F. Jona and G. Shirane, Ferroelectric crystals, 1962.

D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Progr. Phys, vol.61, p.1267, 1998.

J. Fousek and V. Janovec, The orientation of domain walls in twinned ferroelectric crystals, J. Appl. Phys, vol.40, p.135, 1969.

V. Stepkova, P. Marton, and J. Hlinka, Stress-induced phase transition in ferroelectric domain walls of BaTiO 3, J. Phys.: Condens. Matter, vol.24, p.212201, 2012.

M. Dawber, K. M. Rabe, and J. F. Scott, Physics of thin film ferroelectric oxides, Rev. Mod. Phys, vol.77, p.1083, 2005.

V. Shur, Kinetics of ferroelectric domains : Application of general approach to LiNbO 3 and LiTaO 3, J. Mater. Sci, vol.41, p.199, 2006.

C. Lichtensteiger, P. Zubko, M. Stengel, P. Aguado-puente, J. M. Triscone et al., Ferroelectricity in Ultrathin-Film Capacitors, Oxide Ultrathin Films, 2012.

A. E. Feuersanger and P. Lublin, Electrical properties and structure of barium titanate films, Journal of Electrochemical Society, vol.110, p.192, 1963.

J. R. Slack and J. C. Burfoot, Electrical properties of flash evaporated ferroelectric BaTiO 3 thin films, Journal of Physics C, vol.4, p.898, 1971.

Y. Y. Tomashpolski, Structure studies of ferroelectric vacuum deposit, Ferroelectrics, vol.7, p.253, 1974.

V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-vedrenne, N. D. Mathur et al., Giant tunnel electroresistance for non-destructive readout of ferroelectric states, Nature, vol.460, p.81, 2009.

D. D. Fong, A. M. Kolpak, J. A. Eastman, S. K. Streiffer, G. B. Stephenson et al., Ferroelectricity in Ultrathin Perovskite Films, Science, vol.304, p.1650, 2004.

D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello et al., Stabilization of Monodomain Polarization in Ultrathin PbTiO 3 Films, Phys. Rev. Lett, vol.96, p.127601, 2006.

H. Béa, S. Fusil, K. Bouzehouane, M. Bibes, M. Sirena et al., Ferroelectricity Down to at Least 2 nm in Multiferroic BiFeO 3 Epitaxial Thin Films, Jpn. J. Appl. Phys, vol.45, p.187, 2006.

M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta et al., Tunnel junctions with multiferroic barriers, Nature Materials, vol.6, p.296, 2007.

D. A. Tenne, P. Turner, J. D. Schmidt, M. Biegalski, Y. L. Li et al., Ferroelectricity in Ultrathin BaTiO 3 Films: Probing the Size Effect by Ultraviolet Raman Spectroscopy, vol.103, p.177601, 2009.

A. V. Bune, V. M. Fridkin, S. Ducharme, L. M. Blinov, S. P. Palto et al., Two-dimensional ferroelectric films, Nature, vol.391, 1998.

H. Kohlstedt, N. A. Pertsev, and R. Waser, Size effects on polarization in epitaxial ferroelectric films and the concept of ferroelectric tunnel junctions including first results, Mater. Res. Soc. Symp. Proc, vol.688, issue.5, 2002.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert et al., Enhancement of Ferroelectricity in Strained BaTiO 3 Thin Films, Science, vol.306, p.1005, 2004.

C. Lichtensteiger, J. Triscone, J. Junquera, . Ph, and . Ghosez, Ferroelectricity and Tetragonality in Ultrathin PbTiO 3 Films, Phys. Rev. Lett, vol.94, p.47603, 2005.

C. Lichtensteiger, M. Dawber, N. Stucki, J. Triscone, J. Hoffman et al., Monodomain to polydomain transition in ferroelectric PbTiO 3 thin films with La 0.67 Sr 0.33 MnO 3 electrodes, Applied Physics Letters, vol.90, p.52907, 2007.

V. Nagarajan, J. Junquera, J. Q. He, C. L. Jia, R. Waser et al., Scaling of structure and electrical properties in ultrathin epitaxial ferroelectric heterostructures, Journal of Applied Physics, vol.100, p.51609, 2006.

H. Lu, X. Liu, J. D. Burton, C. Bark, Y. Wang et al., Enhancement of Ferroelectric Polarization Stability by Interface Engineering, Adv. Mater, vol.24, p.1209, 2012.

C. Lichtensteiger, S. Fernandez-pena, C. Weymann, P. Zubko, and J. Triscone, Tuning of the depolarization field and nanodomain structure in ferroelectric thin films, Nano Letters, vol.14, p.4205, 2014.

J. Junquera, . Ph, and . Ghosez, First-principles study of ferroelectric oxide epitaxial thin films and superlattices: the role of the mechanical and electrical boundary conditions, J. Comput. Theor. Nanosci, vol.5, p.2071, 2008.

D. A. Tenne, A. Bruchhausen, N. D. Lanzillotti-kimura, A. Fainstein, R. S. Katiyar et al., Probing Nanoscale Ferroelectricity by Ultraviolet Raman Spectroscopy, vol.313, p.1614, 2006.

G. E. Moore, Cramming more components onto integrated circuits, Electronics, vol.38, 1965.

R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous et al., Design of ionimplanted MOSFET's with very small physical dimensions, IEEE Journal of Solid-State Circuits, vol.9, p.256, 1974.

S. Salahuddin and S. Datta, Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices, Nanoletters, vol.8, p.405, 2008.

S. Salahuddin and S. Datta, Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?, IEDM Digest, p.693, 2008.

R. Waser, Nanoelectronics and Information Technology, 2003.

G. Panomsuwan, O. Takai, and N. Saito, Enhanced memory window of Au/BaTiO 3 /SrTiO 3 /Si(001) MFIS structure with high c-axis orientation for non-volatile memory applications, Appl Phys A, vol.108, pp.337-342, 2012.

G. A. Salvatore, D. Bouvet, and A. M. Ionescu, Demonstration of subthreshold swing smaller than 60mv/decade in Fe-FET with P(VDF-FrFE)/SiO 2 gate stack, Electron Devices Meeting, pp.1-4, 2008.

A. Rusu, G. A. Salvatore, D. Jimenez, and A. M. Ionescu, Metal-Ferroelectric-Metal-Oxide-Semiconductor Field Effect Transistor with Sub-60 mV/decade Subthreshold Swing and Internal Voltage Amplification, Proceedings IEDM, 2010.

D. Jimenez, E. Miranda, and A. Godoy, Analytic Model for the Surface Potential and Drain Current in Negative Capacitance Field-Effect Transistors, IEEE Trans. Electron. Dev, vol.57, p.2405, 2010.

S. Abel, M. Sousa, C. Rossel, D. Caimi, M. D. Rossell et al., Controlling tetragonality and crystalline orientation in BaTiO 3 nanolayers grown on Si, Nanotechnology, vol.24, p.285701, 2013.

R. Droopad, R. Contreras-guerrero, J. P. Veazey, Q. Qiao, R. F. Klie et al., Epitaxial ferroelectric oxides on semiconductors-A route towards negative capacitance devices, Microelectronic Engineering, vol.109, p.290, 2013.

S. Abel, T. Stoferle, C. Marchiori, C. Rossel, M. D. Rossell et al., Strong electro-optically active lead-free ferroelectric integrated on silicon, Nat. Commun, vol.4, p.1671, 2013.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah et al., Active silicon integrated nanophotonics: ferroelectric BaTiO 3 devices, Nano Lett, vol.14, p.1419, 2014.

Y. Shi, M. Cueff, G. Niu, G. Le-rhun, B. Vilquin et al., Phase transitions in [001]-oriented morphotropic PbZr 0.52 Ti 0.48 O 3 thin film deposited onto SrTiO 3 -buffered Si substrate, J. Appl. Phys, vol.115, p.214108, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01053264

A. Sambri, S. Gariglio, A. Pardo, J. Triscone, O. Stéphan et al., Enhanced critical temperature in epitaxial ferroelectric Pb(Zr 0.2 Ti 0.8 )O 3 thin films on silicon, Appl. Phys. Lett, vol.98, p.12903, 2011.

