa Ke
61.b bhaga] kala X* Sastr1 61.c samdhyamsah samdhyeti] samdhyamsas tulyeti Ky 6l.c ca] om. I
61.d vibhagah] vibhage Y*W*  vibhago R*Kg (corr.sec.m. l2), vibhaga Ki 61.d krto] krta Y¥R*KuKg
(corr.sec.m. I2) 62.a sva abda] svabdanam K7 62.a sva] sva S* 62.b gata adya] gatadya K7 62.b eva]
esa Y*¥ 62.c kalpyo] kalpo S*11, kalpe K7 Sastr1  62.d mitayugani]| mitani yugani W*  63.c Seso] manavo
K7 63.d vacanam iti] vacanan tatly  65.a ekenaiva] ekenaivam Q¥  65.a hi] om. K7  65.d golavidam|
golavidham KaKs  66.c bhanam] bham R*Kg (corr.sec.m. Kel2)
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tatrodaguiksiptah

$asy upari ca drsyate yamante ‘rkat |
tasmat tathoktir esam

tatranyad vasti daivatam saumyam [/ 67 [/

paramadinoktam evam

samksepad wSvarena golasya |
samsthanam laghumataye

vaktavyam canyad asti golagatam || 68 |/

yuktih pradarsita pran

maya mahabhaskariyabhasyasya |
stddhantadipikayam

vivrtau vaksye tathapi Sanikvadeh [/ 69 /]

ghatikapamamandalayor

yogastharkasya ya mahacchaya |
dinamadhye saksajya

lambakajwatha tasya Sarikuh syat || 70 [/

yamyottarakhyavrtte
ghatikasamamandalantaram hy aksah |

avalambakas tu tasmin
ghatikaksitijakhyavrttayor vivaram [/ 71 [/

ksitijadhruvayor vivare
jata jwathavaksajwa syat |
vyomno madhyadhruvayor
vivarabhava jya tu lambakajya syat [| 72 |/

sphutadorjya saptanava-
tryekair nihata trirasigunavihrta |
krantih syat tattrijya-
krtivivarapadam bhaved dyudalajva [| 73 [/

aksajyaghna krantir

lambakajwoddhrta ksitijya syat |
bhujya trijyanighna

dyudalajyabhajita carajya syat [| 74 [/

unmandalarkayogaj

jwa yamyottarapamajya syat |
svahoratrardhajya

dyujyavrttasya yo ‘rdhaviskambhah || 75 [/

67.b ca] om. V¥ (corr.sec.m. K1) 69.c siddhantadipikayam] siddhante dipikayam 11 70.a apama] apa Iz
70.b yogastharkasya ya| yogasthasyat svaya T* (corr.sec.m. to yogasthasyat svaya I2), yogasthasyat svaya S*
70.d jivatha tasya] jwata ca syali  T1.b ghatika] ghatighatika W*  Tl.c avalambakas] avalambasakas Q*
71.d ghatikaksitija] ghatikaksatija KsKgla 72.b jwathava] vathava 13 73.a jya] jya S* 73.b vihrta)
visuta Q¥ T4.a-b om. I3 T4.a aksa] aksana K4 T4d.c-d om.I; 75.a unmandalarkayogaj] unmandale
rkayogaj X* Sastri, unmandalarkayogaj S¥  75.c svahoratra] sahoratra S*

75. ab is simillar to GD1 2.15abc which uses the expression unmandalarkayoga
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ksitijonmandalavivare

dyumandalajya smrta ksitijyeti |
trijyakarnasya bhuja

krantih kotir dyumandalardhajya || 76 [/

bhramanam dyumandalanam

ghatikavrttasya capi kalasamam |
ghatikavrttajyokta

bhramitamse tasya histakale jya || 77 [/

bhujya bhramane ya jya
ghatikavrtte bhavec carajya sa |
capikrta carajya
pranatmakam ucyate carardham iti /| T8 [/

yasmat pranadinam

liptadinam ca samsthitir vrtte |
capasyaiva tatah syat

pranaditvam ca liptikaditvam [| 79 |/

capikaranam yuktam

trigyavrtte dyumandalesu na tu |
pathitah sarva jivas

trigyavrttodbhava bhavanti yatah /| 80 [/

paramapamo yadi syat

trirasidorjivaya tada tu kiyan |
bhavatistadorjyayeti

trairasikam apamasiddhaye bhavati || 81 [/

yadi lambakakhyakotya

palajva jayate tada kiyatr |
istapamakotyeti

jneyam trairasikam ksitijyayam || 82 [/

bhujya dyumandale yadi

bhavati vyasardhamandale tu tada [
kiyati jiwa syad iti

vedyam trairasikam carajyayam || 83 |/

76.b ksitijyeti] ksitijeti Ka, ksitijyoti K¢ 76.d kotir] koti Y¥*T*K; Sastrl (corr.sec.m. I2), ko W*  77.b
om. Iy  77.b-89.b capi..khetasya] br. Ks  77.d bhramitamse] bhramita eSa K7  78.d atmakam] atmam
S* 79.b liptadinam] liptadinas Q¥ 79.b—d samsthitir..ca] om. I3 79.d liptikaditvam| liptikatvaditvam Kg,
liptikatvaditva K7  80.a karanam] karanam iti syam V* (corr.sec.m. K1) 80.b dyumandalesu]| dyunmandalesu
S*  80.c pathitah] pavitah S*  81.b kiyan] kiyat S*  81.c istadorjya] istajya T* (corr.sec.m. I2), 7starjya
COIT.gec.m. K1 82.a akhya] akhya Ksg 82.b jwa] jwaya Iz 82.b kiyati] kayati T*K1 (corr.sec.m. Ki,
COIT.scc.m. tO kiyati I2), kiyati S* 83.a dyumandale] dyunmandale S* 83.b wvyasardha] vyasardhe U*

83.d jyayam]| jyayat Ke, jya syat K7

76. ab is almost identical to GDI 2.17ab
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trijyahatapamajya

lambakavihyrta bhaved iharkagra |
sa ksitijabhanuyogat

ksitije yamyottara hi jya [/ 84 |/

krantijyonmandalaga

kotir bhujya bhuja dyumandalaja |
ksitijastharkagra syat

karnas tryasram bhavet tribhis caivam || 85 |/

kotibhujakarnesu

dvabhyam dvabhyam hi siddhir anyasya |
vargaikyapadam bhujya-

krantyos tasmad bhaved inagra va || 86 |/

trijya lambakakotyah

karna$ cet ko bhaved apamakotyah |
karnas trairasikam iti

suryagraya avaptaye vedyam [/ 87 [/

krtvaksavyasardham

dyumandalam dandanabhiharijante |
tanmadhyagapalalambau

tathasya paridhisthatacchrutis cohya || 88 [/

golantat khetantam

khetasya bhujadhanur bhuja tajjya |
ayanantad vihagantam

kotidhanuh kotir api ca tajjiva || 89 [/

bahuh krantir abhista-

bhistabhujajya srutis ca kotis tu |
svahoratre ’bhista

jwa tryasram bhaved amibhis ca [/ 90 [/

paramadyujya Sasikrta-

vidhuramas taddhata bhujajyesta |
trijyabhakta svaho-

ratre jiva bhaved abhistakhya [/ 91 |/

84.b wvihrta] jiva V* Sastrl (corr.sec.m. K1), bhajitaly 84.b iharkagra] iharksagra Ke, ihaksagra K7 84.c ksitija]
ksiti Q* 85.b dyumandalaja] dyunmandalaja S*, dyumandalagaly 85.c arkagra] arkagra Q* 85.d tryasram]
tryamsam S*, tryamsram Krla  86.c aikyapadam| aikyat padam/aikyalpadam K4  86.d inagra] ina R¥*Ky
(corr.sec.m. K1, COIT.scc.m. to dinagra 1), dinagra S* 87.a kotyah] kotya T*KiKsa (corr. K2, corr.sec.m.
I2) 87.c karpas trairasikam] karpatrairasikam X* 87.d avaptaye] avastaye Kg 87.d vedyam] wvedyat
Q* 88.b dyumandalam] dyunmandalam S*¥1a  89.c-d yanantad..kotir a] br. K5 89.d kotir api ca tajjiva]
kotiracitatajjiva W¥*, kotiracitajjiva V*, kotiracitajjivah U*, kotiracitatajjivah Sastri  90.a bahuh krantir]
bahukrantir S¥*  90.d tryasram] tryamsram Ke, tryaméam K7  91l.c trijyabhakta] trijya bhakto X* (corr.sec.m.
12), trijyabhakta S*, trijya bhakte Sastri

84. Arya verse.
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kotih paramadyujya
trigyayas ced abhistadorjyayah |
keti dyumandalesta-
Jyayas trairasikam vicintyam syat [/ 92 |/

istapamadorjiva-

krtyor vivarasya mulam athava syat |
svahoratrestajya

rasimam manasiddhaye kathitah [/ 93 |/

svahoratrestajya
capikrta syur asavas
taddorbhagodaye hi larikayam || 94 [/

tyati dyujyavrtte
jya ced vyasardhamandale kiyat |
iti ghatikavrtte jya
syad dorbhagodaye hi larikayam || 95 |/

ekabhamanenonam

bhadvayamanam dvitiyabhamitih syat |
bhadvayamanenonam

bhatrayamanam trtvyarasimitih [/ 96 |/

svacaradalenainadau

hinah karkyadige yuta ete |
tattaddorbhagodaya-

kalaprana bhavanti dese sve [| 97 [/

enadya udyanti

ksipram karkyadikah Sanair eva |
udagunnatam bhagolam

yasmac carasamskrtav iyam yuktih /| 98 [/

Sasikrtavidhuramaghna
capikrtah syur asavo
lanikayam istabahudhanurudaye [ 99 |/

trairasikayugasiddha
bhamitir thadye haras trirasijya |
anyatra sa guno ’‘tas
taddvayahinam ca karmayuktam idam [/ 100 [/

92.a kotih] koti T* (corr.sec.m. I2) 92.c keti] koti U* 92.c dyumandale] dyunmandale S*¥Io 92.d wvicintyam |
vicintya Q*  93.c-d om. U*  94.b Sinjini| Siktinjint Ke, Siktijint Ky 94.c capikrta syur asavas] capikr-
tasya rasavas S¥Io 94.d hi] tu I 95.b jya] jyas X*Ks (corr. K5, corr.sec.m. I2), jya S* 95.d hi]
tu Ks 96.c manenonam] manonenam S* 97.a dalenainadau] dalenainodau Q¥ 97.b adige] adi+na
Ks 97.c dorbhagodaya] dogagodaya Q¥ 97.d sve] sye Q¥Iz (corrgec.m. I2) 98.b Sanair] Saner X*
98.c udag] ivadag S*, deg corr.sec.m. Iz 98.c unnatam] annatam Q*  98.d samskrtav iyam| saskrtaniyam
S* 98.d iyam] iya W*¥ 100.d dvaya] dvadvaya Q¥

98. ¢ = GD1 4.84a. GD2 98 and GD1 4.84 are identical in general.
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saty ayane sayanayor
istasyadyantayoh prthan manam |
kuryat tayos tu vivaram
syad istamitis carardham iha tadvat /| 101 |/

istam dvipadagatam cet
tasya tu tattatpadasthabhagamitim |
kuryat prthak tadaikyam
syad istamitis caram svapadavihitam [/ 102 [/

astodayakhyasutram
purvaparagam bhaved inagrantat |
ksitijat svahoratre
carato ‘rkasyonnatir hi $ankuh syat /| 103 |/

Sankor mulastodaya-
sutrantaram ucyate ‘tra Sankvagram |
svahoratrestajya
Sankusirostodayakhyavivaragata [/ 104 |/

karno ’trestadyujya
Sankuh kotir bhuja tu Sarikvagram |
evam thaksanimittam
ksetram proktam bahuni tani syuh [/ 105 /]

bahvadyair ekasmin

ksetre jatair thanupatena |
ksetrantarasiddhih syat

sarvesam asrayo ’ksam eva yatah /| 106 [/

svahoratrestajya

ghatikavrttotthajivaya sadhya |
gatagantavyasujya

ghatikavrttodbhava hi jwa syat /| 107 [/

jwagrahanam ayuktam

ksitijad unmandalad dhi yuktam tat |
unmandalam eva syad

bhagolamadhyasthitam yato nanyat |/ 108 [/

101.b istasyadyantayoh] estasyantamm Ks  101.b antayoh] antareyah U* (corr.sec.m. to antareyoh Kg), anta-
reyoh Kgls  102.a istam| ista U¥Kg  102.a tam dvipadagata] br. K1 102.a-b cet tasya] cetasya S*Iz
102.b stha] sva Ka, sya K7, sta corr.sec.m. to sya Ia  103.b puarvaparagam] puarvaparam W*  103.b bhaved
inagrantat| bhabhedinakrantat S* 105.b kotir] kott W¥*K1Ks, koti KeI1l2 (corr.sec.m. I2) 106.d yatah] yatoh
I3 108.d yato] no Ks (both sections: see below)

101. K writes verse number “100” after 101b.

103. There is an overlapping in K5 beginning from v(e)d inagrantat until verse 108 (Folios 18r to 19r and 20r to
21r, 19v being blank). The latter section is severly damaged but whatever readings remaining on both sections
are the same.

108. Ks starts from syad bhagola... until the end, then puts saumye ca (beginning of verse 109) then returns to
the beginning of this verse, jivagrahanam... until unmandalam eva. Here folio 19r ends. 19v is blank, and 20r
starts from v(e)d inagrantat in verse 103. The overlapping section continues until folio 21r where verse 108 ends.
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saumye carahinanam

gole yamye carardhayuktanam |
gatagantavyasunam

jwa hy unmandalordhvaga bhavati [/ 109 [/

istadyuvrttabahye
ghatikavrtte prakalpite jriieya |
yukti$ carasamskare
dyugate carabhujyayoh sarupam va [/ 110 //

sonmandalordhvaga jya
svahoratrahata trigunabhakta |
unmandalordhvabhage
svahoratrestajivaka bhavati [/ 111 [/

tyati ghatikavrtte
jya cet kiyati tada dyumandalaja |
trairasikam iti vedyam
svahoratrestajivakanayane [/ 112 [/

bhujyarahita yamye

saumye bhujyanvita ca sa dyujya |
ksitijordhvabhagajata

svahoratrestajivaka bhavati [/ 113 [/

sa jya lambakanihata

trijyabhakta bhaven mahasarkuh |
tattrijyakrtibhedan

mulam chaya ca tasya $ankoh syat [/ 114 [/

yadi lambakakotih syat
trigyakarnena ka tada kotih |
istadyujivaya syac
charikau trairasikam bhaved evam [/ 115 [/

ravinihata sa mahatt

chaya bhakta ca Sarikuna mahata |
arkangulasankoh syac

chaya trairasikad iyam capta || 116 [/

dyujyarkaghna ksitijat

palakarnahrtathava mahasankuh |
dyujya sa krantighna

suryagrahytathava mahasankuh || 117 [/

Sho Hirose - These de doctorat - 2017

110.b jaeya] kreya Iy  110.d cara] caram S*  110.d sarupa] svarupam Y*U*, br. K;  111.d bhavati]

bhavanti S*  112.b dyumandala] dyunmandala S*Iz

112b ja] ga I

113.b saumye]| om. cOrr.sec.m. to

gole K5 113.b bhujyanvita ca] bhujyanvitaya K4  113.b sa dyujya] saumyajya Ks  1l4.a sa] syaj S*

115.d charkau] chariko S¥Ia  116.b mahata] mahanta Ks
prapta Ky  117.a ghna] ghnat X* Sastr1  117.a ksitijat] ksitija Ks

117.c-d om. K5I3

116.c arkangula] aksangula Ks 116.d capta]
117.b palakarna] calakarna W*K;
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saumyayatakarnavasac
cordhvayatakotisadhanam ihoktam |
tad yuktam eva yasmaj
jatam tad dvandvam aksato bhavati [| 118 [/

aksajyaghnah Sankur

lambakabhajito bhavec ca Sankvagram |
yasmal lambakasankoh

Sarikvagram palaguno ’tra yuktir iti /| 119 [/

athava Sankvagram syat

palangulaghno rkabhajitah Sankuh |
bhujyaghno va Sarkuh

krantijyabhajitas ca Sankvagram /| 120 //

aksajyalpakrantih

saumya trijyahata palajyapta |
samamandalastha$arikuh

purvaparasutrage ravau bhavati /| 121 |/

samamandalage bhanau
Sarikvagram inagraya samam hi bhavet |
syat krantes carkagra
tasmaccharnkvagram iha bhavet kranteh || 122 [/

kranteh Sankvagram syad
anupatac chankur api ca $ankvagrat |
trairasikayugmam syat
samamandalasankusiddhaye ‘treti [/ 123 |/

hara iha lambaka adye
sa tupari guno ’tha nastayos tu tayoh |
trijya tu guno ‘ksajya
harah kranteh phalam tu samadanikub [/ 124 |/

cara$ candradinam

sve sve viksepamandale kathitah |
apamandale tu tesam

caranti pata vilomagas te syuh [/ 125 |/

apamandale svapate

tasya ca katame vimandalam lagnam |
paramaksepantaritam

padantam tasya saumyayamyadisoh || 126 [/

Sho Hirose - These de doctorat - 2017

118.c tad] tasmad Ks 118.d tad] yad I3 119.b bhajito] bhajite W*Iy Sastr1 bhajjito K5 119.d palaguno)]
palagano Ka  119.d yuktir] yattir Ks 121.c stha] sva Q*I2 (corr.scc.m. I2) 122.b samam] samamam W*
(corr. Kz), sam S* 122.d agram] agraham S* 123.d treti] trayeti S*I 124.a lambaka] larika S*
124.b tupari] rupari Y*T* (corr.sec.m. K¢) 124.b ’tha nastayos| vinastayos Y* 124.c tu guno| gunato Y*

126.b katame] kame Y*¥V*
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mandasphutat svapatah

Sodhyah Sighroccatas tu budhasitayoh [
patonabhuja parama-

ksepaghna trijyayoddhrta ksepah || 127 [/

sa punar vyasardhahato
mandasrutibhajitah sphutah kathitah |
so ’pi vyasardhahato
bhaumadeh syat svasighrakarnahytah || 128 [/

veda dvav asta rasa

disa iti bhaga dasahatas te syuh |
bhaumadeh patamsa

bahutarakalena bhuktir alpaisam || 129 [/

navatir vyomadinesah
sastih kharkah khanetra$isirakarah |

parama viksepakala
bhumijabudhagurusitarkatanayanam [/ 130 [/

paramaksepo yadi cet

trirasidorjivaya tada tu kiyan |
bhavatistadorjyayeti

ksepe trairasikam bhaved iste [| 131 [/

karne svalpe vrddhis

tasam hraso bhavet tatha mahati |
duraduravisesaih

ksetrasya hi liptikabhedah || 132 [/

Saighran mandac coccad

bhaumadeh syad adho gatis cordhvam |
karnadvayena tasmad

grahabhumyor antaralamitisiddhih [/ 133 |/

bhaumedyamandapatah

Sodhyah svat svat sphutad iti bruvatam [
Swghrajyasamskaro

grahavat pate nije bhavet pakse [/ 134 [/

karnasthitisiddhyartham
sphutasiddhyartham ca likhyate “trapi |
kaksyatrayam jhasante
pract dig bhavati sarvavrttesu /| 135 |/

127.a patah| patoh R*Kg (corr.sec.m. I2) 127.d trijyayo] trijyayo T* trajyayo Q* 128.b mandasruti] man-
dasphuta W* Sastr1  128.d svasighra] svataghra Q*  128.d karna] kantaka Ks  129.b bhaga] bhabhaga
Q*  129.c patamsa] patamsah U* padamsah S*  129.d tara] tanu Ki, br. K3, lacuna K¢, om. K7, tana
Ks, ranu Iz 130.a dinesah] digenasah W* (corr.sec.m. K2) 130.b sastih] sadbhih U* Sastr1  131.a ksepo]
viksepo T* 182.b tatha] tada S* 132.b mahati] mahati Sastr1 132.d hi] tul; 133.a mandac] mandac
U*I; Sastri (corr. Iz) 134.a edya] esya U* (corr.secc.m. Ke), edya K7, ebhya It 134.a patah] bhavatah U*
135.b ’trapi] tatrapi K3  135.c trayam] traya X*, trayam Kg, tra corr.sec.m. I2

132. Arya verse.
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bhumadhyakendram adyam

bhakhyam vrttam tu bhavati sarvesam |
tanmadhyac chighradisi

svantyaphalante kujaryamandanam || 136 [/

Saighrasya kendram uditam

budhabhrguor mandadisi tu mandasya |
svantyaphalante kendram

dvittyamadhyat kujadinam [/ 137 [/

mandadisi mandakendram
dvitiyaparidhisthabhanukendram atha |
Saighram jnasukrayoh syad
antye vrtte caranti sarve ’pi || 138 [/

antye vrtte tesam

caro madhyakhyaya sada gatya |
khagacaraja bhacakre

ya gatir anumiyate sphutakhya sa [/ 139 [/

antyam Saighrantyaphala-

vyasardham syaj jnasukrayor vrttam |
trigunakrtany anyani

ksepo vrttatrayasya yugapat syat [/ 140 [/

antyaparidhisthakhetat
sutram kuryad upantyakendrantam |
tatkarno bhaumader
mando bhavati jiasukrayoh Saighrah || 141 [/

Srutimargagestasutram

dvittyaparidhau tu yatra tatra bhavet |
mandasphutah kujades

tatra tu Sighrasphuto jrabhrgusunvoh [/ 142 [/

mandasphutat kujader

budhabhrgvoh Sighrajat sphutat sutram |
kuryad bhacakrakendra-

ntam etad ukta Srutih kujadinam || 143 [/

Saighranyayos tu manda
Srutimargagasutrabhakhyaparidhiyutau |
Saighrasphutah kujades
tatra tu mandasphuto jiiabhrgusunvoh || 144 |/

Sho Hirose - These de doctorat - 2017

136.a adyam] adyam Q¥ 137.b disi| nisi Ks 137.b mandasya] mandasya 111z 137.c ante] antye

Kglo 137.c kendram|] kendra Q*S* Sastri  138.b bhanu| om. V¥
140.b vrttam] vrtte Y* (corr.sec.m. K5) 140.c anyani] anyani Q¥
I2), upantya S*  142.d tu] om. T*K; 144.b bhakhya]| om. K5

137. Arya verse.

140.a phala] phalam U*, phalana K
141.b upantya] upanta X* (corr.sec.m.
144.c Saighra] Saighrah S*Ig
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dvyuccanam sphutayugalam

bhavati bhaparidhau gatah sphuto hi khagah |
bhedas tasya kadacit

saksat sphutakhecarad bhaved alpah || 145 |/

manda$rutis ca $aighram

phalam kujades tu bhedahetuh syat |
Sighrasrutis ca mandam

phalam vibhede sitajniayor hetuh [/ 146 [/

jwaphalardhasamskrta-

madhyan mandam phalam tatah kriyate |
sarvesam budhasitayoh

kramabhedo ‘py atra kalpitas tasmat || 147 [/

antyaparidhisthakhetad

thadyakendrantam api krte sutre |
tatsutradyaparidhyor

yoge saksat sphutagraho bhavati || 148 [/

madhyantagate karne
ksepo madhyantyavrttayor istah |
yadi cet trijyakarne
kah syad iti madhyaparidhigah ksepah || 149 [/

prathamadvitiyayos cet

karnpe madhyantage tv ayam ksepah |
trijyakarne kah syad

iti viksepah sphuto bhacakre syat [/ 150 [/

sphutayugasiddhasya yatha

drgbhedo ’lpo grahasya bhavati tatha |
karnadvayasiddhasya

ksepasyapiti kasyacic cinta || 151 [/

arkendvor dve vrtte
bhavrttakendran nijoccadisi mandam |
vrttam svantyaphalante
sphutakarmaikam bhaved yatha svoccam || 152 [/

viksepapamadhanusos

tulyadisor bhinnayor yutir viyutih |
proktam svakrantidhanus

tasya jya svasphutapamajya syat || 1563 [/

145.a dvyuccanam] dyuccanam U* 145.b hi] eKs evals 145.d khecarad] kecarad S* 146.c-d Sighra..bhede
si] br. Ks 146.d phalam vibhede| phalam api bhede Iy 147.b madhyan mandam] madhyanandam Iy
148.b adya] antya X* Sastri, anya corr.sec.m. to antya Ks  148.d yoge] yogo I1  149.a anta] antya Y*
149.b po madhyantyavrt] br. Ks  149.b antya] anta X*  150.b antage] antanate K5  151.a yatha] br.
Ks, yada I 151.b drgbhedo] drggedo Iy 151.b ’lpo] tra lpo K5 Ipe I3 152.b bhavrtta] bhavrtte Ky
153.c proktam|] prokta Y*
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yamyottaravrtte ‘pama-
yogad rasitrayantare vedhau |
karyau sarvarksanam
sampatad rasikutasamjnau tau /| 154 [/

golasya daksinodak-

svastikayugmad yatha ghativalayam |
cakraturiyamse syad

bhakutayugmat tathapamakhyam ca [/ 155 [/

yamyodagayata syat

khetasthakala bhakutayugmanta |
khetasthaliptikayam

ksepas tasyapamat sada yati /| 156 |/

ksepasyordhvadhogatir

unmandalato ‘sty ato bhakutavasat |
ksepapakramadhanusor

ato ’tra yogady ayuktam iti kecit || 157 |/

lagne ’yanantage syad

unmandalagam bhakutayugalam atha |
golante ’dhas cordhvam

kotivasat syat tadunnatir ato tra [/ 158 [/

ayanantasphutakhecara-
vivarajalanikodayasugunanihata |
paramakrantis trijya-
vihrta syad unnatir bhakutasya [/ 159 |/

saumyonnatir enadau

vihage yamyonnatih kuliradau |
vihagasyodaya evam

vyastam syad unnatis tadastamaye [/ 160 [/

lankodayakalasamam
golabhramanam tato bhakutasya |
golabhramajonnatir api
lanikodayakalajivaya sadhya [/ 161 |/

khagakotir vantyapama-
nihata sthulonnatis trigunabhakta |
sthulapi napradarsya
laghuta yadi karmano bhavet tatra || 162 [/

Sho Hirose - These de doctorat - 2017

154.b yogad] om. T*Kj(corr.scc.m. to yo K7, corr.sec.m. l2) 154.b—d rasitrayantare ..sampatad] om. Ig
155.d-156.a om.I3 156.b kala bha] khagapa S* 157.a ksepasyo| ksepasvo S* ksepastho Sastri 158.d ato]
atro W* 159.a ayananta] ayanaly 160.d vyastam] vyaktam S* 162.a kotir]| kotibhir S*¥Iz 162.c sthulapi]
COIT.sec.m. tO sthuladhi Ks
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viksepaghna trijya-

bhakta ya connatir bhakutasya |
tatksepavargavivarat

padam sphutaksepa iritah krantyam /| 163 |/

tatkrantyos capaikyam

tulyadisor bhinnayor dhanurbhedah |
apamadhanuh syat spastam

spasta bhujyadayo ’pi tajjyatah [/ 164 |/

urdhvadhogamanat syat
ksepasyonmandalad udayabhedah |
apamad api yamyodak-
sthitya drkkarmani grahe ’tah stah || 165 [/

viksepenabhihata

trigunena hrtonnatir bhakutasya |
ksepasyonnatir athava

tasyaivonmandalad avanatih syat /| 166 |/

ksepo yadi rasinam

kutonnatibhagagas tada tasya |
ksepasyonnatir udita

viparitadigasritasya cavanatih || 167 [/

kseponnatir bhuja syat

karnah ksepo ’'sya bhavati ya kotih |
sonmandalagah ksepah

kriyate krantes tu dhanusi yac capam || 168 [/

kseponnatis trijiva-
gunita dyudaloddhrta ca ya tasyah |

capam bhaliptikaghnam
khetagatarksasubhajitam svarpam [/ 169 [/

rnam unnatav avanatau

dhanam udaye tadvad eva vastamaye |
unnatir udayabhava yadi

sastabhava ced dhanadi viparitam [/ 170 [/

khetastarksaprana
harah syad astadrkphalav aptaw |

raseh kalo ’stamaye
svasaptamarksodayasutulita iti [/ 171 [/

164.a capaikyam] copaikyam X* (corr.sec.m. Kel2), capaikyam S* 164.c—d spastam spasta] sphastam sphasta

S* 164.d tajjya] tajya W*Y*KeKs 165.a gamanat] gamanamKs 165.c-d br.Ks, om. Kg 165.d karmant]

karmani K1K7  165.d grahe ’tah stah] grahe ta stah Z*, grahe tantah T* (corr.sec.m. I2), grahetastat Sastrt
166.b trigunena] trigune S* 167.b kutonnati] kuatonnatir K7 167.b tada] tasyada Q* 168.a-b kseponnatir
..’sya] om. I3 168.b karnah ksepo] karnaksepo Kg Sastri  169.b gunita] gunitada corr.sec.m. to gunitada
Kgla 169.c ghnam] gramKs 169.d rksa] rkse Ks 170.a unnata] unnato W* (corr. K2) 170.a avanatau]
anatau S*KrIa  170.b dhanam] dhanum Sastri  171.b harah syad] harasya (ce)d Sastr1 171.b hara]
hara X* (corr.sec.m. I2), hara I3 171.b aptau] astau K¢ 17T1l.c raseh] rasauly 171.c kalo] kalo R*K1Ksg
(corr.sec.m. I2) 171.d tulita] tulitami W* (corr. Kg), tulitasya Ks
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khabhrahindukala yadi

labhyante svasubhir vilagnasya |
syur drkphalasubhih ka

bhavati trairasikam itiha [| 172 [/

lankodayasuharanam

ye tv atrecchanti drkphalavaptyai |
sudhiyas te ganakah syuh

kim tv iha golaikadesavettarah [/ 173 [/

svastamaye kalasya
svasaptamarksodayasutulyatvam |

bhanam bhavati carasya
vyastatvad udayakalato ‘stamaye [| 174 |/

viksepasamskrta ya
krantijya kevala ca yatra tayoh |
vivaram viksepabhava
krantih syad aksadrkphalam tu tatah [| 175 |/

apamo viksepabhavas
tv aksahato lambakajyaya vihrtah |
trijyaghno dyudalaptas
tasya dhanuh ksepakrtacaramsah syat /| 176 [/

ksepacaram bhakalaghnam
khetastharksasubhajitam Sodhyam |

udaye ksepe saumye
deyam yamye ‘nyatha khagasyaste [| 177 [/

drkkarmadvayam etat
proktam khetodayastalagnaptyai |
na tu tatsphutangam etad
dvitayam vaikena karmana sidhyet || 178 [/

apamasyardham hy uditam

sarvatrardham tatha sadastagatam |
uditamsasya tu madhye

drkksepakhyam sada sthitam lagnam [/ 179 |/

uditamsasya ca madhyam

lagnastavilagnayor hi madhye syat |
drkksepalagnam uditam

praglagnam bhatrayena hinam atah /| 180 |/

172.a kala] khala S*¥ 173.b ye tv atre] yatvatre S¥Iy  173.b aptyai] aptyaih S* 174.b saptama] saptame
W*K; (corr. K1) 174.b tulyatvam] tulyas ca corr.scc.m. Kelo, tulyartham I3 174.c bhanam] dhanam Krla
(corr.sec.m. I2) 174.d tvad] syad Kz 176.b—a bhavas tv aksa] bhavah paksa S* 176.b vihrtah] vihrtih
R*Kg (corr.sec.m. 12) 177.a ksepacaram] ksepakcaram Ks, kseparkaram I3 177.a kalaghnam] kalardham
K7 177.b khetastha] khetasta S¥I3 (corr.sec.m. I2) 177.d deyam] ya Q* 178.b khetodaya| khetomaya U*,
khetodaya K7  178.d dvitayam| dvitiyam U*  179.b tatha] tada Y*  179.b gatam] gate K7  179.c tu]
om. Kg 180.a ca] tuly

172. Arya verse.
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drkksepajya cokta
khamadhyadrkksepalagnavivarajya |
drkksepalagnage ’rke
drkksepajya smrta mahacchaya [/ 181 [/

yamyottaravrtte ‘pama-
bhago madhyakhyalagnam iti kathitam |
tad dhy arko madhyahne
natalanikamitivasac ca sadhyam tat /| 182 [/

udayaviparitam aste
rase$ carasamskrtir yatas tasmat |
na syat khamadhyage sa
larikamitir eva madhyamanam atah [/ 183 |/

madhyavilagnakrantyah

palajiwvayas ca capayoh samayoh |
yogad vidisor vivaraj

jata jivatra madhyajivokta || 184 [/

ghatikakhamadhyaghatika-
dyuvrttavivare palapamau hi stah |
tabhyam dyumandalanabho-
madhyantarajivaka tatah sadhya || 185 |/

trijyamadhyajyakrti-

vivarapadam madhyasankur iti kathitah |
madhyavilagnonodaya-

lagnabhujajya tu madhyadarikubhuja [/ 186 [/

madhyakhyasankunihatam

vyasardham madhyasarikubhujayaptam |
drkksepasankur ukto

drkksepajya sphuta ca tacchaya || 187 [/

madhyavilagnaksitija-

ntarajyaya madhyasarikur iha cet syat |
drkksepaharijavivare

trijivaya ko tra Sankur iti yuktih [/ 188 |/

drkksepajya tulita
bhanam kutonnatis tadanyadidi |
ksitijat tu golapade
khamadhyam apamad yato bhakutam api [| 189 [/

181.b madhyadrkksepa] madhyamaksepa K1 182.d nata] nati S*¥*I2K7 (corr.sec.m. I2) 182.d wvadac] vasas
S* 183.c na syat] om. K¢ 184.b pala] para K7 Sastr1 184.c yogad vidisor| yogadisor 1y 184.c vivaraj]
++rajani Ks  184.d jwatra] jiwo tra S*, jiva ca Sastr1 185.a ghatika] ekadika K7 185.c dyumandala] dyun-
mandala S*Io  186.a madhya] masya T* (corr. K¢, corr.sec.m. l2) 186.a krti] krti KsKg 187.d tacchaya]
tajjaya S*  188.b jyaya] jya Ka  188.b dha] iti Y*  188.d tri] om. V¥ (corr.sec.m. K1) 188.d ko] to
W#*  189.b tadanya] tadantya U*, tadanya Kz 189.c gola] golacakra W*, om. V*(corr.sec.m. to cakra K1)
189.d api] iti S*

181. K7 and Sastr1 transverse 181 and 182.

66



o T o

=N

o T

=%

A o T

[oa]

a o

A o T

& o T o

& o T o

o T o

Q.

o T o

Q.

Sho Hirose - These de doctorat - 2017

ksitijasthe tv istakhage
drkksepajyahatas trigunabhaktah |
viksepah ksitijat syat
ksepasya pronnatis tv avanatir va /| 190 [/

drkksepetaradiksthe

viksepe pronnatir bhavet tasya |
drkksepajyadiksthe

viksepe tv avanatir bhavet tasya /| 191 |/

ksepasyonnatir athava-

vanatis trijyahatavalambahyrta |
trijyaghnam dyudalapta

ya taccapam hi drkphalapranah [/ 192 [/

khakhadhrtinihata lagna-
pranapta drkphalad ihonnatijat |
liptah Sodhya udaye
ksepyas caste ‘nyathavanatijac cet || 193 [/

palagunamadhyavilagna-

krantyor adhikasya ya tu dik saiva |
madhyajyadrkksepa-

jyayor bhavet sakaladrkphalam ihoktam [ 194 [/

samarekhayam madhyama-

bhanor unmandalodaye hi budhaih |
udita vihagas tasmat

samskaras tesu desajadyah syuh [/ 195 |/

samarekhanijabhumyor

antarajair yojanair hata bhuktih |
nijabhuvrttahrta svam

rekhayah pascime tv rpam pracyam /| 196 [/

samarekhayah pracyam

pragudayah pascime raveh pascat |
desagatir atah pracyam

viSodhyate diyate tatha pascat || 197 [/

nijabhuvrttabhramane

dinabhuktir yadi bhavet tada kiyat |
samarekhanijabhumyor

vivarabhramane ‘tra yuktir iti cintya /| 198 /|

190.a sthe] ste K3Ks5Kg 191.a drkksepe] viksepe U* 192.b trijyahata] trijyahrta U*, trijyahata o
192.d prapah] pramanah Iy 193.a nihata] nihatal Ks, hi hataly 193.a lagna] lagnam Ks 193.b pranapta]
prana Q¥  194.a pala] phala I1  194.b adhikasya] akakasya Ke, aksasya Ky Sastr1  194.d ihoktam] iti
hoktam S*Q*  195.a madhyama| madhya K2, madhye ma S¥Ksla  196.c hrta] hata Y*V* 197.d tatha]
om. S*I;1y  198.b tada] tatha Y* 198.d cintya] cintyat T*, br. K7
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purvabhimukham gacchan

nijabhuvrtte sada naro gacchet |
dar$anam arkasya yato

nijabhuvrttanusari dik carkat /| 199 [/

palayoh samyam ca yayoh

purvaparasamsthitau hi desau tau |
nijabhuvrtte hy eva ca

tat samyam harako ’ta iha tat syat [/ 200 [/

trijyalambe ‘nakse
bhuvrttam randhragosvigunatulitam |
syac ced abhistalambe
kim syan nijabhumivrttalabdhir iti /| 201 [/

ravidohphalam hi bhanoh

sphutamadhyamayoh kalatmakam vivaram |
tannihata grahabhuktis

cakrakalaptam grahe dhanarpam syat /| 202 |/

ravidohphalavat tasminn

rne yato madhyamodayat prak syat |
sphutatiksnamsor udayo

dhane ’'nyathasphutaravir vrajed dhy udayam [/ 203 //

golabhramane syac ced

dinabhuktih ka bhujaphalabhramane |
iti yuktim bruvate ‘nye

dohphalakalo bhaved iheccheti || 204 [/

ravicaradalasunihata
dinasubhakta gatis tv rnam saumye |
gole bhanor udaye
yamye deya khage 'nyathastamaye || 205 [/

unmandalodayat prak
saumye gole yato raver udayah |
pascad yamye ‘stamayo
vyastam tasmad rpadividhir evam || 206 [/

yadi bhavati divasabhuktir

dinasubhih ka tada carardhabhavaih |
pranais trairasikam iti

khete ca carardhasamskrtau vedyam || 207 [/

199.a purvabhimukham] br. K7y 199.b gacchet] gacchan Q* 199.c darsanam] disanam XK1 200.b samsthitau]
samjnitau X* Sastri  201.a lambe 'nakse] lambonarkse U* Sastri, lambonakse Iy 201.b wvrttam] vrtto Ky
201.d bhami] bhumir U*  202.a ravidoh] ravindoh Ks  202.d-206.d br. K5 203.d dhane] dhanye K7
204.b phala] pala Sastri1 204.c yuktim] yukti W*T* (corr.sec.m. I2), yuktir K¢l 207.b dinasu] dinadi S*
207.d samskrtau] samskrta T* (cort.sec.m. I2) 207.d vedyam] vedyat Q*
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haro ’tra caradaladau
ravigatiliptadhika dinapranah |
ity anye sarkagater
bhramanad golasya bhavati divasa iti [| 208 [/

atha samacchayaya dinadalacchayaya ca sphutarkanayanam [
tatra samacchayayam uddesakah |

chaya ravau narasama samamandalasthe
hina tato ’paradine yadi tatra ko ‘rkah |
yad vadhikaparadine yadi tatra ko va
vidvan vada svarakrtarngamita palajya [/ 209 //

it | atra karanasutram aryadvayam |

chayasadhyah Sankuh

Sarikoh Sankvagram iha hi tadinagra |
arkagratah krantih

kranter dorjya ca taddhanur inah syat /| 210 |/

yady adhikaparadinajac

chaya doscapahinam atra bhavet |
cakrasyardham sayana-

bhanur yasmad thayanam yamyam || 211 [/

atra cchayakarnad anupatenanitah Sankuh 2431 | $ankvagram 466 | etat tu padahinam grahyam |
etad inagra ca | arkagrato vyastavidhinanita krantih 457 | etat tu sardham grahyam | kranteh
siddhabhujajyayas capam 1147 | arkah 0 19 7 | dvitiyo rkah 5 10 53 | krantisiddhatvad etaw
sayanay [/

3.0197) 1 97KF  3.510583)] 510 5im K7 (o instead of m.)

atha madhyacchayayam uddesakah |

Sankor ardhamita prabha dinakare yamyam Salakam gate
tatrastamsamitathavatha dinape saumyam Salakam gate |
saptamsena mita ca saparadine sarva mahatyo ‘thava
hina bruhi kave ravi nagacatussadbhih palajya sama || 212 [/

preamble.l dinadala] didamnala Q*Ks, bhinnala S*12 (corr.sec.m. to bhannalalz), digdala Sastri 209.a ravau]
rava K; 209.a samamandala] samandala S* 209.b—c tatra ko 'rkah yad vadhikaparadine] om. K3 210.d ca
taddhanur inah] caturdhanuvina T* (corr.sec.m. to caturdhanur ina I3), caturdhanur ina S* 211.c sayana]
sayau U* (cort.sec.m. I2) 211.d yamyam] samyam U* (corr.sec.m. to saumyam l), saumyam S*, yamyam iti
K;r preamble.l madhya] om. W* Sastr1, sama V* (corr. Ki), madhyais K; 212.a prabha dinakare)
prabhadikare S*, prabhane kare R¥Kg (corr.sec.m. I2) 212.b astamsa] amstasa R* 212.b athavatha] athava
U* 212.b dinape] dinapate T* (corr.secc.m. to dinapatena 12), dinapatena S*  212.c mita ca] mitathava ca
U*, mitatha S*, mitatha ca K3, cort.sec.m. to mitatha l2, mitathava Ky  212.d ravi] ravim S*

209. wasantatilaka verse.
212. Sardulavikridita verse.
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iti | atra karanasutram aryapariicakam |

divasadale mahatt ya

cchaya sa procyate natajyeti |
natapaladhanusor vivaram

krantidhanur yamyage ravau madhyat [/ 213 |/

saumye rke natapalayor
atkyam krantis tada tu golam udak |
purvatra nate tv adhike
yamyam golam pale ’dhike saumyam [/ 214 [/

yamye khamadhyato rke

chayavrddhau tu yamyam ayanam syat |
taddhanyam udagayanam

vyastam saumye khamadhyato 'rke syat || 215 |/

kranter dorjya sadhya
capam tasya ravir bhaved gole |
saumye ‘yane ca saumye
yamye tv ayane tadunacakradalam [/ 216 [/

bhanuh sasadbhacapam

yamye gole 'yanam ca yadi yamyam |
saumye ‘yane ’tra cakram

caponam sayano ravir bhavati || 217 [/

atra prathamacchayaya tatkarnena ca siddha mahacchaya 1537 | esaiva natajya ca | atra suryasya
madhyad yamyagatatvan natapaladhanusor vivaram apakramadhanuh 943 | atra natasyadhikyad
daksinam golam | krantijyato labdhabhujayas capam 2509 | daksinagolagatatvad etac capam sa-
drasiyutam cchayavrddhau suryah 7 11 49 | aparadinacchayayam hinayam saumyam ayanam
syat | atas tadbhujacapahinam dvadadarasyatmakam cakram suryah 10 18 11 [/

atha dvitiye cchayangulam 1 30 | mahacchaya 426 | atrapi suryasya madhyad yamyagatatvat
palanatadhanusor vivaram krantidhanuh 224 | atra palasyadhikyat golam saumyam | kranteh si-
ddhabhujacapam 558 | saumyagolagatasuryasya madhyad yamyagatatvac chayavrddhau yamyam
ayanam syat | ata etac capahinam rasisatkam suryah 5 20 47 | aparadinacchayayam svalpayam
bhujacapam eva suryah 0 9 13 [/

atha trtiye cchayangulam 1 48 | mahacchaya 487 | arkasya madhyat saumyagatatvan nata-
paladhanusor yogah krantidhanuh 1140 | bhujacapam 3194 | atrarkasya saumyagolagatatvac
chayavrddhav idam capam eva suryah 1 23 14 | chayahanyam caponarasisatkam arkah 4 36 46 |/
krantisiddhatvad ete sayanaravayah [

1. prathamacchayaya] prathamacchayali 2. 943] 94 corr.sec.m. It 3. 2509] 259 K;’Il 3. sadrasi] saddhrasi
K;r 5. 10] 1 KgL 5. 18] 1 corr.sec.m. to 1211 6. 30] 811 8. saumya] saumye K; 8. madhyad yamya]

213.c pala] phala K1 213.d yamyage| yamyate T* (corr.sec.m. I2) 214.a pala] phala K1 214.d yamyam]
yamya R* (corr.sec.m. I2), yamya Q* 214.d ’dhike] dhite S* 214.d saumyam] saumye COIT.sec.m. l2
215.a kha] om. U¥ (corr.sec.m. I2) 215.a madhyato] madhyagate Ky 215.d vyastam] vyaktam S* 215.d kha]
bala U* (corr.sec.m. I2) 215.d madhyato] madhyagato S* 216.c saumye]| samye K5 216.d-217.a om. U*
217.c saumye ’yane ’tra cakram] Lacuna Sastrl
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madhyaddhyamya K; 9. 20] SK; 10. 0] om. K;r 11. trtiye cchaya] trtiyacchaya K; 12. 1140] 114
K& 13. chaya] chapa K& 13. 14] om. Iy 13. 4 36 46) 4646 KT, 46 46 14 1

krantinatacapayoh syad
vivaram samayor yutis tu bhinnadisoh |
paladhanur antaram ayanam
chayaganitaptayos tu ravyoh syat /| 218 /|

ekadiggatayor apakramanatacapayor vivaram aksadhanuh syat | bhinnadiggatayos tayos tu yogo
’ksacapam bhavati | evam chayarkabhyam aksah sadhyah | purvodaharane prathamacchayadhanuh
1594 | krantidhanuh 948 | daksinagatayor anayor vivaram aksadhanuh 651 | atha dvitiyanata-
dhanuh 427 | krantidhanuh 224 | atra krantih saumya natam yamyam | ato ‘nayor aikyam
aksadhanuh 651 [/

yat punar madhyacchayanitaganitatantranitayor arkayor antaram tad ayanacalanam bhavati |
evam madhyacchayavasad ayanacalanam ca siddhyati [/

ekasmin sthirasanku-

cchayagram kalayor yayor bindau |
patati tayor madhyasthe

kale ’rkah sayano ’yanante syat [/ 219 |/

sarvada niScalikrtasya sankoh stambharohanadibhutasya niscalakasthasya vagradyavayavabhedan
nispannam chayagram yadabhistabindau patati punah kalantare ca yada tacchayagram tasminn
eva bindau patati tayoh kalayor madhyagatakale sayanarko ’yanantagato bhavati | evam caya-
nacalanam jneyam |/

istasasthe bhanau
chaya sadhya visesavidhinatra |
asavrtte kalpya
chaya sutrena vrttam iha karyam [/ 220 [/

samayoh Sankvagrarka-

grayor yutir bhinnayos tayor vivaram |
chayakarnaksetre

digbahur bhavati yamyasaumyasirah || 221 [/

sardharksasya hi jiva
digjwa konage ravau bhavati |
taddalajiva madhye
surapagnyor uhyam evam aparam api || 222 [/

218.a nata] gata U*  218.b yutis tu] yuti KI  218.b disoh] diso K7 SastiT  218.c antaram] antam K1
219.a-d om. K; 219.a Sanku] Sarko K;‘Il 219.b yayor| om. U* 219.b bindau| vidhoh patatindoh
K7  219.d ’yanante]| nayante I;  220.a istasa] istamsa K;r 221.b yutir] yuti Y¥R*Ke (corr.sec.m. I2)
222.b—c digjwa ..dalajiva] om. I3 222.d surapagnyor] surapasyor T* (corr.sec.m. I2) 222.d whyam evam
aparam] corr. to whyam mavamaparam Kg, whyam mavamaparam I3
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digjyestacchayaghna

trigyapta sadhyabahur iti kathitah |
digbahusadhyabahu

tulyau ced istadisi gato 'rkah syat || 223 |/

digbahusadhyabahvoh

samayor vivarad vidikkayor aikyat |
gunanthatad dharaptam

chayayam rpam uta svam istayam || 224 [/

digbahau sadhyakhyad

yamyagate svam visodhyam atha saumye |
vyastam saumyanate syac

chayadvandve krtam tatha karyam [ 225 [/

mahati pale saumyanate

yady adhika diggunad inagra syat |
ekasyam eva disi

cchaye dve sto yato gatir vrtte || 226 |/

digbahav alpe svam

chayayam phalam ihadhike Sodhyam |
prathamaprabhartham evam

karyam vyastam dvitiyabhavaptyai || 227 |/

natadisy udaye haras
trijyasuryagrayor bhaved vivaram |
yogo ‘nyathavisese
trijyamadhyahnabhantaram tu gunah /| 228 [/

atroktau gunaharau
digbhir bhaktau Satena vestena |
tau va gunaharau sto
na hy avisese ’lpabhedato dosah || 229 [/

chayatah Sankuh syac

charikvagram ato bhujadvayam ca tayoh |
vivarat prabha ca bhuyo

py evam bahvos tu samyam iha yavat || 230 [/

atrodaharanam |

223.a digjyestacchaya] digjyesta chaya Sastri 223.b kathitah] kalitah Ks 224.b samayor] om. U*

224.d uta] atah V¥Ks 225.a bahau] bahtu K4Ks 225.c nate] natau X*Ks Sastri  226.a saumya] saumye
T* 226.b—241.c br.Ks 226.b diggunad inagra] diggunadhinagra K4 227.a-b svam chayam] svam jayam
Q*, svacchayam Ks, svacchayayam K5Kg' Sastrl, svajyayam corr.sec.m. la 227.c prabhartham] prabham K;‘
227.d aptyai] aptyaih S*  228.d bhantaram tu] bhantu Ka, bhantarantu Sastri
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korpyantage ’‘rke dahanasya diksthite
vrsantagene Sivadiksthite prabhe |

ke bruhi sankos tulitasya bhaskarair
vidvan palajya nagavedasapmita || 231 [/

atrobhayatra krantih 1210 | arkagra 1232 [/

atra prathame kalpita chaya trijyatulya | ato ’rkagraiva digbahuh | trijyatah siddha sadhyaba-
huh 2431 | ekadikkayor anayor antaram 1199 | etat gunyam | atrodaye madhyahne ca suryasya
yamyadiggatatvat trijyarkagrayor vivaram harah 2206 | madhyahnabha 1795 | trijyamadhyaccha-
yantaram gunah 1643 | avisesakarmani sadaivam guneharau bhavatah | gunyat gunanihatad
dharakena labdham 893 | etat sadhyabahuto digbahor alpatvat saumyagatvat purvanitayam tri-
Jyatulitacchayayam rpam bhavati | tatha krte siddha cchaya 2545 | esatrestacchaya | atah Sankuh
sadhyah | Sankoh $ankvagram ca | $ankvagrarkagrayos tulyadiktvad yoga$ chayakarnavrtte daksi-
nottarayato digbahuh 1675 | cchayatah siddhah sadhyabahuh 1800 | anayor antaram 125 | asmad
gunanihatad dharakena vibhajya labdham 93 | etad atrapi digbahor alpatvat saumyagatvat purva-
cchayayam 2545 visodhyam | tatha krte cchaya 2452 | punar ato 'pi Sankvadikrtvavisistacchaya

2407 | esa vahnikonagate rke mahacchaya bhavati | atah siddha dvadasarigulasarikos chaya jé //

atha dvitiya udayakale madhyahnakale ‘pi suryasya saumyadiggatatvat trijyasuryagrayor vivaram
harah purvasiddha eva 2206 | atra madhyahnacchaya 584 | madhyahnacchayatrijyayor antaram
gunah 2854 | atra cchayam abhistam prakalpya tatah Sanikusankvagradigbahusadhyabahun purva-
vad aniya bahvantarat gunaharabhyam phalam caniya svakalpitapurvacchayayam rnam dhanam
va yathavidhi krtva avisistam cchayam anayet | avisista sa 840 | esaisakonagate 'rke cchaya [
arkangulasankos chaya f //

yadarkah saumyadisy udito yamyadisi madhyam gacchati tada trijyasuryagrayor yogo harah [/

anyat purvavad udaharanam |

1. 1210] 121 K;r 2. chaya trijyatulya] chayas trijyatulyah KgL 2. ’rkagraiva) ’rkagraivatra K5+ 3. 2481]
2432 KF1i 4. 2206] 226 K& 9. 1800] 180 KT 9. 125] 13 5K, 132511 11. 2545] 3545 K& 11. ’pi
$ankvadikrtva) Sankvadikrtvapi KT 12. 46] om. KF  14. 2206] 226 K& 17. 840] 84 K& 18. Sarkos]
arikorn K 18. 1] om. Iy

vahner asam mesamadhyasthite 'rke

yate vinamadhyage cendrasambhvoh |
asamadhyam nah prthag bruhi vidvan

chayam pragvac chankur akso ‘pi catra [| 232 [/

231.a antage 'rke] antagarke Y* 28l.a anta] anta S*, corr.sec.m. to anta Iz 231l.a dahanasya] hanasya S*
231.a diksthite] diksthe W* 2381.d vidvan] vidvan S* 282.a vahner] vahnir T* (corr.sec.m. I2) 232.b yate]
yante Q*  232.b sambhvoh]| sambhoh S*  232.c madhyam] madhyan/madhyam Q*  232.c prthag] prtha
T* (corr.sec.m. 12) 232.d ’pi] hi V¥, ha S*

231. wupajati verse; acd in indravamsa and b in vamsasthavila
232. salint verse.
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atha prathame ‘rkagra saumya 368 | yamya dinardhabha 289 | anayor bhinnadiktvad atra tri-
Jyasuryagrayor yogo harah 3806 | gunah 3149 | kalpitestacchaya 2977 | Sarikvagrahinarkagra
39 | esa digbahuh saumyah | atra sadhyabahur yamyah 2104 | vidisor anayor yogad gunanihatad
dharaptam 1773 | etad digbahoh saumyagatvat purvacchayayam Sodhyam | tatra jatacchaya 1204 |
punar apy evam krtvavisistacchaya 405 |/

atha dvitiye rkagra 1873 | esa saumya | saumyadinardhabha 731 | harah 2065 | gunah 2707 | atra
digjya 1315 | kalpitacchaya 3438 | atrarkagraiva digbahuh | digjyaiva sadhyabahuh | bahvantarat
phalam 76 | etad digbahor adhikatvat prathamacchayasiddhyartham istacchayayam Sodhyam bha-
vati | yada digbahur alpa syat tada ksepyam | atravisista cchaya 3422 | esa rudrapuramdarayor
madhyabhagam gate surye mahacchaya syat | atraiva dvitiyacchaya ca bhavati | tatsiddhyartham
prathamasiddhestadikcchayam istasamkhyahinam istabham prakalpya karmam karyam [ tatra sa-
hasrahina purvacchaya 2422 | digbahuh 906 | sadhyabahuh 926 | bahvantaraphalam 26 | etad
digbahor alpatvad dvitiyacchayasiddhyartham Sodhyam | atravisista cchaya 2318 | esa dvitiyesta-
dikcchaya [/

abhyam arkangulasankos chayadvayam sadhyah [/

2. 3806] 8826 1, 3. saumyah] saumya KgL 4. etad digbahoh)] etadiscahos Iy 6. saumya] om. K;Il
6. harah] harah K5+ 8. digbaho| digbahya corr. Iy  11. karmam karyam] karmakaryam K;Il 12. 906] 96
K} 15. Sankos] Sankori KF

svardhadiyutam grahyam

phalam avisese Sanair yadasaktih |
urdhvadhogamanam cec

chaighryad yuktya tada daladyunam || 233 |/

avisesakarmani yada sadhyasyasaktih sanair bhavati tada tatra tatra labdham phalam yuktya sva-
rdhena yutam va ekaghnaphalayutam va dvigunayutam va gater mandyavasat grahyam | yada
gateh saighryat sadhyam ekadordhvagatam ekadadhogatam ca bhavati tada phalam svardhena va
tribhagadvayena va caturbhagatrayena va Saighryavasad dhinam karyam | evam krte sadhyasi-
ddhih $ighram bhavati | etat sarvatrapy avisesavidhau cintyam [/

1. sadhyasya| sadhyasyam 11 3. va tribhaga] vatra bhaga I

antaram athava bahvoh

kevalam athava dvinighnam api dalitam |
chayayam svarnam syad

avisistaphalam prasadhyam iha yasmat /| 234 |/

yada konadidiggatacchayayapakramadisadhyate tada lambadibhih sadhanaih savayavaih suksma-
cchaya sadhya | vrsantagene Sivadiksthite ity atra tatha sadhitavisista cchaya 838 ||

233.a svardhadi] svardhadidi T*, svadhyadi I 233.b avisese| api Sese Sastri 233.b asaktih] asaktah Q¥
233.d chaighryad yuktya] chaighram dyukta Q*  2833.d chaighryad] chaighyad X* Sastr1  233.d tada] om.
X* Sastr1  234.b nighnam] gunam X* Sastr1  234.b dalitam| dalitam/dalita K7, dalita Sastri  234.c—d
repeated twice in I3  234.d avisista] avadista Sastr1 234.d S* adds yatasmanmanantada bhujakotyah
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atha konagatarkacchayaya tatkalajatena natakalena ca suryanayanam tadapakramadina palajya-

nayanam ca pradarsyate |

1. sadhanaih] sardhanaih 11 1. savayavaih| sadhanaih Kg’

konagate ‘rke chaya-

karnasya same smrte bhujakott |
chayavargardhapadam

tasman manam tada bhujakotyoh || 235 [/

purvaparayata syat

kotir yamyodagayatatra bhuja |
chayakotisama syat

purvaparaga dyuvrttakotir api [| 236 [/

kharkantarakalajya

purvaparaga bhaved ghativrtte |
natasamjnitanadinam

jweti ca kathyate tada saiva [| 237 [/

natajivaya yadi syad

dyuvrttakotis tada bhavet kiyatv |
tribhajivayeti bhavati

dyujyavrttasya cardhaviskambhah || 238 |/

svahoratrardhad iha

sadhya krantir bhujadhanuh kranteh |
taddhanur iha bhanuh syat

tadrahitam mandalardham athavarkah /| 239 [/

atha yamye gole syac

cakrardham taddhanuryutam bhanuh |
taddhanurunam cakram

varko divasadvayaprabhamanat /| 240 [/

avisesakarmanaksa-
Jyatra ca sadhya prabhabhujadivasat |
krantih kenapi yuta
suryagrety atra kalpyate prathamam [/ 241 |/

samavidisoh suryagra-

cchayabahvoh kramad viyogayuti |
Sankvagram tacchankor

vargaikyapadam dyumandalajyesta || 242 |/

235.a-238.a ’rke..yadi] lacuna K;r 235.b smrte] smate V¥ (corr.sec.m. I2), smrte S* 2385.d kotyoh] kotyah
T* (corr.sec.m. I2) 286.b kotir] kotr Iy 236.d dyuvrtta] dvivrtta K7 Sastri 238.d cardha] catra Kz
Sastr1  239.b krantir] kranti T*I; (corr.sec.m. I2) 239.d athava] adhava S*  241.a avidesa] avisese Q¥
241.d kalpyate] kalpite S* 241.d prathamam] prathamah Kq4li = 242.a vidisoh] dvidisoh W*, visadoh S*¥Kg
(corr.sec.m. K¢) 242.b kramad] bhramad K7 242.b yuti] yuktih Ks, yutih Kr 242.c chankor| chankvo
S*, chanko corr.sec.m. to charnkvo Io 242.d pada] om. X* Sastri, Sastrl puts ca after aikyam in parenthesis
242.d mandalajye] mandale Ks
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trijya sankvagrahata
bhaktestadyujyaya palajya syat |
palato lambajya syal
lambapamato bhavet sphutarkagra || 243 |/

punar api kuryac chaya-

bahudinesagrayor viyogadim |
Sankvagrestadyujye

palajiwalambajivake rkagra [/
avisesantam shaivam

sphutavisista bhavet palajyatra || 244 |/

atrodaharanam |

chayadryarngarasaikasammitanarasyokta navaikabdhibhis
tulya rudradisam gate dinapatau vyomarkayo$ cantare |
prana bhudharavedabananayanair abdhyamsakaih sammita
vacyo rka$ ca palam tvaya ganitavid gole krtas cec chramah || 245 [/

atra Sarikuh 1667 | tacchaya 419 | abhyam svakarnam aniya karnacchayabhyam trijyakarne siddha
mahacchaya 838 | tacchamkuh 3334 | cchayavargardhapadam 592 | tadavayavaviliptah 33 | anena
mulena sama tadanim chayakarnaksetre bhuja tatha kotis ca | etat kotisama tadanim dyuma-
ndale purvaparayata kotijyapi yatas chayakotir dyuvrttakotyam avatisthate | khamadhyarkayor
antaralagatanatasavas caturgunita 2547 | ete 'bdhyamsakatvac caturbhir hartavyah | tatha krte
pranah 636 | tadavayavah sastyamsah 45 | esam jiwvah 633 | avayavas ca 4 | esa ghatikamandale
purvaparayata jya | chayakotisama dyuvrttakotijya trijyahata natajyabhakta kimcid una 3218 |
etat cahoratrardham | asmat siddhapamah 1210 | asya bhuja kimcid una 2978 | asya dhanur
ekaliptasahitam rasidvayam | etat suryah | tadunam rasisatkam va suryah | aparadinacchaya cet
prathamah | purvadinacchayadhika ced dvitiyah [/

athaksasiddhyartham istapame 1210 istasamkhya praksepya [ tatra dasabhir yuta krantih 1220 |
esarkagreti kalpyate | cchayakarnabahuh 593 | samadisor anayor antaram 627 | etac chamkva-
gram | Sankuh 3334 | bhujakotirupayor anayor vargayogamulam 3392 | etat karparupa svahora-
trestajya | punah Sarikvagranihatam trijyam anaya svahoratrestajyaya vibhajet | tatra labdham
636 | etat palajyeti kalpya | palajyatrijyakrtyor vislesamulam 3379 | etad avalambakajya | punas
trigyanihatam krantim lambakajyayanaya vibhajet | tatra labdham sphutarkagra 1231 | punar
apy arkagracchayabahor vislesam $ankvagram prakalpya proktavidhinavisistam aksajyam anayet |
tatravisista sphutaksajya 647 |/

1. atra ..] Entire part of this commentary is broken in Kg' 6. 4] tvaly (ouinstead of &) 13. anayor]| anayor
anayor Iy 13. 3392] 3394 11 16. 1231] 12131 1,

243.b palajya] palayajya S*, palajyaya Ks — 244.a kuryac] karyac U*, karyac K1  244.b adim] adi U*,
adim K3 244.d-246.a alamba...sarko] br. K;’ 244.d jiwake] jivako Q*  244.f visista]| vidhista T*, vidhi-
sta S*  245.a chayadryarigara] chayadvangara K5  245.a—c sammitanarasyokta ..abdhyamsakaih] om. S*
245.a navaikabdhibhis| navaikabhis Ks  245.b disam] grasam Ks

244. Every descendant of V¥ (K1, K3, K, K7, Ks, 12, I3) and SastrT put verse number after d. There is no
verse number after f in any manuscript.
245. Sardulavikridita verse.
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atha yamyagole udaharanam |

Sankor ekadasamsakam rasaviyaccandramsakam ca tyajec
charikoh Sesa iha prabha dinapatau yate krsanor disam |
pranas carkanatodbhava rasadhararandhraksamabhih sama
bruhi prajia divakaram palam api tvam golavit syad yadi || 246 [/

atra svamatikalpitasankuh 2454 | sastyamsas ca 28 | asmad ekottarasatena labdham 24 | sa-
styamsah 18 | punar api tasmat saduttarasatena labdham 23 | sastyaméah 9 | etat phaladvayam
svakalpitapurvasarikos tyajyet | tatra Sistam 2407 | sastyamsah 1 [ etat tasya Sarikos chaya bhavati |
abhyam Sarkucchayabhyam siddhah karnas trijyasamah syat | ata ete evatra mahasarikumaha-
cchaye bhavatah | natasavah 1916 | tajjya 1818 | sastyamsah 17 | cchayakotisamo dyukhandah
1702 | sastyamsah 1 | atra labdha dyujya 3217 | sastyamsah 54 | apamah 1209 | sastyamsah 38 |
asmat siddha bhujajya | prayo dvirasijya sama | rasidvayam taccapam | tanmandalardhayutam
bhanuh | tadunam mandalam va bhanuh | aksas tu purvavat |/

1. sastyamsas ca| sastyamsascamsah K;, sastyamsascams ca +(space) sah I; 1. 28] 18 K;, 8811 1. asmad
..18] transversed with punar api ..sastyamsah 9 K;’, om. Iy 1.24] 2 K;’ 2. 18] 9 K;r 2. 9] 28 K;}r
2. phala] pala K;Il 5. 17] 54 corr. Kg'

istadiksthe savitary apy
anena nyayena sokalam sadhyam || 247 [/

vrtte kumadhyakendre
nijakaksyasammite bhramanti khagah |
drasta kuprsthagah syat
kuprsthamadhyam tato ’sya drgurttam [/ 248 |/

ksitijad bhumadhyagatad

bhuvyasardhantare bhaved urdhvam |
drastuh sviyam ksitijam

yasmat tatrodayo ’sya castamayah [/ 249 [/

bhumadhyat ksitijastho

vihago drastur bhaved adhah ksitijat |
bhuvyasardhamitadho-

gatis ca sa tasya lambanam ihoktam [/ 250 [/

bhumadhyasyordhvagatam

vihagam drasta ca pasyati svordhvam |
tasmat khamadhyasamsthe

vihage na tu lambanam bhavet tasya || 251 |/

preamble.l yamya] yo U*, ya Ki  246.c pranas| ghranas T*, panas S*  247.b sakalam] sarvam KgL,
sarvam sarvam sarva 11 248.a vrtte ku] vrttaika U*, vrtte ka Q*  248.c drasta] distaly 248.d ’sya] om.
S* 249.a-250.b ksitijad ..adhah] repeated twice Y* 250.c mitadho] mito dho Y*, mito V¥ 251.b drasta]
drsta I3 251.b svordhvam] sordham R* (corr.sec.m. 12), sardham Kg, sordhvam Kz, svordham I3

246. sardulavikridita verse.
247. K; and I; include this verse in the commentary on GD2 246.
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na syan nabhaso madhye

ksitije syal lambanam param yasmat |
drgjyatah sadhyam syad

anupatal lambanam khagasya tatah /| 252 |/

trijyantare khamadhyad

bhuvyasardham yadi svakaksyayam |
drgjyantare tada kim

syad iti tatkalalambanam bhavati || 253 [/

lambanayojanamane

tulye 'py atraikaliptikasthanat |
lambanalipta bhinnah

kaksyabhedad bhavanti vihaganam [/ 254 [/

lambanayojanamanam

nijakaksyayam iyat khagasya yadi |
trijyavrtte syat kiyad

iti lambanaliptikamitir bhavati || 255 [/

trijyamandalam uditam

liptasamayojanam tato ‘traptam |
yojanaphalam api lipta-

phalam bhaven namabheda eva yatah || 256 [/

ekakalasthan vihagan

pasyati tasmat kuprsthago drasta |
bhinnasthanac chighras

tatradhahstho “lpabhuktir urdhvagatah || 257 [/

nijalambanantarasamam

grahayor vivaram tadadha-urdhvagatam |
drasta pasyati yasmad

ubhayor api lambanam nijam bhavati || 258 [/

nijanijalambanalipta

svat svac charikor visodhya Sistam tu |
bhuprsthe sphutasankuh

sviyah syad iti ca siddham atra bhavet || 259 [/

chedyakadrsyam idam syad

vilikhed vrttam bhuvo ’tha tanmadhyam |
kendram krtva svam svam

kaksyavrttam likhet sadiksutram || 260 [/

252.d anupatal] anupata Q*  253.d kala] kala K, kada K7

prsta Sastri  257.c sthanac chighras] sthana Sighras Iy

Sastr1  259.d iti ca] atral;  259.d atra] eva Iy  260.d vrttam] satram X* Sastri

Sho Hirose - These de doctorat - 2017

258.c drasta] drsta Ka

254.b sthanat] sthanam It 257.b prstha]

259.a lipta] liptat U*
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kendram krtva yamyo-
daksutrakuparidhiyogam atha vilikhet |
vrttam trijyasutren-
aitad drimandalam sadiksutram || 261 [/

bhagair ankitam athava

ghatikabhih sarvavrttam iha karyam |
yamyodaksutram tha

prakalpyam adha-urdhvayatasutram iti /| 262 |/

kaksyavrtte sviye

yatame bhage grahas tada carati |
drnmandale ’pi tatame

bhage kuryat khagarksabindum iha [/ 263 [/

kaksyaparidhigakhecara-

drimandalakendragasya sutrasya |
drinmandalaparidhiyutau

bindum grahasamjiitam punah kuryat || 264 [/

anayoh khagarksakhecara-

samynitabindvor yad antaralam syat |
lambanaliptamanam

tad bhavati hi khecarasya tada || 265 [/

kaksyavyasasame dve

sutre drgurttamadhyato neye |
bindudvayage ca tayoh

Sirontaram lambayojanasya mitam /| 266 [/

drnmandala eva syad

vihagabhimukhe vilambanam satatam |
lambanam iti drgbhedo

drstir drastuh khaganuga ca yatah [| 267 |/

karnatmakam uktam ato

lambanam apamanuga tu tasya gatih |
bahus tad itaraga syat

kotir grahane hi lambananati te || 268 [/

261.b sutrakuparidhi] sutrakaparidhi Sastr1  261.d aitad] aika tad T* (corr.scc.m. l2) 262.d prakalpyam]
kalpyam Ks 262.d adha] atha Ky 263.a-b om. I3 263.b yatame] yatime Z* 263.b tada] sada
Ks 263.c-264.c 'pi ..drnmandala] om. Iz (Omitted text was inserted by later hand but still lacks 264.b)
263.c tatame] tatime Z* 263.d bhage| om. V¥ except I where it is part of a long insertion 263.d bindum |
vindum T* except Iz, ditto 264.b om. U* 264.d bindum] vindum T* 265.a anayoh] anuyoh Ks
265.b samjriita] om. K4  265.b bindvor] vindor T*, bindor K1Ks Sastr1  266.a kaksyavyasa| kaksyakhyasa
U*, kaksyasa K¢, kaksyayasa I 266.b drgvrtta] digurtta X* Sastri 266.b madhyato] maddhato S*
266.c bindu] vindu V* 266.d mitam] miti 1y 267.a mandala] manda Q¥ 267.a eva sya] om. S¥
267.c drg] dig Ky  267.d drstir] drstair Ky  267.d khaganuga] khaganugaya S*I2  268.b apamanuga tu
tasya] apamanugasya K4  268.b gatih] natih X* Sastr1  268.d kotir] koti S*¥*Q* Sastr1  268.d hi lambana)]
vilambana X* Sastr1
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lambanam ity apamagatir

grahane vihagasya kalpyate ganakaih |
natir iti ca svad apamad

viksepas te tato bhujakoti /| 269 |/

drkksepagunat sadhya

kotir bahus tu drggatijyatah |
drgjyadrkksepajya-

krtivivarapadam hi drggatijyokta /| 270 |/

Sunye sati drkksepe

lambanam apamandale sthitam sarvam [
apamandalam eva tada

yasmad drimandalam grahabhimukham [/ 271 [/

trigunasame drkksepe

lambanam apamasya parsvagam nikhilam |
drimandalasya madhye

yasmad ra$anavad apamavrttam iha [/ 272 |/

drkksepabhidhakotya

vrddhivadat syad ato ‘tra nativrddhih |
drggatisamjnitabahor

vrddhivasal lambanasya vrddhir api || 273 |/

bhumivyasardhahatad

drkksepad drggates ca ye labdhe |
trijyabhidhakarnena

kramaso natilambayojanamiti te [| 274 |/

yojanakarne yojanam
etavac cet kiyat trigunakarne |
iti natilambanayor iha
sadhya liptatmika mitis capi [| 275 |/

drggatidrkksepajye

drgjyakarnasya bahukoti cet |
lambanakarnasya tu ke

iti va grahanoktalambananaty stah [ 276 |/

yojanakarno bhanoh
paricahisvankabanajaladhisamah |

indor yojanakarnah
parvatanagaramavedadahanasamah [| 277 |/

269.a—b apamagatir grahane] apamagatigrahane Sastri1 270.a-b drk..kotir] om. K4 271.d yasmad] yasya
Q* 271.d mandalam graha] mandalagram va Ka  272.c mandala] manda S*, mala KsK¢ 273.a abhidha]
apama Ko, ama K4 273.b nati] gatily 273.c drggatisamjnita] ++drggati Sastri 273.c samjiita] om. X*
275.b kiyat tri] kiyati Ks 276.d grahanokta] grahanoktana W¥* (corr. K2) 276.d lambananati] lambanaty
S* 276.d stah| sta T* (corr.sec.m. l2) 277.a karno] karne T* Sastrl (corr.sec.m. l2) 277.d nagarama]
karnama Kr
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avisesakarnanihatau

trigyabhaktav imau sphutau bhavatah |
nicoccabhagago ‘smad

adha upari cared yato grahah sthanat [| 278 [/

vyomendudadhivedais

tulito bhanor vidhos tithijvalanaih |
khesukhavidhubhir bhumer

vyaso bimbasya yojanaih proktah [/ 279 [/

bimbavyasav uditau

ravisasinos trigunataditau ca tayoh [
sphutayojanakarnabhyam

vihrtau liptatmakau sphutau bhavatah /| 280 |/

svadhahsthitena sasina

chadanam uditam raver nijam grahanam [
kaksyabhedad anayoh

pratidesam chadanam raver bhinnam || 281 |/

nijamargagabhucchaya-

pravesa indor nijam grahanam uktam |
tamasi pravista induh

sarvatraitkaprakara eva bhavet || 282 [/

tamasa badhya$ candrah
katham iti ced ucyate tamohanta |
bhanoh kara hi sasinah
karas tatas tamasi te katham syur iti /| 283 [/

tejahsutram yasmin

patati sthanam hi tat prakasayutam |
tejahsutravihinam

sthanam tamasavrtam bhaven nikhilam [ 284 [/

yatra ravir bhuchannas

tatrasthatamo bhavet ksiticchaya |
tasya manam sadhyam

chayayuktya pradarsyate catra || 285 [/

Sankur inangulatulyas

taddvigunasamonnatih pradipasya |
Sankupradipavivare

bhuh Sarikumitatra cintyate chaya || 286 [/

Sho Hirose - These de doctorat - 2017

278.a nihatau] nitau Q¥ (corr.sec.m. Kg) 278.c bhagago] bhago S* (corr. Kg) 280.b taditau] tahitau Kz
tapi tau Sastr1  280.b ca] rca W¥* (corr. Kp) 281.b uditam] ucitamm Ks  283.a badhyas] madhyas Q*
283.d te] om. K5  284.d vrtam] mrtam Ko  285.a channas] chayannas K¢  285.b sthatamo] sthamato
Q* 286.a Sarikur ina| Sankuvinag T* (corr.sec.m. I2) 286.b taddviguna| tadviguna Z*  286.b pradipasya]

pradipa Q*
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dipat pravrttasutram
Sankusirahsprk patet ksitau yatra |
chayagram tatra bhavec
charikoh sutram ca karnasamjnam tat || 287 [/

chayagrasankumula-

ntarabhur bahus tu Sankukotya syat |
chayagradipamula-

ntarabhur bahuh pradipakotyas ca || 288 [/

Sankunadipakotya
bahuh Sankvagradipavivaragatah |
karnas tu bahukotyor
agradvayavivaragam bhavet sutram [/ 289 [/

Sankunadipakotya
bahus cec chankudipavivarabhuva |
tulito ’tra Sankukotyah
ko bahur iti prabha bhavec chankoh || 290 [/

ravibimbavyasardham

dipo bhuvyasadalam iha tu Sankuh |
sphutayojanakarnah syad

bhanoh Sankupradipavivarajebhuh [/ 291 |/

atroditasya Sankor
ya chaya sa bhavet ksiticchaya |
vrtta sa bhumisama
mule ’lpa Sirasi pucchavat sa goh || 292 [/

raviparidhinirgatanam

sutrapam yatra bhuparidhiganam |
samyogo vyomni bhaved

bhucchayaya bhaved dhi tatragram || 293 [/

sphutayojanakarno ’to
bhanor bhuvyasatadito 'rkabhuvoh |
vyasantarena bhakto
bhucchayadairghyayojanamitih syat [/ 294 |/

iccharaSer atra

dvaigunyaj jayate na phalabhedah |
yasmad dvabhyam nighnah

pramanarasis ca parigrhito ‘tra || 295 [/

287.b patet] pate Q*, caret K5 288.a sariku] karpa W* Sastr1 288.c dipamula] mauladipa K711 289.b gatah]
gatam Y*V*  289.c karpas] karnas Q¥  290.c kotyah] kotyoh W*K; (corr. K1) 291.c karpa] karna Q*
292.c sama] sthama K4 292.d §irasi] om. K5 292.d sa goh] sagrauh T*, sagroh K1, sagre K7 Sastr1, sa-
gauh corT.sec.m. I2 294.a to] ta Q¥*, rkata corr.sec.m. to rke ta Iz  294.b bhuvoh] bhavoh Q* 295.b gunyaj]
gunyan Ks
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sphutayojanakarnonad

indor bhuvyasatadital labdham |
chayadairghyac chaya-

dairghyena vyasamanam itha tamasah [/ 296 [/

tamaso vyasas trijya-
nihata$ candrasya yojanasrutya |
vihrtas tamaso bimbam
kalatmakam bhavati isirakaramarge [| 297 |/

chayadairghyam sasinah
sphutayojanakarnavivararahitam yat |
Sasimargad urdhvagatac-
chayabhagasya dairghyamanam tat || 298 [/

chayagrat taddairghya-

ntare kutulyo hi bhavati tadvyasah |
Sasimargordhvagatasa-

ntare tada syat ka iti tamovyasah [/ 299 [/

yadi Sasikaksyayam syad
etavan kas tada trigunavrtte |
iti tamaso bimbam syat
kalatmakam Sisiradidhiter marge [/ 300 //

chadyacchadakavivara-
ksetram tadbimbadalayuter unam |
yavat tavad grahanam
tato ’dhike drsyate grahah sakalah || 301 [/

ity udita samksepad
asmabhir goladipika ya imam |
purusah pathet sa loke
golavidam ganyate nrpam madhye /| 302 [/

iti goladipika samapta |/

296.c dairghyac| dairghya K7, dairghyam Sastri  296.d vyasamanam] samanam Ks  298.b vivararahitam |
virahitam Ks, vivarahitam K7 298.b yat] yat 1 298.c gatac] gatam Y*, gatah S* 299.d ntare] ntarena
Ks 300.a-b syad etavan] syad detavan T*, syad etavan K7  300.b kas] kadas S*  300.c tamaso] tamo
T* (corr.sec.m. I2) 302.b imam] ima T*K; (corr.scc.m. I2) colophon. iti goladipika samapta] om. Ks

colophon. iti] om. W¥K;I;

301. I, adds varahamihirasamhitayam followed by BrS 5.1-15 and $ripatih followed by SSe 17.17 and SSi.G
11.10

302. I; adds:

doso ’'py eko yadi bahugunas tatra muktva gunaughan |

dosagrahi bhavati hi khalas sallikatulyadharma [/

dosam muktva gupam anubhavan svatvam apy eti trptim |

sadhur loke salilamilitaksirapayiva hamsah [/ (ksira in the last line should actually be ksira)

colophon. K; adds: $rigurubhyo namah, Ko adds: $iva, K3 adds: harih gam Sivam astu, K4 adds: Siva, K7
adds: karakrtam aparadham ksantum arhanti santah sSubham, Kg adds: subham astu harth, I; adds: narayanaya
namah Sivam astu, Is adds: subham astu, I3 adds: Subham astu harih
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Part 11

Translation
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Notes on the translation

Technical terms Whenever Sanskrit terms have their counterparts in the English vocabulary
of astronomy, the English word is used even if it is different from the literal sense of the Sanskrit.
Otherwise, words are chosen with respect to both the literal meaning of the Sanskrit term and its
concept in astronomy. For consistency, even terms that have only been transliterated in previous
conventions are given an English form; e.g. “slow”-apogee instead of manda-ucca.

As for measuring units, transliterations of the original Sanskrit words are used, with the
exception of arc lengths (signs, minutes, etc).

Numerical values Every value is translated into English words, followed by Arabic numerals
when there are more than three digits; e.g. twelve, three hundred and fifteen (315). Usages
of the Bhutasamkhya system, i.e. specific nouns instead of numerals such as “eye” for two or
“mountain” for seven, are listed in Appendix A.1.

Commentary Translations for the commentaries are given in the same order as in the critical
edition, including the lines for separating them from the base text. Most of the commentaries are
solutions for the examples, but some of them gloss the base text by paraphrasing or supplying
words. For the latter case, every word that is cited from the base text is indicated by “quotations”.
This is only for clarification and does not reflect the appearance in the manuscripts. Paraphrases
are also shown by giving the Sanskrit words in the base text and the commentary.
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Goladipika

1 Having bowed to Ganesa (vighnesa; remover of obstacles), Sarasvati (vagdevi; goddess of
speech), teachers and the planets beginning with the sun, I shall state the stellar sphere, the size
of the Earth and so forth for this novice.

2 This circle going below, above, south and north is what is called the “solstitial colure”. The
celestial equator is touching at the tip of the geographic latitude north and south from below
and above respectively.

3 Again from this [celestial equator’s points] below and above, the ecliptic is touching at [the
tip of the] greatest declination likewise (north and south). A girdle at the middle of the celestial
equator, transverse to the rotation, is another circle.

4 This is known as the equinoctial colure [or equal division circle]. The celestial equator and
the solstitial colure are also [called] likewise. The sun always moves eastward on the circle called
the “ecliptic”.

5 Since the equinoctial colure going through the middle of the celestial equator and the solstitial
colure are connected to one another there is a pair of crosses. The axis going through the middle
of the sphere pierces them.

6 One should make a uniformly round Earth, located at the middle of the axis of the stellar
sphere, out of either a piece of wood or clay. The dwelling of living beings and so forth are
assumed to be within it.

7 The stellar sphere hurled by the pravaha wind goes clockwise around the Earth and rotates
continuously toward the west in sixty ghatikas.

8 The pravaha wind should have a constant movement toward the west above the Earth’s
surface at a distance of twelve yojanas. The wind of Earth having a different movement is below
it.

9 Here, the time in which a sixtieth of the celestial equator rotates is indicated as a nadika
(i.e. ghatika), not the sixtieth of a day, because a day is longer than a revolution of the [stellar]
sphere.

10 On the side of the celestial equator is a circle that is a companion of the celestial equator.
It is indicated as the diurnal circle that is the place of the sun’s revolution.

11 Many of them exist, because for each day there is a difference in the motion of the sun.
This is the stellar sphere. The celestial sphere outside it should be immovable.

12 The prime vertical situated on the celestial sphere is indicated as going through the east,
west, below and above. What is called the “prime meridian” on it (the celestial sphere) too
should go through the south, north, below and above.
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13 Here, the horizon situated on the side of the Earth goes through the east, west, south and
north. The rising and setting of all the stars and planets takes place on it.

14 One should know that the six o’clock circle which is situated on the celestial sphere is
touching at a distance in degrees which is the geographic latitude below the south and above the
north, and is touching to the east and west.

15 This axis of the sphere goes through the crosses of the six o’clock circle and the prime
meridian. In the portion above the six o’clock circle the revolution of the sphere takes thirty
nadis (i.e. ghatikas).

16 The horizon is situated below the six o’clock circle in the north and goes above it in the
south. Therefore when the sun is to the north [of the celestial equator] the daylight is long and
when to the south it is the night that is long.

17 Or, having made the celestial equator in the east-west direction, and having made another
one according to it, one should make an axis piercing the crosses of the six o’clock circle and the
prime meridian.

18 The stars are immobile. Below them in order are Saturn, Jupiter, Mars, the sun, Venus,
Mercury and the moon. They have an eastward motion, [but also] move to the west because of
the impetuosity of the [stellar] sphere.

19 They (the motion of planets) are equal in terms of motion per day counted in yojanas.
[They are| different [in terms of motion per day| counted in arc minutes. This is because those
having large orbits are located above and arc minutes are equal among them all.

20 The moon has a slow motion, Saturn has a swift motion and the stars are swifter. Moreover,
all move toward the west. Some people reportedly say so.

21 Calculators who have worked hard on the Sphere state that this is not suitable, because of
the retrograding planets’ conjunction with stars on their west side.

22 It is remembered by excellent calculators that the orb of the sun and others has the shape
of a sphere. [The orb] of the sun is bright but that of the moon is made of water and lacks light
on its own.

23 Those who are foolish want the orb to have the form of a round mirror, because the gradual
increase in whiteness of the moon does not occur in their school.

24 The rays of the sun reflected on the moon made of water destroy the nightly darkness, as
[rays| leaving a mirror [destroy the darkness| in a house. Thus is the opinion of a noble person.

25 The Earth with the shape of a sphere stands in space at all times just by its own power.
The upper half is abundant with soil, the lower abundant with water. Here are the oceans and
continents.
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26 Some say that the Earth is supported by Ananta, others by elephants in cardinal directions.
Here, a support of a support is to be assumed, hence they are endless.

27 The Earth rotates toward the east and there is no revolution of stars going in the sky, thus
some reportedly say. This is not the wise Aryabhata’s intention.

28 Demons, gods and human beings always stay in the bottom, top and side parts of this Earth
respectively. Likewise other creatures, rivers, mountains and the like.

29 A circle going through the middle of the Earth stands below all creatures. Therefore it
happens that creatures, water and so forth abide everywhere on the Earth’s surface.

30 It is said that the circumference of the Earth counted in yojanas is three thousand two
hundred and ninety-nine (3299). It is also said by Aryabhata that Mount Meru should be the
size of a yojana.

31 Other wise people say that the measure of the Earth in yojanas is measured as many crores
(tens of millions). This is not the calculators’ intention, because the measure is established in
another way from the geographic latitude.

32 [The length of] the ground along the gap between the two which are the locations of the
same [longitude] north and south divided by [their] difference in degrees of geographic latitude
and multiplied by the degrees in a circle should be the measure of the circumference of the Earth.

33 The resulting number measured in yojanas is several lakhs (hundreds of thousands) when
it is on the Earth’s surface, and several crores (tens of millions) when it is the resulting number
inside the Earth’s sphere.

34 The habitat of creatures exists everywhere, even in the nether regions inside the Earth. The
conflicting statements of the wise ones should be considered in this way and should be managed
by the wise ones in this case.

35 Here, the calculators who are experts on the Sphere do not think that Mount Meru has an
exceeding elevation, because there exist stars going eastward in the sky north of the pole star.

36 Some say that Mount Meru goes into the Earth at the top and bottom. In this respect
Aryabhata said that it is measured from the top of the Earth’s sphere.

37 At Lanka, the sun comes to the top [of the sky] when it is at an equinoctial point. The pole
star is always on the horizon. At Mount Meru, this sun is on the horizon and the pole star is at
the top. Because both (the sun at equinoctial point and the pole star) have their own spot (i.e.
Lanka and Mount Meru, respectively) below.

38 Lanka should be at a quarter of the Earth’s circumference from the middle of the land or
of the water. Ujjain is at a fifteenth [of the Earth’s circumference] due north from Lanka.
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39 Heaven and Mount Meru are at the middle of the land and hell and the “mare’s mouth” at
the middle of the water. This Arya verse and a half, spoken by Aryabhata, is written by us here.

40 The gods stand on Mount Meru located in the middle of the land and the demons are
located in the spot of water below that. The manes stand on the middle of the disk of the moon
and human beings are situated at the side of the Earth’s sphere.

41 The gods always see the sun located in the northern celestial hemisphere. The demons
[always see the sun] located on the other side. [When the sun is on] the six signs beginning with
Aries, it is the divine day and that is the demonic night.

42 The day of the manes is said to start at the time in the middle of the eighth day of the
dark [half-month] and ends in the middle of the eighth day of the bright [half-month], because
[during this period] they always see the sun.

43 At alocation with no geographic latitude such as Lanka and the like, a day is thirty ghatikas
and a night is just as much. Aryabhata states sites that are on the border of land and water
since they have no geographic latitude:

44 The very sun that rises at Lanka sets at Siddhapura. [At the same moment] it is midday
at Yavakoti and midnight at the region of Romaka.

45 When daytime and nighttime are added, [the sum] should be sixty ghatikas at a location
with geographic latitude. There, the day is increased when the sun is in the northern celestial
hemisphere and night exceeds when in the south.

46 At a location where the Sine of co-latitude is equal to the [Sine of] greatest declination,
there, when the sun is on the end of Gemini, the day is sixty nadis (i.e. ghatikas), and this is
said:

47 Ho, say the measure of the latitude where the sun situated on the end of Gemini, like red
hot gold on the horizon of the ocean, does not set.

48 In that case, the Sine of geographic latitude should have the same measure as the “upright”
[Sine| of the greatest declination. Therefore, the ascensional difference in ghatikas should be
fifteen, and hence there are sixty ghatikas during daytime.

49 From thereon, the previous and later daytimes diminish in due order at that location. When
the sun is at the end of Sagittarius the night is likewise [sixty ghatikas] and the nights on its
sides [diminish| in the same manner.

50 Where the Sine of co-latitude is equal to the declination [corresponding to a longitude of]
two signs, Sagittarius and Capricorn appear not to rise, Cancer and Gemini [appear not to] set,
and the other eight appear on the horizon.

51 Leo is the ascendant after Taurus and Aquarius is the ascendant subsequent to Scorpio.
Gemini, Capricorn, Cancer or Sagittarius is never known as an ascendant there.
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52 If the Sine of co-latitude is equal to the declination [corresponding to a longitude of] one
sign, the four [signs] beginning with Taurus do not appear to set. Likewise Scorpio, Sagittarius,
Capricorn and Aquarius do not appear to rise.

53 Pisces, Aries, Virgo and Libra; thus are the four ascendants there, [rising] in this order,
because the others do not reach the horizon.

54 The six [signs| beginning with Aries appear not to set at Mount Meru, and those beginning
with Libra [appear not to] rise. The two sections of visible and invisible [signs] are to be assumed
inversely for the demons and gods.

55 Due to the motion of the sun in the twelve signs, the human year exists here [on Earth].
This is a divine daylight and night. A divine year [is measured] by three hundred and sixty of
their days.

56 One caturyuga should be [measured] by twelve thousand divine years. And, masters have
called the caturyuga a divine yuga.

57 Forty-eight, thirty-six, twenty-four and twelve [each] multiplied by a hundred should be, in
order, the divine years in a Krta, Treta, Dvapara and Kali[-yuga).

58 There should be one thousand caturyugas in a daylight of Brahma, likewise in a night. The
creation and maintenance of the world takes place in a day and its destruction in a night.

59 This daylight is indicated as a kalpa. There should be fourteen manus in a daylight of
Brahma. There should be seventy-one yugas during a manu. After that is a twilight.

60 There are fifteen twilights, at the beginning and the end of a kalpa and in between manus.
It is remembered in this case that six fifteenths of a caturyuga is [the length of] a twilight.

61 Within a twilight in between manus, the former and latter potions are known as the “portion
of twilight” and “twilight” respectively. The division of time has been done by some intelligent
ones.

62 Fifty of our own years of Brahma have past. The very first of the remaining is to be assumed.
Within this, six manus have past, as well as twenty-seven yugas in what follows.

63 Even in the twenty-eighth yuga, three in four parts beginning with Krta have past. This
remaining part, the Kali, is going on. Thus are the words of an ancient sage.

64 Brahma constantly sees the sun exceedingly far away during a kalpa. Since the sun does
not exist during the destruction [of the world], even Brahma does not see the sun.

65 With only one sun, the four kinds of daylights, which are those of gods, of the manes,
of humans and of Brahma, exist. They should be understood with spheres for experts on the
Sphere.

90



Sho Hirose - These de doctorat - 2017

66 Those who say that the moon is above the sun are situated on Mount Meru, where the sages
are above the stars, and [above] them all is the pole star.

67 There, the moon with northern latitude is seen above the sun at the end of Gemini. There-
fore they state it like that in such case. Otherwise, it is another moon deity.

68 Thus the configuration of the sphere is stated concisely by Parames$vara. For the novice,
there is more to be said concerning the Sphere.

69 The grounding of gnomons and so forth, which I have explained previously in the Siddhanta-
dipika, a super-commentary on a commentary of the Mahabhaskariya, shall nevertheless be spo-
ken of.

70 The great shadow of the sun, when it is at the intersection of the celestial equator and
ecliptic at midday, is the Sine of geographic latitude. And its [great] gnomon should be the Sine
of co-latitude.

71 The distance between the celestial equator and the prime vertical on the circle called the
“prime meridian” is the geographic latitude. Then the co-latitude is the gap between the two
circles called the “celestial equator” and the horizon on that [prime meridian].

72 Otherwise, the Sine produced in the gap between the horizon and the pole star should be
the Sine of geographic latitude. Then the Sine produced in the gap between the middle of the
sky (zenith) and the pole star should be the Sine of co-latitude.

73 The “base” Sine of the true [longitude] multiplied by one thousand three hundred and ninety
seven (1397) and divided by the Radius should be the [Sine of] declination. The square root of
the difference of the squares of this [declination] and the Radius will be the diurnal “Sine”.

74 The [Sine of] declination multiplied by the Sine of geographic latitude and divided by the
Sine of co-latitude should be the Earth-Sine. The Earth-Sine multiplied by the Radius and
divided by the diurnal “Sine” should be the Sine of ascensional difference.

75 The Sine [of the arc] from the intersection of the six o’clock circle and the sun [to the east
or west crossing]% should be the Sine of declination south or north. The diurnal “Sine” is the
half-diameter of the diurnal circle.

76 A Sine in the diurnal circle in the gap between the horizon and the six o’clock circle is
declared to be the Earth-Sine. The base for the hypotenuse, which is the Radius, is the declination
and the upright is the diurnal “Sine”.

77 A revolution of diurnal circles and that of the celestial equator are the same in terms of
time. It is stated that a Sine in the celestial equator when it is revolved is the Sine of this
[celestial equator] in a given time.

66Supplied from the wordings in GD1 2.14 (unmandalarkayogapragaparasvastikantaralajya krantijya).
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78 The Sine of ascensional difference is the Sine in the celestial equator [formed in] a revolution
corresponding to the Earth-Sine. The Sine of ascensional difference made into an arc in pranas
is called the “ascensional difference”.

79 Since there is coexistence of [time units] beginning with pranas and [arc lengths] beginning
with minutes on a circle, an arc should be in [units] beginning with prapas and beginning in
minutes.

80 It is suitable to compute an arc on a great circle, not on a diurnal circle, because all the
Sines mentioned arise from a great circle.

81 When there is the greatest declination with the “base” Sine of three signs, then how much
with the given “base” Sine? Thus is the Rule of Three for producing the declination.

82 When with the upright that is called the co-latitude the Sine of the geographic latitude is
produced, then how much with the upright that is the [Sine of] given declination? Thus the Rule
of Three should be known in the case of the Earth-Sine.

83 When the Earth-Sine is in a diurnal circle, then how much is the Sine in the great circle?
Thus the Rule of Three should be known in the case of the Sine of ascensional difference.

84 The Sine of declination multiplied by the Radius and divided by the [Sine of] co-latitude is
the solar amplitude. This is the Sine southward or northward [corresponding to the arc in] the
horizon from the intersection of the horizon and the sun [to due east or due west].

85 The Sine of declination in the six o’clock circle is the upright, the Earth-Sine produced in
the diurnal circle is the base [and] the solar amplitude situated in the horizon is the hypotenuse.
A trilateral is formed with the three.

86 With any two among the upright, base and hypotenuse the other one is produced. Therefore
the square root of the sum of the squares of the Earth-Sine and [Sine of] declination should be
the solar amplitude.

87 If the Radius is the hypotenuse of the upright that is the [Sine of] co-latitude, what is the
hypotenuse of the upright that is the [Sine of] declination? Thus the Rule of Three should be
known for attaining the solar amplitude.

88 Having made a diurnal circle that has the [Sine of] geographic latitude as half-diameter on
the central axis and at the end of the horizon, it should be conveyed that the [Sine of] geographic
latitude and [Sine of] co-latitude are on its middle and that their hypotenuse is situated at its
circumference.

89 A planet’s “base” arc is [the arc] from the equinoctial point to the end of the planet|’s
longitude]. Its Sine is the “base”. An “upright” arc is [the arc] from the solstitial point to the
end of the planet[’s longitude]. Moreover, its Sine is the “upright”.
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90 The given [Sine of the] declination is the base and the given “base” Sine is the hypotenuse.
As for the upright, it is the given Sine in the diurnal circle. They should form a trilateral.

91 Three thousand one hundred and forty-one (3141) is the diurnal “Sine” [when the declination
is] greatest. The given “base” Sine multiplied by this (3141) and divided by the Radius should
be called the “given Sine in the diurnal circle”.

92 A Rule of Three should be considered: [If] the diurnal “Sine” [when the declination is]
greatest is the upright for the given “base” Sine when it is a Sine of three [signs] (Radius) , what
[is the upright] for the given Sine in the diurnal circle?

93 Or, it should be the square root of the difference between the squares of the given declination
and the “base” Sine. The given Sine in the diurnal circle has been described in order to establish
the measure of signs.

94 The given Sine in the diurnal circle, multiplied by the Radius, divided by the diurnal “Sine”,
made into an arc, will be the asus (i.e. pranas) when those degrees of the “base” rise at Lanka.

95 When the Sine is this much in the diurnal circle, how much is it in the great circle? Thus
should be the Sine in the celestial equator when the degrees of the “base” rise at Lanka.

96 The measure of two signs minus the measure of one sign should be the measure of the second
sign. The measure of three signs minus the measure of two signs is the measure of the third sign.

97 These (the amount of time) are decreased by the ascensional difference when [the rising
point] is in [the six signs] beginning with Capricorn and increased when it is in [the six signs]
beginning with Cancer. This becomes the time pranas when each of those degrees of the “base”
rise at one’s location.

98 [Signs] beginning with Capricorn rise quickly, and those beginning with Cancer slowly,
because the stellar sphere is elevated at the north. This is the grounding in the correction of the
ascensional difference.

99 Or, the given “base” multiplied by three thousand one hundred and forty-one (3141) divided
by the radius of the diurnal circle and then made into a chord should be the asus (i.e. pranas) it
takes for a given arc of “base” to rise at Lanka.

100 The measure of a sign is established by joining Rules of Three. Here, the Radius is the
divisor at first and elsewhere it is the multiplier. Thus these two are excluded. This is a suitable
method.

101 When there is passage, one should make the measure of the beginning and end of a given
[sign] with passage separately. Their difference should be the measure of a given [sign]. Here,
[the correction of] ascensional difference is likewise.

102 If the given [sign] goes through two quadrants, one should separately make measures in
degrees situated in each quadrant. The given measure should be their sum. The ascensional
difference is determined in each quadrant.
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103 A line called the “rising-setting” should go in the east-west [direction], from the end of the
solar amplitude. The elevation of the sun moving on the diurnal circle from the horizon is the
[great] gnomon.

104 The distance between the foot of the [great] gnomon and the rising-setting line is then
called the “gnomonic amplitude”. The given “Sine” in the diurnal circle goes through the gap
between the tip of the [great] gnomon and [the line] called the “rising-setting”.

105 In this case, the given “Sine” in the the diurnal circle is the hypotenuse, the [great] gnomon
is the upright and the gnomonic amplitude is the base. In this manner, here is a figure caused
by the geographic latitude. It is mentioned that there should be many of them.

106 With the base and so forth produced in one figure, here, with proportion, another figure
is established, since it is the geographic latitude that all are based on.

107 The given “Sine” in the diurnal circle is established with a “Sine” arising in the celestial
equator. The “Sine” arising in the celestial equator should be a “Sine” [of an arc measured in]
asus (i.e. pranas), elapsed [since sunrise| or to come [before sunset].

108 The expression “Sine” is unsuitable [for a segment extending] from the horizon, but it is
suitable for that from the six o’clock circle. Because it is the six o’clock circle that goes through
the middle of the stellar sphere, not the other one.

109 The Sine of the asus (i.e. pranas), elapsed [since sunrise] or to come [before sunset], de-
creased by the ascensional difference when [the sun is| in the northern [celestial hemisphere] and
increased by the ascensional difference when in the southern celestial hemisphere, becomes [a
Sine] in the portion above the six o’clock circle.

110 When the celestial equator is assumed to be outside the given diurnal circle, the grounding
concerning the correction of the ascensional difference within the [time] past in a day should be
known, or that the [Sine of] ascensional difference and the Earth-Sine have the same form [should
be known)].

111 This Sine in the portion above the six o’clock circle multiplied by [the radius of] a given
diurnal circle divided by the Radius becomes the given Sine in the diurnal circle in the portion
above the six o’clock circle.

112 When the Sine on the celestial equator is this much, then how much should be the [Sine]
produced in the diurnal circle? Thus the Rule of Three must be known when computing the
given Sine in the diurnal circle.

113 The Sine in the diurnal circle, having the Earth-Sine subtracted when [the sun is] in the
south [of the celestial equator]| and having the Earth-Sine added when in the north, becomes the
given “Sine” in the diurnal circle that arises in the portion above the horizon.

114 This [given] “Sine” multiplied by the [Sine of] co-latitude and divided by the Radius should
be the great gnomon. The square root of the difference between the squares of this (great gnomon)
and the Radius should be the [great] shadow of this [great] gnomon.
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115 If with the Radius as the hypotenuse the [Sine of] co-latitude is the upright, then what
should be the upright with the given “Sine” in the diurnal circle [as the hypotenuse]? Thus
should be the Rule of Three concerning the [great] gnomon.

116 This great shadow multiplied by twelve and divided by the great gnomon is the shadow of
the twelve arigula gnomon. This is obtained from the Rule of Three.

117 Or beginning from the horizon, the [given]| “Sine” in the diurnal circle multiplied by twelve
and divided by the hypotenuse at equinoctial midday is the great gnomon. Or else, this [given]
“Sine” in the diurnal circle multiplied by the [Sine of] declination and divided by the solar
amplitude is the great gnomon.

118 The establishment of the upright extending upward by the effect of the hypotenuse ex-
tending northward is stated here. This is suitable, because this pair arises from the geographic
latitude.

119 The [great] gnomon multiplied by the Sine of geographic latitude divided by the [Sine of]
co-latitude should be the gnomonic amplitude. In this case, the grounding is because the Sine
of geographic latitude is as the gnomonic amplitude for the [Sine of] co-latitude which is as the
[great] gnomon.

120 Or, the [great] gnomon multiplied by the arigulas of the [shadow at] equinoctial midday
and divided by twelve should be the gnomonic amplitude. Or else, the [great] gnomon multiplied
by the Earth-Sine and divided by the Sine of declination is the gnomonic amplitude.

121 The [Sine of] declination, which is smaller than the Sine of geographic latitude and in the
northern direction, multiplied by the Radius and divided by the [Sine of] geographic latitude is
the [great] gnomon situated in the prime vertical when the sun is on the east-west line.

122 When the sun is on the prime vertical, the gnomonic amplitude should be the same as
the solar amplitude. The solar amplitude should be [established] from the [Sine of] declination.
Therefore here, the gnomonic amplitude should be [established] from the [Sine of] declination.

123 The gnomonic amplitude should be [established] from the [Sine of] declination with pro-
portion and the [great] gnomon [should] also [be established] from the gnomonic amplitude. The
pair of Rules of Three should be for establishing the prime vertical gnomon here.

124 Here the co-latitude is the divisor at first, then it is the multiplier afterward, and then they
both disappear. The Radius is the multiplier of the [Sine of] declination, the Sine of geographic
latitude the divisor, and the result is the prime vertical gnomon.

125 The motion of [celestial objects] beginning with the moon is described in each of their own
inclined circles. Their nodes move on the ecliptic. They should be going retrograde.

126 The inclined circle touches where its own node is on the ecliptic. Its quadrant’s end has a
distance which is the greatest deviation [from the ecliptic, inclined towards] the north and south
directions.
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127 [The longitudes of] their own nodes should be subtracted from the “slow” corrected [lon-
gitude of the planet], and from the “fast” apogee in case of Mercury and Venus. The “base” [of
the longitude] diminished by the node multiplied by the greatest deviation and divided by the
Radius is the deviation.

128 Then, this multiplied by the half-diameter and divided by the “slow” radial distance is the
corrected [deviation] that has been described. And in the case of those beginning with Mars,
this is also multiplied by the half-diameter and divided by its own “fast” radial distance.

129 Four, two, eight, six and ten multiplied by ten degrees should be the degrees of the nodes
of those beginning with Mars. They have a small motion over a long time.

130 Ninety, one hundred twenty, sixty, one hundred twenty, one hundred twenty are the greatest
deviation in minutes of Mars, Mercury, Jupiter, Venus and Saturn.

131 If with a “base” Sine of the Radius the greatest deviation [is produced], then how much is
produced with a given “base” Sine? Thus should be the Rule of Three when a given deviation
[is sought].

132 When the radial distance is small their [deviation] should be increased. Likewise, when
[the radial distance is| big [their deviation] should be decreased, because there is a difference in
minutes of the figure due to the difference of far and near.

133 The motion of [the planets] beginning with Mars should be below and above because of
the “fast” and “slow” apogees. Therefore the measure of the intermediate space between a planet
and the Earth is established with two radial distances.

134 Let them state that the nodes of Mars, Jupiter and Saturn should be subtracted from each
of their true positions. In their own school, there should be a correction with the Sine of the
“fast” [anomaly] on the node as [done with a] planet.

135 But in order to establish the situation of radial distances and to establish the true [planet],
three orbits are drawn here. Within all circles, the eastern direction is at the end of Pisces.

136-138 The first circle for all [planets] is called the “zodiac” whose center is the middle of the
Earth. It is indicated that the center of the “fast” [circle] for Mars, Jupiter and Saturn is in the
direction of the “fast” [apogee] at the distance of [the Sine of] its greatest equation starting from
that middle [of the Earth]. As for Mercury and Venus, the center of the “slow” [circle] is in the
direction of the “slow” [apogee] at the distance of [the Sine of] its greatest equation. The center
of the “slow” [eccentric circle] for those beginning with Mars is in the direction of the “slow”
[apogee] starting from the middle of the second (i.e. “fast” circle). Now, the “fast” [circle] for
Mercury and Venus should have as its center the sun, located on the second circumference. All
[planets] move on the last circle.

139 Their movement on the last circle is always with a motion called “mean”. The motion
produced by the movement of a planet on the zodiac which is inferred is called “true”.
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140 The last circle for Mercury and Venus should have the “fast” greatest equation as its half-
diameter. The other [circles] have the Radius [as its half-diameter]. The triad of circles should
have an interlocked deviation.

141 One should put a line starting from the planet situated on the last circumference and
having the center of the penultimate [circle] as its end. It is the “slow” radial distance of those
beginning with Mars and the “fast” [radial distance] of Mercury and Venus.

142 Where the given line going through the path of the radial distance should be on the
second circumference is the “slow” corrected [planet] of those beginning with Mars and the
“fast” corrected [planet] of Mercury and Venus.

143-144 One should put a line, starting from the “slow” corrected [planet] in the case of those
beginning with Mars and from the “fast” corrected [planet] in the case of Mercury and Venus,
having the center of the zodiac as its end. It is mentioned that [the length of] this [line] is the
“fast” radial distance of those beginning with Mars and the “slow” [radial distance] of the other
two [planets]. The “fast” corrected [planet] of those beginning with Mars is on the intersection
of the line going through the path of the radial distance and the circumference of the zodiac.
However, that is where the “slow” corrected [planet] of Mercury and Venus is.

145 The true planet on the circumference of the zodiac is the pair of corrections of the two
apogees. Sometimes there should be a small difference with the observed true planet.

146 The “slow” radial distance and the “fast” equation should be the cause of difference in
the case of those beginning with Mars. The “fast” radial distance as well as the “slow” equation
should be the cause concerning the difference in the case of Mercury and Venus.

147 Thus, for all [planets|, the “slow” equation is calculated from the mean [planet] corrected
by half the Sine equation. In addition, a difference in steps for Mercury and Venus is assumed
in this case.

148 In this case, when a line is also made from a planet situated on the last circumference with
the first center as its end, the observed true planet is on the intersection of this line and the first
circumference.

149 If there is a given deviation within the radial distance between the middle and the end
of the middle (i.e. second) and the last circle [respectively], how much is there within a radial
distance [equal to] the Radius? Thus is the deviation on the middle (i.e. second) circumference.

150 If when the radial distance is between the middle and the end of the first and second
[circles respectively], there is this much of deviation, [then] how much is there when the radial
distance [is equal to] the Radius? Thus is the true deviation on the zodiac.

151 Some think that: “In the same manner that the difference in sight of a planet established
with a pair of true [planets| becomes small, [the difference] of deviation established with two
radial distances [becomes small]”.
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152 There are two circles for the sun and moon. There is a “slow” circle [whose center is] in
the direction of its own apogee at a distance of its own greatest equation from the center of the
zodiac. There should be a single correction method since it has a [single] apogee of its own.

153 The sum [or] difference of [a planet’s] latitude and declination when they are in a same
direction [or] in a different [direction] respectively, is said to be the arc of its own declination.
Its Sine should be the Sine of its own corrected declination.

154 Two holes made in the solstitial colure at a distance of three signs from the conjunction
with the ecliptic are known as the ecliptic poles (literally “summit of signs”) because they are
the conjunction of all signs.

155 Just as the celestial equator is at a quarter of a circle from the sphere’s pair of south and
north crosses, that which is called the “ecliptic” [is at a quarter of a circle] from the pair of
ecliptic poles.

156 The arc minute where a planet is situated should extend south and north with the pair
of ecliptic poles as its end. The latitude in the arc minute where a planet is situated always
proceeds from its declination.

157 Thus, in accordance with the ecliptic pole, the latitude has a motion going above and below
the six o’clock circle. Some [say] that joining and [subtracting] arcs of latitude and declination
is unsuitable in this case.

158 When the solstitial point is touching [the six o’clock circle], the pair of ecliptic poles should
be on the six o’clock circle. When the equinoctial point [is touching the six o’clock circle], it
should be below or above [the six o’clock circle] according to the “upright”. Thus is the elevation
of those [ecliptic poles] in this case.

159 The [Sine of] greatest declination multiplied by the Sine corresponding to the asus (i.e.
pranas) it takes for the gap between the solstitial point and the true planet to rise at Lanka
divided by the Radius is the elevation of ecliptic pole.

160 It is an elevation in the north when a planet is [in the six signs] beginning with Capricorn
and an elevation in the south when beginning with Cancer. Thus is the elevation when a planet
rises. It should be the opposite when it sets.

161 The revolution of the sphere is the same as the rising time at Lanka. Thus the elevation
of ecliptic pole caused by the revolution of the sphere is also established from the Sine of the
rising time at Lanka.

162 Otherwise, the “upright” of a planet multiplied by the [Sine of] greatest declination and
divided by the Radius is the crude elevation. Though crude, if the method would become simple
in that case, it is not to be unexplained.

163 The elevation of ecliptic pole is multiplied by the [Sine of] latitude and divided by the
Radius. The square root of the difference between the squares of this and the [Sine of] latitude
is called the “[Sine of] corrected latitude on the declination”.
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164 When this (corrected latitude) and the declination are in the same direction, the sum of
the arcs, and when different, the difference of the arcs should be the true arc of declination. The
true Earth-Sine and so forth are also [computed] from its Sine.

165 There should be a difference in rising because of the latitude going above or below the six
o’clock circle. [There is] also [a difference] because of the [planet’s] situation south or north of
the ecliptic. Thus there are two methods on visibility for a planet.

166 The elevation of ecliptic pole multiplied by the [Sine of] latitude and divided by the Radius
is the elevation of latitude, or its depression from the six o’clock circle.

167 If a latitude is on the portion where the ecliptic pole is elevated, then it is indicated that
this latitude has an elevation. And [a latitude] based on the opposite direction has a depression.

168 The elevation of latitude should be the base, the [Sine of] latitude is the hypotenuse, and
its upright is [the Sine of] the latitude set on the six o’clock circle, whose arc is on the arc of the
declination.

169 The elevation of latitude is multiplied by the Radius and divided by the diurnal “Sine”.
Its arc multiplied by the arc minutes in a sign and divided by the asus (i.e. prapas) of the sign
where the planet has gone is additive or subtractive.

170 It is subtractive when [the latitude has] an elevation, and additive when [it has] a depression
when [the planet] rises. Or, when it sets, it is indeed the same if the elevation [or depression] is
produced upon rising. If it is produced upon setting, additive and so forth is inverted.

171 The pranas of the sign in which the planet sets should be the divisor when obtaining the
visibility equation upon setting. The time within which the sign sets is equal to the asus (i.e.
pranas) within which its seventh sign rises.

172 If one thousand eight hundred minutes of arc are obtained with the asus (i.e. pranas) of
nothing else but the ascendant (rising sign), how much with the asus of the visibility equation?
Thus is the Rule of Three in this case.

173 Those who desire to divide by the asus (i.e. prapas) rising [time] at Lanka in this case to
obtain the visibility equation should be wise calculators. However, [they] are those who know
[only] one location on the sphere in this case.

174 The time within which [the sign] itself sets is equal to the asus (i.e. pranas) within which
the seventh sign [from] it rises, because the ascensional difference of the signs upon setting is the
opposite of the time they rise.

175 The difference between the Sine of declination corrected by the celestial latitude and [the
Sine of declination] itself in this case should be the declination produced by the celestial latitude.
From there the visibility equation for the geographic latitude [is established].
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176 The declination produced by the celestial latitude is multiplied by the [Sine of] geographic
latitude, divided by the Sine of co-latitude, multiplied by the Radius and divided by the diurnal
“Sine”. Its arc should be the portion of the ascensional difference made by the celestial latitude.

177 The ascensional difference [made by] the celestial latitude, multiplied by the arc minutes
in a sign, and divided by the asus (i.e. prapas) of the sign where the planet is situated is to be
subtracted upon its rising when the celestial latitude is in the north, and is to be added when in
the south. Reversely when the planet sets.

178 This pair of visibility methods has been mentioned to obtain the ascending and descending
points, but this is not its true subdivision. Instead, the two could be established with one method.

179 Half of the ecliptic is risen at all times and likewise half is always set. Now, in the middle
of the risen portion is always situated an ecliptic point called the “sight-deviation”.

180 The middle of the risen portion should be in the middle of the ascending and descending
[points]. Therefore it is indicated that the ecliptic point of sight-deviation is the ascending point
in the east decreased by three signs.

181 The Sine in the gap between the zenith and the ecliptic point of sight-deviation is called
the “Sine of sight-deviation”. When the sun is on the ecliptic point of sight-deviation, the Sine
of sight-deviation is remembered as be the great shadow.

182 The portion of the ecliptic on the prime meridian is described as the ecliptic point called
the “midheaven”, because it is [the position of] the sun at midday. This [longitude of midheaven)]
should be established according to the hour angle and the measure at Lanka.

183 The correction of ascensional difference when the signs set is opposite of when they rise,
thus this [ascensional difference| should not exist at the middle of the sky. Therefore the measure
at Lanka is indeed the measure of midheaven.

184 The Sine produced from the sum of the arcs of the midheaven ecliptic point’s declination
and the geographic latitude when they are in the same [direction or| their difference when in the
opposite direction is said to be the midheaven Sine.

185 The two gaps|, one between] the celestial equator and the zenith [and the other between] the
celestial equator and the diurnal circle are the geographic latitude and declination [respectively].
Thereupon, from these two, the Sine [of the arc] between the diurnal circle and the zenith should
be established.

186 The square root of the difference between the squares of the Radius and the midheaven
Sine is declared to be the midheaven gnomon. Then the “base” Sine of the ascending point
decreased by the midheaven ecliptic point is the “base” of the midheaven gnomon.

187 The Radius multiplied by the gnomon called the “midheaven” and divided by the “base”
of the midheaven gnomon is mentioned as the gnomon of sight-deviation. Its [great] shadow is
the true Sine of sight-deviation.

100



Sho Hirose - These de doctorat - 2017

188 1If, in this case, the midheaven gnomon should be [established] with the Sine [of an arc in
the ecliptic] between the midheaven ecliptic point and the horizon, then what with the Radius
[which is the Sine of an arc in the ecliptic] in the gap between the ecliptic point of sight-deviation
and the horizon? [This is the] gnomon [of sight-deviation] in this case. Thus is the grounding.

189 The elevation of ecliptic pole [from the horizon] is equal to the Sine of sight-deviation, in
the direction opposite to it. This is because the zenith is at a quarter of the sphere from the
horizon, and so is the ecliptic pole from the ecliptic.

190 When a given planet is situated on the horizon, the latitude multiplied by the Sine of
sight-deviation and divided by the Radius should be the elevation or depression of latitude.

191 When the latitude is situated in a direction other than the [Sine of] sight-deviation, it
should be its elevation. When the latitude is situated in the direction of the Sine of sight-
deviation, however, it is its depression.

192 The latitude’s elevation or depression is multiplied by the Radius, divided by the [Sine of]
co-latitude, multiplied by the Radius and divided by the diurnal “Sine”. Its arc is the visibility
equation in pranas.

193 The visibility equation, which is the elevation in this case, is multiplied by one thousand
eight hundred and divided by the pranas of the ascendant (rising sign). The arc minutes should
be subtracted when [the planet] is rising, and added when it is setting. Reversely when [the
visibility equation] is a depression.

194 The direction of the larger between the Sine of geographic latitude and the declination of
the midheaven ecliptic point should be that of the midheaven Sine and the Sine of sight-deviation.
In this case, the entire visibility equation has been stated.

195 When the mean sun rises above the six o’clock circle at the geographic prime meridian,
planets corrected from this [moment] are indicated by intelligent ones, among which there should
be those due to [the motion corresponding to the observer’s] location and so forth.

196 The daily motion, multiplied by the yojanas produced in the distance between the geo-
graphic prime meridian and one’s spot and divided by one’s circumference, is additive when in
the west and subtractive when in the east.

197 The rising of the sun is early in the east of the geographic prime meridian and late in the
west. Thus the motion [due to] location should be subtracted in the east and should be added
in the west.

198 When a daily motion occurs in a revolution along one’s circumference, how much then
[occurs] in a revolution along the gap between the geographic prime meridian and one’s spot?
Thus is the grounding to be considered in this case.

199 A man going toward the east should always go on one’s circumference, because the obser-
vation of the sun follows one’s circumference and the directions [come] from the sun.
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200 Two locations that have the same geographic latitude are situated east and west. This
[geographic latitude] is the same on one’s circumference indeed. Therefore this [circumference]
should be the divisor in this case.

201 When the circumference of the Earth is three thousand two hundred and ninety-nine (3299)
[at a place] where the [Sine of] co-latitude is a Radius and there is no geographic latitude, then
what would it be [at a place] with a given [Sine of] co-latitude? Thus one’s circumference is
obtained.

202 The sun’s equation of center is the difference between the true and mean suns in minutes.
The daily motion of a planet multiplied by this and divided by [the number of] minutes in a
circle should be additive or subtractive against the planet.

203 As the sun’s equation of center, when this [correction] is subtractive, the rising of the true
sun should be before the rising of the mean [sun]. When it is additive, the true sun should rise
in the reversely.

204 When a daily motion is produced in a revolution of the [stellar] sphere, what [is produced]
then in a revolution corresponding to the equation of center? Thus the grounding is said by
others. Here, the time corresponding to the equation of center should be the desire [quantity].

205 The [daily] motion multiplied by the asus (i.e. pranas) of the sun’s ascensional difference
and divided by the asus in a day is subtractive against the planet when the sun rises in the
northern celestial hemisphere and additive when [it rises] in the southern [celestial hemisphere].
It is reverse when [the sun] sets.

206 The rising of the sun [above the horizon occurs] before it rises above the six o’clock circle
when it is in the northern celestial hemisphere and after when it is in the southern [celestial
hemisphere], and reversed for the setting, therefore the rule for subtractive and so forth is like
this.

207 When there is a daily motion with the asus (i.e. prapas) in a day, then what is with the
pranas in the ascensional difference? Thus a Rule of Three should be known for the correction
of the ascensional difference against [the longitude of] a planet.

208 Others say that in this case, the divisor for the ascensional difference and the other (daily
motion) is the minutes of the sun’s [daily] motion added to the pranas in a day, [because] a day
arises from the revolution of the sphere together with the motion of the sun.

Now, the computation of the true sun from the prime vertical shadow and from the midday
shadow.

Here is an example of the prime vertical shadow.

209 If the shadow of the sun on the prime vertical, is the same [length] as the gnomon, and
then shorter on the next day, what is the sun[’s longitude]. Or, if it is longer on the next day,
then what is it, say, o learned one! The Sine of geographic latitude is measured as six hundred
and forty-seven (647).
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Here is the procedural rule in two arya verses.

210 The [great] gnomon is established from the shadow, the gnomonic amplitude from the
[great] gnomon, and in this case that [gnomonic amplitude] indeed is the solar amplitude. The
[Sine of] declination from the solar amplitude, the “base” Sine from the [Sine of] declination, and
the sun[’s longitude| should be its arc.

211 If the shadow produced on the next day is longer, in this case [the longitude of] the sun
with passage should be half a circle decreased by the “base” arc, because in this case the course
is southward.

(Commentary) In this case, the [great] gnomon computed from the hypotenuse of the shadow
with proportion is 2431. The gnomonic amplitude is 466. However this should be understood as
lessened by a quarter. This is the solar amplitude. The [Sine of] declination computed from the
solar amplitude by a rule to reverse is 457. However this should be understood as increased by a
half. The arc of the “base” Sine established from the declination is 1147. The sun[’s longitude] is
0 19 7. The second sun[’s longitude] is 5 10 53. Since they are established from the declination,
these two [are the positions of the sun] with passage.

Now an example on the midday shadow.

212 The shadow of the gnomon is measured half when the sun is on the southern bamboo-piece,
or in that circumstance [the shadow is] measured one eighth. When the sun is on the northern
bamboo-piece, it is measured one seventh. All (shadows) are longer or shorter on the next day.
Say o wise, the two [longitudes of the] sun [in each situation]. The Sine of geographic latitude is
equal to six hundred and forty-seven (647).

Here is the procedural rule in five arya verses.

213 The great shadow at midday is called the Sine of meridian zenith distance [of the sun].
The arc of declination is the gap between the arcs of meridian zenith distance and geographic
latitude when the sun is located to the south of the zenith.

214 When the sun is to the north [of the zenith], the sum of the meridian zenith distance
and the geographic latitude is the declination. In that case, [the sun] is in the northern celestial
hemisphere. In the preceding case (i.e. when the sun is to the south of the zenith), if the meridian
zenith distance is larger [the sun is in] the southern celestial hemisphere, if the geographic latitude
is larger [it is in] the northern [celestial hemisphere].

215 When the sun is to the south of the zenith and the shadow is growing, [the sun| should be
on the southward course. If [the shadow] is shrinking, [the sun is on] the northward course. It
should be reversed when the sun is to the north of the zenith.

216 The “base” Sine is established from the declination, its arc should be the sun[’s longitude]
when it is in the northern celestial hemisphere and on the northward course. When on the
southward course, [the sun’s longitude] is half a circle diminished by [the “base” Sine].
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217 The [established longitude of] the sun is increased by an arc of six signs when it is in the
southern celestial hemisphere and if on the southward course. When on the northward course, a
circle diminished by the arc produces the [longitude of] the sun with passage.

(Commentary) In this case, the great shadow established from the first shadow and its hy-
potenuse is 1537. This is also the Sine of meridian zenith distance [of the sun]. In this case, since
the sun is to the south of the zenith, the difference between the arcs of meridian zenith distance
and geographic latitude is the arc of declination, 943. In this case, since the meridian zenith
distance is larger, [the sun] is in the southern celestial hemisphere. The arc of the “base” Sine
obtained from the Sine of declination is 2509. Since it is in the southern celestial hemisphere,
this arc increased by six signs is [the longitude of] the sun when the shadow is growing, 7 11 49.
When the shadow on the next day is shrinking, [the sun| should be on the northward course.
Therefore, a circle made of twelve signs, decreased by this “base” arc, is [the longitude of] the
sun, 10 18 11.

Now in the second case, the shadow in arnigulas is 1 30. The great shadow is 426. In this case too,
since the sun is to the south of the zenith, the difference between the arcs of geographic latitude
and meridian zenith distance is the arc of declination, 224. In this case, since the geographic
latitude is larger, [the sun] is in the northern celestial hemisphere. The arc of the “base” Sine
established from the [Sine of] declination is 553. Since the sun located in the northern celestial
hemisphere is to the south of the zenith, it should be on the southward course when the shadow
is growing. Therefore, six signs decreased by this arc is [the longitude of] the sun, 5 20 47. When
the shadow on the next day is shorter, the “base” Sine itself is [the longitude of] the sun, 0 9 13.
Now in the third case, the shadow in arnigulas is 1 43. The great shadow is 487. Since the sun is to
the north of the zenith, the sum of the arcs of the meridian zenith distance and the geographic
latitude is the arc of declination, 1140. The “base” arc is 3194. In this case, since the sun
is located in the northern celestial hemisphere, when the sun is growing, this arc itself is [the
longitude of] the sun, 1 23 14. When the shadow is shrinking, six signs decreased by the arc is
[the longitude of] the sun, 4 36 46.

Since they are established from the declination, these [are the positions of the sun] with passage.

218 The gap between the arcs of declination and meridian zenith distance when they are in
the same [direction], or their sum when they are in different directions, should be the arc of
geographic latitude. The distance between the two [longitudes of] the sun obtained from shadow
and mathematics is the [motion of] the solstice.

(Commentary) When the two are in one direction, the “gap (difference)” between the “arcs”
of declination (kranti paraphrased to apakrama) and “meridian zenith distance” should be the
“arc” of geographic latitude (pala paraphrased to aksa). And when the two are in “different
directions”, their sum is the arc of geographic latitude (paladhanus paraphrased to aksacapa). In
this manner, the geographic latitude is established from the shadow and the sun. In the previous
example, the arc of the [great] shadow in the first case is 1594. The arc of declination is 943.
Both being in the south, their difference is the arc of geographic latitude, 651. Now, the arc of
meridian zenith distance in the second case is 427. The arc of declination is 224. In this case,
the declination is in the north and the meridian zenith distance in the south. Therefore their
sum is the arc of geographic latitude, 651.
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Now, the “distance” among the two [longitudes of the] sun (ravi paraphrased to arka) computed
from the meridian “shadow” and computed from a treatise on “mathematics” is the motion of
the “solstice”. In this manner, the motion of the solstice is established according to the midday
shadow.

219 When the extremity of the shadow of a fixed gnomon falls on one [and the same| dot at
two [moments in] time, the sun with passage should be on a solstitial point at the [moment in]
time situated in the middle of these two [moments of time)].

(Commentary) At any time, when the “extremity of the shadow”, produced by a prominent
part like the extremity of a “gnomon” made immovable, something like a post or mountain, or
an unmoving piece of wood, “falls” on a given “dot”, and then when at another “[moment of]
time” the “extremity of” that “shadow” “falls” on this very “dot”, the “sun with passage” is on
a “solstitial point” at the “[moment of] time” in “the middle of these two [moments of] time”.
The motion of solstice is to be known in this manner.

220 In this case, the shadow of the sun situated in a given direction is to be established with
a specific rule. The [great] shadow is to be assumed in a circle of direction. The circle should be
made here with a string.

221 The sum of the gnomonic amplitude and the solar amplitude in the same [direction, or]
their difference when in different [directions] is the “base of direction”, heading south or north,
in the figure that has the [great] shadow as its hypotenuse.

222 The Sine of one and a half sign is the “Sine of direction” when the sun is in an intermediate
direction. The Sine of half of that [is the Sine of direction] when in the middle of east and south-
east. [The Sines for] other [arcs] are also to be found likewise.

223 It is described that: “The ‘base to be established’ is the Sine of direction multiplied by
the given [great] shadow and divided by the Radius”. If the base of direction and the base to be
established are equal, the sun should be in the given direction.

224 The quotient of the difference between the base of direction and the base to be established
when they are in the same [direction], and their sum when in different directions multiplied by
a multiplier with a divisor, is subtractive or additive against the given [great] shadow.

225 In this respect, when the base of direction is located south of that called “the [base] to be
established” it is additive and should be subtracted when in the north. It is reversed when the
meridian zenith distance is in the north. When there is a pair of [great] shadows, what is done
should be done in this way.

226 If the geographic latitude is large and the meridian zenith distance is in the north, the
solar amplitude could be larger than the Sine of direction. There are two [great] shadows in one
same direction because the motion [of the sun] is in a circle.
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227 Here, when the base of direction is small [compared to the base to be established], the
result is additive against the [great] shadow and when bigger [the result] should be subtracted.
It should be done in this way for the sake of the first [great] shadow, and reversed to obtain the
second [great] shadow.

228 When the sun rises in the direction of the meridian zenith distance, the divisor should
be the difference between the Radius and the solar amplitude. Otherwise it is the sum. The
multiplier is the difference between the Radius and the [great] shadow at midday in the “without-
difference” [method].

229 The multiplier and divisor mentioned here, divided by tens or a given [number of] hundreds,
[can] also be a multiplier and divisor, since there is no fault in the “without-difference” [method]
because the difference is small.

230 From the [great] shadow, the [great] gnomon should be [computed]. From that, the
gnomonic amplitude and the two bases. Then from the difference between these two, the [great]
shadow. It is repeated again in this manner until the two bases here are the same.

Here is an example.

231 When the sun at the end of Scorpio is situated in the southeast direction, [and] when [the
sun] at the end of Taurus is situated in the northeast direction, say o wise one, what are the
[lengths of] the two shadows for a gnomon equal to twelve. The Sine of geographic latitude is
measured as six hundred and forty-seven (647).

(Commentary) In both cases, the [Sine of] declination is 1210. The solar amplitude is 1232.
In the first case, the shadow is assumed to be equal to the Radius. Then the solar amplitude
itself is the base of direction. From the Radius, the base to be established is established as
2431. The difference of these two in one [same| direction is 1199. This is the multiplicand. In
this case, since the sun is in the southern direction at sunrise and at midday, the difference
between the Radius and the solar amplitude is the divisor, 2206. The midday shadow is 1795.
The difference between the Radius and the midday shadow is the multiplier, 1643. These two
will always be the multiplier and divisor in the “without-difference” method. The quotient [of
the division] of the multiplicand multiplied by the multiplier by the divisor is 893. Since the
base of direction is smaller than the base to be established [and thus] to the north [of it], this is
subtractive against the shadow equal to the Radius that has been previously computed. When
done in this way, the shadow is established as 2545. In this case, this is the given shadow. Thus
the [great] gnomon is established, and the gnomonic amplitude from the [great] gnomon. Since
the gnomonic amplitude and the solar amplitude are in the same direction, their sum is the base
of direction, extended north and south in the circle that has the shadow as its hypotenuse, 1675.
From the shadow, the base to be established is established as 1800. The difference between these
two is 125. Having divided this multiplied by the multiplier by the divisor, the quotient is 93.
In this case again, one should subtract this from the previously [established] shadow, 2545, since
the base of direction is smaller than the base to be established [and thus] to the north [of it].
Having done in that manner, the shadow is 2452. Thus again, having done the [great] gnomon
and so forth, the shadow without difference is 2407. This is the great shadow when the sun is in

11
the southeast direction. Thus the shadow of the twelve arngula gnomon is established as

46
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Now in the second case, since the sun is in the northern direction at the time of sunrise and
at the time of midday too, the difference between the Radius and the solar amplitude is the
divisor, that has been indeed previously established, 2206. In this case, the midday shadow is
584. The difference between the midday shadow and the Radius is the multiplier, 2854. In this
case, having assumed a given [great] shadow, having computed the [great] gnomon, the gnomonic
amplitude, the base of direction and the base to be established from it as before, and having
computed the result of the difference between the [two] bases with the multiplier and divisor
and having shaped [the result] against the shadow assumed previously by oneself, subtractive
or additive according to the rule, the [great] shadow without difference should be computed.
This [great shadow] without difference is 840. This is the [great] shadow when the sun is in the
northeast direction. The shadow of the twelve arigula gnomon is 1.
When the sun risen in the northern direction goes to the meridian in the southern direction, then
the sum of the Radius and the solar amplitude is the divisor.

Another example like the previous one:

232 When the sun situated at the middle of Aries goes to the southeast direction, and when
[the sun] at the middle of Gemini [goes to] the middle direction of east and northeast, tell us
each shadow o wise one, here the gnomon and geographic latitude are as previously.

(Commentary) Now in the first case, the solar amplitude in the north is 368. The midday
shadow in the south is 289. Since these two are in different directions, in this case the sum of the
Radius and the solar amplitude is the divisor, 3806. The multiplier is 3149. The given assumed
[great] shadow is 2977. The solar amplitude decreased by the gnomonic amplitude is 39. This
is the base of direction in the north. In this case, the base to be established in the south is
2104. The sum of these two in different directions multiplied by the multiplier and divided by
the divisor is 1773. Since the base of direction is in the north, this should be subtracted from the
previous [great] shadow. In that case, the [great] shadow produced is 1204. Having done again
in this way, the [great] shadow without difference is 405.

Now in the second case, the solar amplitude is 1373. This is northward. The midday shadow in
the north is 731. The divisor is 2065. The multiplier is 2707. In this case, the Sine of direction
is 1315. The assumed [great] shadow is 3438. In this case, the solar amplitude itself is the
base of direction. The Sine of direction itself is the base to be established. From the difference
between the bases, the result is 76. This should be subtracted from the given shadow in order to
establish the first [great] shadow, since the base of direction is larger. When the base of direction
is smaller, then it should be added. In this case, the [great] shadow without difference is 3422.
This should be the great shadow when the sun is at the midpoint between the northeast and east.
In this very case, there is a second [great] shadow. In order to establish it, having assumed a
given [great] shadow decreased by a given number from the [great] shadow in the given direction
established in the first case, the computation is to be carried out. In that case, the previous
[great] shadow decreased by a thousand is 2422. The base of direction is 906. The established
shadow is 926. The result from the difference between the bases is 26. This should be subtracted
in order to establish the second [great] shadow, since the base of direction is smaller. In this
case, the [great] shadow without difference is 2318. This is the second [great] shadow in the given
direction.

From these two, the two shadows of the twelve arigula gnomon are established.
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233 It should be understood that the result be increased by half or the like of itself when the
approach in an “without-difference” [method] is slow. When it is going upward and downward
(i.e. oscillating) due to the quickness, half or the like is subtracted with reason.

9

(Commentary) “In an ‘without-difference”’ method, “when the approach” of what is to be
established “is slow”, then in each of these cases “it should be understood” “with reason” that
the obtained “result be increased by half of itself”, increased by the result multiplied by one
or increased by twice [of itself], according to the slowness of progress. When, “due to the
quickness” of the progress, the establishment goes “upward” once and then “downward” once
[and so on], “then” the result must be subtracted (una paraphrased to hina) by half (dala
paraphrased to ardha) of itself, two thirds or three quarters according to the fastness. Thus
done, the establishment becomes fast. This must also be considered for every “without-difference”
method.

234 The difference itself between the two bases, or twice, or even half should be additive or
subtractive against the [great] shadow, so that the result without difference is established in this
case.

(Commentary) If the declination and so forth are established by the shadow in a direction
like the intermediate, then by the co-latitude and so forth established with fractions the exact
shadow is established. Thus in the case of [the example beginning with] “when [the sun] at
the end of Taurus is situated in the northeast direction”; the [great] shadow without difference
established in that manner is 838.

Now, the computation of [the longitude of] the sun with the shadow of the sun in an intermediate
direction produced at that time and with the hour angle, and the computation of the Sine of
geographic latitude with that [sun’s| declination and so forth is explained.

235 When the sun is at the intermediate direction, it is remembered that the base and upright
of the shadow as hypotenuse is equal. Therefore the root of half of the squared shadow is the
measure of the base and upright.

236 The upright should be extended east and west, and the base should be extended south
and north here. The “upright” in the diurnal circle, going east and west, should be equal to the
[great] shadow’s upright.

237 The Sine corresponding to the time difference between [the middle of] the sky and the sun
in the east or west should be produced in the equator. Then this is described as the Sine of the
nadis (i.e. ghatikas) called the hour angle.

238 If with the Sine of hour angle the “upright” in the diurnal circle [is established], then how
much [is established] with the Radius? Thus is the half-diameter of the diurnal circle.
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239 The [Sine of] declination is established from the half[-diameter] of the diurnal circle in
this case. The “base” arc [is established] from the [Sine of] declination. This arc should be [the
longitude of] the sun in this case. Otherwise that decreased by half a circle is [the longitude of]
the sun.

240 In this respect, when it is in the southern [celestial] hemisphere, the arc of the [“base”]
increased by half a circle should be [the longitude of] the sun. Or, its arc decreased by a circle
is [the longitude of] the sun, [decided] from the [change in] measure of the shadow on two days.

241 In this case, the Sine of geographic latitude is to be established with an “without-difference”
method according to the base of [great] shadow and so forth. It is first assumed in this case that
some amount added to the [Sine of] declination is the solar amplitude.

242 When the solar amplitude and the base of [great] shadow are in the same or different
direction, respectively, their difference or sum is the gnomonic amplitude. The square root of
the sum of the squares of this (gnomonic amplitude) and the [great] gnomon is the given “Sine”
in the diurnal circle.

243 The Radius multiplied by the gnomonic amplitude and divided by the given “Sine” in the
diurnal circle should be the Sine of geographic latitude. From the [Sine of] geographic latitude,
the Sine of co-latitude should be [obtained]. From the [Sines of] co-latitude and declination, the
corrected solar amplitude should be [obtained].

244 Again, the difference of the base of [great] shadow and solar amplitude and so forth should
be done. The gnomonic amplitude and given “Sine” in the diurnal circle, the Sine of geographic
latitude and Sine of co-latitude, [and] the solar amplitude [should be computed as well]. Thus here
at the end of such “without-difference” [method], should be the corrected “without-difference”
Sine of geographic latitude in this case.

Here is an example:

245 The shadow of the gnomon measuring one thousand six hundred and sixty-seven (1667) is
said to be equal to four hundred and nineteen (419) when the sun goes to the northeast direction.
The pranas between [the middle of] the sky and the [current] sun are measured as two thousand
five hundred and forty-seven (2547) fourths. The sun and the geographic latitude are to be said
by you, o knower of mathematics, if [studies have been made| with exertion on the Sphere.

(Commentary) In this case, the gnomon is 1667. Its shadow is 419. Having computed their
hypotenuse from these two, and then, when the Radius is the hypotenuse, the great shadow
established from the hypotenuse and the shadow is 838. Its gnomon is 3334. The square root of
half the [great] shadow’s square is 592. Its fraction in seconds is 33. Then, the base in the figure
that has the [great] shadow as hypotenuse is the same as this root. Then, likewise for the upright.
Then, the “upright” Sine extending east and west in the diurnal circle is also the same as this
upright, because the upright of the [great] shadow is situated on the “upright” in the diurnal
circle. The hour angle in asus (i.e. pranas) going between the zenith and the sun multiplied by
four is 2547. Since there are fourths, these [asus] are to be divided by four. The pranpas thus
made are 636. Their fraction which is the sixtieth is 45. Their Sine is 633. And the fraction is
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4 [sixtieths]. This is the Sine extending east and west in the celestial equator. The “upright”
Sine in the diurnal circle, that is the same as the upright of the [great] shadow, multiplied by the
Radius and divided by the Sine of hour angle is somewhat less than 3218. And this is the diurnal
“Sine”. The [Sine of] declination established from it is 1210. Its [corresponding] “base” [Sine] is
somewhat less than 2978. Its arc is two signs increased by one minute. This is [the longitude
of] the sun. Or else, six signs decreased by this is [the longitude of] the sun. If the shadow on
the next day [is larger], the first [is the answer|. If the shadow on the previous day is larger, the
second.

Now, in order to establish the geographic latitude, a given number is to be added to the given
[Sine of] declination, 1210. In that case, the Sine of declination increased by ten is 1220. This
is to be assumed as the solar amplitude. The base [in the trilateral] where the [great] shadow is
hypotenuse is 593. The difference between these two in the same direction is 627. This is the
gnomonic amplitude. The [great] gnomon is 3334. The square root of the sum of the squares of
these two that have the forms of the base and upright is 3392. This is the given “Sine” in the
diurnal circle that has the form of a hypotenuse. Then, the Radius multiplied by the gnomonic
amplitude should be divided by this given “Sine” in the diurnal circle. In that case, the quotient is
636. This should be assumed as the Sine of geographic latitude. The square root of the difference
between the squares of the Sine of geographic latitude and the Radius is 3379. This is the Sine
of co-latitude. Then, the [Sine of] declination multiplied by the Radius should be divided by
this Sine of co-latitude. In that case, the quotient is the corrected solar amplitude, 1231. Then
again, having assumed that the difference between the solar amplitude and the base of [great]
shadow is the gnomonic amplitude, the Sine of geographic latitude without difference is to be
computed with the method that has been mentioned. Then, the corrected Sine of geographic
latitude without difference is 647.

Here is an example in the southern celestial hemisphere:

246 One one hundred and oneth (1/101) and one one hundred and sixth (1/106) should be
subtracted from the gnomon. The remainder of the gnomon here is the shadow of the sun in the
southeast direction. The number of pranas arising from the midday sun are one thousand nine
hundred and sixteen (1916). Say, o wise one, the sun[’s longitude] and the geographic latitude
too, if you are an expert on the Sphere.

(Commentary) In this case, the gnomon assumed by one’s own wit is 2454. And the sixtieths
are 28. The quotient [of the division] of this by one hundred and one is 24. The sixtieths are
18. Then again, the quotient [of the division] of this by one hundred and six is 23. The sixtieths
are 9. These two quotients are to be subtracted from the previous gnomon assumed with one’s
own wit. Then the remainder is 2407. The sixtieth is 1. This is a shadow of this gnomon. From
these two, the gnomon and shadow, the hypotenuse that is the same as the Radius should be
established. Thus in this case, these two are indeed the great gnomon and great shadow. The
hour angle in asus (i.e. prapas) is 1916. Its Sine is 1818. The sixtieths are 17. The segment in
the diurnal circle is the same as the upright of the [great] shadow, 1702. The sixtieth is 1. In
this case, the quotient is the diurnal “Sine”, 3217. The sixtieths are 54. The [Sine of] declination
is 1209. The sixtieths are 38. The “base” Sine is established from it. It is almost the same as a
Sine of two signs. Its arc is two signs. This increased by half a circle is [the longitude of] the sun.
Or else, a circle decreased by this is [the longitude of] the sun. As for the geographic latitude, it
is as previously.
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247 FEven when the sun is in any direction, everything is established with this method.

248 Planets revolve on a circle which has the middle of the Earth as its center and has the
measure of its own orbit. The observer should be on the Earth’s surface. Therefore his circle of
sight has the Earth’s surface as its center.

249 The observer’s own horizon should be above the horizon going through the middle of the
Earth by a difference of the Earth’s half-diameter, because his [sight of] rising and setting [occurs]
there (at his own horizon).

250 A planet situated on the horizon from the middle of the Earth should be below the horizon
of an observer. Here, the downward motion [of a planet] having a measure of the Earth’s half-
diameter is called its parallax.

251 The observer sees a planet located above the middle of the Earth above himself, too.
Therefore, when a planet is situated on the zenith, its parallax should not exist.

252 Since there should be no [parallax] on the middle of the sky and the parallax should be
greatest on the horizon, the parallax of a planet should be established from the Sine of sight
with proportion.

253 If a half-diameter of the Earth is [obtained] on [a planet’s] own orbit when [the planet is]
at a distance [whose Sine corresponds to| the Radius from the middle of the sky, then what at
the Sine of sight? Thus is the parallax at that time.

254 Even if the parallax measured in yojanas are equal in this case due to being situated in
one [and the same] minute of arcs, parallaxes in minutes become different due to difference in
orbits of planets.

255 If the parallax measured in yojanas on the planet’s own orbit is this much, how much on
a great circle? Thus is the parallax measured in minutes.

256 In this case, it is indicated that the great circle obtains the same yojanas as minutes,
because even an equation in yojanas is an equation in minutes with merely a different name.

257 Therefore, an observer on the Earth’s surface sees planets situated on one [and the same]
minute. Because the locations [of planets] are different, those situated below are quick and those
located above have a small daily motion.

258 An observer sees the gap between two planets located below and above that is equal to
the difference between their own parallaxes, because they both indeed have their own parallax.

259 Each of their own minutes of parallax should be subtracted from each of their own [arc of
great] gnomon. The remainder should be its own corrected [arc of great] gnomon [as seen| at the
Earth’s surface. Thus should be established in this case.
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260 This should be instructed with a drawing. One should draw a circle of the Earth. Then
having set its middle as center, each of [the planets’] own orbital circle should be drawn with the
lines of direction.

261 Having set the intersection of the north-south line and the circumference of the Earth as
center, one should then draw a circle with a string [having the length] of the Radius. This is the
circle of sight with the lines of direction.

262 One should make every circle marked with degrees or ghatikas here. In this case, the
north-south line is to be assumed as a line extending below and above.

263 In this case, on that very degree in the circle of sight, which is the degree on its own orbital
circle that the planet is moving at that time, one should make a dot [called] the “star in space”.

264 One should again make a dot called the “planet” on the conjunction of the circumference
of the circle of sight and a line that goes through the planet moving on the circumference of the
orbit and the center of the circle of sight.

265 What exists in the intermediate space between these two dots called the “star in space”
and the “planet” is the parallax measured in minutes of the planet at that time.

266 One should draw two lines equal to the [half-]Jdiameter of the orbit from the middle of the
circle of sight going through the two dots. The distance between their tips is the measure of the
parallax in yojanas.

267 The parallax should always be on the circle of sight directed toward the planet. The
difference in sight is the parallax because the view of the observer follows the planet.

268 Hence the parallax is said to have the nature of a hypotenuse. Meanwhile, the motion of
this [planet] follows the ecliptic. This is the base, the other should be the upright. These two
are the longitudinal parallax and latitudinal parallax in an eclipse.

269 It is assumed by calculators that the longitudinal parallax is a planet’s motion on the
ecliptic in an eclipse. [It is assumed that] the latitudinal parallax is [its] deviation from its own
ecliptic. Therefore the two are base and upright.

270 The upright is established from the Sine of sight-deviation while the base [is established]
from the Sine of sight-motion. The square root of the difference between the squares of the Sine
of sight and the Sine of sight-deviation is called the Sine of sight-motion.

271 When the [Sine of] sight-deviation is zero, the whole parallax is situated on the ecliptic,
because at that time it is the ecliptic that happens to be the circle of sight directed toward the
planet.

272 When the [Sine of] sight-deviation is equal to the Radius, the entire parallax goes through
the side of the ecliptic, because in this case the ecliptic is like a girdle in the middle of the circle
of sight.

112



Sho Hirose - These de doctorat - 2017

273 By the effect of the increase in the upright called the “[Sine of] sight-deviation”, there
should be an increase in latitudinal parallax in this case. By the effect of the increase in the base
called the [Sine of] sight-motion, there is also increase in longitudinal parallax.

274 The [Sine of] sight-deviation and the [Sine of] sight-motion, each multiplied by the half-
diameter of the Earth and divided by the hypotenuse called the “Radius”, are the latitudinal
parallax and longitudinal parallax, respectively, measured in yojanas.

275 If there is this much yojanas in the radial distance of yojanas, how much in the radial
distance of a Radius? Thus also the measures of the latitudinal parallax and longitudinal parallax
having the nature of minutes are established here.

276 Or, If the Sines of sight-motion and sight-deviation are the base and upright of the hy-
potenuse which is the Sine of sight, then what two [are the base and upright] of the parallax as
hypotenuse? Thus are the longitudinal parallax and latitudinal parallax stated in eclipses.

277 The [mean] radial distance in yojanas of the sun is equal to four hundred fifty-nine thousand
five hundred and eighty-five (459,585). The [mean] radial distance in yojanas of the moon is equal
to thirty-four thousand three hundred and seventy-seven (34,377).

278 These two multiplied by the radial distance without difference and divided by the Radius
becomes the true [distance in yojanas], because a planet on the degrees of the perigee and apogee
would move below and above respectively from this location.

279 Four thousand four hundred and ten (4,410) for the sun, three hundred and fifteen (315)
for the moon, one thousand fifty (1,050) for the Earth. The diameter of the orb in yojanas has
been mentioned.

280 The diameters of the orbs of the sun and moon that have been indicated, multiplied by
the Radius and divided by their true radial distance in yojanas, are the true [sizes] in minutes.

281 The obscuring of the sun by the moon situated below it is called its eclipse. Because the
orbits of the two (the sun and moon) are different, the obscuring of the sun is different in each
location.

282 The entrance of the moon into the Earth’s shadow on its own path is called its eclipse.
The moon that has entered into the umbra should have a single shape everywhere.

283 If the moon is obscured by the umbra, then why is it called the “destroyer of darkness”?
Because the rays of the moon are the rays of the sun. Therefore, how can they be in the umbra?

284 A place where a string of light falls is provided with brightness. A place without a string
of light should be entirely covered with darkness.

285 The shadow situated at the place where the sun is obscured by the Earth should be the

shadow of the Earth. Its established measure is explained here with the grounding belonging to
the “shadows”.
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286 [The height of] a gnomon is equal to twelve arigulas. The height of a lamp is equal to
twice that amount. In this case, the ground in the space between the gnomon and the lamp is
considered in the measuring [units] of the gnomon [and likewise for] the shadow.

287 The extremity of the gnomon’s shadow should be the place where a string, starting from
the lamp and touching the tip of the gnomon, falls on the ground. That string is known as the
hypotenuse.

288 The ground between the extremity of the shadow and the foot of the gnomon should be
the base with the gnomon as upright. The ground between the extremity of the shadow and the
foot of the lamp is the base of the upright which is the lamp.

289 The base belonging to the lamp decreased by the gnomon as upright is located in the
space between the extremity of the gnomon and the lamp. Then the hypotenuse for the base
and upright should be the string between the two extremities.

290 If the base [produced] from the upright, which is the lamp decreased by the gnomon, is
equal to the ground in the gap between the gnomon and the lamp in this case, what is the base
[produced] from the upright which is the gnomon? Thus the shadow of the gnomon should be
produced.

291 Here the lamp is the half-diameter of the sun’s orb and the gnomon is the Earth’s half-
diameter. The ground in the space between the gnomon and lamp should be the corrected radial
distance of the sun in yojanas.

292 In this case, the shadow of the indicated gnomon should be the Earth’s shadow. Its circle
is equal to the Earth [in size] at the foot, small at the head. It is [cusped] like a cow’s tail.

293 The place in the space where the strings that departed from the sun’s circumference and
went through the Earth’s circumference join together should be the tip of the Earth’s shadow.

294 Thus, the corrected radial distance of the sun in yojanas multiplied by the Earth’s diameter
and divided by the difference of the diameters of the sun and the Earth should be the measure
of the length of the Earth’s shadow in yojanas.

295 In this case, there is no difference in the result when doubling the desire quantity, because
here it is understood that the measure quantity is multiplied by two.

296 The quotient of [the division of] the shadow’s length decreased by the true radial distance
of the moon in yojanas multiplied by the Earth’s diameter by the shadow’s length is the measure
of the umbra’s diameter in this case.

297 The diameter of the umbra multiplied by the Radius and divided by the [true] radial
distance of the moon in yojanas is the disk of the umbra in minutes on the path of the moon.

298 The length of the shadow decreased by the gap [corresponding to] the true radial distance
of the moon in yojanas is the measure of the length of the shadow’s portion that has gone above
the path of the moon.
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299 [Concerning the Earth’s shadow,] at a distance of its length from the shadow’s tip, its
diameter becomes equal to the Earth. Then what would it be at the distance above the path of
the moon? Thus is the diameter of the umbra [in yojanas].

300 When it is this much (the diameter of the umbra in yojanas) on the orbit of the moon,
then how much is it on a great circle? Thus should be the disk of the umbra in minutes on the
path of the moon.

301 An eclipse [occurs| as long as the figure in the gap between the eclipsed and the eclipsing
is smaller than the sum of their half-diameters. When [the figure] is bigger than that, the whole
planet is seen.

302 Thus the Goladipika has been proclaimed by us concisely. May the reader be enumerated
among the experts on the Sphere.
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Part 111

Commentary
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Notes on the commentary

We do not have a fully extant commentary on GD2, and the following commentaries are my in-
terpretation of the verses. Our goal is not to examine the accuracy or validity of the contents in
comparison with modern astronomy, but to reconstruct Paramesvara’s intentions and reasonings
behind his words. Therefore I shall rely on other texts by Paramesvara, notably his commen-
tary on the Aryabhatiya and super-commentary Siddhantadipika on the Mahabhaskariya. Other
authors and treatises shall also be quoted to reflect on his sources of ideas. Sources (critical
editions) of the texts shall be mentioned each time. Unless indicated otherwise, the English
translations are of my own, for the sake of uniformity in the expressions. However I am deeply
indebted to preexisting translations, especially those accompanying the critical editions.

Diagrams shall be used frequently for our explanations, but apart from a few exceptions where
I follow Paramesvara’s verbal instructions, they are my interpretations. None of our manuscripts
contain diagrams. I have drawn most of the diagrams three-dimensionally under the hypothesis
that an armillary sphere could have been used for the explanation. Unless noted otherwise,
north is to the left as they are expressed in the same word (uttara, etc.) in Sanskrit. I shall
also use projections on planes and images as viewed from an observer inside the sphere whenever
necessary.

Formulas are used for simplifying the expressions. Numerous arcs and segments are intro-
duced and named by Parames$vara, and I have assigned a symbol (basically Roman or Greek
letters, with indexes or suffixes whenever needed) for each of them. I have tried not only to
be consistent within this treatise but also with previous historians. Nonetheless there are many
cases where I had to introduce an original symbol. See appendix D for a full list.