M. Belmeguenai, S. Mercone, C. Adamo, P. Moch, D. G. Schlom et al., Structural and magnetic properties of La 0. 7 Sr 0. 3 MnO 3 thin films integrated onto Si (100) substrates with SrTiO 3 as buffer layer, Journal of Applied Physics, vol.109, pp.7-120, 2011.

A. K. Pradhan, J. B. Dadson, D. Hunter, K. Zhang, S. Mohanty et al., Ferromagnetic properties of epitaxial manganite films on SrTiO 3 /Si hétérostructures, J. Appl. Phys, vol.100, p.33903, 2006.

Y. Y. Mi, Z. Yu, S. J. Wang, P. C. Lim, Y. L. Foo et al., Epitaxial LaAlO 3 thin film on silicon: structure and electronic properties, Appl. Phys. Lett, vol.90, p.181925, 2007.

C. Merckling, G. Delhaye, M. El-kazzi, S. Gaillard, Y. Rozier et al., Epitaxial growth of LaAlO 3 on Si (001) using interface engineering, Microelectron. Reliab, vol.47, p.540, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01939917

J. W. Reiner, A. Posadas, M. Wang, T. P. Ma, and C. H. Ahn, Growth and structural properties of crystalline LaAlO 3 on Si (001), Microelectron. Eng, vol.85, p.36, 2008.

C. B. Eom, R. B. Van-dover, J. M. Phillips, D. J. Werder, J. H. Marshall et al., Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO 3 ) isotropic metallic oxide electrodes, Appl. Phys. Lett, vol.63, p.2570, 1993.

S. Baek and C. Eom, Epitaxial integration of perovskite-based multifunctional oxides on silicon, Acta Mater, vol.61, p.2734, 2013.

J. Wang, H. Zheng, Z. Ma, S. Prasertchoung, M. Wuttig et al., Epitaxial BiFeO 3 thin films on Si, Appl. Phys. Lett, vol.85, p.2574, 2004.

Z. Yu, J. Ramdani, J. A. Curless, C. D. Overgaard, J. M. Finder et al., Epitaxial oxide thin films on Si, ? J. Vac. Sci. Technol. B, vol.25, issue.001, p.1053, 2007.

I. P. Batra, P. Wurfel, and B. D. Silverman, Phase Transition, Stability and Depolarization Field in Ferroelectric Thin Films, Phys. Rev. B, vol.8, p.3257, 1973.

S. K. Streiffer, J. A. Eastman, D. D. Fong, C. Thompson, A. Munkholm et al., Observation of Nanoscale 180° Stripe Domains in Ferroelectric PbTiO 3 Thin Films, Phys. Rev. Lett, vol.89, p.67601, 2002.

D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello et al., Ferroelectricity in Ultrathin Perovskite Films, Science, vol.304, p.1650, 2004.

P. Zubco, N. Stucki, C. Lichtensteiger, and J. Triscone, X-ray Diffraction Studies of 180° Ferroelectric Domains in PbTiO 3 /SrTiO 3 Superlattices under an Applied Electric Field, Phys. Rev. Lett, vol.104, p.187601, 2010.

H. Paik, J. Hong, Y. Jang, Y. C. Park, J. Y. Lee et al., The role of a conductive CaRuO 3 bottom electrode for ferroelectric BaTiO 3 films on a Si substrate, Phys. Status Solidi A, vol.206, p.1478, 2009.

L. Qiao and X. Bi, Origin of compressive strain and phase transition characteristics of thin BaTiO 3 film, Phys. Status Solidi A, vol.207, p.2511, 2010.

M. Scigaj, N. Dix, I. Fina, R. Bachelet, B. Warot-fonrose et al., Ultra-flat BaTiO 3 epitaxial films on Si(001) with large out-of-plane polarization, Appl. Phys. Lett, vol.102, p.112905, 2013.

H. Colder, B. Domengès, C. Jorel, P. Marie, M. Boisserie et al., Structural characterisation of BaTiO 3 thin films deposited on SrRuO 3 /YSZ buffered silicon substrates and silicon microcantilevers, J. Appl. Phys, vol.115, p.53506, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00977777

Z. Li, X. Guo, H. Lu, Z. Zhang, D. Song et al., An Epitaxial Ferroelectric Tunnel Junction on Silicon, vol.26, p.7185, 2014.

V. Vaithynathan, J. Lettieri, W. Tian, A. Sharan, A. Vasudevarao et al., c-axis oriented BaTiO 3 films on (001) Si, J. Appl. Phys, vol.100, p.24108, 2006.

C. Dubourdieu, tetragonal BaTiO 3 epitaxial films with out of plane polarization c-axis on SrTiO 3 -buffered Si (001): Structure and electrical properties, International Symposium on Integrated Functionalities, 2011.

R. A. Mckee, F. J. Walker, and M. F. Chisholm, Physical structure and inversion charge at a semiconductor interface with a crystalline oxide, Science, vol.293, p.468, 2001.

B. R. Lukanov, J. W. Reiner, F. J. Walker, C. H. Ahn, and E. I. Altman, Formation of alkaline-earth template layers on Ge(100) for oxide heteroepitaxy: Self-organization of ordered islands and trenches, Phys. Rev. B, vol.84, p.75330, 2011.

C. Merckling, G. Saint-girons, C. Botella, G. Hollinger, M. Heyns et al., Molecular beam epitaxy growth of BaTiO 3 single crystal on Ge-on-Si(001) substrates, Appl. Phys. Lett, vol.98, p.92901, 2011.

K. D. Fredrickson, P. Ponath, A. B. Posadas, M. R. Mccartney, T. Aoki et al., Atomic and electronic structure of the ferroelectric BaTiO 3 /Ge(001) interface, Appl. Phys. Lett, vol.104, p.242908, 2014.

J. H. Ngai, D. P. Kumah, C. H. Ahn, and F. J. Walker, Hysteretic electrical transport in BaTiO 3 /Ba 1?x Sr x TiO 3 /Ge heterostructures, Appl. Phys. Lett, vol.104, p.62905, 2014.

P. Ponath, K. Fredrickson, A. B. Posadas, Y. Ren, X. Wu et al., Carrier density modulation in a germanium heterostructure by ferroelectric switching, Nat. Commun, vol.6, p.6067, 2015.

K. Nashimoto, D. K. Fork, and T. H. Geballe, Epitaxial growth of MgO on GaAs(001) for growing epitaxial BaTiO 3 thin films by pulsed laser deposition, Appl.Phys. Lett, vol.60, p.1199, 1992.

E. J. Tarsa, M. De-graef, D. R. Clarke, A. C. Gossard, and J. S. Speck, Growth and characterization of (111) and (001) oriented MgO films on (001) GaAs, J. Appl. Phys, vol.73, p.3276, 1993.

S. W. Robey, Interfacial reaction effects in the growth of MgO on GaAs(001) by reactive molecular beam epitaxy, J. Vac. Sci. Technol. A, vol.16, p.2423, 1998.

T. E. Murphy, D. Chen, and J. D. Phillips, Electronic properties of ferroelectric BaTiO 3 /MgO capacitors on GaAs, Appl. Phys. Lett, vol.85, p.3208, 2004.

R. Contreras-guerrero, J. P. Veazey, J. Levy, and R. Droopad, Properties of epitaxial BaTiO 3 deposited on GaAs, Appl. Phys. Lett, vol.102, p.12907, 2013.

J. Gatabi, K. Lyon, S. Rahman, M. Caro, J. Rojas-ramirez et al., Functional materials integrated on III-V semiconductors, Microelectronic Engineering, vol.147, p.117, 2015.

W. Huang, Z. P. Wu, and J. H. Hao, Electrical properties of ferroelectric BaTiO 3 thin film on SrTiO 3 buffered GaAs by laser molecular beam epitaxy, Appl. Phys. Lett, vol.94, p.32905, 2009.