Numbers are written in decimal notation, but fractional parts may also be written in sexagesi-
mals whenever necessary. In this case, the integer and fractional parts are separated with a semi-
colon (;) and lower places are placed after commas (,). For example, 633; 15,35 = 633+ % + %.
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1 Invocation (GD2 1)

In GD2 1.ab, Parame$vara pays homage to the god Ganesa (the deity of knowledge and remover

of obstacles), the goddess Sarasvati (the goddess of speech and learning), teachers and planets.

It is more usual for him to praise Siva or the sun (table 1.1), and the only other exceptions (apart

from those which do not have invocation verses) are GDI and the commentary on the Lilavati.
GD1 1.1 is fully dedicated to Ganesa:

I bow to the child Ganesa (gajanana; elephant-faced) child settling in the lap of Parvati’,
intent upon drinking milk under the wishing tree (kalpadruma). (GD1 1.1)?

The opening verse in Parames$vari, a commentary on the Lilavati by Bhaskara II, resembles
both Goladipikas.

I bow to Ganesa (ganesana) settling in the lap of Parvati, also to “the god of speech (vagis-
vara)” and holy Siva (rudra®), the ocean of compassion (krpanidhi). (Paramesvari opening
verse 1)4

If vagisvaram was actually read vagisvarim (which causes no metrical problem), it would refer
to Sarasvati like GD2.

Next, he announces what will follow GD2 1.cd as “the stellar sphere, the size of the Earth
and so forth”. Interestingly, he does not mention the celestial sphere (khagola), which forms an
armillary sphere together with the stellar sphere and a miniature Earth. There will be some
reference to the armillary sphere including the celestial sphere in the following verses, but indeed
the main subjects in GD2 2-67 are celestial objects that can be demonstrated on the stellar
sphere and the Earth. Paramegvara sums up these topics in GD2 68 as “the nature of the Sphere
(golasya samsthana)”.

Here again, it is worth comparing this half-verse with the second verses of GDI1 and the
commentary on the Lilavati.

Paramesvara, belonging to the lineage of Bhrgu, situated at the seashore in the northern
bank of the Nila river, states briefly the nature of the Sphere for the young. (GDI 1.2)°

I, Parames$vara, standing on the shore of the Nila river and also of the sea, make the com-
mentary of the Lilavati for this young one. (Paramesvari opening verse 2)°

IMother of Ganesa and wife of Siva.

2 vande kisoram parvatya ankasamstham gajananam |

stanyapanaratam kalpadrumasyadho vinayakam [/1.1// (K. V. Sarma (1956-1957, p. 11))

3Parameévara had a teacher named Rudra, and we cannot rule out the possibility that this word is addressing
him.

4 pranamami ganesanam parvatya ankasamsthitam /
vagisvaram api tatha srirudram ca krpanidhim [/
Text from an unpublished critical edition in progress presented in Narayanan (2014). I have added here my own
translation based on this text.

Snilayah saumyatire *bdheh kulasthah paramesvarah |

samksepad golasamsthanam vakti balaya bhargavah [/1.2// (K. V. Sarma (1956-1957, p. 11))
Snilayah sagarasyapi tirasthah paramesvarah |

vyakhyanam asmai balaya lilavatyah karomy aham [/
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Table 1.1: Objects of dedication in invocation verses of treatises and commentaries by Parames-
vara (“c” stands for “commentary on”)

Title

Dedicated to

Bhatadipika (c. Aryabhatiya)
Karmadipika (c. Mahabhaskariya)
c. Laghubhaskariya

c. Suryasiddhanta

Siva (Sasibhasana)
Siva (hari)
Siva (Sasankardhabhisana)

Siva? (jagatas mahas)

Acarasangraha
Grahananyayadipika
Grahanamandana
Grahanastaka

Drgganita

c. Laghumanasa
Siddhantadipika

(super-c. Mahabhaskariya)

sun (aruna)
sun (savitr)
sun (dinesa)
sun (bhaskara)

(
(
(
sun (sahasramsu)
sun (aruna)
(

sun (khagapati)

Goladipika 1

Ganesa (vinayaka)

Goladipika 2 Ganesa (vighnesa), Sarasvatt
(vagdevt), teachers (guru), plan-
ets (graha)

Paramesvart (c. Lilavati) Ganesa  (ganpesana), Sarasvati?
(vagisvara), god Siva (rudra) or
teacher Rudra

Paramesvart (c. Prasnasatpancasika) Ganesa

Balaprabodhini (c. Jatakakarmapaddhati) Planets? (keSajarkanisakaran ksiti-

Jjavijjvapnujitsuryajan)

c. Goladipika 1 none
Candracchayaganita none
Vakyakarana none
Sadvargaphala none
Jatakapaddhati uninvestigated
c. Muhurtaratna uninvestigated
c. Vyatipatastaka uninvestigated
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GD1 and Paramesvariy are strikingly resembling, especially in the structure of the first half
and the usage of balaya (for the young). GD2 uses laghumataye (for the novice, or literally
“light-minded”) which is not far in meaning, and the occurrence of the dative demonstrative
pronoun asmai is common between Paramesvar: and GD2.

Nothing sure can be said about what this similarity signifies. The dates of Paramesvart
and GD1 are separated by more than a decade, and several treatises which have very different
invocations are composed between this period (see introduction 0.1.5). Therefore something
other than the proximity in their dates of composition seems to be behind this.

120



Sho Hirose - These de doctorat - 2017

2 Parts of the armillary sphere and their meaning (GD2
2-17)

2.1 Description of an actual armillary sphere

Figure 2.1: A representation of the entire armillary sphere. Colors are added for distinction, and
do not represent their actual appearance.

The armillary sphere as described by Paramesvara consists of two layers of rings connected by
an axis (figure 2.1). The inner set of rings showing the coordinates of stars and planets revolves on
the axis while the outer set of rings are fixed and represent the observer’s horizontal coordinate.
This double-layered armillary sphere appears to have been common, and can be seen in older texts
such as the commentary on the Aryabhatiya by Bhaskara I (629 CE), the Sisyadhivrddhidatantra
(8th century) by Lalla, the later Suryasiddhanta (c. 800 CE), the Siddhantasekhara (1039) by
Sripati and the Siddhantasiromani (1150) by Bhaskara II.

The inner set of rings called the “stellar sphere (bhagola')” (figure 2.2) contains three rings
representing the equatorial coordinates: celestial equator (ghatika), solstitial colure (daksinot-
tara) and equinoctial colure (visuvat). A fourth ring tilted 24 degrees against the celestial equator

1Each part of the armillary sphere is often called by different Sanskrit terms in different texts and even within
GD2. The Sanskrit words given here are those used in the first appearance.
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Figure 2.2: Stellar sphere

represents the ecliptic (apama), the path of the sun in a solar year. Optionally, diurnal circles
(svahoratra) parallel with the celestial equator that are approximations of the path of the sun
on a given day? can be added. An axis (danda) pierces the stellar sphere in the two celestial
poles, i.e. the intersections of the two colures, so that the whole sphere can rotate to represent
the geocentric motion of heavenly objects. A miniature Earth made of wood or clay is placed in
the middle of the axis. Explanations on the stellar sphere and its parts including the axis are in
GD2 2-11c.

The outer set of rings, or the “celestial sphere (khagola)” (figure 2.3) represents the horizontal
coordinates with the prime vertical (samamandala), the prime meridian (daksinottara) and the
horizon (ksitija). The polar axis carrying the stellar sphere is attached to the prime meridian,
tilted so that the celestial north pole is elevated against the horizon by an angle corresponding to
the local latitude. Finally a fourth ring is attached to the celestial sphere so that it goes through
the horizon at the east and west and through the two tips of the axis. This is the six o’clock
circle (unmandala). GD2 11d-17 are related to the celestial sphere and its rings.

In the following sections, we shall look at the descriptions in GD2 while also comparing them
with those in GD1I.

2An approximation in the sense that the sun is assumed not to move along the ecliptic in the course of that
day. Otherwise it could not form a single closed loop.
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celestial
equator

Figure 2.3: Celestial sphere

2.2 The three equal division circles and the ecliptic (GD2 2-4)

The solstitial colure is the first circle to be introduced in GD2 2ab. It is mentioned with the
four directions which the circle goes through (figure 2.4). The words south (yamya) and north
(saumya) are also words which mean right and left®. Therefore this can also be read as an
explanation of the ring in an armillary sphere.

The Sanskrit word daksinottara also means south-north (daksina-uttara), but since the stellar
sphere rotates, the circle does not always go through the directions of due north and south. In
this case, “south” and “north” may be referring to the celestial poles or hemispheres.

The celestial equator is introduced (GD2 2cd) by referring to two points in the solstitial colure
to which it adheres. One is point A separated toward the north from the bottom point of the
solstitial colure by a distance of the geographic latitude ¢* and the other point A’ is separated
likewise from above toward the south. We cannot determine the position of the celestial equator
from GD2 2 since it can move around the two points A and A’. The circle is perpendicular against

3Likewise, east (piurva) also means “forward” and west (apara) “backward”, in this case

4Paramesvara does not mention whether this is the arc of the geographic latitude or its Sine. If it were the arc,
we can measure it along the solstitial colure. If it were the Sine, the linear distance between the line going through
above and below and the point of conjunction would be taken into account. Both interpretations are possible: In
GD2 14 we can find the expression “adhering at a distance in degrees which is the geographic latitude” which is
in favor for the arc, while in GDI 1.11, the latitude is introduced by placing the axis at “the tip of the Sine of
geographic latitude” from the horizon.
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Figure 2.4: Solstitial colure and celestial equator

the solstitial colure and therefore goes through the east and west, but Parame$vara mentions
nothing on this point.

The ecliptic is also introduced (GD2 3ab) by giving the two points to which it is fixed on.
They are point C in the solstitial colure which is separated northward from A by the greatest
declination € and point C’ separated southward from A’. C and C’ are the summer and winter
solstitial points respectively. This circle should also be orthogonal against the solstitial colure,
but there is no reference to this in Paramesvara’s text.

The equinoctial colure (GD2 3cd-4a) is referred to as a girdle (raana) at the middle (madhya)
of the celestial equator. Here the word “middle” seems to indicate the points at the east and
west on the celestial equator, which are at the middle between above and below. “Girdle” might
be an expression for showing the orthogonality of the circle, which is further explained as being
transverse to the rotation.

The term wvisuvat, literally “in the middle”, can stand for the equinoctial colure and also
collectively for the three circles, i.e. the solstitial colure, the celestial equator and the equinoctial
colure. In the latter sense, I translate visuvat as “equal division circle”, taking into account
that the three circles intersect each other in the middle. This term might be an expression for
indicating the orthogonality of the circles, which was lacking in the case for the celestial equator
against the solstitial colure.

GD2 4cd refers to the motion of the sun along the ecliptic. However it is stated nowhere in
GD2 that this motion is annual®. The reader of GD2 is expected to know the rate of the sun’s

revolution around the Earth in advance®.

5GD2 55 states that the year of human beings (solar year) exists due to the motion of the sun, but not that
the motion of the sun takes a year.

6We can compare this with Abh 4.2, which mentions the motion of the sun, moon and planets along the
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Figure 2.5: Ecliptic and equinoctial colure

2.2.1 Description in GD1

GD1 does not take into account the local latitude at the beginning, as if the observer were on
the equator. It first describes the three orthogonal rings of the stellar sphere with their six
conjunctions facing below, above and the four cardinal directions. Unlike GD2, four fixed points
are given for each ring, thereby unambiguously determining their positions.

Here, a circle passing below, above, south and north is to be called the solstitial colure.
There is also a circle inside it [attached to it at] the below and top, [passing through] the
east and west, called the celestial equator. Outside them both horizontally should be another
circle [producing] crosses in the four quarters. (GD1 1.3-4ab)”

In this situation the “another circle” (the equinoctial colure) is placed parallel to the horizon,
and so is the polar axis which will pierce it at the north and south. Then the celestial sphere is
introduced, aligned with the stellar sphere. After that, the stellar sphere and the axis is tilted
against the celestial sphere to represent the geographic latitude as in the following passage.

Thus should be the state of the sphere at a latitude-less location (equator). However for
a given location, one should make two holes in the celestial sphere down and up from the

ecliptic without reference to their speed. The number of revolutions that each of these seven celestial objects
perform in a yuga is given in Abh 1.3.
7 adha-urdhvayamyasaumyagam iha vrttam daksinottarakhyam syat |
tanmadhye ’py adha-urdhvam vrttam parvaparam tu ghatikakhyam [[1.3]]
bahir anayos tiryak syac caturasasvastikam param vrttam | (K. V. Sarma (1956-1957, p.11))
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Figure 2.6: The rings graduated as stated in GD1

south and north crosses [respectively] at the distance of the Sine of latitude and then make
the axis of the celestial sphere pierce them. (GD1 1.11-12ab)3

GD1 also describes how the three rings are graduated.

Here the celestial equator has 60 divisions.

Here the other two [circles] have 360 divisions. One should attach yet another circle called
the ecliptic, likewise [having 360 divisions|, passing through the east and west crosses, to the
solstitial colure at 24 degrees north and south [respectively] from the [crosses at] the below
and the top. (GD1 1.4d-6ab)’

The auto-commentary explains the meanings of the gradations as follows:

... the celestial equator is marked with 60 lines. The use of marks is for knowing that it is
the celestial equator (ghatika)!'®. ...the other two circles are marked with 360 lines. The use

8 golasthitir evam syat niraksadede hy abhistadese tu |
adha urdhvam ca khagole yamyodaksvastikat palajyante |/1.11]]
krtva vedhadvitayam tatprotam goladandakam kuryat | (K. V. Sarma (1956-1957, p.13))

9...kharasankam atra ghatikakhyam [/1.4]]
kharasagnyarikam ihanyad dvitayam tadvat punah param vrttam |
purvaparasvastikagam adha-ardhvabhyam ca saumyadaksinayoh [[1.5/]
jinabhage badhniyad apamakhyam daksinottare vrite | (K. V. Sarma (ibid., p.12))
10In GD1 the word ghatika refers to the time unit as well as the celestial equator. I shall explain the relation
between the time unit and the circle in section 2.5.
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of marks with these two is to know the units of 30 degrees'! '2.

The gradation for degrees in the solstitial colure could immediately be used in the next step
for tilting the ecliptic 24 degrees against the celestial equator. Thus this passage, especially with
the commentary, would have helped the reader assemble the rings, whether it be with his hands
or in his mind.

In contrast, GD2 mentions nothing about gradations on the rings. The inclination of the
ecliptic is only mentioned as the “greatest declination”. Furthermore, the ecliptic is introduced
after the solstitial colure and the celestial equator, without waiting for the third orthogonal ring
(the equinoctial colure). This might be due to the fact that the ecliptic is far more important
than the equinoctial colure. In GD1, the equinoctial colure plays a role in introducing the ecliptic:
it produces two crosses in the east and west with the celestial equator, which are the points that
the ecliptic has to pass through.

2.3 The polar axis (GD2 5)

Paramesvara refers to the intersections of the two colures, P and P’ (figure 2.5). They correspond
to the two celestial poles, but Parames$vara only refers to them as a pair of crosses (svastikayugma)
of the two colures. Another word for “celestial pole” is dhruwva, literally “fixed”. It refers to the
pole star. The term dhruva in GD2 is used for the celestial pole as seen by an observer. svastika
might hint that an armillary sphere is behind the explanation. This is also true when it is used
later in GD2 155.

An “axis” can refer to the hypothetical polar axis as well as a physical axis in the armillary
sphere. However the word prota (fixed, piercing) in GD2 5 gives the impression that there is an
actual object. There is a detailed description which even refers to the material with which the
axis is made in PAbh 4.19:

Then, having put a smooth and straight iron rod into punctures in the two crosses south
and north of the sphere, ... 13

Therefore, if the armillary sphere described in the Goladipikas were to be actually constructed,
the axis would have been made with iron.

2.4 Miniature Earth (GD2 6)

As aforementioned, this is the only place in GD2 which refers to the material in a part of
the instrument is made. Yet in the same verse, Parames$vara goes on to explain what this
miniature Earth is supposed to represent, namely the dwelling of living beings (prapinivasa) and
so forth. This expression may be comparable with GD2 28 where Parame$vara refers to rivers
and mountains as being on the Earth alongside creatures. GD2 29 stresses that creatures abide
everywhere on the Earth’s surface.

HHere a circle is divided into 12 signs each consisting of 30 degrees.
12 . .rekhanam sastya ankitam ghatikamandalam | ghatikajianartham ankavidhib | ...rekhanam sastyuttarada-

1957, p.12))

B punah slaksnam rjvim ayahsalakam golasya daksinottarasvastikadvayabhivedhinam nidhaya... (Kern (1874,
p-83))
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2.5 Rotation of the stellar sphere (GD2 7-9)

The motion of the stellar sphere, corresponding to the diurnal motion in modern astronomy, is
explained in GD2 7-9. This motion is constant and clockwise (pradaksinikrt, literally “towards
the right”) according to GD2 7. For this to be true we need to look at the stellar sphere from
the direction of the celestial north pole (assuming that the armillary sphere is being used for
explanation), but Parame$vara is implicit on this point. The cause of this motion is a cosmological
wind or moving force (vayu) called the pravaha, which “blows” at a constant rate outside the
Earth. There is a layer of twelve yojanas above the Earth surface where the pravaha does not
blow, but is instead dominated by the wind of Earth.

The speed of the rotation is once every sixty ghatikas, which, as explained in GD2 9, is
shorter than one day. In this case, a “day” is a civil day, measured from sunrise to sunrise. Abh
3.5 differentiates the civil (savana)'* day from the sidereal (naksatra) day, i.e. one revolution
of the stellar sphere. GD2 does not refer to the two measures strictly, and in GD2 43-49 we
can even find statements implying that sixty ghatikas do make one civil day. Nonetheless we
could interpret that the ghatika in GD2 9 is a sidereal ghatika and those in GD2 43-49 are “civil
ghatikas” (see also section 4.5).

The term “stellar sphere” appears for the first time in GD2 7. However, Paramesvara does
not specify what he means by this term. Only later in GD2 11c, he states that “this is the stellar
sphere”, referring to the set of circles that has been described. Why does GD2 7-9 refer to the
stellar sphere without locating it in the armillary sphere?

2.5.1 Description in GD1

In this respect, it is worth comparing the three verses with GDI 2.2-4 since they are identical
apart from a small paraphrasing!®. GD1 completely separates cosmological explanation (chapters
2 and 3) from the description of the instrument (chapter 1), whereas GD2 tends to blend them.
GD2 4cd on the motion of the sun is another example for the latter. The ambiguity of the term
“stellar sphere” in GD2 7-9 could be explained if they were initially composed as GDI 2.2-4 and
later rearranged for GD2 with the intention to guide the reader to cosmology together with the
rings.

2.6 Diurnal circles (GD2 10-11ab)

The diurnal circle is first introduced in GD2 10 as a singular noun. This could have drawn the
reader’s attention to its function, which is to represent the revolution of the sun on a given day.
To be precise, the diurnal circle represents the revolution of a point in the sky where the sun is
located at a given moment. This is stated more clearly in GD1:

The portion [of the sky] where the sun is situated revolves on a circle which is called the
diurnal circle. (GD1 2.16¢d)'6

The sun changes its declination in the course of a day and therefore its actual trajectory
in the sky would not be a closed circle. The expression “companion of the celestial equator
(ghatikavrttanusarin)” is probably a way to express that it is parallel to the celestial equator.

M1 iterally act of pressing [the juice of the soma], and derivatively “duty” or “daily action”.

15 ghatikasastyamsasya bhramane in GD2 9 and ghatikakhyasastibhagabhramane in GD1 2.4, both meaning “in
which a sixtieth of the celestial equator rotates”.

8 yasmin vrtte suryasthitabhago bhramati tad dyuvrttakhyam [/2.16// (K. V. Sarma (1956-1957, p.17))
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____—diurnal circles

Figure 2.7: Diurnal circles attached to the stellar sphere

Paramesvara then mentions that there can be multiple diurnal circles corresponding to dif-
ferent days (figure 2.7). Since he articulates that they are related to the revolutions of the sun,
diurnal circles thus defined should always intersect the ecliptic, and cannot be to the north of
the summer solstice C nor to the south of the winter solstice C’. However there is an exceptional
case in GD2 88 (section 6.7) which makes use of a “diurnal circle” that is unrelated with the
sun’s motion.

2.6.1 Description in GD1

One should attach, on both sides of the celestial equator, at a distance of a given declination
from it, likewise, circles called diurnal [circles] of unequal [sizes]. (GDI 1.6cd-Tab)!7

Here the multiplicity of diurnal circles is stated from the beginning. There is a reference to
their sizes which is not in GD2. Meanwhile there is no association with the sun in this verse.
Like the previous cases, GDI focuses on the appearance of the rings on the armillary sphere
while GD2 also stresses its function or related cosmology.

2.7 Two layers of spheres (GD2 11cd)

The latter half of GD2 11 tells us that the celestial sphere is outside the stellar sphere and that
the celestial sphere does not move. We have already seen in GD2 7-9 that the stellar sphere
rotates at a constant rate. There is no reference to the ratio of their sizes'®. GDI 1.13 instructs

17 ghatikakhyobhayaparsve ‘bhistakrantyantare tatas tadvat [/1.6]]
svahoratrakhyani ca badhniyan mandalany atulyani [ (K. V. Sarma (1956-1957, p.12))

18 According to Abh 3.12, a planet would take 60 solar years to make one revolution if it were on the circum-
ference of [the orbit of] fixed stars, and a yuga (4,320,000 solar years) if it were on the circumference of space. It
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Figure 2.8: Reed attached to the axis (indicated by dotted circle)

to attach two pieces of reed (Saradandika) to the axis to separate the stellar sphere and the
celestial sphere (figure 2.8), but this is not mentioned in GD2.

2.8 Prime vertical, prime meridian and horizon (GD2 12-13)
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Figure 2.9: Three orthogonal circles in the celestial sphere

The three orthogonal circles in the celestial sphere are named in GD2 12-13, each of them
with four directions which determine their orientation.

is unlikely that this cosmology would have been taken into account if this were the discription of the armillary

sphere.
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The prime meridian in the celestial sphere and the solstitial colure in the stellar sphere are
both called daksinottara (literally “south-north”) in Sanskrit, and thus the word “too (api)” in
GD2 12cd draws attention that the term as well as the directions (south, north, below and above)
are being repeated.

Paramesvara supplies some additional explanation for the horizon in GD2 13cd. The rising
time and ascensional difference are one of the central topics in GD2 (especially GD2 90-102 and
GD2 153-194). Therefore the role of the horizon might have been considered important here.

2.9 Six o’clock circle (GD2 14-16)
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Figure 2.10: The six o’clock circle

The expression used for locating the six o’clock circle (figure 2.10) resembles the way that the
celestial equator was introduced in GD2 2. Both are tilted in accordance with the geographic
latitude. Here in GD2 14, the geographic latitude is measured in degrees. This implies that the
prime meridian could have been graduated with 360 degrees, but neither GD1 nor GD2 refers to
gradations of the rings in the celestial sphere.

As stated in GD2 15, the circle cuts the stellar sphere so that any point in the sky will take 30
ghatikas to revolve above (and below) the six o’clock circle. In other words, every diurnal circle
is cut into equal halves by the six o’clock circle (figure 2.11). The time of the day when the sun
on any diurnal circle crosses the six o’clock circle (points Oy and Os) corresponds to the moment
of sunset or sunrise on an equinoctial day (six o’clock AM or PM in modern notation). The time
difference between this and the actual sunset or sunrise of the day is the ascensional difference,
which will be dealt with later in GD2 74 and onwards. GD2 16 refers to the ascensional difference
by the length of daylight or night. As we can see in figure 2.11, the ascensional difference can be
visualized with the six o’clock circle and the horizon. When the diurnal circle is to the north of
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North South

horizon

Figure 2.11: The six o’clock circle dividing the diurnal circles and the celestial equator, as seen
from the west towards due east. The prime vertical is omitted.

the celestial equator, the daylight is longer due to the ascensional difference U107 and when to
the south U304 shortens daylight and increases the length of the night.

According to the previous instructions, the horizon is supposed to be level without being
tilted above or below. However, GD2 16ab evokes it as being below and above with reference to
the six o’clock circle. This point of view can be used for reasonings concerning the ascensional
difference (see section 7.5).

2.10 Outer celestial equator (GD2 17)

The meaning of GD2 17 is ambiguous, but it most likely describes another ring, the representation
of the celestial equator on the celestial sphere (figure 2.12). The verse uses the expression “or
(va)”. This implies that the ring is optional, and not necessarily included in the armillary sphere
described in GD2. Such a ring is not mentioned in GD1. Some authors such as Bhaskara II
(Siddhantasiromani Goladhyaya 6.4'%) do describe a ring for the celestial equator being added
to the celestial sphere.

19D, Apte (1943-1952, p.201)
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3 Arguments on cosmology (GD2 18-36)

The topic in GD2 18-36 is the existence of conflicting views on cosmology. Paramesvara’s po-
sition in each discussion is clear. He often refers to the opinions that he agrees upon as those
of “calculators (gapaka)”. They are opposed against other views, mainly from the Puranas
(groups of sacred texts on Hinduism), which are either refuted or reconciled with the cosmol-
ogy that Paramesvara supports. Several texts gather arguments similar to those found in GD2,
and among them, four are of special interest: the Panicasiddhantika (c.550, hereafter PS) of
Varahamihira, Bhaskara I's commentary (629 CE) on the Aryabhatiya of Aryabhata (hereafter
BhAbh), Sisyadhivrddhidatantra (c.748 CE', hereafter SDh) of Lalla and the Siddhantasekhara
(¢.1050, hereafter SSe) of Sripati.

PS contains some criticism on views of the Puranas and the Jains and furthermore a refutation
on the notion of the Earth’s rotation. One of its verses (13.36) is incompletely quoted in GD2
23.

BhAbh has detailed discussions on cosmological topics, and some of them resemble the argu-
ments developed by Parameévara more than other texts, as we will see. Although Paramesvara
never quotes BhAbh, the similarities give the impression that he knew the texts.

SDh was the first text to deal exhaustively with the cosmological tradition of the Puranas
and was followed by many texts including the SSe (Pingree (1990)). Paramesvara quotes the
SDh in his commentary on the Aryabhatiya and probably refers to it indirectly in GD2 134 (see
section 9.6).

SSe is the most prominent treatise that is referred to in our sources of Paramegvara concerning
cosmology. In GD1I, he refers to Sripati in the context of cosmology as follows:

On the other hand, the seven continents and so forth on the spheric Earth have also been
mentioned by Sripati. Thus we also write, for the young, on some of this subject. (GDI
3.62)2

This is followed by an extensive description of cosmography in accordance with the Puranas
(GD1 3.63-110) which does not exist in GD2. Here in GD2, Paramesvara concentrates on geo-
graphical descriptions that are strictly based on the spheric Earth model.

In addition, manuscript I, frequently quotes verses from SSe in between these verses®. This
shows that at least this reader must have been associating these verses with SSe.

GD2 25 and onwards deal with the shape of the Earth and geography. This topic continues
into the next subject, the “daylights” of human beings, manes, gods and Brahma. My sectioning
between GD2 36 and GD2 37 is purely expedient.

3.1 Motion of the stars and planets (GD2 18-21)

According to GD2 18, the fixed stars are in the outer layer of the cosmos and the orbit of planets
are located inside them®*. However the expressions in GD2 18ab require attention. Paramesvara

L According to Chatterjee (1981, 2, p. xii).

2$ripatina tu proktah saptadvipadayo ’pi bhigole |
tadvisayam atah kimcid vilikhyate ’smabhir api ca balebhyah [/3.62[] (K. V. Sarma (1956-1957, p. 36))

3To give an exhaustive list: SSe 10.1-13 after GD2 23, SSe 15.7-19 after GD2 25, SSe 15.20-23 after GD2
26, SSe 15.24-26 after GD2 36 and SSe 15.27-72, 2.69-70 after GD2 37 (GD2 37 is repeated again after the
quotations).

4The same order of stars and planets are given in Abh 3.15.
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refers to the “stars” in plural (bhani) and not as a “stellar sphere (bhagola)”. Nor does he refer
to the orbits of planets at this point. The cosmological structure seems to be described without
any link to an armillary sphere. The order of the planets itself is not argued for in GD2 18-21.
Some comments on views of the Puranas concerning the order of the sun and moon can be seen
later in GD2 66-67.

Paramesvara describes that each planet has an eastward and westward motion (except for
the stars which do not have an eastward motion). The westward motion is due to the rotation
of the stellar sphere (GD2 18cd), which has been described in detail in GD2 7-9, and therefore
affects every planet (including the stars) equally. This corresponds to the diurnal motion. The
eastward motion, which corresponds to the mean motion of planets in their orbits®, is described
in detail in GD2 19. Every planet moves an equal distance of yojanas along their orbit® but their
motion in arc minutes as observed from the Earth is different. Parame$vara gives his reasoning
in GD2 19, which T have visualized in figure 3.1 (note that Parame$vara does not use diagrams
in his own explanation). When a planet moves from A to A’ while a planet outside it moves from
B to B’, the lengths of AA’ and BB’ are equal when measured in yojanas. However, both orbits
are equally segmented and thus should have an equal number of arc minutes (21600 minutes in

a revolution). Since the outer orbit is larger, there are fewer minutes within A’B’ compared to
AB. A similar discussion can be found in Abh 3.14.

Figure 3.1: Planets on different orbits, having the same daily motion in yojanas but different in
arc minutes (this diagram shows gradations in degrees).

5When Parames$vara is talking about a constant eastward motion, the true motion is not taken into account,
since it would cause the motion of the planets to vary, and sometimes even make them move westward by
retrograding.

SParamesvara makes no reference to the yojanas of a planetary daily motion. We can compute its value
from the Aryabhatiya: The moon revolves 577,533,336 times in a yuga (Abh 1.3) and one arc minute in the
moon’s orbit is 10 yojanas (Abh 1.6). Therefore the moon moves 10 x 21,600 x 57,533,336 = 12,474, 720, 576, 000
yojanas in a yuga. Meanwhile the number of civil days in a yuga is the number of conjunctions of the Earth
with the sun (Abh 3.6), the Earth rotates (or according to those who refute this reading including Parames-
vara, the stars rotate) 1,582,237,500 times in a yuga and the sun revolves 4,320,000 times (Abh 1.3), thus
there are 1,582,237,500 — 4,320,000 = 1,577,917,500 civil days in a yuga. Therefore, the moon moves
12,474,720,576,000 ~ 1,577,917,500 = 7905;48,--- yojanas per day. And as Abh 3.12 states, paraphrased
in GD2 19, this is the same for every planet.
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By following GD2 18-19, one can conclude that the moon has the largest eastward motion
in arc minutes, followed by Mercury, Venus and so forth and Saturn has the smallest eastward
motion. When this is combined with the westward diurnal motion, the moon moves westward
slower than the other planets because it is dragged eastward, and the fixed stars which do not
have an eastward motion appear to move westward more quickly than the planets. Paramesvara
introduces a theory in GD2 20 which claims this is the result of a single westward motion, slowest
for the moon and fastest for the stars, and not of a combination with an eastward motion. This
could be an opinion raised from the Puranas, as they only refer to a single driving force for the
motions of celestial bodies. For example, the Vispupurana says that the “orbs of all the planets,
asterisms, and stars are attached to Dhruva, and travel accordingly in their proper orbits, being
kept in their places by their respective bands of air” (Visnupurana 2.12.24-25, translation by
Wilson (1840, p. 240)). Neither SDh nor SSe refer to a single-motion theory, but Bhaskara I
introduces it in BhAbh 3.15, in the context of order of planetary orbits:

Others think that: “The stars, Saturn, Jupiter, Mars, the sun, Venus, Mercury and the moon
are located on one same orbit. However they have a swifter motion in this order. Therefore
[a planet] having a slightly slower motion is slightly beaten by the asterisms which have a
quick motion, and [a planet] having a very slow motion [is beaten] by a large margin. Saturn
is slightly beaten because it has a slightly slow motion and the moon [is beaten| by a large
margin because it has a very slow motion.””

Parames$vara refutes this theory in GD2 21 by referring to the retrograde motion (vakra,
literally “crooked”). His argument is repeated in GDI. GD1 2.27 is exactly identical with GD2
20, and GD1 2.28 paraphrases GD2 21 with a specific example:

I think that this is not suitable, because a retrograding planet situated in the asterism of
the deity Anala (=the lunar mansion Krttika®) is seen on another day in Bharani® [which
is the lunar mansion] to its west, not in the eastern direction. (GD1 2.28)'°

The lunar mansion Bharani is to the west of Kritika, so if a planet is first seen in Krttika and
then later observed in Bharani, it would indicate that it had moved westward relatively against
the stars. I do not understand how this works as a reasoning, since one could argue back that
the planet is not “retrograding toward the east” but “accelerating toward the west” in such case.
Nonetheless an identical argument had been made by Bhaskara I more than 800 years earlier.
He first states that the stars and planets cannot be moving eastward altogether, and then denies
that they are moving in a single westward motion.

Here in this case too'!, if the planets and the like were facing the east, then [a planet],
beaten [in terms of speed] by the asterisms which have a swift motion and face the east,

Tanye manyante | tulyakaksyastha eva bhaganasanaiscarabrhaspatikujaravisitabudhanisakarah | kin tu yatha-
kramena Sighragatayah | ato drutagatibhir naksatrair isamandagatir isaj jiyate, atimandagatis tu durad iti [ isan
mandagatitvac chanaiscara 1saj jiyate, atimandagatitvac candrama duram iti [ (Shukla (1976, p. 214))

8Third lunar mansion when counted eastward from Asvinz.

9Second lunar mansion counted from Asvint.

Omanye tad api na yuktam yasmad vakrigraho ’'nalarksasthah |
tatpascimagabharanyam dinantare drsyate na purvadisi [/2.28// (K. V. Sarma (1956-1957, p. 19))

HPrior to this statement, Bhaskara I refutes another theory that places the stars closest to the Earth and the
moon at the outermost.
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observed in Asvipi'? would be seen [later] in Revati'?, not in Bharani. Moreover, at times

of retrograding, due to its backward motion, [a planet] observed in Asvipi would indeed be
seen [later| in Bharani. Now, if these planets and the like are assumed to face the west, even
so, at times of retrograding, [a planet] observed in Advini would be seen [later] in Bharani
due to its backward motion.'*

Although their reasoning is not obvious to us, we can see that Parames$vara and Bhaskara
I share the same argument. Whether Parameévara had borrowed directly from Bhaskara I
is uncertain. This topic does not appear in the two other works of Bhaskara I, namely the
Mahabhaskariya and the Laghubhaskariya. Parameévara never cites BhAbh in his texts, but this
resemblance makes us believe that he was familiar with its content.

Some authors after Paramesvara have dealt with this topic, although their relation is yet to
be studied. For example, The Siddhantasamhitasarasamuccaya (1583 CE) of Suryadasa attempts
to find passages in the Puranas that support the existence of two motions (Minkowski (2004)).

3.2 Forms of the sun and moon (GD2 22-24)

In GD2 22, Paramesvara defends the idea of “excellent calculators” that heavenly objects be-
ginning with the sun are all spheric. This includes the moon, and probably the five planets
too. There might be several sources corresponding to “excellent calculators”, but one of them is
doubtlessly Varahamihira. Paramesvara quotes PS 13.36 (T. S. Kuppanna Sastri (1993, p. 258))
as GD2 24'5. This verse reasons that the moon can illuminate the darkness during the night by
reflecting the rays of the sun by comparing it to a mirror. Meanwhile GD2 22 roughly corre-
sponds to PS 13.35 (T. S. Kuppanna Sastri (ibid.)). It can also be compared with Abh 4.5 which
states that the Earth, planets and stars are spherical, half of the sphere being illuminated by the
sun while the other half stays dark. The same notion and reasoning can also be found in SDh
16.39-41 (Chatterjee (1981, 1, p. 221).

Meanwhile in GD2 23, Parame$vara refers to an opposing theory which claims that the objects
have the form of a round mirror. “Round (vrtta)” refers to a flat circle, thereby contrasted with
“sphere (gola)”. The “gradual increase of the whiteness of the moon” is a reference to the waxing
of the moon. If the moon were flat, the entire surface must be illuminated at the same time
when it faces the sun. Therefore it could not appear as a half-moon or crescent. Paramesvara
attributes this opinion to some other point of view (paksa), but I could not trace the origin of
this interpretation'®. Neither PS nor SDh refers to this theory.

GD2 22-24 has many parallels with the sequence of discussions (Shukla (1976, pp. 250-251))
provided by Bhaskara I in his commentary on Abh 4.5. This includes reference to the sun and

12The lunar mansion which is typically counted as the first in order.

13The twenty-second and last lunar mansion. It is to the west of Asvini.

Y atrapi yadi pranmukha grahadayas tada pranmukhair drutagatibhir naksatrair jryamano ’Svinyam drsto re-
vatyam upalaksyeta, na bharanyam | vakrakale ’pi ca, pratilomagatitvad asvinyam drsto bharanyam evopalaksyeta
| athaite grahadayo ’parabhimukhah kalpyante, tathapi vakrakale ’Svinyam drstah pratilomagatitvad bharanyam
upalaksyeta | (Shukla (1976, p. 214))

15 PS 13.36ab and GD2 24ab are identical. GD2 24cd has been probably modified from PS 13.36cd to mention
that this is a quotation. Varahamihira is referred to as a noble person (aryajana). Parames$vara must have been

aware that the verse was indeed composed by Varahamihira, as he quotes PS 13.12 (T. S. Kuppanna Sastri (1993,
p. 250)) in PAbh 4.17 (Kern (1874, p. 82)), referring to the author as Varahamihira.

16pyranas are not explicit on the shape of the moon. Nonetheless their explanations on the wax and wane of
the moon did not require it to be spheric. For example, the Visnupurana explains that the moon waxes as it is
fed by the sun, and then it wanes as its ambrosia is drunk by the immortals and the progenitors (Wilson (1840,
p. 236)).

137



Sho Hirose - These de doctorat - 2017

moon as having the shape of a round mirror, although it is not specifically referred as an opinion
of somebody else.

How can one understand that these planets and the like have a body with a spheric shape?
As for the Earth, others think of the shape of a cart or the shape of a round mirror.

This is not so. I shall speak later so that one understands that the Earth has a spheric
shape!”.

But how can one understand in this case that these planets have a spheric shape? Rather,
the sun and moon are perceived as having the shape of a round mirror. Likewise for other
[planets] too. ...

This is not so. These planets and the like, though having spheric bodies, are perceived as
having the shape of a round mirror because they revolve at a distant place.'®

Interestingly, Bhaskara I juxtaposes the discussion on the shape of the Earth with that on the
shape of other celestial bodies. Paramesvara seems to separate the discussion in GD2, and there
is no explicit reference to opposing opinions claiming that the Earth is flat. The refutation of the
false notion that the earth is flat is a common topic in SDh and subsequent treatises (Pingree
(1990)), while notions that other bodies are flat are rarely cited, as we have seen.

3.3 The Earth and its support (GD2 25-26)

In GD2 25, Parame$vara claims that the Earth is a sphere and that it stands in space without
support. There is no further debate on the first point, and for the second point, Paramesvara
cites Puranic theories concerning the supporters of the Earth and refutes them.

Ananta is the name of a serpent who is referred to as the supporter of the Earth in the
Puranas'?. The concept of elephants in cardinal directions (diggaja) as supporters of the Earth
is not as conspicuous??, but are frequently cited by astronomers as theories to be refuted. SDh
20.7 is a typical example. Paramesvara’s reasoning for refuting these theories follows the typical
form of pointing out that such ideas lead to an infinite regress of supporting and supported
bodies (Plofker (2005)).

3.4 Rotation of the Earth (GD2 27)

In this verse Paramesvara refutes the notion of the Earth’s rotation, which is usually attributed
to Aryabhata (Chatterjee (1974)). PS 13.6-7 (T. S. Kuppanna Sastri (1993, pp. 249-250)) is
the first text arguing against this theory without specifying its source. Brahmagupta quotes
the phrase pranenaiti kalam bhuh (the Earth [rotates] one arc minute in one prana), which is a

17This probably refers to his commentary on Abh 4.6, but the corresponding part is not extant.

18 katham ete grahadayo golakarasarirani pratipadyante | bhavam tavad anye Sakatakaram darpanavrttakaram
ca manyante |

naitad evam [ yatha golakara bhuh pratipadyate tathottarato vaksyami |

katham punar atrami grahah golakarah pratipadyante | atha ca darpanavrttakarau suryacandramasau laksyete,
evam anye ‘pi [ ...

naitad asti [ ete grahadayo golasarirapi santo duradesavartitvad darpanavrttakara upalaksyante | (Shukla (1976,
p. 250))

Ye.g. Visnupurana 5.17.12 (Annangaracharya (1972, p. 340), translation in Wilson (1840, p. 541))

20The diggajas appear in Visnupurana 2.9.15 (Annangaracharya (1972, p. 156)) but they are not referred to
as supporters of the Earth.
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quotation from Abh 1.6, in BSS 11.17 (Dvivedr (1902, p. 152)). Other verses in the Aryabhafiya
which concern this topic are Abh 1.3, Abh 3.5 and Abh 4.9.

Paramegvara insists that Aryabhata did not claim that the Earth was rotating. This can also
be seen in his commentaries on the aforementioned verses.

In Abh 1.6, he quotes pranenaiti kalam bham (the zodiac?' [rotates] one arc minute in one
prana) instead of pranenaiti kalam bhuh. Likewise his reading of Abh 3.5 (Kern (1874, p. 55))
includes bhavarta (revolution of the zodiac) instead of kvavarta (rotation of the Earth). He does
not refer to variant readings in both cases??.

Abh 1.3 includes the passage ku nisibunlkhsr®® prak which can be translated as “the Earth
[rotates] eastward one billion five hundred eighty-two million two hundred thirty seven thousand
five hundred times [in a yuga]”. In his commentary, Parame$vara explains:

Since the zodiac moves westward due to the hurl of pravaha wind, the rotation of the Earth
is recognized due to false conception. Having agreed upon this, the rotation of the Earth is
stated here. However in reality, the rotation of the Earth does not exist. Therefore it should
be known that the description of the Earth’s rotation in this case is above all for pointing
out the revolution of the zodiac.?*

After this passage, he quotes Abh 4.9 by saying that “the false conception will be spoken
thus®”. Abh 4.9 itself compares the apparent motion of stars to the landscape as seen from a
boat:

Just as one standing in a boat with a prograde motion sees immobile [objects] going retro-
grade, [one] at Lanka sees immobile stars moving uniformly westward.?%

Paramesvara introduces this as a false conception, and concludes:

However, the highest truth is that the Earth is indeed fixed. Thus is the meaning [of the
verse].2”

Paramesvara’s attitude in GD2 is consistent with these commentaries on Abh.

21 Parameévara paraphrases bha as jyotiscakra in his commentary (Kern (1874, p. 9)). He uses bha in the sense
of zodiac in GD2 too. See glossary “bha (2)” and “bhacakra” for details.

22Every commentator included in the critical edition of Aryabhata by K. V. Sarma and Shukla (1976) chooses
the same reading for Abh 1.6 and Abh 3.5. The reading bhih in Abh 1.6 can be seen in Prthiidaka’s commentary
on the Brahmasphutasiddhanta and Udayadivakara’s commentary on the Laghubhaskariya (Chatterjee (1974)).
The reading kvavarta is mentioned as a variant reading in the commentaries of Bhaskara I (Shukla (1976, p. 187))
and of Raghunatharaja (according to K. V. Sarma and Shukla (1976)).

23p4gibunlskhr in K. V. Sarma and Shukla (ibid.). This is the alphanumeric encoding system used uniquely by
Aryabhata (see Plofker (2009, pp. 73-75) for a detailed explanation).

24pravahaksepat pascimabhimukham bhramato naksatramandalasya mithyajiianavasad bhamer bhramanam
pratwyate | tadangikrtyeha bhumer bhramanam uktam [ vastutas tu na bhumer bhramanam asti | ato naksa-
tramandalasya bhramanapradarsanaparam atra bhubhramanakathanam iti vedyam | (Kern (1874, p. 5))

2 yaksyati ca mithyajiianam (Kern (ibid.))

26 anulomagatir nausthah pasyaty acalam vilomagam yadvat |
acalani bhani samapascimagani lankayam [/4.9// (K. V. Sarma and Shukla (1976, p. 119))

27 paramarthatas tu sthiraiva bhamir ity arthah | (Kern (1874, p. 76))
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3.5 Life on the surface of the Earth (GD2 28-29)

What Paramegvara intends to explain or support in GD2 28 and GD2 29 is unclear to me.

GD2 28abc explains the positions of demons, gods and human beings on the Earth, but this
is also mentioned in GD2 40 with more details: for example, GD2 28abc only says that the gods
stay at the top of the Earth, but GD2 40 specifies that they stand on Mount Meru. In addition,
GD2 40 is followed by verses on the sun and the zodiac as seen from different locations on the
Earth, and we can link their contents. Whereas the statements in GD2 28abc has almost nothing
to do with the surrounding verses. GD2 28d adds other creatures, rivers and mountains and the
like to the list. “Likewise (tatha)” probably indicates that they are in the same position with
the human beings.

One possible role of GD2 28 is that it serves as a reasoning for GD2 27. The verse stresses
that all these entities “always stay (nityam vasanti)” at their locations. Parame$vara might be
arguing that if the Earth rotated, everything on the Earth would move together with it too.
There are two difficulties with this interpretation: the rotation would not change the fact that
these beings are at “the bottom, top and side”, and moreover, the typical reasoning for refuting
the notion of the Earth’s rotation are different. For example, PS 13.6cd says “if so, eagles and the
like would not come back again from the sky to their own resting-places®®”. Even Paramesvara
uses a similar argument in GDI 3.4cd: “In this case, how can birds that went out of [their] nests
go [back to their] nests?%”

GD2 29 is even more problematic. I do not have a definitive interpretation for the “circle”
mentioned here. If we interpret that the “middle of the Earth” refers to any zone between the
north and south poles and not its center, it could be the terrestrial equator. This can be linked
to GD2 30 which gives the circumference of the Earth. However the additional remark that
the circle “stands below all creatures” makes the verse difficult. Be it in the sense the circle
(terrestrial equator) is to the south of all creatures or under them, it contradicts the statement
in GD2 34 that life exists everywhere including underground. GD2 29cd juxtaposes “creatures
(pranin)” with “water (jala)” while Abh 4.7 talks of “water-born (i.e. aquatic creatures) and
land-born (i.e. land creatures) (jalajaih sthalajais ca)” being everywhere on the spheric Earth.
GD1 3.36 also lists “creatures, plants and water??”. Perhaps Parame$vara might be referring
to aquatic animals with the word “water” and representing land creatures by simply saying
“creatures”. This might explain the first half of GD2 29 since the northern terrestrial hemisphere
is considered to be covered mostly by land. Yet the inconsistency with GD2 34 persists.

Another possible explanation for these conflicts is that some of these verses are quotations
or paraphrases of other texts. Currently, I do not have a definite candidate for their sources.

3.6 Size of the Earth (GD2 30ab, 31-34)

The size of Mount Meru stated in GD2 30cd, which we will discuss in the next section, is
clearly attributed to Aryabhata. It is ambiguous whether he is also the source for the Earth’s
circumference given in GD2 30ab, which is 3299 yojanas. The value itself is not given in the
Aryabhatiya, but we can derive it from Aryabhata’s statements. According to Abh 1.7, the
diameter of the Earth dg is 1050 yojanas. Since the circumference of a circle with a diameter of
20,000 is approximately 62832 (Abh 2.10), we can (approximately) compute the circumference of
the Earth cg with a Rule of Three:

28yady evam Syenadya na svat punah svanilayam upeyuh T. S. Kuppanna Sastri (1993, p. 249)
29katham atragaccheyur nidam nidad bahirgata vihagah (K. V. Sarma (1956-1957, p. 25))
30pranino drumas capah (K. V. Sarma (ibid., p. 31))
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Figure 3.2: Two points P; and P, on the same meridian.

62832 de
“® = 720000
62832 - 1050
N 20000
~ 3299(yojanas) (3.1)

Paramesvara’s claim (GD2 31cd) is that this value must have been established with another
method. The computation is given in GD2 32, which comes from a Rule of Three involving
the arc length between two terrestrial locations Py and Py with the same longitude (figure 3.2).
When L is the intersection of the terrestrial equator with the meridian which goes through points
P, and P, EE and I@ are their latitudes 1 and g, respectively, when measured in degrees.
(1 — (g is the difference in degrees of geographic latitude between P; and Py. Meanwhile, the
distance Dp,p, between the two points can be measured in yojanas. Since there are 360 degrees
in a circle, the circumference of the Earth cg in yojanas is

Dp,p
ce = 1P2

= o860 (3.2)
1 — ¥2

in which we recognize the computation evoked in GD2 32. Meanwhile, the measure of the Earth
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according to wise people (sudhi) is in the order of crores, or tens of millions®! of yojanas. This
fits the scale of the flat Earth appearing in Puranas. For example, the Visnupurana describes
that mountains called the Lokaloka surround the concentric rings of oceans and continents, and
according to Wilson (1840, p. 207) the diameter of its outer rim is five crores ten lakhs and ten
thousand (51,010,000) yojanas. The Sivatantra mentions that the golden land (the outermost
continent) is ten crores of yojanas (Wilson (ibid.)).

Paramesvara tries to solve this conflict by claiming that great numbers are referring to the
surface area or volume®? of the Earth (GD2 33). He does not give specific values of the area and
volume, but if he had actually done some computation, then he could have used the rules given
in Lilavati 201%* (K. V. Sarma (1975, p. 393)). According to the verse, the area A of a circle
with a circumference ¢ and diameter d is A = 04—‘1, the surface area A’ of a sphere with the same
diameter is A’ = 44 and its volume is V = ‘%/. Since the circumference of the Earth cg is 3299
yojanas and its diameter dg is 1050 yojanas, its surface area Ag is

cods
4
= 3299 - 1050

= 3,463,950 (yojanas) (3.3)

o =4-

or roughly 35 lakh yojanas, while its volume Vg is

_ deAg
6
1050 - 3463950

6
= 606, 191, 250 (yojanas) (3.4)

Vo

which is roughly 61 crore yojanas. I have decided to use the words “lakh” and “crore” in my
translations since claiming that Ag (larger than three million) is “hundreds of thousands” or
that Vg (approximately six hundred million) is “tens of millions” seemed unnatural.

GD2 34 reasons why the numbers may be interpreted as the surface area or volume of the
Earth by saying that creatures live everywhere including the nether regions, or the Patalas®*.
The same argument can be found in GD1 3.12-18 (K. V. Sarma (1956-1957, pp. 26-27)), but not
in any other text that we have compared with GDZ2 in this section. The most similar statement
is SDh 20.33.

31The Sanskrit word for ten million is koti, which entered the English vocabulary through Hindi as “crore”.
Likewise for laksa = lakh = hundred thousand.

32To be precise, Paramesvara does not use words for “area (ksetraphala)” or “volume (ghanaphala)”, and
instead uses the expression “resulting number (phalasamkhya)” on the surface (for the surface area) or inside the
sphere (for the volume).

33The Aryabhata does not give a rule for the surface area of a sphere and the rule for its volume in Abh 2.7 is
wrong. Paramesvara has written a commentary on the Lilavati and would have been able to apply its rules.

34 According to the Vispupurana there are seven Patalas layered below the Earth (Wilson (1840, p. 204)). There
is no copious description of the Patalas in any of the Puranas, but various texts do refer to their inhabitants (Wilson
(ibid., pp. 204-205 footnote)).
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[Even] if it appears to be immense or have many yojanas by the effect of it being round,
yet this very [Earth] has such sort or circumference and measure [as given before] and not
another [value].?

But here the nuance is that one can measure the length along the Earth infinitely because it
is round, and not that one can use the surface area or volume. Lalla gives the surface area of
the Earth in SDh 17.11%¢, but does not compare it with other views.

3.6.1 Removing the contradiction (virodha)

Paramesvara’s approach toward the problem of the size of the Earth is different from those
toward the previous ones (motion of celestial objects, their form, the support of the Earth and
its rotation).

When he deals with the issues of size, he refers to the opposing side as “wise ones (sudh?)”.
By contrast, he only used normal expressions like “others” or derogatory expressions like “foolish
(mugdhah)” (GD2 23) in the previous cases. This could be a way of acknowledging the authorities
of the Puranas. In both cases, Parames$vara’s side is represented by “calculators (ganaka)”.

Furthermore, he does not reject the views of the wise people, but tries to find an explanation
for them. By claiming that the “measure of the Earth” of the calculators is its circumference
while that of the wise people is its surface area or volume, he tries to defend both views. At this
point, he diverges from previous authors who simply rejected larger sizes for the Earth?7.

In GD2 34, Paramesvara uses the word contradiction (viroedha) to indicate the difference
between the two views. This recalls the virodhaparihara or “removal of contradiction” approach
starting with Jiianaraja’s Siddhantasundara®® (c.1503 CE), where astronomers tried to find a
reconciliation with the Puranas without refuting their cosmological elements (Minkowski (2004)).
I do not consider Paramesvara as a precursor to this trend, as he follows the manner of refusals
by previous authors in many points, and also because later authors do not follow Paramesvara’s
idea of using the Earth’s surface area and volume.

Several questions remain on this subject. Why did Parame$vara differentiate some cosmo-
logical topics in the Puranas from the others and defend them? What were his sources of the
Puranas? Does he have a predecessor or did he come up with the idea of the surface area and
volume on his own? Can the same argument be found in works after his generation? I would
like to pursue them in later research.

3.7 Size of Mount Meru (GD2 30cd, 35-36)

In GD2 30cd, Parameévara says that the size of Mount Meru is one yojana according to Aryab-
hata. This is mentioned twice in the Aryabhatiya. The first is Abh 1.7 (ka meroh). Paramesvara
supplies “The measure in yojanas of Mount Meru’s height is one®””. The other is in Abh 4.11

35yadi vrttavasena gacchatam amita bhaty atha bhariyojana |
paritas tu tada tathavidha parimanam tv idam eva naparam [/20.33]] (Chatterjee (1981, 1, p. 236))

36The area is 2,856,338,557 [square] yojanas, which is based on a wrong computation and far off the right
value, as is pointed out by Bhaskara II (Chatterjee (ibid., 2, p. 250)).

37The typical reasoning is that the celestial sphere and celestial objects would not be able to revolve around
the Earth if it were too large. Examples are SDh 20.30 (Chatterjee (ibid., 1, p. 236)) and SSe 15.24 (Misra (1947,
p. 148).

38Critical edition, translation and explanatory notes including discussions on the wvirodhaparihara issue by

Knudsen (2014).

39meror vyasayojanapramanam ka (Kern (1874, p. 10))
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Figure 3.3: A lotus flower and its cylindrical ovary.

(merur yojanamatrah) on which Paramedvara glosses “Mount Meru has a height measuring a
yojana and has a width of that much?®”. GDI 3.65 compares its shape to a ovary of a lotus*!,
which is cylindrical, and therefore we can figure that the supposed shape of Mount Meru is a
cylinder with a diameter and height of one yojana.

This is contrasted with the theory that Mount Meru is exceedingly high. The typical height
given in the Puranas is 84,000 yojanas, for example in Visnupurana 2.2.8 (Annangaracharya
(1972, p. 115)). GD1 3.30 refers*? to this value too.

Paramesvara argues that Mount Meru cannot be excessively high by referring to stars in the
northern sky moving to the east. This is true for stars which move between the northern horizon
and the pole star (figure 3.4). In such situation, the diurnal motion takes them from the west to
the east. If Mount Meru were very high, it should be seen in the northern direction and therefore
obstruct these stars.

Neither PS, SDh nor SSe deal with this problem. SDh focuses on another “false notion” which
is that Mount Meru causes the night by hiding the sun (SDh 20.4, 20.10-13"3). The section of
BhAbh concerning the height of Mount Meru is not extant, but Somegvara, whose commentary
summarizes that of Bhaskara I (Shukla (1976, p. cix)), has left a relatively long discussion under
Abh 4.11. We can find an argument which resembles the claim by Parameévara.

Moreover, if Meru had a great measure, stars in the north would not be seen because they
are hidden by the summit of Mount Meru.**

In GD2 36ab, Paramesvara introduces the theory that Mount Meru pierces the Earth like an
axis at the north and south poles. This does not appear in SDh and SSe but can be found in the

O merur yojanamatrocchritas tavad vistrtas ca (Kern (1874, p. 76))

L phapadmasyasyasau madhyasthah karnikakarah (K. V. Sarma (1956-1957, p. 36))

42«The height of Mount Meru is said to be the measure of eighty-four thousand yojanas (meror ucchritir ukta
caturaditisahasrayojanamiteti)” (K. V. Sarma (ibid., p. 29))

43Chatterjee (1981, 1, pp. 232-233)

4 Lim ca yadi mahapramanah meruh syat merusikharantaritatvat bhavat uttarena tarakah na dréyeran (Shukla
(1976, p. 262))
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Figure 3.4: An excessively high Mount Meru obstructing the stars moving below the pole star
P.

Suryasiddhanta (12.33cd-34ab). Parames$vara explains it here as if it were the opinion of other
people, but GD1 3.23 suggests that he supports this view.

Mount Meru should have a pair of tips. One of them is above the middle of the land [and
the other] is situated below*® the middle of water. They are inhabited by gods and demons,
respectively. (GD1 3.23)%6

Whether this theory is to claim that Mount Meru is actually very long and thereby solve
the contradiction with the Puranas?” is uncertain. Meanwhile Parameévara avoids the conflict
between Aryabhata’s view (cited in GD2 30cd) that the size of Mount Meru is only a yojana by
adding that the measurement should be done from the level of the Earth’s sphere.

3.8 Conclusion: comparison with previous texts

We have seen that Parame$vara’s topics or arguments are often different from those in SDh or
SSe, two typical texts that dealt with cosmological contradictions. While we cannot rule out
the possibility that they could have inspired Paramesvara in some subjects, we must look at
different places to find the sources for his discussions. The similarities between the discussions of
Paramesvara and Bhaskara I are striking, and this is certainly a promising direction for further
studies.

45In this verse, “above” and “below” is from the viewpoint of someone at the north pole (middle of the land).
This is stated in GD1 3.24ab. Therefore, “below the middle of water” means that Mount Meru sticks out from
the south pole.

46 meror agrayugam syat sthalamadhyad ardhvagam tayor ekam |

jalamadhyac cadhahstham Sistam devasuraih kramat sevyam [/3.23// (K. V. Sarma (1956-1957, p. 28))

47Mount Meru would still be only 1050 + 1 + 1 = 1052 yojanas long and far too short compared to 84000
yojanas.
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Another unique feature of Paramesvara’s arguments is that he frequently represents his views
on cosmology as those of calculators (ganaka). This is very rare for any other authors. Notably,
SDh and SSe never refer to other supporters or advocates of the author’s opinion on cosmology.
Paramesvara’s attitude gives the impression that he is building his opinions and reasoning on
top of previous authors, or at least that he is placing himself among other “calculators” who
share the same view.
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4 Geography and long timescales (GD2 37-65)

There are two main topics in GD2 37-65, tightly related to each other. The first is geography,
concerning the sphericity of the Earth. This subject is continued from the arguments on con-
flicting cosmologies that we have seen in the previous section. The second topic is units of long
timescales, notably the four types of “days” (human days, days of the manes, divine days and
days of Brahma) which are periods when the sun is visible to each of these four entities located
in different places'. Therefore the subject is strongly tied to cosmography and also involves the
sphericity of the Earth.

4.1 Mount Meru and Lanka (GD2 37-39)

I have included GD2 37-39 in this section and not in the previous one (Arguments on cosmology),
since they no longer refer to opposing theories. Parames$vara himself makes no distinct segmen-
tation. Manuscript I; quotes 48 verses from the Siddhantasekhara, mainly from chapter 15 on
puranic geography, after GD2 37. Since these quotes are related to the topics in the previous
verses, the scribe of this manuscript (or its ancestor) might have intended to insert a division
here?.

SOY/

- . (
horizon = celestial equat®

Jozenba [|en1ss|ed

(a) Lanka (terrestrial equator) (b) Mount Meru (north pole)

Figure 4.1: Positions of the sun on an equinoctial point and the pole star.

GD2 37 explains the appearances of the sun on an equinoctial point and the pole star as
seen from two locations; Lanka on the terrestrial equator and Mount Meru which is the north

1One day followed by one night makes one full day. Any Sanskrit word for “day” can also indicate a “full
day”. In general, we can distinguish one from the other from context. The only place in GD2 with ambiguity is
GD2 65 (using dina) which concludes this topic (see section 4.12).

2GD2 37 is repeated twice before and after the quotations. Therefore it is possible that the first is a mis-
transcription and that the intended segmentation is after GD2 36.
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pole (figure 4.1). To be precise, we must assume that the sun is culminating in the sky at Lanka
(this assumption is unnecessary for Mount Meru). At Lanka, the sun is on the zenith while the
pole star is fixed on the northern horizon (figure 4.1(a)). Meanwhile, the sun is on the horizon
and the pole star is on the zenith at Mount Meru (figure 4.1(b))3. There is no reference to the
celestial equator in GD2 37, but I have added them in my diagrams. It goes through the zenith
at Lanka and coincides with the horizon at Mount Meru. Later in the treatise, the geographic
latitude and co-latitude are defined using the sun on an equinoctial point (GD2 70), the celestial
equator (GD2 71) and the pole star (GD2 72).

Parame$vara quotes Abh 4.14 as GD2 38 and Abh 4.12ab as GD2 39ab. In the cosmology
that they share, the northern terrestrial hemisphere mainly consists of land while there is more
seawater in the southern hemisphere. Thus the expressions “middle of the land” and “middle
of the water” indicates the north pole and south pole, respectively. Lanka is at a distance of a
quarter of the Earth’s circumference, i.e. 90 degrees, from both points. GD2 38cd=Abh 4.14cd
then refers to the geographic latitude of Ujjain (Ujjayin)*, the city which is associated with the
terrestrial prime meridian. According to GD2 38cd, it is “at a fifteenth (paricadasamse) [of the
Earth’s circumference] due north from Lanka”, corresponding to 24° north.

However, in his commentary on Abh 4.14 (Kern (1874, p. 79)) Paramesvara reads taccatu-
ramé$e instead of pancadasamse. This would be translated to “its quarter” where “it” refers to
“the quarter of the Earth’s circumference” mentioned in the previous half-verse. A quarter of
a quarter, i.e. a sixteenth of the Earth’s circumference, amounts to 22°30’. Subsequently he
introduces the reading “fifteenth” as mentioned by “someone”. Furthermore he quotes Brahma-
sphutasiddhanta 21.9cd which states that the distance is a fifteenth of the Earth’s circumference.
He does not discuss whether the variant reading is correct. Which was his initial knowledge, and
when did he change his reading?

Further evidence comes from Govindasvamin’s commentary on the Mahabhaskariya (GMBh)
and Parame$vara’s super-commentary, Siddhantadipika (SD). GMBh 5.4 quotes Abh 4.14 with
the reading taccaturamse and SD 5.4 follows it. Neither of them refer to variant readings. Since
Parameévara’s commentary on the Aryabhatiya mentions his Siddhantadipika®, the Siddhanta-
dipika was composed earlier. Thus it is likely that Paramesvara first understood that taccatu-
ramse was the correct reading, and later adopted paricadasamse. If we are right, this suggests
that Parameévara composed GD2 after his commentary on the Aryabhatiya. The next question
is why he decided to choose parnicadasamse as the correct reading. As aforementioned, he quotes
Brahmagupta’s Brahmasphutasiddhanta 21.9cd. Pancasiddhantika 13.10 by Varahamihira also
hints that Ujjain was separated from Lanka by 24°, the fifteenth of the Earth’s circumference®.
These two authors could have been Paramesvara’s authorities on this topic. Parame$vara’s
grand-student Nilakantha asserts that pancadasamse is the correct reading and refutes the read-
ing taccaturamse by quoting Brahmasphutasiddhanta 21.9cd and Paricasiddhantika 13.10 (Pillai
(1957b, pp. 29-30)). He might be following Paramegvara’s decision, but at this moment, I shall
just point it out as a possibility.

3Notice that in this figure, the sun could be in any direction. Parame$vara seems to think that cardinal direc-
tions could be defined on Meru, as he states in GD1 3.28: “Lanka, Romaka, Siddhapurt and Yavakoti. Those cities
are by the sea in the southern, western, northern and eastern directions from Mount Meru (larika ca romakakhya
siddhapurisamgnita ca yavakotih | yamyaparasaumyapragdiksu nagaryo ’bdhiga ima meroh [/3.28//, K. V. Sarma
(1956-1957, p. 29))”. Some authors deny that Mount Meru has directions, such as Lalla in Sisyadhivrddhidatantra
20.5 (Chatterjee (1981, 1, p. 232)).

40ther texts sometimes call the city Avantz, but I shall also use the name Ujjain when referring to those
occurrences.

5For example in his commentary on Abh 2.10 (Kern (1874, p. 26)).
6T. S. Kuppanna Sastri (1993, p. 250). See also discussion in Neugebauer and Pingree (1971, p. 84)
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GD2 39ab=Abh 4.12ab tells us that heaven (svar) and Mount Meru are at the north pole
while hell (naraka) and its entrance called the “mare’s mouth (badavamukha)” is at the south
pole. There is no information concerning the mutual positions of heaven and Mount Meru
or hell and the mare’s mouth. Abh 4.12¢ continues “gods (amara) and demons (mara)..” to
which Parame$vara comments: “Gods live in heaven. Demons live in hell’” In the following
verses of GD2, Parames$vara states that gods live on Mount Meru. It seems that he does not
strictly differentiate between heaven and Mount Meru, and likewise, between hell and the “mare’s
mouth”.

4.2 Positions of the gods, demons, manes and human beings (GD2
40)

GD2 40 repeats what has been said in GD2 28, and the only new information here is the location
of the manes. The difference is that GD2 28 was stated in the context of arguments on cosmology
and geography, whereas GD2 40 is at the beginning of a new topic, “days” of various entities.

According to Parames$vara’s descriptions, a day is the period of time that the sun is visible,
and night is when the sun is hidden. This can change greatly depending on the observer’s
location. Paramesvara explains divine days, demonic days, days of the manes and human days
in the following verses, which follows the order of his statement in GD2 40: gods, demons, manes
and human beings.

4.3 Divine and demonic day and night (GD2 41)

= Celestia| equator

(a) Gods (north pole) (b) Demons (south pole)

Figure 4.2: Visibility of the sun from the locations of the gods and demons.

From the viewpoint of the gods at the north pole (figure 4.2(a)), the northern celestial hemi-
sphere is always visible, and therefore the same half of the ecliptic can be constantly seen moving

Tamarah svargavasinah | mara narakavasinah | (Kern (1874, p. 77))
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from left to right. The six visible signs are Aries (), Taurus (¥), Gemini (II), Cancer (%), Leo
(Q) and Virgo (D). During the half of a solar year when the sun is in these six signs (i.e. from
vernal equinox to autumn equinox), the sun will never set. Therefore this half year is a divine
day.

During the same half year, the sun is below the horizon when seen from the south pole where
the demons are situated (figure 4.2(b)). Thus this period is the demonic night, as stated in GD2
41cd. Conversely, when the sun is in the six signs of Libra (£), Scorpio (ML), Sagittarius (<),
Capricorn (V3), Aquarius (&) and Pisces (H), the sun will always be visible from the demons and
hidden from the gods. This is the demonic day and the divine night. Parame$vara only refers
to the divine day and the demonic night in GD2, but he gives a full description in GD1 3.43-45
(K. V. Sarma (1956-1957, p. 32)).

4.4 Ancestral day and night (GD2 42)

Figure 4.3: The moon’s revolution around the Earth causing the day and night of the manes
who stand on the back of the moon.

According to GD2 40, the manes stand on the “middle of the disk of the moon”. GD2 23
denies that the moon is flat, and therefore this “disk (mandala)” must be a reference to its shape
as seen from the Earth. GDI 3.58 (K. V. Sarma (ibid., p. 35)) mentions that the manes are
“above the orb of the moon ($asibimbasya-urdhva)”. Since “above” is often used in the sense of
“far” from the center of the Earth, we may conclude that the manes are located on the back
of the moon as seen from the Earth (figure 4.3). In this situation, the sun becomes visible to
the manes when the moon is half and waning (M;). It rises to the zenith at new moon (Ms)
and sets when the moon is half and waxing (Ms). This is the day as seen from the manes. The
sun cannot be seen from the manes after M3 until M; including the moment of full moon (My).
This period is the night of the manes. The dark (krsna) half-month is from full moon to new
moon, and the middle of its eighth day is the midpoint, i.e. waning half moon (M;). Likewise,
the bright ($ukla) half-month is from new moon to full moon, and the middle of its eighth day
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refers to the waxing half moon (Mjz). Other treatises, such as the Brahmasphutasiddhanta®, the
Suryasiddhanta®, the Siddhantasekhara'® and the Siddhantasiromani'' give the same definition.
However, this does not agree with the following statement in the Manavadharmasastra.

The night and day of the manes is a month divided into two half-months. The dark [half-
month] is the day for performing activities and the bright [half-month] is the night for
sleeping.'?

In this definition, the day of the manes begins at new moon and ends at full moon. None of
the astronomical treatises listed above refer to this discrepancy, let alone argue on it.

4.5 Day and night on Earth (GD2 43-45)

The day and night at various places on Earth are the main topics in the following verses. The
description begins from the terrestrial equator. Unless the geographic latitude is exceedingly
large, one day and night equals 60 ghatikas. This is the day and night of human beings who “are
situated at the side of the Earth’s sphere” as stated in GD2 40.

4.5.1 Two measures of ghatikas

According to GD2 43ab, the day and night are both 30 ghatikas on a location with no geographic
latitude, i.e. the terrestrial equator. GD2 45 adds that days and nights vary in length at a location
other than the equator, but that their sum will always be 60 ghatikas. In both cases, one full
day is equal to 60 ghatikas. This seems inconsistent with what has been mentioned in GD2 9
(“the time in which a sixtieth of the celestial equator rotates is proclaimed to be a nadika, not
the sixtieth of a day”), but Parames$vara is using two different measures (civil and sidereal) for
a ghatika. He is explicit on this point in GD1 2.9-10:

The sun on the six o’clock circle at the east side reaches the six o’clock circle at the west
side in thirty ghatikas, and then from there, [reaches the six o’clock circle] at the east side
in that much amount of time.

But in this case, the word “ghatika” is said to express a sixtieth part of a day, because this
is indeed used in practice except for the rotation of the sphere.!?

Hereafter in this section, we will interpret ghatika as a sixtieth of a full day on the terrestrial
equator, or a mean civil day.

8 Brahmasphutasiddhanta 21.8 (Ikeyama (2002, pp. 49-50))

9 Suryasiddhanta 14.14cd-15ab (Shukla (1957, p. 140))

10 Siddhantasekhara 15.61 (Miéra (1947, p. 169))

M Siddhantasiromani Goladhyaya 7.13-14 (Chaturvedi (1981, pp. 408-409))

2pitrye ratryahant masah pravibhagas tu paksayoh |

karmacestasv ahah krspah Suklah svapnaya Sarvari [[1.66/] (Olivelle (2005, p. 394))
Byragunmandalago 'rkas trimsadghatikabhir eti pascimagam |

unmandalam tato 'pi ca tavat kalena purvagatam [[2.9]]

atra tu ghatikasabdo dinasastyamsasya vacakah proktah |
vyavaharo hy anayaiva syad golabhramanato ‘nyatra [[2.10// (K. V. Sarma (1956-1957, p. 16))

151



Sho Hirose - These de doctorat - 2017

4.5.2 Places of human beings

GD2 43-45 also adds some information on geography. Some of the previous verses have implied
that the northern terrestrial hemisphere is mainly covered by land whereas much of the southern
hemisphere is water. This is stressed by Paramesvara’s statement in GD2 43cd that the four
cities on the terrestrial equators are on the border of land and water. Furthermore, he mentions
that the day is longer when the sun is in the northern celestial hemisphere. This is only true if
the observer is in the northern terrestrial hemisphere. Apparently, Parames$vara does not take
human activities in the southern terrestrial hemisphere into consideration. This applies elsewhere
in GD2.

4.6 Midnight sun and polar night (GD2 46-49)

From hereon, Parames$vara describes regions with extremely high latitudes where the sun does
not set, or rise during some period. This is the polar region in modern terminology. GD2 46-49
focuses on the place where a midnight sun can be seen at summer solstice and a polar night
occurs at winter solstice (i.e. a place on the arctic circle), while GD2 50-54 introduces areas with
higher geographic latitudes, including the north pole.

This topic first appears in Varahamihira’s Pancasiddhantika 13.21-25 (T. S. Kuppanna Sastri
(1993, pp. 254-255)), and has been repeated by many texts, such as Lalla’s Sisyadhivrddhidatantm
16.20 (Chatterjee (1981, 1, p. 208)), Sripati’s Siddhantasekhara 16.56-57 (Misra (1947, pp. 231-
232)) and Bhaskara II’s Siddhantasiromani Goladhyaya 7.25, 7.28-30 (Chaturvedi (1981, pp. 411,
413)). Neither Aryabhata nor Bhaskara I deals with this subject.

Figure 4.4 illustrates the situation described in GD2 46-48. The arc distance ﬁ’/ﬁetween
the zenith Z and the celestial north pole P is the co-latitude ¢, and the arc distance MY of the
summer solstice point on the ecliptic (in this case also the place of the sun X) from the celestial
equator is the greatest declination €. At this location, the Sine of co-latitude Sin ¢ is equal to the
Sine of greatest declination Sine. If the sun is at the end of Gemini, i.e. on the summer solstice,
the entire diurnal circle would be above the horizon with only one intersection at due north.

GD2 47 is a quotation from Govindasvamin’s commentary on Mahabhaskariya 3.53 (T. Kup-
panna Sastri (1957, p. 167)). Govindasvamin himself attributes this verse to Aryabhata and
quotes it to refute that Mount Meru is very high, because the mountain would hide the sun in
that case (cf. section 3.7). In his super-commentary Siddhantadipika, Parames$vara mentions
that this verse was composed by Bhaskara [I]. In GDI, Parame$vara quotes the same verse as
GD1 3.33 (K. V. Sarma (1956-1957, p. 30)) to argue against views that Mount Meru is high, as
did Govindasvamin. Here in GD2, Parame$vara does not link the quote with Mount Meru.

GD2 47 has the form of a question, and Paramesvara gives the answer in GD2 48ab. The Sine
of geographic latitude Sin ¢ is equal to the upright Sine, i.e. the Cosine of greatest declination
Cose. GD2 48 then states the ascensional difference w at this moment. When the sun ¥ is on
the horizon at due north and the point on the celestial equator corresponding to its longitude is
M (figure 4.4), w = ME = MW = 15 ghatikas. In this situation (summer solstice), the day is 60
ghatikas which is as long as it can be and the night does not fall.

Paramesvara links the geographic latitude and the greatest declination with the ascensional
difference in this verse, but it is doubtful that Paramesvara intended the reader to actually
compute the ascensional difference from them'#. The situation could be easily visualized with
an armillary sphere, but we have no further clue to Parame$vara’s actual intention.

141f he really did, the required steps would be to compute the radius r of the diurnal circle from the Sine of
declination Sine (GD2 73cd), the Earth-Sine k from Sine, Sin ¢ and Sin ¢ (GD2 74ab) and the Sine of ascensional
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Figure 4.4: The sky when the co-latitude @ is equal to the greatest declination € and the sun ¥
is on the summer solstice.

GD2 49ab refers to days before and after the summer solstice. Days closer to the summer
solstice have a longer daytime, and the daytime diminishes when the day is further from the
summer solstice (either it be before or after). When the sun is on the other side, which is the end
of Sagittarius or winter solstitial point (figure 4.5), the diurnal circle will be under the horizon,
touching it at due south. Therefore on this day, which is the winter solstice, the observer will
see a polar night of sixty ghatikas (GD2 49cd).

4.7 Ascending signs at polar regions (GD2 50-54)

When the geographic latitude is even larger (and the co-latitude smaller) than the situation
described in GD2 46-49, there is a section on the ecliptic that will always be visible in the course
of the day, and another section that will never rise above the horizon. GD2 50-51 describe a
location where the co-latitude @ is equal to the declination ds corresponding to a longitude of
two signs from the vernal equinox (figure 4.6). The point on the ecliptic with such longitude is
the beginning of Gemini (G). It will touch the horizon but never set at this location. This is the
same for the end of Cancer (K), which is two signs away from the autumn equinox. Meanwhile,
the beginning of Sagittarius (D) and the end of Capricorn (C), which are two signs away from
the equinoxes toward the winter solstitial point, touch the horizon but do not rise above it in

difference from k and r (GD2 74cd).
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Figure 4.5: The sky when the co-latitude @ is equal to the greatest declination € and the sun ¥
is on the winter solstice.

the course of the day. Therefore Gemini and Cancer are always above the horizon, and the sun
will not set while it is in these two signs. Sagittarius and Capricorn never rise, and neither will
the sun in these signs. Paramesvara only refers to the visibility of the signs themselves and does
not relate it to the sun.

The remaining eight signs may rise and set. This is what Paramesvara means by “appear
(yanti) on the horizon” or “become an ascendant (lagna, literally adhere or touch; the point
of the ecliptic that is on the horizon in the east)”. In GD2 51 he also refers to the order in
which the signs become ascendants, and at this point Paramesvara gives a wrong statement.
The sign which rises after Taurus is actually Aries and not Leo as Parame$vara says. Taurus,
not Aquarius, is the ascendant subsequent to Scorpio. Let us look at the moment when Taurus
rises after Scorpio (figure 4.7). Before this moment, Leo, Virgo, Libra and Scorpio rise in the
normal order, while the ascendant in the horizon shifts from north to south. Scorpio rises near
due south as Taurus sets near due north (figure 4.7(a)) until their ends touch the horizon (figure
4.7(b)). Subsequently, Taurus will begin rising in the eastern half of the horizon as Scorpio sets
in the western half (figure 4.7(c)). Now the order of ascendants is backwards, and Aries will rise
after Taurus, followed by Pisces and Aquarius, as the ascendant shifts from north to south again
. At the same time, Scorpio, Libra, Virgo and Leo will set in this reversed order. The descendant
constantly shifts from south to north. Leo rises again after the beginning of Aquarius (its border
with Capricorn) touches the horizon. This reversal of the ascendant will not occur outside the
polar region where the ecliptic does not intersect with the horizon at due north.
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Figure 4.6: The sky when the co-latitude @ is equal to the declination J, corresponding to a
longitude of two signs.

In GD2 52-53, Parames$vara describes the sky as seen from a location where the co-latitude
@ is equal to the declination d; on the ecliptic where the longitude is one sign from the vernal
equinox (figure 4.8). The corresponding point is the beginning of Taurus (T). This point, as well
as the end of Leo (L) which is one sign from the autumn equinox, touch the horizon in the north
but do not set. The beginning of Scorpio (V) and the end of Aquarius (A) touch the horizon
in the south but do not rise. This agrees with Parames$vara statement in GD2 52. However he
makes the same mistake as previously for the order of rising signs in GD2 53. It should be Aries,
Pisces, Virgo and Libra.

Paramesvara was apparently unaware at this moment that signs could rise in reverse order
in polar regions. Other treatises which could have been available to him do not deal with this
topic. However, he acknowledges this phenomenon in GDI. This is an evidence that GDI must
have been composed after GD2. Parames$vara’s expression in GD1 3.54 hints that he might have
reflected upon this topic with the usage of an armillary sphere.

Wherever the Sine of co-latitude is smaller than the greatest declination, there, some of the
signs should rise in reverse order. This should be explained completely on a sphere.'®

GD2 54 is essentially repeating what has been stated in GD2 41 but in a different context.
Mount Meru, or the north pole, is a location where the co-latitude @ is zero. It gives the

15 paramapakramato ’lpa lambajya yatra tatra rasmam |
kesamcid utkramat syad udayo gole pradrsyam akhilam tat [[3.54 (K. V. Sarma (1956-1957, p. 34))

155



Sho Hirose - These de doctorat - 2017

) | horizon ' |

| +
| | : |
W N E W N Ew N B
o | =
(a) Scorpio (M) rising (b) Ends touch horizon (c) Taurus (¥) rising

Figure 4.7: The ecliptic in the north and south directions when the ascendant changes from
Scorpio to Taurus. The diurnal motion moves the ecliptic from west to east in the north and
from east to west in the south.

Table 4.1: Long time periods appearing in GD2 55-64.

Introduced period Relation with previous units  Verse

Full divine day 1 human year 55
Divine year 360 full divine days 55
Caturyuga 12,000 divine years 56
Divine Yuga 1 caturyuga 56
Krtayuga 4,800 divine years 57
Tretayuga 3,600 divine years 57
Dvaparayuga 2,400 divine years 57
Kaliyuga 1,200 divine years 57
Day of Brahma 1,000 caturyugas 58
Night of Brahma 1,000 caturyugas 58
Kalpa Day of Brahma 58
Manu 14 manus = 1 day of Brahma 59
Twilight % caturyugas 60
Year of Brahma (360 full days of Brahma) 62

impression that there is a continuity in the subject with GD2 46-49 (where ¢ is equal to the
declination corresponding to a longitude of three signs from an equinox), GD2 50-51 (equal to
the declination corresponding to a longitude of two signs) and GD2 52-53 (one sign).

4.8 Divine day and year (GD2 55)

GD2 55 mentions the annual motion of the sun which was also implied in the previous verses
(GD2 46-54). In this verse, it is referred to as the cause of the “human year” which amounts
to a solar year. This, in turn, is stated as the equivalent of a “divine day and night”. 360 full
divine days (day and night combined), i.e. 360 solar years, amount to a divine year. From here
on, time periods exceeding human timescales are given, as listed in table 4.1.

Abh 3.1ab is a general statement on the relation between a day and a year.

Twelve months are a year, and this month should be thirty days.'6

yarsam dvadasa masas trimsad divaso bhavet sa masas tu | (Kern (1874, p. 51))
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celestial equatof

Figure 4.8: The sky when the co-latitude @ is equal to the declination §; corresponding to a
longitude of one sign.

Aryabhata does not specify the definition of a “day” or “year” in this verse. In his commentary
(Kern (1874, pp. 51-52)), Parame$vara says that this division applies to 9 different measures of
time, and quotes the Suryasiddhanta 14.1:

The nine measures are indeed [those of] Brahma, manes, divine, [of the] lord of creatures,
Jovian, solar, civil, lunar and sidereal.'”

Among these nine measures, those of Brahma, the manes, divine and civil (i.e. human)
are enumerated in GD2 65. According to Suryasiddhanta 14.21cd (Shukla (1957, p. 142)), the
“measure of the lord of creatures” refers to the time unit manu, which is treated in GD2 59.
The “Jovian measure” indicates the Jupiter cycle of sixty years (see Burgess and Whitney (1858,
p. 179) and Srinivasan (1979, pp. 144-146)). This measure does not appear in GD2.

4.9 The caturyuga and its division (GD2 56-57)

GD2 56 introduces the caturyuga, literally “four yugas”, which is further divided into four parts
as explained in GD2 57. Table 4.2 lists the length of these four parts in solar years, comparing

Y7 brahmam pitryam tatha divyam prajapatyam ca gauravam | sauram ca savanam candram arksam manani
vai nava [[14.1/] (Kern (1874, p. 52), matches with the critical edition of Shukla (1957, p. 138))
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Table 4.2: Lengths of each yuga according to different texts (in solar years)

Name of period GD2 Manu Aryabhatiya
Krta-yuga 1,728,000 4,000 1,080,000
Twilight 400%2
Treta-yuga 1,296,000 3,000 1,080,000
Twilight 300x2
Dvapara-yuga 864,000 2,000 1,080,000
Twilight 200x2
Kali-yuga 432,000 1,000 1,080,000
Twilight 100x2

Total (caturyuga) 4,320,000 12,000 4,320,000

them with the years according to the Manavadharmasastra (denoted “Manu” in the table) and
the Aryabhatiya's.

The four parts are unequal in length with a ratio of 4:3:2:1, which resembles the Manava-
dharmasdastra. However Manavadharmasastra 1.69-71 (Olivelle (2005, p. 394)) defines that the
Krta-yuga itself is 4,000 years (normal years, and not the divine years). Twilights of 400 years
are placed before and after the Krta-yuga. The Treta-yuga is 3,000 years with twilights of 300
years, and so on. The total for each part including the twilight in solar years are 4,800, 3,600,
2,400, 1,200 respectively. The same values occur in GD2 57, except that they are the divine
years and not solar years. Manavadharmasastra 1.71 concludes that the caturyuga, with a total
of 12,000 years, is the “divine yuga”. This resembles the statement in GD2 56¢d.

On the other hand, Aryabhata is believed to have divided the caturyuga into four equal parts.
He uses the expression yugapada in Abh 1.5 and Abh 3.10 which could be translated to a “quarter
of a yuga”. Bhaskara I comments: “Meanwhile for us, every quarter of a yuga is indeed of equal
timespan (Commentary on Abh 3.8)'°”. Aryabhata had very few followers after Bhaskara I;
Vateévara is one of them?’. Other treatises adopt a system with yugas of 4:3:2:1, as is the case
with GD2.

4.10 Day of Brahma (GD2 59-61)

Another unique feature in Aryabhata’s system is that 1,008 caturyugas make up a day of Brahma
(Abh 3.8). GD2 58 states that it is 1,000 caturyugas. According to Abh 1.5, a day of Brahma is
further divided into 14 manus and each period consists of 72 caturyugas. Hence 14 x 72 = 1, 008.
GD2 59 also defines that there are 14 manus in a day of Brahma, but each has only 71 caturyugas.
14 x 71 = 994, and the remaining 6 caturyugas are divided into 15 parts, distributed at the
beginning and end of a day of Brahma and in between manus. This is called the twilight
(samdhya), each lasting 1% yugas (GD2 60). Many astronomers, apart from Aryabhata and his
followers, explain the same system?'. However, Parameévara makes a peculiar statement in GD2
61. He further divides the twilight of a manu into two parts. It resembles the structure of the

18This investigation was inspired by Yano (1980) which compares the yuga-kalpa (day of Brahma) system in the
Aryabhatiya, the “traditional system (represented by the Brahmasphutasiddhanta)” and the Manavadharmasastra.

19 asmakam tu yugapadah sarva eva ca tulyakalah | (Shukla (1976, p. 197))

20 Vatesvarasiddhanta 1.14 (Shukla (1985, pp. 147-148)) is an objection to Brahmasphutasiddhanta 11.4 which
criticized Aryabhata. Not every time unit in the Vatesvarasiddhanta agrees with the Aryabhatiya, but it does
divide the caturyuga into equal parts.

21For example in Suryasiddhanta 1.18-20 (Shukla (1957, pp. 4-5))
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two “twilights” allocated before and after the four yugas in the Manavadharmasastra, which are
also called the “portion of twilight (samdhyamsa)” and “twilight”. But no other treatise divides
the twilight of a manu in this manner. Whether there was a confusion by Paramesvara himself
or during the transmission is yet to be studied.

4.11 Elapsed time in the life of Brahma (GD2 62-63)

Paramesvara does not explicitly state the length of a “year of Brahma” which appears in GD2
62, but it may be inferred from his commentary on Abh 3.1 (see previous statement in section
4.8) that 360 full days of Brahma make one year of Brahma. This unit of time does not appear in
the Manavadharmasastra, nor is it mentioned in the Aryabhatiya. The puranic system developed
this cycle, and further added that 100 years of Brahma was his life span (Gonzélez-Reimann
(2009, p. 420)). Later astronomical treatises, such as the Siddhantasekhara®?, adopt this system.
The elapsed years of Brahma, manus and yugas as stated in GD2 62 also match the descriptions
in this puranic system. The expression “the very first of the remaining is to be assumed (adya®*
eva Sesasya kalpyo)” is problematic; what is expected here is a reference to the fact that we are
in the first day of Brahma of what remains. K7 (followed by Sastr1 (1916)) reads kalpe instead
of kalpyo, which changes the translation to “in the very first kalpa (= day of Brahma) of the
remaining”. This looks suitable, but this phrase does not contain a nominative®*. Moreover it
cannot connect grammatically with the previous or following phrase, and must be a standalone
sentence. Therefore I have rejected this reading.

According to the standard cosmology shared by the Puranas and astronomical texts, the
Krta-, Treta- and Dvapara-yugas in the current caturyuga have already elapsed, and we are now
in the Kali-yuga (cf. Kirfel (1920)). GD2 63 agrees with this view, except that he uses the words
trayah padah, which would be normally translated to “three quarters”, to refer to the three past
yugas. The same expression is used in the Aryabhatiya which, according to later astronomers
such as Bhaskara I, divides the caturyuga into four equal parts. This is clearly contradictory
to what Paramesvara stated in GD2 57. Probably, he is using the word pada to refer to four
unequal parts and not exact quarters. In his commentaries on Abh 1.5 (Kern (1874, pp. 7-8))
and Abh 3.10 (Kern (ibid., p. 58)), he does not problematize this expression nor say that the
four parts are of equal length. Therefore it could be possible that Parame$vara interprets that
even Aryabhata thought the four yugas were of unequal length.

4.12 Concluding remark (GD2 64-65)

Previously in GD2 58, Parames$vara mentioned that the world is created and maintained during
the day of Brahma and is destroyed during the night. Therefore the sun would only exist during
the day of Brahma as stated in GD2 64. There is no reference to the location of Brahma elsewhere
in our text, but Parame$vara seems to think that his position is far enough for the sun to be
always visible (as long as it exists) without being obscured.

The four types of days (table 4.3) are all defined by the visibility of the sun, as is stated in
GD2 65. In this verse, the word dina can be interpreted as both “daytime” or “full day (day and
night)”. However, elsewhere in GD2 (and also in GDI), Parame$vara is explicit whether he is

22 Siddhantasdekhara 1.20 (Misra (1932, p. 13)). The Suryasiddhanta seems to refer to the same notions, but
there is some ambiguity in its expression and requires a commentary for its full interpretation (Burgess and
Whitney (1858, p. 155)).

23The non-euphonized form is adyas.

24In this reading, the non-euphonized form of adya is adye. Otherwise it is nonsensical.
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Table 4.3: “Days” as seen from four points of view

location length of a day day and night

human | side of the Earth sunrise to sunset 60 ghatikas
manes | other side of the moon  waning half moon to 1 lunar month
waxing half moon

divine | north pole of the Earth vernal equinox to au- 1 solar year
tumn equinox

Brahma | remote from the sun creation of the sun to its 2 kalpas
destruction

referring only to a day or to a full day and night. He never refers to a full day of the manes or a
full day of Brahma, and only once to a full divine day in GD2 55. Therefore it is more possible
that dina in GD2 65 refers to the daytime, but the English word “day” should keep the same
ambiguity in the original Sanskrit.

GD2 65cd also adds that “spheres (gola)” should be used for understanding the different
days. This could be a reference to spheres as a solid such as the Earth and the moon, or the
celestial spheres which represent the motion of heavenly bodies, both of which could be within
an armillary sphere. In either case, the sphere is used for explaining four different locations
from where the same sun is viewed, resulting in four kinds of days. This passage also seems to
emphasize that these time units are indeed to be dealt with in the topic called the “Sphere”.

4.13 Contradicting statements on the distances of the sun and moon
(GD2 66-67)

After the series of statements on various time units, Paramesvara turns back to contradictions in
cosmology. I cannot find an explanation for why he separated GD2 66-67 far from the previous
arguments on cosmology (GD2 18-36).

In GD2 66 he introduces the opinion that the moon is above the sun, which conflicts with his
previous statements that the moon has the lowest orbit. This is based on a typical cosmological
model in the Puranas: the orbits of celestial bodies are situated above the Earth’s disk, the sun
is on a low orbit, the moon revolves above it, above every planet and star are the “seven sages
(saptarsi)” or the seven stars of the Big Dipper, and above them is the pole star?®. This is
a common target in astronomical treatises. The statement is refuted by pointing out that the
moon would always be near full moon if it were above the sun’s orbit, or that eclipses would
not occur®®. Parame$vara makes the same argument in GD1 2.32cd-34ab, but unlike previous
authors, he also justifies that the statements of the Puranas are true at the same time in GDI
2.29-32ab (K. V. Sarma (1956-1957, pp. 19-20)). In GD1, he gives two solutions for removing
the contradiction. This is also stated in GD2 66-67.

The first solution is to assume that the observer is at the north pole (figure 4.9). If the moon
(M) has a northward celestial latitude, it will always be higher the sun (¥) in the course of their
diurnal motion. Additionally, the seven sages (S) would be above them and on top of all, on the
zenith (Z), the pole star would be situated. In GD2 67, Parame$vara states that the sun is at
the end of Gemini (summer solstice), but the statement in GD2 66 will be fulfilled as long as the

25e.g. Vispupurana 2.7.3-11 (Annangaracharya (1972, pp. 136-137))
26e.g. Sisyadhivrddhidatantra 20.28 (Chatterjee (1981, 1, p. 234))
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Figure 4.9: An observer O at the north pole, seeing the moon M above the sun X

sun is visible (i.e. on the ecliptic from the vernal equinox to the autumn equinox) and the moon
near conjunction has a northward latitude.

The other solution is to consider that there is another deity bearing the name of the moon
above the sun. GD1 2.29 states it more explicitly.

In the school of wise ones who say that the moon should be above the sun, it is not this
moon which is present before the eyes but another deity of the moon that is being assumed
there.2”

Neither of the solutions could be found in other texts. Authors working on the removal of
contradiction (virodhaparihara, see page 3.6.1) tried to defend the Puranas but with different
reasonings. For example, Suryadasa (born 1507/1508 CE) thinks that the sages of the Puranas
had known that the moon must be below the sun, and seeks texts which support his claim
(Minkowski (2002, p. 367)).

27 arkad upari $a$t syad iti kavayo ye vadanti tatpakse |
nendur ayam pratyaksas tatranyac candradaivatam kalpyam [/2.29]] (K. V. Sarma (1956-1957, p. 19))
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5 Authorship and summary (GD2 68-69)

The only place in GD2 where Parameévara gives his name is GD2 68'). This is unusual, since
we would normally expect authorships to be stated in the opening or concluding verses. GD2
68 itself not only concludes the previous set of verses but also suggests that more should be
said. Therefore it is unlikely that Parame$vara had initially composed this treatise with only 68
verses, and added the remaining later. Whatever his intention might have been, the wordings of
GD2 68 and 69 give a strong impression that there is a transition in the topic. Previous verses
have dealt with topics such as names of celestial circles and time periods, which are themselves
static or constant. From GD2 70 and onward, Paramesvara turns to segments and arcs formed
within these circles that change in the course of time or according to the observer’s location. This
contrast of constancy and variance is embodied in the word samsthana, as we will see. There is
no other segmentation in GD2 by the author which is as explicit as GD2 68-69.

GD2 68 refers to the previous contents as “the configuration (samsthana) of the sphere”. The
word samsthana appears 8 times in his commentary on the Aryabhatiya, all of them in the 4th
chapter “gola”.

Then he states the configuration of the ecliptic. (Introduction to Abh 4.1)?
Abh 4.1 is on the inclination of the ecliptic.
He states the configuration of the inclined circle. (Introduction to Abh 4.3)3

Thus the configuration of the inclined circle supporting the moon has been proclaimed.
(Commentary on Abh 4.3)%

Thus is the configuration of the inclined circle which is the supporter of Jupiter, Mars and
Saturn. (Commentary on Abh 4.3)°

Abh 4.3 describes that the moon and five planets deviate from the ecliptic north and south
and pass the nodes. Paramesvara paraphrases the verse in detail in his commentary, but it is
interesting that he does not refer to these statements as motion of planets but as the configuration
of inclined circles on which they move.

He states the configuration of the orbits and the configuration of the Earth. (Introduction
to Abh 4.6)°

[This is] a repeated statement on the configuration of the Earth established in [the verse]
beginning with “below the stars” (Abh 3.15)7. (Commentary on Abh 4.6)

1See introduction 0.1.3 for explanation on the form of his name in this verse, paramadi 7vara.
2tatrapamandalasamsthanam aha | (Kern (1874, p. 70))

3viksepamandalasya samsthanam aha | (Kern (ibid., p. 71))

4evam candradharasya viksepamandalasya samsthanam uditam | (Kern (ibid., p. 72))
Sevam gurvkujamandanam adharabhutasya viksepamandalasya samsthanam | (Kern (ibid.))
6 kaksyasamsthanam bhisamsthanam caha | (Kern (ibid., p. 74))

"Below the [orbit of] stars are [the orbits of] Saturn, Jupiter, Mars, the sun, Venus, Mercury and Moon. And
below them is the Earth as the [central] pillar standing in the middle of space.
bhanam adhah Sanaiscarasuragurubhaumarkasukrabudhacandrah |
tesam adha$ ca bhamir medhibhuata khamadhyastha [/3.15// (Kern (ibid., p. 61))

8bhanam adha ity adisiddhasya bhisamsthanasya punarvacanam | (Kern (ibid., p. 75)). I have interpreted
this as an independent sentence and added a danda at its end.
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Abh 4.6 refers to the Earth’s position in the middle of every planetary orbit and also its shape
and composition. However Parames$vara focuses on its position, which is emphasized by his last
statement as quoted above.

This is named the celestial sphere. There is also the stellar sphere situated in its interior.
Now its configuration is: (Commentary on Abh 4.19)°

Before this passage, Parame$vara mentions the names, positions and orientations of rings in
the celestial sphere. He does the same thing for the stellar sphere.

In every case, samsthana refers to a description concerning the positions and orientations of
celestial circles and objects, which stay constant through time (including constant rotations or
revolutions). Meanwhile Parame$vara does not use samsthana when referring to verses in the
Aryabhatiya which involve arcs and segments created by their combination, whose lengths change
with time or place. Broadly speaking, we find the same tendency when comparing verses before
and after GD2 68. Nonetheless, the distinction made by Paramesvara under the word samsthana
is not strict, such as the days of various beings which do not fit into this categorization, or the
inclined circle which appears in GD2 125-126.

In GD2 69, Paramesvara refers to his super-commentary on Govindasvamin’s commentary
of Bhaskara I's Mahabhaskariya, the Siddhantadipika. Indeed, many of the contents after GD2
70 overlap with what we can find in the Siddhantadipika. The word yukti in this verse could
be understood as “application” or “usage”, such as computations and maybe even observations
using the gnomon, but none of the instances later on in GD2 fit this interpretation. Instead, I
chose to translate it “grounding”. In GD2 119, 188, 198 and 204, yukti refers to a proportion!®
which grounds a given rule, and the case in GD2 233 (the word is in the instrumental, yuktya)
might also imply some proportionality (see chapter 17). Meanwhile the cases in GD2 98 and 110
might refer to a visual “grounding”, possibly using an armillary sphere (see section 7.5).

Yetat khagolamn nama bhavati | asyantargatam naksatragolam apy asti | tatsamsthanam tu | (Kern (1874,
p. 83))
10 GD2 119 gives a proportion in a peculiar manner, while the rest are in the standard form of a Rule of Three.
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6 Segments and arcs produced in the stellar sphere and
celestial sphere (GD2 70-88)

Just before this section, GD2 68 refers to the previous statements as those on “configurations
(samsthana)”, indicating constant states. From hereon Paramesvara introduces segments and
arcs which change their lengths according to various conditions. Some of these segments and
arcs can be given as initial parameters, whereas others have to be computed. In GD2 70-88,
every value is computed from the geographic latitude ¢ and the longitude of the sun Ay which
is assumed to be constant for a given day. Any variance that occurs in the course of the day,
which will be introduced after GD2 103, is not taken into account in these verses.

 is explained in detail together with the co-latitude in GD2 70-72 while there is no descrip-
tion of Ay itself. Instead, GD2 73 abruptly mentions the “base” Sine of the sun’s longitude
without explanation. GD2 73-74 are a series of computations that give the Sine of declination
Sin §, diurnal “Sine” r, Earth-Sine k& and Sine of ascensional difference Sinw. Explanations or
groundings behind these computations are supplied in GD2 75-83. GD2 84-88 states two rules
for computing the solar amplitude Sin#n with additional explanations.

6.1 Geographic latitude and co-latitude (GD2 70-72)

The geographic latitude (aksa or pala) ¢ has already been mentioned in GD2 2 and the co-latitude
(lambaka or avalambaka) @ was first referred to in GD2 46, but these verses do not specify the
meaning of the terms. The geographic latitude and co-latitude, either as arcs or segments, are
described for the first time in GD2 70-72 in three different ways.

I will argue below that each of the three descriptions might have had different roles. On
the other hand, having multiple definitions itself might have been important too. GD2 105-106
explains that many figures (triangles) are caused by the geographic latitude as a reasoning for
their similarity. The three different descriptions of the geographic latitude and co-latitude might
be for highlighting their omnipresence.

GD2 70 describes the situation when the sun is at an equinoctial point and culminating in
the south at midday (figure 6.1). The great gnomon (mahasariku) at this moment, which is the
elevation of the sun against the horizon B*¥*, is the Sine of co-latitude Sin @ while the great
shadow (mahacchaya), which is the distance OB* from the center of the sphere to the foot of
the great gnomon, is the Sine of geographic latitude Sin ¢. However, the proper definition of the
great gnomon comes much later in GD2 103 and the great shadow is introduced even later in
GD2 114. Yet Paramesvara seems to assume that the reader knows them already.

Theoretically, the great gnomon and the great shadow can be computed with a gnomon g =
XO and its shadow s = OC*. The hypotenuse h* = C*X formed by this gnomon and shadow' is
computed from the Pythagorean theorem (h* = /g2 + s2). Assuming that the sun is infinitely
far away, Z0C*X = /ZB*0¥*, /XOC* = /¥*B*0 = 90° and therefore AXOC* ~ AX*B*O.
The hypotenuse OX* of the great gnomon and the great shadow is the Radius R. Thus

oC* . 0x*
®(0) —
B*O = O X
Sinp = 2—? (6.1)

ILater in GD2 117ab, this hypotenuse is given the name palakarna.
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Figure 6.1: Sine of geographic latitude Siny = B*O and Sine of co-latitude Sinp = »X*B*
according to GD2 70. Here the sun ¥* is on an equinoctial point and at its culmination.

SR XO - 0X*
X
. gR

This very method is explained in MBh 3.4-5 (T. Kuppanna Sastri (1957, pp. 107-109)). In
fact, this is the only rule given in the Mahabhaskariya to find the geographic latitude, which is
why Paramesvara could have stated this before the other two descriptions. The gnomon, shadow
and its hypotenuse at midday on an equinoctial day is used in GD2 117-118 where Paramesvara
makes reference to the geographic latitude (section 8.7) and suggests the connection between
these verses.

By describing the Sine of geographic latitude as a great shadow, Paramesvara could also be
suggesting its direction. Many of the examples in GD2 presuppose that the direction of the sun
is also the direction of the great shadow, and the commentary on GD2 232 even refers explicitly
to a “[great] shadow in the given direction (istadikcchaya)”. If the direction of the great shadow
at midday on an equinoctial day is also the direction of Sin ¢, it must be southward as long as
the observer is in a northern hemisphere. Later in GD2 184 (section 10.14.2), we will see that
the arc of geographic latitude ¢ is indeed treated as being southward?.

2 Additionally, Parame$vara also states that the geographic latitude is southward in Grahanpastaka 3 (K. V.
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Figure 6.2: Latitude ¢ = MZ and co-latitude P = SM according to GD2 71

GD2 71 describes the geographic latitude and co-latitude as arcs which are the “distance
(antara)” or “gap (vivara)” on the south-north circle (figure 6.2). However there is room for
consideration, especially on the co-latitude, which is called the lambaka or avalambaka, both of
which can mean “hanging down” or the “perpendicular”. Unlike the previous case, we cannot
observe the geographic latitude and co-latitude defined in this way. Nonetheless, we can easily
find them in an armillary sphere. I assume that GD2 71 could have been added for the purpose
of explanation with an instrument.

The description in GD2 72 uses the pole star (dhruvae). This is an expression which evokes
the viewpoint of an observer, compared with the word “cross” as in GD2 154 that imply an
armillary sphere, but I think that this rule can be interpreted as both a way of finding the
geographic latitude from observation and locating it on the armillary sphere.

In this configuration, we can find a right triangle AOB’P which has the polar axis PO as its
hypotenuse. This could help explain the etymology of aksa (geographic latitude), literally “axis”.

6.2 “Celestial longitudes” in GD2

The longitude of the sun is another important parameter for computing other segments and arcs,
but unlike the geographic latitude, Paramesvara does not evoke it directly. Later in GD2 89, we
can find an explanation of the “base” and “upright” which are distances in longitudes measured

Sarma (1958-1959, pp. 55,58)).
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Figure 6.3: Sine of geographic latitude ¢ = B’P and Sine of co-latitude ¢ = OB, described in
GD2 72

from the equinoctial and solstitial points, respectively, but even for understanding this verse, the
reader must have the notion of a “celestial longitude” beforehand.

What we call “longitude” or “celestial longitude” (to distinguish it from a terrestrial longitude)
here is an arc measured® along the ecliptic, westward from the vernal equinox. Actually, there is
no Sanskrit word that corresponds to celestial longitudes in general, and the name of the celestial
object itself (e.g. sun, planet) signifies its longitude?. The lack of explanation for the “celestial
longitude” in general is not unique to Paramesvara.

In the following verses, we will only be dealing with the sun which is always on the ecliptic.
Thus, there is no necessity to distinguish the position of the object (sun) and its longitude.
However, the situation is complicated for other planets which have celestial latitudes. I will
argue later in section 9.1 that Paramesvara occasionally uses words for “planet” in the sense of
its longitude on the ecliptic and not for the object itself which is separated from it by its celestial
latitude.

3Unless specified, it could be of any arc unit. In our scope, it would be either signs, degrees or minutes.

4This has been pointed out by Whitney (1866, pp. 30-31), but has never been discussed in more detail ever
since. Whitney, and also Colebrooke (1807, p. 327) before him, mention that dhruva or dhruvaka is used for the
longitude of fixed stars, but this dealt with in GD2.
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6.3 Computing the ascensional difference (GD2 73-83)

GD2 73-74 introduces four new segments in four sets of computations: Sine of declination SinJ,
diurnal “Sine” r, Earth-Sine k and Sine of ascensional difference Sinw. Paramesvara stops here
and supply additional explanations that locate the newly introduced segments in the sphere or
give the Rule of Three behind the computations, before going further to the solar amplitude in
GD2 84-88. The verses also deal with the arc of ascensional difference w. These might indicate
that he considered the ascensional difference an important waypoint in the procedure. The other
three segments are also crucial, but the ascensional difference plays a central role in the upcoming
topic of the measure of signs. Sind and r only depend on the longitude of the celestial object,
but k£ and w also depend on the geographic latitude. Consequently, the ascensional difference
comes into play whenever one needs to deal with the motion of a celestial body at a location
with geographic latitude.

The explanations have a structure corresponding to the order of the computations in GD2 73-
74. GD2 75-77 locate the positions of the new segments in relation to other circles or segments.
GD2 78-80 is a discussion on converting the Sine of ascensional difference to an arc. GD2 81-83
are three sets of Rules of Three which ground the computations. In the following subsections
we shall look at the verses for the computation and explanation for each segment together for
convenience.

6.3.1 Sine of declination (GD2 73ab, 75ab, 81)

The word “declination (apama, kranti)” in GD2 usually indicates its Sine (Sind) than the arc
(&) itself. This is also the case in GD2 T3ab. As a Sine, the declination is the distance of a
celestial object from the plane of the celestial equator, and as an arc, it is the arc distance from
the celestial equator.

GD2 T5ab refers to the Sine of declination in relation to the position of the sun, and therefore
I assume that his descriptions in this section are basically for the sun. Technically, they could be
applied for any given point on the ecliptic, which we will see in GD2 89-102 (chapter 7). As for
planets with celestial latitude, GD2 163-164 introduces the concept of “true declination” which
one could use instead (section 10.6).

Figure 6.4 is a reconstruction of how Paramesvara could have explained his computational
rule in GD2 73ab on the basis of the Rule of Three in GD2 81. O is the observer in the center
of the sphere, surrounded by two great circles, the celestial equator and the ecliptic. X is the
position of the sun in the ecliptic. GD2 73ab only refers to the position of the celestial object as
the “‘base’ Sine of the true (sphutadorjya)”. Here, a “base” Sine (dorjya) Ap(x) is the Sine of an
arc in the ecliptic between a given point and the nearest equinoctial point Q, as defined in GD2
89. Paramesvara seems to stress that the longitude must be corrected from its mean position
beforehand by adding the word “true (sphuta)”. This is not a topic in GD2 (see appendix C).

L and K are the foots of perpendiculars dropped from ¥ to the plane of the celestial equator
and on OQ), respectively. Thus LY = Sind and XK = Sin Ap(x). As LY is perpendicular to the
plane of the celestial equator and YK 1 OQ, KL L OQ from the theorem of three perpendiculars.

On the other hand, S is a solstitial point and T is the foot of the perpendicular dropped to
the plane of the celestial equator. Thus TS is the Sine of greatest declination Sine. GD2 73ab
gives the value Sine = 1397. This indicates that Paramesvara uses € = 24° and computes the
Sine with Aryabhata’s Sine table and linear interpolation (see appendix B.3). Later in GD2 159,
he also refers to this value as the “[Sine of] greatest declination (paramakranti)”. SO = R is the
Radius of a great circle, but GD2 81 also refers to it as the “base” Sine of 90 degrees.
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Figure 6.4: Sines of declination LY. = Sin and greatest declination TS = Sine.

SO L OQ and therefore XK || SO. OT L OQ and therefore KL || OT. Since the two
pairs of segments forming angles are parallel, /XKL = ZSOT. ZKLY = ZOTS = 90°. Thus
AKLY ~ AOTS and:

YK - TS
Ly=""2
SO
Sin A - 1397
Sing = SnAu - 1957 63)

There is no reference to the measuring unit, but since 1397 is a value which supposes that
R = 3438 so that one unit of a segment corresponds to one minute of arc, we can assume that
Sind is also measured in the same unit of segment length (see appendix A.2). The same can be
said for almost every computation given without measuring units in the rest of GD2.

GD2 75ab locates the Sine of declination within the sphere (figure 6.5). The half-verse itself
is very terse and we have relied on GDI 2.14 (K. V. Sarma (19561957, p. 17)) which includes
many words in common to interpret GD2 75ab. Paramesvara assumes that the sun X is on the
six o’clock circle; this implies that he considers the sun’s longitude and its declination as fixed
in the course of a day, and that the declination for any moment can be described by moving
the sun along the diurnal circle up to the six o’clock circle. E is one of the two intersections of
the celestial equator and the six o’clock circle, which should also intersect with the horizon (not
drawn in the figure). This is due east or west. EX is the arc of declination, and its Sine may be
either LY or OO’ where L is the foot of the perpendicular dropped from ¥ to OE and O’ is the
center of the diurnal circle. T assume that OO’ is used in the description and grounding for the
diurnal “Sine” which we will see in the next section.
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Figure 6.5: The Sine of declination located in the six o’clock circle. The celestial north pole P is
at the top.

6.4 Diurnal “Sine” (GD2 73cd, 75cd, 76cd)

The diurnal “Sine” (dyudalajiva in GD2 73, svahoratrardhajya in GD2 75) refers to the radius
of the diurnal circle, as is explicated in GD2 T5cd®. GD2 76cd suggests that the diurnal “Sine”
forms a right triangle by referring to it as an upright. In our previous diagram (figure 6.5),
30O’ = r is the diurnal “Sine”. Then the Radius OX = R is the hypotenuse, and the Sine of
declination O’O = Sind is the base. GD2 73cd uses this configuration to compute the diurnal
“Sine” with the Pythagorean theorem.

YO =V0x? — 00?
r =+ R2 - Sin*§ (6.4)

This relation enables us to move from a diurnal circle, on which the sun moves, to a great
circle, on which time is measured as an arc length. Parameévara gives more explanation on this
point later, with the introduction of the ascensional difference.

5We notate “Sine” in quotation marks because it is not a Sine in a great circle. See dyudalajiva in glossary
for details.
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6.5 Earth-Sine (GD2 74ab, 76ab, 82)

Figure 6.6: The Earth-Sine GU = k when the declination is northward. North is to the right.

As shown in figure 6.6, the horizon, celestial equator and the six o’clock circle intersect at the
same two points (due east E and west W), but the pair of intersections of the diurnal circle and
the six o’clock circle (rising point U and setting point A) does not coincide with the intersections
of the diurnal circle and the horizon (C and D). The arc UC or AD is what GD2 76ab refers to
as the “gap between the horizon and the six o’clock circle” in the diurnal circle. The six o’clock
circle cuts the diurnal circle in half (see section 2.9), and therefore, if CD is above the horizon
(which is when the declination is northward), UC and AD are the additional motion of the sun
after sunrise and before sunset compared with an equinoctial day, and if CD is below the horizon
(when the declination is southward as in figure 6.7), the arcs represent the shortening of the
daylight.

Since CD is the diameter of the diurnal circle, the distance between CD and UA (hereafter
we choose GU where G is the foot of the perpendicular dropped from U on CD) is the “sine”
corresponding to UC or AD. This is the Earth-Sine k. However, the diurnal circle is not a great
circle, and the FEarth-Sine is not a Sine in the strict sense.

When F is the foot of Ql\e perpendicular dropped from G to EW, FG is the Sine of declination
corresponding to its arc EC because they are both in the plane of the six o’clock circle. GU is
in the plane of the diurnal circle which is parallel to the celestial equator and FG is in the plane

of the six o’clock circle which is perpendicular to the equator. Therefore the two segments form
a triangle AFGU where ZFGU = 90°.

171



Sho Hirose - These de doctorat - 2017

Figure 6.7: The Earth-Sine GU = k when the declination is southward. North is to the right.

FG || PO (the axis between the celestial north pole P and the observer O) since they are
both in the same plane and are perpendicular to the same line EW. Exactly for the same reason,
UF || OB’ where B’ is the foot of the perpendicular dropped from P to the plane of the horizon.
Thus ZUFG = ZPOB’. ZFGU = ZOB'P = 90°. Therefore AFGU ~ AOB'P. As discussed in
GD2 72, B'P is the Sine of geographic latitude (Sin ) and OB’ is the Sine of co-latitude (Sin @).
Hence the Rule of Three in GD2 82, which gives the computation in GD2 74ab:

B'P-FG
GU = o
Sin ¢ Sin §
"= TSme (6.5)

6.6 Sine and arc of ascensional difference (74cd, 77-80, 83)

The change in the diurnal motion of the sun caused by the geographic latitude and the celestial
longitude is represented by the Earth-Sine or its arc. The next step is to measure the time
corresponding to this difference. GD2 77ab tells us that a revolution (bhramana) of the celestial
equator and diurnal circles are the same in terms of time. Or to reformulate the expression, the
circles revolve once in the same amount of time (i.e. one day). This statement might be to evoke
that portions of revolutions also correspond (figure 6.8). GD2 77cd links the Sine produced in
the celestial equator by a motion to the Sine produced in the given time. Thus, GD2 77 suggests

172



Sho Hirose - These de doctorat - 2017

Figure 6.8: Corresponding revolution of the celestial equator and diurnal circle.

that we should find a Sine in the celestial equator corresponding to the Earth-Sine in the diurnal
circle, which will represent the time it takes for the sun to move between the horizon and the six
o’clock circle. This is explicated in GD2 78ab, and a Rule of Three based on the correspondence
between the celestial equator and the diurnal circle is formulated in GD2 83, which gives the
computation in GD2 74cd. But before looking into the computation itself, the following questions
may be raised: Why do we need to move from the diurnal circle to the celestial equator, and
why cannot we measure the time using the diurnal circle instead?

GD2 79-80 can be read as responses to such questions. GD2 79 adds more explanation on
the correspondence between units of time and units of arc length. One prana, or its synonym
asu, is equivalent to the time in which a stellar sphere revolves one minute of arc®. Therefore we
need the arc and not its Sine to measure the time. But GD2 80 says that the arc can only be
computed on a great circle and not on a diurnal circle. I assume that Parameévara has the Sine
table in his mind when he makes this statement. A Sine table will only give a set of Sines for
a circle with a certain radius. In Paramesvara’s case, the Sine table assumes a great circle with
the Radius of 3438 (see appendix B.3). Therefore, we must find the Sine in the celestial equator
(which is a great circle) that corresponds to the Earth-Sine, and then find the corresponding
length of arc.

6 According to Abh 1.6¢c (Kern (1874, pp. 8-9)): “The celestial sphere [revolves] one minute in a prana (pranpe-
naiti kalam bham)”. Here we have used Paramesvara’s gloss on the word bha (literally “star”) that it is used in
the sense of “stellar sphere (jyotiscakra)”.
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Figure 6.9: Earth-Sine GU and Sine of ascensional difference G'U’.

The Sine in the celestial equator that corresponds to the Earth-Sine is called the Sine of
ascensional difference (cara) Sinw. The clue for establishing a computational rule can be found
in GD2 110 where the celestial equator is assumed to be outside the diurnal circle (section 8.4).
This could also be visualized by looking at the armillary sphere from the direction of the celestial
pole (figure 6.9). Here, GU is the Earth-Sine and G'U’ is the Sine of ascensional difference. OU’ is
the radius of the celestial equator, which is the Radius R of the great circle, and OU is the diurnal
“Sine” r. AOGU and AOG'U’ are similar because they are right triangles sharing one acute
angle. Therefore the Rule of Three in GD2 83 can be established, which gives the computation
in GD2 74cd:

GU-OoU’
R
G'U = —ou
Sinw = ? (6.6)

GD2 78cd adds that the ascensional difference w is the arc corresponding to this Sine, and
that it is in the unit of pranas. As discussed in GD2 79, one minute of arc in the celestial equator
is equivalent to one prana, so we can use the value of the arc, converted from the Sine using a
Sine table, without modification.

I would like to add some words on the expression “beginning with (adi)” in GD2 79 which
suggests an enumeration of measuring units. The list of time and arc units would be either
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longer or shorter than the prane and the arc minute. Sanskrit astronomical treatises do not use
time units shorter than the prana; Suryasiddhante 1.11ab (Shukla (1957, p. 2)) distinguishes
“real (murta)” time units beginning with the prana and shorter ones that are “unreal (amurta)”
(see also Burgess and Whitney (1858, pp. 149-150)). Thus we would expect longer units. The
time units following a prana are the wvighatika and ghatika where 1 vighatika = 6 pranas and 1
ghatika = 60 vighatikas. Likewise, 1 degree = 60 arc minutes. Thus 1 degree = 10 vighatikas and
6 degrees = 1 ghatika, which means that there is no one-to-one correspondence, but the word
“coexistence (samsthiti)” in GD2 79 need not be taken in such narrow sense.

6.7 Solar amplitude (GD2 84-88)

GD2 84 introduces another segment, the solar amplitude Sin#. This is the Sine in the plane of
the horizon, corresponding to the arc distance between its conjunction with the diurnal circle
and the point due east or west. The description in GD2 84cd is short and does not refer to
the ending point of the arc which is due east or west. This was also the case for the Sine of
declination in GD2 75ab. The two half-verses have in common the fact that the “sun” is used in
place of the diurnal circle. Another remark to be made is that although GD2 84cd refers to the
“conjunction” of the horizon with the sun (diurnal circle) in the ablative case (ksitéjabhanuyogat),
thereby suggesting that the direction of the solar amplitude is from this conjunction toward the
east-west line, computational methods on gnomons imply that it is the opposite (section 14.3
and 18.8).

We have already seen that the Sine of declination Siné and the Earth-Sine & form a right
triangle (figure 6.6). The solar amplitude happens to be its hypotenuse. This is emphasized in
GD2 85 where the Sine of declination is labeled the upright and the Earth-Sine the base.

The solar amplitude is separated from the other four segments whose computational rules
were put together in GD2 73-74. Part of the reason might be because the solar amplitude itself
is indeed important. It appears frequently in the solving procedures of the six examples in GD2
209-247. But another purpose could be to stress the importance of the right triangle AFGU
where FG = Sind, GU = k and UF = Sinn (figure 6.6). We have already seen that this is
similar with AOB’P where B'P is the perpendicular on the horizon going through the celestial
north pole P. Therefore the computation in GD2 84 holds, which is also grounded by the Rule
of Three in GD2 87:

OP - FG
UF 50
. RSiné
Sinn = Sing (6.7)

AFGU can also be used to find the solar amplitude with the Pythagorean theorem, as stated
in GD2 86:

UF = VFG? + GU?
Sinn = Vk2 + Sin* & (6.8)

However, elsewhere in GD2 we only find evidences of formula 6.7 being used. GD2 85 seems
sufficient for drawing attention to the right triangle, and Paramesvara’s intention in GD2 86 is
questionable.
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6.7.1 Another description for the geographic latitude and co-latitude
(GD2 88)

GD2 88 might be for providing further reasoning for the Rule of Three. It gives a special situation
where the diurnal circle, having a radius equal to the Sine of geographic latitude Sin ¢, touches
the horizon at one point (figure 6.10)7. The segment between the center of the diurnal circle
and the horizon (O’N) is equivalent to the Sine of the geographic latitude while that between
the center of the diurnal circle and the observer (OO’) has the length of the Sine of co-latitude.
These two form a right triangle AOO’N with the hypotenuse in the plane of horizon, extending
from the observer to the circumference of the diurnal circle (NO). The three segments can also
be seen as the Earth-Sine (O'N), Sine of declination (OO’) and the solar amplitude (NO), thus
explaining their correspondence in GD2 87.

horizon

Figure 6.10: Diurnal circle with a radius equal to Sin ¢

At the same time, this situation can be understood as yet another way of defining the geo-
graphic latitude and co-latitude. This is clearer in GDZ! 1.15 which resembles GD2 88. Note that
this is the last verse in the first chapter of GD1, “Rule for binding the sphere (golabandhavidhi)”.

lambaksajrianartham prakalpyate dandanabhiharijante |
anyad dyuvrttam anyair bhujyaksajyeha lambakah krantih //1.15//

"Here the diurnal circle is above the horizon and touches it at the northern point, but we can also think of a
case where the declination is southward and the diurnal circle being below the horizon touching it at the southern
point.
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Another diurnal circle having the axis as center and the horizon as its end is prepared by
others, in order to know the co-latitude and geographic latitude. Here the Earth-Sine is the
Sine of geographic latitude and the [Sine of] declination is the co-latitude. (GDI 1.15)

The correspondence between the segments is made explicit in this verse by mentioning the
Earth-Sine and the declination.
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7 Rising of the signs (GD2 89-102)

6

horizon

Figure 7.1: Measures of signs (p)

The subject in these verses is the ascensional difference corresponding to a zodiacal sign, i.e.
the time it takes for a entire sign to rise above the horizon. This is called the “measure (mana /
miti) of a sign”, and is equivalent to the corresponding length of arc in the equator (figure 7.1).
Their relations will be used occasionally later on in the treatise, whenever we need to move from
an arc in the ecliptic to the celestial equator or vice versa.

Paramesvara’s steps can be described as follows: First, he defines the “base” and “upright”,
which are two ways to describe an arc of longitude or its corresponding Sine in the ecliptic (GD2
89). Then he explains how to find the arc in the celestial equator corresponding to a given “base”
arc. This is done in two steps (GD2 90-93 and GD2 94-95), each containing a Rule of Three.
The measure of a sign as seen from the terrestrial equator is obtained by taking the difference
between two arcs (GD2 96). This corrected by the ascensional difference gives the measure at
a given geographic latitude (GD2 97-98). In GD2 99-100, Paramesvara gives an alternative rule
for GD2 90-95 which combines the two Rules of Three into one. Last of all, he discusses the
effect by the motion of equinoxes and solstices (GD2 101-102).

178



Sho Hirose - These de doctorat - 2017

7.1 “Base” and “upright” on the ecliptic (GD2 89)

GD2 89 defines the “base” and “upright” of a planet, which are its longitudes measured from
equinoctial or solstitial points on the ecliptic. We have seen previously that the “base” of the
sun appears unexplained in GD2 73 (section 6.2). The reason why Paramesvara placed this verse
here instead of before GD2 73 could be explained that he considered these notions relevant to the
succeeding topic. The “base” arc and its Sine are indeed important in the process of computing
the measures of signs. However the “upright” remains unused until GD2 158.

Figure 7.2: “Base” KV = SinAp, “upright” MV = Sin Ay and their arcs of a planet on the
ecliptic

In figure 7.2, Q is an equinoctial point (golanta) and S is a solstitial point (ayananta). If the
planet is located at point V in the ecliptic, @ is the arc of its “base” Ap while the corresporﬂ\ing
Sine KV is the “base” Sin Ap , or sometimes referred to as the “base” Sine. Meanwhile, SV is
the arc of its “upright” Ay and MV is the “upright” Sin Ay itself. Their names probably come
from the fact that one can draw a right triangle where the two segments really are the base
and upright, with the distance from the observer to the planet (OV) as its hypotenuse (AOKV
where KV is the base and OK = MV is the upright, or AOMV where OM = KV is the base
and MV is the upright). However, the names “base” and “upright” can be used to address these
segments even when they are in triangles other than AOKV or AOMV. For example, the “base”
appearing in GD2 91 is actually the hypotenuse of a right triangle.

In modern notation, the “base” and “upright” corresponds to the absolute value of the Sine
and Cosine of a planet’s longitude. Or alternatively, for a longitude ), the “base” Sine (Sin Ap)
and the “upright” Sine (Sin A\y) are:
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When 0° <)\ < 90° SinAg = Sin A
Sin Ay = Sin(90° — \)
When 90° < )\ < 180° Sin Ag = Sin(180° — \)
Sin Ay = Sin(A — 90°)
When 180° < A < 270° Sin Ag = Sin
Sin Ay = Sin
When 270° < A < 360° Sin Ag = Sin(360° — A
Sin Ay = Sin(A — 270°

A few comments on Paramesvara’s wordings in this verse are to be added. It is notable that
each point on the circle includes the word anta (end) in Sanskrit. The word ayananta (literally
“end of the course [of the sun in the northward or southward direction]”) for a solstitial point
is common in astronomical texts. golanta (literally “end of the celestial hemisphere”) for an
equinoctial point is rarely seen in other texts', but not difficult to interpret. On the other hand,
Paramesvara also adds anta to words for “planet” (kheta, vihaga). An “end of the planet” is a
strange expression if we interpret the planet as a celestial object or point in the sky. However, we
have discussed in section 6.2 that the name of a celestial object can also signify its longitude. If
we take a “longitude” as an arc on the ecliptic starting from the vernal equinox and ending at the
planet, then the “end of the planet” can signify a specific point on the ecliptic where the planet
is located. Therefore I have translated the compounds khetanta and vihaganta as an “end of the
planet[’s longitude]”. This is still a hypothesis and more studies on the notion of “longitudes”
and “planets”, both by Parameévara and in Sanskrit astronomical texts in general, are required.

7.2 Given Sine in the diurnal circle (GD2 90-93)

The first step is to compute the length of a segment called the “given Sine in the diurnal circle”
ja. The Sanskrit term either uses the locative of “diurnal circle” (e.g. svahoratre ‘bhista jiva) or
a single compound (e.g. svahoratrestajya). Two computations are given in GD2 90-93, and GD2
93cd refers to its purpose, which is to establish the measure of signs.

The same triangle AKL3 as in figure 6.4 could be used here, but shifting the Sine of decli-
nation from LY to L'K so that the given Sine XL’ is “in the diurnal circle” should be a better
representation (figure 7.3). Likewise, the Sine of greatest declination TS is shifted to T'O and
ST’ is the diurnal “Sine” when the declination is greatest (paramadyujya), i.e. the radius of the
diurnal circle at solstice (r¢). Its value r. = 3141 is given in GD2 91 without explanation, but is

probably derived from the Pythagorean theorem given in 73cd (r =/ R? — Sin? §)2. Therefore,
the given Sine XL/ = j, is

1The only other instance that I have found so far is in Paramegvara’s commentary on Abh 4.48 (Kern (1874,
p- 99)). More research is required to confirm whether this term is unique to Paramesvara.

2The Cosine gives a different value: Cos 24° = Sin(90° —24°) = Sin 66° = Sin 63°45’+(Sin 67°30’ —Sin 63°45’)-
6T730°266" — 3084 + (3177 — 3084) - & = 3139; 48, rounded to 3140.
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Figure 7.3: Given Sine in the diurnal circle XL/ and diurnal “Sine” of greatest declination ST".

ST - K%
L =20 2
0S
 3141Sin A
=T (7.1)

This computation and Rule of Three are given respectively in GD2 91 and 92. GD2 93
provides an alternative computation using the Pythagorean theorem.

YL = VKX? — /K2
ja =4/Sin% A — Sin? & (7.2)

7.3 Rising time at the terrestrial equator (GD2 94-95, 99-100)

The next step is to compute the time it takes for a given length of arc on the ecliptic to rise from
the horizon when observed from the terrestrial equator, represented by Lanka. This is equivalent
to find the corresponding length of arc on the celestial equator that rises at the same time with
this arc. As has been mentioned in GD2 77-79, the minutes of arc measured on the celestial
equator is equivalent to the time (in units of pranas or asus) it takes for that proportion of the
stellar sphere to revolve.

Let ¥ be a given point on the ecliptic and @Q be t}lg\nearest equinoctial point. If point/é
on the celestial equator rises at the same time with 3, AQ corresponds to the arc of “base” X.Q
(figure 7.4).

The arc of “base” has been converted to the given Sine in the diurnal circle j, = XM in the
previous step. The corresponding Sine on the equator AB (figure 7.5) is computed in the same
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Q
equator
equator
b A horizon b3 A horizon
Q
(a) When Q is above horizon. (b) When Q is below horizon.

Figure 7.4: Arc of “base” EDTQ and its corresponding arc on the celestial equator I/X_Q as seen from
an observer on the terrestrial equator.

xOf
2
X

Figure 7.5: Sine in the diurnal circle ¥M to Sine in the equator AB.
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way the Sine of ascentional difference was derived from the Earth-Sine in GD2 74cd. Since OX is
the radius of the diurnal circle » and OA is the Radius of the great circle R, the Sine AB = Sin «
is:

SM - OA
A= 2
0%
Sina = (7.3)
T

The Rule of Three is given in GD2 95, and the computation in GD2 94. GD2 94 further
refers to converting the Sine AB = Sin«a to the arc X(\Q = . This is the rising time, i.e. the
time it takes for Z/]_(\Q to rise above the horizon at Lanka (the terrestrial equator). This is the
equivalent of the modern right ascension of point X.

The two Rules of Three (equations 7.1 and 7.3) can be combined together, eliminating R as
mentioned in GD2 100.

. 3141SinA\g R
Sinag = ———= . —
R T

_ 3141Sin)p
r

This resulting computation is given a little bit later in GD2 99, but the “va (or)” in GD2 99b
is obviously intended for giving an alternative for GD2 94. In fact, all that is necessary for the
following steps is the single computation in GD2 99. GD2 90-95 is redundant in this sense, but
Parameg$vara might be intending a step-by-step grounding for the final result. GDI also provides
these steps: Rule of Three (7.1) in GDI 4.80, Rule of Three (7.3) in GD1 4.81 and computation
(7.4) in GD1 4.82, with the auto-commentary supplying the grounding for combining the two
Rules of Three as GD2 100 did. In contrast, treatises such as Abh (verse 4.25), MBh (verse 3.9)
and SuS (verses 3.42-43) only give the last computation (7.4). Paramesvara supplies the two Rules
of Three upon commenting on Abh, and does so too following Govindasvamin’s commentary on
the Mahabhaskariya in his super-commentary Siddhantadipika, but gives no explanation when he
directly comments on the Mahabhaskarizya® and neither in his commentary on the Suryasiddhanta.

(7.4)

7.4 Measure of signs at the terrestrial equator (GD2 96)

Within each of the four quadrants* in the ecliptic (figure 7.6), one can compute the measure (i.e.

rising time) of the first sign from the equinox observed from the equator (a; = A;Q) directly
using the previous procedure. The measures of the second and third signs (a9, ag) are given as
differences of arcs in GD2 96.

a1 =AQ (7.5)
as = AsA; = A2Q - A,Q (7.6)
a3 = AsAy = A3Q — AQ (7.7)

3His commentary on the Mahabhaskariya (Karmadipika) refers to the Siddhantadipika and is thus a later
work.

4Though the word “quadrant (pada)” does not appear in GD2 96, it is evident that Paramesvara is giving this
explanation for each quadrant from the fact that he only mentions three signs and also from the usage of pada in
GD2 102.
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equator
As As
Q (summer sol.) Q (winter sol.)
op) (vernal eqgx.) (autumnal Q
% eqgx.) - V8
— Al L A2 Al — A2 I
¥ m.
4 ~
A A Ao—— Ay —
I m x H
As Q| (autumnal As
(summer sol.) eqx.) (winter sol.) (vernal eqx.)
(a) * (b) * (c) * (d) *
1st 2nd 3rd 4th
Figure 7.6: The measure of signs (@E, A1A,, AsAj) in each quadrant
Table 7.1: Measure of signs at the terrestrial equator
Quadrant Sign Measure | Quadrant Sign Measure
1st P Aries a1 3rd L2 Libra a1
¥ Taurus a9 M. Scorpio Qo
II  Gemini Qasg X' Sagittarius Qasg
2nd 9%  Cancer a3 4th V8§ Capricorn a3
4l Leo o *  Aquarius o
nmp  Virgo aq H  Pisces a1

The measures for all twelve signs are given in table 7.1.

7.5 Measure of signs at a given location (GD2 97-98)

As for locations other than the terrestrial equator (svadesa, or one’s own location), Parames$vara
only considers the northern hemisphere, as he says in GD2 98 that “the stellar sphere is elevated
at the north”. In this case, the rising time of a “base” arc in the 4th and 1st quadrants (beginning
with Capricorn) decreases (figure 7.7(a)) and those in the 2nd and 3rd (beginning with Cancer)
increases (figure 7.7(b)) with the amount equivalent to their ascensional difference, as stated in
GD2 97 .

The grounding (yukti) according to Paramesvara in GD2 98 is that those beginning with
Capricorn rise quickly and those beginning with Cancer slowly because the stellar sphere is
elevated at the north. In the auto-commentary on GDI 4.84 which is identical in content with
GD2 98, he adds:

The meaning is, due to the horizon being low at the north, those having their ends in the
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Celestial
North Pole

Celestial
North Pole

(a) 4th and 1st quadrants (b) 2nd and 3rd quadrants

Figure 7.7: The measure of signs as seen from an observer in the northern hemisphere

north are fast and other signs are slow.”

In this explanation, the geographic latitude is represented by the tilt of the horizon, keeping
the six o’clock circle level and the celestial equator perpendicular. This is not what an observer
on the Earth would normally perceive, and it might be an instruction using an armillary sphere,
where we are free to tilt the instrument to our needs. The six o’clock circle represents the horizon
as seen from the terrestrial equator, and by keeping it level, we can maintain the rotation of the
stellar sphere as it was in the previous explanations, and introduce the geographic latitude by
the inclination of a single ring, the horizon. A similar description of the horizon against the six
o’clock circle can be seen in GD2 16.

This is visualized in figure 7.8 where U is a point on the ecliptic that is on the horizon, Q is
the nearest equinoctial point and E is the due east and also the point on the equator that rises
at the same | time with U. C is the intersection of the six o’clock circle with /(ii\urnal circle of U,
and thus CU is the arc of the Earth-Sine. AE is the arc corresponding to CU on the equator,
i.e. the ascensional difference w.

For the given arc of “base” QU QA is the rising time if the observer were on the terrestrial
equator. But here the horizon is not level, and lower at the north. Thus, when U is on the 4th or
1st quadrant (top row in figure 7. 8) where the echptlc runs from south to north, the ascensional

difference AE = w is subtractive (QE QA AE) and in the 2nd or 3rd quadrant (bottom row
in figure 7.8) it is addltlve(QE QA + AE)

5 ksitijasya udannicatvad udagantah sighram anye rasayah $anair ity arthah [ (K. V. Sarma (1956-1957, p. 66))
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Figure 7.8: The ascensional difference in each quadrant, as viewed from outside an armillary

sphere with the horizon inclined to the north

In the text, Parame$vara only mentions the corrections for a single point and not for the
measure of signs. This is done by computing the ascensional difference at the ends of the first,
second and third signs (w1, we, ws) in each quadrant, and then taking their difference Aw:
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Table 7.2: Measure of signs at a given latitude

Quad. Sign Measure Quad. Sign Measure

1st Aries p =a; —Aw; 3rd Libra p =+ Awp
Taurus p = as — Awsg Scorpio p = g+ Awy
Gemini p = as — Aws Sagittarius p = as + Aws
2nd Cancer p = asz+ Aws 4th Capricorn  p = az — Awsg
Leo p = as+ Aws Aquarius p = as — Awy
Virgo p =a1+ Aw Pisces p =1 —Aw

Aw1 = w1 (78)

ACUQ = Wy — W1 (79)

Aw:; = w3 — W2 (710)

Other treatises such as MBh 3.8 give these values for a specific latitude, which can be easily
converted for other latitudes.

These are subtractive for signs in the 4th and 1st quadrant and additive for those in the 2nd
and 3rd. Table 7.2 lists the measure of signs p in a given latitude. Paramesvara calls this rule of
subtraction or addition the “correction of ascensional difference (carasamskrti or carasamskara)”
in GD2 98, and refers to it later in GD2 110 and GD2 183.

7.6 Taking the motion of equinoxes and solstices into consideration
(GD2 101, 102)

Sanskrit astrological traditions usually use the nirayapa (without passage) system, where the
twelve zodiacal signs are aligned with the fixed stars. In contrast, a system where the “passage”
or motion of the equinoxes and solstices against the stars are taken into account and the signs
shift according to them is called the sayana (with passage) system.

Paramesvara considers that this passage oscillates; i.e. it is not a precession in the modern
sense but trepidation. For example, he mentions in GD1 90cd that “it is assumed to be subtractive
or additive by those who know the grounding of mathematics®”. The notion of trepidation can
also be found in his commentary on Abh 3.10 (Pingree (1972)).

Table 7.2 works for a sayana system, but not in a nirayana system where the signs move
their positions against the equinoxes. GD2 101 explains the computation in such case. First,
the longitudes of the beginning and end of a sign must be shifted to the sayana system, after
which their measures (i.e. the rising time for the arc between that point and the nearest equinox)
can be computed in the same manner as explained. The difference of the two measures is the
measure for that sign, but as stated in GD2 102, a sign could straddle a border of quadrants.
In such case, The two measures (1) between the beginning of the sign and the border and (2)
between the border and the end of the sign should be computed separately and added later.

Srpam athava dhanam iti ca prakalpyate tad dhi ganitayuktivida |/
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8 The great gnomon (GD2 103-124)

GD2 103-106 introduce the great gnomon (mahasanku), together with the gnomonic amplitude
($ankvagra) and given “Sine” (istajya) in the diurnal circle which form a right triangle. From
here on, the time of the day becomes an important parameter. GD2 107-113 is on computing
a segment called the given “Sine” (istajya) in the diurnal circle when the time of the day is
known, and GD2 114-115 explain the computation of the great gnomon and the great shadow
(mahacchaya) from this given “Sine”. We can find computations that relate the great gnomon
with the gnomon as an instrument and its actual shadow in GD2 116-120. Finally, GD2 121-124
explains a special case when the sun is in the prime vertical.

8.1 Rising-setting line (GD2 103ab)

Figure 8.1: The rising-setting line AU

GD2 103ab describes the rising-setting line (astodayasutra). It is defined as a line extending
to the east and west from the tip of the solar amplitude (figure 8.1 where UF or HA is the solar
amplitude). Why is it expressed in such way while one could simply refer to the rising point U
and setting point A of the sun? Maybe Paramesvara’s intention is to provide continuity with the
topics dealt in GD2 70 to 88 (ending with the solar amplitude). This can also explain why the
rising-setting line comes right before the great gnomon to which it is not directly linked, instead
of the great shadow which indeed uses the rising-setting line in its definition.

In GDI1, the solar amplitude and the rising-setting line are introduced together in one verse
(GD1 2.14):

188



Sho Hirose - These de doctorat - 2017

The Sine [starting] from where the sun meets the horizon and having the east-west line as
its end is the solar amplitude. The rising-setting line [extends] east and west from its tip. !

The first part (GDI 2.14abc) corresponds to GD2 84cd and the rest (GD1 2.14cd) to GD2
103ab.

The rising-setting line is the intersection of the plane of the horizon with the plane of the
diurnal circle, and although the description with the solar amplitude draws our attention to the
horizon, it is also important that this line exists in the plane of the diurnal circle, as will be seen
later.

8.2 Definition of the great gnomon (GD2 103cd)

B !
hOrIZon H

Figure 8.2: The great gnomon >B

The great gnomon is defined in GD2 103cd as the elevation (unnati) of the sun above the
horizon. GD1 4.1 also defines the great gnomon, but there are some interesting differences.

The line of Earth is connected with a [point on the] horizon and the opposite [point on the]
horizon and goes through the Earth’s center. The line hanging down from the Sun and
having the Earth-line as its end shall be the [great] gnomon. 2

Paramesvara adds in his auto-commentary:

Here [in the half verse beginning with] “[The line] hanging down”, the line of Earth is
assumed in order to understand a common flat surface on the horizon. The meaning is that
a [great] gnomon is the measure of elevation from the flat surface to the sun.?

1ksitije yatrarkayutis tasmat purvaparakhyasatranta /

jwarkagra ’stodayasutram purvaparam tadagrac ca [/2.14[/ (K. V. Sarma (1956-1957, p. 17))
2ksitijaparaksitijayor baddham bhamadhyagam ca bhuasatram |

avalambitam hi sutram suryac chankur bhavet kusutrantam [[4.1// (K. V. Sarma (ibid., p. 43))
3ksitijasamanasamatalajiianartham atra bhasutram prakalpyate - avalambitam hiti | samatalad raver unna-

timanam Sankur ity arthah [ (K. V. Sarma (ibid.))
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GD1 introduces a line called the line of Earth (HH' in figure 8.2), which is a given diameter in
the horizon, just for the sake of defining the great gnomon. It seems that Paramesvara supposes
the reader understands the horizon as a circle and not a plane. In the auto-commentary he
mentions that the great gnomon is actually the elevation (unnati) from a flat surface. Meanwhile,
he obviously puts “the horizon” in place of “flat surface” in GD2 103cd.

Another difference to be mentioned is that GD2 103cd spares some words to say that the sun
is moving on the diurnal circle. Of course this is no new information (it has already been stated
in GD2 10), but again, this might be for the sake of continuity. The diurnal circle has been very
important in the previous verses, and will still be in the following verses.

8.3 Gnomonic amplitude and given “Sine” in the diurnal circle (GD2
104-106)

Figure 8.3: The gnomonic amplitude BT and given “Sine” in the diurnal circle TY

The gnomonic amplitude (Sarikvagra) is the distance between the foot (mula, literally “root”)
of the great gnomon and the rising-setting line, while the given “Sine” in the diurnal circle
(svahoratrestajya) is the distance between its tip ($iras, literally “head”) and the rising-setting
line (figure 8.3).

Although Paramesvara uses the word jya (and later jwa and jwaka), the given “Sine” is
neither a Chord nor a Sine (figure 8.4). Therefore, in order to respect the Sanskrit wording I
have translated it “Sine” in quotation marks. The given “Sine” in the diurnal circle is different
from the “Sine” of diurnal circle (i.e. its radius) that first appeared in GD2 73, as the former
can take multiple values for a given diurnal circle while there is only one value for the latter. It
is also different from the given Sine in the diurnal circle stated in GD2 90, which was actually a
Sine (though not of a great circle).
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given "Sine"

U T rising-setting line A

Figure 8.4: The plane of the diurnal circle and the given “Sine”

As can be seen in figure 8.3, the given “Sine” TX, great gnomon B and gnomonic amplitude
BT are the hypotenuse, upright and base of a right triangle AXBT. GD2 105 mentions that
this is a figure (ksetra) caused by (nimitta) the geographic latitude, and that there are many
of them. My interpretation is that this refers to triangles that are similar to the right triangle
formed with the Radius and the Sines of geographic latitude and co-latitude (GD2 72). K. V.
Sarma and Shukla (1976, pp. 130-132) remarks that Abh 4.23 is a statement on this triangle,
and adds that Aryabhata II and Bhaskara II have given a list of triangles that are similar to
it. Parame$vara’s commentary on Abh 4.23 (Kern (1874, pp. 85-86)) does not refer to similar
triangles, but the remark in GD2 105 suggests that he is indeed conceiving a group of similar
triangles. Paramesvara does not refer to other examples, but concerning the computations in-
volved in GD2, three triangles are important for us: AXBT formed from the given “Sine” in
the diurnal circle, great gnomon and gnomonic amplitude (figure 8.3), AOB'P formed from the
Radius PO, Sine of co-latitude OB’ and the Sine of latitude B'P, and AFGU formed from the
Earth-Sine GU, the solar amplitude UF and the Sine of declination FG (see section 6.5, figure
6.6 for AOB’P and AFGU). GD2 106 mentions that the segments of one triangle can be used
to establish another triangle by means of proportion, which comes as a conclusion from their
similarity.

There is nothing equivalent of a modern “proofs” for their similarities in GD2, but it can be
done as follows. First, we look at the armillary sphere from due east or make a projection. It
will look like figure 8.5 when the declination is to the north and figure 8.6 when to the south.
In both cases, SN is the horizon, PP’ is the polar axis and also represents the six o’clock circle
projected as a line. The diurnal circle projected as a line goes through the sun X and intersects
with the polar axis at Q and with the horizon at T. QT is the distance between the six o’clock
circle and horizon measured along the diurnal circle, which is the Earth-Sine as stated in GD2
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Pl

Figure 8.5: Three triangles “caused by the geographic latitude” projected on a plane when the
declination is to the north.

Figure 8.6: Ditto, when the declination is to the south.

76. Likewise, TO is the solar amplitude and OQ the Sine of declination. Therefore AOQT
(figure 8.5) is exactly the same with AFGU (figure 6.6) which we have used in the previous
discussions. Now B is the foot of the great gnomon and ZXBT is a right angle. B’ is the foot of
the perpendicular drawn from P to SN. The diurnal circle is parallel to the celestial equator and
the celestial equator is perpendicular to the polar axis, therefore ZOQT is a right angle. When
the declination is to the north, AOB’P and AOQT are both right triangles sharing one acute
angle ZPOB’ = ZTOQ, and are therefore similar. When the declination is to the south, ZPOB’
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and ZTOQ are corresponding angles and equal, thus the right triangles AOB’P and AOQT are
similar. Likewise, ZQTO = ZBTY when the declination is in either direction, and thus AOQT
and AYXBT are similar. Therefore we can conclude that AOB'P ~ AOQT ~ AXBT.

Figure 8.7: The two triangles caused by the geographic latitude, AXBT and AOB'P

The similarity between AXBT and AOB'P is utilized later in GD2 114ab to derive the great
gnomon from the given “Sine” in the diurnal circle. The preceding verses GD2 107-113 concern
the derivation of this “Sine” when the time is given.

8.4 The given “Sine” in the diurnal circle (GD2 107-113)

GD2 107-113 are on the procedure for computing the given “Sine” in the diurnal circle when the
time of the day is known. GD2 114ab uses this given “Sine” to compute the great gnomon.

8.4.1 The two shifts (GD2 107-108)

The given “Sine” in the diurnal circle j; cannot be computed from the time with one Rule of
Three or any simple computation. We have to make two “shifts”, which is implied in GD2 107-
108. First, it is the celestial equator whose arc is linked with time, as mentioned in GD2 107,
and not the diurnal circle. Second, the chord measured from the horizon is not a Sine in the
strict sense, as Parameévara says in GDI, “the Sine is assumed to be in a quadrant”*. The six
o’clock circle always goes through the middle of the stellar sphere and cuts every diurnal circle
into half, therefore forming the necessary quadrant (figure 8.8).

4jwa hi vrttapade kalpyate (auto-commentary on GD1 4.5)
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intersection with

' six o'clock circle

Sine"

rising-setting line
(horizon)

Figure 8.8: Sine from the six o’clock circle and “Sine” from the horizon. Only the six o’clock
circle cuts the diurnal circle to form a quadrant and makes a Sine. However it is to be noted
that this is not a Sine in a great circle and has to be shifted to the celestial equator so as to
compute the Sine from the arc.

Paramesvara argues in GD2 108ab that the expression (grahana) “Sine” is suitable (yukta)
only when the segment has its end on the plane of the six o’clock circle and not on the horizon.
Yet, as we have seen, there is no difference between the wordings he uses for a Sine from the six
o’clock circle and a “Sine” from the horizon.

8.4.2 Sine in the equator measured from the six o’clock circle (GD2 109)

Paramesvara begins the procedure in GD2 109 by computing a Sine in the equator measured
from the six o’clock circle J{. He uses the expression “in the portion above the six o’clock circle
(unmandalordhvabhage)”, indicating that cases when the sun is above the horizon but below the
six o’clock circle are ignored.

Figure 8.9 shows how J] is derived. The time ¢ is measured in units of asus, and is counted
along the celestial equator from sunrise U’ when it is before noon and counted backward from
sunset A’ in the afternoon (Only the former situation is shown in figure 8.9). The ascensional
difference w is the arc between sunrise U’ and due east E or between sunset A’ and due west W.

The computation is different depending on whether the declination of the sun is to the north
(figure 8.9(a)) or to the south (figure 8.9(b)). Paramesvara describes these situations as “when
in the northern (saumye)” and “when in the southern celestial hemisphere (gole yamye” without
specifying the subject. I have supplied “the sun”, but this is still open to discussion. Another
possibility is “the diurnal circle” supposing that an armillary sphere is being used fozgi(plaria_ti\on.

When the declination is northward, the arc measured from the six o’clock circle EX’ or WX’ is
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sunset

(a) Northward declination (b) Southward declination

Figure 8.9: Computing the given Sine in the equator from the six o’clock circle J; = M'Y’

t—w (figure 8.9(a)), and when it is southward it is t+w. Thus the corresponding Sine M'Y/ = J]
is:

= {Sin(t —w) Northward declination (8.1)

Sin(t + w) Southward declination

Figure 8.10: Moving two segments from the celestial equator to the diurnal circle. Only the
situation where the declination is northward and the time is before noon is shown in these
diagrams.
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8.4.3 Sine in the diurnal circle measured from the six o’clock circle (GD2
110-111)

GD2 110 refers to the computation for moving from the equator to the diurnal circle, presenting
a situation where they are placed concentrically (figure 8.10). The Sine measured from the six
o’clock circle in the equator J; = M'Y’ moves to that in the diurnal circle j; = MY and the
Sine of ascensional difference Sinw = G'U’ moves to the Earth-Sine & = GU. The expression
“outside (bahya)” suggests that this could be a visual reasoning where one has to look at the
armillary sphere from the celestial north pole so that the celestial equator appears to be outside
the diurnal circle.

The “grounding concerning the correction of the ascensional difference (yuktis carasamskare)”
is apprently linked with GD2 98 which uses the same phrase. GD2 98 itself grounds the rule
in GD2 97 where the ascensional difference w is subtracted or added to the measure of signs
depending on the quadrant that they are located in (see section 7.5). The rule there was that
w is additive in the 2nd and 3rd quadrants of the ecliptic, and subtractive when in the 4th and
1st. However in the current case, the relevant rule is in GD2 109 where w is additive when the
sun is in the 1st or 2nd quadrant and subtractive when in the 3rd or 4th. Therefore it is not the
rules themselves that we must compare, but their groundings. We have discussed in section 7.5
that the grounding in GD2 98 might be using the armillary sphere, moving the horizon against
the six o’clock circle. As seen in figure 7.8, the ascensional difference is produced in the distance
between these two circles, and we can visualize whether it must be added or subtracted to find
the length of time that the sun is above the horizon.

“Within the [time] past in a day (dyugate)” could only refer to a case before noon, since for
the afternoon, we would measure the time “to be passed” from that moment in the day until
sunset. The expression “passed or to be passed (gatagantavya)” in GD2 107 covers both cases,
and would also be preferred here in GD2 110.

The last part of GD2 110 refers to the relation between the Sine of ascensional difference
and the Earth-Sine explained in GD2 74cd. Paramesvara uses the expression “having the same
formsarupa” which indicates their similarity.

Following GD2 110, GD2 111 gives the computation to obtain the given Sine measured from
the six o’clock circle in the diurnal circle j; using the Rule of Three given in GD2 112. This can
be deduced from the similarity between AOM'Y’ and AOMY (figure 8.10) implied by GD2 110.

MY - ¥0
MY= ——
'O
. Jr
Ji=" (8.2)

8.4.4 The given “Sine” (GD2 113)

The next procedure, explained in GD2 113, is illustrated in 8.11. MY is the given Sine measured
from the six o’clock circle in the diurnal circle j;, UG = TM is the Earth-Sine k. The given
“Sine” in the diurnal circle j; = TX is their sum when the sun is in the north of the celestial
equator (figure 8.11(a)) and their difference when the sun is in the south (figure 8.11(b)).
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/'Ur/7
o
%
A
/ rising-setting line
U T A
(a) Northward declination (b) Southward declination
Figure 8.11: Computing the given “Sine” above the horizon
TS — MY +TM Northward declination
- |MZ —TM Southward declination
. )ji+k Northward declination (8.3)
= ji —k Southward declination .

8.4.5 Comparing the steps with GD1

Equations 8.1, 8.2 and 8.3 could be combined (though not mentioned in GD2) into the following
equation.

. ~ Sin(t —w) + k& Northward declination
Jt = {R ( ) (8.4)

% Sin(t +w) —k  Southward declination

GD1 also deals with this topic, but from a different approach. First, in GD1 4.4:

The Sine produced in the diurnal circle is established by the “Sine” of time (kalajya) with
proportion: “When there is this much in a great circle, then how much in a diurnal circle?”?

This verse states the relation between the given “Sine” in the diurnal circle j; and the “Sine”
of time, i.e. “Sine” in the celestial equator J;, both measured from the horizon:
) Jer
Then in GD1 4.6:

5kalajyaya hi sadhya dyuvrttajajyaanupatena /
tyatt trijyavrite yadi kiyati syat tada dyuvrtta iti [[4.4/] (K. V. Sarma (1956-1957, p. 44))
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Therefore the “Sine” of time when [the sun is] in the two hemispheres is the Sine of the asus
to come [before sunset] or elapsed [after sunrise] in the day, subtracted by or added with

the ascensional difference, added with or subtracted by the Sine of ascensional difference. ©
That is to say:
) Sin(t —w) + Sinw  Northward declination (8.6)
| Sin(t +w) — Sinw  Southward declination ’

Since k = £ Sinw (from formula 6.6), equations 8.5 and 8.6 combined are also equivalent
with formula 8.4. The reason why Paramesvara took two different approaches is yet to be solved.