Y. Liang, J. Kulik, T. C. Eschrich, R. Droopad, Z. Yu et al., Hetero-epitaxy of perovskite oxides on GaAs(001) by molecular beam epitaxy, Appl. Phys. Lett, vol.85, p.1217, 2004.
DOI : 10.1063/1.1783016

Y. Liang, J. Curless, and D. Mccready, Band alignment at epitaxial SrTiO 3 -GaAs(001) heterojunction, Appl. Phys. Lett, vol.86, p.82905, 2005.
DOI : 10.1063/1.1871364

R. F. Klie, Y. Zhu, E. I. Altman, and Y. Liang, Atomic structure of epitaxial SrTiO 3 -GaAs(001) heterojunctions, Appl. Phys. Lett, vol.87, p.143106, 2005.
DOI : 10.1063/1.2077837

Z. P. Wu, W. Huang, K. H. Wong, and J. H. Hao, Structural and dielectric properties of epitaxial SrTiO 3 films grown directly on GaAs substrates by laser molecular beam epitaxy, J. Appl. Phys, vol.104, p.54103, 2008.

L. Louahadj, R. Bachelet, P. Regreny, L. Largeau, C. Dubourdieu et al., Molecular beam epitaxy of SrTiO 3 on GaAs(001): GaAs surface treatment and structural characterization of the oxide layer, Thin Solid Films, vol.563, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01848757

L. Louahadj, D. L. Bourdais, L. Largeau, G. Agnus, L. Mazet et al., Ferroelectric Pb(Zr,Ti)O 3 epitaxial layers on GaAs, Appl. Phys. Lett, vol.103, p.212901, 2013.
DOI : 10.1063/1.4831738

URL : https://hal.archives-ouvertes.fr/hal-01940000

R. Contreras-guerrero, M. Edirisooriya, O. C. Noriega, and R. Droopad, Interface properties of MBE grown epitaxial oxides on GaAs, Journal of Crystal Growth, vol.378, p.238, 2013.
DOI : 10.1016/j.jcrysgro.2012.12.131

G. Niu, B. Gautier, S. Yin, G. Saint-girons, P. Lecoeur et al., Molecular beam epitaxy growth of BaTiO 3 thin films and crucial impact of oxygen content conditions on the electrical characteristics, Thin Solid Films, vol.520, p.4595, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01939992

M. L. Royer, Recherches expérimentales sur l'épitaxie ou orientation mutuelle de cristaux d'espèces différentes, Bull. Soc. Fr. Minéral. Cristallogr, vol.51, p.7, 1928.

G. Delhaye, Oxydes cristallins à haute permittivité diélectrique épitaxiés sur silicium : SrO et SrTiO 3, 2006.

A. Y. Cho, Film Deposition by Molecular Beam Techniques, J. Vac. Sci. Tech, vol.8, p.31, 1971.
DOI : 10.1116/1.1316387

A. Y. Cho and J. R. Arthur, Molecular beam epitaxy, Prog. Solid State Chem, vol.10, p.157, 1975.
URL : https://hal.archives-ouvertes.fr/hal-01492483

J. Robertson, High dielectric constant gate oxides for metal oxide Si transistors, Rep. Prog. Phys, vol.69, p.327, 2006.
DOI : 10.1088/0034-4885/69/2/r02

L. Louahadj, Développement de l'épitaxie par jet moléculaire d'oxydes fonctionnels sur silicium, 2014.

M. Birkholz, Thin Film Analysis by X-Ray Scattering, 2006.

A. J. Cho, The technology and Physics of molecular beam epitaxy, 1985.

D. B. Williams and C. B. Carter, Transmission Electron Microscopy, 2009.

K. Sohlberg, T. J. Pennycook, W. Zhou, and S. J. Pennycook, Insights into the physical chemistry of materials from advances in HAADF-STEM, Phys. Chem. Chem. Phys, vol.17, p.3982, 2015.

M. J. Hÿtch, E. Snoeck, and R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs, Ultramicroscopy, vol.74, p.131, 1998.

M. Korytov, Quantitative Transmission Electron Microscopy Study of III-Nitride Semiconductor Nanostructures, 2010.

R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 2011.

R. T. Haasch, X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES), Practical Material Charecterization, 2014.

D. A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Physical Review B, vol.5, p.4709, 1972.

K. Jacobs and X. Spectroscopy,

D. ,

S. Kalinin and A. Gruverman, Scanning Probe Microscopy, 2007.

F. Peter, A. Rüdiger, R. Dittmann, R. Waser, K. Szot et al., Analysis of shape effects on the piezoresponse in ferroelectric nanograins with and without adsorbates, Appl. Phys. Lett, vol.87, p.82901, 2005.

S. Jesse and S. V. Kalinin, Band excitation in scanning probe microscopy: sines of change, J. Phys. D. Appl. Phys, vol.44, p.464006, 2011.

S. Jesse, S. V. Kalinin, R. Proksch, A. P. Baddorf, and B. J. Rodriguez, The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale, Nanotechnology, vol.18, p.435503, 2007.

S. Jesse, P. Maksymovych, and S. V. Kalinin, Rapid multidimensional data acquisition in scanning probe microscopy applied tol ocal polarization dynamics and voltage dependent contact mechanics, Applied Physics Letters, vol.93, p.112903, 2008.

. Viii, Références bibliographiques

G. Thèse and . Delhaye, Oxydes cristallins à haute permittivité diélectrique épitaxiés sur silicium : SrO et SrTiO 3, 2006.

G. Thèse and . Niu, Epitaxy of crystalline oxides for functional materials integration on silicon, INL, 2010.

L. Thèse and . Louahadj, Développement de l'épitaxie par jet moléculaire d'oxydes fonctionnels sur silicium, INL, 2014.

R. A. Mckee, F. J. Walker, and M. F. Chisholm, Crystalline oxides on silicon: the first five monolayers, Physical Review Letters, vol.81, p.3014, 1998.

Y. Wei, X. Hu, Y. Liang, D. C. Jordan, B. Craigo et al., Mechanism of cleaning Si (100) surface using Sr or SrO for the growth of crystalline SrTiO 3 films, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.4, pp.1402-1405, 2002.

Y. Yoneda, K. Sakaue, and H. Terauchi, RHEED observation of BaTiO 3 thin films grown by MBE, Surface Science, vol.529, p.283, 2003.

A. Barbier, C. Mocuta, D. Stanescu, P. Jegou, N. Jedrecy et al., Surface composition of BaTiO 3 /SrTiO 3 (001) films grown by atomic oxygen plasma assisted molecular beam epitaxy, J. Appl. Phys, vol.112, p.114116, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01237473

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-sweet1 et al., Switching of ferroelectric polarization in epitaxial BaTiO 3 films on silicon without a conducting bottom electrode, Nature Nanotechnology, vol.8, p.748, 2013.

J. Zhang, D. Cui, H. Lu, Z. Chen, Y. Zhou et al., Structural Behavior of Thin BaTiO 3 Film Grown at Different Conditions by Pulsed Laser Deposition, Jpn. J. Appl. Phys., Part, vol.1, p.276, 1997.

J. Hiltunen, D. Seneviratne, H. L. Tuller, J. Lappalainen, and V. Lantto, Crystallographic and dielectric properties of highly oriented BaTiO 3 films: Influence of oxygen pressure utilized during pulsed laser deposition, J. Electroceram, vol.22, p.395, 2009.

P. Chen, F. Khatkhatay, W. Zhang, C. Jacob, L. Jiao et al., Strong oxygen pressure dependence of ferroelectricity in BaTiO 3 /SrRuO 3 /SrTiO 3 epitaxial heterostructures, J. Appl. Phys, vol.114, p.124101, 2013.

J. Zhang, D. Cui, Y. Zhou, L. Li, Z. Chen et al., Effect of oxygen pressure on the orientation, lattice parameters, and surface morphology of laser ablated BaTiO 3 thin films, Thin Solid Films, vol.287, p.101, 1996.

N. Y. Lee, T. Sekine, Y. Ito, and K. Uchino, Deposition Profile of RF-Magnetron-Sputtered BaTiO 3 Thin Films, Jpn. J. Appl. Phys., Part, vol.1, p.1484, 1994.