8.5 Great gnomon and great shadow (GD2 114-115)

Figure 8.12: AYXBT and AOB'P

As we have already seen in GD2 105-106, the great gnomon’ G = ¥B can be computed from
the given “Sine” in the diurnal circle j; = T, using the fact that they form a right triangle
AYBT which is similar to AOB’P where P is the celestial north pole, B’ its foot on the plane of
the horizon and therefore OB’ is the Sine of co-latitude (figure 8.12). The rule of three is given
in GD2 115 and the computation is in GD2 114ab.

6 caradalahinayutanam ato dinasyaisyayatajasunam |

jwa carajyayapi ca yutahina golayos tu kalajya [[4.6/] (K. V. Sarma (1956-1957, p. 44))

"I have decided not to follow the custom of denoting the great gnomon as a Sine (such as Sin a), since it would
give the false impression that Paramesvara is associating the great gnomon with a specific arc, which he actually
does not.
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TS - OB

YB=
PO
i

GD2 114cd gives a rule for computing its shadow (chaya), i.e. the great shadow corresponding
to the great gnomon. However, he does not describe what a great shadow is, or where it is located
in the sphere in relation to other segments and circles. Meanwhile it is mentioned briefly in GD1
4.2ab:

The [great] shadow, having the center of the Earth as its end and [starting] from the root
of the [great] gnomon,... bhumadhyantam Sankor mulac chaya ... (K. V. Sarma (19561957,
p. 43))

horizOn

Figure 8.13: The great shadow BO

If we ignore the parallax (which is introduced late in GD2 248-276), the great shadow is the
distance between the foot B of the great gnomon B and the observer O (figure 8.13). The great
shadow BO, the great gnomon ¥B and the Radius OX form a right triangle AYXBO. This is
explicated in GD1 4.2cd:

These two (the great shadow and the great gnomon) are the base and the upright. The
Radius is the hypotenuse of these two. With these three a trilateral [is formed].

While GD2 does not, only giving the computation (i.e. deriving the great shadow S with the
Pythagorean theorem) in GD2 114ab:

BO = vVOx? — ¥B?
S=+/R2-G2 (8.8)

8 dohkott te dve stah karnas trijya tayos tribhis tryasram [[4.2// (K. V. Sarma (19561957, p. 43))
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GD2 itself does not refer to the computation in the other direction, i.e.:

G =+/R? - 82 (8.9)

although it is actually required in the methods and their examples appearing later in the treatise.

8.6 From the great shadow to the shadow (GD2 116)

The gnomon as an instrument appears for the first time in GD2 116. Within GD2, it is consis-
tently distinguished from the great gnomon using the expression “twelve argulas” which refers
to its length, with the exception of the six computational examples that use the word “gnomon”
($ariku or nara) without any modifier. Parame$vara does not mention in any of his treatises or
commentaries whether this “angula”, literally “width of finger”, refers to the actual length or is
an arbitrary unit. However we will see in GD2 245 that he refers to a gnomon having a length
other than twelve units.

B 0) C

Figure 8.14: The great gnomon >B and the gnomon XO

GD2 116 mentions the relation between the shadows of the great gnomon and the gnomon.
Figure 8.14 illustrates the two triangles involved. When the ¥ is the sun projected on the sphere,
3B the great gnomon, XO the twelve arigula gnomon and C the tip of its shadow, assuming that
the light-source is infinitely far, O and CX are parallel. Thus AYBO ~ AXOC, and

BO - XO
0oC = —~B
128
= — 8.10
== (3.10)

where s and S are the lengths of the shadows of the 12 angula gnomon and great gnomon,
respectively.
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8.7 From the given “Sine” in the diurnal circle to the great gnomon
(GD2 117-118)

GD2 117 gives two computations for deriving the great gnomon from the given “Sine” in the
diurnal circle”, just like GD2 114ab. The difference is the triangle paired with AXBT.

Figure 8.15: Computation with the gnomon XO at equinoctial midday.

The gnomon XO and its shadow on an equinoctial midday OC* form AXOC*. As we have
seen, this is similar to AX*B*0O where X*B* is the great gnomon G at that moment. Since the
diurnal circle is equal to the celestial equator, the east-west line EW is also the rising-setting
line, and hence the great shadow B*O is also the gnomonic amplitude. Therefore AYX*B*0 is
similar to AXBT formed by the great gnomon ¥B and gnomonic amplitude BO at any given
moment. Thus AYXBT ~ AXOC*, and

X0 - T%
B =
125
G = h*t (8.11)

Here h* is the palakarna, a term for indicating the hypotenuse C*X formed by the gnomon
at midday on an equinoctial day.

GD2 117cd involves AFGU formed by the Sine of declination FG, Earth-Sine GU and solar
amplitude UF (figure 8.16). GD2 118 mentions that AXBT and AFGU have a different orien-

9The Sanskrit word used here is dyujya without ista (given), and could have various meanings in itself, but
the word ksitijat (from the horizon) makes it clear that it is indeed the given “Sine” in the diurnal circle measured
from the horizon.
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Figure 8.16: Computation with the triangle formed by the Sine of declination, Earth-Sine and
solar amplitude. North is to the right.

tation ; the upright of AXBT (great gnomon XB = §G), which is the value to be established,
extends upward, and the hypotenuse of AFGU (solar amplitude FU = Sin7) extends northward,
but the fact that they both arise from the geographic latitude assures their similarity and the
computation:

_FG~T§]
~ UF
o jtSIH5

¥B

S (8.12)

8.8 From the great gnomon to the gnomonic amplitude (GD2
119-120)

The three computations in GD2 119, GD2 120ab and GD2 120cd each use the same pair of
triangles with GD2 114ab, GD2 117ab and GD2 117cd. The difference is that this time the
gnomonic amplitude A is going to be computed from a given value of the great gnomon G.

The structure of the sentence in GD2 120 resembles GD2 117, notably the repeating of “or
(athava /[ va)”. In GD2 120, the first “or” clearly follows GD2 119. But in the case of GD2 117,
it might be referring back to GD2 114ab.

GD2 119 uses AOB’P formed by the Sine of geographic latitude B'P and the Sine of co-
latitude OB’ and its similarity with AXBT (figure 8.12):
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B'P-¥B
BT = o
G Sinp
= .1
A Sin @ (8.13)

GD2 120ab uses AXOC* formed by the gnomon XO and its shadow on an equinoctial midday
(palabha) OC* = s* (figure 8.15):

OC*.x¥B
BT = ——
X0
s*G
A= (8.14)

GD2 120cd uses AFGU formed by the Earth-Sine GU and the Sine of declination FG (figure
8.16):

GU-¥B
BT = — =
FG
kG
"~ Siné

(8.15)

8.9 The prime vertical gnomon (GD2 121-124)

Normally, the length of the great gnomon cannot be derived straightforward when the time of
the day is unknown and only the direction of the sun is given. One of the few exceptions is
when the sun is in the due east or west, in other words when it is on the prime vertical. The
great gnomon at this moment is called the “[great] gnomon situated in the prime vertical (sama-
mandalasthasariku)”, or abbreviated “prime vertical gnomon (samamandalasariku, samasariku)”.

In GD2 121, Paramesvara uses a strange expression “when the sun is on the east-west line
(purvaparasutrage ravau)”. This would usually refer to a line drawn in this direction or a line
connecting the due east and west on the horizon. In the situation being dealt with, the sun
should be above the horizon; “When the sun is on the prime vertical” as mentioned in GD2 122
is more precise. The same expression appears in PAbh 4.31'°. Perhaps this describes a situation
when the armillary sphere is viewed from above, or when this is drawn as a diagram.

Paramesvara first gives the computation for the prime vertical gnomon Ggy as follows in GD2
121:

RSiné

Grw = Sin g

(8.16)

Here, according to Paramesvara, the declination é must meet two conditions. First, it must
be smaller than the geographic latitude,!!, since otherwise the diurnal circle would not intersect
with the prime vertical. Second, it must be in the north if the observer is in the northern
hemisphere, which is Paramesvara’s assumption. If the declination were southward, the sun
would rise south of the prime vertical and never goes through it.

Otatra labdham purvaparasitragate ‘rke Sankur bhavati [Kern (1874, p. 91)] (Then the quotient is the [great]
gnomon when the sun is on the east-west line)

111n this respect, Parame$vara compares their Sines and not their arcs.
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Figure 8.17: The prime vertical gnomon ¥B. North is to the right.

The next three verses provide the grounding for this computation. Since the foot of the
gnomon B is on the east-west line, the gnomonic amplitude BT = Agy is equal to the solar
amplitude UF = Sin7. Therefore from GD2 84 (formula 6.7) we obtain:

RSino
AEW == Sinn = " 11’1_ (817)
Sin @
Meanwhile, since AXBT ~ AOB'P,
OB - BT
B = 2o =
B'P
Apgy Sin @
= ———— 1
Gy Sinp (8.18)

This is the first Rule of Three mentioned in GD2 123, and formula 8.17 is repeated as the
second Rule of Three. The co-latitude Sin ¢ appears as the divisor in the first Rule of Three and
as the multiplier in the second and can be reduced, and the result is formula 8.16.

We will see an example for computing the prime vertical gnomon in GD2 209, but until then,
the treatise turns to a totally different direction — latitude of planets.
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9 Orbits of planets and their deviation (GD2 125-152)

Discussions concerning the celestial latitude begins in GD2 125. This is a fundamental topic
that later develops into the visibility equation (GD2 153-194) and parallaxes (GD2 248-276).
Computations for the celestial latitude involve theories of planetary motions. In the geocentric
configuration underlying GD2, orbits of planets are inclined, which causes the planets to deviate
from the plane of the ecliptic. This deviation can be observed from the Earth as the celestial
latitude from the ecliptic. Paramesvara uses the same word ksepa / viksepa (literally “throwing”)
for inclination ¢ and deviation b. GD2 128 gives the celestial latitude S by correcting the deviation
for the planet’s distance, but Paramesvara does not give a name to this result. From GD2 153
onwards, he also refers to the celestial latitude as ksepa and viksepa.

Paramesvara starts in GD2 125-126 by introducing a simple situation where a planet moves
on a circle which is inclined against the ecliptic. GD2 127 is the rule to find the planet’s deviation
from its longitude, and GD2 128 gives the correction for its radial distance. Essentially, these
two verses are the core of this section which gives the latitude as seen from the observer, but
this is not emphasized by Paramesvara. GD2 129-130 give the longitudes of the nodes and the
inclinations of orbits for the five planets Mars, Mercury, Jupiter, Venus and Saturn; these values
are used in the previous computations. GD2 131-133 states some brief groundings for GD2 127-
128 and GD2 134 introduces an alternative rule for the deviation according to another school.
From GD2 135 onward, Paramesvara starts a long description of planetary orbits. Three circles
for each of the five planets are drawn (GD2 135-140), and the corrected longitudes and radial
distances are shown by drawing lines or strings (GD2 141-145ab). GD2 145cd-148 discusses the
discrepancy between the planet thus corrected and its observed position. Next, Paramesvara
applies the same method (as used for longitudes) to the planet’s deviation in GD2 149-151.
These could be considered as reasonings for GD2 128. Additionally, GD2 152 refers to the sun
and moon which have only two circles.

Many terms appear without explanation, and Paramesvara seems to assume that the reader
has already studied this topic through other treatises. Therefore I have added some explanation
based on the Aryabhatiya and Parame$vara’s commentary in Appendix C.

9.1 Celestial longitude and latitude

We have previously discussed in section 6.2 that words for “planet” can signify the celestial
longitude of the planets. With the introduction of celestial latitudes, we must be even more
cautious. GD2 151 compares the correction of a “planet (graha)” with that of the “deviation”.
Here the word “planet” must be interpreted as the “longitude (of the planet)”. This is the way
I make sense of the following verses, especially those starting from GD2 135. In the following, 1
will distinguish whenever I interpret “planet” as its “longitude”, but we must keep in mind that
the terms are not conflated in Paramesvara’s texts. In my translations, I have kept the word
“planet” and have only supplied “longitude” in brackets when the passage would be otherwise
incomprehensible.

In GD2 153-194 especially, a “planet” refers exclusively to the point on the ecliptic and not
the celestial object itself. On the other hand, the “celestial latitude (ksepa)” is more likely
to indicate the position of the body. Yet at the end of this section, Paramesvara only uses
the celestial latitude to find the corresponding longitude on the ecliptic that rises at the same
time with the object; this is what he calls the “visibility methods of a planet (graha)” in GD2
165. In this case the celestial latitude is only secondary to the longitude, which might also be
reflected in the terms graha and ksepa. The English terms longitude and latitude refer to a
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system of coordinates. In Sanskrit, the graha is the essential coordinate while ksepa serves as its
correction.

9.2 Inclined circle (GD2 125-126)

Direction of

ecliptic north pole inclined circle

S

Figure 9.1: The inclined circle with inclination ¢ and deviation b for a given longitude.

GD2 125-126 describes an “inclined circle (viksepamandala, vimandala)”, inclined against
the ecliptic (figure 9.1). © and U are the ascending and descending nodes respectively. At a
quadrant’s distance, on points I and I’, the distance of the circle from the ecliptic is equal to
its greatest deviation, in other words the inclination of the orbit i. This explanation is applied
to the moon as well as the five planets'. The descriptions suggest that the inclined circles are
great circles like the ecliptic, and this will become even more evident in GD2 127cd. However,
as we will see later in section 9.10, the actual configuration with inclined orbits are much more
intricate and most notably those for Mercury and Venus involve an inclined orbit which is not a
great circle.

The term “inclined circle” only appears in GD2 125-126. The same word (in the form ksepa-
mandala) can be seen in the first chapter of GDI which is dedicated to the armillary sphere:

The inclined circle of [each planet] beginning with the moon goes through the two nodes on
the ecliptic and is separated by their greatest latitude north and south at [the two points]
three signs from there. (GD1 1.7cd-8ab)?

The explanation in GD2 125-126 might also have involved armillary spheres. The inclined
circle also appears in the description of the Armillary sphere by Bhaskara I in his commentary on

IThe seven “planets” (including the sun and the moon) are always enumerated in the order of the weekdays
beginning with the sun. Therefore “beginning with the moon (candradi)” refers to the moon, Mars, Mercury,
Jupiter, Venus and Saturn. And to refer to the five planets, Parame$vara says those “beginning with Mars
(bhaumadi)” as in GD2 128 and 129.

2 apamagapatadvayagam saumye yamye tatas ca bhatritaye [/1.7]]
paramaksepantaritam candradeh ksepamandalam bhavati (K. V. Sarma (1956-1957, p. 12))
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the Aryabhatiya (Lu (2015))3. Brahmasphutasiddhanta 21.53cd-54ab (Ikeyama (2002, p. 135))
also refers to inclined circles for each planet, but the configuration of the gola described therein is
too complex to physically construct it in a complete form. The same can be said for the descrip-
tions in the Golabandha chapters of Sisyadhivrddhidatantra 15.9 (Chatterjee (1981, 1, p. 202)),
Siddhantasekhara 16.34-35 (Misra (1947, pp. 211-212)) and Siddhantasiromani Goladhyaya 6.13-
26 (Chaturvedi (1981, pp. 397-403)). The Yantra (instrument) chapter of these three texts do
not refer to inclined circles*. The Suryasiddhanta stands out as it does not describe an inclined
circle. Instead, in 13.11cd-12ab the planets are stated to be “drawn away from the ecliptic by
the nodes based on the ecliptic®”. Parame$vara comments nothing significant on this passage,
and does not even mention the term “inclined circle”.

GD2 125 further adds that the two nodes are actually moving on the ecliptic, retrograde
against the revolution of the planet. The rates of revolutions are not given in GD2; most
probably, Paramesvara follows Aryabhata. The corresponding passages from the Aryabhatiya
with Parames$vara’s commentaries are as follows.

The retrograding node is buphinaca. ... (Abh 1.4c)

“buphinaca’ is the revolutions of the node, [i.e.] the moon’s node, which has the nature
of retrograding. bu, two hundred thirty thousand. phi, two thousand two hundred. na,
twenty. ca, six. He will state the revolutions of the nodes of those beginning with Mars
[later].

Mercury, Venus, Mars, Jupiter [and] Saturn, na-va-ra-sa-ha. Having moved [these] degrees,
[their] first nodes [are placed]. (Abh 1.9ab)

Mercury’s node in degrees is na, twenty. [That] of Venus va, sixty. Of Mars ra, forty. Of
Jupiter sa, eighty. Of Saturn ha, one hundred. Having moved degrees, first nodes.
Having moved these very degrees that have been stated from the beginning of Aries, the
first nodes of those beginning with Mercury should be placed. With the word “first”, it is
indicated that there is also a second node”. And this should be situated at a distance of
half a circle from the first node. The intersecting place of the inclined circle and the ecliptic
is stated with the word “node”. But this is on both sides. From the statement “having
moved”, the motion of these nodes is intended. And the motion is retrograde. With this
[passage] “retrograding node” (Abh 1.4c), it has been stated that the nodes have a retrograde
movement. It is said that the nodes are settled in our time.®

3Lu points out that Bhaskara I does not explain how to add the orbit rings (vimandala) of Mercury and Venus
according to their scale of the “fast” epicycle. My suggestion is that Bhaskara I might be simply assuming an
inclined circle equal in size with the ecliptic, as is the case for the moon and other planets (but with the position
of the “fast” apogee being tracked instead of the planet). Adding epicycles to armillary spheres would have been
physically difficult, and they could be explained separately in diagrams, as is the case with Paramesvara.

4See also section 2.1 for the descriptions of the gola in these texts.

5candradyas ca svakaih patair apamandalam asritaih //13.11]]
tato ’pakrsta drsyante viksepagresv apakramat | ((Shukla (1957, p. 133)))

Sbuphinaca pataviloma ... (1.4c)
buphinaca iti patasya candrapatasya vilomatmakabhaganah | bu ayutanam trayovimsatih | phi Satadvayadhikasa-
hasradvayam | na vimsatih | ca sat | kujadinam patabhaganan vaksyati | (Kern (1874, pp. 6-7))

"The first node refers to the ascending node, and the second is the descending node.

8 budhabhrgukujagurusani navarasaha gatvamsakan prathamapatah [(1.9ab)
budhasya patamsah na vimsatih | bhrgoh va sastih | kujasya ra catvarimsat | guroh sa asitih | Saneh ha Satam |
gatvamsakan prathamapatah | uktan etan evamsakan mesadito gatva vyavasthita budhadinam prathamapatah
syuh | prathamasabdena dvitiyo ’pi pato ’stiti sucitam | sa ca prathamapatac cakrardhantare sthitah syat |
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According to Paramesvara’s interpretation, the nodes of the moon and the five planets all
have a retrograde motion, but only the moon’s node has a significant rate of 232,226 revolutions
per yuga and the others can be regarded as still within our timespan. GD2 129 repeats the
numbers for the positions of the five planets’ ascending nodes as given in Abh 1.9ab as well as
mentioning that they have a small motion.

9.3 Deviation from the ecliptic (GD2 127, 131)

The deviation depends on the arc distance from the node to a specific point (depending on the
planet). From hereon we shall call this arc the “argument” of the celestial latitude (Parames$vara
does not use a specific term). As we have seen previously, words for celestial objects themselves
can signify their longitudes along the ecliptic. The same can be said in GD2 127 for words like
“node” or “slow” corrected [planet], and therefore the argument is an arc measured along the
ecliptic. Parameévara does not specify which node is to be taken, but as he lists the positions of
t}le\ascending nodes in GD2 129, it would be natural to take the longitude of the ascending node
(Py = Q). Concerning the point which completes the argument, Paramesvara first mentions
in GD2 127ab that the longitude of the “slow” corrected planet @L = A, is used without
specifying the planet. Since Mercury and Venus are mentioned in the next case, this applies to
the moon, Mars, Jupiter and Saturn (figure 9.2 and 9.3). The moon has only one apogee (which
is “slow” as mentioned in GD2 152) and thus the “slow” corrected longitude is already its true
longitude m = Ar. For Mars, Jupiter and Saturn, the “slow” corrected longitude A, without
the “fast” correction applied is to be used. In the case of Mercury and Venus, the longitude Ay,
of its “fast” apogee U, is used (figure 9.4).
Thus the argument for each case is:

At — € Moon
A=Q=1<A,—Q  Mars, Jupiter, Saturn (9.1)
Au, — Q  Mercury, Venus

GD2 127cd gives the rule for computing the deviation b from the “base” Sine of the argument,
expressed as the “[longitude] diminished by the node (patona)”. Here, the “base” refers to the
distance starting from the nearest node and not from the equinoctial points. If the planet is
closer to the descending node, the difference between their longitudes should be taken as the
“base” arc. Hereafter I shall denote the “base” Sine Sin(A — ) p for every case.

The rule in GD2 127cd resembles GD2 73ab (formula 6.3) which gives the Sine of declination
from the “base” Sine and the Sine of greatest declination. The corresponding Rule of Three,
given later in GD2 131, resembles GD2 81 very well (GD2 131bc and GD2 81bc are exactly
the same). Our visual explanation in figure 9.5 also looks like what we used for GD2 73ab
(figure 6.4). Yet there are two differences between the case for the declination and the case for
the deviation. First, although the celestial object is on the inclined circle, the “base” must be
measured on the ecliptic (in GD2 73, both were on the ecliptic). Second, Paramesvara refers to
the deviation itself and not its Sine. The Sine of deviation can be approximated with its arc
because it is very small®.

viksepamandalapamandalayoh sampatasthanam patasabdenocyate | tad dhy ubhayatra bhavati | gatvetivacanat
tesam patanam gatir abhipreta | gati$ ca viloma | pataviloma ity anena patanam vilomagatvam uktam | asmin
kale patanam sthitir evam ity uktam bhavati | (Kern (1874, p. 12))

9The greatest deviation of the moon, which is the largest of all planets, is 4°30’ (Abh 1.8) which is 270’ Its
Sine is 269;48, rounded to the same 270.
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Figure 9.2: Argument of latitude for the moon
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Figure 9.3: Argument of latitude for Mars, Jupiter and Saturn
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Figure 9.4: Argument of latitude for Mercury and Venus
In figure 9.5, L represents the longitude of the true planet, “slow” corrected planet or “fast”
apogee, LM is the Sine of deviation Sin b(~ b) and WT is the Sine of greatest deviation Sini(~ 7).

ALMK and AWTO are similar, where KL is the “base” Sine Sin(A — Q)p and OW is its largest
value, the Radius R. Therefore,

209



Sho Hirose - These de doctorat - 2017

inclined Circ/e

Figure 9.5: Deviation b at a given argument

WT - MK
LM = —To
Sinb — Sin¢ Sin(A — Q) p 9.2)
R
And approximating the Sines with arcs,
b= ———M— 9.3
- 93)

The arc b should be in minutes, as GD2 130 gives the greatest deviation for each planet in
minutes too.

The Rule of Three corresponding to GD2 127 is given later in GD2 131. This suggests that
Parameg$vara is stating GD2 127-128 as a single procedure. GD2 129-130 supply the constants
to be used in this procedure, and GD2 131-133 add the reasonings.

9.4 Distance correction (GD2 128, 132-133)

The deviation computed so far is the length of arc on a great circle as seen from its center. In
order to find the true deviation as seen from the Earth, i.e. the celestial latitude, the variance
in radial distance caused by the “slow” and “fast” apogees must be taken into account. When a
planet without the “slow” correction is at a distance of the Radius R, the “slow” radial distance
R, is its distance after the correction. Likewise, the “fast” correction changes the planet’s
distance from R to a “fast” radial distance of R,. Paramesvara explains the relation between
the radial distances, corrections and the apogees later in GD2 134-150.

GD2 128ab gives the correction for the “slow” radial distance R . This pertains to all planets
including the moon. Figure 9.6 illustrates how this rule could be explained. V is the uncorrected
position of the planet and V, is the “slow” corrected planet on a great circle whose center is
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o' M L, HL

Figure 9.6: The “slow” radial distance O’V = R, and the corrected deviation L, V,, ~ b,, when
it is closer (above) or further (below) than the Radius.

0’19, The diagram shows a segment going through these three points and perpendicular to the
ecliptic. O’'V,, = R while O’V = R, is the “slow” radial distance’'. HV is the Sine of the
uncorrected deviation Sinb while V,M is the Sine of the “slow” corrected deviation Sinb,. As
Msmes of deviations are very small, they can be approximated with their arcs LV = b and
L,V, = b,. Since AO'HV and AO’'MV,, are right triangles sharing one acute angle, they are
similar. Therefore,

VH-V,0
Vi = =5
Sinb- R
Sinb, = ——— 9.4
moy R, (9.4)
And by approximating the Sines with their arcs,
bR
b, =— 9.5
= 95)

GD2 132 supplies some explanation for this rule. As shown in figure 9.6, the deviation
projected at a distance of the Radius becomes larger when the radial distance is shorter, and

10We will see later that for Mars, Jupiter and Saturn, this corresponds to the “fast” eccentric circle with center
O, while for Mercury and Venus it is the zodiac with center O.

1 Alternatively, if we are to comply with the notion that a “planet” is always on the ecliptic, we may use the
corresponding segments O’L, = R and O'L = R, on the plane of the ecliptic. But this does not change the
result.
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becomes smaller when the radial distance is longer. What the phrase “difference in minutes of
the figure (ksetrasya liptikabheda)” refers to is unclear. One possibility is that “figure” stands for
a right triangle, and therefore refers to the similarity involved in the computation. Interestingly,
Paramesvara does not use the word “deviation” in GD2 132. Perhaps this reasoning could have
been applied to other rules, such as the apparent size of an object (cf. GD2 280).

The moon has only one apogee (“slow”), and therefore b, is the true deviation. Meanwhile,
planets beginning with Mars, i.e. Mars, Mercury, Jupiter, Venus and Saturn have a “fast” apogee
in addition which causes a difference in radial distance on its own. This is mentioned in GD2
133, where “below and above” refers to being closer to or further from the Earth. The “fast”
corrected deviation b, can be computed in exactly the same way as the “slow” correction. When
the uncorrected deviation is b and the “fast” radial distance is R, :

Sinb- R
Sinb, = ——— 9.6
in R (9.6)
The Sines can be approximated with arcs:
bR
by = — 9.7
- (97)

We will see later that for Mars, Jupiter and Saturn, the “fast” correction is applied after
the “slow” correction. This corresponds to using b, instead of b in formula 9.7. On the other
hand, the order is reversed for Mercury and Venus. This is equivalent to using b, in place of b
in formula 9.5. In both cases, the twice-corrected deviation b is

bR
T RuR.

br (9.8)

which we can also find from GD2 128. Paramesvara does not give a name to this twice-corrected
deviation. Later in GD2 150 he uses the expression “true deviation (viksepa sphuta)”. We may
conclude that this is the celestial latitude as seen from the Earth.

Formula 9.8 is equivalent to correcting a deviation of b once when its distance is R}‘%R. This
has a parallel with Abh 3.25ab, which states the distance of a planet with two apogees:

The distance between the Earth and a star-planet (the five planets) is the product of its
radial distances divided by the half-diameter.'?

However, Abh 3.25ab is incorrect (see appendix C.6) and so is GD2 128. The error comes
from treating the two corrections as if they were independent from each other. GD2 151 (section
9.11) might be a reference to this fact.

9.5 Values of the nodes and inclinations (GD2 129-130)

GD2 129 lists the “degrees of the nodes” ) (table 9.1), which is the longitude of the ascending
node £ measured from the vernal equinox P (figure 9.1). The greatest deviations, or the inclina-
tion 4 of their orbits are given in GD2 130. The values of €2 and ¢ for the five planets are exactly

2 phataragrahavivaram vyasardhahrtah svakarnasamvargah | (Kern (1874, p. 69))
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Table 9.1: Parameters of inclined circles as given in GD2 129 and 130

Mars Mercury Jupiter Venus Saturn
Ascending node Q| 40° 20° 80° 60° 100°
Greatest deviation ¢ | 90 120/ 60’ 120/ 120/

those mentioned in Abh and MBh but not with the same measurement unit for ¢ (2 given in Abh
1.9 and MBh 7.10, and 4 in Abh 1.8 and MBh 7.9'%). As previously mentioned in section 9.2,
Paramesvara considers that every node moves retrograde, but that those of the five planets are
slow enough that they can be considered as constant. The moon’s node has a significant motion,
and therefore it makes sense that GD2 129 does not refer to the moon. However, the greatest
deviation of the moon does not change (half of nine degrees i.e. 4°30’according to Abh 1.8) , but
yet it is excluded from GD2 130. The Aryabhatiya gives in the same verse the value of i for the
moon and those of the five planets while the Mahabhaskariya omits it as is the case with GD2.

9.6 Alternative computation for the argument (GD2 134)

'\nc\\“ed circle

Figure 9.7: Argument of the true planet At — £,

An alternative computation for the deviation using a different argument in the case of Mars,
Jupiter and Saturn is given in GD2 134 (figure 9.7), where the true longitude on the ecliptic
Lt (i.e. the position after both “slow” and “fast” corrections are applied) is used instead of the
“slow” corrected longitude L,,. In this case, the “fast” correction is also applied to the node. As
explained in appendix C.4, the correction is done by deriving the equation from the “base” Sine
of the “fast” anomaly ($ighrakendrabhujajya). The word Sighrajya in GD2 134 is most likely its
abbreviation, meaning that the same equation ¢ should be added to or subtracted from both the
planet and the node. Since we take their difference, the equation is canceled out and the same
value A\, — Q) is obtained as the argument.

ALy — Qo
= ()\LuiO')—(Qio')
=M =9 (9.9)

13Both Abh and MBh give the values for i in degrees.
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Parameg$vara introduces this as a method practiced by another school (paksa), which probably
refers here to Lalla. There is a detailed discussion in his commentary on Abh 4.3, where he quotes
Lalla’s Sisyadhivrddhidatantra as an example.

Some masters, having made the equation for the “fast” apogee of Jupiter, Mars and Saturn
on their node as with the planet, having subtracted their node thus made from the true
planet, make the computation of the deviation. And in the case of Mercury and Venus,
however, [the masters] having made their “slow” equation on their node, having subtracted
that node from the “fast” apogee, make the deviation. And likewise, the master Lalla
[states]:

The nodes of Mars, Jupiter and Saturn have their own “fast” (cala) equation subtracted
from or added to them accordingly. For Mercury and Venus, the degrees of their own nodes
corrected by their own “slow” (mrdu) equation should be true. (Sisyadhivrddhidatantra
10.6)

In this school, the node is subtracted from the true planet of Mars, Jupiter and Saturn.'*

Chatterjee (1981, 2, p. 182) has already pointed out that astronomers differ from one another
in calculating the argument.

9.7 Diagram of orbits (GD2 135-140)

From GD2 135 onward, Paramesvara turns to a description of a diagram which is first used
to show the corrected longitudes of planets, then for the radial distance and ultimately the
grounding for the correction on deviations as given in GD2 128. Parame$vara deals exclusively
with the five planets in GD2 135-150, and refers to the moon later in GD2 151.

A similar set of instructions can be seen in his Siddhantadipika under the commentary on
Mahabhaskariya 4.54 (T. Kuppanna Sastri (1957, pp. 233-238)), following the method for com-
puting the true planet using the “slow” and “fast” equations. There are 32 verses in total,
beginning with the following:

The reasoning for the rule of correction cannot be established without a diagram of the
planets. Therefore the method of their drawing is explained here concisely.'®

Paramesvara gives a similar but more concise description in 12 verses under his commentary
on Abh 4.24 (Kern (1874, pp. 68-69))'6. The first verse is almost identical with the verse quoted
above. In both cases, Paramesvara tries to give the reasoning for combining the “slow” and
“fast” equations in a specific method (as explained in Appendix C). In GD2, the same type of
diagram is used for explaining the deviation.

Ykecid acarya gurukujasaninam Swghroccaphalam svapate 'pi grahavat krtva tathakrtam svapatam sphutagra-
had visodhya viksepanayanam kurvanti budhasukrayos tu svamandaphalam svapate krtva tam patam Sighroccad
visodhya viksepam kurvanti | tatha ca lallacaryah |

ksitisutagurusuryasunupatah svacalaphalonayuta yatha tathaiva |
Sasisutasitayoh svapatabhagah svamrduphalena ca samskrtah sphutah syuh [/

iti asmin pakse kujagurusaninam sphutagrahat patonam [/ (Kern (1874, p. 73), textual corruption in the quote
amended using Chatterjee (1981, 1, p. 147))

15 sphutavidhiyuktih sidhyet
naiva vina chedyakena vihaganam |
tasmad iha samksepat
chedyakakarma pradarsyate tesam [/1// (T. Kuppanna Sastri (1957, p. 233))

16 This is explained in Sriram, Ramasubramanian, and Srinivas (2002, pp. 91-94)
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GD2 135 begins with drawing three circles called “orbits (kaksya)” for each of the five plan-
ets. The term “orbital circle (kaksyamandala)” is normally used (such as in Abh 3.18) for the
geocentric great circle, as opposed to eccentric circles and epicycles, but Paramesvara seems to
use kaksya merely as a synonym of “circle (vrtta)” that appears in the same verse. As stated
in GD2 140, one of the circles for Mercury and Venus is not even a great circle. Meanwhile, he
explains in GD2 135 that the vernal equinox (referred to as “the end of Pisces”) points towards
the front of the person who draws (figure 9.8). The “front” direction is expressed by the word
“east (praric)”. Longitudes can be defined and measured on every circle as if they were geocentric
great circles.

Figure 9.8: Three circles for a planet (Mercury or Venus in this example). All circles have the
vernal equinox (end of Pisces H or beginning of Aries ) in the same direction.

GD2 136-138 explain the configuration of the three circles, which are different among two
groups; (1) Mars, Jupiter and Saturn and (2) Mercury and Venus. In both cases, the first circle
is called the bha. I have adopted the translation “zodiac” for bha and its synonym bhacakra or
bhavrtta to differentiate them from the “ecliptic (apamandala)”. The zodiac is not only the great
circle on which the true planet is projected (GD2 145), but also the zone or belt on which its
true deviation (latitude) is to be measured (GD2 150).

The three circles for Mars, Jupiter and Saturn are drawn in figure 9.9. Their second circle
is the “fast” eccentric circle whose center O, is on OU, where O is the Earth’s center and U,
is the direction of the “fast” apogee (GD2 136d-137a). OO, is equivalent to the Sine of the
greatest possible equation (antyaphala) in the planet’s “fast” correction, which is also the radius
of the “fast” epicycle. The third circle is the “slow” eccentric circle, and this time its center O,
is in the direction of the “slow” apogee U, when seen from O,. O,0O,, is the Sine of the greatest
possible “slow” equation, or the radius of the “slow” epicycle.

Figure 9.10 shows the three circles for Mercury and Venus. This time the second circle is
the “slow” eccentric circle having O, as its center, OO, being the greatest “slow” equation.
The last circle is not a great circle, as mentioned in GD2 140. It is the “fast” epicycle with
its center ¥ on the “slow” eccentric circle. Parames$vara mentions in GD2 138 that this center
of the “fast” epicycle is the sun; this cannot mean that Mercury and Venus have a heliocentric
orbit, since Paramesévara follows, in GD2 18, Aryabhata’s description of planetary orbits where
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Figure 9.9: Three circles for Mars, Jupiter and Saturn

Mercury, Venus and the sun revolve on separate geocentric orbits, closer to the Earth in this
order. Rather, we should take the word “sun” as a reference to the sun’s longitude.

It is remarkable that Paramesvara explains in GD2 139 that the mean motion takes place on
the last circle. This is in contrast with the Aryabhatiya, where the mean planet revolving with
mean motion is located on the geocentric orbital circle (i.e. the “first circle” in Parames$vara’s
explanation). In the case of Mercury and Venus it is even contradictory to the Aryabhatiya,
because if we take Paramesvara’s statement in GD2 140, the mean motion should be on the
“fast” epicycle. In Aryabhata’s model, it is the motion of the “fast” apogee that occurs on the
“fast” epicycle.

This statement could be anticipating Nilakantha who replaced the “fast” apogee with the
mean position for Mercury and Venus in his Tantrasarigraha (Ramasubramanian and Sriram
(2011, p.508-509)), but other than this succinct passage in GD2 139, Paramesvara’s explanations
agree with the Aryabhatiya.

In GD2139cd, Paramesvara remarks that the true motion on the zodiac is “inferred (anumay-
ate)”. He might also here be a precursor to Nilakantha who discusses fundamental topics in as-
tronomy using philosophical concepts, such as inference (anumana) in his Jyotirmimamsa (K. V.
Sarma (1977a)). The verb anu-ma itself does appear in previous treatises, such as in Abh 3.11cd:

This time which has neither beginning nor end is inferred from planets and stars in the
field.'”

Yet Paramesvara’s commentary accentuates the nuance of “infer”:

Time which has neither beginning nor end is inferred from the planets and the stars too
situated on the field, the sphere. This is what is stated: Even though time has neither

Ykalo 'yam anadyanto grahabhair anumiyate ksetre [/3.11// (Kern (1874, p. 59))
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Figure 9.10: Three circles for Mercury and Venus

beginning nor end, it is separated in the form of kalpa, manu, yuga, year, month, day and
so forth with conditioning existences (upadhi-bhuta) situated in the stellar sphere.'®

upadhi is another word that appears frequently in philosophical arguments, such as “anything
which may be taken for or has the mere name or appearance of another thing, appearance,
phantom, disguise (Monier-Williams (1899))” or as “a ‘condition’ which must be supplied to
restrict a too general term (Cowell and Gough (1882, p. 275))” in logics. I assume that such logical
concepts underlies the word “infer” in GD2 139. The term also contrasts with the “observed /
directly perceived (saksat)” true planet mentioned in GD2 145.

GD2140cd refers to the ksepa (inclination/latitude) among the three circles. Such reference to
the inclination of the set of rings collectively is very rare!®. Yet the expression is very ambiguous,
and the meaning can change depending on how we interpret the word ksepa. If we take it in the
sense of “inclination”, it could either mean that all three circles are inclined in the same way or
that their inclinations are different but interlocked (yugapad). It is impossible to reproduce the
rule in GD2 128 if the circles are uniformly inclined. The latter interpretation does not fit with
the Sanskrit where ksepa is in the singular. My interpretation is that ksepa means “deviation”
and that the configuration of the three circles produce a single value for the deviation. We shall
examine this configuration in detail in section 9.10. Nonetheless, Parames$vara’s true intention
is still an open question.

18 anadyantah kalah ksetre gole sthitair grahair bhair apy anumiyate | etad uktam bhavati [ yady apy anadyantah
kalas tathapi jyotiscakrasthair upadhibhataih kalpamanvantarayugavarsamasadivasadiraupena paricchidyate iti [/
(Kern (1874, pp. 59-60))

19Nilakantha gives a detailed description of how each circle should be inclined in his commentary on Abh 4.3
(Pillai (1957b, pp. 13-14)). However his configuration of orbits are different from previous theories (Ramasubra-
manian and Sriram (2011, pp. 511-512)).
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9.8 Corrected positions of planets (GD2 141-148)

GD2 141-145 explain how the corrections of planetary longitudes can be displayed in these three
circles. This is done by systematically drawing lines.

"
3 A s\low ecce”t/’/c

Figure 9.11: Corrected positions of Mars, Jupiter and Saturn.

In the case of Mars, Jupiter and Saturn (figure 9.11), we start with the mean planet V on
the last circle, i.e. “slow” eccentric. Then we draw a line between the center O, of the second
circle and V; its length is the “slow” radial distance (GD2 141). The intersection of line O,V
with the circumference of the second circle is the “slow” corrected planet V,, (GD2 142). The
difference in longitude between V and V, corresponds to the “slow” equation.

Another line is drawn between V, and the center of the first circle O. The length of OV,
is the “fast” radial distance, and its intersection with the circumference of the first circle is the
“fast” corrected planet V, (GD2 143-144). This corresponds to applying a “fast” equation to
the “slow” corrected planet.

The procedure is almost the same for Mercury and Venus (figure 9.12). The length of the first
segment O,V drawn between the center of the “slow” eccentric circle O, and the true planet V
is the “fast” radial distance (GD2 141) and its intersection with the circumference of the second
circle is the “fast” corrected planet V, (GD2 142). Its distance from the center of the zodiac O
is the “slow” radial distance and the intersection of OV, with the zodiac is the “slow” corrected
planet V,. Here, the sequence is equivalent to applying a “fast” equation to the mean planet,
followed by a “slow” equation.

As a result, in both cases, we shall obtain the position of the planet which is corrected once
for each of the “slow” and “fast” apogees. This is probably what is mentioned in GD2 145ab
by saying that the true planet (sphuta khaga) is obtained with a pair of corrections (sphutayu-
gala). The word dvyuccanam (“of the two apogees”) is in the plural and not in the dual, which
suggests that Parame$vara is explaining the situation for all planets collectively. Then in GD2
145cd Paramesvara remarks that the “true planet” thus computed is different with its “observed
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Figure 9.12: Corrected positions of Mercury and Venus.

position”, literally “before one’s eyes (saksa)”. Indeed, the accurate longitude of a planet cannot
be obtained by simply applying the two equations one by one (appendix C.5).

/

(a) Mars, Jupiter and Saturn (b) Mercury and Venus

Figure 9.13: The observed true position T of planets.

The observed position T is the intersection of line OV and the first circle (figure 9.13), as
explained in GD2 148. The difference with the once-computed position is TV, for Mars, Jupiter
and Saturn, and TV, for Mercury and Venus. GD2 146 explains where this difference comes
from.
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The “fast” equation for computing V, of Mars, Jupiter and Saturn was erroneous because it
assumed that the planet was on V, and not on V. V, is at a distance of the Radius from Oy,
whereas V is at the “slow” radial distance.

With Mercury and Venus, the error is in the “slow” equation which assumes that the planet
is on V,, separated by the Radius from O, instead of V, separated by the “fast” radial distance.

Thus, astronomical texts such as the Aryabhatiya give additional steps where half of the
equations are applied for reducing this difference (appendix C.5). GD2 147 briefly refers to this
procedure, including the fact that the steps for Mercury and Venus are different from those for
Mars, Jupiter and Saturn.

9.9 Inclined circle and the configuration of circles

Paramesvara turns back to the corrections for the deviations in GD2 149-150; they can be read
as reasonings for GD2 128. Before looking at these verses, let us first consider the position of
the inclined circle among the set of three circles described in GD2 135-148. Apart from the brief
statement in GD2 140, Parame$vara says nothing about the three dimensional configuration. The
following is a hypothetical model that may explain the statements in GD2, but Paramesvara’s
actual conception is yet to be examined.

inclined Circ/e

Figure 9.14: Inclined circle of Mars, Jupiter and Saturn

In the case of Mars, Jupiter and Saturn, the argument of the deviation involves the longitude
of the “slow” corrected planet L,, as mentioned in GD2 127ab. L, is located on the “fast”
eccentric circle, which suggests that the inclined circle should be located on that circle (figure
9.14). To be precise, there are two possibilities: One is that there is an independent inclined
circle connected to the “fast” eccentric circle at the two nodes, and the other is that the eccentric
circle itself is inclined. Our diagram depicts the first situation, but Parames$vara’s expressions
allow both possibilities. The same can be said for Mercury and Venus explained later.

Another problem with Mars, Jupiter and Saturn is the position of the “slow” eccentric circle.
The “fast” eccentric circle is the second circle in the configuration, but GD2 149 suggests that the
given deviation b should be found on the end (i.e. circumference) of the last circle, which is the
“slow” eccentric circle. My interpretation is as follows: The deviation b is computed according
to the longitude L,, on the “fast” eccentric circle, but the actual locus of this deviation is on the
“slow” eccentric circle, at the mean longitude L (figure 9.15). It is also questionable whether the
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. ecceﬂtfic with deviation

NS

Figure 9.15: “Slow” eccentric circle and planet with deviation b.

“slow” eccentric circle should be considered as elevated in accordance with this deviation, but in
my diagrams I shall keep it in the same plane with the zodiac and the “fast” eccentric circle.

'\(\C\\ned CI,—C/@

Figure 9.16: Inclined circle of Mercury and Venus

Meanwhile, the longitude of the “fast” apogee U, is taken for the argument for Mercury and
Venus according to GD2 127ab. The direction of U, gives the position of the planet V in the
“fast” epicycle, and therefore the inclined circle should also be situated there (figure 9.16). Since
the “fast” eccentric epicycle is the last of the three circles in the case of Mercury and Venus,
the given deviation b as stated in GD2 149 is the deviation in this inclined circle. The “slow”
eccentric circle and the zodiac stay on the plane of the ecliptic.

9.10 Grounding the rules for the deviation (GD2 149-150)

Two Rules of Three concerning the deviation are given in GD2 149 and 150. GD2 149 starts
from the deviation b on the last circle which we have discussed in the previous section, and gives
the once-corrected deviation on the second circle. The use of “middle (madhya)” to refer to the
second circle (which is in the middle of the three circles) in this verse is peculiar. GD2 150
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produces the true deviation by (which is also the celestial latitude ) on the zodiac from the
once-corrected deviation.

zodiac

Figure 9.17: Computing the latitude of Mars, Jupiter and Saturn

In the case of Mars, Jupiter and Saturn (figure 9.17), the Sine of the given deviation Sinb is
VH on the “slow” eccentric circle. V,M = Sinb,, is the Sine of deviation of the “slow” corrected
planet on the “fast” eccentric circle. Note that this is not the deviation on the inclined circle
(figure 9.14); that deviation b has been moved to the “slow” eccentric circle figure 9.15), and this
time we are correcting this deviation for the “slow” radial distance O,V . Finally, VTN = Sin by
is the true deviation on the zodiac. All three circles are assumed to be on the plane of the ecliptic
in this diagram.

We have already seen in section 9.4 that AO,HV ~ AO,MV ,, and therefore:

VH-V,0O
M = uo
Vu VO,
. Sinb- R
Sln b# = TN (910)

which corresponds to the first Rule of Three (GD2 149). Likewise, AOMV, ~ AONVy and
thus we have the second Rule of Three (GD2 150):

V,M-VrO
VeN=_#*+— "~~~
T V,.0
. Sinb, R
Sinbp = R: (9.11)

From formulas 9.10 and 9.11, we obtain the computation in GD2 128 (formula 9.8).
As for Mercury and Venus (figure 9.18), VH = Sinb is the Sine of the given deviation on the
“fast” epicycle, VoM = Sin b, is the Sine of the “fast” corrected deviation on the“slow” eccentric

circle and V4N = Sin bt is the true deviation on the zodiac.
Since AO,HV ~ AO,MV,, we obtain the first Rule of Three, and
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Figure 9.18: Computing the latitude of Mercury and Venus

VH-V,0O
V.M = - Torp
VO,
Sinb- R
inb, = — 12
Sin R, (9.12)

Next, we use the second Rule of Three from AOMV, ~ AONVr:

V,M V1O
N:
Vr V,0
b, R
bp = —= 9.13
TR, (9.13)

Here again, from formulas 9.10 and 9.11, we obtain formula 9.8. As a result, the rule in GD2
128 can be applied to all five planets.

9.11 Computation for a more accurate latitude? (GD2 151)

GD2 151 introduces another opinion, which argues that the twofold correction for the deviation
be applied in the same manner with the two corrections for the longitude. Indeed, the rule
in GD2 128 is incorrect because multiplying the two radial distances does not yield the actual
distance of the planet from the Earth (see appendix C.6). As for what is being suggested in
GD2 151 itself, it is probably a procedure similar to those of the true longitude correction with
half the “slow” and “fast” equations. However I could not find any other text which derives the
planetary latitude with an extra “half-value” computation procedure.

The peculiar method used by Bhaskara I in MBh 7.28cd-33 (T. Kuppanna Sastri (1957,
pp- 382-383)), which he attributes to the Ardharatrika (midnight-reckoning) system of Aryabhata,
could be related to Parameévara’s rule. In this method, two sets of nodes, the “slow” node and
“fast” node are defined for each planet, and the deviation caused by each of them is to be
combined to obtain the latitude. But nevertheless, Bhaskara I only combines them by simply
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adding or subtracting. Furthermore, Parame$vara comments here on deviations established with
two “radial distances” and not “nodes”.

9.12 Deviation of the moon (GD2 152)

GD2 152 mentions that the sun and the moon only have two circles, the zodiac and the “slow”
eccentric circle. We can apply the explanations for the other planets in this case; the mean
positions of the sun and the moon revolve on their “slow” eccentric circles, and their “slow”
corrected position, which is also the true position, on the zodiac.

The argument for computing the deviation of the moon concerned its true position, and
therefore its inclined circle is on the zodiac.
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10 Celestial latitude and visibility methods (GD2
153-194)

The celestial latitude of a planet as seen from the Earth has been established in the previous
step, and the next goal in GDZ2 is to compute the “visibility equation (drkphala)”. This is a value
added to or subtracted from the longitude of a planet with a given celestial latitude to obtain its
corresponding ascendant (udayalagna) or descendant (astalagna), i.e. the point on the ecliptic
which rises or sets at the same moment as the planet. Paramesvara mentions nothing about the
purpose of this computation. One possible application is to find whether a planet is visible above
the horizon when it is close to the sun.

The sets of computations involved in computing the visibility equation and applying it to the
longitude is called a “visibility method”. Parames$vara demonstrates two different approaches.
First he uses a pair of equations: the equation corresponding to the “visibility method for the
‘course’ (ayanam drkkarma)” (GD2 169-174) and the equation corresponding to the “visibility
method for the geographic latitude (aksam drkkarma)” (GD2 175-178). The second is a unified
method where only one visibility equation is used (GD2 192-194).

Many new arcs and segments are introduced to explain these methods. Among them, the
elevation (unnati) or depression (avanati) of the planet’s latitude is most crucial for the visibility
equations. This is first described in GD2 156-157, 166-168 as the distance of the planet with a
latitude above or below the six o’clock circle when the corresponding longitude on the ecliptic
is on the six o’clock circle. This is a parameter in the visibility equation for the “course”. Later
in GD2 190-191, the elevation or depression is restated as the distance from the horizon, which
is then used for the unified visibility equation. Other new concepts include the composition of
the declination and the celestial latitude (GD2 153, 163-164), the ecliptic pole and its elevation
(GD2 154-155, 158-162, 189), the points of sight-deviation (drkksepa) and midheaven (madhya)
on the ecliptic and their gnomons (GD2 179-188). The point of sight-deviation appears again in
the section on parallaxes (GD2 248-276) where it plays a central role in finding the longitudinal
and latitudinal parallaxes.

10.1 Corrected declination (GD2 153)

Previous verses in GD2 have only dealt with the declination § of a point on the ecliptic, which is
simply its distance from the celestial equator. The definition is not so simple for the declination
of a planet which is separated from the ecliptic by its latitude. Unlike modern astronomy, where
the declination is merely part of the equatorial coordinate system, a “declination” of a planet V in
Sanskrit sources involves its corresponding longitude on the ecliptic L (figure 10.1). This may be
related to the importance of the celestial longitude over the latitude which is visible from the fact
that words for “planet” can signify its celestial longitude (section 6.2). Parame$vara explains
two ways of combining the latitude 8 with the declination of its corresponding point on the
ecliptic J; he calls them the “corrected (sphuta)” declination and the “true (spasta)” declination,
respectively. The corrected declination, which is also referred to as the planet’s “own declination
(svakranti)”, is given in GD2 153, while the true declination comes after a series of computations
in GD2 164.

The corrected declination is simply the sum or difference of 5 and §, ignoring the fact that
they are not in one straight line (figure 10.1). Paramesvara states explicitly two cases, where the

latitude LV = 8 and declination AL = § are in the same direction (figure 10.1(a)) or opposite
directions (figure 10.1(b)). He does not specify that the latitude should be subtracted from the
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Figure 10.1: Computing the “corrected” declination

declination, and therefore the statement could allow cases where the latitude is larger than the
declination. For example, in figure 10.1(c), the northward and smaller declination is subtracted
from the southward and larger latitude, resulting in a southward corrected declination. Thus the
corrected declination ¢* in different cases is as follows.

d+ 6 (a) Same direction
0" =386—-p3 (b) Opposite direction (10.1)
B =46 (c) Opposite and latitude is larger

Paramesvara comments nothing on the exactness or validity of this corrected declination, nor
does he even refer to its usage. The “true declination” defined later in GD2 164 is essentially a
refinement of this approximative method, but Paramesvara makes no comparison between the
two. I assume that Parameévara only uses the true declination in his visibility methods, and
that the corrected declination is mentioned only because his predecessors such as Bhaskara I
have used it.

MBh 6.8 states that the sum or difference of the moon’s latitude and declination is used
for computing its ascensional difference. In his commentary Karmadipika (Kale (1945, p. 70)),
Paramesvara only paraphrases this verse and gives no further information. He says almost
nothing in his super-commentary Siddhantadipika (T. Kuppanna Sastri, 1957, p. 344). Suryasid-
dhanta 2.57 gives the same rule, calling the result a “true (spasta) declination ”. Although
Paramesvara adds no further information in his commentary (Shukla, 1957, p. 36), he constantly
paraphrases it as “corrected (sphuta)”, suggesting the possibility that he may have had the dif-
ferentiation in his mind. Neither the Mahabhaskariya, Suryasiddhanta nor their commentaries
by Paramesvara refer to the true declination as defined in GD2 164.

10.2 Ecliptic poles (GD2 154-155)

The ecliptic poles in modern terminology are two points in the stellar sphere separated from the
ecliptic by 90 degrees. They are first introduced in GD2 154 as vedhas, which I have translated
as “hole”. The Sanskrit word is derived from the verb root vyadh “pierce”, and it suggests the
usage of an armillary sphere as an object (figure 10.2). Two holes (K and K’) are made in the
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Figure 10.2: The ecliptic poles K and K’ as holes in the armillary sphere

solstitial colure, 90 degrees from its conjunction with the ecliptic (which are the solstitial points,
% and V3). In GD2 155, the separation of the ecliptic from the ecliptic poles is compared with
the celestial equator which is separated from celestial poles (P and P’) by 90 degrees (a quarter
of a circle). Here the celestial pole is described as a “cross (svastika)” [of the solstitial and
equinoctial colures] as in GD2 5 and not “pole star (dhruva)” as in GD2 35 etc. “Cross” suggests
an armillary sphere while “pole star” implies the viewpoint of an observer on the Earth.

Paramesvara uses the expression “three signs” in GD2 154 for 90 degrees. In this case, a
“sign (rasi)” is a measurement of arc along a great circle.

These two holes are named rasikuta, “summit of signs” in the same verse. Paramesvara adds
that these “summit of signs” are named so because they are the conjunction of all signs. This
can be understood by dividing the stellar sphere into twelve sections as in figure 10.3. Here
we interpret that a “zodiacal sign” is not only a division of the ecliptic but of the entire stellar
sphere!. This is necessary for defining the sign or longitude of a planet with a latitude. Since
here the rasi or its synonym no more refers to the measurement unit of a “sign” but to segments
of the stellar sphere, hereafter I shall use “ecliptic pole” as a translation of rasikuta and its
synonyms.

I Parameévara himself does not explicitly refer to this point, but we can find the idea of measurement units
as divisions of the stellar sphere in other texts. For example, Abh 3.2 states that the field (ksetra) is divided in
the same way that the time is divided. It further states that the units begin with bhagana. Practically this term
is translated as “revolution” but literally it is a “multitude/group of stars”, which gives us the impression that it
refers to the entire sky and not only the zodiac. Bhaskara I paraphrases “field” with “stellar sphere (bhagola)” in
his commentary (Shukla (1976, p. 176)). He also refers to the units, starting with “twelve signs are a ‘revolution’
(dvadasarasayo bhaganah)”.
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Figure 10.3: The ecliptic poles K and K’ and the borders of zodiacal signs. N and S are due
north and south on the horizon, P and P’ are the celestial poles.

10.3 The direction of the celestial latitude (GD2 156-157)

GD2 156 refers to the direction of the celestial latitude. Its nuance depends on how we interpret
the phrase “the arc minute where a planet is situated (khetasthakala)”. One possibility is to
take it as the measurement of the latitude Ij\\/, interpreting the word planet (khefa) as the actual
celestial body V (figure 10.4). But in GD2 156¢d, Parames$vara uses the expression “latitude”
(ksepas, nominative) “in the arc minute where a planet is situated” (khetasthaliptikayam, locative)
which does not make sense if we consider that “the arc minute where a planet is situated” is the
latitude itself.

My suggestion is that the “arc minute” should be that of the celestial longitude. The word
kheta may indicate the body itself (V) or the corresponding point on the ecliptic (L). In this
case, the arc minute “extending south and north” is a reference to KLK’ (or very narrow zone
with a breadth of one minute) which is the “line of longitude” with the two ecliptic poles at its
end. We have already seen that the signs can be understood as zones extending towards the
“summit of signs (rasikuta) = ecliptic pole”. T could not find other cases in Sanskrit texts where
a line of longitude is expressed in this way, and my interpretation is still a hypothesis that needs
to be examined. However it does explain the wordings in GD2 156cd well. The latitude VL can
indeed be in the line of longitude KLK'.

The word apama in GD2 156¢d could be either “ecliptic” or “declination”. The difficulty
with “ecliptic” is the genitive tasya (its) added to this word. Without tasya, we could interpret
that GD2 156c¢d states that the distance of the celestial point V from the ecliptic circle is the
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Figure 10.4: The latitude LV measured along the line of longitude.

latitude. With tasya, the nuance would be “its [point on] the ecliptic” (referring to L), but we
have no other instance where the word ecliptic is used for signifying a single point. Therefore I
have adopted “declination” for apama. This still leaves some ambiguity: it may signify “point L
which is separated from the equator by the declination”, or it could be “the arc of declination

AL”. In the latter interpretation, the verb yati could mean “go away from”; the arc of latitude
is not aligned with the arc of declination and “goes away” from it. This makes a good link with
GD2 157, but there is still room for discussion.

GD2 157ab describes a situation where the point on the ecliptic L correspondillg\ to the
planet’s longitude is on the six o’clock circle (figure 10.5). When the arc of latitude LV is not
aligned with the arc of declination AL, the planet V at the end of the latitude goes above or
below the six o’clock circle. It is remarkable that the word “latitude” indicates the position of the
planet itself. This becomes more distinct later when the distance of V from the six o’clock circle
is given the term “elevation / depression of latitude” (GD2 166). The expression “in accordance
with the ecliptic pole (bhakutavasat)” is probably a reference to the “elevation of ecliptic pole”
described in GD2 158-160. The elevation or depression of latitude is computed from the elevation
of ecliptic pole.

In GD2 157cd, Paramedvara turns back to the concept of the “corrected declination” given
in GD2 153. As we have seen in section 10.1, this is an approximate method because the
declination and celestial latitude are not in a straight line. Paramesvara refers to “some (kecit)”
who point this out. This might be Bhaskara II or his followers, as Siddhantasiromani is the only
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horizon

horizon

(a) Above six o’clock circle. (b) Below six o’clock circle.

Figure 10.5: The position of a planet at the tip of latitude v

major treatise before Parameévara that criticizes the approximation®. In the Goladhyaya of the
Siddhantasiromani he states:

Brahmagupta and others did not make the correction [to the latitude] because the difference
is small. (9.11 ab)?
Those who think that the latitude is on the line of the declination are stupid. (9.13ab)*

Bhaskara II combines the component of the latitude which is aligned with the declination to
obtain the “true declination”®. Here in GD2, this method is introduced and explained later in
GD2 163-164, but Parame$vara still keeps the older methods and introduces them first (GD2
153). Furthermore, he does not even evoke this criticism in his commentaries on the Maha-
bhaskariya and Suryasiddhanta. Thus the influence from Bhaskara II on this point is debatable.

10.4 Elevation of ecliptic pole (GD2 158-161)

As was the case with a planet with a latitude, the ecliptic pole can also be above or below the
six o’clock circle. This depends on the point where the ecliptic intersects the six o’clock circle
(figure 10.6). When it is the summer solstice (figure 10.6(b)) or winter solstice (figure 10.6(d)),
the northern ecliptic pole K is on the six o’clock circle. Otherwise it is not. The distance with the
six o’clock circle, called the “elevation (unnati)® of the ecliptic pole”, depends on the “upright
(koti)” of the point on the six o’clock circle, i.e. its distance along the ecliptic from a solstitial
point (c.f. GD2 89, section 7.1). The elevation is largest when the “upright” is largest, that is

2MBh 5.21 (T. Kuppanna Sastri (1957, p. 274)), MBh 6.8 (T. Kuppanna Sastri (ibid., p. 344)), Brahma-
sphutasiddhanta 7.5 (Dvivedr (1902, p. 101), Suryasiddhanta 2.57 (Shukla (1957, p. 36)), Sisyadhivrddhidatantra
9.2 (Chatterjee (1981, 1, p. 132)) and Siddhantasekhara 10.7 (Midra (1932, p. 439)) simply add the arcs of the
declination and celestial latitude.

3brahmaguptadibhih svalpantaratvan na krtah sphutah | (Chaturvedi (1981, p. 434))
4krantisatre Saram kecin manyate te kubuddhayah | (Chaturvedi (ibid.))
5 Siddhantasiromani Grahaganitadhyaya 7.2 and 7.13 (Chaturvedi (ibid., pp. 276-278,282))

6 As we will see in the following verses, this term refers to the Sine corresponding to the arc distance between
the ecliptic pole and the six o’clock circle. The same word “elevation” is used even when the northern ecliptic
pole is below the six o’clock circle.
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Figure 10.6: The ecliptic pole K when the equinoxes and solstices are on the six o’clock circle
(from the viewpoint of an observer on the Earth).

when an equinoctial point is on the six o’clock circle. K is above at its greatest distance when
the vernal equinox is on the six o’clock circle (figure 10.6(a)) and below when it is the autumn
equinox (figure 10.6(c)). We will see later that the elevation of ecliptic pole is used to find the
elevation or depression of the planet itself from the six o’clock circle, which in turn is crucial for
computing the visibility equation.

The word lagna is usually translated “ascendant” and indicates the point where the ecliptic
intersects the horizon. However, under this interpretation the rule above is invalid when the
observer is on a location with geographic latitude (figure 10.7). Most probably, Parame$vara is
describing the situation on the terrestrial equator where horizon and six o’clock circle overlap.
We may assume that this premise is applied to GD2 158 too. Nonetheless, we cannot rule out
the possibility that lagna, literally “touch”, is used in a wider sense. For example, lagna in GD2
179 indicates a point on the ecliptic remote from the horizon. Therefore, I have translated lagna
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Figure 10.7: The moment when the summer solstice % is the ascendant. The ecliptic pole is not
on the six o’clock circle.

in GD2 158 as “adhering [to the six o’clock circle]”.

The rule for computing the value of this elevation is given in GD2 159. Four segments, all
of which are Sines of the great circle, are involved. First is the [Sine of] greatest declination
Sine, which is expressed in words and not by its actual value (Sin24° = 1397) as in GD2 73.
The second is the Sine (guna) corresponding to the difference in time for a planet on the six
o’clock circle to rise and a solstitial point to rise Sin &. The time difference (in pranpas) is an arc
measured on the celestial equator, as is dealt with in GD2 89-102. There the “rising time at the
terrestrial equator” « is measured as a distance from an equinoctial point, but here the reference
is the point corresponding to a solstitial point. The other two are the Radius of the great circle
R and the elevation of ecliptic pole Sin (k.

Paramesvara does not explain how the rule is obtained, but we can understand it as follows.
Let us assume that the observer O is on the celestial equator where the six o’clock circle is the
horizon (figure 10.8(a)). L, which is between the winter solstice V§ and the vernal equinox P in
this case, is the ascendant. A a/_nsi C are the points on the celestial equator corresponding to L
and V8, respectively. Therefore AC = a. H is the foot of the perpendicular dropped from C to the
plane of the six o’clock circle and HC = Sina. P and P’ are the northern and southern celestial
pole. K and K’ are the northern and southern ecliptic pole. B is the foot of the perpendicular
dropped /fiom K to the plane of the six o’clock circle, and BK is the elevation of ecliptic pole
Sin (k. CP is part of the solstitial colure. From GQ@\ 154 we. know that VS and K are on the
solstitial colure too. Furthermore, from GD2 155, V§ K = CP = 90°. Thus KP = V8§ C =g,
and as the stellar sphere revolves, K draws a circle around a point on OP with a radius of Sine.
This circle is drawn in figure 10.8(b) where the sphere is projected from the direction of the
northern celestial pole. The circle is concentric with the celestial equator, and their center is
projected here on point P. Since APBK and APHC are right triangles sharing an acute angle,
APBK ~ APHC, and therefore
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(a) In a sphere. North is to the right. (b) Its projection seen from the northern ce-
lestial pole.

Figure 10.8: Elevation of ecliptic pole BK = Sin (x when L is the ascendant.
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(a) Elevation in the north BK. (b) Elevation in the south B'K’.

Figure 10.9: Elevation of ecliptic for an ascendant L or descendant L'.
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The northern ecliptic pole K is above the six o’clock circle as long as the ascendant L is
on the ecliptic between the winter solstice V§ and the summer solstice %6 including the vernal
equinox P (figure 10.9(a)). When L is on the other side of the ecliptic, i.e. from 2 to VS including
the autumn equinox £, K is below the six o’clock circle and the southern ecliptic pole K’ goes
above (figure 10.9(b)). Its elevation B'K’ (where B’ is its foot) is equal to BK which is now
below the six o’clock circle. Paramesvara distinguishes the two situations in GD2 160 by calling
them the “elevation in the north (saumyonnati)” and “elevation in the south (yamyonnati)”.
Furthermore, GD2 160d adds that the elevation can also be defined when a point of the ecliptic
L’ is the descendant, i.e. at the moment when it sets below the six o’clock circle. In this case,
the northern ecliptic pole is elevated when L’ is between % and V§ including £ (figure 10.9(b))
and the southern ecliptic pole is elevated otherwise (figure 10.9(a)).

GD2 161 seems to be a reasoning for using & along the celestial equator, which is in units of
time (pranas) but corresponds to an amount of revolution of the stellar sphere in arc minutes.
Indeed by contrast, an arc in the ecliptic is not the revolution of the sphere itself. Parames$vara’s
intention might be to compare this with the approximate method using the longitude appearing
in the next verse.

10.5 Crude elevation (GD2 162)

An arc degree or arc minute along the ecliptic does not exactly correspond to an arc degree or
arc minute of revolution by the stellar sphere. Therefore, if we use the distance from a solstitial
point to the point on the ecliptic, i.e. its “upright” Ay instead of the corresponding arc on Eﬁs
celestial equator, the result is only approximate. This corresponds to taking the Sine of LVS
instead of AC in figure 10.8. Yet Paramesévara gives this as an alternative rule to obtain the
“crude” value of elevation Sin C;(.

Sin Ay - Sine

Sin C% = i

(10.3)

Paramesvara justifies this rule on the ground that the method becomes simple. Indeed, the
process to find a point on the celestial equator that corresponds to a given longitude can be
cumbersome (GD2 89-102). We do not know whether Paramesvara actually preferred using
the crude elevation in practice. Hereafter in our interpretations, we will stick to the accurate
elevation Sin (k but technically it could have been replaced with Sin (k.

10.6 Corrected latitude and true declination (GD2 163-164)

The “suitable” way to combine the latitude with the declination that has been implied in GD2
157 is explained in GD2 163-164. Here we take the component of the latitude in the direction
of declination, instead of the latitude itself, as the “corrected latitude (sphutaksepa)” (figure

P —

10.10). When F is the intersection of the planet’s diurnal circle with AL extended, LF is the
corrected latitude. This added to or subtracted from the declination AL is the “true (spasta)

declination” AF which is the actual arc distance of a planet from the celestial equator”. This
can be compared with the “corrected (sphuta) declination” in GD2 153 which simply adds or

"Parameévara never suggests that the arc of true declination should have the actual position of the planet V
at its end, as would be expected in modern astronomy.
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diurnal circle F
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equator

A

Figure 10.10: Corrected latitude LF and true Figure 10.11: Spherical ALFV and
declination AF. plane AL'F'V.

subtracts the latitude itself. Parameévara rarely uses the word spasta®, and in GD2, this is the
only occurrence. Therefore he might be making a distinction between a correction which is only
approximate and something which is more “true”. Other texts use sphuta and spasta differently
for the latitude and the declination: for example, Suryasiddhanta 2.57 (Shukla (1957, p. 36))
uses spasta to refer to what we /gnderstand as the approximate co/r_r\ected declination.

In figure 1(L10 the latitude LV = 8 and the corrected latitude LF = g* look as if they form a
triangle with FV. This ALFV is a spherical triangle, and Parame$vara might be approximating
it with a plane right triangle, as he states a Pythagorean theorem in GD2 163cd that treats
the “latitude” and “corrected latitude” as segments. However it is also possible that he could
be abbreviating the word “Sine” here. My interpretation is the latter, because Paramesvara
refers to the “arc” of this corrected latitude in GD2 164. There are other cases in GD2 where
Paramesvara makes a distinction between an arc and its Sine (appendix B.1).

We can draw a plane triangle including the Sine of latitude Sin 8 as shown in ﬁgur/q\ 10.11.
The circle going through A, L and F represents the six o’clock circle when L is on it. LV is on
a circle which represents the longitude of the planet. Line m is the intersection of the planes
of the six o’clock circle and the diurnal circle and n is the intersection of the planes of the six
o’clock circle and the circle of the longitude. m goes toward the center of the diurnal circle while
n passes the center of the great circle, and the two lines are not parallel. F’ and L/ are the feet of
the perpendiculars drawn from V to m and n, respectively. Since the diurnal circle and the six
o’clock circle are orthogonal, F'V L I'F/ and AL'F'V is a plane right triangle. L'V is the Sine
of latitude Sin 8. Meanwhile the Sine of the corrected latitude Sin 8* is HF where H is the foot

8See glossary entry spasta for a general discussion on the difference between sphuta and spasta.
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of the perpendicular drawn from F to n. Let us approximate that L'F’ is equal to HF = Sin 3%,
which may be justified because LF is very small and thus FF' and LL’ are extremely minute.

Figure 10.12: The elevation of latitude F'V = Sin(sz and the elevation of ecliptic pole BK =
Sin (k. North to the right.

Parames$vara does not mention how the rule for computing Sin 5* (GD2 163) is derived, but
we can explain it as follows (figure 10.12). BK is the elevation of ecliptic pole and O is the
observer. /VL'F’ = ZKOB since they both complement the angle formed by the ecliptic and
the six o’clock circle. ZL'F'V = ZOBK = 90° and thus AL'F'V ~ AOBK. We can compute
the length of segment F'V with a Rule of Three:

BK - VL/
FV="—
KO

_ Sin(k - Sin 3

= (10.4)

Thus from the Pythagorean theorem, the Sine of corrected latitude Sin §* is
L'F' =V VL? - F'V?

. s 2
N 103)

As given in GD2 164, the sum or difference of its arc §* and the declination §, according to
their directions, is the true declination ér. The cases are exactly the same with what we saw in
GD2 153 (formula 10.1):

Sin 3*
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d+ p* (a) Same direction
0r =<6 —p* (b) Opposite direction (10.6)
B* — & (c) Opposite and corrected latitude is larger

Here again, there is no reference to case (c) in Paramesvara’s description.

GD2 164d further refers to its usage: to compute the “true Earth-Sine” and so forth. We
can find a resemblance between this passage and MBh 6.8d which explains the usage of the
Sine of “corrected declination”: “The method for the moon’s ascensional difference in nadikas
[is established] with this?”. By using the rules in GD2, we can compute the moon’s “true”
Earth-Sine (GD2 74ab) and also the radius of the moon’s diurnal circle with its true declination
(GD2 73cd). From the true Earth-Sine and radius of the diurnal circle, the Sine of the moon’s
ascensional difference can be obtained (GD2 74cd). MBh 6.8d is followed by rules for computing
the great gnomon (i.e. elevation from the ground) of the moon (this can be done by applying
GD2 107-114ab) and other parameters to find the “elevation of the moon’s horn ($riigonnati)”,
i.e. the orientation of the lunar crescent (MBh 6.9-42, T. Kuppanna Sastri (1957, pp. 345-363)).
We can thus draw a dialog between GD2 and the Mahabhaskariya concerning the visibility of
the moon.

Another case where the corrected or true declination would be used is for computing the
occurrence of a vyatipata, the moment when the declinations of the sun and the moon become
equal'®. Paramesvara makes no reference to the wyatipata here, which can be contrasted with
Nilakantha who devoted a whole chapter on the vyatipata in his Tantrasarigraha (Ramasubra-
manian and Sriram (2011, pp. 357-384)).

GD2 175 refers to a Sine of declination “corrected by the celestial latitude (viksepasamskrta)”.
Which is most likely the true declination, as we will see later in section 10.11. Otherwise there is
no explicit reference to either the corrected declination or the true declination, but the visibility
methods involve the diurnal circle of the planet with a latitude. I assume that its radius must
have been computed by using the true declination.

10.6.1 “Madhava’s rule” for the true declination

Nilakantha quotes, in his commentary on on Abh 4.46, two verses which he attributes to Mad-
hava'l:

Having multiplied the Sine of latitude with the “upright” [Sine] of the greatest declination,
[and having multiplied] a given [Sine of] declination with the “upright” [Sine] of that [lati-
tude], the two divided by the Radius are suitable for adding or subtracting.

When these two are in the same direction, [their] sum, and when in different directions,

9tena candracaranadikavidhih [/6.8// (T. Kuppanna Sastri, 1957, p. 344)

100n this topic, see the commentary notes on Tantrasarigraha chapter 6 by Ramasubramanian and Sriram
(2011, pp. 357-384) which includes discussions on the moon’s declination which is specific to Nilakantha but
otherwise gives a detailed overview. Burgess and Whitney (1858, pp. 379-386) on Suryasiddhanta chapter 11 is
also useful, despite its claim that “of all the chapters in the treatise, this is the one which has least interest and
value”.

1T am deeply indebted to the Kyoto Seminar for the History of Science in India for this section. My un-
derstanding of Nilakantha’s commentary comes from the Japanese translation and notes prepared by Setsuro
Tkeyama for the seminar.

237



Sho Hirose - These de doctorat - 2017

[their] difference is [the Sine of] true declination. The “upright” [Sine| of true declination is
the diurnal “Sine” of those staying on the inclined circle.'?

The “upright” (koti) [Sine] corresponds to the Cosine of an arc!®. In this rule, the Sine
of true declination Sind7 is computed from the celestial latitude 3, greatest declination € and
declination ¢ as follows:

Sin 5 Cos e n Sin § Cos 8

(a) Same direction

R R
Sinér =4 ' (10.7)
Sin BRCOS ¢_ S 612 0sf (b) Opposite direction

This quotation is followed by a long explanation for deriving this rule (Pillai (1957b, pp. 108-
114)). Tt should suffice for us to say that this approach is very different from what we have seen
in formulas 10.5 and 10.6™. Nilakantha also uses these verses in the chapter on vyatipata in his
own treatise (Tantrasangraha 6.4-5'%) without mentioning that they are quotations. If this rule
had indeed come from Madhava, it left no trace in Paramesvara’s works. On the other hand,
Paramesvara’s rule for the true declination was not adopted by Nilakantha.

10.7 Two visibility methods (GD2 165)

The term “visibility method (drkkarman)” appears for the first time in GD2 165. This term
refers to the method to find the point on the ecliptic which rises at the same time as the planet.
As the verse states, there are two of them. Paramesvara does not give their individual names
in GD2, but in his commentaries on Abh 4.36 (Kern (1874, pp. 93-94)) and Abh 4.35 (Kern
(ibid., p. 93)) where basically the same methods appear, he calls them the “visibility method
for the ‘course’ (ayana-drkkarman'®)” and the “visibility method for the geographic latitude
(aksa-drkkarman'”)” respectively. The core of these methods are to add or subtract a “visibility
equation (drkphala)” to the longitude of a planet.

Only the visibility method for the “course” is necessary when the observer is at the terrestrial
equator and the horizon is the six o’clock circle (figure 10.13). As stated in GD2 157, the planet
with celestial latitude V goes above or below the six o’clock circle (which is also the horizon
at the equator) when its longitude L is the ascendant. When L* is the point on the ecliptic
which rises at the same time as V at the terrestrial equator (i.e. L* and V have the same right

ascension), LL* is the visibility equation to be applied to the longitude. We have seen that
the amount of elevation or depression depended on the elevation of ecliptic pole, which in turn

12 paramapakramakotya viksepajyam nihatya tatkotya |
istakrantim cobhe trijyapte yogavirahayogye stah [/
sadisoh samyutir anayor viyutir vidiSor apakramah spastah |
spastapakramakotir dyujya viksepamandale vasatam [/ (Pillai (1957b, p. 108))
13The same expression can be found in GD2 48.

1See also Plofker (2002) for further discussions on the true declination methods of Bhaskara IT and Nilakantha
as well as those inspired by Islamic astronomy.

15Ramasubramanian and Sriram (2011, pp. 359-362). It includes the derivation of this rule which is different
from Nilakantha’s procedure in his commentary on Abh 4.46.

16Today, historians tend to call this method the ayanadrkkarma (for example, Pingree (1978)).