T. Zhao, F. Chen, H. Lu, G. Yang, and Z. Chen, Thickness and oxygen pressure dependent structural characteristics of BaTiO 3 thin films grown by laser molecular beam epitaxy, J. Appl. Phys, vol.87, p.7442, 2000.

Y. L. Zhu, S. J. Zheng, D. Chen, and X. L. Ma, Microstructure tuning of epitaxial BaTiO 3 ? x thin films grown using laser molecular-beam epitaxy by varying the oxygen pressure, Thin Solid Films, vol.518, p.3669, 2010.

D. Fuchs, M. Adam, P. Schweiss, S. Gerhold, S. Schuppler et al., Structural properties of slightly off-stoichiometric homoepitaxial SrTi x O 3?? thin films, J. Appl. Phys, vol.88, p.1844, 2000.

C. M. Brooks, L. Kourkoutis, T. Heeg, J. Schubert, D. A. Muller et al., Growth of homoepitaxial SrTiO 3 thin films by molecular-beam epitaxy, Appl. Phys. Lett, vol.94, p.162905, 2009.

V. Vaithyanathan, J. Lettieri, W. Tian, A. Sharan, A. Vasudevarao et al., c-axis oriented epitaxial BaTiO 3 films on (001) Si, Journal of Applied Physics, vol.100, p.24108, 2006.

F. Niu and B. W. Wessels, Epitaxial growth and strain relaxation of BaTiO 3 thin films on SrTiO 3 buffered (001) Si by molecular beam epitaxy, J. Vac. Sci. Technol. B, vol.25, p.1053, 2007.

G. Niu, S. Yin, G. Saint-girons, B. Gautier, P. Lecoeur et al., Epitaxy of BaTiO 3 thin film on Si(001) using a SrTiO 3 buffer layer for non-volatile memory application, Microelectronic Engineering, vol.88, p.1232, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01939990

R. Droopad, R. Contreras-guerrero, J. P. Veazey, Q. Qiao, R. F. Klie et al., Epitaxial ferroelectric oxides on semiconductors-A route towards negative capacitance devices, Microelectronic Engineering, vol.109, p.290, 2013.

S. Abel, M. Sousa, C. Rossel, D. Caimi, M. D. Rossell et al., Controlling tetragonality and crystalline orientation in BaTiO 3 nano-layers grown on Si, Nanotechnology, vol.24, p.285701, 2013.

S. Abel, T. Stoferle, C. Marchiori, C. Rossel, M. D. Rossell et al., Strong electro-optically active lead-free ferroelectric integrated on silicon, Nat. Commun, vol.4, p.1671, 2013.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah et al., Active Silicon Integrated Nanophotonics: Ferroelectric BaTiO 3 Devices, Nano Lett, vol.14, p.1419, 2014.

V. Références,

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-sweet1 et al.,

V. Kalinin, A. A. Demkov, and V. Narayanan, Switching of ferroelectric polarization in epitaxial BaTiO 3 films on silicon without a conducting bottom electrode, Nature Nanotechnology, vol.8, p.748, 2013.

S. Abel, M. Sousa, C. Rossel, D. Caimi, M. D. Rossell et al., Controlling tetragonality and crystalline orientation in BaTiO 3 nano-layers grown on Si, Nanotechnology, vol.24, p.285701, 2013.

R. Droopad, R. Contreras-guerrero, J. P. Veazey, Q. Qiao, R. F. Klie et al., Epitaxial ferroelectric oxides on semiconductors-A route towards negative capacitance devices, Microelectronic Engineering, vol.109, p.290, 2013.

I. P. Batra, P. Wurfel, and B. D. Silverman, Phase Transition, Stability and Depolarization Field in Ferroelectric Thin Films, Phys. Rev. B, vol.8, p.3257, 1973.

I. P. Batra, P. Wurfel, and B. D. Silverman, Depolarization Field and Stability Considerations in Thin Ferroelectric Film, J. Vac. Sci. Technol, vol.10, p.687, 1973.

A. Gruverman and A. Kholkin, Nanoscale ferroelectrics: processing, characterization and future trends, Rep. Prog. Phys, vol.69, p.2443, 2006.

S. V. Kalinin, A. Rar, and S. Jesse, decade of piezoresponse force microscopy: progress, challenges, and opportunities, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.53, p.2226, 2006.

N. Balke, I. Bdikin, S. V. Kalinin, and A. L. Kholkin, Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future, J. Am. Ceram. Soc, vol.92, p.1629, 2009.

A. Gruverman, O. Auciello, and H. Tokumoto, Scanning force microscopy for the study of domain structure in ferroelectric thin films, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, p.602, 1996.

S. Hong, J. Woo, H. Shin, J. U. Suwon, Y. E. Pak et al., Principle of ferroelectric domain imaging using atomic force microscope, J. Appl. Phys, vol.89, p.1377, 2001.

S. V. Kalinin and D. A. Bonnell, Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces, Phys . Rev. B, vol.65, p.125408, 2002.

S. V. Kalinin and D. A. Bonnell, Contrast mechanism maps for piezoresponse force microscopy, J. Mater. Res, vol.17, p.936, 2002.

S. V. Kalinin, A. Jesse, A. P. Tselev, N. Baddorf, and . Balke, The role of electrochemical phenomena in scanning probe microscopy of ferroelectric thin films, ACS Nano, vol.5, p.5683, 2011.

N. Balke, P. Maksymovych, S. Jesse, A. S. Herklotz, A. Tselev et al., Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy, ACS Nano, vol.9, p.6484, 2015.

N. Balke, S. Jesse, A. N. Morozovska, E. Eliseev, D. W. Chung et al., Nanoscale Mapping of Ion Diffusion in a Lithium-Ion, Battery Cathode, Nat. Nanotechnol, vol.5, p.749, 2010.

A. Kumar, F. Ciucci, A. N. Morozovska, S. V. Kalinin, and S. Jesse, Measuring Oxygen Reduction/Evolution Reactions on the Nanoscale, Nat. Chem, vol.3, p.707, 2011.

C. W. Bark, P. Sharma, Y. Wang, S. H. Baek, S. Lee et al.,

V. Kalinin, A. Sokolov, E. Y. Tsymbal, M. S. Rzchowski, A. Gruverman et al., Switchable Induced Polarization in LaAlO 3 /SrTiO 3 Heterostructures, Nano Lett, vol.12, p.1765, 2012.

M. S. Marshall, D. P. Kumah, J. W. Reiner, A. P. Baddorf, C. H. Ahn et al., Piezoelectric force microscopy of crystalline oxide-semiconductor hétérostructures, Appl. Phys. Lett, vol.101, p.102902, 2012.

Y. Kim, A. N. Morozovska, A. Kumar, S. Jesse, E. A. Eliseev et al., Ionically-mediated electromechanical hysteresisin transition metal oxides, ACS Nano, vol.6, p.7026, 2012.

A. S. Borowiak, N. Baboux, D. Albertini, B. Vilquin, G. Girons et al., Electromechanical response of amorphous LaAlO 3 thin film probed by scanning probe microscopies, Appl. Phys. Lett, vol.105, p.12906, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01489365

M. P. Warusawithana, C. Cen, C. R. Sleasman, J. C. Woicik, Y. Li et al.,

L. Ryan, M. Wang, D. A. Bedzyk, L. Muller, J. Chen et al., A Ferroelectric Oxide Made Directly on Silicon, Science, vol.324, p.367, 2009.

F. Peter, A. Rüdiger, R. Dittmann, R. Waser, K. Szot et al., Analysis of shape effects on the piezoresponse in ferroelectric nanograins with and without adsorbates, Appl. Phys. Lett, vol.87, p.82901, 2005.

S. Jesse and S. V. Kalinin, Band excitation in scanning probe microscopy: sines of change, J. Phys. D. Appl. Phys, vol.44, p.464006, 2011.

T. Jungk, A. Hoffmann, and E. Soergel, Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy, Applied Phyics Letters, vol.89, p.163507, 2006.