1"More often called the aksadrkkarma.
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Figure 10.13: Visibility equation for the “course” LL* of planet V rising at a place on the
terrestrial equator, from the viewpoint of an observer on the Earth.
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Figure 10.14: Visibility equation for the geographic latitude LL' of planet V whose longitude is
on a solstitial point.

changed according to the ascendant’s distance from a solstitial point (ayananta, literally “end of
course [towards solstice]”). Hence this method is associated with the course (ayana). The steps
for the visibility method for the “course” are given in GD2 169-171.

There is no correction for the “course” if the planet’s longitude L coincides with a solstitial
point. In this situation, if the observer is at a location other than the terrestrial equator, the
second method for the geographic latitude alone is required (figure 10.14). The point on the
ecliptic LT which rises with V cannot be drawn as easily as the previous case'®. The visibility

equation LLT is found by computing the time difference between the rising of the planet and its

longitude on the ecliptic measured along the celestial equator (1/378 = EAT). The steps for the
visibility method for the geographic latitude are stated in GD2 175-177.

GD2 175 refers explicitly to the name “visibility equation for the geographic latitude (aksa-
drkphala)”. However GD2 165cd refers to its cause as the planet’s situation south or north of
the ecliptic. This is probably a reference to the fact that the equation becomes additive or
subtractive depending on the latitude’s direction, as we will see in GD2 177. By contrast, the
equation for the “course” is additive or subtractive depending on the planet’s “course” northward
or southward on the ecliptic. In situations where the planet’s longitude is not on a solstitial point
and the observer is at a place with geographic latitude, the two equations are combined.

18Nevertheless, we do not know whether Paramesvara used a diagram or an armillary sphere to describe the
two equations.
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Figure 10.15: A situation where both visibility equations are to be applied. The two corrections
cannot be drawn in the same diagram.

Paramesvara does not explain how the two equations must be combined when both ViSil/)il\—
ity operations are required (figure 10.15). We can locate the arc in the celestial equator AB
corresponding to the visibility equation for the “course” or AC for the geographic latitude to-
gether in our diagram, but not their equations in the ecliptic. Whether both equations should be
computed from the longitude of L and simply combined, or whether one should be applied first
and the second should be computed from the once-corrected longitude is unknown. Eventually,
Paramesvara denies that the visibility method should be subdivided in GD2 178 and suggests a
unified method instead.

The last phrase in GD2 165 (@eao fox ay / grahe 'tah stah) is corrupted in many manuscripts
and the critical edition of Sastr1 (1916, p. 17) gives an uninterpretable reading. visargas preced-
ing sibilants are often omitted in Malayalam manuscripts, and therefore the phrase is written
@eaomay: (grahetastah), which should have lead to the confusion.

10.8 Elevation and depression of latitude (GD2 166-168)

The computation of the corrected latitude in GD2 163 involved an unnamed segment whose
length is given in GD2 163ab. GD2 166 repeats this rule, and now this segment is called the
elevation (unnati) or depression (avanati) of the latitude (g, depending on whether the planet is
above or below the six o’clock circle.

Sin (k Sin 8

Sin(/g = R

(10.8)

GD2 167 gives the conditions for determining whether (g is an elevation or depression, which
can be reformulated as follows:

e The northern ecliptic pole is elevated

— Celestial latitude is northward: (g is an elevation

— Celestial latitude is southward: (g is a depression
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Figure 10.16: The depression of latitude F'V and the elevation of the northern ecliptic pole BK.
North to the right.

e The southern ecliptic pole is elevated

— Celestial latitude is northward: (g is a depression

— Celestial latitude is southward: (g is an elevation

Figure 10.16 shows a case where the northern ecliptic pole is elevated and the latitude is
southward. In this case (g is a depression.

GD2 168 tells us that the elevation (or depression) of latitude (F'V in figure 10.16), the Sine
of latitude (VL’) and the Sine of corrected latitude (L'F’) form a right triangle by naming them
the base, hypotenuse and upright. The verse further adds that the arc of the corrected latitude
is on the same arc with the declination. These remarks look like groundings for GD2 163cd and
GD2 164, but what Paramesvara intended by mentioning them here is uncertain.

10.9 Visibility method for the “course” (GD2 169-174)

GD2 169-171 gives the set of computations within the visibility method for the “course” with its
conditions, while GD2 172-174 supply groundings and explanations for some of the steps.
Figure 10.18 illustrates a situation when point L on the ecliptic which represents the longitude
of the planet V is on the horizon as seen from an observer at a location with geographic latitude.
In order to isolate the visibility equation for the “course” from that for the geographic latitude,
let us first consider a situation at the terrestrial equator (figure 10.17). The horizon and the six
o’clock circle coincide. P and K are the celestial and ecliptic poles respectively. Since P and K
are separated, the planet V is separated from the horizon at the moment when its corresponding
point L on the ecliptic is rising. F and A are the intersections of the six o’clock circle with
the planet’s diurnal circle and the celestial equator. FV is the extra diurnal motion due to the
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Figure 10.17: A planet rising from the viewpoint of an observer at the terrestrial equator.

elevation or depression of the celestial latitude; therefore the visibility equation can be computed
by finding the time it takes for the planet to move along FV and find the amount of longitude
the ecliptic moves in the same time. The time is measured on the celestial equator, and therefore
if B is the point which rises with V, AB is the time difference corresponding to FV.

horizon

Figure 10.18: Visibility equation for the “course” LL* of planet V at a location with geographic
latitude. PE is the six o’clock circle and PLA is what we shall call the “circle of right ascension”.

Now let us introduce the geographic latitude to this situation by lifting P while fixing L on
the horizon(figure 10.18). The six o’clock circle (connecting P with due east on the horizon E)
no longer goes through L, but F, L and A will still be on the same circle. In modern terms, these
three points have the same right ascension. Therefore let us call this circle the “circle of right
ascension”!?. The length of ﬁ/, caused by the elevation or depression of the celestial latitude,
remains unchang(_eii. Therefore the visibility equation for the “course” should be computed from
it. Meanwhile, UF is the additional path of the planet caused by the geographic latitude, and
therefore should considered later in the visibility method for the geographic latitude.

To measure the time difference corresponding to F'V, we use the same arc AB on the celestial
equator. B and V have the same right ascension, so we may also say that they are on another
circle of right ascension of their own. But hereafter, I shall use the term “circle of right ascension”
exclusively for the circle which includes L.

19Note that this is not Paramesvara’s terminology. He does not even use this circle in his explanation.
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The point on the celestial equator that rises with L is not A, but E. Therefore to find the
arc in the ecliptic that has risen since the planet V rose, or is yet to rise before V rises, we need

to move from AB to EA* which is an arc in the celestial equator with the same length and has
the horizon at its end. A* can be above or below the horizon depending on whether the celestial

latitude has an elevation or depression. Finally, we find the arc LL* on the ecliptic which rises

with ]ﬂ\*, and this is the visibility equation for the “course”. GD2 169 is the rule for computing
this arc, but the term “visibility equation” itself appears in GD2 172.

10.9.1 Steps to move between circles

\@&O‘

o

Figure 10.19: Moving from segment FV’ in the diurnal circle to segment A’B in the celestial
equator.

As we have seen previously in section 10.6 (figure 10.11), the elevation or depression of the
latitude F'V = Sin(g corresponds to FV in the diurnal circle of the planet. O’ is its center.
Meanwhile, since A is the point on the celestial equator whose right ascension is equal to V,
/BOA’ = ZVO'F. Therefore, when A’ is the foot of the perpendicular drawn from B onto AO,
the two right triangles AOA’B and AO’F'V are similar. Thus, when the radius of the diurnal
circle is r:

F'V - BO
AB=-——"
VO

_ Sin (g R

; (10.9)

No other description or Rule of Three is given in GD2 for this computation.
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Parames$vara states explicitly that “the arc (;‘;TB) of this (A’'B)” must be taken. Actually,
A’B is no larger than the order of the celestial latitude®, and could be small enough to be
approximated by AB. We will see later that many of Paramesvara’s predecessors have essentially
done so without even mentioning the approximation. Why is Paramesvara referring to this step
when it could be skipped while computing? My hypothesis is that this is part of an educational
instruction, where the aim is to teach the students to understand how rules can be grounded.
As we will see later, the twofold visibility method is discarded later in place of a unified method,
and therefore the aim of this verse itself is for grounding the theories and not to give a practical
computational rule. The previous step (formula 10.9) can be demonstrated in an armillary
sphere. In that case, it is essential to distinguish the arc and the segment.

AB = arcSin A’B
— arcSin (SmC"R) (10.10)

r

For a place with geographic latitude, we need to consider EA* with the same length as ;&_]5,
as we have discussed previously (figure 10.18).

n+1

horizon when L* rises

horizon when L rises

Figure 10.20: Linear approximation of the ecliptic within a zodiacal sign Lyl 1.

The last step for the equation is to find LL* = [, in the ecliptic corresponding to EA* = AB.
Paramesvara supplies a Rule of Three for this computation in GD2 172, from which we can
reconstruct the situation as in figure 10.20. The term vilagna refers to the sign that is rising at
the moment. The inclination of the ecliptic against the horizon is different at every longitude,
but here we assume that it is constant from the beginning L,, of a zodiacal sign to its end L, 1.
Paramesvara does not mention this approximation. L,L,;; has the length of one sign which

is 1800 arc minutes. The section on the celestial equator that rises with this sign, A A1,

20The elevation or depression of latitude Sin (g is shorter than the Sine of celestial latitude Sin 3 itself, because
Sin (g is the base of the right triangle where Sin 3 is the hypotenuse (GD2 168). Its corresponding segment in the
celestial equator is slightly larger by the factor of g, but this is not significant; B _ 3‘11& when the declination
is 24°. Moreover, Sin (g is smaller when the declination increases, and is 0 when the longitude is on a solstitial

point.

244



Sho Hirose - These de doctorat - 2017

represents the rising time or measure (mana / miti) of the sign p,, which can be found from the
rules in GD2 89-102 (section 7.1). Since LyLy4q : ApApp = LL* : EA*

AnAnir
arcSin (M) - 1800
Pn

bo(e) = (10.11)

Unless the observer is on the terrestrial equator, the divisor must be the measure of the
sign p, which takes into account the ascensional difference and not the rising time at Lanka
(i.e. right ascension), a,,. This is probably what Paramesvara states in GD2 173, although it
is unclear what he means by addressing those who divide by «,, as “wise calculators (sudhiyah
ganakah)”. The expression “those who know one location of the sphere (golaikadesavettarah)”
can be taken in the sense of “those who consider only one location on the Earth’s sphere”, “those
who consider only one state of the armillary sphere”, or even “those who understand only one
part in the discipline of the Sphere”. We will see in the following section that Bhaskara II has
actually stated that the rising time at the equator should be taken as the divisor.

GD2 169 remarks that the equation [, is additive or subtractive and GD2 170 explains this
in further detail. Parame$vara does not specify where it is added to or subtracted from, but we
can assume that it is the longitude A of the planet. The verse begins with the case when the
planet is rising.

Vo {)\ —lye) Celestial latitude has an elevation (10.12)

A+ ly) Celestial latitude has a depression

K Longitude increases
’ in this direction

Diurnal
motion

(North) horizon - L
A

Figure 10.21: [,y = LL* is subtractive upon rising when the celestial latitude has an elevation.

In our previous discussions, we have used diagrams where the celestial latitude has an ele-
vation, which I represent again in figure 10.21. In this case, assuming that the circle of right
ascension is fixed in the sky as a reference, the planet V with celestial latitude will cross this
circle earlier than its corresponding longitude L. Therefore, the point in the ecliptic L* that
crosses the circle of right ascension at the same time with V should also rise earlier than L. Since
the direction that the longitude in the ecliptic increases is from west to east, opposite of the
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diurnal motion, the longitude of L* should be smaller than L. This means that the visibility
equation LL* = [, should be subtracted from the original longitude of L in order to find L*.

Longitude

j03enbs

increases in

Diurnal this direction

motion

Figure 10.22: [,y = LL* is additive upon rising when the celestial latitude has a depression.

The situation is different when the celestial latitude of a planet has a depression (figure 10.22).
V crosses the circle of right ascension afte}its corresponding longitude L. The depression of the
celestial latitude corresponds to the arc FV below the circle of right ascension that the pla/rft
has yet to move on. The tirgilrequired for this motion is measured on the celestial equator AB.
We must then find the arc EA* which has the same length but starts from the intersection with
the horizon and goes downward. Then we find the corresponding longitude LL* where L* is the
point on the ecliptic that will touch the horizon at the same time the planet V will reach the
circle of right ascension. Contrary to the previous case, L* is in the direction that the celestial
longitude increases, and thus LL* = [, should be added.

GD2 170 also adds the cases when the planet is setting. The expression “the elevation
(unnatir) is produced upon rising(udayabhava)” is difficult to understand alone, and I have
interpreted that the word “elevation” alone refers to whether the latitude has an elevation or
depression. Therefore the passage deals with a situation where the planet and its longitude is
setting but its elevation or depression has been measured at the moment of its rising. The last
part refers to when its elevation or depression is also taken at the moment of the plane’s setting.

A—lye) (a). Latitude has an elevation when planet rises

V- A+lye) (b). Latitude has a depression when planet rises (10.13)
A+lye (c). Latitude has an elevation when planet sets
A —lye) (d). Latitude has a depression when planet sets

If a planet with celestial latitude is elevated above the circle of right ascension when its
corresponding longitude on the ecliptic rises in the east, it would be below the circle of right
ascension when the same longitude sets in the west. This is so because their motion should be
symmetrical about the prime meridian?!. Thus, saying that “the celestial latitude of a planet
had an elevation when it was rising, and now it is setting” and “a planet is setting and its celestial
latitude has a depression” would describe the same situation (figure 10.23). This corresponds

21 At least if we ignore the diurnal motion of the planet. GD2 170 is uninterpretable if the diurnal motion has
to be taken into account.
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Longitude

increases in Diurnal P
this direction .

motion

equator

Figure 10.23: Iy = LL* is subtractive upon setting when the celestial latitude has a depression
at that moment.

to case (a) or case (d) in formula 10.13. The planet V is below the circle of right ascension
that goes through its corresponding longitude L, which means that the planet has traversed it in
advance FV represents the extra motion of the planet, and its corresponding time is measured
by AB on the celestial equator. After moving th this arc to WA* with the same length that touches
the horizon, we find the corresponding arc LL* on the ecliptic. L* is the point on the ecliptic
that touches the horizon at the moment that the planet V is on the circle of right ascension. It
must be in the direction which sets before L, which is also the direction in which the longitude
decreases, and therefore LL* = [, is subtractive.

Longitude increases
in this direction

Diurnal )
motion P

on

of right ascens

circle

horizon (North)

Figure 10.24: 1) = LL* is additive upon setting when the celestial latitude has an elevation at
that moment.

Likewise, saying that “the celestial latitude of a planet had a depression when it was rising,
and now it is setting” and “a planet is setting and its celestial latitude has an elevation” would
describe the same situation (figure 10.24). This corresponds to case (b) or case (c¢) in formula
10.13. In this case the planet V passes the circle of right ascension after its longitude L, and
therefore the point on the ecliptic L* that sets under the horizon when V is on the circle of
right ascension should be above L. This is in the direction that the longitude increases, and thus
LL* = l,(c) should be added to the initial longitude.

GD2 171 supplies some explanation concerning the rule in GD2 169 (formula 10.11). The

247



Sho Hirose - These de doctorat - 2017

Celestial
North Pole

Celestial
North Pole

Celestial
North Pole
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Figure 10.26: Descensional differences at the borders of signs.

computation uses the measure of sign p,, but this is only described as the time it takes for a
sign to rise in GD2 89-102. GD2 171 explains that the time it takes for a sign to set is equal
to the rising time of “its seventh sign”. This can be understood as the seventh sign along the
zodiac counting itself as the first, i.e. the sign in its opposition. The reason, as explained in
GD2 174, is because the ascensional difference of a sign when it sets (i.e. descensional difference)
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is in the opposite direction from when it rises. We can see from figures 10.25, 10.26 that the
descensional difference at the border of each sign is opposite of its ascensional difference. Since the
ascensional difference of the signs themselves is the difference between the ascensional difference
at its beginning and end (formula 7.10), the descensional difference of the signs themselves should
also be in the opposite direction (and same value) from their ascensional difference. The measure
of the sign at the terrestrial equator ay, itself does not change regardless of when it rises or sets.

10.10 Characterizing Parames$vara’s method

The visibility method in GD2 is different in many respects compared to other treatises, most
notably the Aryabhatiya and the Mahabhaskariya. According to Paramegvara’s commentary on
Abh 4.36 22, the visibility equation for the “course” can be expressed as follows.

verSin Ay Sin 3 Sine
boe) = R

Where verSin 6 is the “versed Sine (utkramajya)” and verSinf = R — Sin(90° — 0). Abh 4.36
only says “versed (utkramana)” which Paramesvara paraphrases “versed Sine of the ‘upright’
(kotya utkramajya)” verSin Ay .

MBh 6.2cd-3 23 give the following rule:

(10.14)

verSin(A —90°) Sin 8 Sine
lye) = B (10.15)

Since Sin Ay = Sin(A — 90°), the two are equivalent.
On the other hand, Brahmagupta in his Brahmasphutasiddhanta 6.

3 24 gives a different form:

. ins N
lv(c) = Slnﬁsz A0 (1016)

Where Sin §y;90o is the Sine of declination corresponding to a longitude of A + 90°. Since
Sin dypg00 = Mlgsme, formula 10.16 is different from Aryabhata and Bhaskara I in the sense
that it uses the Sine in place of the versed Sine.

These are comparable with Paramesvara’s rule for the elevation or depression of latitude
which in formula 10.8. By assigning the elevation of the celestial pole as in formula 10.2, we

obtain:

224The versed [Sine] multiplied by the latitude and the [Sine of greatest] declination divided by the square of
the Radius are subtractive and additive when the [latitude] is northward and southward [respectively] during a
northward ‘course’; additive and subtractive in a southward ‘course’”
viksepapakramagunam utkramanam vistarardhakrtibhaktam |

udagrnadhanam udagayane daksinage dhanam rpam yamye [/36/] (Kern (1874, p. 94))

23“The versed [Sine] of the moon diminished by three signs, the [Sine of greatest] declination and the latitude
should be multiplied. Experts say [that this] divided by the square of the Radius should be subtracted from the
moon when the directions of the ‘course’ and the inclined circle are the same. In the opposite case, this equation
is always additive against the moon.”
varjitatribhavanasya Sitagor utkramapamavisamhatim haret [[6.2[/
vyasavarganicayena Sodhayet candramo ’yanavimandalasayoh |
tulyayor dhanam usanti tadvido vyatyaye Sasini tatphalam sada //6.3/] (T. Kuppanna Sastri (1957, p. 334))

24«The arc minutes, which are the product of the latitude and the [Sine of] declination [of the planet’s latitude]
with three signs divided by the Radius, should be subtracted if these two are in the same direction and if these
two are in different directions they should be added.”
viksepasatrirasikrantivadho vyasadalahrto liptah |
Sodhyas tayoh samadisor yady anyadisos tayoh ksepyah [/6.3// (Dvivedi (1902, pp. 93-94))
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. Sin & Sin 3 Sine
Sin Gs = Sy (10.17)
Alternatively, if we use the crude elevation of ecliptic pole (formula 10.3):
. Sin Ay Sin 5 Sine
Sin(g = 2 (10.18)

Since we do not know how Brahmagupta and Parame$vara derived their rules, we cannot
assert that they belong to the same group. Nonetheless, it is obvious that Paramesvara departs
from Aryabhata and Bhaskara I who use the versed Sine in this method. In his super-commentary
on MBh 6.3, Parames$vara cites 19 verses that give a method that are almost the same as those
in GD2 (T. Kuppanna Sastri (1957, pp. 338-339)).

In addition, Paramesvara applies three steps of corrections in GD2 169 (moving from the
diurnal circle to the celestial equator, changing the segment to an arc and moving to the ecliptic)
while Aryabhata, Bhaskara I and Brahmagupta all skip these processes.

Sripati remarks in his Siddhanta$ekhara 9.6 2° that the true (spasta) visibility equation can
be obtained by multiplying the initial correction by 1800 and dividing by the rising time of the
sign p,. This only corresponds to Paramesvara’s third and last step for moving from the celestial
equator to the ecliptic.

The visibility equation for the “course” according to Bhaskara II is the closest to Parames-
vara®®. However, his steps are distinctly different. Bhaskara II’s rule involves an arc which is
called the deflection (valana)®” of the “course”. Siddhantasiromani Grahaganitadhyaya 5.21cd-
22ab?® gives the rule for this deflection 7. which can be described in the following formula:

(10.19)

. (Sin AU Sine)
. = arcSin [ ———

r
Then Siddhantasiromani Grahaganitadhyaya 7.4 %° gives the rule for the visibility equation
ly(ey:
e Si 1800
Ly = Je50P 1800 (10.20)
r Ol

I would like to leave the full analysis of this equation by Bhaskara II in comparison with
Parameg$vara for another occasion. What can be said right away is that Bhaskara II does resemble

25«The first visibility equation by the name ‘course’ multiplied by one thousand eight hundred and divided by
the rising time of the sign where the diurnal circle touches is reproduced as the true [correction] in this case.”
khanabhodhrtibhih samahatam prathamam drkphalam ayanahvayam | dyucarasritabhodayasubhir vihrtam spastam
tha prajayate [/9.6// (Misra (1932, p. 426))

26This has been first pointed out by T. Kuppanna Sastri (1957, p. 338).

27The Sanskrit word valana means “turning” or “moving round in a circle”, but as an astronomical term it has
rarely been translated in English except for Burgess and Whitney (1858) who attempted to call it “deflection”.

28«The ‘upright Sine of the moon with the portion [of longitude due to] the motion [of solstices] (i.e. longitude
with precession taken into account) is multiplied by the Sine of twenty-four degrees (= greatest declination) and
divided by the diurnal ‘Sine’. The arc of the obtained result should be the [deflection of] the ‘course in the direction
of the moon’s ‘course.”
yutayanamsodupakotisingini jinamsamaurvya gunita vibhajita [/5.21]/
dyujvaya labdhaphalasya karmukam bhavec chasankayanadikkam ayanam | (Chaturvedi (1981, p. 247))

29«The deflection of the ‘course’ multiplied by the non-corrected latitude, divided by the diurnal ‘Sine, multi-
plied by one thousand eight hundred and divided by the rising [time at a place] without geographic latitude of
the sign where the planet is based on.”
ayanam valanam asphutesuna samgunam dyugunabhajitam hatam |
purnpapurnadhrtibhir grahasritavyaksabhodayahrd ayanah kalah [|7.4/] (Chaturvedi (ibid., p. 278))
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Parameg$vara in the sense that they are both aware of the difference between the arcs in the
diurnal circle, celestial equator and ecliptic, and also that they involve a step for changing the
Sine to its arc, but their order of steps are apparently different. Furthermore, Bhaskara II uses
the rising time of the sign at a place without geographic latitude «,, in place of the rising time
at a given geographic latitude p,. I infer from GD2 173, which refers to “those who desire to
divide by the rising time at Lanka”, that Parames$vara had been aware of the Siddhantasiromani
Grahaganitadhyaya and its rules but did not see it as a text to follow and build his theories upon.

To conclude, no known predecessor of Paramesvara has given the same computation for
the visibility method for the “course”. But there is still room to consider whether Paramesvara’s
rules were stated with the same aim as the other treatises. We have discussed that Paramesvara’s
statements could be educational instructions. It is clear that he did not expect the reader to
use the visibility method for the “course” in actual situations, as he denies this method later in
GD2 179. Meanwhile, other authors might be simply keeping the rule short and approximate
for practical reasons.

10.11 Visibility method for the geographic latitude (GD2 175-177)

3
c
o
g
P
...... VO\'
F
(North) horizon : i

Figure 10.27: Visibility equation for the geographic latitude LLT for planet V as seen from inside
the sphere.

The term “visibility equation for the geographic latitude (aksadrkphala)” appears in GD2
175. This is the second equation to be applied to the planet’s longitude. The steps involved
in GD2 176-177 resemble those for the visibility equation for the “course”; we move from the
diurnal circle of the planet V to the celestial equator, and then to the ecliptic (figure 10.27). L is
the planet’s longitude on the ecliptic and A is the right ascension of L on the celestial equator.
The circle of right ascension, which we have introduced previously for our understanding, goes
through A, L and also the celestial pole P. The intersection of this circle with the planet’s
diurnal circle is F. U is the intersection of the horizon and the diurnal circle that represents the
moment when it rises. We have already seen that F'V is the motion of the planet corresponding
to the visibility equatip_rl for the “course”. UF represents the extra diurnal motion caused by the
geographic latitude. BA is the corresponding time measured on the celestial equator; B is on
the same circle of right ascension WiEE\ U, just like A which is on the circle of right ascension

going through F. Then we construct EAT with the same arc length such that E is on the horizon.
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LLT is the resulting equation. No reasonings are provided by Paramesvara for the computations
involved in this method. Let us first see how the first steps to find the segment corresponding
to UF could have been explained.

10.11.1 The computation with the “declination produced by the celestial
latitude” and its error

diurnal circle

P r
(0] equator G

Figure 10.28: The declination produced by the celestial latitude HF as the difference between
two Sines FG = Sin ét and LA’ = Sin .

GD2 175 begins with a preliminary step where a segment called the “declination produced
by the celestial latitude (viksepabhava-kranti)” is computed. Despite the name “declination”,
it is neither an arc nor a Sine of the great circle, but a difference between two Sines (figure
10.28). The diagram shows the circle of right ascension going through F, L and A. The Sine of
declination Sin ¢ is the perpendicular LA’ drawn from L to OA. On the other hand, I assume that
the Sine of declination “corrected by the celestial latitude” refers to the Sine of true declination
FG = Sin dt, where G is the foot of the perpendicular drawn from F to OA3°. The declination
produced by the celestial latitude Jj is:

FH = |[FG — LA/|
J5 = |Sind* — Sin J| (10.21)

I presume that Paramesvara’s idea is to use a plane triangle corresponding to the spherical
triangle ALFU (figure 10.27), where ZLFU = 90° and ZULF = ¢ (since the angle of the
six o’clock circle against the horizon is ¢ and the circle of right ascension is parallel with the
six o’clock circle). If the angles in the plane triangle are the same, we can find the segment

30We cannot find any possible explanation for using the “corrected declination §*”, which is the sum or
difference of the declination and the uncorrected latitude.
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corresponding to UF from that corresponding to ﬁ‘, using the Sine of geographic latitude and
the Sine of co-latitude and the Radius. But if this is indeed how Paramegvara constructed his
rules, his assumption that FH = J§ is the segment corresponding to LF is wrong. The correct
segment in figure 10.28 is KF, where K is the intersection of FG and OL.

circle of right ascension

Figure 10.29: The circle of right ascension and AKFU’, the plane triangle corresponding to
ALFU.

Figure 10.29 shows the circle of right ascension corresponding to L, going through the celestial
north pole P. The intersection of its plane with the plane of the horizon is OL. FU’ is the
Sine-like segment in the diurnal circle corresponding to FU; therefore it is perpendicular to the
circle of right ascension because the plane of diurnal circle is parallel to the celestial equator.
Consequently, AKFU’ is a right triangle.

Meanwhile, when N is due north on the horizon and O’ is the center of a hypothetical diurnal
circle with O’N as its radius, as in GD2 88 (section 6.7.1), AOO’'N forms a right triangle where
O’'N is the Sine of geographic latitude Sin ¢ and OO’ is the Sine of co-latitude Sin @. The planes
of AOO'N and AKFU’ are parallel, ZNOO’ = ZU’KF and therefore AOO’'N ~ AKFU’. Then
we find that

KF-O'N
FU = ———
(0104
KF - Si
ek (10.22)
Sin @
Paramegvara uses LF = J§ in place of KF (GD2 176). From FU’ thus computed, we compute
the corresponding Sine in the celestial equator as we will see in the next step.
No other author has used Jj in the visibility equation for the geographic latitude. For example,
Abh 4.35 31 gives the following rule for the visibility equation for the geographic latitude Ly(e):

31«“The Sine of geographic latitude multiplied by the celestial latitude and divided by the [Sine of] co-latitude
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Sin ¢ Sin 8

l
Sin @

o(p) = (10.23)

Therefore I conclude that this method, although inexact, shows Paramesvara’s effort to im-
prove or ground the method. This is remarkable, especially given the fact that he discards the
visibility equation for the geographic latitude itself soon after in the same treatise.

10.11.2 Steps to move between circles

The steps to find the visibility equation for the geographic latitude LLT = ly(p) (figure 10.27) is
identical with those of the visibility equation for the “course” [,(.). However, while Paramesvara
put all the steps for I, in one sentence (GD2 169), the expression for [, looks different. In
the previous case, the segment in the diurnal circle was explicitly referred to as the elevation or
depression of latitude. Here, the computation to find FU’ in the diurnal circle (formula 10.22) is
integrated with the computation to find the corresponding Sine in the celestial equator and also
with the step for changing from the Sine from the arc:

Qs
Awg = arcSin (J‘SSISI?:O . f) (10.24)

Paramegsvara stops here and calls this intermediate arc Awg (corresponding to BA or EAf in
figure 10.27) the “ascensional difference made by the celestial latitude (ksepakrtacaramsa)”. This
is not the case in the visibility method for the “course” (GD2 169), where Paramesvara puts all
the steps in one sentence without explicating the intermediary segments or arcs.

GD2 177 gives the final step for moving from Awg in the celestial equator to I, ) in the
ecliptic.

_ Auwg - 1800
Pn

The same verse gives the rules for whether the equation is additive or subtractive. This
depends on whether the celestial latitude is northward or southward.

Figures 10.30 and 10.31 show the situations when the longitude of the planet on the ecliptic L
is rising on the horizon. If the celestial latitude is northward, the diurnal circle of the planet would
be between the celestial north pole P and the ecliptic (figure 10.30). In this case, the intersection
of the diurnal circle and the circle of right ascension F is above the horizon U. Thus the planet
gains an extra motion UF above the horizon before L rises. Hence the corrected longitude LT

must be above the horizon too. But LL' is in the direction that the longitude decreases, and

therefore the visibility correction for the geographic latitude I, ) = LLT is subtractive. If the
celestial latitude is southward, the diurnal circle is on the other side of the ecliptic from P (figure
10.31). The planet has yet to make an extra motion FU below the horizon after L rises, and thus
the corrected position of the longitud/q\l_ff is below the horizon. This is also in the direction that
LL' is additive.

the longitude increases, and l,(,) =

should be subtractive upon rising and additive upon setting when the moon is situated to the north [of the
ecliptic], and additive and subtractive when it is situated to the south.” wiksepagunaksajya lambakabhakta bhaved
rpam udaksthe |

udaye dhanam astamaye daksinage dhanam rnam candre [/35/] (Kern (1874, p. 93))
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Figure 10.30: Iy, = LL' is subtractive upon rising when the celestial latitude is northward
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Figure 10.31: l,(,) = LLT is additive upon rising when the celestial latitude is southward.

When the planet is setting, we only need to take into account that the direction that the

longitude increases is reversed. l,,) = LLT is additive when the celestial latitude is northward
(figure 10.32), and subtractive when it is southward (figure 10.33).

Therefore, the longitude A’ corrected by the visibility equation for the geographic latitude is:

A —ly(p) Celestial latitude is northward when planet rises
Vo A+ lyp) Celestial latitude is southward when planet rises
A+l (
(

. . . (10.26)
o(p) Celestial latitude is northward when planet sets

o) Celestial latitude is southward when planet sets
This is as stated in GD2 177.
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Figure 10.32: I, () = LL" is additive upon setting when the celestial latitude is northward.
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Figure 10.33: l,(,) = LLT is subtractive upon rising when the celestial latitude is southward.

10.12 Unified visibility method (GD2 178)

This verse is the beginning of an alternative method where one method is done in place of two.
That is to say, only one “visibility equation” will be added to or subtracted from the longitude
of the planet in this method. The rule itself is explained much later after the introduction of
new segments involved in the computation. In GD2 178, there are two things to be considered.
What does Paramesvara mean when he says that the visibility methods for the “course” and
the geographic latitude are not the true subdivision (sphutarnga)? If only one unified method is
required, why did he mention the two methods in the first place?

Concerning the first question, I have two hypotheses. One is because each of the two methods
involve some approximation. However we do not know whether Parames$vara was aware of those
individual approximations. The second is that we cannot visually divide the unified equation on
the ecliptic into two arcs which can be exclusively called the equations for the “course” and for the
geographic latitude. The distinction was possible on the diurnal circle (FV and FU), but upon
moving them to the ecliptic, both had been treated as equations on the position of the planet’s
longitude (point L) itself. This is problematic when we are to apply both equations, as the second
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equation should be applied on the once-corrected longitude and not on the initial longitude of
the planet. The situation is analogous to the computation of the true planet (appendix C), where
two equations for the “slow” and “fast” apogees have to be applied to the mean planet.

As for the second point, Parame$vara might be explaining the rules for the two methods
for the reader to locate this subject in relation to other treatises. Authors before Paramesvara,
including Aryabhata and Bhaskara I do not use a unified method. Another reason could be to
show that there are two causes behind a single equation.

Nilakantha’s Tantrasangraha explains the two visibility equations in 7.1-4ab (Ramasubrama-
nian and Sriram (2011, p. 385)) and then gives an unified method in 7.8-9 (Ramasubramanian
and Sriram (ibid., p. 394)). This style resembles GD2, but as we will see, their computations
differ. Their relation and the origin of these unified methods are yet to be studied.

10.12.1 Process of the unified method

Paramesvara does not emphasize what the essential steps in the procedure are. In between the
rules, Parames$vara inserts what may be the grounding for the computation, or introduces new
points and arcs. We can summarize the steps as follows:

o Longitude of the sun at midday [As] and hour angle [H] — Longitude of midheaven [Ay/]
(GD2 182)

o (Ay — Declination of midheaven [§/])
o Oy and geographic latitude ¢ — Midheaven Sine [Sin zps] (GD2 184)
e Sin zpy — Midheaven gnomon [Gys] (GD2 186)

o Longitude of midheaven [A/] and longitude of ascendant point [Aas.] — “Base” of mid-
heaven gnomon [Bg,,] (GD2 186)

e Gy and Bg,, — Gnomon of sight-deviation [Gp] (GD2 187)
e Gp — Sine of sight-deviation [Sinzp] (GD2 187)

« Sinzp and Sine of latitude [Sin 3] — Elevation or depression of latitude [Sin(,g] (GD2
190-191)

o dpr — diurnal “Sine” [r] (no reference)

e Sin(,g, Sine of co-latitude [Sin ¢] and r — Visibility equation along the equator [I}] (GD2
192)

o [ and rising time of the ascending sign [p,] — Visibility equation on the ecliptic [l,] (GD2
193)

The main point of this procedure is to redefine the elevation of ecliptic pole and the elevation
or depression of latitude. In the visibility method for the “course”, they are measured from
the six o’clock circle, whereas here the horizon at the given geographic latitude is the reference.
Therefore, starting with the elevation or depression of latitude Sin(,g, we can follow the same
steps as in the visibility method for the “course” to find the visibility equation which takes into
account the geographic latitude. What is new in the procedure is the additional steps to find
the redefined elevation.
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In general, the segments or arcs involved in the procedure are stated in the order that they
should be computed. But there is one exception: Segments related to a point called the “sight-
deviation” is used later in the procedure at GD2 187, but Paramesvara defines the point of
sight-deviation in GD2 179-181 before starting with the procedure itself.

10.13 The ecliptic point of sight-deviation and its Sine (GD2 179-181)

D

_________________________

Figure 10.34: The ecliptic point of sight-deviation D. The ecliptic is graduated with signs.

According to GD2 179, the term “sight-deviation (drkksepa)” refers to the midpoint on the
ecliptic above the horizon (figure 10.34, 10.35). Parame$vara supplies that half of the ecliptic is
always above the horizon and half is always below. We can understand this as an intersection
of two great circles (ecliptic and horizon). Since an arc length of six signs is above the horizon,
the distance from the ascending point L. to the ecliptic point D should be three signs. The
longitude on the ecliptic decreases from east to west, and therefore the longitude of sight-deviation
Ap is the longitude of the ascendant A 44, decreased by three signs, as stated in GD2 180.

)\D = )\Asc - 3° (1027)

In GD2 181, Parames$vara uses the same word drkksepa in the form of drkksepajya (Sine of
sight-deviation). This is described as the Sine corresponding to the arc distance zp of the ecliptic
point of sight-deviation from the zenith (figure 10.36). In this case, the word drkksepa might
refer to the arc zp rather than the point. Actually, the latter interpretation is more common (cf.
Bhattacharya (1987, p. 50)) and other authors rarely use drkksepa to signify the ecliptic point
of sight-deviation, although what this term alone means for Paramesvara and others remains a
question®2.

328ee glossary entries drkksepa (1) and drkksepa (2) for more discussion.
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LAsc

Figure 10.35: The ecliptic point of sight-deviation D as seen from above, with the zenith Z as
center.

Figure 10.36: The Sine of sight-deviation Sinzp = OC corresponding to the distance of the
ecliptic point of sight-deviation from the zenith ZD.
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The statement on the sight-deviation in GD2 179-181 is separated from its actual usage to find
the unified visibility method in GD2 187-191. My hypothesis for explaining this inconsistency
is that Paramesvara wants to make the sight-deviation stand out among other miscellaneous
segments and arcs involved in the process. Prior to Parameévara, the sight-deviation was used
only for computing the parallax, and not for the visibility method. Parames$vara introduces the
sight-deviation in both situations. Therefore the Sine of sight-deviation appears again in GD2
270-276 to find the longitudinal and latitudinal parallaxes. If someone concentrating on that
section had to review the topic of the sight-deviation, GD2 179-181 would serve as a marker,
and the reader could easily find the description in these verses, or advance up to GD2 187 to
understand the steps to find the value of the Sine of sight-deviation.

10.14 The midheaven ecliptic point and its Sine (GD2 182-185, 194)

10.14.1 Finding the longitude of midheaven

Figure 10.37: The midheaven M in the ecliptic.

Effectively, the unified visibility method starts with finding a point on the ecliptic called
“midheaven (madhyavilagna)”, which is the intersection of the ecliptic and the prime meridian
(figure 10.37). As was the case with the point of sight-deviation, its arc distance from the zenith
ZM = zp; forms a Sine OB = Sinzy, called the midheaven Sine (madhyajwa) which appears
later in GD2 184. GD2 182¢ explains the word madhya as derived from midday (madhyahna).
At midday, the position of the sun is the midheaven. However, the midday can be defined at any
time of the day, regardless of the sun’s position.

Not only is GD2 182c an explanation for the etymology, but together with GD2 182d, it
implies how the longitude of midheaven must be computed; with the longitude of the sun, the
hour angle (nata) and the measure at Lanka (lankamiti). Parame$vara does not describe the
process in GD2, but has stated it at the end of his commentary on Abh 4.33. Before looking at
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the computation itself, let us first see why the measure at Lanka, i.e. the point or length of arc
in the celestial equator that rises simultaneously with a given longitude or sign in the ecliptic
as explained in GD2 89-102 (chapter 7) is involved. Parame$vara has spared GD2 183 for this
reasoning.

Figure 10.38: The ascending and descending points change in accordance with the geographic
latitude, but the correspondence between midheaven M and culminating point A in the celestial
equator remains unchanged.

Paramesvara argues in GD2 183 that the measure of midheaven (madhyamana) which I

interpret as the arc distance (ﬁ along the celestial equator between an equinoctial point Q and
the point A that culminates with midheaven3, is equal to the measure or “rising time” a;
observed at Lanka (section 7.3).

The correspondence between midheaven M and point A can be visualized as in figure 10.38
and 10.39. The six o’clock circle corresponds to the horizon as seen from Lanka. The geographic
latitude causes the ascending point on the ecliptic (corresponding to E in the celestial equator)
to move from L} . to Lag and the descending point (corresponding to W) from Lf_ to Lpes,
but M and A remain on the prime meridian.

Meanwhile, Paramesvara uses the ascensional difference of the signs for his reasoning in GD2
183. His argument resembles GD2 174 (figure 10.25 and 10.26). The logic seems to be that
the ascensional difference and descensional difference of a given longitude is the same value in
opposite direction and therefore should be zero at the middle.

I imagine that these explanations could be done easily by moving the armillary sphere. The
instrument would also demonstrate that the two points M and A rise simultaneously above the
horizon at the terrestrial equator. Therefore the measure of midheaven is equal to the rising
time at Lanka «;y.

33This is almost identical with the “measure” as stated in GD2 89-102; the only difference is that we are taking
the prime meridian instead of the horizon as the reference.
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Figure 10.39: The configuration of figure 10.38 seen from above.

Longitude increases
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Figure 10.40: Points on the celestial equator corresponding to the sun ¥ and the midheaven,
before noon (M;) or afternoon (Ms)

This correspondence between the midheaven and a point on the celestial equator enables us
to easily find the longitude of midheaven for a given moment. The hour angle H is the time
difference between the culmination of a celestial body (in our case, the sun) and a given moment
(see also section 18.4), which corresponds to an arc along the celestial equator. Therefore,
to find the midheaven M; at a ‘moment before noon, we should subtract the longitude E/]M\l
corresponding to the hour angle Ay A; and for the midheaven M5 in the afternoon, the longitude

Z/_\MQ corresponding to the hour angle Ay, A5 should be added. This seems to be what Paramesvara
describes in his commentary on Abh 4.33:

As for the midheaven ecliptic point: When it is before noon, one should subtract the rising
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[time] at Lanka in asus (i.e. prapas) [of signs| in reverse order beginning with the portion of
the sign where the sun is situated from the hour angle in asus, subtract the corresponding
signs from the sun and establish [the midheaven longitude]. Meanwhile in the afternoon,
one should subtract the rising [time] at Lanka in asus in order beginning with the portion
where the sun is situated from the hour angle in pranas, add the corresponding signs to the
sun and establish [the midheaven longitude].?*

The computation starts with two numbers, the hour angle in pranas and the sun’s longitude,
probably in signs and minutes®®. The measure of signs are subtracted from the hour angle in
reverse order if the moment concerned is before noon. In our example in figure 10.40, we start
with Taurus ¥ where the sun is located and go backward to Aries P, Pisces H and so on until no
pranas are left. Each time we subtract a measure of sign, we subtract one sign (1800 minutes)
from the longitude, as we are going in the direction which the longitude decreases. Paramesvara
does not mention what to do with fractions of signs, but I assume that this was managed with
linear interpolation, as we have seen in GD2 172. Thus in our example, we should first find
the minutes of arc between the longitude of the sun and the beginning of Taurus, multiply
the number with the measure of Taurus ay and divide it with 1800 to find the corresponding
pranas to subtract from the hour angle. Likewise, after reaching the beginning of Aquarius &
we must multiply the remaining number of pranas with 1800 and divide it with the measure of
Capricorn ays to find the minutes of arc to subtract from the longitude and locate the longitude
of midheaven M; inside Capricorn. As for the case in the afternoon, we must add the signs and
minutes since we are going in the direction in which the longitude increases.

The longitude of midheaven Ay itself is used later in GD2 186¢d, but the next step in GD2
184 requires the declination of midheaven d,;. If we are to follow the rules in GD2 strictly, we
need to compute the “base” Sine of the longitude, Sin A5y compute the Sine of declination
Sin dps using GD2 73ab (formula 6.3) and convert it into an arc. However, we cannot rule out
the possibility that tables were used for direct conversion (see appendix B.6.2).

10.14.2 Computing the midheaven Sine

GD2 184 gives the rule to find the arc corresponding to the meridian zenith distance of the
midheaven zj; from the two arcs, the declination of midheaven §;; and the geographic latitude
, depending on whether they are in the same or opposite direction. The Sine of this arc Sin zy;
is the midheaven Sine.

= {61\/[ +¢  (a) Same direction (10.28)

[0ar — ¢| (b) Opposite direction

There is one important piece of information which can be derived from this simple rule.
Parameg$vara is assuming that the direction of the geographic latitude is southward (figure 10.41),

34 madhyalagnam tu parvahne natasubhyo ravisthitarasibhagad utkramena lankodayasun visodhya tavato rasin
ravau visodhya sadhyam | aparahne tu natapranebhyo ravisthitabhagat kramena larnkodayasun visodhya tavato

rasin ravay praksipya sadhyam /| (Kern, 1874, p. 92)

35We can see that the longitude shorter than one sign is measured in minutes of arc from rules that correlate
a measure of sign with “one thousand eight hundred minutes of arc” such as in GD2 172. Whether degrees of
arc were involved is debatable. The commentator on GD2 209 shows us one possibility: only arc minutes appear
in intermediate steps, but to denote the final value of the longitude, minutes are converted to signs, degrees and
minutes.
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contrary to the modern notion that the geographic latitude is northward for those in the north-
ern hemisphere. This confirms our inference from GD2 70 (section 6.1). The direction of the
midheaven Sine is stated oddly later in GD2 194. It goes from the zenith towards midheaven,
and thus it is southward if both dj; and ¢ are southward (figure 10.41 (a)), southward when &,/
is northward but dp; < ¢ (figure 10.41 (b) i) and northward if s > ¢ (figure 10.41 (b) ii).

(b) ii.

Figure 10.41: Zenith distance of midheaven zj; when (a) its declination ;s is southward, (b) i.
when d,s is northward but smaller than ¢ and (b) ii. when it is larger. To be consistent with
Parameg$vara’s expression in GD2 184, the geographic latitude ¢ has to be southward.

GD2 185 adds some explanation, describing the geographic latitude as an arc in the “gap
between the celestial equator and the zenith (ghatikakhamadhyavivara)” and the declination as in
the “gap between the celestial equator and the diurnal circle (ghatikadyuvrttavivara)”. However,
the word order does not agree with the direction of the arcs. The “diurnal circle” should be that
corresponding to the declination of the midheaven (figure 10.42).

Figure 10.42: The geographic latitude ZA between the zenith and the celestial equator, and the
declination AM between the celestial equator and the diurnal circle of the midheaven.
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10.15 Midheaven gnomon and its “base” (GD2 186)

Figure 10.43: Midheaven gnomon BM = G and its “base” MH = B(g, ).

The midheaven gnomon (madhyasarku) Gy is the elevation of the midheaven BM (figure
10.43). Since AOBM is a right triangle, the following rule in GD2 186ab can be obtained:

BM = vMO? — OB?
Gar = \/ R2 — Sin® 2y, (10.29)

GD2 187cd gives the rule for another segment which is called the “‘base’ of the midheaven
gnomon (madhyasankubhuja)”. This is the “base” Sine of the ascending longitude A 45, decreased
by the longitude of the midheaven Aj;.

B(QM) = Sin<)\Asc - )\M)B (1030)

In this case, the references for the “base” are not the equinoctial points but the ascending
and descending points. That is, Sin(Aasc — Ay ) B = Sin(Aase — Apr) while the arc is smaller than
90°, but when it is larger, the descending longitude Apes is used instead and Sin(Aasc — Ay ) =
SIH(AM - )\Des)~

In figure 10.43, B(g,,) is the perpendicular MH drawn from the midheaven M to LascLpes,
the line between the ascending and descending points. The reason why this segment is associated
with the midheaven gnomon is uncertain, but it might be because this segment is the midheaven
gnomon projected on the plane of the ecliptic. In addition, calling this segment the “base” of the
midheaven would cause confusions with Sin Ay, the “base” Sine with reference to the equinoctial
points.
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10.16 Gnomon of sight-deviation and Sine of sight-deviation (GD2
187-188, 194)

Figure 10.44: Two similar triangles, AHBM formed with the midheaven gnomon and AOCD
with the gnomon of sight-deviation.

The “base” of the midheaven gnomon Bg,,) takes its largest value R when the argument is
90 degrees, that is, when the midheaven coincides with the point of sight-deviation. Even when
they are separated, B(g,,) = MH is parallel with the Radius DO with the point of sight-deviation
at its end. GD2 188 stresses that they are both Sines in the ecliptic. CD corresponds to the
midheaven gnomon BM, and is called the gnomon of sight-deviation (drkksepasanku) Gp. The
two gnomons are also parallel because they are both perpendicular against the horizon. Thus
/ZCDO = /ZBMH and Z0OCD = ZHBM = 90°. Therefore AOCD ~ AHBM. GD2 188 states
the Rule of Three to find the length of Gp. The computation, as stated in GD2 187, is:

DO - BM

D = =

Gp = Fou (10.31)
B(QM)

GD2 187 briefly adds that the great shadow OC corresponding to the gnomon of sight-
deviation is the Sine of sight-deviation Sin zp. This suggests that we can use GD2 114ab (formula
8.8), which is the rule for computing the great shadow with the Pythagorean theorem:

0C =+/D0? — CD?

Sinzp =4/R? — G% (10.32)
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Since OC || HB, the points of sight-deviation and midheaven are always on the same side from
the zenith. Thus the Sine of sight-deviation and the midheaven Sine are in the same direction
and GD2 194 states the rule to find their direction collectively. This direction is needed right
afterward in GD2 189, and it is strange that Parameévara has added this rule at the very end of
the procedure.

10.16.1 The “true” Sine of sight-deviation and the approximative method

GD2 187 refers to the Sine of sight-deviation computed in this procedure as “true (sphuta)”,
which suggests that there must be an “untrue” Sine of sight-deviation. I assume that the following
method by Aryabhata, presented in Abh 4.33, is in Paramesvara’s mind.

The product of the midheaven Sine and the rising Sine is divided by the Radius. The square
root of the difference between the squares of this and the midheaven Sine is [the planet’s|
own Sine of sight-deviation.?®

The “rising Sine (udayajiva)” Sinv is the Sine corresponding to the arc distance between due
east on the horizon and the ascending ecliptic point. Parame$vara does not give any reasonings
for this rule in his commentary on Abh 4.33. Meanwhile, Govindasvamin’s commentary on MBh
5.23 quotes this verse and explains it in an instruction of a drawing (chedyaka) (T. Kuppanna
Sastri (1957, pp. 276-277)). Parame$vara adds further comments on this instruction in his
Siddhantadipika. The following is my interpretation of the grounding based on the commentaries
of Govindasvamin and Parameévara®’.

Figure 10.45 shows the ecliptic projected on the plane of the horizon with the cardinal di-
rections N, S, E and W. The intersection of the two circles, Las. and Lpes, are the ascending
and descending ecliptic points. The distance of the ascending point from the east-west line EW,
PL g is the rising Sine. The intersection of the ecliptic with the north-south line NS, B, is the
foot of the midheaven gnomon. OF is a Radius in the horizon that is perpendicular to Lagc.Lpes-
Its intersection with the ecliptic, C, is the foot of the gnomon of sight-deviation. OB is the
midheaven Sine and OC is the Sine of sight-deviation. OBC is the projection of the spherical
triangle AZDM on the plane of the horizon (figure 10.46): the spherical angle ZZDM is a right
angle but ZOBC is not, as we will see below.

A circle is drawn around O with OB = Sin z); as its radius, and its intersection with OF is G
(thus OG = Sin z)). Q and H are the foots of the perpendiculars drawn from F and G on NS.

Comparing AOPLas. and AOQF, ZLas.OP = 90°— ZPOF = ZFOQ, ZOPLas. = ZOQF =
90° and LascO = OQ = R. The hypotenuse and an acute angle is equal, and thus AOPLag. =
AOQF. Therefore QF = PLag. = Sinv. AOQF and AOHG are right triangles sharing one
acute angle and thus AOQF ~ AOHG. Therefore,

~ QF-0G
HG = OF
_ Sinwv Sin zps

- (10.33)

36 madhyajyodayajivasamuvarge vyasadalahrte yat syat |
tanmadhyagyakrtyor visesamulam svadrkksepah [/4.33/] (Kern (1874, p. 92))

37Govindasvamin’s commentary contains several difficult compounds, and Paramesvara does not explain them
literally but often substitutes them with his own words. Govindasvamin proceeds to illustrate the Sine of sight-
deviation and Sine of sight-motion, which is rejected by Paramesvara (see section 21.6). Therefore there seems to
be a gap between the notions of Govindasvamin and Paramesvara. Due to this complexity in their commentaries,
I have decided not to translate and interpret them literally here.
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Figure 10.45: The midheaven B and the ecliptic point of sight-deviation C projected on the plane
of horizon, and the rising Sine L¢.G.

Figure 10.46: AOCB and spherical triangle AZDM.
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It is assumed that the distance between the foots of the midheaven gnomon and the gnomon
of sight-deviation BC is equal to HG but this is incorrect. If BC were a tangent of the ecliptic,
BC 1L OG, and therefore AOBC = AOHG and BC = HG, but BC is not a tangent and
BCO < 90°. Yet the Pythagorean theorem is used to find OC = Sinzp on the premise that
BCO = 90° and BC = HG. Neither Govindasvamin nor Parame$vara mention that this is an
approximation.

0C ~ vVBO? — BC?

S .9 Sin v Sin 2y 2
inzp ~A[Sin” zpr — — 7 (10.34)

The method in GD2 is different not only because it does not involve this approximation but
also because it does not use the rising Sine.

Methods identical with Abh 4.33 can be found in MBh 5.19 (T. Kuppanna Sastri (1957,
p. 274)), in Suryasiddhanta 5.5c¢d-6ab (Shukla (1957, p. 67)) and in Sisyadhivrddhidatantra 6.5
(Chatterjee (1981, 1, p. 111)). As is the case with the Aryabhatiya, none of them spell out the
approximation. But there is one significant difference: Aryabhata does not mention why the
Sine of sight-deviation is required, while the three treatises introduce this Sine in the chapter
on solar eclipses, and use it for computing the latitudinal parallax which has to be considered
during a solar eclipse.

Brahmagupta criticizes that the Sine of sight-deviation stated by Aryabhata is wrong (asat)
and leads to a wrong result in a solar eclipse (Brahmasphutasiddhanta (hereafter BSS) 11.29-30,
Dvivedi (1902, p. 160))?®. Brahmagupta himself computes the eclipse in a distinctly different
method in BSS chapter 5; in BSS 5.2-3 (Dvivedi (ibid., p. 79)) he first gives the rule for finding
the altitude of the ecliptic point of sight-deviation (which he only calls “elevation (avanati)”),
using the time it takes for the point to rise. This altitude corresponds to the “gnomon of sight-
deviation Gp;” in GD2 188, but the approach is very different and it is unlikely that Parames$vara
followed Brahmagupta for finding his rule. The rule in BSS 5.11ab (Dvivedi (ibid., pp. 82-83))
is the equivalent of formula 10.32, but Brahmagupta does not call it the Sine of sight-deviation,
and proceeds in BSS 5.11-12 to find the latitudinal parallax. As a result, the term “Sine of sight-
deviation” does not appear in his method. I consider his approach too different to compare with
GD2 and the Aryabhatiya®. The methods in Siddhantasekhara chapter 6 (Miéra (1932, pp. 382-
401)) and Siddhantasiromani Grahaganitadhyaya chapter 6 (Chaturvedi (1981, pp. 258-274)) also
start with the altitude of the ecliptic point.

10.16.2 The method by Madhava and Nilakantha

Gupta (1985a) points out that Nilakantha, in his commentary on Abh 4.33, quotes two verses
attributed to Madhava which gives a mathematically correct method for finding the Sine of
sight-deviation. The following is my translation of the verses:

The ecliptic point of sight-deviation is the ascendant decreased by three signs. The squared
Sine of the [arc] distance between this and the midheaven ecliptic point should be subtracted

38Sengupta, (1935, pp. xxxviii-xxxix) states that the mistake for the rule was perhaps first pointed out by
Prthudakasvamin in his commentary on BSS 11.27. Prthudakasvamin explains how the rule gives totally wrong
values in extreme situations when the ecliptic point of sight-deviation is on the zenith and on the horizon.

39See Pingree (1978, pp. 574-575) for an overview. Yano (1982) gives a detailed discussion on Brahmagupta’s
method.
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from the square of the midheaven Sine and from the square of the Radius. The square roots of
these two are the multiplier and divisor, respectively. The complete [Sine of] sight-deviation
is always produced from these two with the Radius.*°

Figure 10.47: Representation of Madhava’s method for finding the Sine of sight-deviation OC .

Figure 10.47 represents this method in the sphere. H is the foot of the perpendicular drawn
from midheaven M to Las.Lpes, as was the case in figure 10.43. OH is the Sine of DM = AD— A,
the arc distance between the ecliptic point of sight-deviation and midheaven. The multiplier p is
computed by a Pythagorean theorem, and we can see that it corresponds to HB in figure 10.47:

HB = vVOB? — OH?

p= \/Sin2 za — Sin®(Ap — Ar) (10.35)

On the other hand, the divisor ¢ corresponds to MH:

MH = vV OM? — OH?
g = /B2 — Sin?(\p — Awy) (10.36)

as discussed previously in section 10.16, AHBM ~ AOCD. Therefore, with DO = R as the
multiplicand,

401agnam tribhonam drkksepalagnam tanmadhyalagnayoh |
vargikrtyantaralajyam madhyajyavargatas tyajet [/
trijyakrtes ca tanmale kramaso gunaharakau |
tabhyam drkksepasamsiddhih trijyaya jayate sada [/ (Pillai (1957b, p. 75))
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~ DO -HB
~ MH
_ PR

q

This method gives the same result as GD2 182-187 and both use the similar triangles
AHBM ~ AOCD, but otherwise the two procedures are distinctly different and it is unlikely
that Paramesvara developed his method on the basis of Madhava.

Gupta (1985a) also mentions that Nilakantha gives a method similar to Madhava’s in Tantrasani-
graha 5.5-7. In these verses (Ramasubramanian and Sriram (2011, p. 309)), he calls the value
corresponding to OH the “‘base’ Sine (bahumaurvika)”*'. This means that the “base” arc of
midheaven is being measured from the ecliptic point of sight-deviation. On the other hand,
Paramesvara calls MH the “‘base’ of the midheaven gnomon” in GD2 187, which suggests that
the “base” arc starts from the ascending or descending ecliptic point. Hence I conclude that
Parames$vara and Nilakantha are looking at the same configuration from different views, and
that it is doubtful that their theories are directly connected. If the verses quoted by Nilakantha
indeed belong to Madhava, then I assume that there is a thread between these two authors that
do not go through Paramesvara.

Parenthetically, Madhava’s rule states that the result is a “complete (samsiddhi) Sine of
sight-deviation”. This resembles Parame$vara’s expression in GD2 187, the “true (sphuta) Sine
of sight-deviation”. Related to this point, Gupta (1985a) remarks that Nilakantha interprets the
word “own (sva)” in Abh 4.33 is added to indicate that the “Sine of sight-deviation” computed
in the verse is an intermediary value. It does indeed correspond to the multiplier p in Madhava’s
rule, and can be corrected using his method.

However, Parames$vara’s interpretation on “own” seems to be no more than indicating the
individual planets, as he states in his commentary:

0C

(10.37)

The meaning is: It is the Sine of sight-deviation of the planet, [i.e.] the sun or the moon,
whose midheaven has been taken.*?

This might be an echo of MBh 5.12 which stresses the difference in the lengths of the Sines
between the sun and the moon.

The difference in Sines of the moon and the sun are proclaimed because of the difference
in orbit. And [this] is taught in the words of the master beginning with “own Sine of
sight-deviation”.*?

I assume that Bhaskara I interprets “own” as an expression to stress the difference between
the sun and the moon and that Paramegvara is following him while being aware that Aryabhata’s
method is approximative. Paramesvara and Nilakantha’s differ on this point, too.

10.17 Elevation of ecliptic pole from the horizon (GD2 189)

In GD2 189, Paramesvara introduces the elevation (unnati) of the ecliptic pole again. He does
not say clearly that the definition of “elevation” has changed; the reference for the elevation had

41Nilakantha’s computation for finding this value is different from Madhava.

2yasya grahasya raveh sasino va madhyalagnam parigrhitam tasya drkksepajya bhavatity arthah | (Kern (1874,
p. 92))

43 Lkaksyabhedac chasibhanvor jiwabhedah prakirtyate |
jiiapakam ca svadrkksepa ityadivacanam prabhoh [/5.12// (T. Kuppanna Sastri (1957, p. 158))
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Figure 10.48: The Sine of sight-deviation OC and the elevation of ecliptic pole BK. Here the
elevation is in the north.

previously been the plane of the six o’clock circle, whereas now the plane of horizon is involved**.
Nonetheless, the new sense of “elevation” is clear from GD2 189cd, especially when we visualize
the situation (figure 10.48).

To follow Parames$vara’s reasoning in GD2 189cd, the zenith Z in the sky is at a distance of
90°from the horizon, and so is the ecliptic pole K from the ecliptic. This statement resembles
G D2 155 where the ecliptic and its pole was compared with the celestial equator. We have argued
that the armillary sphere could have been involved there (section 10.2), and it is also possible
that the instrument is used for explaining GD2 189 too. If the ecliptic pole K is on point H
on the horizon, the point of sight-deviation D should be on the zenith Z. As we lift K, D will
move to the §211th 9£ the prime vertical and if K is below the horizon, D will be to the north.
HK = 90° — KZ = ZD, and therefore their Sines BK = Sin (,x and OC = Sin zp should also be
equal:

Sin {,x = Sinzp (10.38)

As was the case with the elevation from the six o’clock circle (figure 10.9), the elevation is
“in the north” when the northern ecliptic pole is above the horizon, and “in the south” when
the northern ecliptic pole is below the horizon and the southern ecliptic pole is elevated instead.
Thus GD2 189 also tells us the following rule.

e Nonagesimal is to the north: the southern ecliptic pole is elevated.

e Nonagesimal is to the south: the northern ecliptic pole is elevated.

44Gince the new definition takes into account the geographic latitude ¢, I shall denote the new “elevation of
ecliptic pole” Sin {,k in contrast to Sin (k whose reference is the six o’clock circle or the horizon at the terrestrial
equator. Likewise for the elevation / depression of latitude Sin (g
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10.18 Elevation or depression of latitude from the horizon (GD2
190-191)

GD2 190-191 gives the rules for the elevation or depression of latitude Sin(,5. As was the case
with the ecliptic pole Sin(,k in GD2 189, the reference for the elevation or depression here is
the horizon. Sin(,g is linked directly with the Sine of sight-deviation in these verses without
any reasoning, but they could be explained by first considering the relation between Sin (,5 and

Sin CLPK'

Figure 10.49: The elevation of latitude F'V = Sin (.3 and the elevation of ecliptic pole BK =
Sin (,k from the horizon. North to the right.

Exactly the same argument as in GD2 163-164 (section 10.6) and GD2 166-168 (section 10.8)
can be used here. Figure 10.49 is a modified version of figure 10.12 with the six o’clock circle
replaced by the horizon. B and U’ are foots of the perpendiculars drawn to the plane of the
horizon from the ecliptic pole K and the planet V with latitude VL', and therefore BK Sin {, x
and F'V = Sin(, . ZVL'U’ = ZKOB since they both complement the angle formed by the
ecliptic and the horizon. ZL'F'V = ZOBK = 90° and thus AL'U’'V ~ AOBK. Therefore,

BK - VL'
N —
UV = =45
Sin (5 = W (10.39)
and from formula 10.38,
Sin (5 = w (10.40)
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As in GD2 167, the following condition holds:

e The northern ecliptic pole is elevated

— Celestial latitude is northward: (. is an elevation

— Celestial latitude is southward: (s is a depression
e The southern ecliptic pole is elevated

— Celestial latitude is northward: (s is a depression

— Celestial latitude is southward: (. is an elevation
Combining this with GD2 189, we find the following rule as reformulated from GD2 191:

o Nonagesimal is to the north of zenith

— Celestial latitude is northward: ¢,z is a depression

— Celestial latitude is southward: (g is an elevation
o Nonagesimal is to the south of zenith

— Celestial latitude is northward: (g is an elevation

— Celestial latitude is southward: (. is a depression

10.19 Unified visibility equation (GD2 192-194)

P
s

.......... V)T
(North) horizon ) U ..... .

Figure 10.50: Unified visibility equation [, = [/J:;

The %Vation or depression of latitude U’V from the horizon is a segment that corresponds to
the arc UV in the diurnal circle from the horizon to the planet when its corresponding longitude
L is on the horizon (figure 10.50). Thus, the rest of the steps in the unified method is the
same as th the previous ones: we find the segment in in the equator corresponding to UV, compute
its arc AB = EAT and move to the ecliptic LLT, which is the unified visibility equation [,,.
Paramesvara separates the steps in two rules as was the case with the method for the geographic
latitude. However, in the previous case he called the arc in the celestial equator “the portion of
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the ascensional difference” whereas in GD2 192 he calls AB = EAy = I, the “visibility equation
in pranas (drkphalaprana)”.

I = arcSin (W : R) (10.41)
v Sin @ r
The transfer from the celestial equator to the ecliptic is done by linear interpolation within
the sign as previously.
/
l, = L, - 1800 (10.42)
Pn
The conditions for whether the equation is additive or subtractive follows the rule in the
visibility method for the “course” as in GD2 169-170. Here the expression is simplified, and
unlike GD2 170, the elevation or depression is defined independently upon the rising and setting
of the planet.

A — 1, Planet is rising and celestial latitude has an elevation

Vo A+ 1, Planet is setting and celestial latitude has an elevation (10.43)

A+ 1, Planet is rising and celestial latitude has a depression

A — 1, Planet is setting and celestial latitude has a depression
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11 Corrections to the planet at sunrise (GD2 195-208)

The following verses explain three types of corrections that are to be applied to the longitude of
a planet. Paramesvara does not specify whether he is dealing with the mean longitude or the
true longitude. The rules involve the daily motion of the planet, but this could also be the mean
motion or true motion. Theoretically, all options are possible, and I shall leave the ambiguity
in Parame$vara’s words as it is'. But in this chapter I shall use the mean longitude and mean
daily motion to simplify the explanation.

Paramegsvara uses the word “correction (samskrti)” only once in this section (GD2 207). Two
of the three corrections do not even have a specific name, and are only mentioned as something
additive or subtractive against the planet’s longitude. Hereafter, I shall refer to all of them as

“corrections”.

11.1 Three corrections for correcting the time of sunrise (GD2 195)

H vertical

prim

Figure 11.1: An armillary sphere adjusted for an observer at the terrestrial equator. The horizon
and the six o’clock circle overlap.

The mean longitude of a planet at the beginning of the day can be approximately computed
by multiplying its mean daily motion v by the number of days elapsed since a given epoch
(especially the beginning of the yuga). As Paramesvara is following the Aryabhatiya and the

11 would like to avoid confusion that could occur from discrepancies among commentators and interpreters.
To give an example: The rules for correcting longitudes also appear in the Mahabhaskariya, where we have the
same ambiguity. The words for “daily motion” are unspecified in MBh 4.24-27, and Shukla (1960, pp. 126-128)

supplies “mean” while T. Kuppanna Sastri (1957, p. xc) explains that they are “true”.
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Mahabhaskariya, the beginning of the day is the moment of sunrise?. In order to derive the

precise mean longitude, we need to know the exact moment of sunrise at the given location of
the observer. GD2 195 refers to a “standard” moment of sunrise, which is when the mean sun
rises above the horizon at zero latitude and zero longitude. The six o’clock circle represents the
horizon as seen from the terrestrial equator (figure 11.1). Therefore, the following three factors
must be taken into account.

Correction for the geographic longitude This corresponds to the “time difference” in mod-
ern notation. It is explained in GD2 196-201.

Sun’s equation of center (dohphala) This correction is applied to the mean sun to find the
true sun which affects the time of sunrise. GD2 202-204 is on this topic.

Ascensional difference (caradala) This correction is caused by the geographic latitude. It
is dealt with in GD2 205-208.

In every case, a specific amount of longitude is added when the observer’s sunrise is earlier
than the standard and subtracted when it is later. The amount is a portion of the planet’s daily
motion, which Parames$vara will explain with Rules of Three.

11.2 Correction for geographic longitude (GD2 196-201)

s

S

Figure 11.2: Distance OM = Dy along the circumference of an observer at O from the prime
meridian NMLS. The border of daylight and a terrestrial meridian line do not overlap except on
an equinoctial day.

2 Aryabhata also established a system called the Ardharatrika which chose midnight as the beginning of the day,
but his treatise based on this system has not been extensively transmitted to us (see Pingree (1978, pp. 602-608)
for details). MBh 7.21-35 (T. Kuppanna Sastri (1957, pp. 380-385)) introduce the parameters in the Ardharatrika
system, but elsewhere the Mahabhaskariya defines sunrise as the beginning of the day.
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The first of the three factors is the time difference caused by the geographic longitude, or
the distance from the geographic prime meridian (where the longitude is zero). Paramesvara
repeatedly uses the word “geographic prime meridian (samarekha)” but never specifies where
it is. In general, Indian astronomers consider that the prime meridian passes through Ujjain
and intersect the terrestrial equator at Lanka (Plofker (2009, p. 78)). This might have been
a common knowledge for the readers of GD2. MBh 2.1-2 (T. Kuppanna Sastri (1957, p. 92))
gives an extensive list of places on the prime meridian, which could be one of the sources for
Paramesvara and his readers. Indeed the second chapter of the Mahabhaskariya deals with
topics related to the geographic longitude, suggesting that this could be possible. But only the
computation described in its last verse, MBh 2.10 (T. Kuppanna Sastri (ibid., p. 100)), appears
as GD2 196, and the other verses have no equivalent passages in GD2.

Paramesvara first gives the rule in GD2 196. The situation is illustrated in figure 11.2. When
the observer is at a distance of Dy yojanas from the prime meridian along his circumference
(equivalent to the modern term “parallel” or “line of latitude”) and the entire circumference is
¢, yojanas, the correction applied to the longitude of a planet A whose daily motion is v shall
be as follows:

D,
At 2 (west from prime meridian)
Co
Ag = (11.1)
D
A2 (east from prime meridian)
Co

¢, is implicitly in yojanas. Paramesvara does not specify the measurement units for the
remaining values, but the corrected longitude Mg, A and v should have the same unit of arcs.

N

S

Figure 11.3: Day and night at the east (E) and west (W) of a point M on the prime meridian.

The reasonings for this computation is given in the following verses. GD2 197 refers to the
fact that the sun rises earlier for an observer to the east of the prime meridian and later for one
to the west (figure 11.3) as the reason for adding or subtracting the correction. GD2 198 is the
Rule of Three which gives the amount of correction. Paramesvara calls it the grounding (yukt?)
for this case. The word revolution (bhramana) most likely refers to the revolution of the stellar
sphere which will appear in GD2 204. To be precise, it should be the revolution of the sphere
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and the sun’s daily motion combined as shall be stated later in GD1 208. But in GD2 198, one
revolution around the observer’s circumference is compared to one day and the portion of this
circumference corresponds to the portion of a day.

N

eastward

Parallel O

€quator

S

Figure 11.4: True eastward direction from the observer at point O.

GD2 199 links the observer’s circumference with the observation of the sun. As Paramesvara
states, one can find the cardinal directions at a given spot by observing the sun (with a gnomon,
for example). However, if one makes only one observation and continues walking towards the
“east” determined at the initial spot, the person would diverge from the circle parallel to the
celestial equator (figure 11.4). This can be explained from the viewpoint of someone looking at
the sphere of the Earth from outside. A line extended north and south from any spot O on the
surface of the Earth will go through the north and south poles, drawing a great circle. For the
observer at O, a line drawn east and west should be perpendicular against this line N — O — S.
But from a larger viewpoint, a perpendicular drawn on the surface of a sphere against a great
circle should also be part of a great circle (dotted line in figure 11.4). There is no evidence that
Paramesvara was aware of this fact. For the same reason GD2 200ab is wrong from the point of
view of an observer in one of the locations. How GD2 200cd connects to the previous statement
is ambiguous to me.

A Rule of Three for computing the observer’s circumference c, is given in GD2 201. “The
circle of the Earth where the [Sine of] co-latitude is a Radius” refers to the terrestrial equator.
We have already seen in GD2 30 (section 3.6) that the circumference of the Earth at the equator
ce is 3299 yojanas. Meanwhile, the radius corresponding to the observer’s circumference is the
Sine of co-latitude Sin @ (figure 11.5). Hence the Rule of Three compares the two radii (C'O and
CK) and the two circumferences. As a result, the circumference ¢, at a geographic latitude of ¢
is

c@ Sin @
Cp= GBT@ (11.2)
_32998in¢

7 (yojanas)
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parallel

equator

Figure 11.5: Segment of the Earth cut at the meridian passing the observer O. C’O is the radius
corresponding to his circumference.

11.3 Correction for the sun’s equation of center (GD2 202-204)

The next correction is for adjusting the mean solar time to the true solar time. This is known as
the “equation of time” in modern terminology®. We will see later that many Indian astronomers,
including Paramesvara, treat it approximately (probably unknowingly). The “equation of time”
is not to be confused with an “equation” in general, which refers to the difference in longitude
between a mean position and true position for any planet (see appendix C.4). In GD2 202-204,
Parameg$vara focuses on the sun’s dohphala, literally “equation of base”, which I translate as the
“equation of center”®. When the longitudes of the true sun and mean sun are Az, and Ay, (in
arc minutes), the sun’s equation of center gy is

gs = Mo — AMe (arcminutes) (11.3)

Since there are 21,600 minutes in a circle, the rule for correcting a planet’s longitude A to A,
for the sun’s equation of center is, according to GD2 202cd:

. - 21{23 5 (true sun rises before mean sun) -
t P (true sun rises after mean sun) .
21600

The same rule is given in MBh 4.7 (T. Kuppanna Sastri (1957, p. 185)). Brahmagupta
calls this correction bhujantara (literally “difference of base”) in his Brahmasphutasiddhanta 2.29

3See Pedersen (2011, pp. 154-158) and Ramasubramanian and Sriram (2011, pp. 464-465) for general expla-
nations on this topic.

4Paramesvara uses the term phala alone to refer to equations of any planets, but when he adds doh or any
synonym of “base” in GD2, it always refers to the sun. I shall follow his distinction by translating phala as
“equation” and dohphala as “equation of center”.
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(Dvivedt (1902, p. 35)). The rules in Sisyadhivrddhidatantra 2.16 (Chatterjee (1981, 1, p. 34)),
Siddhantasekhara 3.46 (Misra (1932, p. 178)) are also equivalent, although they use different units
for arc measurements. Suryasiddhanta 2.45 states the same rule, and Paramesvara comments
that this verse is on the bhujantara correction (Shukla (1957, p. 32)).

. . \‘ ’/
Increase in -@:-
. N T
longitude T
\W | - vy
:O’: horizon NS
NN E RN 2
M M
\‘ I/ Z

Figure 11.6: When the correction for the equation of center is additive (left) and subtractive
(right)

GD2 203 explains when the correction is additive or subtractive. Celestial objects rise earlier
for an observer in the east when their celestial longitude is smaller. Therefore, the true sunrise is
earlier than mean sunrise when the equation of center is subtractive against the sun’s mean lon-
gitude, and later when additive. On the other hand, an earlier sunrise will result in a subtractive
correction to a planet’s longitude as it advances less, and when it is later it will be additive.

equator

AT AM

Figure 11.7: The sun’s equation of center gsx; = E/M?T and its corresponding arc on the equator
ApAr.

The correction itself can be derived from a Rule of Three which compares a full cycle on the
ecliptic to a full daily motion and the equation of center, a portion of the ecliptic, to a portion
of the daily motion. However, the Rule of Three given in GD2 204 is slightly different. It uses
the revolution of the stellar sphere instead of the ecliptic, and the “time corresponding to the
equation of center” instead of the equation of center itself. This time is represented by the arc
on the celestial equator corresponding to the equation of center (figure 11.7). Paramesvara refers
to this as the grounding (yukti) of other people, but it is uncertain who he is referring to. The
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only major treatise before GD2 which used the time instead of measurements on the ecliptic was
the Siddhantasiromani (Grahaganitadhyaya) of Bhaskara I1°.

The sun’s equation, multiplied by the rising [time] of the sign with the sun when there is
no geographic latitude, divided by one thousand eight hundred, multiplied by the [daily]
motion of a planet and divided by the asus (i.e. pranas) in a day and night is additive or
subtractive against the planet, as the sun[’s equation is additive or subtractive]. This is
called the bhujantara. (Siddhantasiromani Grahaganitadhyaya 2.61)°

Bhaskara II approximates that the rising time at the terrestrial equator (cf. section 7.3) for
a given longitude changes linearly within each zodiacal sign. Therefore the equation of center gs;
multiplied by the rising time «,, of the sign where it is located and divided by 1800, the number
of arc minutes in a zodiacal sign, is approximately the “time corresponding to the equation of
center” which Paramesvara mentioned in GD2 204. However there is a significant difference with
this method given in GD2 204. According to Bhaskara II’s auto-commentary, the prapas in a
day and night are 21659, which is 21600 sidereal pranas (“the revolution of the [stellar] sphere”
in GD2 204) plus 59 pranas for the sun’s daily motion. Therefore, Bhaskara II’s rule can be
represented as follows.

A+ qfégg . 21259 (sun’s equation of center is additive)
Ay = X . (11.5)
_ ‘1128308 51659 (sun’s equation of center is subtractive)

This correction for moving from the ecliptic to the celestial equator resembles the visibility
methods, where an arc in the ecliptic corresponding to the arc in the celestial equator was
computed by multiplying by 1800 and dividing by the local rising time of the sign (formula
10.11 in section 10.9, formula 10.25 in 10.11 and formula 10.42 in 10.17). Bhaskara II is also the
first known author to apply this step in visibility methods. Paramesvara applies this correction,
without even discussing the possibility of ignoring it, in the case of those methods; here for the
equation of center, he chooses the approximate method as his standard rule and only suggests
the correction as an alternative. This contrast is an interesting case to be further studied for
considering the influence from Bhaskara II on Paramesvara.