T. Jungk, A. Hoffmann, and E. Soergel, Consequences of the background in piezoresponse force microscopy on the imaging of ferroelectric domain structures, Journal of Microscopy, vol.227, p.72, 2007.

T. Jungk, A. Hoffmann, and E. Soergel, Challenges for the determination of piezoelectric constants with piezoresponse force microscopy, Applied Physics Letters, vol.91, p.253511, 2007.

A. Labuda and R. Proksch, Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope, Applied Physics Letters, vol.106, p.253103, 2015.

S. Jesse, P. Maksymovych, and S. V. Kalinin, Rapid multidimensional data acquisition in scanning probe microscopy applied tol ocal polarization dynamics and voltage dependent contact mechanics, Applied Physics Letters, vol.93, p.112903, 2008.

M. Alexe, C. Harnagea, D. Hesse, and U. Gösele, Polarization imprint and size effects in mesoscopic ferroelectric structures, Applied Physics Letters, vol.79, p.242, 2001.

Z. Wang, J. Hu, and M. F. Yu, Axial polarization switching in ferroelectric BaTiO 3 nanowire, Nanotechnology, vol.18, 2007.

Z. Wang, A. P. Suryavanshi, and M. F. Yu, Ferroelectric and piezoelectric behaviors of individual single crystalline BaTiO 3 nanowire under direct axial electric biasing, Applied Physics Letters, vol.89, p.82903, 2006.

P. Ponath, K. Fredrickson, A. B. Posadas, Y. Ren, X. Wu et al., Carrier density modulation in a germanium heterostructure by ferroelectric switching, Nat. Commun, vol.6, p.6067, 2015.

R. Contreras-guerrero, J. P. Veazey, J. Levy, and R. Droopad, Properties of epitaxial BaTiO 3 deposited on GaAs, Appl. Phys. Lett, vol.102, p.12907, 2013.

V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-vedrenne, N. D. Mathur et al., Giant tunnel electroresistance for non-destructive readout of ferroelectric states, Nature, vol.460, p.81, 2009.

A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang et al., Tunneling Electroresistance Effect in Ferroelectric Tunnel Junctions at the Nanoscale, vol.9, p.3539, 2009.

X. Chen, S. Yang, J. Kim, H. Kim, J. Kim et al., Ultrathin BaTiO 3 templates for multiferroic nanostructures, New J. Phys, vol.13, p.83037, 2011.

M. M. Saad, P. Baxter, R. M. Bowman, J. M. Gregg, F. D. Morrison et al., Intrinsic dielectric response in ferroelectric nano-capacitors, J. Phys.: Cond. Mat, vol.16, p.451, 2004.

M. Scigaj, N. Dix, I. Fina, R. Bachelet, B. Warot-fonrose et al., Ultra-flat BaTiO 3 epitaxial films on Si(001) with large out-of-plane polarization, Appl. Phys. Lett, vol.102, p.112905, 2013.

S. Abel, T. Stoferle, C. Marchiori, C. Rossel, M. D. Rossell et al.,

J. Offrein and . Fompeyrine, Strong electro-optically active lead-free ferroelectric integrated on silicon, Nat. Commun, vol.4, p.1671, 2013.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah et al., Active silicon integrated nanophotonics: ferroelectric BaTiO 3 devices, Nano Lett, vol.14, p.1419, 2014.

C. Jia, V. Nagarajan, J. He, L. Houben, T. Zhao et al., Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films, Nature Materials, vol.6, p.64, 2007.

A. M. Bratkovsky and A. P. Levanyuk, Depolarizing field and real hysteresis loops in nanometer-scale ferroelectric films, Appl. Phys. Lett, vol.89, p.253108, 2006.
DOI : 10.1063/1.2408650

URL : http://arxiv.org/pdf/cond-mat/0608283

A. M. Kolpak, F. J. Walker, J. W. Reiner, Y. Segal, D. Su et al., Interface-Induced Polarization and Inhibition of Ferroelectricity in Epitaxial SrTiO 3 /Si, Phys. Rev. Lett, vol.105, p.217601, 2010.

J. F. Scott, Ferroelectric go bananas, J. Phys.: Condens. Matter, vol.20, p.21001, 2008.
DOI : 10.1088/0953-8984/20/02/021001

H. W. Jang, A. Kumar, S. Denev, M. D. Biegalski, P. Maksymovych et al., Ferroelectricity in Strain-Free SrTiO 3 Thin Films, Phys. Rev. Lett, vol.104, p.197601, 2010.
DOI : 10.1103/physrevlett.104.197601

URL : https://pure.qub.ac.uk/portal/files/3690839/PhysRevLett.104.197601.pdf

N. Balke, P. Maksymovych, S. Jesse, I. Kravchenko, Q. Li et al., Exploring local electrostatic effects with scanning probe microscopy: Implications for piezoresponse force microscopy and triboelectricity, ACS Nano, vol.8, p.10229, 2014.
DOI : 10.1021/nn505176a

L. Mazet, R. Bachelet, L. Louahadj, D. Albertini, B. Gautier et al., Structural study and ferroelectricity of epitaxial BaTiO 3 films on silicon grown by molecular beam epitaxy, Journal of Applied Physics, vol.116, p.214102, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01489886

, Substrat après préparation de la surface de départ

, Chauffage à 500°C puis ajout de 2 minutes de Sr/Ba à 500°C

, Chauffage à 760°C pendant 20-30 minutes (en fonction du RHEED) jusqu'à obtenir une reconstruction de surface stable

, Chapitre V : Intégration de BaTiO 3 sur Si 1-x Ge x

S. Datta, J. Brask, G. Dewey, M. Doczy, B. Doyle et al., Advanced Si and SiGe Strained Channel NMOS and PMOS Transistors with High-K/Metal-Gate Stack, Bipolar/BiCMOS Circuits and Technology, pp.194-197, 2004.
DOI : 10.1109/bipol.2004.1365778

O. M. Alatise, S. H. Olsen, N. E. Cowern, A. G. O'neill, and P. Majhi, Performance Enhancements in Scaled Strained-SiGe pMOSFETs HfSiO x / TiSiN Gate Stacks, IEEE Transactions on Electron Devices, vol.56, p.2277, 2009.
DOI : 10.1109/ted.2009.2028375

URL : http://wrap.warwick.ac.uk/37108/1/WRAP_Alatise_1070562-es-091211-ieee_ted_performance_enhancements_strained_sige_pmosfets.pdf

J. P. Dismukes, L. Ekstrom, and R. J. Paff, Lattice parameter and density in germanium-silicon alloys, Journal of Physical Chemistry68, vol.3021, 1964.
DOI : 10.1021/j100792a049

, Silicon Germanium: Lattice constant

J. D. Cressler, The Silicon Heterostructure Handbook: Materials, Fabrication, Devices, Circuits, and Applications of SiGe and Si Strained-Layer Epitaxy, 2005.

Y. Bogumilowicz, Epitaxie et gravure d'hétérostructure Si/Si 1-x Ge x pour applications dans les technologies MOS, 2005.

P. M. Mooney, J. L. Jordan-sweet, J. O. Chu, and F. K. Legoues, Evolution of strain relaxation in step-graded SiGe/Si structures, Appl. Phys. Lett, vol.66, p.3642, 1995.

P. M. Mooney, Strain relaxation and dislocations in SiGe/Si structures, Materials Science and Engineering, vol.17, p.105, 1996.
DOI : 10.1016/s0927-796x(96)00192-1

E. A. Fitzgerald, Y. Xie, D. Monroe, P. J. Silverman, J. M. Kuo et al., Relaxed Ge x Si 1-x structures for III-V integration with Si and high mobility two-dimensional electron gas in Si, Journal of Vacuum Science Technology B, vol.10, p.1807, 1992.
DOI : 10.1116/1.586204

D. W. Greve, Growth of epitaxial germanium-silicon heterostructures by chemical vapour deposition, Materials Science and Engineering B, vol.18, p.22, 1992.
DOI : 10.1016/0921-5107(93)90110-9

J. M. Matthews and A. E. Blakeslee, Defects in epitaxial multilayers: III. Preparation of almost perfect multilayers, Journal of Crystal Growth, vol.32, p.265, 1976.
DOI : 10.1016/0022-0248(75)90171-2

J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, GexSi1-x/Si strained-layer superlattice grown by molecular beam epitaxy, Journal of Vacuum Science and Technology A, vol.2, p.436, 1984.
DOI : 10.1116/1.572361

R. A. Mckee, F. J. Walker, and M. F. Chisholm, Physical structure and inversion charge at a semiconductor interface with a crystalline oxide, Science, vol.293, p.468, 2001.

K. D. Fredrickson, P. Ponath, A. B. Posadas, M. R. Mccartney, T. Aoki et al., Atomic and electronic structure of the ferroelectric BaTiO 3 /Ge(001) interface, Appl. Phys. Lett, vol.104, p.242908, 2014.

P. Ponath, K. Fredrickson, A. B. Posadas, Y. Ren, X. Wu et al., Carrier density modulation in a germanium heterostructure by ferroelectric switching, Nat. Commun, vol.6, p.6067, 2015.
DOI : 10.1038/ncomms7067

URL : https://www.nature.com/articles/ncomms7067.pdf

P. J. Wang, M. S. Goorsky, B. S. Meyerson, F. K. Legoues, and M. J. Tejwani, Characterization of Si/SiGe strained-layer superlattices grown by ultrahigh vacuum/chemical vapor deposition technique, Appl. Phys. Lett, vol.59, p.814, 1991.

G. Hollinger and F. J. Himpsel, Probing the transition layer at the SiO 2 -Si interface using core level photoemission, Appl. Phys. Lett, vol.44, p.93, 1984.
DOI : 10.1063/1.94565

F. K. Legoues, R. Rosenberg, T. Nguyen, F. Himpsel, and B. S. Meyerson, Oxidation studies of SiGe, J. Appl. Phys, vol.65, p.1724, 1989.

H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, Effects of Ge concentration on SiGe oxidation behavior, Applied Physics Letters, vol.59, p.1200, 1991.
DOI : 10.1063/1.105502

J. Eugène, F. K. Legoues, V. P. Kesan, S. S. Iyer, and F. M. , Diffusion versus oxidation rates in silicongermanium alloys, vol.59, p.78, 1991.

V. Craciun, I. W. Boyd, A. H. Reader, W. J. Kersten, F. J. Hakkens et al., Microstructure of oxidized layers formed by the low-temperature ultraviolet-assisted dry oxidation of strained Si 0.8 Ge 0.2 layers on Si, J. Appl. Phys, vol.75, p.1972, 1994.

P. E. Hellberg, S. L. Zhang, F. M. Heurle, and C. S. Petersson, Oxidation of silicon-germanium alloys. I. An experimental study, Journal of Applied Physics, vol.82, p.5773, 1997.

S. N. Dedyulin and L. V. Goncharova, Thermal oxidation of Ge-implanted Si: Role of defects, Nuclear Instruments and Methods in Physics Research B, vol.272, p.334, 2012.

E. Long, A. Azarov, F. Kløw, A. Galeckas, A. Y. Kuznetsov et al., Ge redistribution in SiO 2 /SiGe structures under thermal oxidation: Dynamics and predictions, J. Appl. Phys, vol.111, p.24308, 2012.
DOI : 10.1063/1.3677987

URL : https://www.duo.uio.no/bitstream/10852/57132/2/1%25252E3677987.pdf

D. C. Paine, C. Caragianis, and A. F. Schwartzman, Oxidation of Si 1-x Ge x alloys at atmospheric and elevated pressure, J. Appl. Phys, vol.70, p.5076, 1991.

M. K. Bera, S. Chakraborty, R. Das, G. K. Dalapati, S. Chattopadhyay et al., Rapid thermal oxidation of Gerich Si 1-x Ge x heterolayers, J. Vac. Sci. Technol. A, vol.24, p.84, 2006.

B. Xie, G. Montano-miranda, C. C. Finstad, and A. J. Muscat, Native oxide removal from SiGe using mixtures of HF and water delivered by aqueous, gas, and supercritical CO 2 processes, Materials Science in Semiconductor Processing, vol.8, p.231, 2005.

S. J. Kilpatrick, R. J. Jaccodine, and P. E. Thompson, Experimental study of the oxidation of silicon germanium alloys, J. Appl. Phys, vol.93, p.4896, 2003.

I. M. Lee and C. G. Takoudis, Analysis and characterization of native oxide growth on epitaxial Si 1?x Ge x films after a chemical clean, J. Vac. Sci. Technol. A, vol.15, p.3154, 1997.

R. J. Jaccodine and S. J. Kilpatrick, Initial oxidation of SiGe alloy materials : The use of sub-bonded states as an indicator of the interfacial processes, Proc. Electrochem. Soc. 2005-05, vol.542, 2005.

M. Mukhopadhyay, S. K. Ray, C. K. Maiti, D. K. Nayak, and Y. Shiraki, Electrical properties of oxides grown on strained SiGe layer at low temperatures in a microwave oxygen plasma, Applied Physics Letters, vol.65, p.895, 1994.

S. J. Kilpatrick, R. J. Jaccodine, and P. E. Thompson, A diffusional model for the oxidation behavior of Si 1?x Ge x alloys, J. Appl. Phys, vol.81, p.8018, 1997.

J. M. Madsen, Z. Cui, and C. G. Takoudis, Low temperature oxidation of SiGe in ozone: Ultrathin oxides, Journal of Applied Physics, vol.87, p.2046, 2000.

D. Ali and C. J. Richardson, Reflection high-energy electron diffraction evaluation of thermal deoxidation of chemically cleaned Si, SiGe, and Ge layers for solid-source molecular beam epitaxy, Journal of Vacuum Science & Technology A, vol.30, p.61405, 2012.

P. W. Loscutoff and S. F. Bent, Reactivity of the germanium surface: Chemical Passivation and Functionalization, Annu. Rev. Phys. Chem, vol.57, p.467, 2006.

A. Cattoni, R. Bertacco, M. Riva, M. Cantoni, F. Ciccacci et al., Effect of Ba termination layer on chemical and electrical passivation of Ge (100) surfaces, Materials Science in Semiconductor Processing, vol.9, p.701, 2006.

S. Islam, K. R. Hofmann, A. Feldhoff, and H. Pfnür, Structural, Dielectric, and Interface Properties of Crystalline Barium Silicate Films on Si(100): A Robust High-? Material, Phys. Rev. Appl, vol.5, p.54006, 2016.

D. P. Norton, C. Park, Y. E. Lee, and J. D. Budai, Strontium silicide termination and silicate epitaxy on (001) Si, J. Vac. Sci. Technol. B, vol.20, p.257, 2002.

T. Genevès, B. Domenichini, L. Imhoff, V. Potin, O. Heintz et al., Elaboration and characterization of barium silicate thin films, Micron, vol.39, p.1145, 2008.

S. Bender, R. Franke, E. Hartmann, V. Lansmann, M. Jansen et al., X-ray absorption and photoemission electron spectroscopic investigation of crystalline and amorphous barium silicates, Journal of Non-Crystalline Solids, vol.298, p.99, 2002.

D. Muller-sajak, S. Islam, H. Pfnur, and K. R. Hofmann, Temperature stability of ultra-thin mixed BaSr-oxide layers and their transformation, Nanotechnology, vol.23, p.305202, 2012.

Q. X. Su, T. A. Rabson, M. Robert, J. X. Xiong, and S. C. Moss, Growth of (211) BaTiO 3 thin films on Pt-coated Si(100) substrates by radio frequency magnetron sputtering, Thin Solid Films, vol.305, p.227, 1997.

J. Barthel, Dr. Probe -STEM simulation software, 2016.

L. T. Hudson, R. L. Kurtz, and S. W. Robey, Photoelectron spectroscopic study of the valence and core-level electronic structure of BaTiO 3, Phys. Rev. B, vol.47, p.1174, 1993.