We must also be aware of another difference between the two authors; that is, there is another
element in the equation of time which is recognized by Bhaskara IT but not by Paramesévara. So
far, we have only dealt with the correction due to the eccentricity of the sun’s orbit. This was
represented as the difference between the longitudes of the mean and true suns (as in GD2 202)
or their right ascensions (as in the Siddhantasiromani). On the other hand, even the mean sun on
the ecliptic does not rise at the same moment on each day, because the ecliptic is inclined against
the celestial equator. Figure 11.8 describes this situation. Ly is a hypothetical sun moving with
a constant daily motion on the celestial equator. Meanwhile, the mean sun ¥); moves uniformly
if measured along the ecliptic, but its corresponding right ascension on the equator Ay does
not change linearly. Thus we need to correct the arc length Ly;Ay to obtain the full equation

5T have relied on the translation and commentary by Arkasomayaji (1980, pp. 203-208) on Grahaganitadhyaya
2.61-63 for the discussion on the rules by Bhaskara II.

Sbhanoh phalam gunitam arkayutasya raser vyaksodayena khakhanagamahwibhaktam |
gatya grahasya gunitam dyunisasubhaktam svarnam grahe ‘rkavad idam tu bhujantarakhyam [/61/ (Chaturvedi
(1981, p. 133))
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Figure 11.8: The mean sun moving uniformly on the ecliptic ¥y, its corresponding right ascension
on the equator Ay and a mean sun moving uniformly along the equator Ly,.

of time. This correction is also explained by Bhaskara II7 who calls it the udayantara (literally
“difference in rising”), but we cannot find any trace of it in Paramesvara’s works including GD2.

Since Ly moves along the celestial equator with the same daily motion as ¥y does along the
ecliptic, its right ascension measured from the vernal equinox is equivalent to the longitude of
the mean sun, Ay, . If aprg denotes the right ascension corresponding to the mean sun on the
ecliptic and ag, that of the true sun, the first correction by Bhaskara II (bhujantara) can be
represented as ar, — aar, and the second correction udayantara as aprg, — Ape - Therefore the
full equation of time FE is

E = (a1, — ame) + (Mo — AMo)
= a1y — Mg (11.6)

Nilakantha, in his Tantrasarigraha, describes a set of rules which effectively gives the same
equation of time®(Ramasubramanian and Sriram (2011, p. 82)). However the two corrections
that he mentions are different from those of Bhaskara II. The first is called liptapranantara or
pranakalantara (both literally “difference between the prapas and arc minutes”), referring to the
difference between the right ascension and the longitude of the true sun, and the second is the
equation of center (Tantrasarigraha 2.28-32). The first can be represented by ar, — A, while
the other is Aty — Ay, and therefore

E= (OéT@ - )‘Te) + ()‘To - /\Mo)
= OéT@ — )\]\/je (117)

This approach is different from what Paramesvara refers to in GD2 204, and thus it is unlikely
that Nilakantha’s method for computing the equation of time has its origins in Paramesavra’s
theories, at least at the moment of GD2.

11.4 Correction for ascensional difference (GD2 205-208)

The third and last correction to be applied to a planet’s longitude is the correction due to the
sun’s ascensional difference, which in turn is produced by the geographic latitude of the observer.

7 Siddhantasiromani Grahaganitadhyaya 2.62-63 (Chaturvedi (1981, p. 134))

8Note that neither Bhaskara II nor Nilakantha use a specific term corresponding to “equation of time”.
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Unlike the other two rules which were only given for correcting the longitude a the moment of
sunrise, this rule also explains how it should be applied at the moment of sunset. This mentioning
to the sunrise and sunset occurs in previous treatises?. There is no explanation why the rule
for sunset is necessary, but it was probably mentioned because this is the only rule where the
correction is added or subtracted differently for sunrise and sunset.

The computation is stated in GD2 205. As we will see later in GD2 208, the “day” mentioned
here is actually a sidereal day, or one revolution of the stellar sphere. The number of pranas is
equal to the arc minutes in a circle, which is 21600. When the sun’s ascensional difference is w,
the corrected longitude of the planet at sunrise A, is

— 2;);)0 (sunrise in northern celestial hemisphere)
Aw = (11.8)
A+ 211)(;:) 5 (sunrise in southern celestial hemisphere)

and the corrected longitude at sunset A, is

A+ 21U gi)O (sunset in northern celestial hemisphere)
= VW (11.9)
~ 31600 (sunset in southern celestial hemisphere)

(a) Northward declination (b) Southward declination

Figure 11.9: The sun’s rising and setting points (U and A) and its intersections with the six
o’clock circle (C and D). The arrows represent the direction of the sun’s diurnal motion.

9For example, MBh 4.26-27 (T. Kuppanna Sastri (1957, p. 214))
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The explanations in GD2 206-207 can be visualized as in figure 11.9. Figure 11.9(a) represents
the situation when the sun is in the northern celestial hemisphere, i.e. when its declination is
northward, and figure 11.9(b) is when it is in the southern celestial hemisphere and its declination
is southward. The sun’s rising point (moment when it touches the horizon) is U, its intersection
with the six o’clock circle in the east is C, its setting point (when it touches the horizon again)
is A and the intersection with the six o’clock circle in the west is D.

o For sunrise:

— if the declination is northward, sunrise is earlier — correction is subtractive

— if the declination is southward, sunrise is later — correction is additive
o For sunset:

— if the declination is northward, sunset is later — correction is additive

— if the declination is southward, sunset is earlier — correction is subtractive

The ratio of UC or AD against the circumference of the diurnal circle is equal to the ratio
of the ascensional difference w against the celestial equator, and therefore the proportion of the
corresponding time in a whole day.

However, Parame$vara mentions in GD2 208 that the divisor in rules 11.8 and 11.9 are
different according to different people. In this verse the words for “day” refer to two different
measures of days. When Parames$vara refers to the pranas in a day, this is linked to the revolution
of the stellar sphere, and hence is a sidereal day. The number of pranas are equal to the number
of arc minutes in a revolution, 21,600. When the sun’s daily motion in minutes is added, this
becomes the pranas of a civil day. As we have seen, Bhaskara II was aware of this distinction
and used the number of pranas in a civil day'?, but we have no other evidence that GD2 208 is
referring to Bhaskara II or his followers.

10The previous case was for the equation of center, but Bhaskara II uses the same divisor in the correction for
the ascensional difference stated in Siddhantasiromani Grahaganitadhyaya 2.53 (Chaturvedi (1981, p. 130)).
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12 Example 1: Prime vertical shadow (GD2 209-211)

Figure 12.1: Situation in GD2 209. The shadow of the gnomon OX points either due east (OC)
or due west (OC’)

GD2 209 is an example of computations related to the prime vertical shadow, i.e. the shadow
of the sun when it is on the prime vertical. A rule for deriving the prime vertical gnomon from the
sun’s declination was explained in GD2 121-124, but this example goes the other way round; the
prime vertical gnomon is given, and we have to compute the sun’s longitude via its declination.

The situation described in GD2 209 is as follows:

e The sun is on the prime vertical.

e The length of a gnomon’s shadow is equal to the gnomon itself.

The Sine of geographic latitude is 647.
¢ On the next day, the shadow is

1. shorter.

2. longer.

e The sun’s longitude is to be computed for the two cases.

GD2 209 itself does not articulate whether the “gnomon” is a gnomon with twelve arnigulas
and not a great gnomon, but the commentary hints that we are dealing with a twelve angula
gnomon and its shadow (see first paragraph in section 12.2).

12.1 Procedure (GD2 210-211)

GD2 210 describes the procedure of the solution by naming the segment or arc to be computed
at each step. The computations themselves (indicated by arrows in the scheme below) are not
given in detail.

Shadow s — Great gnomon § — Gnomonic amplitude 4 = Solar amplitude Sinn — Sine
of declination Sind — “Base” Sine Sin Ag — “Base” arc A\ — Sun’s longitude A
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In the last step, if the sun were in the first quadrant of the ecliptic (from vernal equinox
to summer solstice), in which case the length of the shadow would be shorter on the next day,
the arc corresponding to the “base” Sine itself is the sun’s longitude, as mentioned in GD2 210.
However if it were in the second (summer solstice to autumn equinox), when the shadow is longer
on the next day, the arc has to be subtracted from a semicircle, i.e. 6 signs. This is stated in
GD2 211. The sun cannot be on the third or fourth quadrant, since in such case it would never
traverse the prime meridian in the course of the day (assuming that the observer is in the north
of the terrestrial equator).

12.2 Solution

The steps in the commentary are parallel to those of GD2 210-211 as given in the previous
section. I shall quote each passage in the commentary followed by my remarks which include
reconstructing the silent steps in the procedure followed, finding the computation used by the
commentary in the process, accounting for the numbers appearing in the commentary, espe-
cially when there is a discrepancy with the reconstructed process and comparing the steps and
computations with the statements by Paramesvara.

“In this case, the [great] gnomon computed from the hypotenuse of the shadow
with proportion is 2431.” (Shadow — Great gnomon)

The computation done here might be equivalent to what we can see in PAbh 4.28 (Kern (1874,
p- 89)), which refers to a twelve arigula gnomon and its shadow:

dvadasangulasankuna trijyam nihatyesstacchayakarnena vibhajya labdham mahasankur bha-
vati |

Having multiplied the Radius with a twelve arngula gnomon, having divided it by the hy-
potenuse of a given shadow, the quotient which is the great gnomon is produced.

B O C

Figure 12.2: The great gnomon >B and the gnomon XO

This refers to a rule of three involving two triangles (figure 12.2). 3 is the sun in a great circle,
3B the great gnomon, XO the twelve angula gnomon and C the tip of its shadow. Assuming
that the light-source is infinitely far, O and CX are parallel. Thus AYBO ~ AXOC, and
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0% - X0
SB=—0
CcX
g- 112 (12.1)

NP
This computation does not appear in GD2, but GD2 116 (formula 8.10) uses the same set of
triangles.
Our commentary refers to the “hypotenuse of the shadow”, which is CX = 1/122 + s2. It also
refers to the “proportion” which we have seen above. Since the length of shadow s is equal to
the gnomon, 12, the great gnomon G is

G 3438 - 12
V122 + 122
=2431;1,- - (12.2)

This is rounded to G = 2431.

“The gnomonic amplitude is 466. However this should be taken as lessened by a
quarter.” (Great gnomon — Gnomonic amplitude)

We use GD2 119 (formula 8.13) to compute the gnomonic amplitude A:

g
A= G5me (12.3)
Sin @
The Sine of latitude Siny = 647 is given in the verse. The Sine of co-latitude Sin ¢ can be
derived from the Pythagorean theorem:

Sinp = v/F? — Sin 2
=1/ 34382 — 6472

= 337634, - - (12.4)

We have no definitive clue for what the commentator(s) of the examples in GD2 used as
the value of Sin ¢ corresponding to Sin ¢ = 647. Paramesvara in his auto-commentary on GDI
4.23 uses the rounded value 3377 (K. V. Sarma (1956-1957, p. 49)). The results given in the
commentary for the two following computations (formulas 12.4 and 12.6) can be explained slightly
better with the rounded value, and therefore I have opted to use 3377.

Putting these values in formula 12.3, we obtain:

G Sinyp
Sin@
2431 - 647
3377
= 465; 45,20, - - - (12.5)

A:

The value given in the commentary, 466 lessened by a quarter (465;45), can be explained
as a result of the second order sexagesimal being rounded. If the non-rounded value for Sine of
co-latitude Sin ¢ = 3376; 34 were used, we obtain A = 465;48, 55, -, which is different in the first
order sexagesimal.
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“This is the solar amplitude.” (Gnomonic amplitude = Solar amplitude)

From GD2 122 we know that the gnomonic amplitude A and the solar amplitude Sin 7 are equal
when the sun is on the prime vertical.

“The [Sine of] declination computed from the solar amplitude by a rule to reverse
is 457. However this should be taken as increased by a half” (Solar amplitude —
Sine of declination)

The computation of the solar amplitude from the Sine of declination is given in GD2 84ab
(Sinn = RSiSTiI:E‘S). A “rule to reverse (vyastavidhi)”, which is explained in Abh 2.28, is to convert
multiplications to divisions and vice versa when reversing a rule. Thus by reversing the formula,
we obtain the Sine of declination Sin d from the solar amplitude.

. Sin7n Sin @
Sing = ——=—
m R
_465;45 - 3377
N 3438
= 457,29, 10, - - - (12.6)

The value in the commentary, 457 and a half (457;30)”, can be obtained if we round up
the second order sexagesimal. In this case, if the non-rounded value for Sine of co-latitude
Sin ¢ = 3376; 34 were used, we obtain A = 457; 25,45, -, which is again different in the first order
sexagesimal.

“The arc of the ‘base’ Sine established from the declination is 1147 (Sine of
declination — “Base” Sine — “Base” arc)

Here we see a discrepancy between Parame$vara’s steps and the commentary, as the former
mentions the “base” Sine as one step while the latter appears to jump immediately to its arc.

If we were to follow Paramesvara’s steps, the “base” Sine Sin Ag can be computed by reversing
the rule in GD2 73ab (Sin§ = 13978mAn )1,

. Sind - R
Sin )\B = W
_ 457; 30 - 3438
N 1397
= 1125;54, - -- (12.7)

If we use Aryabhata’s Sine series and linear interpolation (the same applies hereafter), this
value is between Sin 1125' = 1105 and Sin 1350 = 1315 and therefore the corresponding arc Ag
in minutes is approximately

1125;54 — 1105
1315 — 1105
=1147;23 (12.8)

A = 1125 + 225

lParamesvara gives the value 1397 without mentioning that it is in fact the Sine of greatest declination
Sine = Sin 24°.
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If we round off Sin Ag to 1125 we obtain A\ = 1146;25, --- ~ 1146 and if we raise it to 1126,
Ap = 1147;30 ~ 1148. The commentary gives 1147, suggesting that the fractional part of the
Sine was taken into consideration.

Another possibility is that the commentator computed the arc Ag directly from Sin § using a
table. Khandakhadyaka 3.7% is an example of such table, but uses a different value for the Radius
R and thus unlikely to have been used here.

“The sun[’s longitude] is 0 19 7.”(“Base” arc — Sun’s longitude)

The first case in GD2 209 is when the shadow is shorter on the next day. The sun is in the
first quadrant of the ecliptic, and therefore A = Ag. The value in signs, degrees and minutes are
0% 19° 7'. Manuscript I; gives the values in one line and marking the different units by putting a
space in between. The units themselves (sign, degree and minute) are not specified. Manuscript
K7 is apparently a descendant of one with the same notation, but includes scribal errors. This
is likewise for the next case.

“The second sun[’s longitude] is 5 10 53.”

The second case is when the shadow is longer, and the sun is in the second quadrant. In this
case A = 6% — A\g. The result is 5 10° 53'.

“Since they are established from the declination, these two [are the positions of
the sun] with passage.”

A longitude “with passage (sayana)” refers to a coordinate where we take into account the motion
of the equinoxes and solstices (see section 7.6). In such coordinate, a point on the zodiac would
always stay at the same declination.

We see a similar remark at the end of the commentary on the next example, which seems to
be connected to GD2 218cd-219.

2This is the verse number according to commentaries by Bhattotpala (Chatterjee (1970, 2. p. 34)) and
Prthiidaka (Sengupta (1941, p. 83)). The verse number is 3.11 in Amaraja’s commentary (Misra (1925, p. 103)).
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13 Example 2: Midday shadow and motion of solstices
(GD2 212-219)

The midday shadow (madhyacchaya) is the shadow or great shadow of the sun at midday, when
it is on the prime meridian. GD2 212 is an example of a computation using the midday shadow,
GD2 213-217 are a general explanation of the procedure and GD2 218-219 are some remarks
related to this topic.

The situation described in GD2 212 is as follows.

e The sun is on the prime meridian.
e The length of a gnomon’s shadow is

Case 1. half the gnomon, and the sun is to the south of the zenith.
i. On the next day the shadow is longer.
ii. On the next day the shadow is shorter.

Case 2. 1/8 of the gnomon, and the sun is to the south of the zenith.
i. On the next day the shadow is longer.
ii. On the next day the shadow is shorter.

Case 3. 1/7 of the gnomon, and the sun is to the north of the zenith.
i. On the next day the shadow is longer.
ii. On the next day the shadow is shorter.

e The Sine of geographic latitude is 647.

e The sun’s longitude is to be computed for each case.

See figure 13.1 for descriptions of the three cases given above.

The side of the prime meridian in which the sun is located is expressed by saying “south-
ern/northern bamboo-piece (yamya/saumya Salaka)”, which recalls an armillary sphere whose
rings are made of bamboo. The prime meridian is literally called “south-north (daksinottara”,
and hence the expression “southern bamboo-piece” indicates the southern side of the prime
meridian (i.e. south of the zenith) and likewise for “northern bamboo-piece”.

Figure 13.1: The three cases of midday shadows given in example 2.
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Figure 13.2: The three different positions of the sun explained in GD2 213-217, corresponding
to the three cases in the example.

13.1 Procedure (GD2 213-217)

Parameg$vara states the procedure in five verses (GD2 213-217). Tt is significantly longer than
that of example 1 which was in two verses (GD2 210-211). This is mostly due to the fact that
there are many different cases regarding the sun’s location. The sun can be to the north or south
of the zenith, and it can be in the northern or southern celestial hemisphere. The case when the
sun is to the north of the zenith and in the southern celestial hemisphere is unmentioned, since
it would require that the geographic latitude is to the south of the geographic equator, which is
a case that is usually not examined in Sanskrit astronomical texts. Thus there are three possible
cases, which is covered by example 2.
The steps of the procedure as given by Parameévara are as follows:

1. The great shadow S at midday is equal to the Sine of meridian zenith distance of the sun
Sin zpr. (GD2 213ab)

2. The declination § is computed from zj; and geographic latitude . There are three different
cases (see figure 13.2)!:
a) The sun is to the south of the zenith: § = |zp — ¢|. (GD2 213cd)

i. If zpr > ¢, the sun is in the southern celestial hemisphere (GD2 214cd). This
implies § = zpr — @
ii. If ¢ > zp7, the sun is in the northern celestial hemisphere (GD2 214cd). This
implies 6 = @ — zps
b) The sun is to the north of the zenith: § = zp; +¢. The sun is in the northern celestial
hemisphere. (GD2 214ab)

3. Whether the sun is in the northward course (moving from winter solstice to summer solstice
in the ecliptic) or in the southward course (summer solstice to winter solstice):
a) The sun is to the south of the zenith

i. The shadow-length increases on the next day: southward course. (GD2 215ab)
ii. The shadow-length decreases on the next day: northward course. (GD2 215¢)

b) The sun is to the north of the zenith: contrary to above (GD2 215d), i.e.

i. The shadow-length increases on the next day: northward course.

INote that the geographic latitude has been drawn as a southward arc, as can be inferred from GD2 184 (see
section 10.14.2).
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ii. The shadow-length decreases on the next day: southward course.
4. § (or from Sin§)? — “base” Sine Sin A\g (GD2 216a)
5. Sin A\g — “base” arc Ag, and the sun’s longitude A is:

e Sun in northern celestial hemisphere / northward course: A = Ap (GD2 216bc)

e Sun in northern celestial hemisphere / southward course: A = 6° — A (GD2 216d)

e Sun in southern celestial hemisphere / southward course: A = Ag + 6° (GD2 217ab)
e Sun in southern celestial hemisphere / northward course: A = 12° — Ap (GD2 217cd)

13.2 Solution

The solution provided by the commentary after GD2 217 explains each of the three cases in
almost the same process. The values for the great shadow S, arc of declination §, “base” arc Ap
and the longitudes of the sun A are always provided. The only difference in terms of values is
that only the second and third case have the length of the twelve angula gnomon’s shadow. The
values for the meridian zenith distance of the sun z); and the arc of geographic latitude ¢ are not
mentioned. The commentary on GD2 218abc refers to them, but only for the first and second
cases. In this respect, I assume that they are only given as examples and not for supplementing
the commentary on GD2 217.
Hereafter I shall proceed by quoting the commentary on GD2 217.

Case 1

“In this case, the great shadow established from the first shadow and its
hypotenuse is 1537.”

Unlike the next two cases, the commentary does not give the value for the length of the twelve
angula gnomon, and just refers to it as the “first shadow”. According to the verse it is half the
gnomon, and we can easily compute its value s = 6. Then we can derive the great shadow S at
midday from this shadow and its “hypotenuse” as we did in example 1 (formula 12.1).

Rs
V122 4 52
3438 - 6
/122 + 62
20628
~ V180

(13.1)

If we extract /180 without approximation, the result is S = 1537;31,--- ~ 1538 whereas
the commentary gives 1537. However, if we round off its second order sexagesimal (v/180 =
13;24,59, - ~ 13;25) we obtain § = 1537;29,--- ~ 1537. Meanwhile, if we stop at 13;24,
the result is 1539;24,---. This suggests that the square root was computed up to the second
order and then rounded. It is also possible that some sort of approximative method (cf. Gupta
(1985b)) was the cause. See Appendix A.4.1 for a discussion on square roots in GD2.

2(GD2 216 mentions “declination (kranti)”, which could either be the arc of the declination § or its Sine, Sin é.
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“This is also the Sine of meridian zenith distance [of the sun].”

This corresponds to GD2 213ab (step 1 in section 13.1).
Sinzpy = S = 1537 (13.2)

“In this case, since the sun is to the south of the zenith, the difference between the
arcs of meridian zenith distance and geographic latitude is the arc of declination,
943. In this case, since the meridian zenith distance is larger, [the sun] is in the
southern celestial hemisphere.”

Here the commentary refers to the arcs of meridian zenith distance zp; and geographic latitude
©, but neither Paramesvara nor the commentator refers to the steps for computing them. The
following steps are my reconstruction for computing z; and .

Sin z; = 1537 is between Sin 1575’ = 1520 and Sin 1800" = 1719. Thus zj, is approximately

1537 — 1520
1719 — 1520
= 1594;13, - -- (13.3)

ZM = 1575 + 225

The commentary on GD2 218abc gives the value 1594, although it refers to it as the arc
corresponding to the great shadow S.

Next, since the given Sine of geographic latitude Sin¢ = 647 is between Sin 450" = 449 and
Sin 675" = 671, its arc ¢ in minutes is approximately

647 — 449
671 — 449
= 650; 40, - - - (13.4)

@ =450 + 225

and the commentary on GD2 218abc gives the rounded value 651. Hereafter 1 assume that
© = 651 is always being used by the commentator(s) of the examples in GD2.

Now let us come back to the commentary. The expression “southern bamboo-piece” in GD2
212 refers to the south of the zenith. From GD2 213cd,

6= |z — ol
= |1594 — 651
— 943 (13.5)

Furthermore, since zj; > ¢, the sun is in the southern celestial hemisphere. At this point we
find that case 1 corresponds to (a) i. that we listed in section 13.1.

“The arc of the ‘base’ Sine obtained from the Sine of declination is 2509.”

This corresponds to step 4 in section 13.1. Using Sin 900’ = 890 and Sin 1125 = 1105, the Sine
of declination Sind is

943 — 900
225
= 931;5, - (13.6)

Sind = 890 + (1105 — 890) -
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If we round this off to 931, the “base” Sine is

. Sind - R
Sin\g = 397

9313438
1397
=2291;10, - - - (13.7)

which can be rounded to 2291 and is between Sin 2475" = 2267 and Sin 2700’ = 2431. Thus the
“base” arc in minutes is approximately

2291 — 2267
2431 — 2267
= 2507;55, - - - (13.8)

Ap = 2475+ 225

This rounds to 2508 and not 2509 as in the commentary. This still holds true even when we
take fractional parts into account in the intermediary steps. As was the case in example 1 (page
12.2), this might be due to a direct computation from Sind to Ap using a table.

“Since it is in the southern celestial hemisphere, this arc increased by six signs is
[the longitude of] the sun when the shadow is growing, 7 11 49.”

Since the sun on the meridian is to the south of the zenith, the sun is on its southward course
if the shadow-length increases on the next day (GD2 215ab), but this is unmentioned in the
commentary. Since the sun is in the southern celestial hemisphere, from GD2 217ab,

A=A\ +6°
= 2509’ + 6°
=75 11° 49 (13.9)

“When the shadow on the next day is shrinking, [the sun] should be on the
northward course. Therefore, a circle made of twelve signs, decreased by this
‘base’ arc, is [the longitude of] the sun, 10 18 11.”

When the shadow-length decreases on the next day, the sun is on its northward course (GD2
215¢), and since the sun is in the southern celestial hemisphere, from GD2 217cd,

A=12°—Ap
=12° — 2509’
=10° 18° 11’ (13.10)

Case 2
“Now in the second case, the shadow in argulas is 1 30.”

This time the commentary starts by stating the shadow of the twelve arigula gnomon. As it is
one eighth of the gnomon’s length, s = % = 1;30. The unit, arngula is also given. This is in

contrast with other arcs and segments that are conceived in the great circle and are unitless in
the commentary.

295



Sho Hirose - These de doctorat - 2017

“The great shadow is 426.”

As in case 1, the great shadow S is computed from formula 12.1:

Rs
3438 - 1; 30

= 42625, - -- (13.11)

which can be rounded to 426.

Contrary to case 1, there is no mentioning that this is equal to the Sine of the sun’s meridian
zenith distance Sin z,;, but it is implied.

Next, as in case 1, the values for the arcs of meridian zenith distance z;; and geographic
latitude ¢ are expected but not apparent.

Since Sin zp; = 426 is between Sin 225" = 225 and Sin 450" = 449, the arc is approximately

— 295 + 426 =225
M= 449 — 225
— 496:53, - - - (13.12)

The commentary on GD2 218abc gives 427. ¢ = 651 as in the previous case. This is also
mentioned in the commentary on GD2 218abc.

“In this case too, since the sun is to the south of the zenith, the difference between
the arcs of geographic latitude and meridian zenith distance is the arc of
declination, 224. In this case, since the geographic latitude is larger, [the sun] is in
the northern celestial hemisphere.”

As was in case 1, the sun is to the south of the zenith. From GD2 213cd,

6= lzm — ol
— 1427 — 651
— 9224 (13.13)

In this case, ¢ > zp and the sun is in the northern hemisphere. This is the situation (a) ii.
in section 13.1.

“The arc of the ‘base’ Sine established from the [Sine of] declination is 553.

The arc of declination is smaller than 225 arc seconds, therefore by linear approximation it is
equal to its Sine (Sind = 224).
Then the “base” Sine is

Siné- R
1397
224 - 3438
1397
= 551;15, - (13.14)

Sin)\B =
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which can be rounded to 551 and is between Sin 450" = 449 and Sin 675" = 671. The “base” arc
in minutes is approximately

551 — 449
671 — 449
= 553;22, - (13.15)

Ap =450 + 225

which can be rounded off to A\g = 553'.

“Since the sun located in the northern celestial hemisphere is to the south of the
zenith, it should be on the southward course when the shadow is growing.
Therefore, six signs decreased by this arc is [the longitude of] the sun, 5 20 47.”

Since the sun on the meridian is to the south of the zenith, the sun is on its southward course if
the shadow-length increases on the next day (GD2 215ab), and since the sun is in the northern
celestial hemisphere, from GD2 216d,

A=6°—Ap
=6° — 553’
= 5° 20° 47’ (13.16)

“When the shadow on the next day is shorter, the ‘base’ Sine itself is [the
longitude of] the sun, 0 9 13.”

Implicitly, when the shadow-length decreases on the next day, the sun is on its northward course
(GD2 215¢). Since the sun is in the northern celestial hemisphere, from GD2 216bc,

A=Ap
=553’
=0°9° 13 (13.17)

Case 3
“Now in the third case, the shadow in arngulas is 1 43.”

This time the shadow of the twelve arngula gnomon is one seventh its length. s = 1;42,51,--- ~
1;43 angulas.

“The great shadow is 487.’

Rs
3438 - 1;43
V122 1 (1;43)2

= 48652, - - - (13.18)
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which can be rounded to 487. Yet again, implicitly, the sun’s meridian zenith distance Sin z,
and its arc zps are derived.
Sinzy =& = 487 (13.19)

This is between Sin 450" = 449 and Sin 675" = 671. Thus the arc of meridian zenith distance
is approximately

487 — 449
zp = 450 + m - 225
— 488:30, - - (13.20)

For case 3, GD2 218abc does not refer to the values of z); and ¢. As it is obvious that we
use ¢ = 651 again, considering the next computation, zp; is rounded to 489.

“Since the sun is to the north of the zenith, the sum of the arcs of the meridian
zenith distance and the geographic latitude is the arc of declination, 1140.”

This time the sun is to the north of the zenith, thus from GD2 214ab,

0 =2y + ©
=489 + 651
= 1140 (13.21)

We are in situation (b) of section 13.1. Unlike cases 1 and 2, i.e. situation (a), where the
celestial hemisphere had to be considered, the sun is always in the northern hemisphere. The
commentary is silent about it at this stage.

“The ‘base’ arc is 3194.”
Using Sin 1125’ = 1105 and Sin 1400’ = 1315, the Sine of declination Sin ¢ is

1140 — 1125
ind =11 1315 — 11 —_——
Sin 05+ (1315 05) 997
= 1119 (13.22)
Therefore the “base” Sine is
. Sind - R
Sin AB = W
1119 - 3438
1397
= 2753;50, - -- (13.23)

which can be rounded to Sin Ag = 2754. This is between Sin 3150’ = 2728 and Sin 3375’ = 2859,
and thus the “base” arc in minutes is approximately
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2754 — 2728
2859 — 2728
=3194:39, - - - (13.24)

Ap = 3150 + 225

which would be rounded to 3195, and here again we have a discrepancy from the value 3194
given in the commentary.

“In this case, since the sun is located in the northern celestial hemisphere, when
the sun is growing, this arc itself is [the longitude of] the sun, 1 23 14.”

The fact that the sun is in the northern celestial hemisphere is emphasized by using “in this case
(atra)”. Meanwhile, the commentator says nothing about the northward/southward courses of
the sun in case 3. We can find from GD2 215d that it is northward when the shadow-length
increases on the next day and southward if it decreases. In the former case, since the sun is in
the northern celestial hemisphere, from GD2 216bc

A=Agp
= 3194’
=1° 23° 14’ (13.25)

“When the shadow is shrinking, six signs decreased by the arc is [the longitude of]
the sun, 4 36 46.”

From GD2 216d,

A=6°—\p
= 6° — 3194/
= 4° 36° 46’ (13.26)

Our two manuscripts give wrong values for this final result: “4646” in KZ and “46 46 14” in
I;. This can be explained by a common ancestor which omitted 3 and put “46 46”. In the case
of I, “14” could have moved from the previous value “1 23 14” for some reason.

“Since they are established from the declination, these [are the positions of the
sun| with passage.”

After finishing all three cases, the commentator repeats the concluding remark in example 1.
This makes a connection with the following discussion in GD2 218cd-219.

13.3 Geographic latitude, declination and meridian zenith distance
(GD2 218abc)

GD2 218abc refers to the arc of geographic latitude ¢, depending on whether the arcs of dec-
lination 0 and meridian zenith distance zp; are in the same or different directions (“direction”
referring to northward or southward):
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_ {|5 —2zym|  (Same direction) (13.27)

5+ zy  (Different directions)

Unlike the commentaries after GD2 211 and GD2 217, which focused on solving the example,
the commentary here starts by paraphrasing and suppling words in a very typical style of glossing.
It mentions that this rule enables one to compute the geographic latitude from the “shadow and
the sun”, likely referring to the shadow of a gnomon at noon and the sun’s longitude.

13.4 Comparison with the Mahabhaskariya

This rule might be traced back to some verses in the third chapter of the Mahabhaskariya (T.
Kuppanna Sastri (1957, pp. 124-128)), where verses 13-15 is on the computation of the sun’s
declination from its meridian zenith distance and geographic latitude (roughly corresponding to
GD2 213-215), verse 16 on obtaining the sun’s longitude from its declination (likewise similar to
GD2 216-217) and verse 17 follows:

When the sun is in the northern [celestial hemisphere, the declination and meridian zenith
distance] should be added. When in the southern [celestial hemisphere], the difference
between the declination and meridian zenith distance is remembered. [Thus] should be the
geographic latitude [established] from the shadow [at midday]. (MBh 3.17) 3

This is close to what we see in GD2 218abc except that the condition here is whether the sun
is in the northern or southern celestial hemisphere and not the directions of § and zj;. In fact, if
the sun is in the southern celestial hemisphere, the meridian zenith distance will also be to the
south, and thus ¢ = zpr — 0 (see figure 13.2 (a) i.). However, if the sun is in the northern celestial
hemisphere, the rule in MBh 3.17 holds true only when the meridian zenith distance is to the
south. In such case § and zjs are in different directions and therefore ¢ = § + zp, (figure 13.2
(a) ii.). Both Govindasvamin and Parame$vara supply the other situation in their commentary
and super-commentary (T. Kuppanna Sastri (ibid., p. 128)): if the shadow of a twelve arngula
gnomon at midday is extending towards the south (in which case the meridian zenith distance of
the sun zps is to the north), the difference between § and z); should be taken. Here ¢ = 0 — zps
(figure 13.2 (b)).

Whether or not Bhaskara I had intended to include the third case*, Paramesvara interprets
that all three cases are included. In the Siddhantadipika he refers to a variant reading (see
footnote 3) that could change the meaning of the verse to:

When the sun is in the northern [celestial hemisphere, the declination and meridian zenith
distance] should be added. When [the sun is] in the southern [celestial hemisphere] and also
when the shadow [of a gnomon at midday is to the south], difference between the declination
and meridian zenith distance is remembered. [Thus] should be the geographic latitude.

Suttare yojayet surye visleso daksine smrtah /
apakramanatamsanam chayayas ca palam bhavet [/
In his Siddhantadipika, Parame$vara mentions the variant chayayam (locative) for chayayas (ablative / genitive).
In the Karmadipika he adopts it as the proper reading.

4 According to Shukla (1976, p. xxv), Bhaskara I might have lived and taught the region of Surastra (today
Saurashtra). The Tropic of Cancer goes through this region, and at a geographic latitude to the north to the
Tropic of Cancer the Sun is always to the south of the zenith at midday.
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and furthermore he adopts it as the proper reading in his Karmadipika composed later.

The similarity between MBh 3.13-17 and GD2 213-218abc not only suggests that the latter
might have been influenced by the former, but also confirms that GD2 218abc is indeed linked to
the previous verses, although not counted among “the procedural rule in five arya verses”. The
commentary also makes a connection by bringing instances of values from the previous example.
However GD2 218abc itself is never used in the examples, and in fact it is questionable whether
this computation itself is valid or not.

13.4.1 Practicality of the rule

The longitude of the sun, from which we compute its declination according to the commentary,
is either derived from the “shadow” or “mathematics” as we can see in GD2 218d. In order to
compute the sun’s longitude from the length of a shadow we need to know the geographic latitude
in advance, and if we use the sun’s longitude computed from mathematics, we will be using an
erroneous value for the declination as the motion of the solstice is not taken into account (see
next section), and thus end up with a wrong value for the geographic latitude.

Bhaskara I, who might be the original author of this rule, negates the motion of the solstice
in his commentary on Abh 3.5 (Shukla (1976, p. 183)). For him, this rule (MBh 3.17) would have
indeed been valid. Whether Paramesvara was aware of this but had other intentions is uncertain.
In any case, the same rule is included in treatises by authors both before and after Parame$vara,
including Nilakantha in his Tantrasarngraha 3.35 (Ramasubramanian and Sriram (2011, p. 175)).

GD2 213cd-214 was on computing § from zp; and ¢, and GD2 218abc explains the deter-
mination of ¢ from z); and §. There is also a computation to obtain z,; from § and ¢ too,
but is given in a different context in GD2 184-185 (section 10.14.2, formula 10.28). Unlike GD2
218abc, this third rule seems to have been used for the method given in GD2 220-230, where the
sun’s longitude and the geographic latitude is given and the value for the sun’s meridian zenith
distance is required in the process. Bhaskara I has placed the same rule in MBh 3.11, close to
the other two.

13.5 “Passage” or motion of solstice (GD2 218cd-219)

GD2 218cd explains how one can find the motion of the solstice® using the shadow of a gnomon,
and GD2 219 tells us how to find the solstitial point itself. The bulk of the commentaries on
these verses are paraphrases of the sentences, and many words are supplied.

GD2 218cd refers to the sun’s longitude obtained from the shadow and from mathematics
(ganita). The former must be a reference to the process that has been described in the previous
examples. The commentary stresses this by saying that it is computed from the meridian shadow.
The longitude obtained from mathematics probably indicates the procedure which does not
involve observation but computation using the motion of the planet and the current time; finding
the mean position, computing the true position as well as applying the corrections that are
described in GD2 195-208 (chapter 11). The commentary supplies that it is the ganitatantra,
tantra of mathematics. This Sanskrit word could refer to “doctrines” in general, but it could
refer to a specific “treatise”. I have chosen “treatise”, following the usages by Paramesvara in his
auto-commentary on GDI:

He (Parame$vara himself) states that the discrepancy on the measure of the Earth, the mea-
sure of the radial distance and so forth seen among different treatises on mathematics (gani-

5Parameévara does not recognize this as a precession. See section 7.6.
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tatantra) are [caused] by the assumption on the measure of a yojana. (Auto-commentary on
GD13.7)°

Seven lands, seven oceans, different parts and so forth on this Earth have been mentioned
by a master going by the name of Sripati in his own treatise on mathematics (ganitatantra).
(Auto-commentary on GD1 3.62)7

In the latter case, we can identify that this treatise is the Siddhantasekhara of Sripati (see
chapter 3). It is also clear that the word ganita does not necessarily stand for mathematics in
the narrow sense, but for treatises on astronomy in general. Although the commentator may not
be Paramesvara himself, the nuance of ganitatantra is probably the same.

Figure 13.3: The trace of the shadow’s tip changing each day.

GD2 219 is a method to find the exact moment of the solstice. First, one may choose any
moment when the shadow of a gnomon can be observed and record the position of its tip, P. The
trace of the shadow’s tip in the course of daytime will gradually change each day (figure 13.3).
This depends on the sun’s declination, and when after some time the sun returns to the initial
declination, the tip of the gnomon’s shadow will fall on the same point P. The two moments
when the shadow’s tip fall on the same point are separated from the moment of solstice (this
could be either summer or winter) by the same amount of time. Therefore the moment of time
in the middle of these two moments should be the summer solstice or winter solstice according
to Paramesvara.

To be precise, the sun’s declination changes continuously and the traces of the shadow in
figure 13.3 are not exactly parallel with each other. Unless the sun reaches the same declination
at exactly the same time on another day, the tip of the shadow will not fall on the same point.

6 ganitatantrabhedesu drsyamano bhumanakarnamanader bhedo yojanamanaklptyety aha | (K. V. Sarma
(1956-1957, p. 25))

7 $ripatinamna acaryena svakrtaganitatantre sapta dvipah sapta samudras ca bhumeh khandabhedadayas co-
ktah | (K. V. Sarma (ibid., p. 36))
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Paramesvara seems to be aware of this, and in his auto-commentary for GDI 4.87c¢d-90, he
explains that the second moment of time can be found by interpolating observations on two
consequtive days.

The commentary adds that the motion of solstice can be known with this method too. This
could be done by finding the “without passage (nirayana)” longitude of the sun at the moment
of the solstice found in the above procedure. Another intresting feature in the commentary is
the reference to all kinds of objects that could be used instead of a gnomon. It is comparable to
the following passage in Parameévara’s auto-commentary on GD1 4.87b.

A very high lamp post or flagpole, a new peak settled on the upper part of a temple, or a
cane settled on the ground is to be assumed as a gnomon, and then its shadow should be
observed.®

8 atyunnatam dipastambham dhvajastambham va devalayasyordhvabhagasthapitabalakitam va bhumau sthapi-
tavenvadim va Sankum iti prakalpya tasya chayam ikseta | (K. V. Sarma (1956-1957, p. 67)): Amended devalayo
to devalayasyo which is the reading in MS. No.762 F of the Kerala University Oriental Research Institute and
Manuscripts Library.

303



Sho Hirose - These de doctorat - 2017

14 Length of shadow when the sun is in a given direction
(GD2 220-230)

14.1 Summary of the method

This method, as summarized in GD2 220ab, is to find the length of a shadow when the direction
of the sun is known. The verses do not articulate the values needed for this computation, which
are:

e The longitude of the sun
e The direction of the sun

e The geographic latitude

The entire procedure is an iterative method, which Parames$vara calls the “without-difference”
(avisesa) method. It starts with assuming that the great shadow is an arbitrary value, and
then computes two values called the “base of direction (digbahu)” and “base to be established
(sadhyabahw)”. The two are equal if the assumption for the great shadow is correct. Otherwise,
the assumed value is corrected using the difference between the two bases, and the procedure is
iterated until there is no difference, hence the name “without-difference”.

The explanatory verses GD2 220cd-230 consistently use the word “shadow (chaya or its
synonyms)” and not “great shadow (mahacchaya etc.)”. However, considering the segments
involved in the computation, every instance of “shadow” actually refers to the great shadow.
There is no reference to a shadow of an ordinary gnomon, as if the great shadow was the final
goal in this procedure. Meanwhile, the goal of examples 3 (GD2 231) and 4 (GD2 232) is the
shadow of a twelve arngula gnomon.

14.2 Initial assumption (GD2 220)

» “

GD2 220cd explains that a “shadow” should be assumed inside a “circle of direction”, “made”
using a string.

This implies that the procedure is carried out with the aid of diagrams. This “shadow” is
actually a “great shadow”, as is clear from the procedures that follow, and is also confirmed by
the commentary on the examples.

What is referred to as a circle of direction is probably a circle with two lines oriented north-
south and east-west!.

Paramesvara’s auto-commentary on GDI1 4.12-13ab appears to be a more detailed explanation
of what is intended here. The only difference is that the goal in GDI is to compute the great
gnomon and not the (great) shadow.

Now, in order to compute the [great] gnomon in a given direction, the base of the figure
having the [great] shadow as its hypotenuse and the upright are shown [with the verse (GD1
4.12) beginning with] “the east-west line as its end”. Having drawn a great circle, two lines
of direction should be made. In this circle, the great shadow is indeed the distance from the
center to where the great gnomon’s foot is at that moment. The base of the hypotenuse,

1Such a line is called a line of direction (dikstatra) in GD2 and also appears in the auto-commentary of GD1.
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which is the great shadow, [departs] from this [great] gnomon’s foot, has the east-west line
as its end, and extends north and south. The upright of this hypotenuse, which is the [great]
shadow, [departs] from this [great] gnomon’s foot, has the north-south line as its end, and
extends east and west. Thus the base and upright is always in the circle of the [great]
shadow. With these base, upright and hypotenuse the [great] gnomon of the sun located in
a given direction is established.?

N
M
W 0 E
B K
S

Figure 14.1: The foot of a great gnomon B in a great circle with directions of line

Presuming that the procedure in GD2 is the same, we have to draw a diagram with the foot
of a great gnomon located on a great circle (figure 14.1). OB is the great shadow, BM is its base
and BK its upright. The base of direction By and base to be established B, are essentially this
base of shadow BM computed in two different ways, and should be equal if the assumed value
of the great shadow OB is correct, as indicated in GD2 223cd.

14.3 Base of direction (GD2 221)

The “base of direction” By is the sum or difference between the gnomonic amplitude A and the
solar amplitude Sin7. According to GD2 221, the sum is taken when they are the “same” and the
difference is taken when they are “different”, probably referring to their direction. The Sanskrit

2 athestasasthasankvanayanartham chayakarnaksetrabhujam kotim ca pradarsayati purvapararekhantam it |
trijyavrttam alikhya diksutre ca kuryat | tasmin vrtte yatra mahasarnkor mulam tatkale bhavati kendran ma-
hacchayantare hi tad bhavati | tasmac charkumaulat (Amended from tasmat Sankumulat) purvapararekhanta
yamyodagayata mahacchayakarnasya bhuja bhavati | tasmac chankumaulat yamyottararekhanta purvaparayata
chayakarnasya kotir bhavati | evam sada chayavrtte bhujakots bhavatah | karnas tu mahacchaya | etaih bhujako-
tikarnash istadiksamsthe savitari Sarikuh sadhyah | (K. V. Sarma (1956-1957, p. 46))
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S

Figure 14.2: The base of direction BM when the gnomonic amplitude TB and the solar amplitude
FU are in the same direction.

N

S

Figure 14.3: When in different directions. BM is the base of direction when the gnomonic
amplitude TB is smaller than the solar amplitude. B’M’ is the base of direction when the
gnomonic amplitude T'B’ is larger.
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term for gnomonic amplitude, Sarnkvagra, can be interpreted as “that which has the gnomon as
its extremity”, and thus I assume that its direction is from the rising-setting line toward the foot
of the great gnomon. Likewise, arkagra (solar amplitude) can be interpreted as “that which has
the sun as its extremity”, implying that the point on the horizon where the sun rises or sets is
the extremity. The description in GD2 103 that the rising-setting line extends from the tip of
the solar amplitude (section 8.1) also supports this idea.

Figure 14.2 shows the situation when the gnomonic amplitude and the solar amplitude are in
the same direction, and figure 14.3 when they are different. The base of direction By is obtained
as follows:

B, = {A +Sinny  (Same direction) (14.1)

|A—Sinn| (Different directions)

14.4 Base to be established (GD2 222-223)

N

ESE

S

Figure 14.4: Sines of direction (in bold lines) when the sun is in an intermediate direction
(southwest in this diagram) fx(1) and east-southeast 05 s).

The “base to be established” B, is the component of the great shadow in the north-south
direction. In order to derive it, the Sine corresponding to the direction of the sun, or the “Sine
of direction (digjiwa)” SinOy; is first stated in GD2 222.

Figure 14.4 shows the two examples of the Sine of direction given in GD2 222. When the sun
is between east and south-east (i.e.
east-southeast), the arc 659 corresponding to the Sine of direction is half the arc 5 ;) in an
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intermediate direction. This tells us that the arc of direction fy; in general is measured from due
east or due west.

N
L M
%Y 0 E
B
C\
S

Figure 14.5: Computing the base to be established BM from the Sine of direction CL

The computation in GD2 223ab, which is that the “‘base to be established’ is the Sine of
direction multiplied by the given [great] shadow and divided by the Radius”, can be explained
as follows. In figure 14.5, B is the foot of the gnomon, OB is the great shadow S and CW is the
arc of direction fy. BM is the north-south component of OB, i.e. the base to be established Bj,
and CL is the Sine of direction Sin#fy. Since ABMO and ACLO are both right triangles and
share one angle, ABMO ~ ACLO, and

CL-OB
BM=—"—_——
oC
Sin 92 -S
By, = ——— 14.2
- (142

If the base of direction and base to be established are equal, GD2 223cd mentions that the
guess is correct. Paramesvara does not state the case when they are unequal, but we can interpret
that the “without-difference” method using their difference, whose explanation begins from GD2
224 is to be applied.

14.5 Correction of the great shadow (GD2 224-225, 228-229)

In each step of the “without-difference” method, while the base of direction B, and base to be
established B are unequal, the great shadow S is corrected as given in GD2 224:
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+ B -
i|Bd_13"|10
q

Concerning |By + B;|, the difference is taken when the two are in the same direction (i.e.
both extending northwards or both extending southwards from the east-west line) and the sum
is taken when they are in opposite directions. The latter case occurs only if an extreme value is
assumed for the great shadow when the sun rises in the north and culminates in the south and
is relatively rare. Perhaps for this reason, other passages such as GD2 230 and GD2 234, only
refer to their difference.

The multiplier p and divisor ¢ are specified in GD2 228.

The multiplier p is the Radius minus the midday shadow (great shadow at midday). As
stated in GD2 213, the midday shadow is equal to the Sine of meridian zenith distance of the
sun Sin zx;. Paramedvara gives no instruction for computing zy in this section, but the rule to
find the midheaven Sine Sin z; from the declination® § and the geographic latitude ¢ in GD2
184-185 (formula 10.28) must have been used. GD2 182 supplies that the position of the sun at
midday is the midheaven, and therefore Sin zy; = Sin zp;. The direction of the midheaven Sine
in accordance with ¢ and ¢ is stated in GD2 194.

The divisor ¢ is the Radius minus the solar amplitude Sin 7 when the sun rises and culminates
at the same side of the prime vertical (north or south), and is the sum of the Radius and Sinn
when the sun traverses the prime vertical.

Sit1=S; (14.3)

p =R —Sinzy (14.4)
g= R FSinn (14.5)

There are no reasonings given by the author or commentator for these values. They do not
correspond to any geometrical element except for a very special case, which is when the sun is on
the prime meridian and the guess for the great shadow is S = R, the correction in formula 14.3
with the multiplier p and divisor g will give the exact value of the great shadow. My hypothesis
is that they approximately reduce |Bg &+ Bs| to |B — B;|, where B is the true base of the shadow
when § is correct. I would like to come back to this point in my future research.

Paramesvara mentions in GD2 229 that p and ¢ may be reduced by a common number as it
only makes a small difference.

Furthermore, he adds in GD2 233 that the whole correction may be multiplied by one and

a half if the convergence is slow, and by half or smaller if the value oscillates. In GD2 234, he
even mentions that the difference between the base of direction and base to be established itself
can be used for correction, without p and q.
The entire correction M7 which is called the result (phala) [of division], is either additive
or subtractive, depending on the cases given in GD2 225. By saying “the base of direction is
located south of that called the established”, Parame$vara is comparing the end which is not on
the east-west line for each of the two bases. The expression “the meridian zenith distance is in
the north” means that the sun is to the north of the zenith at midday.

1. The sun is to the south of the zenith at midday

a) By is to the south of B;: additive
b) By is to the north of Bs: subtractive

3Computed in the process of deriving the solar amplitude from the sun’s longitude.
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2. The sun is to the north of the zenith at midday

a) By is to the south of B;: subtractive
b) By is to the north of By: additive

14.6 Situation with two great shadows as solutions (GD2 226-227)

N

S
Figure 14.6: Situation with two great shadows OB and OB’

GD2 226 mentions that there could be a special case where two great shadows could be
possible as solutions in the given direction (figure 14.6). According to Parame$vara, this happens
when (1) the geographic latitude is sufficiently large and (2) the sun is to the north of the zenith
at midday.

In fact, (2) is the only condition necessary. We can explain it as follows. The trail of the great
shadow’s foot in the course of a day, which is the projection of the diurnal circle on the plane of
horizon as seen from the zenith, is always convex towards the south. Therefore, as long as the
trail does not traverse the east-west line, we can always find a straight segment OC (which is the
radius of the great circle) that intersects with the trail at two points B and B’. The condition
for such trail is that the Sine of direction CL is smaller than the solar amplitude UF. This is
indicated in GD2 226.

The two solutions (lengths of OB and OB’) are approached from opposite directions. That
is, the entire correction in formula 14.3 is additive when By < B and subtractive when By > B
to approach the “first” great shadow, and the rule is reversed to approach the “second” great
shadow.
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14.7 Steps in the “without-difference” method (GD2 230)

GD2 230 gives the order of computation in the “without-difference” method. The order is marked
by the use of the ablative, and I have indicated it with arrows in the following list. Relevant
verse numbers and sections/formulas in my explanatory notes are added in brackets.

1. Great shadow & — great gnomon G [GD2 114cd / section 8.5]

2. G — gnomonic amplitude A [GD2 119 / formula 8.13], base of direction By [GD2 221 /
formula 14.1] and base to be established Bs [GD2 222-223 / formula 14.2]

3. The difference between By and Bs — S [GD2 224 / formula 14.3]. Repeat until By = B;.

GD2 230 does not refer to the initial guess for S. It also does not mention the computation
of values that are only computed once and are fixed throughout the scheme, namely the solar
amplitude Sin7n and the multiplier p and divisor ¢ of the correction. The commentary compute
them at different places in the procedure. For example 3, which has two different cases, Sinn is
computed at the very beginning since the “base” of the sun’s longitude happens to be the same
for both cases. Meanwhile p and ¢ are computed at different places in the two cases. In the first
case, it is at the very moment when they are applied to the difference between the two bases to
compute the correction, but in the second case it is at the very beginning. The commentary on
example 4 computes all of them before giving the initial guess.
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15 Example 3 (GD2 231)

This is an example of the method explained in GD2 220-230. The situation described in this
verse is as follows:

e Case 1l

— The sun’s longitude is at the end of Scorpio (A = 8°).

— The sun is in the southeast direction.
o Case 2

— The sun’s longitude is at the end of Taurus (A = 2°).

— The sun is in the northeast direction.
e The Sine of geographic latitude is 647.

e The shadow-length of a gnomon with twelve arigulas is to be computed for the two cases.

15.1 Solution

Initial values

Before starting with the individual cases, the commentary computes the values for the Sine of
declination and solar amplitude.

“In both cases, the [Sine of] declination is 1210.”

In both cases, the “base” arc Ap is 2 signs, whose Sine is 2977 according to Bhaskara II and 2978
according to Abh 1.12 (see Appendix B.4). If we use the former, GD2 73ab (formula 6.3) gives
the Sine of declination Sin ¢:

1397Sin Ap

R
1397 - 2978

3438
= 1209; 40, - - - (15.1)

Sind =

This can be rounded off to 1210. Aryabhata’s value 2978 gives Sind = 1210;4, - - -, resulting
in the same rounded value.

“The solar amplitude is 1232.”
From GD2 84ab (formula 6.7), the solar amplitude is

RSind
Sing
3438 - 1210
3377
1231;51, - - - (15.2)

Sinn
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which is rounded to 1232. The commentary is silent on the difference between the two cases,
which is the direction of the solar amplitude as measured from the east-west line: It extends
towards the south in case 1 and towards the north in case 2. The commentator implicitly uses
this fact in the following passages.

Case 1
“In the first case, the shadow is assumed to be equal to the Radius.”

The commentary assumes that the great shadow &7 is equal to the radius R, 3438.

“Then the solar amplitude itself is the base of direction.”

If we were to follow Parameévara’s instruction in GD2 230, we have to find the values for
the great gnomon G; is 0 and the gnomonic amplitude A;. The assumption S; = R puts
the sun on the horizon and thus both G; and A; are 0. Thus the base of direction, which is
the difference between the solar amplitude and the gnomonic amplitude, is equal to the solar
amplitude (Bg; = Sinn = 1232). However, the commentary skips all these intermediate steps
and goes immediately to the last point, as if it were self-evident.

“From the Radius, the base to be established is established as 2431.”

The sun is in the southeast direction, which is an intermediary direction. GD2 222 tells us that
the Sine of direction Sinfy in this case is the Sine of one and a half sign.

Sinfy, = Sin(1° 15°)
= 2431 (15.3)

which comes straightforward from the Sine series of the Aryabhatiya. Since the great shadow
is equal to the Radius (S = R in formula 14.2), this Sine of direction itself is the base to be
established, Bg.

Both manuscripts read 2432 instead of 2431, which must be a scribal error, since 2431 is
being used in the next step.

“The difference of these two in one [same] direction is 1199. This is the
multiplicand.”

Both bases extend southward, thus their difference is taken as the multiplicand of the correction.

By — Bgy = 2431 — 1232
= 1199 (15.4)

“In this case, since the sun is in the southern direction at sunrise and at midday,
the difference between the Radius and the solar amplitude is the divisor, 2206.”

As the declination is southward, the sun rises at the south of due east. Since the observer is
in the northern hemisphere, the diurnal circle is inclined to the south, and thus the sun also
culminates in the south. Therefore from formula 14.5 the divisor ¢ is
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q= R —Sinn
= 3438 — 1232
= 2206 (15.5)

“The midday shadow is 1795.”

The next value mentioned is the midday shadow, which from our reconstruction involves several
steps of computation.

Since Sin § = 1210 is between Sin 1125’ = 1105 and Sin 1350" = 1315, the arc of declination §
is approximately:

1210 — 1105

1315 — 1105
=1237;30 (15.6)

which can be rounded off to 1238. The declination is in the southern direction, opposite of the

geographic latitude ¢ = 651’ (see page 294 for its derivation). Here we can use the rule mentioned
in GD2 184-185 (formula 10.28) to obtain the meridian zenith distance zx:

0 =1125+ 225

zm =0+
= 1238 + 651
— 1889 (15.7)

Using Sin 1800’ = 1719 and Sin 2025’ = 1910, the midday shadow Sin zy, is approximately:

1889 — 1800
225
= 1794;33, - - (15.8)

Sin zy, = 1719 + (1910 — 1719) -

which is rounded to 1795 as in the commentary.

“The difference between the Radius and the midday shadow is the multiplier,
1643.”

From formula 14.4 the multiplier p is

p= R — Sinzy
= 3438 — 1795
= 1643 (15.9)

“These two will always be the multiplier and divisor in the ‘without-difference’
method.”

It might be worth remarking that this is the only place in the commentary which refers to the
multiplier p and divisor ¢ as being constant throughout the “without-difference” method. This is
also the only case where p and ¢ are computed in the middle of the “without-difference” method
(i.e. after the initial guess has been given). The commentaries on case 2 of this example and on
the two cases in example 4 compute p and g before the “without-difference” method.
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“The quotient [of the division] of the multiplicand multiplied by the multiplier by
the divisor is 893.”

The entire correction is

(B — Ba1) -p 1199 - 1643
q 2206
= 892;59,- - (15.10)

rounded to 893.

“Since the base of direction is smaller than the base to be established [and thus] to
the north [of it], this is subtractive against the shadow equal to the Radius that
has been previously computed.”

Concerning the two bases, Bs1 > Bg1. The commentary does not refer to their orientations, but
we have seen that they are both southwards, and thus By is to the north of Bs;. We already
know that the sun is to the north of the zenith at midday, and therefore the whole correction is
subtractive.

“When done in this way, the shadow is established as 2545.”

From formula 14.3,

Sy, = 8 — 893
= 3438 — 893
= 2545 (15.11)

“In this case, this is the given shadow.”

There is no reference to cycles in the iteration method, but the second iteration starts here, by
using the corrected value Ss in place of the initial guess for the great shadow.

“Thus the [great] gnomon is established, and the gnomonic amplitude from the
[great] gnomon.”

Unlike the first cycle, there is reference to the great gnomon and gnomonic amplitude. However
their values are not given.
From the Pythagorean theorem (formula 8.9), the great gnomon Gy is

Go = \/ R? — S}
= 1/34382 — 25452

=2311;27, - (15.12)

which can be rounded to 2311. Then using formula 8.13, we obtain the gnomonic amplitude As:
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As = 792 .Sinfp
Sin @
_2311-647
- 3377
=442:45, - -- (15.13)

which is likely rounded off to 443.

“Since the gnomonic amplitude and the solar amplitude are in the same direction,
their sum is the base of direction, extended north and south in the circle that has
the shadow as its hypotenuse, 1675.”

The gnomonic amplitude always extends to the south, and as we have seen, the solar amplitude
is also southward. Thus from formula 14.1, the base of direction in the second cycle is

By = Az + Sinn
=443 + 1232
= 1675 (15.14)

There is reference to a “circle that has the shadow as its hypotenuse (chayakarnavrtta)”,
which is probably a reference to the circle of direction as seen in GD2 220 (section 14.2). This
might indicate that the commentator was also using diagrams in the course of this procedure.

“From the shadow, the base to be established is established as 1800.”

From formula 14.2, the base to be established in the second cycle is

2431 - S
52—T
2431 - 2545
3438
1799;33, - -- (15.15)

which is rounded to 1800.

“The difference between these two is 125.”

The two bases are in the same direction and we take their difference Bso — Bgo = 125.

“Having divided this multiplied by the multiplier by the divisor, the quotient is
93.”

Using the values of p and ¢ as obtained previously, the whole correction is:

(Bsz — Baz) -p 1251643
q - 2206
=93;5, (15.16)

which is rounded off to 93.
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“In this case again, one should subtract this from the previously [established]
shadow, 2545, since the base of direction is smaller than the base to be established
[and thus] to the north [of it]. Having done in that manner, the shadow is 2452.

Again, Bgs is to the north of Bss and the sun is to the north of the zenith at midday, therefore
the whole correction is subtractive:

S3=8,—-93
= 2545 — 93
= 2452 (15.17)

“Thus again, having done the [great] gnomon and so forth, the shadow without
difference is 2407. This is the great shadow when the sun is in the southeast
direction.”

The commentary tells us to carry on with the iteration method, but gives no more values except
for the final result. I have ran a program using the software SAGE (The Sage Developers (2016))
to examine how the value would converge. Values are rounded off after each computation. The
result is shown in table 15.1.

Table 15.1: Example 3 case 1 computed with SAGE
Cycle S Ba Bs Correction

1 3438 1232 2431 893
2 2545 1675 1800 93
3 2452 1694 1734 30
4 2422 1699 1713 10
5 2412 1701 1706 4
6 2408 1702 1703 1
7 2407 1702 1702 0

We arrive at the same value 2407 after 6 cycles, and can confirm that this is the final value
in the Tth cycle.

1 -77

46

The commentary goes from the great shadow to the shadow of the twelve arigula gnomon without
explanation, but we can find a rule for this in GD2 116. First we compute the great gnomon G:

“Thus the shadow of the twelve arigula gnomon is established as

G=+/R2—S?
= /34382 — 24072

= 2454:49, - - - (15.18)

rounded to 2455, and then from GD2 116 (formula 8.10):
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128
T g
12 - 2407
2455
= 11;45,55, - - - (15.19)

S

which is rounded to 11;46. Here the manuscript I; gives the value in a column, placing the
integer 11 over the sexagesimal 46 (figure 15.1). Manuscript K;r omits 46, but probably the
original form was the same as Iy, since K7 follows the same style to write 3;1 in the next case.
These are the only occurrences of fractional parts notified in the form of a column.

Figure 15.1: Part of Manuscript Indian Office Sanskrit 3530 (I;), folio 41 recto. 11;46 in a column
surrounded by a line can be seen at the middle of the image. The digital image acquired had
been greatly distorted, and I have enhanced it here to clarify the letters.

Case 2

“Now in the second case, since the sun is in the northern direction at the time of
sunrise and at the time of midday too, the difference between the Radius and the
solar amplitude is the divisor, that has been indeed previously established, 2206.”

This time the commentary starts by computing the multiplier and divisor before the “without-
difference” method.

The Sine of declination is 1210 as in the previous case, but this time it is northward. Thus
sunrise occurs at the north of the prime vertical. As we have seen in section 14.5, there is no
direct clue in GD2 to find the direction of culmination, but from GD2 214ab we can derive the
fact that if both § and ¢ are northward and > ¢, zx is northward and its value is § — . In

318



Sho Hirose - These de doctorat - 2017

the previous case we obtained § = 1238 and ¢ = 651. This time they are both northward, and
thus the meridian zenith distance is northward and

Zzn=0—
= 1238 — 651
= 587 (15.20)

Hence the computation for the divisor ¢ is to subtract the solar amplitude Sin 7, whose value
we have already obtained, from the Radius.

qg= R —Sinn
= 3438 — 1232 = 2206 (15.21)

as was in case 1.

“In this case, the midday shadow is 584.”

We have computed the meridian zenith distance of the sun zx in the previous step! (formula
15.20). Using Sin 450" = 449 and Sin 675" = 671, Sin 2y, is approximately:

587 — 450
225
= 584; 10, - - - (15.22)

Sin zy; = 449 + (671 — 449) -

which is rounded to 584. This is equal to the midday shadow.

“The difference between the midday shadow and the Radius is the multiplier,
2854

p =R — Sinzy
= 3438 — 584
= 2854 (15.23)

“In this case, having assumed a given [great] shadow, having computed the [great]
gnomon, the gnomonic amplitude, the base of direction and the base to be
established from it as before, and having computed the result of the difference
between the [two] bases with the multiplier and divisor and having shaped [the
result] against the shadow assumed previously by oneself, subtractive or additive
according to the rule, the [great] shadow without difference should be computed.”

Here the style of the commentary is very different compared with the previous cases. Instead
of giving specific values for the great shadow and the following steps, the commentator focuses
on the procedure itself. The contents of GD2 230 are given here with more specification. In

10Of course we do not know whether the commentator himself has actually computed the value of zs; when he
says “the sun is in the northern direction at the time of sunrise and at the time of midday” or just compared §
y y J p
and ¢.

319



Sho Hirose - These de doctorat - 2017

addition to the sequence of segments involved, the fact that the great shadow is assumed at the
beginning is mentioned, and the computation to obtain the correction with the multiplier and
divisor is given in detail. The expression “subtractive or additive according to the rule” further
adds the impression that this is a general commentary rather than dealing with a specific case.

“This [great shadow| without difference is 840. This is the [great] shadow when the
sun is in the northeast direction.”

Table 15.2 is the result of the “without-difference” method for this case, computed with a SAGE
program. I have given &; = 3438 as the initial guess. S converges to 839 instead of 840 as in the
manuscripts? in 5 cycles. If we try to take the steps backwards and start from S = 840, By = 593
from formula 14.1 and Bs = 594 from formula 14.2, and we still have a difference between the two
bases. Furthermore, we will see that in the commentary after GD2 234, another value S = 838 is
given as an answer for this case. I cannot explain where these differences in the result come from.

Table 15.2: Example 3 case 2 computed with SAGE
Cycle S By B, Correction

1 3438 1232 2431 1551
2 1887 681 1334 845
3 1042 604 737 172
4 870 595 615 26
5 844 593 597 5
6 839 593 593 0

“The shadow of the twelve arnigula gnomon is f J

If we follow the manuscript and use 840 as the great shadow, the great gnomon is

G=+R2-S?
= /34382 — 8402

= 3333;48, - -- (15.24)

rounded to 3334, and thus the shadow of the twelve angula gnomon is

125

g
12 -840
3334
=3:1,24, - (15.25)

If we use § = 839 and follow the same procedure, we obtain s = 3;1,11,---. In both cases,
the value can be rounded off to 3;1, corresponding to the value in manuscript K;,L, given in the
form of a column. Manuscript I; omits the sexagesimal 1.

2To be exact, manuscript K; reads 84, but since the omission of 0 occurs frequently in this manuscript, this
suggests that the original reading must have been 840 too, and not 839.
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“When the sun risen in the northern direction goes to the meridian in the southern
direction, then the sum of the Radius and the solar amplitude is the divisor.”

The commentary on example 3 (GD2 231) ends with a reference to a situation that is not covered
by this example. However it does appear right afterwards as the first case in example 4 (GD2
232). Whether this passage was meant for supplementing information for readers just dealing
with example 3 or as a connector to the next example is questionable.
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16 Example 4 (GD2 232)

This is another example of the method given in GD2 220-230. Case 2 provides a situation where
there are two possible shadow lengths, as mentioned in GD2 226-227.

e Casel
— The sun’s longitude is at the middle of Aries (A = 0° 15°).

— The sun is in the southeast direction
e Case 2

— The sun’s longitude is at the middle of Gemini (A = 2° 15°).

— The sun is midway between east and northeast
o The Sine of geographic latitude is 647.

e The shadow-length of a gnomon with twelve arngulas is to be computed for the two cases.

16.1 Solution

Case 1

“Now in the first case, the solar amplitude in the north is 368.”

Unlike example 3, the “base” arc of the sun is different in the two cases, and therefore the
solar amplitude is computed for both cases. Another difference is that the value for the Sine of
declination is unmentioned. We assume that the Sine of declination is computed from the given
longitude and then the solar amplitude is derived from the Sine of declination.

In the first case, the “base” arc Ap is 0° 15° = 900’, whose Sine is 890. From GD2 73ab
(formula 6.3), the Sine of declination Sin ¢ is

1397 Sin Ap

R
1397 - 890

3438
= 361;38, - (16.1)

Sind =

which is expected to be rounded off to 362. However, considering the values of the solar amplitude
Sin7 (368) and the midday shadow Sin zx; (289) which appear in the text, this has to be rounded
off to 361. Indeed, if Siné were rounded to 362, Sinn = 369 and Sin zy; = 288 after rounding. 1
have examined the possibility of other Sine tables and interpolation methods being used. Table
16.1 shows the results using those of Govindasvamin, Madhava and Nilakantha', all of which end
up being rounded to 362 or larger. This suggests the possibility of a table linking Ap directly
with Sind being used, as we have discussed in example 1 (section 12.2).

IHere T have only used the combination of each table with their corresponding interpolation method (e.g.
Govindasvamin’s table with his interpolation method). For Nilakantha I have used the table reconstructed from
his second recursion method. It is safe to say that other combination of tables and methods will give no significantly
different result, as Sin 24° is never smaller than 1397 and R is never larger than 3438. See also appendix B.6.1.
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Table 16.1: Using other Sines for computing Sin§. Sin 24° substitutes the value 1397 in formula
16.1.
Sin 24° Sin 15° R Sin
Govindasvamin  1400;58,33 889;45,8  3437;44,19 362;35,- - -
Madhava 1398,16,01 889;45,15 3437;44,48 361;53,- - -
Nilakantha 1398;15,27 889;45,16 3437;44,47 361;53,---

Assuming Sin§ = 361, from GD2 84ab (formula 6.7), the solar amplitude Sinn is

RSiné

Sin @

3438 - 361

- 3377

=367;31,--- (16.2)

Sinn =

which is rounded to 368.

“The midday shadow in the south is 289.”

The Sine of declination Sind = 361 is between Sin 225’ = 225 and Sin 450" = 449. Thus the arc
of declination ¢ is approximately

361 — 225
— 9954 -T2 99
0=225+ 19295 22
= 361;36, - (16.3)

which can be rounded to 362. This declination is in the northern direction, as is the geographic
latitude ¢ (whose value is 651 from formula 13.4). The sun is to the south of the zenith, as in
figure 16.1. Thus from GD2 184-185 (formula 10.28) the meridian zenith distance zy is

zn=@—90
=651 — 362
=289 (16.4)

This is already equal to the value given in the commentary for the midday shadow, which is
the Sine of this meridian zenith distance. We can confirm that the Sine and arc are approximately
the same by linear interpolation. Using Sin 225" = 225 and Sin450" = 449, the midday shadow
Sin zy, is approximately:

449 — 225
225
= 288;42, - - (16.5)

Sin zy; = 225 + (289 — 225) -

rounded to 289.
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Figure 16.1: Meridian zenith distance zx

“Since these two are in different directions, in this case the sum of the
Radius and the solar amplitude is the divisor, 3806.”

“These two” refers to the directions of the solar amplitude (northward) and the midday shadow
(southward). Thus from GD2 228ab (formula 14.5) the divisor g is

g = R+ Sinn
= 3438 + 368
= 3806 (16.6)

“The multiplier is 3149.”
From GD2 228cd (formula 14.4) the multiplier p is

p = R — Sin 2y,
= 3438 — 289
= 3149 (16.7)

“The given assumed [great| shadow is 2977.

The guess for the great shadow S is 2977, which is the equivalent of Sin 60° given by Bhaskara
II 2. There is no explanation why it was not 3438, as is the case with every other guess for the
great shadow throughout the commentaries in GD2. According to my computation with a SAGE
program, 2977 as an initial guess requires 9 cycles of iteration to obtain the final result while it
will converge in 8 cycle if 3438 were given.

A plausible explanation is that the commentator is demonstrating that the initial guess could
be any value and not just 3438. At least, it is not the case that he chose an assumption that
would work out the problem in a neat way.

2Bhaskara II gives 2977 instead of 2978 as in the Aryabhattya. See Appendix B.4 for details.
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“The solar amplitude decreased by the gnomonic amplitude is 39. This is
the base of direction in the north.”

This corresponds to the beginning of the first cycle of the “without-difference” method. However,
the commentator does not refer to the values of the great gnomon and the gnomonic amplitude.
This is the same with what we saw in example 3.

The great gnomon G; could either be derived from the Pythagorean theorem (which gives
1719;41,--- ~ 1720) or from the co-Sine (Cos 60° = Sin(90° — 60° = Sin30° = 1719). The final
result of this step is in favor of the latter, 1719.

Then from GD2 119 (formula 8.13), the gnomonic amplitude A4; is

Ay = Gme
Sin @
1719 - 647
3377
— 329,20, -- (16.8)

which must have been rounded to 329. This gnomonic amplitude is southward while the solar
amplitude is northward. Thus from formula 14.1, the base of direction is northward, its value is
computed as follows:

Bg1 = Sinnp — Ay
= 368 — 329
=39 (16.9)

“In this case, the base to be established in the south is 2104.”

For the “base to be established” Bq, we first need to find the Sine of direction Sinfy.. As we are
dealing with an intermediate direction (fx = 1°15° = 2700'), Sinfx = 2431 as we computed in
the previous example. Then from formula 14.2,

Sin 92 . 81
R
2431 - 2977
3438
=2105;1,- - - (16.10)

le =

Here we have used Sin60° = 2977 according to Bhaskara II. If we use Aryabhata’s value,
Sin60° = 2978, the result is 2105;44,--- and the difference from “2104” as given in the text
becomes larger. This discrepancy cannot be explained by replacing numbers?, nor is it a scribal
error (the results of the following steps show that Bs; = 2104 is indeed being used). There seems
to be an error in the computation itself.

38in @y, is the value of Sin 45° or Sin 2700/, and the smallest value found in other tables is 2430; 45, 41 according
to Nilakantha’s first recursion method (see appendix B.6). The value for Sin 60 is between 2977 and 2978 in other
tables, and R is always smaller than 3438. None of these values can make Bg; smaller than 2104;30.

325



Sho Hirose - These de doctorat - 2017

“The sum of these two in different directions multiplied by the multiplier
and divided by the divisor is 1773.”

Bgi is northward and Bs; southward, thus they should be added. From formula 14.3, the cor-
rection is

(Bar +Bs1) -p (39 +2104) - 3149

q 3806
= 1773:4, - -- (16.11)

which is rounded to 1773.

“Since the base of direction is in the north, this should be subtracted from
the previous [guess] shadow.”

The commentary does not mention one of the conditions for determining whether the correction
is additive or subtractive, which is the direction of the sun at midday. In this case, it is to the
south of the zenith. Therefore, from GD2 225 we subtract the correction from the initial guess.

“In that case, the [great] shadow produced is 1204.”

Sy =8 — 1773
= 2977 — 1773
= 1204 (16.12)

“Having done again in this way, the [great] shadow without difference is
405.”

The “without-difference” method with a SAGE program converges as in table 16.2. Here I have
used the values Sinn = 368 and Sin zy, = 289, and taken into account that the value Bs; = 2104
is used in the first cycle. Interestingly, if we assume that every computation and rounding is
performed as expected, and thus that the values Sinn = 369 and Sin zy, = 288 were used, the
“without-difference” method will converge to a different value (table 16.3)*. This suggests that
the final value for the great shadow is indeed the outcome of the “without-difference” method
whose first steps have been shown here.

The commentary ends with the value of the great shadow, despite the fact that the example
is asking for the shadow-length of a twelve angula gnomon. Let us reconstruct the final answer.

The great gnomon G is computed from the Pythagorean theorem:

G=+R2-S?
= /34382 — 4052

= 3414;3,- -- (16.13)

rounded to 3414, and then from GD2 116 (formula 8.10):

4What matters for the result is the values for Sinn and Sin zs;. Whether B is 2104 or 2105 does not affect
the computation.
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Table 16.2: Example 4 case 1 computed with SAGE. Sinn = 368, Sin zy; = 289 and Bs; = 2104

as in the commentary

Cycle

1
2
3
4
)
6
7
8
9

1

o

Table 16.3: Example 4 case 1, using Sinn = 369, Sin zy, = 288 and Bs; = 2105.
Cycle

1
2
3
4
)
6
7
8
9

1

o

Thus we would expect 1;25 as the shadow-length of a twelve arigula gnomon, rounded to the

first sexagesimal.

Case 2

This is a situation with two solutions for the shadow. However, the commentary says nothing
on how we can conclude so, and goes on as if this fact was known from the beginning.

“Now in the second case, the solar amplitude is 1373. This is northward.”

The “base” arc Ap is 2° 15°, whose Sine is 3321. From GD2 73ab (formula 6.3), the Sine of

declination Sin§ is

S
2977
1204

706
522
451
423
412
408
406
405

S
2977
1203

704
520
449
422
411
406
404
403

S

Ba

38
249
277
283
285
286
286
286
286
286

Bs
2104
851
499
369
319
299
291
288
287
286

Bd Bs
39 2105
248 851
276 498
282 368
284 317
285 298
285 291
285 287
285 286
285 285
128
g
12 - 405
T 3414
=1:25,24, -
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Correction
1773

498

184

71

28

11

4

O =N

Correction
1774

499

184

71

27

11

5

O = N
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1397 Sill)\B
S. 6 B —
m

13973321
T 3438
= 1349:27,--- (16.15)

which is probably rounded to 1349.
From GD2 84ab (formula 6.7), the solar amplitude Sin7 is

Sin@

34381349

- 3377

=1373;22,--- (16.16)

rounded to 1373 as expected. Since the sun is in Gemini, its declination and the solar amplitude
are northward. I have supplied the word “northward (saumya)” which does not appear in the
manuscripts, but is required for the reading to make sense’.