, Chapitre VI : Vers l'intégration dans des dispositifs

I. ,

I. ,

, Caractérisations électriques des structures capacitives préparées

I. , Etude d'une structure capacitive ferroélectrique avec BaTiO3 amorphe

. Ii, Intégration de BaTiO3 dans des transistors à effet de champ III.1. Présentation de la structure des transistors

, Chapitre VI : Vers l'intégration dans des dispositifs

S. Sakai and M. Takahashi, Recent Progress of Ferroelectric-Gate Field-Effect Transistors and Applications to Nonvolatile Logic and FeNAND Flash Memory, Materials, vol.3, p.4950, 2010.

S. Huang, X. Zhong, Y. Zhang, Q. Tan, J. Wang et al., A Retention Model for Ferroelectric-Gate FieldEffect Transistor, IEEE Trans. electron Devices, vol.58, pp.3388-3393, 2011.

S. Salahuddin and S. Datta, Use of negative capacitance to provide voltage amplification for low power nanoscale devices, Nano Lett, vol.8, pp.405-410, 2008.

V. V. Zhirnov and R. K. Calvin, Negative capacitance to the rescue?, nature nanotechnology, vol.3, p.77, 2008.

I. M. Ross, , 1957.

S. C. Heo and C. Choi, Plasma atomic layer deposited TiN metal gate for three dimensional device applications: Deposition temperature, capping metal and post annealing, Microelectronic Engineering, vol.94, pp.11-13, 2012.

S. Lee, R. Choi, and C. Choi, Effects of composition and thickness of TiN metal gate on the equivalent oxide thickness and flat-band voltage in metal oxide semiconductor devices, Microelectronic Engineering, vol.109, pp.160-162, 2013.

L. Wu, H. Y. Yu, X. Li, K. L. Pey, K. Y. Hsu et al., Investigation of ALD or PVD (Ti-rich vs. N-rich) TiN metal gate thermal stability on HfO2 high-K, Proc. Int. Symp. VLSI Technol. Syst. Appl, 2010.

G. Niu, S. Yin, G. Saint-girons, B. Gautier, P. Lecoeur et al., Epitaxy of BaTiO 3 thin film on Si(001) using a SrTiO 3 buffer layer for non-volatile memory application, Microelectronic Engineering, vol.88, pp.1232-1235, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01939990

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-sweet et al., Switching of ferroelectric polarization in epitaxial BaTiO 3 films on silicon without a conducting bottom electrode, Nature Nanotechnology, vol.8, pp.748-754, 2013.

S. L. Miller and P. J. Mcwhorter, Physics of the ferroelectric nonvolatile memory field effect transistor, J. Appl. Phys, vol.72, p.5999, 1992.

W. J. Merz, Domain Formation and Domain Wall Motions in Ferroelectric BaTiO 3 Single Crystals, Phys. Rev, vol.95, p.690, 1954.

J. Y. Jo, Y. S. Kim, T. W. Noh, J. Yoon, and T. K. Song, Coercive fields in ultrathin BaTiO 3 capacitors, Appl. Phys. Lett, vol.89, p.232909, 2006.

G. Panomsuwan, O. Takai, and N. Saito, Enhanced memory window of Au/BaTiO 3 /SrTiO 3 /Si(001) MFIS structure with high c-axis orientation for non-volatile memory applications, Appl Phys A, vol.108, pp.337-342, 2012.

C. M. Lin, W. Shih, I. Y. Chang, P. C. Juan, and J. Y. Lee, Metal-ferroelectric (BiFeO3)-insulator (Y 2 O 3 )-semiconductor capacitors and field effect transistors for nonvolatile memory applications, Appl. Phys. Lett, vol.94, p.142905, 2009.

N. M. Murari, R. Thomas, S. P. Pavunny, J. R. Calzada, and R. S. Katiyar, DyScO 3 buffer layer for a performing metal-ferroelectric-insulator semiconductor structure with multiferroic BiFeO 3 thin film, Appl. Phys. Lett, vol.94, p.142907, 2009.

H. N. Lee, Y. T. Kim, and S. H. Choh, Comparison of memory effect between YMnO 3 and SrBi 2 Ta 2 O 9 ferroelectric thin films deposited on Si substrates, Appl. Phys. Lett, vol.76, issue.8, p.21, 2000.

Z. H. Zhang, X. L. Zhong, Y. Zhang, J. B. Wang, C. J. Lu et al., Retention loss in the ferroelectric (SrBi 2 Ta 2 O 9 )-insulator (HfO 2 )-silicon structure studied by piezoresponse force microscopy, EPL, vol.98, p.27011, 2012.

H. Ishiwara, Current status of ferroelectric-gate Si transistors and challenge to ferroelectric-gate CNT transistors, Cur. Appl. Phys, vol.9, pp.2-6, 2009.

S. Reenen, M. Kemerink, and H. J. Snaith, Modeling Anomalous Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett, vol.6, pp.3808-3814, 2015.

W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddin et al., Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH 3 NH 3 PbI 3 perovskite solar cells: the role of a compensated electric field, Energy Environ. Sci, vol.8, pp.995-1004, 2015.

M. Cuniot-ponsard, Strontium Barium Niobate Thin Films for Dielectric and Electro-Optic Applications, Ferroelectrics -Material Aspects, 2011.
DOI : 10.5772/17321

URL : https://hal.archives-ouvertes.fr/hal-00617592

S. Horiuchi, R. Kumaia, and Y. Tokura, Proton-displacive ferroelectricity in neutral cocrystals of anilic acids with phenazine, J. Mater. Chem, vol.19, pp.4421-4434, 2009.

D. A. Tenne, P. Turner, J. D. Schmidt, M. Biegalski, Y. L. Li et al., Ferroelectricity in Ultrathin BaTiO 3 Films: Probing the Size Effect by Ultraviolet Raman Spectroscopy, Phys. Rev. Lett, vol.103, p.177601, 2009.

M. L. Reed and J. D. Plummer, Chemistry of Si-SiO 2 interface trap annealing, J. Appl. Phys, vol.63, p.5776, 1988.

J. Beilsten-edmands, G. E. Eperon, R. D. Johnson, H. J. Snaith, and P. G. Radaelli, Non-ferroelectric nature of the conductance hysteresis in CH 3 NH 3 PbI 3 perovskite-based photovoltaic devices, Appl. Phys. Lett, vol.106, p.173502, 2015.

W. J. Hu, D. M. Juo, L. You, J. Wang, Y. Chen et al., Universal Ferroelectric Switching Dynamics of Vinylidene Fluoride-trifluoroethylene Copolymer Films, Sci. Rep, vol.4, p.4772, 2014.

N. A. Pertsev, A. Petraru, H. Kohlstedt, R. Waser, I. K. Bdikin et al., Dynamics of ferroelectric nanodomains in BaTiO 3 epitaxial thin films via piezoresponse force microscopy, Nanotechnology, vol.19, p.375703, 2008.

T. Tybell, P. Paruch, T. Giamarchi, and J. Triscone, Domain Wall Creep in Epitaxial Ferroelectric Pb(Zr 0.2 Ti 0.8 )O 3 Thin Films, Physical Review Letters, vol.89, p.97601, 2002.
DOI : 10.1103/physrevlett.89.097601

URL : https://archive-ouverte.unige.ch/unige:31054/ATTACHMENT01

J. F. Scott and F. Memories, , 2000.

S. M. Yang, J. Yoon, and T. W. Noh, Nanoscale studies of defect-mediated polarization switching dynamics in ferroelectric thin film capacitors, Cur. Ap. Phys, vol.11, p.1111, 2011.

Y. W. So, D. J. Kim, T. W. Noh, J. Yoon, and T. K. Song, Polarization switching kinetics of epitaxial Pb( Zr 0.4 Ti 0.6 )O 3 thin films, Appl. Phys. Lett, vol.86, p.92905, 2005.

D. J. Kim, J. Y. Jo, Y. S. Kim, Y. J. Chang, J. S. Lee et al., Polarization Relaxation Induced by Depolarization Field in Ultrathin Ferroelectric BaTiO 3 Capacitors, Phys. Rev. Lett, vol.95, p.237602, 2005.
DOI : 10.1103/physrevlett.95.237602

URL : http://arxiv.org/pdf/cond-mat/0506480

Y. Xu and J. D. Mackenzie, Electrical characterizations of polycrystalline and amorphous thin films of Pb( Zr x Ti 1-x )O 3 and BaTiO 3 prepared by sol-gel technique, J. Non-Cryst. Solids, vol.176, 1994.

Y. Xu and J. D. Mackenzie, A theoretical explanation for ferroelectric-like properties of amorphous Pb(Zr x Ti 1-x )O 3 and BaTiO 3, J. Non-Cryst. Solids, vol.246, p.136, 1999.

P. Jing, W. Chuan-ju, S. Tang-you, Z. Wen-ning, W. Xiao-feng et al., Fabrication and optical properties of InGaN/GaN multiple quantum well light emitting diodes with amorphous BaTiO 3 ferroelectric film, Chin. Phys. B, vol.21, p.67702, 2012.

M. S. Al-assiri and M. M. El-desoky, Grain-size effects on the structural, electrical properties and ferroelectric behaviour of barium titanate-based glass-ceramic nano-composite, J. Mater Sci: Mater Electron, vol.24, p.784, 2013.

J. L. Wang, A. Pancotti, P. Jégou, G. Niu, B. Gautier et al., Ferroelectricity in a quasiamorphous ultrathin BaTiO 3 film, Phys. Rev. B, vol.84, p.205426, 2011.
DOI : 10.1103/physrevb.84.205426

H. Li, Y. Zhang, J. Wen, S. Yang, D. Mo et al., Optical Properties of Lead Lanthanum Zirconate Titanate Amorphous Ferroelectric-Like Thin Films, Jpn. J. Appl. Phys, vol.39, p.1180, 2000.

M. Coll, J. Gazquez, I. Fina, Z. Khayat, A. Quindeau et al., Nanocrystalline Ferroelectric BiFeO 3 Thin Films by Low-Temperature Atomic Layer Deposition, Chem. Mater, vol.27, p.6328, 2015.

J. D. Mackenzie, R. Xu, and Y. Xu, Method for forming amorphous ferroelectric materials, p.5342648, 1994.

C. Jaing, J. Chen, J. Chyi, and J. Sheu, Method for fabricating capacitor containing amorphous and polycrystalline ferroelectric films and method for forming amorphous ferroelectric film, p.6309895, 2001.

C. Jaing, J. Chen, J. Chyi, and J. Sheu, Capacitor containing amorphous and polycrystalline ferroelectric films and fabrication method therefor, and method for forming amorphous ferroelectric film, p.6514814, 2003.

M. E. Lines, Microscopic model for a ferroelectric glass, Phys. Rev. B, vol.15, p.388, 1977.

A. M. Glass, M. E. Lines, K. Nassau, and J. W. Shiever, Anomalous dielectric behavior and reversible pyroelectricity in roller-quenched LiNbO 3 and LiTaO 3 glass, Appl.Phys. Lett, vol.31, p.249, 1977.

E. Wachtel and I. Lubomirsky, Quasi-Amorphous Inorganic Thin Films: Non-Crystalline Polar Phases, Adv. Mater, vol.22, p.2485, 2010.

, La mise en évidence de ferroélectricité de BaTiO 3 amorphe dans des structures capacitives est une piste à explorer pour une éventuelle intégration de ces matériaux, plus facile à mettre en oeuvre que pour des couches épitaxiées

, Le travail que nous avons initié pour l'intégration de BaTiO 3 dans des transistors est en cours de réalisation et sera donc à poursuivre. Une fois les premiers transistors terminés, il faudra tester les propriétés électriques de ceux-ci et évaluer leur

.. .. Si, , p.251

, Annexe, vol.2

, Substrats de Si 0.25 Ge 0.75 contraints sur Si réalisés pour des de temps de dépôt plus courts, Annexe, vol.3, p.255

, Analyse XPS de la préparation d'un substrat Si 0.8 Ge 0.2 -Ajustement des pics, Annexe, vol.5

, Analyse XPS de la croissance de BaTiO 3 sur Si 0.8 Ge 0.2 -Ajustement des pics, Annexe, vol.5

, Croissance de BaTiO 3 sur un substrat pré-structuré, Annexe, vol.6

, Annexe 5 : Analyse XPS de la croissance de BaTiO3 sur Si0.8Ge0.2 -Ajustement des pics

, pour deux échantillons, l'un passivé Sr et l'autre Ba. Les différentes étapes sont : 1

, Recuit à 500°C puis ajout de 2 minutes de Sr/Ba à 500°C

, Recuit à 760°C pendant 20-30 minutes (en fonction du RHEED)

, Après exposition à l'oxygène (une minute sous P(O 2 ) croissante jusqu'à 1x10 -7 Torr)

, Croissance de 2 monocouches de BaTiO 3 à 500°C sous P(O 2 ) =1x10 -7 Torr 6. Croissance de 10 monocouches de BaTiO 3 à 500°C sous P(O 2 ) =1x10 -7 Torr 7. Oxydation plasma 40 minutes à 180°C sous 1x10 -5 Torr d'oxygène (réalisée seulement sur l

, des propriétés structurales ou physico-chimiques et de la ferroélectricité -applications à des dispositifs à effet de champ Résumé L'intégration monolithique d'oxydes ferroélectriques sur substrats semi-conducteurs pourrait permettre l'ajout de nouvelles fonctionnalités sur puces de la nanoélectronique. L'utilisation d'un ferroélectrique est en particulier intéressante pour la réalisation de dispositifs à basse consommation d'énergie. Toutefois, leur intégration se heurte à un certain nombre de verrous scientifiques et technologiques tels que le contrôle de l'interface oxyde/semi-conducteur, l'instabilité de la polarisation ferroélectrique en couches minces ou encore la compatibilité de l'intégration avec les procédés industriels actuels. Les principaux objectifs de ma thèse ont été, Epitaxie par jets moléculaires de l'oxyde BaTiO 3 sur Si et Si 1-x Ge x : étude de la croissance

, Les analyses de diffraction des rayons X (XRD) combinées à des techniques avancées de microscopie électronique en transmission (STEM-HAADF, GPA, EELS) ont permis d'établir une corrélation, à l'échelle locale, entre l'orientation de la maille tétragonale et la composition cationique des films. La ferroélectricité de films orientés axe c, d'épaisseur 16-20 nm, préparés sous des pressions partielles P(O 2 ) de 1-5 x 10 -7 Torr, Différentes conditions de croissance sur substrats de silicium, en particulier la température et la pression d'oxygène P, pp.450-525

, Nous avons ensuite étudié la croissance de BaTiO 3 épitaxié sur substrats Si 1-x Ge x , ce qui constitue une approche inédite, particulièrement intéressante pour moduler les contraintes

, Afin de comprendre l'effet de la présence de Ge, la croissance de BaTiO 3

, Ge 0.2 avec des atomes de Ba permet l'épitaxie directe d'un film de BaTiO 3 orienté (112), ceci par l'intermédiaire d'une couche d'interface épitaxiée, identifiée comme étant le silicate de structure orthorhombique Ba 2 SiO 4 . Ce silicate est épitaxié selon deux orientations dans le plan de Si 0

. Enfin and . Research, une voie d'intégration basse température « gate-last » a été développée pour intégrer les couches minces de BaTiO 3 dans des dispositifs à effets de champ sur Si (condensateurs et transistors). Les films de BaTiO 3 ont été déposés par MBE sur des substrats pré-structurés

, Un procédé approprié a été choisi pour le dépôt de l'électrode TiN et pour la lithographie/gravure. Certains empilements, composés d'une matrice amorphe et de nano-grains dans les structures capacitives, présentent un comportement ferroélectrique (Tc~105°C). Cette première démonstration d'une capacité ferroélectrique de BaTiO 3 "quasi-amorphe, p.25