“The midday shadow in the north is 731.”
The Sine of declination Sind = 1349 is between Sin 1350" = 1315 and Sin 1575’ = 1520. Thus

the arc of declination § is approximately

1349 — 1315
1520 — 1315
=1387;19, - -- (16.17)

0 = 1350 + 225

which would be expected to be rounded to 1387. This declination is in the northern direction,
as is the geographic latitude ¢, thus from GD2 184-185 (formula 10.28) the meridian zenith
distance zy; is

zy=0—¢
= 1387 — 651
=736 (16.18)

The sun is to the north of the zenith, as in figure 16.2. Using Sin 675" = 671 and Sin 900’ =
890, the midday shadow Sin zy is approximately

736 — 675
225
= 730,22, - -- (16.19)

Sin zg = 671 + (890 — 671) -

which would be rounded off to 730, but the value given here and used in the following step is
731. We have no clue to why.

Pl

5The omission of saumya can be explained as a haplology. Without it, the word “this esa” would be joined
with next sentence to read “This is the midday shadow in the north, 731 (esa saumyadinardhabha 731)” where
“this” becomes meaningless.
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Figure 16.2: Meridian zenith distance zx

“The divisor is 2065.”

Both sunrise and the culmination of the sun occur in the north. Thus from formula 14.5 the
divisor ¢ is

qg= R —Sinn
= 3438 — 1373
= 2065 (16.20)
“The multiplier is 2707.”
From formula 14.4 the multiplier p is
p =R —Sinzy
= 3438 — 731
= 2707 (16.21)

“In this case, the Sine of direction is 1315.”

Here the commentary refers to the Sine of direction and its value for the first time throughout
the solutions of example 3 and 4. This might be related to the fact that in all the previous cases
the sun was in an intermediate direction while here, the direction is between east and northeast,
i.e. 22° 30’ north from due east. The Sine of direction Sinfs, is Sin 22° 30’ = 1315.

At this point, we can find out from GD2 226 that there should be two solutions for the great
shadow, since the solar amplitude is larger than the Sine of direction in the north. However the
commentary says nothing on this point.

“The assumed [great] shadow is 3438.”

In order to approach the two solutions from one initial guess following GD2 226-227, the guess
should fall between the two final values of the great shadow. By chance, the assumption & =
2977 that was used in the first case matches this condition, but here the commentary assumes
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S1 = 3438. We have discussed in the previous case that the commentator’s intention seems not
to be to give a smart solution, and such tendency can be seen here too.

We might also be able to justify the commentator’s assumption by the fact that the first of
the two great shadow is the longer one. &1 = 3438 is the largest value possible as a guess, and
will lead to the first great shadow with certainty. The commentator’s strategy appears to be to
find the first great shadow in this way, and then use a value smaller than the established first
great shadow, which in turn will lead to the second great shadow.

“In this case, the solar amplitude itself is the base of direction.”

As we have already seen in example 3, the assumption that the great shadow is equal to the
Radius leads to the conclusion the base of direction is equal to the solar amplitude (in this case,
Bq1 = Sinn = 1373).

“The Sine of direction itself is the base to be established.”

We have also seen in the previous example that the base to be established is equal to the Sine
of direction (in this case, Bs; = Sinfs; = 1315) when the initial guess is the Radius.

“From the difference between the bases, the result is 76.”

Both Bg; and B, are northward, and By, > Bsi. From formula 14.3, the correction is

(Bagi — Bs1) -p (1373 —1315) - 2707

q - 2065
=761, (16.22)

which is rounded off to 76.

“This should be subtracted from the given shadow in order to establish the
first [great] shadow, since the base of direction is larger.”

It is at this point that the commentary explicitly makes the reader aware that there are two
solutions. It informs us that the correction 76 has to be subtracted since Bg; > Bs1. This rule
comes from GD2 227.

“When the base of direction is smaller, then it should be added.”

The commentator refers to the other situation, which is that the correction should be added if
Bg1 < Bs1. There is no specific instruction to iterate the procedure, but at least it has provided
every information necessary to do so.

“In this case, the [great] shadow without difference is 3422. This should be
the great shadow when the sun is at the midpoint between the northeast
and east.”

There are problems in both the “without-difference” method and the final value given in the
commentary. The iteration carried on with a SAGE program resulted in an oscillation, as shown
in table 16.4. It might be possible that Paramesvara was aware that this could happen, since
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GD2 233cd refers precisely to when an oscillation occurs in an “without-difference” method. We
may follow his instruction and subtract the correction 17 by half of itself (17 = 2 ~ 9), which
reduces the correction to 8. By chance, if we adopt this value in the third cycle and subtract
it from S3 = 3429, we obtain 3421 which gives By = Bs; = 1308 and the “without-difference”
method is immediately finished.

Table 16.4: Example 4 case 2 (first shadow) computed with SAGE
Cycle S By B, Correction

1 3438 1373 1315 76
2 3362 1235 1286 67
3 3429 1325 1312 17
4 3412 1292 1305 17
5 3429 1325 1312 17
6

3412 1292 1305 17

However, the value we obtain is 3421 and not 3422 as in the commentary. S = 3422 gives
By = 1310 and By = 1309 after rounding, and we still have a difference between the two bases.
This value 3422 is used for creating the initial guess in the next step, and cannot be a scribal
error. In any case, if we take this value as the great shadow, the great gnomon is

G=+R2—-S?
= /34382 — 34222
= 331;18, - -- (16.23)

rounded to 331, and thus the shadow of the twelve arigula gnomon is

_ s
g
12 - 3422
331
= 124;3,37, - - (16.24)

S

which would be rounded to either 124 or 124;3, but the commentator makes no reference to its
value. If we choose § = 3421, we obtain s = 120;23, 13, - - -, which makes a significant difference.

“In this very case, there is a second [great] shadow.”

Again the commentator draws attention to the existence of the second solution, although it has
been already mentioned in the course of the previous solution.

“In order to establish it, having assumed a given [great] shadow decreased
by a given number from the [great] shadow in the given direction
established in the first case, the computation is to be carried out.”

If use the initial guess 3438 as in the first great shadow and follow GD2 227, the correction will
now be additive, leading to an impossible value (larger than the Radius) in the next step. As
we have already discussed, we need to start with a value smaller than the first solution. This is
a procedure which Parame$vara has not mentioned.
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“In that case, the previous [great] shadow decreased by a thousand is 2422.”

The commentator subtracts 1000 from the first great shadow as the starting point (S; = 2422)
for the second great shadow. Any value would work, and we cannot find a specific reason for the
choice of 1000.

“The base of direction is 906.”

We already know the values for the solar amplitude, the multiplier and divisor. If we were to

follow Paramesvara’s steps, we have to compute the great gnomon and the gnomonic amplitude,

but they are unmentioned here. In any case, we need them to compute the base of direction.
From the Pythagorean theorem, the great gnomon G is

Gi =4/R? - S?
= /34382 — 24222

= 2440;1, - -- (16.25)

which can be rounded to 2440.
Using formula 8.13, the gnomonic amplitude A; is

G1 Sinp
Sin @
2440 - 647
3377
= 467;28, - - (16.26)

A =

which can be rounded to 467.
The solar amplitude is northward and the gnomonic amplitude southward. Thus from formula
14.1, the base of direction is northward and its value is

Bg1 = Sinn — A
= 1373 — 467
=906 (16.27)

“The established shadow is 926.”

From formula 14.2,

Sin by, - &1
R
1315 - 2422

3438
= 926;23, - - - (16.28)

s1 —

which is rounded to 926.
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“The result of the difference between the bases is 26.”

Both Bg; and B, are northward, and By, > Bgi. From formula 14.3, the correction is

(Bs1 — Ba1) -p (926 — 906) - 2707

q 2065
=26;13, - (16.29)

rounded to 26.

“This should be subtracted in order to establish the second [great] shadow,
since the base of direction is smaller.”

Since we are computing the second great shadow and Bg; > B, following GD2 227, the correc-
tion is to be subtracted from the guessed great shadow.

“In this case, the [great] shadow without difference is 2318. This is the
second [great] shadow in the given direction.”

The “without-difference” method computed with SAGE proceeds as in table 16.5. This time
the convergence is slow, and we can see again a connection with GD2 233, although neither the
commentary nor Paramesvara refers to this point. The final value in our computation is 2320
and not 2318 as in the commentary. If we reverse the computation and start from S = 2318 we
obtain By = Bs = 887 after rounding. Therefore 2318 is another value which fits the condition.
The fact that the commentary gives this number could be explained by increasing the correction
at some point, as GD2 233 instructs to do when the “without-difference” method is converging
slowly.

Table 16.5: Example 4 case 2 (second shadow) computed with SAGE
Cycle S By Bs; Correction

1 2422 906 926 26
2 2396 901 916 20
3 2376 897 909 16
4 2360 894 903 12
5 2348 892 898 8
6 2340 890 895 7
7 2333 889 892 4
8 2329 888 891 4
9 2325 888 889 1
10 2324 888 889 1
11 2323 888 889 1
12 2322 887 888 1
13 2321 887 888 1
14 2320 887 887 0

Let us reconstruct the answer required by the example, which is the shadow-length of a twelve
angula gnomon. If we choose & = 2318, the great gnomon G computed from the Pythagorean
theorem is
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G =+/R2 - S2
= 1/34382 — 23182

=2539;2, - - (16.30)

rounded to 2539, and then from GD2 116 (formula 8.10):

128

Y

122318

T 2539

= 10;57,19, - - (16.31)

S

which would be rounded to 10;57 as the shadow’s length.

“From these two, the two shadows of the twelve argula gnomon are
established.”

Last of all the commentary does mention that we need to compute the shadow-length of the
twelve angula gnomon but does not give its value. Here, it is ambiguous whether “these two”
refer to the two solutions in case 2 or to the two cases in this example.
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17 Speed of “without-difference” method (GD2 233-234)

In example 4, we came across a case where the convergence of the “without-difference” method
was slow, and also a case where the value oscillated and did not converge. GD2 233 is an
instruction on what to do in such situations. Whether the two cases in example 4 and/or its
solution® were designed to cause such peculiarity in its convergence is uncertain, but even if it
were not, it is reasonable that Parames$vara put this verse at this position, since GD2 220-230 is
the first appearance of an “without-difference” method in this treatise. He has made a similar
statement in GDI 4.21-22 (see quotation later in this section), right after an explanation of
an “without-difference” method. This comes before an example (GDI 4.23), and should thus
be understood as a general rule and not as an instruction limited to a specific example. The
commentary confirms the generality of this rule in its last sentence.

“Result” refers to the correction produced from the two bases, the multiplier and divisor
(formula 14.3). The statement of the verse is repeated in the commentary in an expanded style,
referring to more values than in the verse (table 17.1). It is remarkable that both Parames$vara
and the commentator speaks of “adding” and “subtracting” values against the correction and
not of multiplying or dividing it. Instead of saying “double or triple the result”, the commentary
uses a lengthy expression “add with the result multiplied by one or added by twice”.

In GD2 234, Parame$vara states that the difference between the base of direction and the
base to be established itself can be used as the correction, without applying the multiplier and
divisor. This time he suggests doubling or halving the amount, contrary to what we have just
seen. This mixture of expressions (adding / subtracting and multiplying / dividing) can also be
found in GDI:

The result to be subtracted and added should be assumed to be increased by half or multi-
plied by two in the rule of the “without-difference” method, in accordance with the slowness
of approach toward the desired value.

When [the approach is] too fast, in like manner, [the result] should be assumed to be lessened
by a third or halved. (GDI 4.21-22ab)?

Plofker (2004, pp. 581-582) explains Paramesvara’s procedure as “multiplying their difference
by a scale factor” which is 1.5, 2, % or % However, considering Paramesvara’s expressions,
it is questionable whether he is introducing a scale factor or relaxation factor as in iterative
methods used today. One clue is the word yuktya used in GD2 233 and its commentary which
I have translated “with reason”. This is the instrumental of yukti, which is used in the sense

of “grounding” almost elsewhere in GD2. GD2 119, 188, 198 and 204 use yukti to refer to a

1By “solution” I refer to the choice of the initial value. However, choosing a different guess did not change
the process very often, especially in the case with slow convergence.

2$odhyam ksepyam ca phalam sardham dvigunam tathavisesavidhau /
asatter mandyavasad abhistaraseh sada kalpyam [[4.21]/
atisaighrye tryamsonam dalitam va tadvad eva kalpyam syat [ (K. V. Sarma (1956-1957, p. 48))

Table 17.1: Corrections to be applied in an “without-difference” method when the original value
isx
GD2 233 Commentary
Slow convergence x + T+ 35, r+x, x+ 22

xr
2
Oscillation r—3 v+ L o+ o432
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proportion or Rule of Three that grounds a specific rule. If yuktya in GD2 233 is also conveying
the sense of “proportion”, we may say that some idea of scaling is behind the rule, even when
Paramesvara refers to adding or subtracting.

The commentary after GD2 234 is apparently unrelated with the verse itself. The text is
difficult to interpret, and we cannot even rule out the possibility of the text being corrupted.
One interpretation is that this statement is for taking into account the motion of the solstice.
In the previous examples, the longitude was given by the zodiacal sign, i.e. a sidereal coordi-
nate. The shadow length thus computed would be different from observation. Meanwhile, if
we compute the sun’s longitude and declination using an observed shadow, with a method such
as the one expressed in GD2 213-217 or even the method in the next section, GD2 235-244.
However, it is questionable whether it is meaningful to compute the shadow again, and nothing
can be said about what “by the co-latitude and so forth established with fractions (lambadibhih
sadhanaihsavayavaih)” stands for.

The commentary then turns back to case 2 in example 3. There is a suggestion of a “without-
difference” method performed to obtain the great shadow, probably using different values as the
declination and so forth. Its value given here is 838, different from 840 which was given in the
solution or 839 that we derived. However this is another correct answer for the example without
modifying any of the given values; 839 as the great shadow gives the same value 593 for the base
of direction and the base to be established.

We shall discuss the contents of the next paragraph in chapter 18, since it is related to verses
GD?2 235-244.
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18 Finding the sun and geographic latitude from the
shadow in an intermediate direction (GD2 235-244)

18.1 Summary of the method

Outline according to the commentary

Paramesvara explains a new method in GD2 235-244, but unlike the previous method where
GD2 220ab gave a summary, we have no explanation on its goals. The commentary provides us
with its outline before GD2 235. According to it, there are two steps.

In the first step, we find the longitude of the sun when the sun is in an intermediate direction,
from (1) the length of a shadow! and (2) the hour angle, i.e. the time left before the sun reaches
culmination or elapsed after its culmination.

In the second step, we start with the sun’s declination (this is obtained in the course of
the previous step, but the commentary makes no remark on this point) and compute the Sine
of geographic latitude. We will see later that this is done by an “without-difference” method.
The sun’ declination is obtained in the course of the previous step, and hence bridges the two
steps. However the declination is not essentially the starting point of this computation, as we
will discuss later.

The substeps

We can summarize the entire method with its two steps and substeps as follows.
e Step 1

The shadow’s base B and upright & are computed. (GD2 235)
The “upright” in the diurnal circle u is equal to U. (GD2 236¢cd)
The Sine of the hour angle Sin H is computed. (GD2 237)

The radius of the diurnal circle r is computed from Sin H, v and R with a Rule of
Three (GD2 238)

r — [Sine of] declination Sind (GD2 239ab)
6. Sind — “base” arc Ap (GD2 239b)
7. Ap — longitude A (GD2 239cd-240)

= W e

o

e Step 2
1. Some amount added to Sin d is the first assumption for the solar amplitude Sinn (GD2
241)
Sinn and B — gnomonic amplitude A (GD2 242ab)
A and great gnomon G — given “Sine” in the diurnal circle j; (GD2 242cd)
R, A and j; — Sine of geographic latitude Sin ¢ (GD2 243ab)
Sin ¢ — Sine of co-latitude Sin @ (GD2 243c)
Sin@ and Sind — Sinn (GD2 243d)
Repeat 2-6. The result is Sin ¢ without difference. (GD2 244)

N ot W

1Here the commentary does not say whether this is a shadow of a gnomon or a great shadow.
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The intermediate direction

It may be worth remarking that Paramesvara only explains the case when the sun is in an
intermediate direction (northeast, southeast, southwest or northwest). In fact, we could easily
generalize the rule? so that it would be applicable to the sun in any direction, as was the case
with the previous method (GD2 220-230). The problem of finding the great gnomon when the
sun is in an intermediate direction is a popular topic in Sanskrit astronomical treatises although
its motivation is unknown (Plofker (2004)), and Paramesvara’s choice is most likely in line with
this tradition.

GD2 247 might be a reference to this matter, indicating that the method is applicable when
the sun is in any direction. We will see this later in section 20.2.

18.2 Base and upright of the shadow in an intermediate direction
(GD2 235-236ab)

S

Figure 18.1: The base MB / OK and upright KB / OM of the great shadow OB when the great
gnomon is in an intermediate direction (here southeast)

As was the case with the previous method (see section 14.2), GD2 235-244 ouly refer to the
“shadow (chaya)” without adding “great (maha)”, and the statement in GD2 235 is valid for
both the great shadow and the shadow of a gnomon. Therefore I have translated this word as
“shadow” without supplying “great”. Meanwhile the commentary starts by computing the great

2To be specific, we would only need to change GD2 235. The base of a shadow can be computed with the
“Sine of direction” as we did for the “base to be established” in the previous method, and then the upright can
be obtained with a Pythagorean theorem.
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shadow, and therefore in the following explanatory notes I shall treat what Paramesvara states
“shadow” as a great shadow.

The two components of the great shadow, extending north-south and east-west respectively,
are equal in length if the sun is in an intermediate direction (figure 18.1). GD2 236ab tells us
that the north-south component is called the base of the shadow while the east-west component
is the upright. The base is fully utilized in the previous method (GD2 220-230), and as quoted
in section 14.2, the auto-commentary on GD1 4.12-13ab describes the base and upright in a
similar manner. The difference is that if we follow the auto-commentary, the base and upright
have to be segments which have the foot of the great gnomon as one end. Thus in figure 18.1,
only MB could be called the base and KB the upright. However, GD2 236ab allows for a loose
interpretation, since it does not refer to the foot of the great gnomon. In figure 18.1, we can
also take OK as the base and OM as the upright. If this is really what Parame$vara intended,
it might be because we can form a right triangle with the great shadow as hypotenuse in this
way. This is also an isosceles triangle, and therefore the length of the base or upright is the
hypotenuse divided by the square root of two. Or to formulate what we have in GD2 235, the
base MB = OK = B and upright KB = OM = U/ of the great shadow S are

B=U= ﬁ (18.1)

18.3 The upright in the diurnal circle (GD2 236¢cd)

Figure 18.2: The upright of the shadow OM and the celestial sphere

If we choose OM as the upright of the shadow, it is in the plane of the celestial equator and
not in the plane of the diurnal circle (figure 18.2). However, by looking at this situation from
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Figure 18.3: Projecting the diurnal circle

Figure 18.4: AOMZY in the diurnal circle

the celestial north pole so that the celestial equator and the diurnal circle appear as concentric
circles, we can project the diurnal circle to the plane of the celestial equator (figure 18.3). As a
result, OM now forms a right triangle AOMY. with the point of the sun ¥ (figure 18.4). This
can be easily visualized with an armillary sphere. My interpretation of what Paramesvara calls
the “upright in the diurnal circle” is this projected segment OM. I will come back to the reason
why he refers to it as an upright in section 18.5.

This situation is comparable with what has been discussed in GD2 110 (section 8.4, page
196), although Paramesvara does not make the connection. In GD2 110, the aim was to move
from a segment in the celestial equator to a segment in the diurnal circle with the use of Rules of
Three. Meanwhile, the procedure in GD2 236¢d itself is different in the sense that the segment
OM has been moved to the diurnal circle without changing its length. But this OM shall be
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used right afterward in GD2 238 to form a Rule of Three which will relate segments of different
lengths in the celestial equator and the diurnal circle.

18.4 Hour angle (GD2 237)

Figure 18.5: The hour angle H = vy (for a moment of time in the morning) and its Sine WX’
or OM/

GD2 237 describes the Sine of an arc which corresponds to an “hour angle (nata)”. This is
stated as the time difference between the sky (kha) and the sun. The same expression occurs in
GD2 245, where the commentary paraphrases “sky” with “zenith (khamadhya, literally ‘middle
of sky’)”. If we imagine two great circles going through the celestial poles, one passing the zenith
and one passing the sun, we have the same situation with the above definition. Alternatively, we
can interpret that the words “[middle of the] sky” and “sun” each refer to the rising time of the
two points in the stellar sphere. Their difference is an arc measured on the celestial equator.

Let us look at the armillary sphere from the celestial north pole again (figure 18.5). Here
the northern celestial pole overlaps with the observer O. Y’ is the intersection of the celestial
equator with the great circle passing tlg&celestial pole and the sun ¥, and V is that of the prime
meridian with the celestial equator®. VX’ is the hour angle H as stated in GD2 236.

Today, the hour angle is usually measured westward from the meridian zenith, but here
in Parames$vara’s explanation, it can be in both directions. The hour angle of the sun in the
morning is measured eastward and that in the afternoon westward. Another difference is the
unit: modern astronomy uses either hours or degrees, but here Parames$vara uses nadis (1/60
of a day, synonym ghatika). Interestingly, both examples 5 and 6 (GD2 245, 246) give them in
pranas (1/21600 of a day, synonym asu). The latter is more convenient for computation, as one

3The zenith is not shown in this figure. It would be somewhere between V and O, depending on the geographic
latitude.

341



Sho Hirose - These de doctorat - 2017

prana corresponds to one minute of arc in the celestial equator. The usage of nadis might be
a reference to the measuring of time with a water clock (nads, nadika or ghatika), which is the
etymology of this time unit. In GDI 4.37, Parame$vara says explicitly that the hour angle is
measured with a water clock.

konastho ‘rko yasmin kale tasmad dinardhaparyantam |
kalam vidyad ghatikayantrena natahvayah sa kalah syat [/4.37]/

The time starting from when the sun is situated in the intermediate direction and having
midday as its end should be known by a water clock (ghatikayantra). This time should be
called the hour angle.

It is remarkable that the hour angle is being measured from the given point towards midday
and not the other way round as in GD2.

WYX is the Sine of the hour angle (Sin H) in figure 18.5. T would like to shift W' to OM’,
M’ being the foot of the perpendicular drawn from ¥’ to EW, to make the discussion in the next
section easier.

18.5 Computing the sun’s longitude (GD2 238-240)

Figure 18.6: Upright in the diurnal circle OM and Sine of the hour angle OM’, with the radius
of the diurnal circle O and the Radius ¥'O.

The length of a shadow in an intermediate direction and the hour angle are the initial param-
eters in this method. We have seen that they are converted to the “upright” in the diurnal circle
and the Sine of the hour angle, respectively. Figure 18.6 shows the two segments drawn in one
diagram. The “upright” in the diurnal circle OM = u (equal to the upright of the great shadow
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S.) forms a right triangle AOMY with the radius of the diurnal circle ¥O = r, and the Sine of
the hour angle OM’ = Sin H forms another right triangle AOM’Y” with the Radius 'O = R.
The two right triangles share one acute angle and are thus similar. This is how we can interpret
the rule of three given in GD2 238. To represent it in a formula,

¥'O0-0M
X0 = oM
Ru
= 18.2
" Sin H (18.2)

This set of triangles is the same with those used in GD2 110-111 (formula 8.2). There, the
aim was to move from what was called a Sine in the celestial equator measured in the equator
M’Y/ to that in the six o’clock circle MY. Now we can see why Parames$vara might have named
OM the “upright” in the diurnal circle: if we consider the segments M’Y and MY as the “base”
Sines, then the corresponding segments OM’ and OM are the “upright” Sines.

Furthermore, GD2 238 refers to the radius of the diurnal circle as “half-diameter (ardha-
viskambha)” and not “diurnal ‘Sine”’ as we have often seen previously. This may be to avoid
confusion with the term “diurnal circle (dyujyavrtta)”, literally the “circle of the diurnal ‘Sine”’?.

GD2 239ab tells us that we can compute the declination of the sun from the radius of the
diurnal circle, and the “base” arc from the declination. Considering the possible computation
here and later in GD2 241, I have supplied “Sine of” in my translation. Let us reproduce the
actual computation.

First, we can use GD2 76cd which states that the Radius R, Sine of declination Sind and the
radius of the diurnal circle r form a right triangle (section 6.4). From the Pythagorean theorem,

Sind =+ R? —r2 (18.3)

I assume that the next step is the same as what we saw in the previous examples. We compute
the “base” Sine Sin Ag by reversing the rule in GD2 73ab:

. Sind - R

This is converted to the “base” arc Ag. It is remarkable that Parames$vara does not mention
the “base” Sine (contrary to GD2 210 and GD2 216). We have seen in the previous examples
that discrepancies occur frequently at this step, which might have been caused because the
commentator was using tables to compute “base” arcs directly from the declination. However,
we have no more clues to discuss whether this is relevant here.

GD2 239c¢d-240 explain how to compute the longitude of the sun from its “base” arc. This is
essentially the same rule with what is given in GD2 215-217, but explained far more succinctly.
Four cases are given, and the only conditions mentioned are that the latter two are when the
sun is in the southern celestial hemisphere and that the cases depend on the “measure of the
shadow on two days”. The measure of the shadow refers to the change in shadow-length in two
consecutive days, from which we find whether the sun is in the northward course (moving from
winter solstice to summer solstice in the ecliptic) or in the southward course (summer solstice to
winter solstice).

4See also entry for ardhaviskambha in the glossary. The word svahoratrardha appearing in GD2 239 is also
debatable; see its glossary entry.
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18.6 Without-difference method for computing the Sine of
geographic latitude (GD2 241ab)

GD2 241ab states that the Sine of geographic latitude is computed with an “without-difference”
method. The method involves various segments, but Paramesvara emphasizes the base of the
great shadow S,. Meanwhile the commentary before GD2 235 only mentioned the sun’s decli-
nation. The declination, or its Sine (Sind) to be precise, is one of the later values obtained in
the previous set of computations and also the first value appearing in the course of this method
(GD2 241). Why did Paramesvara refer to S, instead?

18.7 Initial assumption: solar amplitude (GD2 241cd)

Perhaps the answer is because we do not necessarily need to start with the Sine of declination in
this method. GD2 241cd tells us that we first assume that some amount (let us notate ¢) added
to the Sine of declination is the solar amplitude Sin#;.

Sinn; = Sind + ¢ (18.5)

Essentially, we could just say “assume that the solar amplitude is some amount”. In this
sense, the Sine of declination is not strictly our starting point. Nonetheless, we can think of a
good reason for the Sine of declination to be included. From GD2 84ab the solar amplitude is

Sinn = —; (18.6)

where Sin ¢ is the Sine of co-latitude, and in the localities of Parame$vara which is close to the
equator, Sin @ is only slightly smaller than the Radius R. Thus we would expect that Sinn is
slightly smaller than Sind, and it is reasonable to start by adding a small value.

18.8 Solar amplitude and base of great shadow — gnomonic
amplitude (GD2 242ab)

We have seen in GD2 221-223 that the base of the great shadow B can be represented in two
ways, namely the “base of direction” and “base to be established”. The base of direction is the
sum or difference of the gnomonic amplitude and the solar amplitude, based on their directions
as explained in GD2 221 (section 14.3). By reversing this rule, we can derive the gnomonic
amplitude A; from the base of the great shadow and the solar amplitude (figure 18.7). I interpret
that the direction of the solar amplitude FU is measured from the east-west line toward the rising-
setting line and that the direction of the great shadow’s base MB is from the east-west line to
the foot of the great gnomon. Then we have three cases as in figure 18.7: (1) both the solar
amplitude and the great shadow’s base are southward, (2) both are northward and (3) the solar
amplitude is northward and the great shadow’s base southward. Sin; and B are in the same
direction in cases (1) and (2) and A; shall be their difference. In case (3) they are in different
directions and A; is their sum. To summarize the result,

A = {| Sinm; — B| (Same direction) (18.7)

Sinm, + B  (Different directions)
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N N

(a) Southward solar amplitude (b) Northward solar amplitude

Figure 18.7: Gnomonic amplitude TB as the sum or difference of the base of direction MB and
the solar amplitude FU. Case numbers are represented by subscripts.

As B is constant throughout the “without-difference” method and the direction of Sin 7 is also
determined (it follows the declination whose value and direction is already known), the “sum” or
“difference” will remain unchanged during the iteration. To say it in other words, if for example
the difference is taken in the first cycle, it will always be the difference in the next cycles and
never the sum.

18.9 Gnomonic amplitude and great gnomon — given “Sine” in the
diurnal circle (GD2 242c)

Next we compute the given “Sine” in the diurnal circle j;;. This is the same segment that
appeared first in GD2 104, and as mentioned in GD2 105, it forms a right triangle BT with
the great gnomon B = G and the gnomonic amplitude BT = A4; (figure 18.8). Thus from the
Pythagorean theorem,

TY. = v/BT? + ¥B?
ji =/ A + G2 (18.8)

A; has been derived in the previous step, and G can be computed from the great shadow
using the Pythagorean theorem (formula 8.9).
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Figure 18.8: The given “Sine” in the diurnal circle T with the gnomonic amplitude BT and the
great gnomon >B. North is to the right.

18.10 Given “Sine” in the diurnal circle — Sine of geographic latitude
(GD2 243ab)

YBT is similar to AOB'P, the right triangle formed from the Radius PO = R, Sine of co-latitude
OB’ = Sin @; and the Sine of latitude B'P = Sin ¢; (figure 18.9, see also section 8.3). Therefore
using the proportion, we can compute the Sine of latitude using the gnomonic amplitude BT = A;
and given “Sine” in the diurnal circle T = j;; as stated in GD2 243ab:

PO - BT
BP = ot
™
Sinpy = R‘Al (18.9)
Jt1

18.11 Sine of geographic latitude — Sine of co-latitude (GD2 243c)

Parames$vara only mentions that the next step is to go from the Sine of geographic latitude Sin ¢
to the Sine of co-latitude Sin@;. This seems to suggest that we should use the Pythagorean
theorem, as does the commentary on example 5 (GD2 245).

Sin @, = 4/ R? — Sin® ¢, (18.10)

Paramesvara could have reduced one step by computing the Sine of co-latitude directly from
the great gnomon G and the given “Sine” in the diurnal circle
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Figure 18.9: Similar triangles AXBT and AOB’P. The Given “Sine” in the diurnal circle is TY
and the Sine of geographic latitude B’P. North is to the right.

Sin @, = R—g (18.11)
Jt1
in which case we could iterate the steps until another value (such as the solar amplitude) re-
mains unchanged in two consecutive steps, and then compute the Sine of geographic latitude.
Paramesvara does not explicitly say when to finish the computation, but his choice of including
the Sine of geographic latitude in each cycle suggests that we should check its value at each cycle
with the previous one and end when it is the same.

18.12 Sine of co-latitude — solar amplitude (GD2 243d)

We come back to the solar amplitude again from the Sine of co-latitude and the Sine of declination
Sind. This time, Sind is no more part of a guess and we need its exact value. To complement
Paramesvara’s brief explanation is brief, we use the similarity between AOB’P and AFGU which
consists of the Sine of declination FG, the Earth-Sine GU and the solar amplitude UF (figure
18.10). A Rule of Three concerning these triangles can be found in GD2 87, and GD2 84ab is
a statement for computing the solar amplitude (formula 6.7,). Using this, the corrected solar
amplitude Sin 7y is
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Figure 18.10: Similar triangles AOB’P and AFGU. The solar amplitude is UF. North is to the
right.

OP-FG
R T
. RSiné
Sinng = Sin 7, (18.12)

18.13 Repeating the process (GD2 244)

The verse mentions that the Sine of geographic latitude will be obtained at the end. As we
have discussed, the decision to end the iteration is probably made when the Sine of geographic
latitude computed at each step is unchanged.

There is some peculiarity with the structure of GD2 244. 1 have included one and a half verse
in the same number, but the critical edition by Sastr1 (1916) ends GD2 244 with c¢d and leaves the
remaining half-verse unnumbered. This is also the case with 7 of the manuscripts. It is extremely
difficult to tell whether they counted the half-verse as number 245, because none of them do not
give verse numbers to the two examples (enumerated GD2 245 and 246 in my edition) and to the
half-verse following them (GD2 247 in my edition). The remaining manuscripts are unhelpful as
they do not write numbers around these verses.

I have included the half-verse in GD2 244 as parts ef, since it seemed unnatural to leave
this verse unnumbered. This is a statement concluding the “without-difference” method and
therefore constitutes an indispensable part of the text. Meanwhile, the verse still makes sense if
we take away GD2 244cd as follows:
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Again, the difference of the base of [great] shadow and solar amplitude and so forth should
be done.

Thus here at the end of such “without-difference” method, the Sine of geographic latitude
should become corrected without difference in this case.

This relies on how we understand the word viyogadim (the difference and so forth) in GD2
244b. One interpretation is that it stands for the difference and sum (viyogayutr), as in GD2
242ab. However it is unusual that adi (“and so forth” or “those beginning with”) is used for
counting only two things®, and its usage does not help with the meter (viyogadim and viyogayuti
have the same number of syllable lengths). My interpretation is that Paramesvara has omitted
the case for adding the two values, as he did in GD2 230 and GD2 234 with reference to the
two bases (see section 14.5)%, and that the adi refers to the values computed in the steps after
computing the difference (or sum). This would make GD2 244cd redundant.

Furthermore, there is a grammatical peculiarity with GD2 244cd. It consists of two com-
pounds in the dual nominative / accusative and one word in the singular nominative:

Sankvagrestadyujye “gnomonic amplitude and given diurnal ‘Sine”’: Dual nominative / ac-
cusative

palajiwalambajivake “Sine of geographic latitude and Sine of co-latitude”: Dual nominative /
accusative

‘rkagra “solar amplitude”: Singular nominative

Elsewhere in GD2, such sequence of steps are described by repeating pairs of an ablative and
a nominative (cf. GD2 210, GD2 230). Therefore it is possible that GD2 244cd was inserted by
someone else who felt it necessary to repeat the steps. Nonetheless I have left it in the critical
edition since we do not have a decisive evidence to rule out the possibility of Paramesvara’s own
authorship.

5The grouping of planets in GD2 127-147 is a good example. Mercury and Venus are always addressed in the
dual compound form, while the other three (Mars, Jupiter and Saturn) are often referred to as “those beginning
with Mars”.

SHowever, unlike the cases in GD2 230 and GD2 234 where the possibility of adding the two bases were rare,
there is no special reason to think that adding the base of great shadow and the solar amplitude is less likely.
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19 Example 5 (GD2 245)

Figure 19.1: Situation in GD2 245. The gnomon is OX and its shadow OC when the sun ¥ is in
the northeast.

GD2 245 is an example for the method in GD2 234-244. The peculiarity with this example
is that it involves a gnomon which is neither a great gnomon nor a twelve angula gnomon. The
length of the gnomon is 1667 and its shadow is 419, both without units. It turns out during
the computation that those are half the values of the great gnomon and the great shadow. It is
unreasonable to think that these were numbers involved in an actual observation, and as a whole,
GD2 245 gives us the impression that this is a situation constructed as an example. Perhaps
the numbers were chosen to make the situation more complex, and this can also be said for the
hour angle given in the example which is not an integer. Another possibility is that they might
have been computed backward from a specific longitude of the sun (exactly 2 signs) and Sine of
geographic latitude (647). We will discuss this in my notes on the solution by the commentary.

Figure 19.1 illustrates the situation in example 5. The sun X is in the northeast, and if we
assume that the gnomon in the example really is a gnomon as an instrument XO, its shadow OC
should be extending towards the southwest. Paramesévara says nothing about the direction of
the shadow, and it is irrelevant in the solution as given by the commentary. We can summarize
example 5 as follows:

e The length of a gnomon is 1667.

e The length of its shadow is 419.

e The sun is in the northeast direction.

e The hour angle in pranas is 2547 divided by 4.

e The longitude of the sun and the geographic latitude are to be computed.
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19.1 Solution

An important feature of this commentary is that fractional parts are often mentioned, either
as a sexagesimal or by the expression “somewhat less than”. This may be explained as the
result of trying to follow the precision of the problem itself, where we have the number “2547
divided by 4” being involved. Meanwhile, it is noticeable that fractional parts are no longer taken
into account in the second part where we compute the Sine of geographic latitude. This part
involves an “without-difference” method, where higher precision in the intermediary values do not
significantly affect the final result. Both the values and the method seem to be taken into account
by the commentator upon deciding whether to include fractional parts in the computation.

“In this case, the gnomon is 1667. Its shadow is 419.”

The commentary starts by repeating the values given in the verse, which was not the case in the
previous examples. The numbers in GD2 245 are given in word numerals (bhutasamkhya) while
they are written in decimal place value notations here, and therefore we can interpret that the
commentator is trying to clarify the verse for the reader.

“Having computed their hypotenuse from these two, and then, when the Radius is
the hypotenuse, the great shadow established from the hypotenuse and the shadow
is 838

The similarity between the right triangles AXOC and AXBO in figure 19.1 is used. This step
resembles the first steps in examples 1 and 2, except for the length of the gnomon. The hypotenuse
CX in AXOC is

CX = v/X0?% +0C?
=4/16672 + 4192

= 1718;51, - - - (19.1)

In the previous examples, we have assumed that numbers are rounded off to integers and
that the value of the Radius is 3438. We may apply it here too, in which case the hypotenuse
is rounded to 1719, exactly half the Radius. However, if we consider the sexagesimal part and
double this value, we obtain approximately 3437;42. This is close to the values of the Radius
used by Govindasvamin, Madhava and Nilakantha (approximately 3437;45). In either case, it
is most likely that values have been chosen so that the hypotenuse CX is half the length of the
Radius OX. Since AXOC ~ AXBO,

0C-0x%
BO = —_—=
0 CX
419 R
- R/2
= 838 (19.2)

“Its gnomon is 3334.”

Likewise the great gnomon G is
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X0 - 0%
SB= "y
1667 - R
9= R/2
= 3334 (19.3)

Thus we can see that the given values of the gnomon and shadow were half the values of the
great gnomon and the great shadow.

The great gnomon is not required for computing the sun’s longitude, and Paramesvara does
not mention it between GD2 235-240. However, we do need it in the “without-difference” method
for computing the Sine of geographic latitude (GD2 242¢, formula 18.8). It is reasonable to
compute it at this point, which might explain why its value is mentioned here, although it will
be repeated later.

“The square root of half the [great] shadow’s square is 592. Its fraction in seconds
is 33. Then the base in the figure that has the [great] shadow as hypotenuse is the
same with this root. Likewise for the upright.”

Using GD2 235 (formula 18.1),
8382
b=u~= \/j

= 592;33,19,. .. (19.4)

The commentary rounds off the second order. The first order sexagesimal is referred to as
vilipta, which is usually used in the sense of “second” or “arc second”. Apart from angulas,
this is the only place in the commentaries on GD2 where we find a unit for a segment. Here
the commentator might be implicitly using “minutes” as the basic unit of a segment when the
great circle has a radius of 3438, as one minute of arc and one “minute” of segment would be
approximately equal in length.

“Then, the “upright” Sine extending east and west in the diurnal circle is also the
same as this upright, because the upright of the [great] shadow is situated on the
“upright” in the diurnal circle.”

The first half of this statement is equivalent to GD2 236¢cd, but here the commentator further
adds some reasoning. The verb avatisthate, which we have translated “be situated on”, might
be a reference to how the upright of the great shadow appears when viewed from the northern
celestial pole (figure 18.4). If so, this indicates that the commentary is using an armillary sphere
or a projected diagram, mentally if not physically.

“The hour angle in asus (i.e. pranas) going between the zenith and the sun
multiplied by four is 2547. Since there are fourths, these [asus] are to be divided
by four.

Here again, values stated by word numerals in the verse are repeated. This time, 2547 is given
in decimal place values while four is given as a numeral. The commentator has also spared
many words to clarify the word amsaka (denominator). Furthermore, he paraphrases the time
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unit pranae to asu. These make a contrast with the commentaries on examples 1 to 4 which
concentrated on explaining steps and values but not the meaning of the verse itself.

“The pranas thus made are 636. Their fraction which is the sixtieth is 45.”

H = 2547 ~ 4 = 636;45. This time the fraction is referred to as a sastyamsa, literally “having
sixty as denominator”. Since one prana along the celestial equator is equal to one minute of arc,
we can compute its Sine.

“Their Sine is 633. And the fraction is 4 [sixtieths]. This is the Sine extending east
and west in the celestial equator.”

The Sine of the hour angle Sin H is computed. It has a fractional part. The reading of manuscript
I, corresponding to the fraction' is avayavas ca tva, which does not make sense. We presume
that tva (1) is a mistranscription of a number. The best candidate is 4 (&), but other single
digit numbers cannot be ruled out.

We have computed the Sine for H = 636'45” with various Sine tables and interpolation
methods (table 19.1). The alphabets of the Sine table indicate:

a. Aryabhata

b. Aryabhata with corrections

¢. Govindasvamin

d. Madhava

e. Nilakantha (first recursion method)

f. Nilakantha (second recursion method)

g. Vatesvara
The interpolation methods are:

1. Linear interpolation
2. Nilakantha’s second order interpolation
3. Madhava’s second order interpolation

4. Brahmagupta and Bhaskara II’s second order interpolation. Paramesvara gives the same
method in his commentary on the Laghubhaskariya

5. Govindasvamin’s second order interpolation
6. Another second order interpolation by Paramesvara
7. Paramesvara’s third order interpolation

We also use two methods that do not use tables:

e Formula by Bhaskara I

1Folios corresponding to the entire commentary on GD2 245 is missing in the other manuscript, K;r
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o Power series expansion according to Sankara and Jyesthadeva

The alphabets and numbers follow Hayashi, 2015 except for interpolation methods 6 and
7 which we have added. See appendix sections B.5 and B.6.1 for details of these tables and
methods.

Table 19.1: Sin H computed with various methods, up to the second order sexagesimal (arc
thirds).

Sine tables
a.Abh.  b.Abh.cor. c.Gov. d.Madh.

Inter- 1. Linear 633;15,35  633;15,35 632;56,14 632;56,19
polation 2. Nilakantha 633;26,41  633;26,41 633;06,50 633;06,55
methods 3. Madhava 633;26,28  633;26,28 633;06,47 633;06,52

4. Brahmagupta 633;24,03  633;24,03 633;04,22 633;04,27

5. Govindasvamin | 633;28,17  633;28,17 633;08,26 633;08,31

6. Paramesvara 2 | 633;26,38  633;26,38 633;06,47 633;06,52

7. Paramesvara 3 | 633;26,42 633;26,42 633;06,51 633;06,56
Bhaskara I’s formula 638;44,40  638;44,40 638;41,46 638;41,51
Madhava’s power series 633;06,57  633;06,57 633;06,55 633;06,55

Sine tables
e.Nil.1 f.N1.2 g.Vat.

Inter- 1. Linear 632;55,17  632;56,19 633;05,48
polation 2. Nilakantha 633;05,49  633;06,55 633;07,02
methods 3. Madhava 633;05,48  633;06,52 633;07,02

4. Brahmagupta 633;03,25 633;04,27 632:56,59

5. Govindasvamin | 633;07,29  633;08,31 633;02,58

6. Parameévara 2 | 633;05,46 633;06,52 633;07,02

7. Paramesvara 3 | 633;05,50  633;06,56 633;07,02
Bhaskara I's formula 638;38,41  638;41,51 638;41,42
Power series (third order) 633;06,53  633;06,55 633;06,55

Values which can be rounded off to 633;4 are indicated with bold fonts in the table. Only the
second order interpolation according to Brahmagupta and Bhaskara IT give the expected value
when combined with tables of higher order (Govindasvamin, Madhava and Nilakantha’s second
recursion method). The result is not surprising if we consider that Parame$vara cites a method
that is equivalent to Brahmagupta’s in his works (appendix B.3).

The combination of Nilakantha’s second recursion method with the second order interpola-
tions of Nilakantha, Madhava or Parame$vara’s other second order interpolation method and
third order interpolation give approximately 633;7. Meanwhile Aryabhata’s table and linear in-
terpolation gives approximately 633;16. I shall examine the following computation using these
three results for Sin H in order to conclude which value must have been used.

“The ‘upright’ Sine in the diurnal circle, that is the same as the upright of the
[great] shadow, multiplied by the Radius and divided by the Sine of hour angle is
somewhat less than 3218. This is the diurnal ‘Sine’”’

The commentary repeats that the “upright” Sine in the diurnal circle u is equal to the upright
of the great shadow U. Its value is 592;33, as computed previously. From GD2 238 (formula
18.2), the radius of the diurnal circle (here expressed as diurnal “Sine”) r is computed using
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Table 19.2: Radius of diurnal circle r computed from different values.

R
Sin B 3438 343745 343728
633:4 3217;58 321744 3217:27
633;7 321743 321729 3217;13
633;16 3216:57 3216:43 3216:27

u, Sin H and R. Table 19.2 shows the result of formula 18.2 (r = Sﬁ“H) using different values
for Sin H and R. The three values for Sin H are those mentioned in the previous paragraph.
R = 3438 is Aryabhata’s value (and also the greatest value among the candidates), R = 3437;45
is an approximation of Govindasvamin, Madhava and Nilakantha (second method)’s values and
R = 3437; 28 is Nilakantha (first method)’s value approximated (this is the smallest value).

The statement “somewhat less than 3218” suggests that the result should be at least within a
range of 3217;30 to 3218. Therefore we can rule out Sin H = 633; 16 as derived from Aryabhata’s
Sine table and linear interpolation. Sin H = 633; 7 fits the statement only if we choose R = 3438.
Sin H = 633; 4 works for both R = 3438 and 3437;45.

We have already seen that the values of the gnomon and the shadow might have been chosen
so that the hypotenuse will be half of ~ 3437; 45 instead of 3438. Moreover it seems inconsistent
to use R = 3438 when using a Sine whose value was computed within a system that uses another
value for R. However, we will see that the next computation must be using R = 3438, and we
cannot rule out this possibility. The combination of R = 3438 and Sin H = 633;4 gives the most
suitable value for the statement “somewhat less than 3218”.

To conclude, it is likely that Sin H = 633;4 as indicated from the manuscript was used in
this computation.

“The [Sine of] declination established from it is 1210.”
If we round r to 3218, the Sine of declination Sin d is obtained using GD2 239ab (formula 18.3).

Sind =+/R2 —r2
=1/34382 — 32182

= 1210;5, - (19.5)

Here we have used R = 3438. Values of the Radius with fractional parts do not reproduce
a value that can be approximated to 1210. For example, if R = 3437;44,48 as with Madhava,
the result is Sind = 1209;22, - -- which is approximated to 1209. We have presupposed in our
previous cases that R = 3438 is being used whenever the arc or Sine is computed in the order
of minutes (without sexagesimal parts), but this might not be the case here. It is likely that the
commentator prefers the value of R with a higher precision, or at least used multiple Sine tables
with different values for R.

There is no reference to the direction of the declination. Assuming that the observer is to
the north of the equator, the sun can be to the north of the prime vertical only when it is in the
northern celestial hemisphere. Therefore this declination is northward, and this fact will be used
later in the procedure.
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“Its [corresponding] ‘base’ [Sine] is somewhat less than 2978.”

The commentaries on examples 1 to 4 have never referred to the “base” Sine Sin Ap, suggesting
that a table could have been used to obtain the “base” arc directly from the Sine of declination.
Here we have the reference to the “base” Sine? as well as its value.

It is debatable whether GD2 73ab was involved in this computation, since it uses the value
for the Sine of greatest declination Sin 24° = 1397 as obtained from Aryabhata’s Sine table and
linear interpolation, which was not the case for Sin H. However, we have seen that R = 3438 has
been used in the previous step. Furthermore, any value for Sin 24° obtained with other methods
fail to produce the value of the “base” Sine (somewhat less than 2978) as stated here. Therefore
we assume that GD2 73ab, or to be precise its reversed rule as in formula 18.4, is indeed being
used:

Sind - R
1397
1210 x 3438
1397
=2977:47,42, - - (19.6)

Sin/\B =

which is indeed approximately, but smaller than, 2978.

“Its arc is two signs increased by one minute.”

According to Abh 2.12, 2978 is the Sine for 3600’ = 60° = 2%. Therefore the statement that an
arc of a Sine smaller than 2978 is larger than two signs implies that Aryabhata’s Sine table is
not used. Example 4 involved the value 2977, which is probably the value for Sin 2° in Bhaskara
IT’s table (page 324. See also appendix B.4). However, this too does not fit here if we use linear
interpolation. Assuming Sin 3600’ = 2977 and Sin 3825’ = 3084, and rounding Sin Ap to 2977,48,
the “base” arc Ap by linear interpolation is 3601;40, - - -, which is rounded to two signs and two
minutes.

Meanwhile, any Sine table with fractional parts can produce the result. For example, Sin 3600’ =

2977;10, 34 and Sin 3825’ = 3083; 13,17 according to Madhava, and from Sin Ag = 2977;47, 42
we obtain Ap = 3601;18,--- by linear interpolation which is approximately two signs and a
minute. Second order interpolation could have been used, but it would not change anything
concerning the precision of this result.

We have examined the values so far in accordance with the commentary, but let us turn
to what Paramesvara could have intended. As discussed in appendix B.3, Parame$vara himself
seems to be using Aryabhata’s Sine table where 2978 corresponds to exactly 2 signs of an arc.
Can it be that Paramesvara has created this example by computing backward from a longitude
of 2 signs?

Unfortunately, we could only compute backward easily up to the radius of the diurnal circle
(r = 3218). We could not find a value for the Sine of hour angle Sin H that can be computed
from H = 227 (using Aryabhata’s Sine table with linear interpolation) and gives r = 3218 from
formula 18.2 with whatever rounding. Nonetheless, given the inconsistency in the value of the
Radius R in our reconstructed computations, there is still room left to consider.

2The word “Sine” does not appear in the text but is easily inferred from the statement “its arc” in the next
passage.
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“This is [the longitude of] the sun. Or else, six signs decreased by this is [the
longitude of] the sun. If the shadow on the next day [is larger], the first [is the
answer]. If the shadow on the previous day is larger, the second.”

From the statement in GD2 245, the sun to the north of the prime vertical. According to GD2
215, the sun is on its northward course if the sun is to the north and the shadow-length increases
on the next day, and southward if the shadow-length decreases. Therefore from GD2 216-217,
A = Ap in the first case and A = 6° — A\ in the second. Here we need to know that the Sun is
in the northern celestial hemisphere. To conclude,

(19.7)

251°  (shadow-length increasing)
3559° (shadow-length decreasing)

The commentary does not give the value for the second case.

“Now, in order to establish the geographic latitude, a given number is to be added
to the given [Sine of] declination, 1210.”

The commentator refers to the next goal, the (Sine of) geographic latitude. This will be done by
a “without-difference” method, as stated in GD2 241ab. The first sub-step is to add a number
to the Sine of declination as stated in GD2 241cd.

“In that case, the Sine of declination increased by ten is 1220. This is to be
assumed as the solar amplitude.”

As we have discussed in section 18.7, the solar amplitude Sin 7 is expected to be slightly smaller
than the Sine of declination Sind. The commentator has chosen a relatively small number ten
(given in the text by an ordinary numeral) to be added to the Sine of declination. This is the
first guess for the solar amplitude Sinn;.

Sinn = Sind + 10
= 1210+ 10
= 1220 (19.8)

“The base [in the trilateral] where the [great] shadow is hypotenuse is 593.”

The base of the great shadow B has been previously obtained together with the upright (formula
19.4).

“The difference between these two in the same direction is 627. This is the
gnomonic amplitude.”

The sun is in the north-east direction and therefore the base of its great shadow B is northward.
We have also seen that the commentator is silently using the fact that the declination is north-
ward. The solar amplitude Sin#; will then be in the same direction, northward. Therefore B and
Sinn; are in the same direction, and from GD2 242ab (formula 18.7), the gnomonic amplitude

.A1 iS
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Ay =|Sinn — B
= (1220 — 593
= 627 (19.9)

“The [great] gnomon is 3334.

The great gnomon G has been previously computed (formula 19.3).

“The square root of the sum of the squares of these two that have the forms of the
base and upright is 3392. This is the given ‘Sine’ in the diurnal circle that has the
form of a hypotenuse.”

The “Sine” in the diurnal circle j;; is computed with the Pythagorean theorem (formula 18.8).
It is remarkable that the commentator not only refers to the computation itself as stated in GD2
242c, but also draws the reader’s attention to the right triangle been involved by pointing to its
three sides.

Jin =1/ A% 4 G2
= 4/6272 + 33342

= 3392;26,- - - (19.10)

This can be rounded off to 3392. The manuscript I; gives 3394 instead, but the result of the
next computation can only be explained with j;; = 3392. Therefore this is probably a scribal
error.

“Then, the Radius multiplied by the gnomonic amplitude should be divided by
this given ‘Sine’ in the diurnal circle. In that case, the quotient is 636. This should
be assumed as the Sine of geographic latitude.”

GD2 243ab (formula 18.9) can be used for computing the Sine of geographic latitude Sin 1. We
have assumed that R = 3438 has been used in previous sub-steps (formulas 19.5 and 19.6), and
we apply it here too.

RA;

Jt1
o 3438 - 627

3392
= 635;30, - - (19.11)

Sin gy =

which can be rounded to 636. Using j;1 = 3394 instead gives 635;7,--- which is rounded to 635
and does not match the statement. Using a value for R smaller than 3438 will also reduce the
result, and we can confirm that R = 3438 must have been indeed used here. We shall continue
using this value for the rest of the procedure.
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“The square root of the difference between the squares of the Sine of geographic
latitude and the Radius is 3379. This is the Sine of co-latitude.”

From GD2 243c (formula 18.10), the Sine of geographic latitude Sin @, is

Sin @, = 4/ R? — Sin® ¢y
= /34382 — 6362

= 3378;39, - -- (19.12)

which can be rounded to 3379.

“Then, the [Sine of] declination multiplied by the Radius should be divided by this
Sine of co-latitude. In that case, the quotient is the corrected solar amplitude,
1231

From GD2 243d (formula 18.12), the corrected solar amplitude Sin 7y is

34381210
3379
=1231;7,--- (19.13)

which can be rounded to 1231.

“Then again, having assumed that the difference between the solar amplitude and
the base of [great] shadow is the gnomonic amplitude, the Sine of geographic
latitude without difference is to be computed with the rule that has been
mentioned.”

We are to repeat the computation starting from Ay = |Sinny — B|. The commentary gives no
more numbers, but mentions that the Sine of geographic latitude without difference should be
computed, implying the “without-difference” method.

“Then, the corrected Sine of geographic latitude without difference is 647.”

In the second cycle, Sinns = 1231 gives Sin ¢ = 646, which in turn gives Sinnz = 1232. Then
Sin s = 647, which gives Sinny = 1232 and Sinp, = 647 again. Therefore the “without-
difference” method ends with only 3 cycles (or 4 for confirmation). We obtain Sin = ¢ = 647 as
the Sine of geographic latitude, which is the value that has been used repeatedly in the previous
examples, and also the value which Paramesvara mentions as the geographic latitude of his village
(see introduction 0.1.2).
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20 Example 6 (GD2 246-247)

Figure 20.1: Situation in GD2 246. The gnomon is OX and its shadow OC when the sun X is in
the southeast.

GD2 246 is another example, following GD2 245, for computing the sun’s longitude and Sine
of geographic latitude from a shadow in the intermediary direction. As was the case with the
previous example, the gnomon is not specified to be a great gnomon or a twelve argula gnomon.
However, this time the length of the gnomon itself is unspecified. The difference between the
lengths of the gnomon and its shadow is given as a proportion. This is unlikely to be the result
of an actual observation, and is most likely a constructed example with numbers chosen so that
the computation is more precise than in GD2 245.

The situation is shown in figure 20.1. This time the sun X is in the southeast and the shadow
OC of the gnomon XO extends towards the northwest. The information given in GD2 246 is as
follows:

’ fe 1 1 .
e Thelength of a gnomon’s shadow is 57 and 155 shorter than the gnomon itself. [s = (1 — = — =

101

e The sun is in the southeast direction.
e The hour angle is 1916 pranas.

e The longitude of the sun and the geographic latitude are to be computed.

By following the procedures in GD2 235-240, we can compute the Sine of the sun’s declination.
However, there is nothing that tells us whether it is northward or southward. We need to
determine its direction to compute the sun’s longitude and the Sine of geographic latitude. It
is the introductory sentence' that tells us that the sun is in the southern celestial hemisphere,

IThe introductory sentence appears in every manuscript and is not to be confused with the commentary,
which can only be found in two manuscripts.
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and hence that the declination is southward?. Therefore we can consider that the introductory
sentence is also part of this example. If this is indeed Parames$vara’s intention, GD2 246 (as well
as the other examples) might have been designed to be fixed in the treatise and not for being
used separately.

20.1 Solution

The commentary on this example refers to fractional parts more frequently than in the commen-
tary on example 5. For example, even the Sine of declination which had been rounded off to an
integer previously is given with its fractional part. The notation for the fractional part itself is
also different from the previous case. The commentary on example 5 uses avayava (“fraction”,
literally “limb” or “portion”) in combination with other words, but here the format is fixed as
sastyamsah + number “the sixtieths are ..” or sastyamsah 1 “the sixtieth is 17. Such difference
in style might be due to different authorships. However, the last statement in this commentary
(“As for the geographic latitude, it is as previously.”) indicates a continuity with the previous
example.

“In this case, the gnomon assumed by one’s own wit is 2454. And the sixtieths are
28.”

This “assumption” here turns out later to be the value of the great gnomon itself, and the
following steps essentially confirm this. At first glance, there is no explanation on how one
should obtain this value without great intuition. However, this procedure of confirmation can
also be read as an instruction for arriving to this value beginning with a random guess. In any
case, this is a step that does not appear in GD2 itself.

We will first look at the values, and then come back to see the procedure itself. We start
from g = 2454;28. The sexagesimal value 28 is different from the readings in both manuscripts.
There are corruptions in the next two values (24;18 and 23;9) too. We have used the value of
the shadow, 2407;1, to compute backward and correct these values. This will be explained later
in the corresponding passage.

“This divided by one hundred and one is 24. The sixtieths are 18.”

2454; 28
101

This can be rounded off to 24;18.

=24;18,5, - (20.1)

“Then again, this divided by one hundred six is 23. The sixtieths are 9.”

2454; 28

=23;9,19, - 20.2
106 Y ) ) ( )

This can be rounded off to 23;9.

2We will see later that this gives the Sine of geographic latitude Sin ¢ = 647, which is the same value seen
in every other example and also the latitude of Paramesvara’s village. If it were northward, the result would be
Sin ¢ = 2935, corresponding to a latitude of more than 58° north.
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“These two results are to be subtracted from the previous gnomon assumed by
one’s own wit. Then the remainder is 2407. The sixtieth is 1. This is the shadow
of this gnomon.”

The gnomon’s shadow s is

2454; 28 — 24; 18 — 23;9 = 2407; 1 (20.3)

Here, the “sixtieth” is in a singular (sastyamsah). Therefore we are more certain that the
number 1 is correct and not a scribal error. We have used this as a firm starting point to correct
the corruptions in the previous values.

“From these two, the gnomon and shadow, the hypotenuse that is the same as the
Radius should be established. Thus in this case, these two are indeed the great
gnomon and great shadow.”

The hypotenuse h of the gnomon and shadow is computed with the Pythagorean theorem.

h=+/g%+s? (20.4)
= 1/2454; 282 4 2407; 12
= 3437; 45,5, - -

This is very close to the values of the Radius R used by Govindasvamin (3437;44,19), Madhava
(3437;44,48) and Nilakantha (3437;44,47)3. We cannot make h closer to these values by changing
the first order sexagesimals of ¢ and s, and we can conclude that they are indeed values of the
great gnomon G and great shadow S (approximated to the first sexagesimal). It is also significant
that the value of R with fractional parts are being used, and obviously not 3438. Unlike example
5, which sometimes seems to use 3438, the commentator is consistent in using R with fractions,
as we will see.

Now let us go back to the first step and see how we can read the text to understand the
procedure to find the great gnomon and great shadow beginning with a pure guess.

Instead of following the value given by the commentator, we choose another number x as
“the gnomon assumed by one’s own thought”.

“This divided by one hundred and one is” 757

“Then again, this divided by one hundred six is” 155-

“These two results are to be subtracted from the previous gnomon assumed by one’s own
thought.” x — 157 — 155+ “This is the shadow of this gnomon.”

“From these two, the gnomon and shadow, the hypotenuse” ... “should be established.”

Now we can use the values of the shadow, the hypotenuse and the Radius to compute the
great shadow with a Rule of Three, as we have done in the previous example. Thus it is possible
to use the previous statements as instructions for the procedure beginning with a guess of any
value.

The next substep in the commentary on example 5 was to compute the base and upright of
the great shadow. In this example it is missing, and only the upright of the great shadow is
mentioned later in the procedure.

3See appendix B.6.1 for details. Nilakantha’s value is reconstructed from his second incursion method.
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“The hour angle in asus (i.e. pranas) is 1916.”

H = 1916 asus. The time unit prana is paraphrased to asu, as was the case with the commentary
on example 5. This time, the value is an integer without a sexagesimal part. However, its
corresponding Sine will be given with a sexagesimal fraction as we will see in the next substep.

“Its Sine is 1818. The sixtieths are 17.’

Here again the Sine of the hour angle Sin H is given with its sexagesimal fraction. In example
5, we only had one manuscript with a corrupted reading for the value. This time, we have two
manuscripts which give the same values in an unmistakable script.

I have computed the Sine for H = 1916 with the same methods as in the previous example.
See appendix sections B.5 and B.6.1 for details.

Table 20.1: Sin H computed with various methods, up to the second order sexagesimal (arc
thirds).

Sine tables
a.Abh. b.Abh.cor. c.Gov. d.Madh.

Inter- 1. Linear 1817;28,15 1817;28,15 1817;21,32 1817;21,47
polation 2. Nilakantha 1818;25,26 1818;25,26 1818;19,49 1818;20,05
methods 3. Madhava 1818;24,31 1818;24,31 1818;18,55 1818;19,10

4. Brahmagupta 1818;28,12 1818;20,42 1818;16,41 1818;16,56

5. Govindasvamin | 1818;28,12 1818;20,42 1818;16,41 1818;16,56

6. Paramesvara 2 1818;24,31 1818;24,31 1818;18,54 1818;19,10

7. Parame$vara 3 1818;25,53 1818;25,53 1818;20,16 1818;20,32
Bhaskara I’s formula 1817;43,17 1817;43,17 1817;35,00 1817:35,15
Madhava’s power series 1818;21,37 1818;21,37 1818;20,44 1818;20,46

Sine tables
e.Nil.1 f.N1l.2 g.Vat.

Inter- 1. Linear 1817;18,16 1817:21,47 1818;19,23
polation 2. Nilakantha 1818;16,25 1818;20,05 1818;20,16
methods 3. Madhava 1818;15,34 1818;19,10 1818;20,16

4. Brahmagupta 1818;13,25  1818;16,56  1818;24,38

5. Govindasvamin | 1818;13,25 1818;16,56  1818;24,38

6. Paramesvara 2 1818;15,30 1818;19,10 1818;20,16

7. Paramesvara 3 | 1818;16,52  1818;20,32 1818;20,16
Bhaskara I's formula 1817;26,16 1817;35,15 1817:34,50
Madhava’s power series 1818;19,49 1818;20,46 1818;20,43

Here again, Brahmagupta’s second order interpolation with the reconstructed tables of Govin-
dasvamin, Madhava and Nilakantha (second recursion method) reproduces the value 1818;17
(table 20.1). Govindasvamin’s interpolation method gives the same method as Brahmagupta’s,
since they are mathematically equal when the arc is between 30° and 60° (Gupta (1969, p. 92)).
The combination of Paramesvara’s third order interpolation and Nilakantha’s first recursion
method can also be rounded to 1818;17, but it is very unlikely that this was the method that
was actually used.

Both this and the previous case in GD2 245 (633;4 as the value of Sin 636;45), suggest that
these computations were done by the second order interpolation stated by Brahmagupta and
Bhaskara II and cited by Parameévara. However these are only two examples, and depending on
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hidden errors, this conclusion may change. Further examples of Sine computation in astronomical
problems are yet to be examined.

“The segment in the diurnal circle is the same as the upright of the [great] shadow,
1702. The sixtieth is 1.”

Using GD2 235 (formula 18.1),the base B and upright U of the great shadow are

/2407; 12
B:u: 0’27’

=1702;1,4, ... (20.5)

which can be rounded to 1702;1. There is no reference to B in the commentary, but it is required
later.

The “upright” in the diurnal circle u is referred to here as the khanda, literally “fragment” or
“segment”. In the context of Sines, this term is often used in the sense of “Sine difference”, i.e.
the difference between two consecutive values of Sines in a table. However we need to understand
it here as a reference to an entire segment.

“In this case, the quotient is the diurnal ‘Sine’, 3217. The sixtieths are 54.”
From GD2 238 (formula 18.2), the radius of the diurnal circle r is

_ Ru
"= Sin H
_3437;44,48 x 17021
N 1818;17
= 3217;55,35, - - (20.6)

leaving a small discrepancy with the text. Here we have chosen Madhava’s value for R, but
choosing other values between 3437;44 and 3437;45 does not fully account for the difference
(r = 3217;54,50,--- when R = 3437;44 and r = 3217;55,46,--- when R = 3437;45). The
discrepancy seems to have originated in the computation itself.

“The [Sine of] declination is 1209. The sixtieths are 38.°
From GD2 239ab (formula 18.3), the Sine of declination Sin ¢ is

Sind =/ R2 —r2
= /3437; 44,472 — 3217; 542
=1209;38,10- - - (20.7)

which can be approximated to 1209;38. Here we use Madhava’s value for R, but assuming
that r ~ 3217;54 and Sind ~ 1209;38 are correct, we can examine the value of R used by
the commentator from this computation. If r = 3217;54 and 109;37,30 < Sind < 1209; 38, 30,
then 3437;44,33 < R < 3437;44,53. It is remarkable that values approximated to the first
sexagesimal like 3437;44 or 3437;45 cannot reproduce the result. Among the Sine tables that
we have listed in appendix B.6.1, only those of Madhava (R = 3437;44,47) and Nilakantha
(reconstructed from his second recursion method, R = 3437;44,48) fit this condition.
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“From it the “base” Sine is established. It is almost the same as a Sine of two
signs. Its arc is two signs.”

There is an explicit reference to the “base” Sine Sin Ap, and we can see that the commentator
does not jump directly from the Sine of declination to the “base” arc. However, its value is given
only approximatively. Compared with all the previous statements, where the values up to the
first sexagesimal were given, this is a striking difference.

Whether GD2 73ab was used for computing Sin Ap is yet again a problem. If the commentator
were consistent, we would expect him to use the value R = 3437;44,47 or R = 3437;44,48, and
use Sin24° computed from either Madhava’s or Nilakantha’s Sine table with a second order
interpolation (which is 1398;12,28 in either case) fas the Sine of greatest declination. In this case
(using Madhava’s value for R),

Sind - R
Sin 24°
1219; 38 x 3437; 44,48

1398; 12, 28
= 2973;50, - - - (20.8)

Sin)\B =

which is close to the Sine of two signs (2977;10,34 according to Madhava’s table), but with all
the precision in the previous passages, it is strange that the commentator concludes that “its arc
is two signs”. If we use R = 3438 and Sin 24° = 1397 instead, the result is Sin A\ = 2976;53, - - -
and close to Bhaskara II’s value for the Sine of two signs, 2977. However we are still left with a
great inconsistency.

One hypothesis is that the commentator has expected that the “base” arc would be exactly
two signs, and finding that he could not reproduce the value, left the statement ambiguous. In
any case, the attitude is different with the commentary on example 5 which gives the value of
the “base” arc up to its degrees.

“This increased by half a circle is [the longitude of] the sun. Or else, a circle
decreased by this is [the longitude of] the sun.”

These are the computations to obtain the sun’s longitude from the “base” arc. According to
GD2 216-217, they correspond to the cases when the sun is in the southern celestial hemisphere
and on its southward course, and when the sun is in the southern celestial hemisphere and on its
northward course, respectively. Here we need the statement in the introductory sentence of the
verse to know that the sun is in the southern celestial hemisphere, but the commentary makes
no remark on this point.

“As for the geographic latitude, it is as previously.”

4

The commentator does not explain the “without-difference” method in detail. All we can see
is that there is a reference to the previous example by saying “previously”, but it is ambiguous
whether this refers to the final value for the Sine of geographic latitude, or to the method itself.

I have simulated the “without-difference” method beginning with Sin7; = Sinéd + 10 with
a SAGE program. Three cases were examined, using different values for the Radius R, base of
great shadow B, great gnomon G and Sine of declination Sin §, and with a difference in rounding.

a. R=3438, B=1702, G = 2454, Sind = 1210. Values rounded to integers at every step.
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b. R = 3437;44,48, B = 1702;1, G = 2454;28, Sind = 1209; 38. Values rounded to integers
at every step.

c. R = 3437;44,48, B = 1702;1, G = 2454;28, Sind = 1209;38. No rounding. Iteration
stopped when Sinpy_1 — Sinpy < 0;0, 1.

Table 20.2: Without-different method in Example 6 computed with SAGE.

(a) Rounded values, rounding at each step.

Cycle (N) Sinny Sinpy Singny_1 — Singy

1 1220 662 -
2 1233 645 -17
3 1232 646 1
4 1232 646 0

(b) Parameters with fraction, rounding at each step.

Cycle (N) Sinny Sinpy Singny_1 — Singy

1 1220 663 -

2 1232 646 -17

3 1231 647 1

4 1231 647 0

(¢) Parameters with fraction, no rounding
Cycle (N) Sinny Sin gy Sinpny_1 — Sinpy

1 1219;38,00 662;56,44 -
2 1232;46,23 645;31,57 -18;35,13
3 1231;32,26  647;10,05 1;38,07
4 1231;39,17  647;00,59 -1;50,54
) 1231;38,39  647;01,50 0;00,50
6 1231;38,43  647;01,45 0;00,05
7 1231;38,42  647;01,46 0;00,00

The results are shown in table 20.2. If we expect that Sin ¢ = 647 as in the other examples,
we need to use the parameters with their fractional parts as computed in the previous step. This
is different from example 5, where we could obtain Sin¢ = 647 with values rounded in each
computation.

Examples 1 to 4 could be solved with rounding done in every computation, but examples 5
and 6 require computations with fractions. While some steps of example 5 could be done with
rounding, example 6 seems to involve fractional numbers at every step. If this was Paramesvara’s
intention, he might have arranged the examples to be in the order of difficulty.

20.2 Expanding the method to any direction (GD2 247)

The method explained in GD2 235-244 with its examples in GD2 245 and GD2 246 was limited to
the case when the sun was in an intermediary direction. The statement in GD2 247 is probably a
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reference that the same procedure? can be applied to any case, regardless of the sun’s direction.
We assume that “everything” refers to whatever value obtained in this method, such as the sun’s
longitude and the Sine of geographic latitude.

I have numbered this half-verse GD2 247, but its status as an independent verse may be
questioned. Only two manuscripts (Ky and Ky) note its verse number, and two manuscripts (K5+
and I;) that contain commentaries include GD2 247 in the commentary on GD2 246°.

One possibility is that the archetype(s) of every extant manuscript contained commentaries
including this text. At one point a copyist decided to copy the verses without the commentaries,
but GD2 247 was kept because it fitted the half-gits meter by chance. In this case, GD2 247
concludes the commentary on GD2 246 by referring to situations which are not covered by this
example. This is similar to what we can see at the end of the commentary on GD2 231 (page
321).

Alternatively, we can explain the position and length of GD2 247 by considering that it
originally formed a full verse with GD2 244ef. This also accounts for the fact that GD2 244
consists of one verse and a half. However, we will then have to explain why GD2 245 and GD2
246 were inserted in this position. We have also seen in section 18.13 that it is probable that
GD2 244cd had been inserted later. Therefore we think that this hypothesis is not convincing
enough.

Although we cannot completely rule out these two possibilities, we have decided to keep
GD2 247 at this position, assuming that this was Paramesvara’s intention. We may account
for its position in the treatise as follows. Not only GD2 235-244 but also the two examples in
GD2 245-246 limit the situation to when the sun is in the intermediary direction. Therefore it
is reasonable that GD2 247, a statement which goes out of this boundary, is placed after the
examples.

4Except that GD2 235 needs to be modified. See footnote 2 in section 18.1.

5This can be seen from the decorative segmentation mark put after GD2 247. Elsewhere in the manuscripts,
the same mark is always put at the end of a commentary.
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21 Parallax (GD2 248-276)

The section starts in GD2 248 by contrasting the geocentric orbit of planets with the “circle of
sight” around the observer on the Earth. GD2 249-253 continues how the observer’s position on
the Earth causes the (geocentric) parallax! (lambana). The measurement unit of this parallax
is not specified, but it shall turn out that this is parallax in yojanas, measured in the orbit.
GD2 254-259 compare this with the parallax measured in minutes inside the circle of sight.
Parameg$vara uses a drawing for visualizing the difference between the parallax in yojanas and
in minutes in GD2 260-266. The subject shifts in GD2 267-269, where the geocentric parallax is
divided into its longitudinal and latitudinal components (lambana and nati). These components
are linked in GD2 270-273 with two Sines formed with the ecliptic called the Sine of sight-
motion (drggati) and the Sine of sight-deviation (drkksepa). GD2 274-276 deals with the rules
for computing these components with measuring units of yojanas and minutes.

In general, Sanskrit texts on astronomy do not deal with the entire geocentric parallax. For
example, Brahmasphutasiddhanta chapter 5 on solar eclipses mentions the longitudinal and lati-
tudinal parallax at the very beginning (5.1-3) and deals with their computation throughout the
chapter, but hardly any reference is made to their combined amount (Yano (1982))2. Likewise,
MBh 5.24-27 (T. Kuppanna Sastri (1957, pp. 280-282)), Suryasiddhanta 5.1-9 (Shukla (1957,
pp. 66-68)), Sisyadhiwrddhidatantra 6.6-7 (Chatterjee (1981, 1, p. 112)), Siddhantasekhara 6.1-3
(Miéra (1932, pp. 382-384)) and Siddhantasiromani Grahaganitadhyaya 6.1-4 (Chaturvedi (1981,
pp. 258-261)) also deal only with the two components®. All of these verses are in a chapter titled
“solar eclipse” where the two components and not the entire parallax were necessary.

In GD2, Paramesvara does occasionally refer to the longitudinal and latitudinal parallax
or its element as something “in an eclipse” (GD2 268, 269, 276). Yet he does not explain
how the parallax is actually applied to eclipses, such as in finding the possibility of a solar
eclipse or computing its timing. There is no reference to parallaxes in GD2 277-301 on eclipses.
Paramesvara seems to focus on explaining the principle of the parallax in general, rather than
giving the practical rules. The reader would have to advance to other texts to find instructions
on such computations involving parallaxes.

21.1 The circle of sight (GD2 248-249)

GD2 248 begins with describing the circle of sight (drrimandala), a circle centered on the location
of the observer on the surface of the Earth, as opposed to circles of planets which are concentric
with the Earth. This contrast evokes the description of planetary orbits where two great circles,
the concentric orbital circle and the eccentric circle, are separated by a given distance (appendix
C.1). We may apply the same interpretation for Parames$vara’s description in GD2 248 and

1In modern astronomy, the term “parallax” has many meanings. Hereafter we shall use this word in the sense
of “geocentric parallax”.

2The longitudinal and latitudinal parallax also appear in Brahmasphutasiddhanta 21.65 (Ikeyama (2002,
p. 149)), again without the entire parallax.

3Meanwhile, there is no reference to the longitudinal and latitudinal parallax in the Aryabhatiya, but Abh
4.34 seems to be related with this topic. K. V. Sarma and Shukla (1976, p. 147) asserts that the word drkchaya in
this verse means parallax. On the other hand, Parame$vara’s commentary (Kern (1874, pp. 92-93)) does not gloss
this term, but uses other words in Abh 4.34 to formulate two rules which give the latitudinal and longitudinal
parallaxes in yojanas (this is equivalent to GD2 274). Then, in a shorter sentence he mentions that the [unified]
parallax can be obtained likewise (evam). Therefore, it is unlikely that Paramesvara considers Abh 4.34 as a
reference exclusively to a united parallax.
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Figure 21.1: A wrong model for GD2 248: A concentric circle around the Earth’s center E and
the circle of sight around the observer O.

depict two circles with the same size (figure 21.1), but I think that this is incorrect. GD2 248
refers to the planets in the plural, suggesting that there should be different circles for each planet.
Meanwhile, there is only one circle of sight. Therefore it is unlikely that the size of this circle of
sight is not linked with the orbits of circles.

From GD2 254 onward, arcs in the orbits of planets are measured in yojanas. Meanwhile,
Paramesvara explains later in the text that a yojana in a great circle is equal to an arc minute
(GD2 256) and draws the circle of sight as a great circle (GD2 261). Since orbits of planets are
much larger in yojanas®, the circle of sight will be always inside them.

Paramesvara’s statements in GD2 suggest that the circle of sight is only used for describing
the parallax in a plane diagram. Meanwhile, we do not know whether the armillary sphere could
also be used for explaining this topic. Bhaskara II describes a “sphere of sight (drggola)” put
outside the stellar sphere and the celestial sphere in his Siddhantasiromani Goladhyaya 6.8-9
(Chaturvedi (1981, p. 315)), but this sphere is not associated with the parallax and serves only
as a place for projecting the circl